blob: 5d6bf0d0a18a3ea00f93e207318bfd493d5376bb [file] [log] [blame]
Jon Medhurst221bf152011-04-20 10:52:38 +01001/*
2 * arch/arm/kernel/kprobes.h
3 *
Jon Medhurst0d1a0952011-04-26 15:15:56 +01004 * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>.
5 *
6 * Some contents moved here from arch/arm/include/asm/kprobes.h which is
Jon Medhurst221bf152011-04-20 10:52:38 +01007 * Copyright (C) 2006, 2007 Motorola Inc.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 */
18
19#ifndef _ARM_KERNEL_KPROBES_H
20#define _ARM_KERNEL_KPROBES_H
21
22/*
Jon Medhurstaceb4872011-04-19 17:18:35 +010023 * These undefined instructions must be unique and
Jon Medhurst221bf152011-04-20 10:52:38 +010024 * reserved solely for kprobes' use.
25 */
Jon Medhurst3b269452011-06-16 17:22:37 +010026#define KPROBE_ARM_BREAKPOINT_INSTRUCTION 0x07f001f8
Jon Medhurstaceb4872011-04-19 17:18:35 +010027#define KPROBE_THUMB16_BREAKPOINT_INSTRUCTION 0xde18
28#define KPROBE_THUMB32_BREAKPOINT_INSTRUCTION 0xf7f0a018
29
Jon Medhurst221bf152011-04-20 10:52:38 +010030
31enum kprobe_insn {
32 INSN_REJECTED,
33 INSN_GOOD,
34 INSN_GOOD_NO_SLOT
35};
36
Jon Medhurst24371702011-04-19 17:56:58 +010037typedef enum kprobe_insn (kprobe_decode_insn_t)(kprobe_opcode_t,
38 struct arch_specific_insn *);
39
40#ifdef CONFIG_THUMB2_KERNEL
41
42enum kprobe_insn thumb16_kprobe_decode_insn(kprobe_opcode_t,
43 struct arch_specific_insn *);
44enum kprobe_insn thumb32_kprobe_decode_insn(kprobe_opcode_t,
45 struct arch_specific_insn *);
46
47#else /* !CONFIG_THUMB2_KERNEL */
48
Jon Medhurst221bf152011-04-20 10:52:38 +010049enum kprobe_insn arm_kprobe_decode_insn(kprobe_opcode_t,
50 struct arch_specific_insn *);
Jon Medhurst24371702011-04-19 17:56:58 +010051#endif
Jon Medhurst221bf152011-04-20 10:52:38 +010052
53void __init arm_kprobe_decode_init(void);
54
Jon Medhurst0ab4c022011-07-06 11:25:18 +010055extern kprobe_check_cc * const kprobe_condition_checks[16];
56
Jon Medhurstaea49022011-07-07 19:58:29 +010057
58#if __LINUX_ARM_ARCH__ >= 7
59
60/* str_pc_offset is architecturally defined from ARMv7 onwards */
61#define str_pc_offset 8
62#define find_str_pc_offset()
63
64#else /* __LINUX_ARM_ARCH__ < 7 */
65
66/* We need a run-time check to determine str_pc_offset */
Jon Medhurst6c8df332011-07-07 10:21:40 +010067extern int str_pc_offset;
Jon Medhurstaea49022011-07-07 19:58:29 +010068void __init find_str_pc_offset(void);
69
70#endif
71
Jon Medhurst6c8df332011-07-07 10:21:40 +010072
Jon Medhurst1b59d872011-07-06 20:33:41 +010073/*
Jon Medhurst6aaa8b52011-06-16 14:53:56 +010074 * Update ITSTATE after normal execution of an IT block instruction.
75 *
76 * The 8 IT state bits are split into two parts in CPSR:
77 * ITSTATE<1:0> are in CPSR<26:25>
78 * ITSTATE<7:2> are in CPSR<15:10>
79 */
80static inline unsigned long it_advance(unsigned long cpsr)
81 {
82 if ((cpsr & 0x06000400) == 0) {
83 /* ITSTATE<2:0> == 0 means end of IT block, so clear IT state */
84 cpsr &= ~PSR_IT_MASK;
85 } else {
86 /* We need to shift left ITSTATE<4:0> */
87 const unsigned long mask = 0x06001c00; /* Mask ITSTATE<4:0> */
88 unsigned long it = cpsr & mask;
89 it <<= 1;
90 it |= it >> (27 - 10); /* Carry ITSTATE<2> to correct place */
91 it &= mask;
92 cpsr &= ~mask;
93 cpsr |= it;
94 }
95 return cpsr;
96}
97
Jon Medhurst059987f2011-06-09 11:01:54 +010098static inline void __kprobes bx_write_pc(long pcv, struct pt_regs *regs)
99{
100 long cpsr = regs->ARM_cpsr;
101 if (pcv & 0x1) {
102 cpsr |= PSR_T_BIT;
103 pcv &= ~0x1;
104 } else {
105 cpsr &= ~PSR_T_BIT;
106 pcv &= ~0x2; /* Avoid UNPREDICTABLE address allignment */
107 }
108 regs->ARM_cpsr = cpsr;
109 regs->ARM_pc = pcv;
110}
111
Jon Medhurst263e3682011-06-10 20:29:04 +0100112
113#if __LINUX_ARM_ARCH__ >= 6
114
115/* Kernels built for >= ARMv6 should never run on <= ARMv5 hardware, so... */
116#define load_write_pc_interworks true
117#define test_load_write_pc_interworking()
118
119#else /* __LINUX_ARM_ARCH__ < 6 */
120
121/* We need run-time testing to determine if load_write_pc() should interwork. */
122extern bool load_write_pc_interworks;
123void __init test_load_write_pc_interworking(void);
124
125#endif
126
127static inline void __kprobes load_write_pc(long pcv, struct pt_regs *regs)
128{
129 if (load_write_pc_interworks)
130 bx_write_pc(pcv, regs);
131 else
132 regs->ARM_pc = pcv;
133}
134
135
Jon Medhurst3f92dfe2011-07-02 15:36:32 +0100136void __kprobes kprobe_simulate_nop(struct kprobe *p, struct pt_regs *regs);
137void __kprobes kprobe_emulate_none(struct kprobe *p, struct pt_regs *regs);
138
Jon Medhurst6aaa8b52011-06-16 14:53:56 +0100139/*
Jon Medhurst1b59d872011-07-06 20:33:41 +0100140 * Test if load/store instructions writeback the address register.
141 * if P (bit 24) == 0 or W (bit 21) == 1
142 */
143#define is_writeback(insn) ((insn ^ 0x01000000) & 0x01200000)
144
Jon Medhurst0d1a0952011-04-26 15:15:56 +0100145/*
146 * The following definitions and macros are used to build instruction
147 * decoding tables for use by kprobe_decode_insn.
148 *
149 * These tables are a concatenation of entries each of which consist of one of
150 * the decode_* structs. All of the fields in every type of decode structure
151 * are of the union type decode_item, therefore the entire decode table can be
152 * viewed as an array of these and declared like:
153 *
154 * static const union decode_item table_name[] = {};
155 *
156 * In order to construct each entry in the table, macros are used to
157 * initialise a number of sequential decode_item values in a layout which
158 * matches the relevant struct. E.g. DECODE_SIMULATE initialise a struct
159 * decode_simulate by initialising four decode_item objects like this...
160 *
161 * {.bits = _type},
162 * {.bits = _mask},
163 * {.bits = _value},
164 * {.handler = _handler},
165 *
166 * Initialising a specified member of the union means that the compiler
167 * will produce a warning if the argument is of an incorrect type.
168 *
169 * Below is a list of each of the macros used to initialise entries and a
170 * description of the action performed when that entry is matched to an
171 * instruction. A match is found when (instruction & mask) == value.
172 *
173 * DECODE_TABLE(mask, value, table)
174 * Instruction decoding jumps to parsing the new sub-table 'table'.
175 *
176 * DECODE_CUSTOM(mask, value, decoder)
177 * The custom function 'decoder' is called to the complete decoding
178 * of an instruction.
179 *
180 * DECODE_SIMULATE(mask, value, handler)
181 * Set the probes instruction handler to 'handler', this will be used
182 * to simulate the instruction when the probe is hit. Decoding returns
183 * with INSN_GOOD_NO_SLOT.
184 *
185 * DECODE_EMULATE(mask, value, handler)
186 * Set the probes instruction handler to 'handler', this will be used
187 * to emulate the instruction when the probe is hit. The modified
188 * instruction (see below) is placed in the probes instruction slot so it
189 * may be called by the emulation code. Decoding returns with INSN_GOOD.
190 *
191 * DECODE_REJECT(mask, value)
192 * Instruction decoding fails with INSN_REJECTED
193 *
194 * DECODE_OR(mask, value)
195 * This allows the mask/value test of multiple table entries to be
196 * logically ORed. Once an 'or' entry is matched the decoding action to
197 * be performed is that of the next entry which isn't an 'or'. E.g.
198 *
199 * DECODE_OR (mask1, value1)
200 * DECODE_OR (mask2, value2)
201 * DECODE_SIMULATE (mask3, value3, simulation_handler)
202 *
203 * This means that if any of the three mask/value pairs match the
204 * instruction being decoded, then 'simulation_handler' will be used
205 * for it.
206 *
207 * Both the SIMULATE and EMULATE macros have a second form which take an
208 * additional 'regs' argument.
209 *
210 * DECODE_SIMULATEX(mask, value, handler, regs)
211 * DECODE_EMULATEX (mask, value, handler, regs)
212 *
213 * These are used to specify what kind of CPU register is encoded in each of the
214 * least significant 5 nibbles of the instruction being decoded. The regs value
215 * is specified using the REGS macro, this takes any of the REG_TYPE_* values
216 * from enum decode_reg_type as arguments; only the '*' part of the name is
217 * given. E.g.
218 *
219 * REGS(0, ANY, NOPC, 0, ANY)
220 *
221 * This indicates an instruction is encoded like:
222 *
223 * bits 19..16 ignore
224 * bits 15..12 any register allowed here
225 * bits 11.. 8 any register except PC allowed here
226 * bits 7.. 4 ignore
227 * bits 3.. 0 any register allowed here
228 *
229 * This register specification is checked after a decode table entry is found to
230 * match an instruction (through the mask/value test). Any invalid register then
231 * found in the instruction will cause decoding to fail with INSN_REJECTED. In
232 * the above example this would happen if bits 11..8 of the instruction were
233 * 1111, indicating R15 or PC.
234 *
235 * As well as checking for legal combinations of registers, this data is also
236 * used to modify the registers encoded in the instructions so that an
237 * emulation routines can use it. (See decode_regs() and INSN_NEW_BITS.)
238 *
239 * Here is a real example which matches ARM instructions of the form
240 * "AND <Rd>,<Rn>,<Rm>,<shift> <Rs>"
241 *
242 * DECODE_EMULATEX (0x0e000090, 0x00000010, emulate_rd12rn16rm0rs8_rwflags,
243 * REGS(ANY, ANY, NOPC, 0, ANY)),
244 * ^ ^ ^ ^
245 * Rn Rd Rs Rm
246 *
247 * Decoding the instruction "AND R4, R5, R6, ASL R15" will be rejected because
248 * Rs == R15
249 *
250 * Decoding the instruction "AND R4, R5, R6, ASL R7" will be accepted and the
251 * instruction will be modified to "AND R0, R2, R3, ASL R1" and then placed into
252 * the kprobes instruction slot. This can then be called later by the handler
253 * function emulate_rd12rn16rm0rs8_rwflags in order to simulate the instruction.
254 */
255
256enum decode_type {
257 DECODE_TYPE_END,
258 DECODE_TYPE_TABLE,
259 DECODE_TYPE_CUSTOM,
260 DECODE_TYPE_SIMULATE,
261 DECODE_TYPE_EMULATE,
262 DECODE_TYPE_OR,
263 DECODE_TYPE_REJECT,
264 NUM_DECODE_TYPES /* Must be last enum */
265};
266
267#define DECODE_TYPE_BITS 4
268#define DECODE_TYPE_MASK ((1 << DECODE_TYPE_BITS) - 1)
269
270enum decode_reg_type {
271 REG_TYPE_NONE = 0, /* Not a register, ignore */
272 REG_TYPE_ANY, /* Any register allowed */
273 REG_TYPE_SAMEAS16, /* Register should be same as that at bits 19..16 */
274 REG_TYPE_SP, /* Register must be SP */
275 REG_TYPE_PC, /* Register must be PC */
276 REG_TYPE_NOSP, /* Register must not be SP */
277 REG_TYPE_NOSPPC, /* Register must not be SP or PC */
278 REG_TYPE_NOPC, /* Register must not be PC */
279 REG_TYPE_NOPCWB, /* No PC if load/store write-back flag also set */
280
281 /* The following types are used when the encoding for PC indicates
282 * another instruction form. This distiction only matters for test
283 * case coverage checks.
284 */
285 REG_TYPE_NOPCX, /* Register must not be PC */
286 REG_TYPE_NOSPPCX, /* Register must not be SP or PC */
287
288 /* Alias to allow '0' arg to be used in REGS macro. */
289 REG_TYPE_0 = REG_TYPE_NONE
290};
291
292#define REGS(r16, r12, r8, r4, r0) \
293 ((REG_TYPE_##r16) << 16) + \
294 ((REG_TYPE_##r12) << 12) + \
295 ((REG_TYPE_##r8) << 8) + \
296 ((REG_TYPE_##r4) << 4) + \
297 (REG_TYPE_##r0)
298
299union decode_item {
300 u32 bits;
301 const union decode_item *table;
302 kprobe_insn_handler_t *handler;
303 kprobe_decode_insn_t *decoder;
304};
305
306
307#define DECODE_END \
308 {.bits = DECODE_TYPE_END}
309
310
311struct decode_header {
312 union decode_item type_regs;
313 union decode_item mask;
314 union decode_item value;
315};
316
317#define DECODE_HEADER(_type, _mask, _value, _regs) \
318 {.bits = (_type) | ((_regs) << DECODE_TYPE_BITS)}, \
319 {.bits = (_mask)}, \
320 {.bits = (_value)}
321
322
323struct decode_table {
324 struct decode_header header;
325 union decode_item table;
326};
327
328#define DECODE_TABLE(_mask, _value, _table) \
329 DECODE_HEADER(DECODE_TYPE_TABLE, _mask, _value, 0), \
330 {.table = (_table)}
331
332
333struct decode_custom {
334 struct decode_header header;
335 union decode_item decoder;
336};
337
338#define DECODE_CUSTOM(_mask, _value, _decoder) \
339 DECODE_HEADER(DECODE_TYPE_CUSTOM, _mask, _value, 0), \
340 {.decoder = (_decoder)}
341
342
343struct decode_simulate {
344 struct decode_header header;
345 union decode_item handler;
346};
347
348#define DECODE_SIMULATEX(_mask, _value, _handler, _regs) \
349 DECODE_HEADER(DECODE_TYPE_SIMULATE, _mask, _value, _regs), \
350 {.handler = (_handler)}
351
352#define DECODE_SIMULATE(_mask, _value, _handler) \
353 DECODE_SIMULATEX(_mask, _value, _handler, 0)
354
355
356struct decode_emulate {
357 struct decode_header header;
358 union decode_item handler;
359};
360
361#define DECODE_EMULATEX(_mask, _value, _handler, _regs) \
362 DECODE_HEADER(DECODE_TYPE_EMULATE, _mask, _value, _regs), \
363 {.handler = (_handler)}
364
365#define DECODE_EMULATE(_mask, _value, _handler) \
366 DECODE_EMULATEX(_mask, _value, _handler, 0)
367
368
369struct decode_or {
370 struct decode_header header;
371};
372
373#define DECODE_OR(_mask, _value) \
374 DECODE_HEADER(DECODE_TYPE_OR, _mask, _value, 0)
375
376
377struct decode_reject {
378 struct decode_header header;
379};
380
381#define DECODE_REJECT(_mask, _value) \
382 DECODE_HEADER(DECODE_TYPE_REJECT, _mask, _value, 0)
383
384
385int kprobe_decode_insn(kprobe_opcode_t insn, struct arch_specific_insn *asi,
386 const union decode_item *table, bool thumb16);
387
388
Jon Medhurst221bf152011-04-20 10:52:38 +0100389#endif /* _ARM_KERNEL_KPROBES_H */