blob: 9a6eb25b90e91f93cc8281c4a054cc7a8cd81063 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001#ifndef _ASM_GENERIC_PGTABLE_H
2#define _ASM_GENERIC_PGTABLE_H
3
Rusty Russell673eae82006-09-25 23:32:29 -07004#ifndef __ASSEMBLY__
Greg Ungerer95352392007-08-10 13:01:20 -07005#ifdef CONFIG_MMU
Rusty Russell673eae82006-09-25 23:32:29 -07006
Ben Hutchingsfbd71842011-02-27 05:41:35 +00007#include <linux/mm_types.h>
Paul Gortmaker187f1882011-11-23 20:12:59 -05008#include <linux/bug.h>
Ben Hutchingsfbd71842011-02-27 05:41:35 +00009
Hugh Dickins273a82b2013-04-29 15:07:44 -070010/*
11 * On almost all architectures and configurations, 0 can be used as the
12 * upper ceiling to free_pgtables(): on many architectures it has the same
13 * effect as using TASK_SIZE. However, there is one configuration which
14 * must impose a more careful limit, to avoid freeing kernel pgtables.
15 */
16#ifndef USER_PGTABLES_CEILING
17#define USER_PGTABLES_CEILING 0UL
18#endif
19
Linus Torvalds1da177e2005-04-16 15:20:36 -070020#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
Andrea Arcangelie2cda322011-01-13 15:46:40 -080021extern int ptep_set_access_flags(struct vm_area_struct *vma,
22 unsigned long address, pte_t *ptep,
23 pte_t entry, int dirty);
24#endif
25
26#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
27extern int pmdp_set_access_flags(struct vm_area_struct *vma,
28 unsigned long address, pmd_t *pmdp,
29 pmd_t entry, int dirty);
Linus Torvalds1da177e2005-04-16 15:20:36 -070030#endif
31
32#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
Andrea Arcangelie2cda322011-01-13 15:46:40 -080033static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
34 unsigned long address,
35 pte_t *ptep)
36{
37 pte_t pte = *ptep;
38 int r = 1;
39 if (!pte_young(pte))
40 r = 0;
41 else
42 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
43 return r;
44}
45#endif
46
47#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
48#ifdef CONFIG_TRANSPARENT_HUGEPAGE
49static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
50 unsigned long address,
51 pmd_t *pmdp)
52{
53 pmd_t pmd = *pmdp;
54 int r = 1;
55 if (!pmd_young(pmd))
56 r = 0;
57 else
58 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
59 return r;
60}
61#else /* CONFIG_TRANSPARENT_HUGEPAGE */
62static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
63 unsigned long address,
64 pmd_t *pmdp)
65{
66 BUG();
67 return 0;
68}
69#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
Linus Torvalds1da177e2005-04-16 15:20:36 -070070#endif
71
72#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
Andrea Arcangelie2cda322011-01-13 15:46:40 -080073int ptep_clear_flush_young(struct vm_area_struct *vma,
74 unsigned long address, pte_t *ptep);
75#endif
76
77#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
78int pmdp_clear_flush_young(struct vm_area_struct *vma,
79 unsigned long address, pmd_t *pmdp);
Linus Torvalds1da177e2005-04-16 15:20:36 -070080#endif
81
Linus Torvalds1da177e2005-04-16 15:20:36 -070082#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
Andrea Arcangelie2cda322011-01-13 15:46:40 -080083static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
84 unsigned long address,
85 pte_t *ptep)
86{
87 pte_t pte = *ptep;
88 pte_clear(mm, address, ptep);
89 return pte;
90}
91#endif
92
93#ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR
94#ifdef CONFIG_TRANSPARENT_HUGEPAGE
95static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
96 unsigned long address,
97 pmd_t *pmdp)
98{
99 pmd_t pmd = *pmdp;
100 pmd_clear(mm, address, pmdp);
101 return pmd;
Nicolas Kaiser49b24d62011-06-15 15:08:34 -0700102}
Andrea Arcangelie2cda322011-01-13 15:46:40 -0800103#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700104#endif
105
Zachary Amsdena6003882005-09-03 15:55:04 -0700106#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
Andrea Arcangelie2cda322011-01-13 15:46:40 -0800107static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
108 unsigned long address, pte_t *ptep,
109 int full)
110{
111 pte_t pte;
112 pte = ptep_get_and_clear(mm, address, ptep);
113 return pte;
114}
Zachary Amsdena6003882005-09-03 15:55:04 -0700115#endif
116
Zachary Amsden9888a1c2006-09-30 23:29:31 -0700117/*
118 * Some architectures may be able to avoid expensive synchronization
119 * primitives when modifications are made to PTE's which are already
120 * not present, or in the process of an address space destruction.
121 */
122#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
Andrea Arcangelie2cda322011-01-13 15:46:40 -0800123static inline void pte_clear_not_present_full(struct mm_struct *mm,
124 unsigned long address,
125 pte_t *ptep,
126 int full)
127{
128 pte_clear(mm, address, ptep);
129}
Zachary Amsdena6003882005-09-03 15:55:04 -0700130#endif
131
Linus Torvalds1da177e2005-04-16 15:20:36 -0700132#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
Andrea Arcangelie2cda322011-01-13 15:46:40 -0800133extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
134 unsigned long address,
135 pte_t *ptep);
136#endif
137
138#ifndef __HAVE_ARCH_PMDP_CLEAR_FLUSH
139extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
140 unsigned long address,
141 pmd_t *pmdp);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700142#endif
143
144#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
Tim Schmielau8c65b4a2005-11-07 00:59:43 -0800145struct mm_struct;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700146static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
147{
148 pte_t old_pte = *ptep;
149 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
150}
151#endif
152
Andrea Arcangelie2cda322011-01-13 15:46:40 -0800153#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
154#ifdef CONFIG_TRANSPARENT_HUGEPAGE
155static inline void pmdp_set_wrprotect(struct mm_struct *mm,
156 unsigned long address, pmd_t *pmdp)
157{
158 pmd_t old_pmd = *pmdp;
159 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
160}
161#else /* CONFIG_TRANSPARENT_HUGEPAGE */
162static inline void pmdp_set_wrprotect(struct mm_struct *mm,
163 unsigned long address, pmd_t *pmdp)
164{
165 BUG();
166}
167#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
168#endif
169
170#ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH
Andrea Arcangelib3697c02011-01-16 13:10:39 -0800171extern pmd_t pmdp_splitting_flush(struct vm_area_struct *vma,
172 unsigned long address,
173 pmd_t *pmdp);
Andrea Arcangelie2cda322011-01-13 15:46:40 -0800174#endif
175
Linus Torvalds1da177e2005-04-16 15:20:36 -0700176#ifndef __HAVE_ARCH_PTE_SAME
Andrea Arcangelie2cda322011-01-13 15:46:40 -0800177static inline int pte_same(pte_t pte_a, pte_t pte_b)
178{
179 return pte_val(pte_a) == pte_val(pte_b);
180}
181#endif
182
183#ifndef __HAVE_ARCH_PMD_SAME
184#ifdef CONFIG_TRANSPARENT_HUGEPAGE
185static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
186{
187 return pmd_val(pmd_a) == pmd_val(pmd_b);
188}
189#else /* CONFIG_TRANSPARENT_HUGEPAGE */
190static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
191{
192 BUG();
193 return 0;
194}
195#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700196#endif
197
Martin Schwidefsky2d425522011-05-23 10:24:39 +0200198#ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY
199#define page_test_and_clear_dirty(pfn, mapped) (0)
Martin Schwidefsky6c210482007-04-27 16:01:57 +0200200#endif
201
Martin Schwidefsky2d425522011-05-23 10:24:39 +0200202#ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY
Abhijit Karmarkarb4955ce2005-06-21 17:15:13 -0700203#define pte_maybe_dirty(pte) pte_dirty(pte)
204#else
205#define pte_maybe_dirty(pte) (1)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700206#endif
207
208#ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
Martin Schwidefsky2d425522011-05-23 10:24:39 +0200209#define page_test_and_clear_young(pfn) (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700210#endif
211
212#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
213#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
214#endif
215
David S. Miller0b0968a2006-06-01 17:47:25 -0700216#ifndef __HAVE_ARCH_MOVE_PTE
Nick Piggin8b1f3122005-09-27 21:45:18 -0700217#define move_pte(pte, prot, old_addr, new_addr) (pte)
Nick Piggin8b1f3122005-09-27 21:45:18 -0700218#endif
219
Shaohua Li61c77322010-08-16 09:16:55 +0800220#ifndef flush_tlb_fix_spurious_fault
221#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
222#endif
223
Paul Mundt0634a632009-06-23 13:51:19 +0200224#ifndef pgprot_noncached
225#define pgprot_noncached(prot) (prot)
226#endif
227
venkatesh.pallipadi@intel.com2520bd32008-12-18 11:41:32 -0800228#ifndef pgprot_writecombine
229#define pgprot_writecombine pgprot_noncached
230#endif
231
Linus Torvalds1da177e2005-04-16 15:20:36 -0700232/*
Hugh Dickins8f6c99c2005-04-19 13:29:17 -0700233 * When walking page tables, get the address of the next boundary,
234 * or the end address of the range if that comes earlier. Although no
235 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700236 */
237
Linus Torvalds1da177e2005-04-16 15:20:36 -0700238#define pgd_addr_end(addr, end) \
239({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
240 (__boundary - 1 < (end) - 1)? __boundary: (end); \
241})
Linus Torvalds1da177e2005-04-16 15:20:36 -0700242
243#ifndef pud_addr_end
244#define pud_addr_end(addr, end) \
245({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
246 (__boundary - 1 < (end) - 1)? __boundary: (end); \
247})
248#endif
249
250#ifndef pmd_addr_end
251#define pmd_addr_end(addr, end) \
252({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
253 (__boundary - 1 < (end) - 1)? __boundary: (end); \
254})
255#endif
256
Linus Torvalds1da177e2005-04-16 15:20:36 -0700257/*
258 * When walking page tables, we usually want to skip any p?d_none entries;
259 * and any p?d_bad entries - reporting the error before resetting to none.
260 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
261 */
262void pgd_clear_bad(pgd_t *);
263void pud_clear_bad(pud_t *);
264void pmd_clear_bad(pmd_t *);
265
266static inline int pgd_none_or_clear_bad(pgd_t *pgd)
267{
268 if (pgd_none(*pgd))
269 return 1;
270 if (unlikely(pgd_bad(*pgd))) {
271 pgd_clear_bad(pgd);
272 return 1;
273 }
274 return 0;
275}
276
277static inline int pud_none_or_clear_bad(pud_t *pud)
278{
279 if (pud_none(*pud))
280 return 1;
281 if (unlikely(pud_bad(*pud))) {
282 pud_clear_bad(pud);
283 return 1;
284 }
285 return 0;
286}
287
288static inline int pmd_none_or_clear_bad(pmd_t *pmd)
289{
290 if (pmd_none(*pmd))
291 return 1;
292 if (unlikely(pmd_bad(*pmd))) {
293 pmd_clear_bad(pmd);
294 return 1;
295 }
296 return 0;
297}
Greg Ungerer95352392007-08-10 13:01:20 -0700298
Jeremy Fitzhardinge1ea07042008-06-16 04:30:00 -0700299static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
300 unsigned long addr,
301 pte_t *ptep)
302{
303 /*
304 * Get the current pte state, but zero it out to make it
305 * non-present, preventing the hardware from asynchronously
306 * updating it.
307 */
308 return ptep_get_and_clear(mm, addr, ptep);
309}
310
311static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
312 unsigned long addr,
313 pte_t *ptep, pte_t pte)
314{
315 /*
316 * The pte is non-present, so there's no hardware state to
317 * preserve.
318 */
319 set_pte_at(mm, addr, ptep, pte);
320}
321
322#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
323/*
324 * Start a pte protection read-modify-write transaction, which
325 * protects against asynchronous hardware modifications to the pte.
326 * The intention is not to prevent the hardware from making pte
327 * updates, but to prevent any updates it may make from being lost.
328 *
329 * This does not protect against other software modifications of the
330 * pte; the appropriate pte lock must be held over the transation.
331 *
332 * Note that this interface is intended to be batchable, meaning that
333 * ptep_modify_prot_commit may not actually update the pte, but merely
334 * queue the update to be done at some later time. The update must be
335 * actually committed before the pte lock is released, however.
336 */
337static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
338 unsigned long addr,
339 pte_t *ptep)
340{
341 return __ptep_modify_prot_start(mm, addr, ptep);
342}
343
344/*
345 * Commit an update to a pte, leaving any hardware-controlled bits in
346 * the PTE unmodified.
347 */
348static inline void ptep_modify_prot_commit(struct mm_struct *mm,
349 unsigned long addr,
350 pte_t *ptep, pte_t pte)
351{
352 __ptep_modify_prot_commit(mm, addr, ptep, pte);
353}
354#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
Sebastian Siewiorfe1a6872008-07-15 22:28:46 +0200355#endif /* CONFIG_MMU */
Jeremy Fitzhardinge1ea07042008-06-16 04:30:00 -0700356
Greg Ungerer95352392007-08-10 13:01:20 -0700357/*
358 * A facility to provide lazy MMU batching. This allows PTE updates and
359 * page invalidations to be delayed until a call to leave lazy MMU mode
360 * is issued. Some architectures may benefit from doing this, and it is
361 * beneficial for both shadow and direct mode hypervisors, which may batch
362 * the PTE updates which happen during this window. Note that using this
363 * interface requires that read hazards be removed from the code. A read
364 * hazard could result in the direct mode hypervisor case, since the actual
365 * write to the page tables may not yet have taken place, so reads though
366 * a raw PTE pointer after it has been modified are not guaranteed to be
367 * up to date. This mode can only be entered and left under the protection of
368 * the page table locks for all page tables which may be modified. In the UP
369 * case, this is required so that preemption is disabled, and in the SMP case,
370 * it must synchronize the delayed page table writes properly on other CPUs.
371 */
372#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
373#define arch_enter_lazy_mmu_mode() do {} while (0)
374#define arch_leave_lazy_mmu_mode() do {} while (0)
375#define arch_flush_lazy_mmu_mode() do {} while (0)
376#endif
377
378/*
Jeremy Fitzhardinge7fd7d832009-02-17 23:24:03 -0800379 * A facility to provide batching of the reload of page tables and
380 * other process state with the actual context switch code for
381 * paravirtualized guests. By convention, only one of the batched
382 * update (lazy) modes (CPU, MMU) should be active at any given time,
383 * entry should never be nested, and entry and exits should always be
384 * paired. This is for sanity of maintaining and reasoning about the
385 * kernel code. In this case, the exit (end of the context switch) is
386 * in architecture-specific code, and so doesn't need a generic
387 * definition.
Greg Ungerer95352392007-08-10 13:01:20 -0700388 */
Jeremy Fitzhardinge7fd7d832009-02-17 23:24:03 -0800389#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
Jeremy Fitzhardinge224101e2009-02-18 11:18:57 -0800390#define arch_start_context_switch(prev) do {} while (0)
Greg Ungerer95352392007-08-10 13:01:20 -0700391#endif
392
venkatesh.pallipadi@intel.com34801ba2008-12-19 13:47:29 -0800393#ifndef __HAVE_PFNMAP_TRACKING
394/*
395 * Interface that can be used by architecture code to keep track of
396 * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
397 *
398 * track_pfn_vma_new is called when a _new_ pfn mapping is being established
399 * for physical range indicated by pfn and size.
400 */
venkatesh.pallipadi@intel.come4b866e2009-01-09 16:13:11 -0800401static inline int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot,
venkatesh.pallipadi@intel.com34801ba2008-12-19 13:47:29 -0800402 unsigned long pfn, unsigned long size)
403{
404 return 0;
405}
406
407/*
408 * Interface that can be used by architecture code to keep track of
409 * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
410 *
411 * track_pfn_vma_copy is called when vma that is covering the pfnmap gets
412 * copied through copy_page_range().
413 */
414static inline int track_pfn_vma_copy(struct vm_area_struct *vma)
415{
416 return 0;
417}
418
419/*
420 * Interface that can be used by architecture code to keep track of
421 * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
422 *
423 * untrack_pfn_vma is called while unmapping a pfnmap for a region.
424 * untrack can be called for a specific region indicated by pfn and size or
425 * can be for the entire vma (in which case size can be zero).
426 */
427static inline void untrack_pfn_vma(struct vm_area_struct *vma,
428 unsigned long pfn, unsigned long size)
429{
430}
431#else
venkatesh.pallipadi@intel.come4b866e2009-01-09 16:13:11 -0800432extern int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot,
venkatesh.pallipadi@intel.com34801ba2008-12-19 13:47:29 -0800433 unsigned long pfn, unsigned long size);
434extern int track_pfn_vma_copy(struct vm_area_struct *vma);
435extern void untrack_pfn_vma(struct vm_area_struct *vma, unsigned long pfn,
436 unsigned long size);
437#endif
438
Andrea Arcangeli1a5a9902012-03-21 16:33:42 -0700439#ifdef CONFIG_MMU
440
Andrea Arcangeli5f6e8da2011-01-13 15:46:40 -0800441#ifndef CONFIG_TRANSPARENT_HUGEPAGE
442static inline int pmd_trans_huge(pmd_t pmd)
443{
444 return 0;
445}
446static inline int pmd_trans_splitting(pmd_t pmd)
447{
448 return 0;
449}
Andrea Arcangelie2cda322011-01-13 15:46:40 -0800450#ifndef __HAVE_ARCH_PMD_WRITE
451static inline int pmd_write(pmd_t pmd)
452{
453 BUG();
454 return 0;
455}
456#endif /* __HAVE_ARCH_PMD_WRITE */
Andrea Arcangeli1a5a9902012-03-21 16:33:42 -0700457#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
458
Andrea Arcangeliff998512012-05-29 15:06:49 -0700459#ifndef pmd_read_atomic
460static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
461{
462 /*
463 * Depend on compiler for an atomic pmd read. NOTE: this is
464 * only going to work, if the pmdval_t isn't larger than
465 * an unsigned long.
466 */
467 return *pmdp;
468}
469#endif
470
Andrea Arcangeli1a5a9902012-03-21 16:33:42 -0700471/*
472 * This function is meant to be used by sites walking pagetables with
473 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
474 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
475 * into a null pmd and the transhuge page fault can convert a null pmd
476 * into an hugepmd or into a regular pmd (if the hugepage allocation
477 * fails). While holding the mmap_sem in read mode the pmd becomes
478 * stable and stops changing under us only if it's not null and not a
479 * transhuge pmd. When those races occurs and this function makes a
480 * difference vs the standard pmd_none_or_clear_bad, the result is
481 * undefined so behaving like if the pmd was none is safe (because it
482 * can return none anyway). The compiler level barrier() is critically
483 * important to compute the two checks atomically on the same pmdval.
Andrea Arcangeliff998512012-05-29 15:06:49 -0700484 *
485 * For 32bit kernels with a 64bit large pmd_t this automatically takes
486 * care of reading the pmd atomically to avoid SMP race conditions
487 * against pmd_populate() when the mmap_sem is hold for reading by the
488 * caller (a special atomic read not done by "gcc" as in the generic
489 * version above, is also needed when THP is disabled because the page
490 * fault can populate the pmd from under us).
Andrea Arcangeli1a5a9902012-03-21 16:33:42 -0700491 */
492static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
493{
Andrea Arcangeliff998512012-05-29 15:06:49 -0700494 pmd_t pmdval = pmd_read_atomic(pmd);
Andrea Arcangeli1a5a9902012-03-21 16:33:42 -0700495 /*
496 * The barrier will stabilize the pmdval in a register or on
497 * the stack so that it will stop changing under the code.
Andrea Arcangeliacf8fbd2012-06-20 12:52:57 -0700498 *
499 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
500 * pmd_read_atomic is allowed to return a not atomic pmdval
501 * (for example pointing to an hugepage that has never been
502 * mapped in the pmd). The below checks will only care about
503 * the low part of the pmd with 32bit PAE x86 anyway, with the
504 * exception of pmd_none(). So the important thing is that if
505 * the low part of the pmd is found null, the high part will
506 * be also null or the pmd_none() check below would be
507 * confused.
Andrea Arcangeli1a5a9902012-03-21 16:33:42 -0700508 */
509#ifdef CONFIG_TRANSPARENT_HUGEPAGE
510 barrier();
Andrea Arcangeli5f6e8da2011-01-13 15:46:40 -0800511#endif
Andrea Arcangeli1a5a9902012-03-21 16:33:42 -0700512 if (pmd_none(pmdval))
513 return 1;
514 if (unlikely(pmd_bad(pmdval))) {
515 if (!pmd_trans_huge(pmdval))
516 pmd_clear_bad(pmd);
517 return 1;
518 }
519 return 0;
520}
521
522/*
523 * This is a noop if Transparent Hugepage Support is not built into
524 * the kernel. Otherwise it is equivalent to
525 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
526 * places that already verified the pmd is not none and they want to
527 * walk ptes while holding the mmap sem in read mode (write mode don't
528 * need this). If THP is not enabled, the pmd can't go away under the
529 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
530 * run a pmd_trans_unstable before walking the ptes after
531 * split_huge_page_pmd returns (because it may have run when the pmd
532 * become null, but then a page fault can map in a THP and not a
533 * regular page).
534 */
535static inline int pmd_trans_unstable(pmd_t *pmd)
536{
537#ifdef CONFIG_TRANSPARENT_HUGEPAGE
538 return pmd_none_or_trans_huge_or_clear_bad(pmd);
539#else
540 return 0;
541#endif
542}
543
544#endif /* CONFIG_MMU */
Andrea Arcangeli5f6e8da2011-01-13 15:46:40 -0800545
Linus Torvalds1da177e2005-04-16 15:20:36 -0700546#endif /* !__ASSEMBLY__ */
547
548#endif /* _ASM_GENERIC_PGTABLE_H */