blob: 96d18c43dca0a0b47e68fd227413b7a28ea44276 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * arch/mips/kernel/gdb-stub.c
3 *
4 * Originally written by Glenn Engel, Lake Stevens Instrument Division
5 *
6 * Contributed by HP Systems
7 *
8 * Modified for SPARC by Stu Grossman, Cygnus Support.
9 *
10 * Modified for Linux/MIPS (and MIPS in general) by Andreas Busse
11 * Send complaints, suggestions etc. to <andy@waldorf-gmbh.de>
12 *
13 * Copyright (C) 1995 Andreas Busse
14 *
15 * Copyright (C) 2003 MontaVista Software Inc.
16 * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
17 */
18
19/*
20 * To enable debugger support, two things need to happen. One, a
21 * call to set_debug_traps() is necessary in order to allow any breakpoints
22 * or error conditions to be properly intercepted and reported to gdb.
23 * Two, a breakpoint needs to be generated to begin communication. This
24 * is most easily accomplished by a call to breakpoint(). Breakpoint()
25 * simulates a breakpoint by executing a BREAK instruction.
26 *
27 *
28 * The following gdb commands are supported:
29 *
30 * command function Return value
31 *
32 * g return the value of the CPU registers hex data or ENN
33 * G set the value of the CPU registers OK or ENN
34 *
35 * mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN
36 * MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN
37 *
38 * c Resume at current address SNN ( signal NN)
39 * cAA..AA Continue at address AA..AA SNN
40 *
41 * s Step one instruction SNN
42 * sAA..AA Step one instruction from AA..AA SNN
43 *
44 * k kill
45 *
46 * ? What was the last sigval ? SNN (signal NN)
47 *
48 * bBB..BB Set baud rate to BB..BB OK or BNN, then sets
49 * baud rate
50 *
51 * All commands and responses are sent with a packet which includes a
52 * checksum. A packet consists of
53 *
54 * $<packet info>#<checksum>.
55 *
56 * where
57 * <packet info> :: <characters representing the command or response>
58 * <checksum> :: < two hex digits computed as modulo 256 sum of <packetinfo>>
59 *
60 * When a packet is received, it is first acknowledged with either '+' or '-'.
61 * '+' indicates a successful transfer. '-' indicates a failed transfer.
62 *
63 * Example:
64 *
65 * Host: Reply:
66 * $m0,10#2a +$00010203040506070809101112131415#42
67 *
68 *
69 * ==============
70 * MORE EXAMPLES:
71 * ==============
72 *
73 * For reference -- the following are the steps that one
74 * company took (RidgeRun Inc) to get remote gdb debugging
75 * going. In this scenario the host machine was a PC and the
76 * target platform was a Galileo EVB64120A MIPS evaluation
77 * board.
78 *
79 * Step 1:
80 * First download gdb-5.0.tar.gz from the internet.
81 * and then build/install the package.
82 *
83 * Example:
84 * $ tar zxf gdb-5.0.tar.gz
85 * $ cd gdb-5.0
86 * $ ./configure --target=mips-linux-elf
87 * $ make
88 * $ install
89 * $ which mips-linux-elf-gdb
90 * /usr/local/bin/mips-linux-elf-gdb
91 *
92 * Step 2:
93 * Configure linux for remote debugging and build it.
94 *
95 * Example:
96 * $ cd ~/linux
97 * $ make menuconfig <go to "Kernel Hacking" and turn on remote debugging>
98 * $ make
99 *
100 * Step 3:
101 * Download the kernel to the remote target and start
102 * the kernel running. It will promptly halt and wait
103 * for the host gdb session to connect. It does this
104 * since the "Kernel Hacking" option has defined
105 * CONFIG_KGDB which in turn enables your calls
106 * to:
107 * set_debug_traps();
108 * breakpoint();
109 *
110 * Step 4:
111 * Start the gdb session on the host.
112 *
113 * Example:
114 * $ mips-linux-elf-gdb vmlinux
115 * (gdb) set remotebaud 115200
116 * (gdb) target remote /dev/ttyS1
117 * ...at this point you are connected to
118 * the remote target and can use gdb
119 * in the normal fasion. Setting
120 * breakpoints, single stepping,
121 * printing variables, etc.
122 */
123#include <linux/config.h>
124#include <linux/string.h>
125#include <linux/kernel.h>
126#include <linux/signal.h>
127#include <linux/sched.h>
128#include <linux/mm.h>
129#include <linux/console.h>
130#include <linux/init.h>
131#include <linux/smp.h>
132#include <linux/spinlock.h>
133#include <linux/slab.h>
134#include <linux/reboot.h>
135
136#include <asm/asm.h>
137#include <asm/cacheflush.h>
138#include <asm/mipsregs.h>
139#include <asm/pgtable.h>
140#include <asm/system.h>
141#include <asm/gdb-stub.h>
142#include <asm/inst.h>
143
144/*
145 * external low-level support routines
146 */
147
148extern int putDebugChar(char c); /* write a single character */
149extern char getDebugChar(void); /* read and return a single char */
150extern void trap_low(void);
151
152/*
153 * breakpoint and test functions
154 */
155extern void breakpoint(void);
156extern void breakinst(void);
157extern void async_breakpoint(void);
158extern void async_breakinst(void);
159extern void adel(void);
160
161/*
162 * local prototypes
163 */
164
165static void getpacket(char *buffer);
166static void putpacket(char *buffer);
167static int computeSignal(int tt);
168static int hex(unsigned char ch);
169static int hexToInt(char **ptr, int *intValue);
170static int hexToLong(char **ptr, long *longValue);
171static unsigned char *mem2hex(char *mem, char *buf, int count, int may_fault);
172void handle_exception(struct gdb_regs *regs);
173
174int kgdb_enabled;
175
176/*
177 * spin locks for smp case
178 */
Ralf Baechle57468af2005-10-03 13:40:26 +0100179static DEFINE_SPINLOCK(kgdb_lock);
180static raw_spinlock_t kgdb_cpulock[NR_CPUS] = {
181 [0 ... NR_CPUS-1] = __RAW_SPIN_LOCK_UNLOCKED;
182};
Linus Torvalds1da177e2005-04-16 15:20:36 -0700183
184/*
185 * BUFMAX defines the maximum number of characters in inbound/outbound buffers
186 * at least NUMREGBYTES*2 are needed for register packets
187 */
188#define BUFMAX 2048
189
190static char input_buffer[BUFMAX];
191static char output_buffer[BUFMAX];
192static int initialized; /* !0 means we've been initialized */
193static int kgdb_started;
194static const char hexchars[]="0123456789abcdef";
195
196/* Used to prevent crashes in memory access. Note that they'll crash anyway if
197 we haven't set up fault handlers yet... */
198int kgdb_read_byte(unsigned char *address, unsigned char *dest);
199int kgdb_write_byte(unsigned char val, unsigned char *dest);
200
201/*
202 * Convert ch from a hex digit to an int
203 */
204static int hex(unsigned char ch)
205{
206 if (ch >= 'a' && ch <= 'f')
207 return ch-'a'+10;
208 if (ch >= '0' && ch <= '9')
209 return ch-'0';
210 if (ch >= 'A' && ch <= 'F')
211 return ch-'A'+10;
212 return -1;
213}
214
215/*
216 * scan for the sequence $<data>#<checksum>
217 */
218static void getpacket(char *buffer)
219{
220 unsigned char checksum;
221 unsigned char xmitcsum;
222 int i;
223 int count;
224 unsigned char ch;
225
226 do {
227 /*
228 * wait around for the start character,
229 * ignore all other characters
230 */
231 while ((ch = (getDebugChar() & 0x7f)) != '$') ;
232
233 checksum = 0;
234 xmitcsum = -1;
235 count = 0;
236
237 /*
238 * now, read until a # or end of buffer is found
239 */
240 while (count < BUFMAX) {
241 ch = getDebugChar();
242 if (ch == '#')
243 break;
244 checksum = checksum + ch;
245 buffer[count] = ch;
246 count = count + 1;
247 }
248
249 if (count >= BUFMAX)
250 continue;
251
252 buffer[count] = 0;
253
254 if (ch == '#') {
255 xmitcsum = hex(getDebugChar() & 0x7f) << 4;
256 xmitcsum |= hex(getDebugChar() & 0x7f);
257
258 if (checksum != xmitcsum)
259 putDebugChar('-'); /* failed checksum */
260 else {
261 putDebugChar('+'); /* successful transfer */
262
263 /*
264 * if a sequence char is present,
265 * reply the sequence ID
266 */
267 if (buffer[2] == ':') {
268 putDebugChar(buffer[0]);
269 putDebugChar(buffer[1]);
270
271 /*
272 * remove sequence chars from buffer
273 */
274 count = strlen(buffer);
275 for (i=3; i <= count; i++)
276 buffer[i-3] = buffer[i];
277 }
278 }
279 }
280 }
281 while (checksum != xmitcsum);
282}
283
284/*
285 * send the packet in buffer.
286 */
287static void putpacket(char *buffer)
288{
289 unsigned char checksum;
290 int count;
291 unsigned char ch;
292
293 /*
294 * $<packet info>#<checksum>.
295 */
296
297 do {
298 putDebugChar('$');
299 checksum = 0;
300 count = 0;
301
302 while ((ch = buffer[count]) != 0) {
303 if (!(putDebugChar(ch)))
304 return;
305 checksum += ch;
306 count += 1;
307 }
308
309 putDebugChar('#');
310 putDebugChar(hexchars[checksum >> 4]);
311 putDebugChar(hexchars[checksum & 0xf]);
312
313 }
314 while ((getDebugChar() & 0x7f) != '+');
315}
316
317
318/*
319 * Convert the memory pointed to by mem into hex, placing result in buf.
320 * Return a pointer to the last char put in buf (null), in case of mem fault,
321 * return 0.
322 * may_fault is non-zero if we are reading from arbitrary memory, but is currently
323 * not used.
324 */
325static unsigned char *mem2hex(char *mem, char *buf, int count, int may_fault)
326{
327 unsigned char ch;
328
329 while (count-- > 0) {
330 if (kgdb_read_byte(mem++, &ch) != 0)
331 return 0;
332 *buf++ = hexchars[ch >> 4];
333 *buf++ = hexchars[ch & 0xf];
334 }
335
336 *buf = 0;
337
338 return buf;
339}
340
341/*
342 * convert the hex array pointed to by buf into binary to be placed in mem
343 * return a pointer to the character AFTER the last byte written
344 * may_fault is non-zero if we are reading from arbitrary memory, but is currently
345 * not used.
346 */
347static char *hex2mem(char *buf, char *mem, int count, int binary, int may_fault)
348{
349 int i;
350 unsigned char ch;
351
352 for (i=0; i<count; i++)
353 {
354 if (binary) {
355 ch = *buf++;
356 if (ch == 0x7d)
357 ch = 0x20 ^ *buf++;
358 }
359 else {
360 ch = hex(*buf++) << 4;
361 ch |= hex(*buf++);
362 }
363 if (kgdb_write_byte(ch, mem++) != 0)
364 return 0;
365 }
366
367 return mem;
368}
369
370/*
371 * This table contains the mapping between SPARC hardware trap types, and
372 * signals, which are primarily what GDB understands. It also indicates
373 * which hardware traps we need to commandeer when initializing the stub.
374 */
375static struct hard_trap_info {
376 unsigned char tt; /* Trap type code for MIPS R3xxx and R4xxx */
377 unsigned char signo; /* Signal that we map this trap into */
378} hard_trap_info[] = {
379 { 6, SIGBUS }, /* instruction bus error */
380 { 7, SIGBUS }, /* data bus error */
381 { 9, SIGTRAP }, /* break */
382 { 10, SIGILL }, /* reserved instruction */
383/* { 11, SIGILL }, */ /* CPU unusable */
384 { 12, SIGFPE }, /* overflow */
385 { 13, SIGTRAP }, /* trap */
386 { 14, SIGSEGV }, /* virtual instruction cache coherency */
387 { 15, SIGFPE }, /* floating point exception */
388 { 23, SIGSEGV }, /* watch */
389 { 31, SIGSEGV }, /* virtual data cache coherency */
390 { 0, 0} /* Must be last */
391};
392
393/* Save the normal trap handlers for user-mode traps. */
394void *saved_vectors[32];
395
396/*
397 * Set up exception handlers for tracing and breakpoints
398 */
399void set_debug_traps(void)
400{
401 struct hard_trap_info *ht;
402 unsigned long flags;
403 unsigned char c;
404
405 local_irq_save(flags);
406 for (ht = hard_trap_info; ht->tt && ht->signo; ht++)
407 saved_vectors[ht->tt] = set_except_vector(ht->tt, trap_low);
408
409 putDebugChar('+'); /* 'hello world' */
410 /*
411 * In case GDB is started before us, ack any packets
412 * (presumably "$?#xx") sitting there.
413 */
414 while((c = getDebugChar()) != '$');
415 while((c = getDebugChar()) != '#');
416 c = getDebugChar(); /* eat first csum byte */
417 c = getDebugChar(); /* eat second csum byte */
418 putDebugChar('+'); /* ack it */
419
420 initialized = 1;
421 local_irq_restore(flags);
422}
423
424void restore_debug_traps(void)
425{
426 struct hard_trap_info *ht;
427 unsigned long flags;
428
429 local_irq_save(flags);
430 for (ht = hard_trap_info; ht->tt && ht->signo; ht++)
431 set_except_vector(ht->tt, saved_vectors[ht->tt]);
432 local_irq_restore(flags);
433}
434
435/*
436 * Convert the MIPS hardware trap type code to a Unix signal number.
437 */
438static int computeSignal(int tt)
439{
440 struct hard_trap_info *ht;
441
442 for (ht = hard_trap_info; ht->tt && ht->signo; ht++)
443 if (ht->tt == tt)
444 return ht->signo;
445
446 return SIGHUP; /* default for things we don't know about */
447}
448
449/*
450 * While we find nice hex chars, build an int.
451 * Return number of chars processed.
452 */
453static int hexToInt(char **ptr, int *intValue)
454{
455 int numChars = 0;
456 int hexValue;
457
458 *intValue = 0;
459
460 while (**ptr) {
461 hexValue = hex(**ptr);
462 if (hexValue < 0)
463 break;
464
465 *intValue = (*intValue << 4) | hexValue;
466 numChars ++;
467
468 (*ptr)++;
469 }
470
471 return (numChars);
472}
473
474static int hexToLong(char **ptr, long *longValue)
475{
476 int numChars = 0;
477 int hexValue;
478
479 *longValue = 0;
480
481 while (**ptr) {
482 hexValue = hex(**ptr);
483 if (hexValue < 0)
484 break;
485
486 *longValue = (*longValue << 4) | hexValue;
487 numChars ++;
488
489 (*ptr)++;
490 }
491
492 return numChars;
493}
494
495
496#if 0
497/*
498 * Print registers (on target console)
499 * Used only to debug the stub...
500 */
501void show_gdbregs(struct gdb_regs * regs)
502{
503 /*
504 * Saved main processor registers
505 */
506 printk("$0 : %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
507 regs->reg0, regs->reg1, regs->reg2, regs->reg3,
508 regs->reg4, regs->reg5, regs->reg6, regs->reg7);
509 printk("$8 : %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
510 regs->reg8, regs->reg9, regs->reg10, regs->reg11,
511 regs->reg12, regs->reg13, regs->reg14, regs->reg15);
512 printk("$16: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
513 regs->reg16, regs->reg17, regs->reg18, regs->reg19,
514 regs->reg20, regs->reg21, regs->reg22, regs->reg23);
515 printk("$24: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
516 regs->reg24, regs->reg25, regs->reg26, regs->reg27,
517 regs->reg28, regs->reg29, regs->reg30, regs->reg31);
518
519 /*
520 * Saved cp0 registers
521 */
522 printk("epc : %08lx\nStatus: %08lx\nCause : %08lx\n",
523 regs->cp0_epc, regs->cp0_status, regs->cp0_cause);
524}
525#endif /* dead code */
526
527/*
528 * We single-step by setting breakpoints. When an exception
529 * is handled, we need to restore the instructions hoisted
530 * when the breakpoints were set.
531 *
532 * This is where we save the original instructions.
533 */
534static struct gdb_bp_save {
535 unsigned long addr;
536 unsigned int val;
537} step_bp[2];
538
539#define BP 0x0000000d /* break opcode */
540
541/*
542 * Set breakpoint instructions for single stepping.
543 */
544static void single_step(struct gdb_regs *regs)
545{
546 union mips_instruction insn;
547 unsigned long targ;
548 int is_branch, is_cond, i;
549
550 targ = regs->cp0_epc;
551 insn.word = *(unsigned int *)targ;
552 is_branch = is_cond = 0;
553
554 switch (insn.i_format.opcode) {
555 /*
556 * jr and jalr are in r_format format.
557 */
558 case spec_op:
559 switch (insn.r_format.func) {
560 case jalr_op:
561 case jr_op:
562 targ = *(&regs->reg0 + insn.r_format.rs);
563 is_branch = 1;
564 break;
565 }
566 break;
567
568 /*
569 * This group contains:
570 * bltz_op, bgez_op, bltzl_op, bgezl_op,
571 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
572 */
573 case bcond_op:
574 is_branch = is_cond = 1;
575 targ += 4 + (insn.i_format.simmediate << 2);
576 break;
577
578 /*
579 * These are unconditional and in j_format.
580 */
581 case jal_op:
582 case j_op:
583 is_branch = 1;
584 targ += 4;
585 targ >>= 28;
586 targ <<= 28;
587 targ |= (insn.j_format.target << 2);
588 break;
589
590 /*
591 * These are conditional.
592 */
593 case beq_op:
594 case beql_op:
595 case bne_op:
596 case bnel_op:
597 case blez_op:
598 case blezl_op:
599 case bgtz_op:
600 case bgtzl_op:
601 case cop0_op:
602 case cop1_op:
603 case cop2_op:
604 case cop1x_op:
605 is_branch = is_cond = 1;
606 targ += 4 + (insn.i_format.simmediate << 2);
607 break;
608 }
609
610 if (is_branch) {
611 i = 0;
612 if (is_cond && targ != (regs->cp0_epc + 8)) {
613 step_bp[i].addr = regs->cp0_epc + 8;
614 step_bp[i++].val = *(unsigned *)(regs->cp0_epc + 8);
615 *(unsigned *)(regs->cp0_epc + 8) = BP;
616 }
617 step_bp[i].addr = targ;
618 step_bp[i].val = *(unsigned *)targ;
619 *(unsigned *)targ = BP;
620 } else {
621 step_bp[0].addr = regs->cp0_epc + 4;
622 step_bp[0].val = *(unsigned *)(regs->cp0_epc + 4);
623 *(unsigned *)(regs->cp0_epc + 4) = BP;
624 }
625}
626
627/*
628 * If asynchronously interrupted by gdb, then we need to set a breakpoint
629 * at the interrupted instruction so that we wind up stopped with a
630 * reasonable stack frame.
631 */
632static struct gdb_bp_save async_bp;
633
634/*
635 * Swap the interrupted EPC with our asynchronous breakpoint routine.
636 * This is safer than stuffing the breakpoint in-place, since no cache
637 * flushes (or resulting smp_call_functions) are required. The
638 * assumption is that only one CPU will be handling asynchronous bp's,
639 * and only one can be active at a time.
640 */
641extern spinlock_t smp_call_lock;
Ralf Baechleb188ffe2004-12-28 07:49:43 +0000642
Linus Torvalds1da177e2005-04-16 15:20:36 -0700643void set_async_breakpoint(unsigned long *epc)
644{
645 /* skip breaking into userland */
646 if ((*epc & 0x80000000) == 0)
647 return;
648
Ralf Baechleb188ffe2004-12-28 07:49:43 +0000649#ifdef CONFIG_SMP
Linus Torvalds1da177e2005-04-16 15:20:36 -0700650 /* avoid deadlock if someone is make IPC */
651 if (spin_is_locked(&smp_call_lock))
652 return;
Ralf Baechleb188ffe2004-12-28 07:49:43 +0000653#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700654
655 async_bp.addr = *epc;
656 *epc = (unsigned long)async_breakpoint;
657}
658
Ralf Baechlef8bb3af2005-10-03 13:30:57 +0100659static void kgdb_wait(void *arg)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700660{
661 unsigned flags;
662 int cpu = smp_processor_id();
663
664 local_irq_save(flags);
665
Ralf Baechle57468af2005-10-03 13:40:26 +0100666 __raw_spin_lock(&kgdb_cpulock[cpu]);
667 __raw_spin_unlock(&kgdb_cpulock[cpu]);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700668
669 local_irq_restore(flags);
670}
671
672
673/*
674 * This function does all command processing for interfacing to gdb. It
675 * returns 1 if you should skip the instruction at the trap address, 0
676 * otherwise.
677 */
678void handle_exception (struct gdb_regs *regs)
679{
680 int trap; /* Trap type */
681 int sigval;
682 long addr;
683 int length;
684 char *ptr;
685 unsigned long *stack;
686 int i;
687 int bflag = 0;
688
689 kgdb_started = 1;
690
691 /*
692 * acquire the big kgdb spinlock
693 */
694 if (!spin_trylock(&kgdb_lock)) {
Ralf Baechle42a3b4f2005-09-03 15:56:17 -0700695 /*
696 * some other CPU has the lock, we should go back to
Linus Torvalds1da177e2005-04-16 15:20:36 -0700697 * receive the gdb_wait IPC
698 */
699 return;
700 }
701
702 /*
703 * If we're in async_breakpoint(), restore the real EPC from
704 * the breakpoint.
705 */
706 if (regs->cp0_epc == (unsigned long)async_breakinst) {
707 regs->cp0_epc = async_bp.addr;
708 async_bp.addr = 0;
709 }
710
Ralf Baechle42a3b4f2005-09-03 15:56:17 -0700711 /*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700712 * acquire the CPU spinlocks
713 */
714 for (i = num_online_cpus()-1; i >= 0; i--)
Ralf Baechle57468af2005-10-03 13:40:26 +0100715 if (__raw_spin_trylock(&kgdb_cpulock[i]) == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700716 panic("kgdb: couldn't get cpulock %d\n", i);
717
718 /*
719 * force other cpus to enter kgdb
720 */
721 smp_call_function(kgdb_wait, NULL, 0, 0);
722
723 /*
724 * If we're in breakpoint() increment the PC
725 */
726 trap = (regs->cp0_cause & 0x7c) >> 2;
727 if (trap == 9 && regs->cp0_epc == (unsigned long)breakinst)
728 regs->cp0_epc += 4;
729
730 /*
731 * If we were single_stepping, restore the opcodes hoisted
732 * for the breakpoint[s].
733 */
734 if (step_bp[0].addr) {
735 *(unsigned *)step_bp[0].addr = step_bp[0].val;
736 step_bp[0].addr = 0;
737
738 if (step_bp[1].addr) {
739 *(unsigned *)step_bp[1].addr = step_bp[1].val;
740 step_bp[1].addr = 0;
741 }
742 }
743
744 stack = (long *)regs->reg29; /* stack ptr */
745 sigval = computeSignal(trap);
746
747 /*
748 * reply to host that an exception has occurred
749 */
750 ptr = output_buffer;
751
752 /*
753 * Send trap type (converted to signal)
754 */
755 *ptr++ = 'T';
756 *ptr++ = hexchars[sigval >> 4];
757 *ptr++ = hexchars[sigval & 0xf];
758
759 /*
760 * Send Error PC
761 */
762 *ptr++ = hexchars[REG_EPC >> 4];
763 *ptr++ = hexchars[REG_EPC & 0xf];
764 *ptr++ = ':';
765 ptr = mem2hex((char *)&regs->cp0_epc, ptr, sizeof(long), 0);
766 *ptr++ = ';';
767
768 /*
769 * Send frame pointer
770 */
771 *ptr++ = hexchars[REG_FP >> 4];
772 *ptr++ = hexchars[REG_FP & 0xf];
773 *ptr++ = ':';
774 ptr = mem2hex((char *)&regs->reg30, ptr, sizeof(long), 0);
775 *ptr++ = ';';
776
777 /*
778 * Send stack pointer
779 */
780 *ptr++ = hexchars[REG_SP >> 4];
781 *ptr++ = hexchars[REG_SP & 0xf];
782 *ptr++ = ':';
783 ptr = mem2hex((char *)&regs->reg29, ptr, sizeof(long), 0);
784 *ptr++ = ';';
785
786 *ptr++ = 0;
787 putpacket(output_buffer); /* send it off... */
788
789 /*
790 * Wait for input from remote GDB
791 */
792 while (1) {
793 output_buffer[0] = 0;
794 getpacket(input_buffer);
795
796 switch (input_buffer[0])
797 {
798 case '?':
799 output_buffer[0] = 'S';
800 output_buffer[1] = hexchars[sigval >> 4];
801 output_buffer[2] = hexchars[sigval & 0xf];
802 output_buffer[3] = 0;
803 break;
804
805 /*
806 * Detach debugger; let CPU run
807 */
808 case 'D':
809 putpacket(output_buffer);
810 goto finish_kgdb;
811 break;
812
813 case 'd':
814 /* toggle debug flag */
815 break;
816
817 /*
818 * Return the value of the CPU registers
819 */
820 case 'g':
821 ptr = output_buffer;
822 ptr = mem2hex((char *)&regs->reg0, ptr, 32*sizeof(long), 0); /* r0...r31 */
823 ptr = mem2hex((char *)&regs->cp0_status, ptr, 6*sizeof(long), 0); /* cp0 */
824 ptr = mem2hex((char *)&regs->fpr0, ptr, 32*sizeof(long), 0); /* f0...31 */
825 ptr = mem2hex((char *)&regs->cp1_fsr, ptr, 2*sizeof(long), 0); /* cp1 */
826 ptr = mem2hex((char *)&regs->frame_ptr, ptr, 2*sizeof(long), 0); /* frp */
827 ptr = mem2hex((char *)&regs->cp0_index, ptr, 16*sizeof(long), 0); /* cp0 */
828 break;
829
830 /*
831 * set the value of the CPU registers - return OK
832 */
833 case 'G':
834 {
835 ptr = &input_buffer[1];
836 hex2mem(ptr, (char *)&regs->reg0, 32*sizeof(long), 0, 0);
837 ptr += 32*(2*sizeof(long));
838 hex2mem(ptr, (char *)&regs->cp0_status, 6*sizeof(long), 0, 0);
839 ptr += 6*(2*sizeof(long));
840 hex2mem(ptr, (char *)&regs->fpr0, 32*sizeof(long), 0, 0);
841 ptr += 32*(2*sizeof(long));
842 hex2mem(ptr, (char *)&regs->cp1_fsr, 2*sizeof(long), 0, 0);
843 ptr += 2*(2*sizeof(long));
844 hex2mem(ptr, (char *)&regs->frame_ptr, 2*sizeof(long), 0, 0);
845 ptr += 2*(2*sizeof(long));
846 hex2mem(ptr, (char *)&regs->cp0_index, 16*sizeof(long), 0, 0);
847 strcpy(output_buffer,"OK");
848 }
849 break;
850
851 /*
852 * mAA..AA,LLLL Read LLLL bytes at address AA..AA
853 */
854 case 'm':
855 ptr = &input_buffer[1];
856
857 if (hexToLong(&ptr, &addr)
858 && *ptr++ == ','
859 && hexToInt(&ptr, &length)) {
860 if (mem2hex((char *)addr, output_buffer, length, 1))
861 break;
862 strcpy (output_buffer, "E03");
863 } else
864 strcpy(output_buffer,"E01");
865 break;
866
867 /*
868 * XAA..AA,LLLL: Write LLLL escaped binary bytes at address AA.AA
869 */
870 case 'X':
871 bflag = 1;
872 /* fall through */
873
874 /*
875 * MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK
876 */
877 case 'M':
878 ptr = &input_buffer[1];
879
880 if (hexToLong(&ptr, &addr)
881 && *ptr++ == ','
882 && hexToInt(&ptr, &length)
883 && *ptr++ == ':') {
884 if (hex2mem(ptr, (char *)addr, length, bflag, 1))
885 strcpy(output_buffer, "OK");
886 else
887 strcpy(output_buffer, "E03");
888 }
889 else
890 strcpy(output_buffer, "E02");
891 break;
892
893 /*
894 * cAA..AA Continue at address AA..AA(optional)
895 */
896 case 'c':
897 /* try to read optional parameter, pc unchanged if no parm */
898
899 ptr = &input_buffer[1];
900 if (hexToLong(&ptr, &addr))
901 regs->cp0_epc = addr;
Ralf Baechle42a3b4f2005-09-03 15:56:17 -0700902
Linus Torvalds1da177e2005-04-16 15:20:36 -0700903 goto exit_kgdb_exception;
904 break;
905
906 /*
907 * kill the program; let us try to restart the machine
908 * Reset the whole machine.
909 */
910 case 'k':
911 case 'r':
912 machine_restart("kgdb restarts machine");
913 break;
914
915 /*
916 * Step to next instruction
917 */
918 case 's':
919 /*
920 * There is no single step insn in the MIPS ISA, so we
921 * use breakpoints and continue, instead.
922 */
923 single_step(regs);
924 goto exit_kgdb_exception;
925 /* NOTREACHED */
926 break;
927
928 /*
929 * Set baud rate (bBB)
930 * FIXME: Needs to be written
931 */
932 case 'b':
933 {
934#if 0
935 int baudrate;
936 extern void set_timer_3();
937
938 ptr = &input_buffer[1];
939 if (!hexToInt(&ptr, &baudrate))
940 {
941 strcpy(output_buffer,"B01");
942 break;
943 }
944
945 /* Convert baud rate to uart clock divider */
946
947 switch (baudrate)
948 {
949 case 38400:
950 baudrate = 16;
951 break;
952 case 19200:
953 baudrate = 33;
954 break;
955 case 9600:
956 baudrate = 65;
957 break;
958 default:
959 baudrate = 0;
960 strcpy(output_buffer,"B02");
961 goto x1;
962 }
963
964 if (baudrate) {
965 putpacket("OK"); /* Ack before changing speed */
966 set_timer_3(baudrate); /* Set it */
967 }
968#endif
969 }
970 break;
971
972 } /* switch */
973
974 /*
975 * reply to the request
976 */
977
978 putpacket(output_buffer);
979
980 } /* while */
981
982 return;
983
984finish_kgdb:
985 restore_debug_traps();
986
987exit_kgdb_exception:
988 /* release locks so other CPUs can go */
989 for (i = num_online_cpus()-1; i >= 0; i--)
Ralf Baechle57468af2005-10-03 13:40:26 +0100990 __raw_spin_unlock(&kgdb_cpulock[i]);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700991 spin_unlock(&kgdb_lock);
992
993 __flush_cache_all();
994 return;
995}
996
997/*
998 * This function will generate a breakpoint exception. It is used at the
999 * beginning of a program to sync up with a debugger and can be used
1000 * otherwise as a quick means to stop program execution and "break" into
1001 * the debugger.
1002 */
1003void breakpoint(void)
1004{
1005 if (!initialized)
1006 return;
1007
1008 __asm__ __volatile__(
Ralf Baechle42a3b4f2005-09-03 15:56:17 -07001009 ".globl breakinst\n\t"
Linus Torvalds1da177e2005-04-16 15:20:36 -07001010 ".set\tnoreorder\n\t"
1011 "nop\n"
1012 "breakinst:\tbreak\n\t"
1013 "nop\n\t"
1014 ".set\treorder"
1015 );
1016}
1017
1018/* Nothing but the break; don't pollute any registers */
1019void async_breakpoint(void)
1020{
1021 __asm__ __volatile__(
Ralf Baechle42a3b4f2005-09-03 15:56:17 -07001022 ".globl async_breakinst\n\t"
Linus Torvalds1da177e2005-04-16 15:20:36 -07001023 ".set\tnoreorder\n\t"
1024 "nop\n"
1025 "async_breakinst:\tbreak\n\t"
1026 "nop\n\t"
1027 ".set\treorder"
1028 );
1029}
1030
1031void adel(void)
1032{
1033 __asm__ __volatile__(
1034 ".globl\tadel\n\t"
1035 "lui\t$8,0x8000\n\t"
1036 "lw\t$9,1($8)\n\t"
1037 );
1038}
1039
1040/*
1041 * malloc is needed by gdb client in "call func()", even a private one
1042 * will make gdb happy
1043 */
Ralf Baechlea0c3a5b2005-07-14 07:39:46 +00001044static void * __attribute_used__ malloc(size_t size)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001045{
1046 return kmalloc(size, GFP_ATOMIC);
1047}
1048
Ralf Baechlea0c3a5b2005-07-14 07:39:46 +00001049static void __attribute_used__ free (void *where)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001050{
1051 kfree(where);
1052}
1053
1054#ifdef CONFIG_GDB_CONSOLE
1055
1056void gdb_putsn(const char *str, int l)
1057{
1058 char outbuf[18];
1059
1060 if (!kgdb_started)
1061 return;
1062
1063 outbuf[0]='O';
1064
1065 while(l) {
1066 int i = (l>8)?8:l;
1067 mem2hex((char *)str, &outbuf[1], i, 0);
1068 outbuf[(i*2)+1]=0;
1069 putpacket(outbuf);
1070 str += i;
1071 l -= i;
1072 }
1073}
1074
1075static void gdb_console_write(struct console *con, const char *s, unsigned n)
1076{
1077 gdb_putsn(s, n);
1078}
1079
1080static struct console gdb_console = {
1081 .name = "gdb",
1082 .write = gdb_console_write,
1083 .flags = CON_PRINTBUFFER,
1084 .index = -1
1085};
1086
1087static int __init register_gdb_console(void)
1088{
1089 register_console(&gdb_console);
1090
1091 return 0;
1092}
1093
1094console_initcall(register_gdb_console);
1095
1096#endif