| Shane Wang | f1939f7 | 2009-09-02 20:05:22 +1000 | [diff] [blame] | 1 | /* | 
 | 2 |  * Modified to interface to the Linux kernel | 
 | 3 |  * Copyright (c) 2009, Intel Corporation. | 
 | 4 |  * | 
 | 5 |  * This program is free software; you can redistribute it and/or modify it | 
 | 6 |  * under the terms and conditions of the GNU General Public License, | 
 | 7 |  * version 2, as published by the Free Software Foundation. | 
 | 8 |  * | 
 | 9 |  * This program is distributed in the hope it will be useful, but WITHOUT | 
 | 10 |  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
 | 11 |  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
 | 12 |  * more details. | 
 | 13 |  * | 
 | 14 |  * You should have received a copy of the GNU General Public License along with | 
 | 15 |  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple | 
 | 16 |  * Place - Suite 330, Boston, MA 02111-1307 USA. | 
 | 17 |  */ | 
 | 18 |  | 
 | 19 | /* -------------------------------------------------------------------------- | 
 | 20 |  * VMAC and VHASH Implementation by Ted Krovetz (tdk@acm.org) and Wei Dai. | 
 | 21 |  * This implementation is herby placed in the public domain. | 
 | 22 |  * The authors offers no warranty. Use at your own risk. | 
 | 23 |  * Please send bug reports to the authors. | 
 | 24 |  * Last modified: 17 APR 08, 1700 PDT | 
 | 25 |  * ----------------------------------------------------------------------- */ | 
 | 26 |  | 
 | 27 | #include <linux/init.h> | 
 | 28 | #include <linux/types.h> | 
 | 29 | #include <linux/crypto.h> | 
 | 30 | #include <linux/scatterlist.h> | 
 | 31 | #include <asm/byteorder.h> | 
 | 32 | #include <crypto/scatterwalk.h> | 
 | 33 | #include <crypto/vmac.h> | 
 | 34 | #include <crypto/internal/hash.h> | 
 | 35 |  | 
 | 36 | /* | 
 | 37 |  * Constants and masks | 
 | 38 |  */ | 
 | 39 | #define UINT64_C(x) x##ULL | 
 | 40 | const u64 p64   = UINT64_C(0xfffffffffffffeff);  /* 2^64 - 257 prime  */ | 
 | 41 | const u64 m62   = UINT64_C(0x3fffffffffffffff);  /* 62-bit mask       */ | 
 | 42 | const u64 m63   = UINT64_C(0x7fffffffffffffff);  /* 63-bit mask       */ | 
 | 43 | const u64 m64   = UINT64_C(0xffffffffffffffff);  /* 64-bit mask       */ | 
 | 44 | const u64 mpoly = UINT64_C(0x1fffffff1fffffff);  /* Poly key mask     */ | 
 | 45 |  | 
 | 46 | #ifdef __LITTLE_ENDIAN | 
 | 47 | #define INDEX_HIGH 1 | 
 | 48 | #define INDEX_LOW 0 | 
 | 49 | #else | 
 | 50 | #define INDEX_HIGH 0 | 
 | 51 | #define INDEX_LOW 1 | 
 | 52 | #endif | 
 | 53 |  | 
 | 54 | /* | 
 | 55 |  * The following routines are used in this implementation. They are | 
 | 56 |  * written via macros to simulate zero-overhead call-by-reference. | 
 | 57 |  * | 
 | 58 |  * MUL64: 64x64->128-bit multiplication | 
 | 59 |  * PMUL64: assumes top bits cleared on inputs | 
 | 60 |  * ADD128: 128x128->128-bit addition | 
 | 61 |  */ | 
 | 62 |  | 
 | 63 | #define ADD128(rh, rl, ih, il)						\ | 
 | 64 | 	do {								\ | 
 | 65 | 		u64 _il = (il);						\ | 
 | 66 | 		(rl) += (_il);						\ | 
 | 67 | 		if ((rl) < (_il))					\ | 
 | 68 | 			(rh)++;						\ | 
 | 69 | 		(rh) += (ih);						\ | 
 | 70 | 	} while (0) | 
 | 71 |  | 
 | 72 | #define MUL32(i1, i2)	((u64)(u32)(i1)*(u32)(i2)) | 
 | 73 |  | 
 | 74 | #define PMUL64(rh, rl, i1, i2)	/* Assumes m doesn't overflow */	\ | 
 | 75 | 	do {								\ | 
 | 76 | 		u64 _i1 = (i1), _i2 = (i2);				\ | 
 | 77 | 		u64 m = MUL32(_i1, _i2>>32) + MUL32(_i1>>32, _i2);	\ | 
 | 78 | 		rh = MUL32(_i1>>32, _i2>>32);				\ | 
 | 79 | 		rl = MUL32(_i1, _i2);					\ | 
 | 80 | 		ADD128(rh, rl, (m >> 32), (m << 32));			\ | 
 | 81 | 	} while (0) | 
 | 82 |  | 
 | 83 | #define MUL64(rh, rl, i1, i2)						\ | 
 | 84 | 	do {								\ | 
 | 85 | 		u64 _i1 = (i1), _i2 = (i2);				\ | 
 | 86 | 		u64 m1 = MUL32(_i1, _i2>>32);				\ | 
 | 87 | 		u64 m2 = MUL32(_i1>>32, _i2);				\ | 
 | 88 | 		rh = MUL32(_i1>>32, _i2>>32);				\ | 
 | 89 | 		rl = MUL32(_i1, _i2);					\ | 
 | 90 | 		ADD128(rh, rl, (m1 >> 32), (m1 << 32));			\ | 
 | 91 | 		ADD128(rh, rl, (m2 >> 32), (m2 << 32));			\ | 
 | 92 | 	} while (0) | 
 | 93 |  | 
 | 94 | /* | 
 | 95 |  * For highest performance the L1 NH and L2 polynomial hashes should be | 
 | 96 |  * carefully implemented to take advantage of one's target architechture. | 
 | 97 |  * Here these two hash functions are defined multiple time; once for | 
 | 98 |  * 64-bit architectures, once for 32-bit SSE2 architectures, and once | 
 | 99 |  * for the rest (32-bit) architectures. | 
 | 100 |  * For each, nh_16 *must* be defined (works on multiples of 16 bytes). | 
 | 101 |  * Optionally, nh_vmac_nhbytes can be defined (for multiples of | 
 | 102 |  * VMAC_NHBYTES), and nh_16_2 and nh_vmac_nhbytes_2 (versions that do two | 
 | 103 |  * NH computations at once). | 
 | 104 |  */ | 
 | 105 |  | 
 | 106 | #ifdef CONFIG_64BIT | 
 | 107 |  | 
 | 108 | #define nh_16(mp, kp, nw, rh, rl)					\ | 
 | 109 | 	do {								\ | 
 | 110 | 		int i; u64 th, tl;					\ | 
 | 111 | 		rh = rl = 0;						\ | 
 | 112 | 		for (i = 0; i < nw; i += 2) {				\ | 
 | 113 | 			MUL64(th, tl, le64_to_cpup((mp)+i)+(kp)[i],	\ | 
 | 114 | 				le64_to_cpup((mp)+i+1)+(kp)[i+1]);	\ | 
 | 115 | 			ADD128(rh, rl, th, tl);				\ | 
 | 116 | 		}							\ | 
 | 117 | 	} while (0) | 
 | 118 |  | 
 | 119 | #define nh_16_2(mp, kp, nw, rh, rl, rh1, rl1)				\ | 
 | 120 | 	do {								\ | 
 | 121 | 		int i; u64 th, tl;					\ | 
 | 122 | 		rh1 = rl1 = rh = rl = 0;				\ | 
 | 123 | 		for (i = 0; i < nw; i += 2) {				\ | 
 | 124 | 			MUL64(th, tl, le64_to_cpup((mp)+i)+(kp)[i],	\ | 
 | 125 | 				le64_to_cpup((mp)+i+1)+(kp)[i+1]);	\ | 
 | 126 | 			ADD128(rh, rl, th, tl);				\ | 
 | 127 | 			MUL64(th, tl, le64_to_cpup((mp)+i)+(kp)[i+2],	\ | 
 | 128 | 				le64_to_cpup((mp)+i+1)+(kp)[i+3]);	\ | 
 | 129 | 			ADD128(rh1, rl1, th, tl);			\ | 
 | 130 | 		}							\ | 
 | 131 | 	} while (0) | 
 | 132 |  | 
 | 133 | #if (VMAC_NHBYTES >= 64) /* These versions do 64-bytes of message at a time */ | 
 | 134 | #define nh_vmac_nhbytes(mp, kp, nw, rh, rl)				\ | 
 | 135 | 	do {								\ | 
 | 136 | 		int i; u64 th, tl;					\ | 
 | 137 | 		rh = rl = 0;						\ | 
 | 138 | 		for (i = 0; i < nw; i += 8) {				\ | 
 | 139 | 			MUL64(th, tl, le64_to_cpup((mp)+i)+(kp)[i],	\ | 
 | 140 | 				le64_to_cpup((mp)+i+1)+(kp)[i+1]);	\ | 
 | 141 | 			ADD128(rh, rl, th, tl);				\ | 
 | 142 | 			MUL64(th, tl, le64_to_cpup((mp)+i+2)+(kp)[i+2],	\ | 
 | 143 | 				le64_to_cpup((mp)+i+3)+(kp)[i+3]);	\ | 
 | 144 | 			ADD128(rh, rl, th, tl);				\ | 
 | 145 | 			MUL64(th, tl, le64_to_cpup((mp)+i+4)+(kp)[i+4],	\ | 
 | 146 | 				le64_to_cpup((mp)+i+5)+(kp)[i+5]);	\ | 
 | 147 | 			ADD128(rh, rl, th, tl);				\ | 
 | 148 | 			MUL64(th, tl, le64_to_cpup((mp)+i+6)+(kp)[i+6],	\ | 
 | 149 | 				le64_to_cpup((mp)+i+7)+(kp)[i+7]);	\ | 
 | 150 | 			ADD128(rh, rl, th, tl);				\ | 
 | 151 | 		}							\ | 
 | 152 | 	} while (0) | 
 | 153 |  | 
 | 154 | #define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh1, rl1)			\ | 
 | 155 | 	do {								\ | 
 | 156 | 		int i; u64 th, tl;					\ | 
 | 157 | 		rh1 = rl1 = rh = rl = 0;				\ | 
 | 158 | 		for (i = 0; i < nw; i += 8) {				\ | 
 | 159 | 			MUL64(th, tl, le64_to_cpup((mp)+i)+(kp)[i],	\ | 
 | 160 | 				le64_to_cpup((mp)+i+1)+(kp)[i+1]);	\ | 
 | 161 | 			ADD128(rh, rl, th, tl);				\ | 
 | 162 | 			MUL64(th, tl, le64_to_cpup((mp)+i)+(kp)[i+2],	\ | 
 | 163 | 				le64_to_cpup((mp)+i+1)+(kp)[i+3]);	\ | 
 | 164 | 			ADD128(rh1, rl1, th, tl);			\ | 
 | 165 | 			MUL64(th, tl, le64_to_cpup((mp)+i+2)+(kp)[i+2],	\ | 
 | 166 | 				le64_to_cpup((mp)+i+3)+(kp)[i+3]);	\ | 
 | 167 | 			ADD128(rh, rl, th, tl);				\ | 
 | 168 | 			MUL64(th, tl, le64_to_cpup((mp)+i+2)+(kp)[i+4],	\ | 
 | 169 | 				le64_to_cpup((mp)+i+3)+(kp)[i+5]);	\ | 
 | 170 | 			ADD128(rh1, rl1, th, tl);			\ | 
 | 171 | 			MUL64(th, tl, le64_to_cpup((mp)+i+4)+(kp)[i+4],	\ | 
 | 172 | 				le64_to_cpup((mp)+i+5)+(kp)[i+5]);	\ | 
 | 173 | 			ADD128(rh, rl, th, tl);				\ | 
 | 174 | 			MUL64(th, tl, le64_to_cpup((mp)+i+4)+(kp)[i+6],	\ | 
 | 175 | 				le64_to_cpup((mp)+i+5)+(kp)[i+7]);	\ | 
 | 176 | 			ADD128(rh1, rl1, th, tl);			\ | 
 | 177 | 			MUL64(th, tl, le64_to_cpup((mp)+i+6)+(kp)[i+6],	\ | 
 | 178 | 				le64_to_cpup((mp)+i+7)+(kp)[i+7]);	\ | 
 | 179 | 			ADD128(rh, rl, th, tl);				\ | 
 | 180 | 			MUL64(th, tl, le64_to_cpup((mp)+i+6)+(kp)[i+8],	\ | 
 | 181 | 				le64_to_cpup((mp)+i+7)+(kp)[i+9]);	\ | 
 | 182 | 			ADD128(rh1, rl1, th, tl);			\ | 
 | 183 | 		}							\ | 
 | 184 | 	} while (0) | 
 | 185 | #endif | 
 | 186 |  | 
 | 187 | #define poly_step(ah, al, kh, kl, mh, ml)				\ | 
 | 188 | 	do {								\ | 
 | 189 | 		u64 t1h, t1l, t2h, t2l, t3h, t3l, z = 0;		\ | 
 | 190 | 		/* compute ab*cd, put bd into result registers */	\ | 
 | 191 | 		PMUL64(t3h, t3l, al, kh);				\ | 
 | 192 | 		PMUL64(t2h, t2l, ah, kl);				\ | 
 | 193 | 		PMUL64(t1h, t1l, ah, 2*kh);				\ | 
 | 194 | 		PMUL64(ah, al, al, kl);					\ | 
 | 195 | 		/* add 2 * ac to result */				\ | 
 | 196 | 		ADD128(ah, al, t1h, t1l);				\ | 
 | 197 | 		/* add together ad + bc */				\ | 
 | 198 | 		ADD128(t2h, t2l, t3h, t3l);				\ | 
 | 199 | 		/* now (ah,al), (t2l,2*t2h) need summing */		\ | 
 | 200 | 		/* first add the high registers, carrying into t2h */	\ | 
 | 201 | 		ADD128(t2h, ah, z, t2l);				\ | 
 | 202 | 		/* double t2h and add top bit of ah */			\ | 
 | 203 | 		t2h = 2 * t2h + (ah >> 63);				\ | 
 | 204 | 		ah &= m63;						\ | 
 | 205 | 		/* now add the low registers */				\ | 
 | 206 | 		ADD128(ah, al, mh, ml);					\ | 
 | 207 | 		ADD128(ah, al, z, t2h);					\ | 
 | 208 | 	} while (0) | 
 | 209 |  | 
 | 210 | #else /* ! CONFIG_64BIT */ | 
 | 211 |  | 
 | 212 | #ifndef nh_16 | 
 | 213 | #define nh_16(mp, kp, nw, rh, rl)					\ | 
 | 214 | 	do {								\ | 
 | 215 | 		u64 t1, t2, m1, m2, t;					\ | 
 | 216 | 		int i;							\ | 
 | 217 | 		rh = rl = t = 0;					\ | 
 | 218 | 		for (i = 0; i < nw; i += 2)  {				\ | 
 | 219 | 			t1 = le64_to_cpup(mp+i) + kp[i];		\ | 
 | 220 | 			t2 = le64_to_cpup(mp+i+1) + kp[i+1];		\ | 
 | 221 | 			m2 = MUL32(t1 >> 32, t2);			\ | 
 | 222 | 			m1 = MUL32(t1, t2 >> 32);			\ | 
 | 223 | 			ADD128(rh, rl, MUL32(t1 >> 32, t2 >> 32),	\ | 
 | 224 | 				MUL32(t1, t2));				\ | 
 | 225 | 			rh += (u64)(u32)(m1 >> 32)			\ | 
 | 226 | 				+ (u32)(m2 >> 32);			\ | 
 | 227 | 			t += (u64)(u32)m1 + (u32)m2;			\ | 
 | 228 | 		}							\ | 
 | 229 | 		ADD128(rh, rl, (t >> 32), (t << 32));			\ | 
 | 230 | 	} while (0) | 
 | 231 | #endif | 
 | 232 |  | 
 | 233 | static void poly_step_func(u64 *ahi, u64 *alo, | 
 | 234 | 			const u64 *kh, const u64 *kl, | 
 | 235 | 			const u64 *mh, const u64 *ml) | 
 | 236 | { | 
 | 237 | #define a0 (*(((u32 *)alo)+INDEX_LOW)) | 
 | 238 | #define a1 (*(((u32 *)alo)+INDEX_HIGH)) | 
 | 239 | #define a2 (*(((u32 *)ahi)+INDEX_LOW)) | 
 | 240 | #define a3 (*(((u32 *)ahi)+INDEX_HIGH)) | 
 | 241 | #define k0 (*(((u32 *)kl)+INDEX_LOW)) | 
 | 242 | #define k1 (*(((u32 *)kl)+INDEX_HIGH)) | 
 | 243 | #define k2 (*(((u32 *)kh)+INDEX_LOW)) | 
 | 244 | #define k3 (*(((u32 *)kh)+INDEX_HIGH)) | 
 | 245 |  | 
 | 246 | 	u64 p, q, t; | 
 | 247 | 	u32 t2; | 
 | 248 |  | 
 | 249 | 	p = MUL32(a3, k3); | 
 | 250 | 	p += p; | 
 | 251 | 	p += *(u64 *)mh; | 
 | 252 | 	p += MUL32(a0, k2); | 
 | 253 | 	p += MUL32(a1, k1); | 
 | 254 | 	p += MUL32(a2, k0); | 
 | 255 | 	t = (u32)(p); | 
 | 256 | 	p >>= 32; | 
 | 257 | 	p += MUL32(a0, k3); | 
 | 258 | 	p += MUL32(a1, k2); | 
 | 259 | 	p += MUL32(a2, k1); | 
 | 260 | 	p += MUL32(a3, k0); | 
 | 261 | 	t |= ((u64)((u32)p & 0x7fffffff)) << 32; | 
 | 262 | 	p >>= 31; | 
 | 263 | 	p += (u64)(((u32 *)ml)[INDEX_LOW]); | 
 | 264 | 	p += MUL32(a0, k0); | 
 | 265 | 	q =  MUL32(a1, k3); | 
 | 266 | 	q += MUL32(a2, k2); | 
 | 267 | 	q += MUL32(a3, k1); | 
 | 268 | 	q += q; | 
 | 269 | 	p += q; | 
 | 270 | 	t2 = (u32)(p); | 
 | 271 | 	p >>= 32; | 
 | 272 | 	p += (u64)(((u32 *)ml)[INDEX_HIGH]); | 
 | 273 | 	p += MUL32(a0, k1); | 
 | 274 | 	p += MUL32(a1, k0); | 
 | 275 | 	q =  MUL32(a2, k3); | 
 | 276 | 	q += MUL32(a3, k2); | 
 | 277 | 	q += q; | 
 | 278 | 	p += q; | 
 | 279 | 	*(u64 *)(alo) = (p << 32) | t2; | 
 | 280 | 	p >>= 32; | 
 | 281 | 	*(u64 *)(ahi) = p + t; | 
 | 282 |  | 
 | 283 | #undef a0 | 
 | 284 | #undef a1 | 
 | 285 | #undef a2 | 
 | 286 | #undef a3 | 
 | 287 | #undef k0 | 
 | 288 | #undef k1 | 
 | 289 | #undef k2 | 
 | 290 | #undef k3 | 
 | 291 | } | 
 | 292 |  | 
 | 293 | #define poly_step(ah, al, kh, kl, mh, ml)				\ | 
 | 294 | 	poly_step_func(&(ah), &(al), &(kh), &(kl), &(mh), &(ml)) | 
 | 295 |  | 
 | 296 | #endif  /* end of specialized NH and poly definitions */ | 
 | 297 |  | 
 | 298 | /* At least nh_16 is defined. Defined others as needed here */ | 
 | 299 | #ifndef nh_16_2 | 
 | 300 | #define nh_16_2(mp, kp, nw, rh, rl, rh2, rl2)				\ | 
 | 301 | 	do { 								\ | 
 | 302 | 		nh_16(mp, kp, nw, rh, rl);				\ | 
 | 303 | 		nh_16(mp, ((kp)+2), nw, rh2, rl2);			\ | 
 | 304 | 	} while (0) | 
 | 305 | #endif | 
 | 306 | #ifndef nh_vmac_nhbytes | 
 | 307 | #define nh_vmac_nhbytes(mp, kp, nw, rh, rl)				\ | 
 | 308 | 	nh_16(mp, kp, nw, rh, rl) | 
 | 309 | #endif | 
 | 310 | #ifndef nh_vmac_nhbytes_2 | 
 | 311 | #define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh2, rl2)			\ | 
 | 312 | 	do {								\ | 
 | 313 | 		nh_vmac_nhbytes(mp, kp, nw, rh, rl);			\ | 
 | 314 | 		nh_vmac_nhbytes(mp, ((kp)+2), nw, rh2, rl2);		\ | 
 | 315 | 	} while (0) | 
 | 316 | #endif | 
 | 317 |  | 
 | 318 | static void vhash_abort(struct vmac_ctx *ctx) | 
 | 319 | { | 
 | 320 | 	ctx->polytmp[0] = ctx->polykey[0] ; | 
 | 321 | 	ctx->polytmp[1] = ctx->polykey[1] ; | 
 | 322 | 	ctx->first_block_processed = 0; | 
 | 323 | } | 
 | 324 |  | 
 | 325 | static u64 l3hash(u64 p1, u64 p2, | 
 | 326 | 			u64 k1, u64 k2, u64 len) | 
 | 327 | { | 
 | 328 | 	u64 rh, rl, t, z = 0; | 
 | 329 |  | 
 | 330 | 	/* fully reduce (p1,p2)+(len,0) mod p127 */ | 
 | 331 | 	t = p1 >> 63; | 
 | 332 | 	p1 &= m63; | 
 | 333 | 	ADD128(p1, p2, len, t); | 
 | 334 | 	/* At this point, (p1,p2) is at most 2^127+(len<<64) */ | 
 | 335 | 	t = (p1 > m63) + ((p1 == m63) && (p2 == m64)); | 
 | 336 | 	ADD128(p1, p2, z, t); | 
 | 337 | 	p1 &= m63; | 
 | 338 |  | 
 | 339 | 	/* compute (p1,p2)/(2^64-2^32) and (p1,p2)%(2^64-2^32) */ | 
 | 340 | 	t = p1 + (p2 >> 32); | 
 | 341 | 	t += (t >> 32); | 
 | 342 | 	t += (u32)t > 0xfffffffeu; | 
 | 343 | 	p1 += (t >> 32); | 
 | 344 | 	p2 += (p1 << 32); | 
 | 345 |  | 
 | 346 | 	/* compute (p1+k1)%p64 and (p2+k2)%p64 */ | 
 | 347 | 	p1 += k1; | 
 | 348 | 	p1 += (0 - (p1 < k1)) & 257; | 
 | 349 | 	p2 += k2; | 
 | 350 | 	p2 += (0 - (p2 < k2)) & 257; | 
 | 351 |  | 
 | 352 | 	/* compute (p1+k1)*(p2+k2)%p64 */ | 
 | 353 | 	MUL64(rh, rl, p1, p2); | 
 | 354 | 	t = rh >> 56; | 
 | 355 | 	ADD128(t, rl, z, rh); | 
 | 356 | 	rh <<= 8; | 
 | 357 | 	ADD128(t, rl, z, rh); | 
 | 358 | 	t += t << 8; | 
 | 359 | 	rl += t; | 
 | 360 | 	rl += (0 - (rl < t)) & 257; | 
 | 361 | 	rl += (0 - (rl > p64-1)) & 257; | 
 | 362 | 	return rl; | 
 | 363 | } | 
 | 364 |  | 
 | 365 | static void vhash_update(const unsigned char *m, | 
 | 366 | 			unsigned int mbytes, /* Pos multiple of VMAC_NHBYTES */ | 
 | 367 | 			struct vmac_ctx *ctx) | 
 | 368 | { | 
 | 369 | 	u64 rh, rl, *mptr; | 
 | 370 | 	const u64 *kptr = (u64 *)ctx->nhkey; | 
 | 371 | 	int i; | 
 | 372 | 	u64 ch, cl; | 
 | 373 | 	u64 pkh = ctx->polykey[0]; | 
 | 374 | 	u64 pkl = ctx->polykey[1]; | 
 | 375 |  | 
 | 376 | 	mptr = (u64 *)m; | 
 | 377 | 	i = mbytes / VMAC_NHBYTES;  /* Must be non-zero */ | 
 | 378 |  | 
 | 379 | 	ch = ctx->polytmp[0]; | 
 | 380 | 	cl = ctx->polytmp[1]; | 
 | 381 |  | 
 | 382 | 	if (!ctx->first_block_processed) { | 
 | 383 | 		ctx->first_block_processed = 1; | 
 | 384 | 		nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl); | 
 | 385 | 		rh &= m62; | 
 | 386 | 		ADD128(ch, cl, rh, rl); | 
 | 387 | 		mptr += (VMAC_NHBYTES/sizeof(u64)); | 
 | 388 | 		i--; | 
 | 389 | 	} | 
 | 390 |  | 
 | 391 | 	while (i--) { | 
 | 392 | 		nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl); | 
 | 393 | 		rh &= m62; | 
 | 394 | 		poly_step(ch, cl, pkh, pkl, rh, rl); | 
 | 395 | 		mptr += (VMAC_NHBYTES/sizeof(u64)); | 
 | 396 | 	} | 
 | 397 |  | 
 | 398 | 	ctx->polytmp[0] = ch; | 
 | 399 | 	ctx->polytmp[1] = cl; | 
 | 400 | } | 
 | 401 |  | 
 | 402 | static u64 vhash(unsigned char m[], unsigned int mbytes, | 
 | 403 | 			u64 *tagl, struct vmac_ctx *ctx) | 
 | 404 | { | 
 | 405 | 	u64 rh, rl, *mptr; | 
 | 406 | 	const u64 *kptr = (u64 *)ctx->nhkey; | 
 | 407 | 	int i, remaining; | 
 | 408 | 	u64 ch, cl; | 
 | 409 | 	u64 pkh = ctx->polykey[0]; | 
 | 410 | 	u64 pkl = ctx->polykey[1]; | 
 | 411 |  | 
 | 412 | 	mptr = (u64 *)m; | 
 | 413 | 	i = mbytes / VMAC_NHBYTES; | 
 | 414 | 	remaining = mbytes % VMAC_NHBYTES; | 
 | 415 |  | 
 | 416 | 	if (ctx->first_block_processed) { | 
 | 417 | 		ch = ctx->polytmp[0]; | 
 | 418 | 		cl = ctx->polytmp[1]; | 
 | 419 | 	} else if (i) { | 
 | 420 | 		nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, ch, cl); | 
 | 421 | 		ch &= m62; | 
 | 422 | 		ADD128(ch, cl, pkh, pkl); | 
 | 423 | 		mptr += (VMAC_NHBYTES/sizeof(u64)); | 
 | 424 | 		i--; | 
 | 425 | 	} else if (remaining) { | 
 | 426 | 		nh_16(mptr, kptr, 2*((remaining+15)/16), ch, cl); | 
 | 427 | 		ch &= m62; | 
 | 428 | 		ADD128(ch, cl, pkh, pkl); | 
 | 429 | 		mptr += (VMAC_NHBYTES/sizeof(u64)); | 
 | 430 | 		goto do_l3; | 
 | 431 | 	} else {/* Empty String */ | 
 | 432 | 		ch = pkh; cl = pkl; | 
 | 433 | 		goto do_l3; | 
 | 434 | 	} | 
 | 435 |  | 
 | 436 | 	while (i--) { | 
 | 437 | 		nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl); | 
 | 438 | 		rh &= m62; | 
 | 439 | 		poly_step(ch, cl, pkh, pkl, rh, rl); | 
 | 440 | 		mptr += (VMAC_NHBYTES/sizeof(u64)); | 
 | 441 | 	} | 
 | 442 | 	if (remaining) { | 
 | 443 | 		nh_16(mptr, kptr, 2*((remaining+15)/16), rh, rl); | 
 | 444 | 		rh &= m62; | 
 | 445 | 		poly_step(ch, cl, pkh, pkl, rh, rl); | 
 | 446 | 	} | 
 | 447 |  | 
 | 448 | do_l3: | 
 | 449 | 	vhash_abort(ctx); | 
 | 450 | 	remaining *= 8; | 
 | 451 | 	return l3hash(ch, cl, ctx->l3key[0], ctx->l3key[1], remaining); | 
 | 452 | } | 
 | 453 |  | 
 | 454 | static u64 vmac(unsigned char m[], unsigned int mbytes, | 
 | 455 | 			unsigned char n[16], u64 *tagl, | 
 | 456 | 			struct vmac_ctx_t *ctx) | 
 | 457 | { | 
 | 458 | 	u64 *in_n, *out_p; | 
 | 459 | 	u64 p, h; | 
 | 460 | 	int i; | 
 | 461 |  | 
 | 462 | 	in_n = ctx->__vmac_ctx.cached_nonce; | 
 | 463 | 	out_p = ctx->__vmac_ctx.cached_aes; | 
 | 464 |  | 
 | 465 | 	i = n[15] & 1; | 
 | 466 | 	if ((*(u64 *)(n+8) != in_n[1]) || (*(u64 *)(n) != in_n[0])) { | 
 | 467 | 		in_n[0] = *(u64 *)(n); | 
 | 468 | 		in_n[1] = *(u64 *)(n+8); | 
 | 469 | 		((unsigned char *)in_n)[15] &= 0xFE; | 
 | 470 | 		crypto_cipher_encrypt_one(ctx->child, | 
 | 471 | 			(unsigned char *)out_p, (unsigned char *)in_n); | 
 | 472 |  | 
 | 473 | 		((unsigned char *)in_n)[15] |= (unsigned char)(1-i); | 
 | 474 | 	} | 
 | 475 | 	p = be64_to_cpup(out_p + i); | 
 | 476 | 	h = vhash(m, mbytes, (u64 *)0, &ctx->__vmac_ctx); | 
 | 477 | 	return p + h; | 
 | 478 | } | 
 | 479 |  | 
 | 480 | static int vmac_set_key(unsigned char user_key[], struct vmac_ctx_t *ctx) | 
 | 481 | { | 
 | 482 | 	u64 in[2] = {0}, out[2]; | 
 | 483 | 	unsigned i; | 
 | 484 | 	int err = 0; | 
 | 485 |  | 
 | 486 | 	err = crypto_cipher_setkey(ctx->child, user_key, VMAC_KEY_LEN); | 
 | 487 | 	if (err) | 
 | 488 | 		return err; | 
 | 489 |  | 
 | 490 | 	/* Fill nh key */ | 
 | 491 | 	((unsigned char *)in)[0] = 0x80; | 
 | 492 | 	for (i = 0; i < sizeof(ctx->__vmac_ctx.nhkey)/8; i += 2) { | 
 | 493 | 		crypto_cipher_encrypt_one(ctx->child, | 
 | 494 | 			(unsigned char *)out, (unsigned char *)in); | 
 | 495 | 		ctx->__vmac_ctx.nhkey[i] = be64_to_cpup(out); | 
 | 496 | 		ctx->__vmac_ctx.nhkey[i+1] = be64_to_cpup(out+1); | 
 | 497 | 		((unsigned char *)in)[15] += 1; | 
 | 498 | 	} | 
 | 499 |  | 
 | 500 | 	/* Fill poly key */ | 
 | 501 | 	((unsigned char *)in)[0] = 0xC0; | 
 | 502 | 	in[1] = 0; | 
 | 503 | 	for (i = 0; i < sizeof(ctx->__vmac_ctx.polykey)/8; i += 2) { | 
 | 504 | 		crypto_cipher_encrypt_one(ctx->child, | 
 | 505 | 			(unsigned char *)out, (unsigned char *)in); | 
 | 506 | 		ctx->__vmac_ctx.polytmp[i] = | 
 | 507 | 			ctx->__vmac_ctx.polykey[i] = | 
 | 508 | 				be64_to_cpup(out) & mpoly; | 
 | 509 | 		ctx->__vmac_ctx.polytmp[i+1] = | 
 | 510 | 			ctx->__vmac_ctx.polykey[i+1] = | 
 | 511 | 				be64_to_cpup(out+1) & mpoly; | 
 | 512 | 		((unsigned char *)in)[15] += 1; | 
 | 513 | 	} | 
 | 514 |  | 
 | 515 | 	/* Fill ip key */ | 
 | 516 | 	((unsigned char *)in)[0] = 0xE0; | 
 | 517 | 	in[1] = 0; | 
 | 518 | 	for (i = 0; i < sizeof(ctx->__vmac_ctx.l3key)/8; i += 2) { | 
 | 519 | 		do { | 
 | 520 | 			crypto_cipher_encrypt_one(ctx->child, | 
 | 521 | 				(unsigned char *)out, (unsigned char *)in); | 
 | 522 | 			ctx->__vmac_ctx.l3key[i] = be64_to_cpup(out); | 
 | 523 | 			ctx->__vmac_ctx.l3key[i+1] = be64_to_cpup(out+1); | 
 | 524 | 			((unsigned char *)in)[15] += 1; | 
 | 525 | 		} while (ctx->__vmac_ctx.l3key[i] >= p64 | 
 | 526 | 			|| ctx->__vmac_ctx.l3key[i+1] >= p64); | 
 | 527 | 	} | 
 | 528 |  | 
 | 529 | 	/* Invalidate nonce/aes cache and reset other elements */ | 
 | 530 | 	ctx->__vmac_ctx.cached_nonce[0] = (u64)-1; /* Ensure illegal nonce */ | 
 | 531 | 	ctx->__vmac_ctx.cached_nonce[1] = (u64)0;  /* Ensure illegal nonce */ | 
 | 532 | 	ctx->__vmac_ctx.first_block_processed = 0; | 
 | 533 |  | 
 | 534 | 	return err; | 
 | 535 | } | 
 | 536 |  | 
 | 537 | static int vmac_setkey(struct crypto_shash *parent, | 
 | 538 | 		const u8 *key, unsigned int keylen) | 
 | 539 | { | 
 | 540 | 	struct vmac_ctx_t *ctx = crypto_shash_ctx(parent); | 
 | 541 |  | 
 | 542 | 	if (keylen != VMAC_KEY_LEN) { | 
 | 543 | 		crypto_shash_set_flags(parent, CRYPTO_TFM_RES_BAD_KEY_LEN); | 
 | 544 | 		return -EINVAL; | 
 | 545 | 	} | 
 | 546 |  | 
 | 547 | 	return vmac_set_key((u8 *)key, ctx); | 
 | 548 | } | 
 | 549 |  | 
 | 550 | static int vmac_init(struct shash_desc *pdesc) | 
 | 551 | { | 
 | 552 | 	struct crypto_shash *parent = pdesc->tfm; | 
 | 553 | 	struct vmac_ctx_t *ctx = crypto_shash_ctx(parent); | 
 | 554 |  | 
 | 555 | 	memset(&ctx->__vmac_ctx, 0, sizeof(struct vmac_ctx)); | 
 | 556 | 	return 0; | 
 | 557 | } | 
 | 558 |  | 
 | 559 | static int vmac_update(struct shash_desc *pdesc, const u8 *p, | 
 | 560 | 		unsigned int len) | 
 | 561 | { | 
 | 562 | 	struct crypto_shash *parent = pdesc->tfm; | 
 | 563 | 	struct vmac_ctx_t *ctx = crypto_shash_ctx(parent); | 
 | 564 |  | 
 | 565 | 	vhash_update(p, len, &ctx->__vmac_ctx); | 
 | 566 |  | 
 | 567 | 	return 0; | 
 | 568 | } | 
 | 569 |  | 
 | 570 | static int vmac_final(struct shash_desc *pdesc, u8 *out) | 
 | 571 | { | 
 | 572 | 	struct crypto_shash *parent = pdesc->tfm; | 
 | 573 | 	struct vmac_ctx_t *ctx = crypto_shash_ctx(parent); | 
 | 574 | 	vmac_t mac; | 
 | 575 | 	u8 nonce[16] = {}; | 
 | 576 |  | 
 | 577 | 	mac = vmac(NULL, 0, nonce, NULL, ctx); | 
 | 578 | 	memcpy(out, &mac, sizeof(vmac_t)); | 
 | 579 | 	memset(&mac, 0, sizeof(vmac_t)); | 
 | 580 | 	memset(&ctx->__vmac_ctx, 0, sizeof(struct vmac_ctx)); | 
 | 581 | 	return 0; | 
 | 582 | } | 
 | 583 |  | 
 | 584 | static int vmac_init_tfm(struct crypto_tfm *tfm) | 
 | 585 | { | 
 | 586 | 	struct crypto_cipher *cipher; | 
 | 587 | 	struct crypto_instance *inst = (void *)tfm->__crt_alg; | 
 | 588 | 	struct crypto_spawn *spawn = crypto_instance_ctx(inst); | 
 | 589 | 	struct vmac_ctx_t *ctx = crypto_tfm_ctx(tfm); | 
 | 590 |  | 
 | 591 | 	cipher = crypto_spawn_cipher(spawn); | 
 | 592 | 	if (IS_ERR(cipher)) | 
 | 593 | 		return PTR_ERR(cipher); | 
 | 594 |  | 
 | 595 | 	ctx->child = cipher; | 
 | 596 | 	return 0; | 
 | 597 | } | 
 | 598 |  | 
 | 599 | static void vmac_exit_tfm(struct crypto_tfm *tfm) | 
 | 600 | { | 
 | 601 | 	struct vmac_ctx_t *ctx = crypto_tfm_ctx(tfm); | 
 | 602 | 	crypto_free_cipher(ctx->child); | 
 | 603 | } | 
 | 604 |  | 
 | 605 | static int vmac_create(struct crypto_template *tmpl, struct rtattr **tb) | 
 | 606 | { | 
 | 607 | 	struct shash_instance *inst; | 
 | 608 | 	struct crypto_alg *alg; | 
 | 609 | 	int err; | 
 | 610 |  | 
 | 611 | 	err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SHASH); | 
 | 612 | 	if (err) | 
 | 613 | 		return err; | 
 | 614 |  | 
 | 615 | 	alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER, | 
 | 616 | 			CRYPTO_ALG_TYPE_MASK); | 
 | 617 | 	if (IS_ERR(alg)) | 
 | 618 | 		return PTR_ERR(alg); | 
 | 619 |  | 
 | 620 | 	inst = shash_alloc_instance("vmac", alg); | 
 | 621 | 	err = PTR_ERR(inst); | 
 | 622 | 	if (IS_ERR(inst)) | 
 | 623 | 		goto out_put_alg; | 
 | 624 |  | 
 | 625 | 	err = crypto_init_spawn(shash_instance_ctx(inst), alg, | 
 | 626 | 			shash_crypto_instance(inst), | 
 | 627 | 			CRYPTO_ALG_TYPE_MASK); | 
 | 628 | 	if (err) | 
 | 629 | 		goto out_free_inst; | 
 | 630 |  | 
 | 631 | 	inst->alg.base.cra_priority = alg->cra_priority; | 
 | 632 | 	inst->alg.base.cra_blocksize = alg->cra_blocksize; | 
 | 633 | 	inst->alg.base.cra_alignmask = alg->cra_alignmask; | 
 | 634 |  | 
 | 635 | 	inst->alg.digestsize = sizeof(vmac_t); | 
 | 636 | 	inst->alg.base.cra_ctxsize = sizeof(struct vmac_ctx_t); | 
 | 637 | 	inst->alg.base.cra_init = vmac_init_tfm; | 
 | 638 | 	inst->alg.base.cra_exit = vmac_exit_tfm; | 
 | 639 |  | 
 | 640 | 	inst->alg.init = vmac_init; | 
 | 641 | 	inst->alg.update = vmac_update; | 
 | 642 | 	inst->alg.final = vmac_final; | 
 | 643 | 	inst->alg.setkey = vmac_setkey; | 
 | 644 |  | 
 | 645 | 	err = shash_register_instance(tmpl, inst); | 
 | 646 | 	if (err) { | 
 | 647 | out_free_inst: | 
 | 648 | 		shash_free_instance(shash_crypto_instance(inst)); | 
 | 649 | 	} | 
 | 650 |  | 
 | 651 | out_put_alg: | 
 | 652 | 	crypto_mod_put(alg); | 
 | 653 | 	return err; | 
 | 654 | } | 
 | 655 |  | 
 | 656 | static struct crypto_template vmac_tmpl = { | 
 | 657 | 	.name = "vmac", | 
 | 658 | 	.create = vmac_create, | 
 | 659 | 	.free = shash_free_instance, | 
 | 660 | 	.module = THIS_MODULE, | 
 | 661 | }; | 
 | 662 |  | 
 | 663 | static int __init vmac_module_init(void) | 
 | 664 | { | 
 | 665 | 	return crypto_register_template(&vmac_tmpl); | 
 | 666 | } | 
 | 667 |  | 
 | 668 | static void __exit vmac_module_exit(void) | 
 | 669 | { | 
 | 670 | 	crypto_unregister_template(&vmac_tmpl); | 
 | 671 | } | 
 | 672 |  | 
 | 673 | module_init(vmac_module_init); | 
 | 674 | module_exit(vmac_module_exit); | 
 | 675 |  | 
 | 676 | MODULE_LICENSE("GPL"); | 
 | 677 | MODULE_DESCRIPTION("VMAC hash algorithm"); | 
 | 678 |  |