blob: 692251b60915999e79654d981401e3e2b69b2ffb [file] [log] [blame]
Auke Kokbc7f75f2007-09-17 12:30:59 -07001/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
Bruce Allanad680762008-03-28 09:15:03 -07004 Copyright(c) 1999 - 2008 Intel Corporation.
Auke Kokbc7f75f2007-09-17 12:30:59 -07005
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/*
30 * 82562G-2 10/100 Network Connection
31 * 82562GT 10/100 Network Connection
32 * 82562GT-2 10/100 Network Connection
33 * 82562V 10/100 Network Connection
34 * 82562V-2 10/100 Network Connection
35 * 82566DC-2 Gigabit Network Connection
36 * 82566DC Gigabit Network Connection
37 * 82566DM-2 Gigabit Network Connection
38 * 82566DM Gigabit Network Connection
39 * 82566MC Gigabit Network Connection
40 * 82566MM Gigabit Network Connection
Bruce Allan97ac8ca2008-04-29 09:16:05 -070041 * 82567LM Gigabit Network Connection
42 * 82567LF Gigabit Network Connection
43 * 82567LM-2 Gigabit Network Connection
44 * 82567LF-2 Gigabit Network Connection
45 * 82567V-2 Gigabit Network Connection
Bruce Allanf4187b52008-08-26 18:36:50 -070046 * 82567LF-3 Gigabit Network Connection
47 * 82567LM-3 Gigabit Network Connection
Bruce Allan2f15f9d2008-08-26 18:36:36 -070048 * 82567LM-4 Gigabit Network Connection
Auke Kokbc7f75f2007-09-17 12:30:59 -070049 */
50
51#include <linux/netdevice.h>
52#include <linux/ethtool.h>
53#include <linux/delay.h>
54#include <linux/pci.h>
55
56#include "e1000.h"
57
58#define ICH_FLASH_GFPREG 0x0000
59#define ICH_FLASH_HSFSTS 0x0004
60#define ICH_FLASH_HSFCTL 0x0006
61#define ICH_FLASH_FADDR 0x0008
62#define ICH_FLASH_FDATA0 0x0010
63
64#define ICH_FLASH_READ_COMMAND_TIMEOUT 500
65#define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
66#define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
67#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
68#define ICH_FLASH_CYCLE_REPEAT_COUNT 10
69
70#define ICH_CYCLE_READ 0
71#define ICH_CYCLE_WRITE 2
72#define ICH_CYCLE_ERASE 3
73
74#define FLASH_GFPREG_BASE_MASK 0x1FFF
75#define FLASH_SECTOR_ADDR_SHIFT 12
76
77#define ICH_FLASH_SEG_SIZE_256 256
78#define ICH_FLASH_SEG_SIZE_4K 4096
79#define ICH_FLASH_SEG_SIZE_8K 8192
80#define ICH_FLASH_SEG_SIZE_64K 65536
81
82
83#define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
84
85#define E1000_ICH_MNG_IAMT_MODE 0x2
86
87#define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
88 (ID_LED_DEF1_OFF2 << 8) | \
89 (ID_LED_DEF1_ON2 << 4) | \
90 (ID_LED_DEF1_DEF2))
91
92#define E1000_ICH_NVM_SIG_WORD 0x13
93#define E1000_ICH_NVM_SIG_MASK 0xC000
94
95#define E1000_ICH8_LAN_INIT_TIMEOUT 1500
96
97#define E1000_FEXTNVM_SW_CONFIG 1
98#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
99
100#define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
101
102#define E1000_ICH_RAR_ENTRIES 7
103
104#define PHY_PAGE_SHIFT 5
105#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
106 ((reg) & MAX_PHY_REG_ADDRESS))
107#define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
108#define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
109
110#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
111#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
112#define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
113
114/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
115/* Offset 04h HSFSTS */
116union ich8_hws_flash_status {
117 struct ich8_hsfsts {
118 u16 flcdone :1; /* bit 0 Flash Cycle Done */
119 u16 flcerr :1; /* bit 1 Flash Cycle Error */
120 u16 dael :1; /* bit 2 Direct Access error Log */
121 u16 berasesz :2; /* bit 4:3 Sector Erase Size */
122 u16 flcinprog :1; /* bit 5 flash cycle in Progress */
123 u16 reserved1 :2; /* bit 13:6 Reserved */
124 u16 reserved2 :6; /* bit 13:6 Reserved */
125 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
126 u16 flockdn :1; /* bit 15 Flash Config Lock-Down */
127 } hsf_status;
128 u16 regval;
129};
130
131/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
132/* Offset 06h FLCTL */
133union ich8_hws_flash_ctrl {
134 struct ich8_hsflctl {
135 u16 flcgo :1; /* 0 Flash Cycle Go */
136 u16 flcycle :2; /* 2:1 Flash Cycle */
137 u16 reserved :5; /* 7:3 Reserved */
138 u16 fldbcount :2; /* 9:8 Flash Data Byte Count */
139 u16 flockdn :6; /* 15:10 Reserved */
140 } hsf_ctrl;
141 u16 regval;
142};
143
144/* ICH Flash Region Access Permissions */
145union ich8_hws_flash_regacc {
146 struct ich8_flracc {
147 u32 grra :8; /* 0:7 GbE region Read Access */
148 u32 grwa :8; /* 8:15 GbE region Write Access */
149 u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */
150 u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */
151 } hsf_flregacc;
152 u16 regval;
153};
154
155static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
156static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
157static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
158static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw);
159static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
160static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
161 u32 offset, u8 byte);
Bruce Allanf4187b52008-08-26 18:36:50 -0700162static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
163 u8 *data);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700164static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
165 u16 *data);
166static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
167 u8 size, u16 *data);
168static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
169static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
Bruce Allanf4187b52008-08-26 18:36:50 -0700170static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700171
172static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
173{
174 return readw(hw->flash_address + reg);
175}
176
177static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
178{
179 return readl(hw->flash_address + reg);
180}
181
182static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
183{
184 writew(val, hw->flash_address + reg);
185}
186
187static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
188{
189 writel(val, hw->flash_address + reg);
190}
191
192#define er16flash(reg) __er16flash(hw, (reg))
193#define er32flash(reg) __er32flash(hw, (reg))
194#define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
195#define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
196
197/**
198 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
199 * @hw: pointer to the HW structure
200 *
201 * Initialize family-specific PHY parameters and function pointers.
202 **/
203static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
204{
205 struct e1000_phy_info *phy = &hw->phy;
206 s32 ret_val;
207 u16 i = 0;
208
209 phy->addr = 1;
210 phy->reset_delay_us = 100;
211
Bruce Allan97ac8ca2008-04-29 09:16:05 -0700212 /*
213 * We may need to do this twice - once for IGP and if that fails,
214 * we'll set BM func pointers and try again
215 */
216 ret_val = e1000e_determine_phy_address(hw);
217 if (ret_val) {
218 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
219 hw->phy.ops.read_phy_reg = e1000e_read_phy_reg_bm;
220 ret_val = e1000e_determine_phy_address(hw);
221 if (ret_val)
222 return ret_val;
223 }
224
Auke Kokbc7f75f2007-09-17 12:30:59 -0700225 phy->id = 0;
226 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
227 (i++ < 100)) {
228 msleep(1);
229 ret_val = e1000e_get_phy_id(hw);
230 if (ret_val)
231 return ret_val;
232 }
233
234 /* Verify phy id */
235 switch (phy->id) {
236 case IGP03E1000_E_PHY_ID:
237 phy->type = e1000_phy_igp_3;
238 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
239 break;
240 case IFE_E_PHY_ID:
241 case IFE_PLUS_E_PHY_ID:
242 case IFE_C_E_PHY_ID:
243 phy->type = e1000_phy_ife;
244 phy->autoneg_mask = E1000_ALL_NOT_GIG;
245 break;
Bruce Allan97ac8ca2008-04-29 09:16:05 -0700246 case BME1000_E_PHY_ID:
247 phy->type = e1000_phy_bm;
248 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
249 hw->phy.ops.read_phy_reg = e1000e_read_phy_reg_bm;
250 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
251 hw->phy.ops.commit_phy = e1000e_phy_sw_reset;
252 break;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700253 default:
254 return -E1000_ERR_PHY;
255 break;
256 }
257
258 return 0;
259}
260
261/**
262 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
263 * @hw: pointer to the HW structure
264 *
265 * Initialize family-specific NVM parameters and function
266 * pointers.
267 **/
268static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
269{
270 struct e1000_nvm_info *nvm = &hw->nvm;
271 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
272 u32 gfpreg;
273 u32 sector_base_addr;
274 u32 sector_end_addr;
275 u16 i;
276
Bruce Allanad680762008-03-28 09:15:03 -0700277 /* Can't read flash registers if the register set isn't mapped. */
Auke Kokbc7f75f2007-09-17 12:30:59 -0700278 if (!hw->flash_address) {
279 hw_dbg(hw, "ERROR: Flash registers not mapped\n");
280 return -E1000_ERR_CONFIG;
281 }
282
283 nvm->type = e1000_nvm_flash_sw;
284
285 gfpreg = er32flash(ICH_FLASH_GFPREG);
286
Bruce Allanad680762008-03-28 09:15:03 -0700287 /*
288 * sector_X_addr is a "sector"-aligned address (4096 bytes)
Auke Kokbc7f75f2007-09-17 12:30:59 -0700289 * Add 1 to sector_end_addr since this sector is included in
Bruce Allanad680762008-03-28 09:15:03 -0700290 * the overall size.
291 */
Auke Kokbc7f75f2007-09-17 12:30:59 -0700292 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
293 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
294
295 /* flash_base_addr is byte-aligned */
296 nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
297
Bruce Allanad680762008-03-28 09:15:03 -0700298 /*
299 * find total size of the NVM, then cut in half since the total
300 * size represents two separate NVM banks.
301 */
Auke Kokbc7f75f2007-09-17 12:30:59 -0700302 nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
303 << FLASH_SECTOR_ADDR_SHIFT;
304 nvm->flash_bank_size /= 2;
305 /* Adjust to word count */
306 nvm->flash_bank_size /= sizeof(u16);
307
308 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
309
310 /* Clear shadow ram */
311 for (i = 0; i < nvm->word_size; i++) {
312 dev_spec->shadow_ram[i].modified = 0;
313 dev_spec->shadow_ram[i].value = 0xFFFF;
314 }
315
316 return 0;
317}
318
319/**
320 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
321 * @hw: pointer to the HW structure
322 *
323 * Initialize family-specific MAC parameters and function
324 * pointers.
325 **/
326static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
327{
328 struct e1000_hw *hw = &adapter->hw;
329 struct e1000_mac_info *mac = &hw->mac;
330
331 /* Set media type function pointer */
Jeff Kirsher318a94d2008-03-28 09:15:16 -0700332 hw->phy.media_type = e1000_media_type_copper;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700333
334 /* Set mta register count */
335 mac->mta_reg_count = 32;
336 /* Set rar entry count */
337 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
338 if (mac->type == e1000_ich8lan)
339 mac->rar_entry_count--;
340 /* Set if manageability features are enabled. */
341 mac->arc_subsystem_valid = 1;
342
343 /* Enable PCS Lock-loss workaround for ICH8 */
344 if (mac->type == e1000_ich8lan)
345 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, 1);
346
347 return 0;
348}
349
Jeff Kirsher69e3fd82008-04-02 13:48:18 -0700350static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
Auke Kokbc7f75f2007-09-17 12:30:59 -0700351{
352 struct e1000_hw *hw = &adapter->hw;
353 s32 rc;
354
355 rc = e1000_init_mac_params_ich8lan(adapter);
356 if (rc)
357 return rc;
358
359 rc = e1000_init_nvm_params_ich8lan(hw);
360 if (rc)
361 return rc;
362
363 rc = e1000_init_phy_params_ich8lan(hw);
364 if (rc)
365 return rc;
366
367 if ((adapter->hw.mac.type == e1000_ich8lan) &&
368 (adapter->hw.phy.type == e1000_phy_igp_3))
369 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
370
371 return 0;
372}
373
374/**
375 * e1000_acquire_swflag_ich8lan - Acquire software control flag
376 * @hw: pointer to the HW structure
377 *
378 * Acquires the software control flag for performing NVM and PHY
379 * operations. This is a function pointer entry point only called by
380 * read/write routines for the PHY and NVM parts.
381 **/
382static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
383{
384 u32 extcnf_ctrl;
385 u32 timeout = PHY_CFG_TIMEOUT;
386
387 while (timeout) {
388 extcnf_ctrl = er32(EXTCNF_CTRL);
389 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
390 ew32(EXTCNF_CTRL, extcnf_ctrl);
391
392 extcnf_ctrl = er32(EXTCNF_CTRL);
393 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
394 break;
395 mdelay(1);
396 timeout--;
397 }
398
399 if (!timeout) {
400 hw_dbg(hw, "FW or HW has locked the resource for too long.\n");
Bruce Allan2e2e8d52008-09-23 15:46:38 -0700401 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
402 ew32(EXTCNF_CTRL, extcnf_ctrl);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700403 return -E1000_ERR_CONFIG;
404 }
405
406 return 0;
407}
408
409/**
410 * e1000_release_swflag_ich8lan - Release software control flag
411 * @hw: pointer to the HW structure
412 *
413 * Releases the software control flag for performing NVM and PHY operations.
414 * This is a function pointer entry point only called by read/write
415 * routines for the PHY and NVM parts.
416 **/
417static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
418{
419 u32 extcnf_ctrl;
420
421 extcnf_ctrl = er32(EXTCNF_CTRL);
422 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
423 ew32(EXTCNF_CTRL, extcnf_ctrl);
424}
425
426/**
Bruce Allan4662e822008-08-26 18:37:06 -0700427 * e1000_check_mng_mode_ich8lan - Checks management mode
428 * @hw: pointer to the HW structure
429 *
430 * This checks if the adapter has manageability enabled.
431 * This is a function pointer entry point only called by read/write
432 * routines for the PHY and NVM parts.
433 **/
434static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
435{
436 u32 fwsm = er32(FWSM);
437
438 return (fwsm & E1000_FWSM_MODE_MASK) ==
439 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
440}
441
442/**
Auke Kokbc7f75f2007-09-17 12:30:59 -0700443 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
444 * @hw: pointer to the HW structure
445 *
446 * Checks if firmware is blocking the reset of the PHY.
447 * This is a function pointer entry point only called by
448 * reset routines.
449 **/
450static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
451{
452 u32 fwsm;
453
454 fwsm = er32(FWSM);
455
456 return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
457}
458
459/**
460 * e1000_phy_force_speed_duplex_ich8lan - Force PHY speed & duplex
461 * @hw: pointer to the HW structure
462 *
463 * Forces the speed and duplex settings of the PHY.
464 * This is a function pointer entry point only called by
465 * PHY setup routines.
466 **/
467static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw)
468{
469 struct e1000_phy_info *phy = &hw->phy;
470 s32 ret_val;
471 u16 data;
472 bool link;
473
474 if (phy->type != e1000_phy_ife) {
475 ret_val = e1000e_phy_force_speed_duplex_igp(hw);
476 return ret_val;
477 }
478
479 ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
480 if (ret_val)
481 return ret_val;
482
483 e1000e_phy_force_speed_duplex_setup(hw, &data);
484
485 ret_val = e1e_wphy(hw, PHY_CONTROL, data);
486 if (ret_val)
487 return ret_val;
488
489 /* Disable MDI-X support for 10/100 */
490 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
491 if (ret_val)
492 return ret_val;
493
494 data &= ~IFE_PMC_AUTO_MDIX;
495 data &= ~IFE_PMC_FORCE_MDIX;
496
497 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
498 if (ret_val)
499 return ret_val;
500
501 hw_dbg(hw, "IFE PMC: %X\n", data);
502
503 udelay(1);
504
Jeff Kirsher318a94d2008-03-28 09:15:16 -0700505 if (phy->autoneg_wait_to_complete) {
Auke Kokbc7f75f2007-09-17 12:30:59 -0700506 hw_dbg(hw, "Waiting for forced speed/duplex link on IFE phy.\n");
507
508 ret_val = e1000e_phy_has_link_generic(hw,
509 PHY_FORCE_LIMIT,
510 100000,
511 &link);
512 if (ret_val)
513 return ret_val;
514
515 if (!link)
516 hw_dbg(hw, "Link taking longer than expected.\n");
517
518 /* Try once more */
519 ret_val = e1000e_phy_has_link_generic(hw,
520 PHY_FORCE_LIMIT,
521 100000,
522 &link);
523 if (ret_val)
524 return ret_val;
525 }
526
527 return 0;
528}
529
530/**
531 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
532 * @hw: pointer to the HW structure
533 *
534 * Resets the PHY
535 * This is a function pointer entry point called by drivers
536 * or other shared routines.
537 **/
538static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
539{
540 struct e1000_phy_info *phy = &hw->phy;
541 u32 i;
542 u32 data, cnf_size, cnf_base_addr, sw_cfg_mask;
543 s32 ret_val;
544 u16 loop = E1000_ICH8_LAN_INIT_TIMEOUT;
545 u16 word_addr, reg_data, reg_addr, phy_page = 0;
546
547 ret_val = e1000e_phy_hw_reset_generic(hw);
548 if (ret_val)
549 return ret_val;
550
Bruce Allanad680762008-03-28 09:15:03 -0700551 /*
552 * Initialize the PHY from the NVM on ICH platforms. This
Auke Kokbc7f75f2007-09-17 12:30:59 -0700553 * is needed due to an issue where the NVM configuration is
554 * not properly autoloaded after power transitions.
555 * Therefore, after each PHY reset, we will load the
556 * configuration data out of the NVM manually.
557 */
558 if (hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) {
559 struct e1000_adapter *adapter = hw->adapter;
560
561 /* Check if SW needs configure the PHY */
562 if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
563 (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M))
564 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
565 else
566 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
567
568 data = er32(FEXTNVM);
569 if (!(data & sw_cfg_mask))
570 return 0;
571
572 /* Wait for basic configuration completes before proceeding*/
573 do {
574 data = er32(STATUS);
575 data &= E1000_STATUS_LAN_INIT_DONE;
576 udelay(100);
577 } while ((!data) && --loop);
578
Bruce Allanad680762008-03-28 09:15:03 -0700579 /*
580 * If basic configuration is incomplete before the above loop
Auke Kokbc7f75f2007-09-17 12:30:59 -0700581 * count reaches 0, loading the configuration from NVM will
582 * leave the PHY in a bad state possibly resulting in no link.
583 */
584 if (loop == 0) {
585 hw_dbg(hw, "LAN_INIT_DONE not set, increase timeout\n");
586 }
587
588 /* Clear the Init Done bit for the next init event */
589 data = er32(STATUS);
590 data &= ~E1000_STATUS_LAN_INIT_DONE;
591 ew32(STATUS, data);
592
Bruce Allanad680762008-03-28 09:15:03 -0700593 /*
594 * Make sure HW does not configure LCD from PHY
595 * extended configuration before SW configuration
596 */
Auke Kokbc7f75f2007-09-17 12:30:59 -0700597 data = er32(EXTCNF_CTRL);
598 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
599 return 0;
600
601 cnf_size = er32(EXTCNF_SIZE);
602 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
603 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
604 if (!cnf_size)
605 return 0;
606
607 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
608 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
609
Bruce Allanad680762008-03-28 09:15:03 -0700610 /* Configure LCD from extended configuration region. */
Auke Kokbc7f75f2007-09-17 12:30:59 -0700611
612 /* cnf_base_addr is in DWORD */
613 word_addr = (u16)(cnf_base_addr << 1);
614
615 for (i = 0; i < cnf_size; i++) {
616 ret_val = e1000_read_nvm(hw,
617 (word_addr + i * 2),
618 1,
619 &reg_data);
620 if (ret_val)
621 return ret_val;
622
623 ret_val = e1000_read_nvm(hw,
624 (word_addr + i * 2 + 1),
625 1,
626 &reg_addr);
627 if (ret_val)
628 return ret_val;
629
630 /* Save off the PHY page for future writes. */
631 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
632 phy_page = reg_data;
633 continue;
634 }
635
636 reg_addr |= phy_page;
637
638 ret_val = e1e_wphy(hw, (u32)reg_addr, reg_data);
639 if (ret_val)
640 return ret_val;
641 }
642 }
643
644 return 0;
645}
646
647/**
648 * e1000_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states
649 * @hw: pointer to the HW structure
650 *
651 * Populates "phy" structure with various feature states.
652 * This function is only called by other family-specific
653 * routines.
654 **/
655static s32 e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw)
656{
657 struct e1000_phy_info *phy = &hw->phy;
658 s32 ret_val;
659 u16 data;
660 bool link;
661
662 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
663 if (ret_val)
664 return ret_val;
665
666 if (!link) {
667 hw_dbg(hw, "Phy info is only valid if link is up\n");
668 return -E1000_ERR_CONFIG;
669 }
670
671 ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
672 if (ret_val)
673 return ret_val;
674 phy->polarity_correction = (!(data & IFE_PSC_AUTO_POLARITY_DISABLE));
675
676 if (phy->polarity_correction) {
677 ret_val = e1000_check_polarity_ife_ich8lan(hw);
678 if (ret_val)
679 return ret_val;
680 } else {
681 /* Polarity is forced */
682 phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
683 ? e1000_rev_polarity_reversed
684 : e1000_rev_polarity_normal;
685 }
686
687 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
688 if (ret_val)
689 return ret_val;
690
691 phy->is_mdix = (data & IFE_PMC_MDIX_STATUS);
692
693 /* The following parameters are undefined for 10/100 operation. */
694 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
695 phy->local_rx = e1000_1000t_rx_status_undefined;
696 phy->remote_rx = e1000_1000t_rx_status_undefined;
697
698 return 0;
699}
700
701/**
702 * e1000_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info
703 * @hw: pointer to the HW structure
704 *
705 * Wrapper for calling the get_phy_info routines for the appropriate phy type.
706 * This is a function pointer entry point called by drivers
707 * or other shared routines.
708 **/
709static s32 e1000_get_phy_info_ich8lan(struct e1000_hw *hw)
710{
711 switch (hw->phy.type) {
712 case e1000_phy_ife:
713 return e1000_get_phy_info_ife_ich8lan(hw);
714 break;
715 case e1000_phy_igp_3:
Bruce Allan97ac8ca2008-04-29 09:16:05 -0700716 case e1000_phy_bm:
Auke Kokbc7f75f2007-09-17 12:30:59 -0700717 return e1000e_get_phy_info_igp(hw);
718 break;
719 default:
720 break;
721 }
722
723 return -E1000_ERR_PHY_TYPE;
724}
725
726/**
727 * e1000_check_polarity_ife_ich8lan - Check cable polarity for IFE PHY
728 * @hw: pointer to the HW structure
729 *
Auke Kok489815c2008-02-21 15:11:07 -0800730 * Polarity is determined on the polarity reversal feature being enabled.
Auke Kokbc7f75f2007-09-17 12:30:59 -0700731 * This function is only called by other family-specific
732 * routines.
733 **/
734static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw)
735{
736 struct e1000_phy_info *phy = &hw->phy;
737 s32 ret_val;
738 u16 phy_data, offset, mask;
739
Bruce Allanad680762008-03-28 09:15:03 -0700740 /*
741 * Polarity is determined based on the reversal feature being enabled.
Auke Kokbc7f75f2007-09-17 12:30:59 -0700742 */
743 if (phy->polarity_correction) {
744 offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
745 mask = IFE_PESC_POLARITY_REVERSED;
746 } else {
747 offset = IFE_PHY_SPECIAL_CONTROL;
748 mask = IFE_PSC_FORCE_POLARITY;
749 }
750
751 ret_val = e1e_rphy(hw, offset, &phy_data);
752
753 if (!ret_val)
754 phy->cable_polarity = (phy_data & mask)
755 ? e1000_rev_polarity_reversed
756 : e1000_rev_polarity_normal;
757
758 return ret_val;
759}
760
761/**
762 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
763 * @hw: pointer to the HW structure
764 * @active: TRUE to enable LPLU, FALSE to disable
765 *
766 * Sets the LPLU D0 state according to the active flag. When
767 * activating LPLU this function also disables smart speed
768 * and vice versa. LPLU will not be activated unless the
769 * device autonegotiation advertisement meets standards of
770 * either 10 or 10/100 or 10/100/1000 at all duplexes.
771 * This is a function pointer entry point only called by
772 * PHY setup routines.
773 **/
774static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
775{
776 struct e1000_phy_info *phy = &hw->phy;
777 u32 phy_ctrl;
778 s32 ret_val = 0;
779 u16 data;
780
Bruce Allan97ac8ca2008-04-29 09:16:05 -0700781 if (phy->type == e1000_phy_ife)
Auke Kokbc7f75f2007-09-17 12:30:59 -0700782 return ret_val;
783
784 phy_ctrl = er32(PHY_CTRL);
785
786 if (active) {
787 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
788 ew32(PHY_CTRL, phy_ctrl);
789
Bruce Allanad680762008-03-28 09:15:03 -0700790 /*
791 * Call gig speed drop workaround on LPLU before accessing
792 * any PHY registers
793 */
Auke Kokbc7f75f2007-09-17 12:30:59 -0700794 if ((hw->mac.type == e1000_ich8lan) &&
795 (hw->phy.type == e1000_phy_igp_3))
796 e1000e_gig_downshift_workaround_ich8lan(hw);
797
798 /* When LPLU is enabled, we should disable SmartSpeed */
799 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
800 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
801 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
802 if (ret_val)
803 return ret_val;
804 } else {
805 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
806 ew32(PHY_CTRL, phy_ctrl);
807
Bruce Allanad680762008-03-28 09:15:03 -0700808 /*
809 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
Auke Kokbc7f75f2007-09-17 12:30:59 -0700810 * during Dx states where the power conservation is most
811 * important. During driver activity we should enable
Bruce Allanad680762008-03-28 09:15:03 -0700812 * SmartSpeed, so performance is maintained.
813 */
Auke Kokbc7f75f2007-09-17 12:30:59 -0700814 if (phy->smart_speed == e1000_smart_speed_on) {
815 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
Bruce Allanad680762008-03-28 09:15:03 -0700816 &data);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700817 if (ret_val)
818 return ret_val;
819
820 data |= IGP01E1000_PSCFR_SMART_SPEED;
821 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
Bruce Allanad680762008-03-28 09:15:03 -0700822 data);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700823 if (ret_val)
824 return ret_val;
825 } else if (phy->smart_speed == e1000_smart_speed_off) {
826 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
Bruce Allanad680762008-03-28 09:15:03 -0700827 &data);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700828 if (ret_val)
829 return ret_val;
830
831 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
832 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
Bruce Allanad680762008-03-28 09:15:03 -0700833 data);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700834 if (ret_val)
835 return ret_val;
836 }
837 }
838
839 return 0;
840}
841
842/**
843 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
844 * @hw: pointer to the HW structure
845 * @active: TRUE to enable LPLU, FALSE to disable
846 *
847 * Sets the LPLU D3 state according to the active flag. When
848 * activating LPLU this function also disables smart speed
849 * and vice versa. LPLU will not be activated unless the
850 * device autonegotiation advertisement meets standards of
851 * either 10 or 10/100 or 10/100/1000 at all duplexes.
852 * This is a function pointer entry point only called by
853 * PHY setup routines.
854 **/
855static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
856{
857 struct e1000_phy_info *phy = &hw->phy;
858 u32 phy_ctrl;
859 s32 ret_val;
860 u16 data;
861
862 phy_ctrl = er32(PHY_CTRL);
863
864 if (!active) {
865 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
866 ew32(PHY_CTRL, phy_ctrl);
Bruce Allanad680762008-03-28 09:15:03 -0700867 /*
868 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
Auke Kokbc7f75f2007-09-17 12:30:59 -0700869 * during Dx states where the power conservation is most
870 * important. During driver activity we should enable
Bruce Allanad680762008-03-28 09:15:03 -0700871 * SmartSpeed, so performance is maintained.
872 */
Auke Kokbc7f75f2007-09-17 12:30:59 -0700873 if (phy->smart_speed == e1000_smart_speed_on) {
Bruce Allanad680762008-03-28 09:15:03 -0700874 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
875 &data);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700876 if (ret_val)
877 return ret_val;
878
879 data |= IGP01E1000_PSCFR_SMART_SPEED;
Bruce Allanad680762008-03-28 09:15:03 -0700880 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
881 data);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700882 if (ret_val)
883 return ret_val;
884 } else if (phy->smart_speed == e1000_smart_speed_off) {
Bruce Allanad680762008-03-28 09:15:03 -0700885 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
886 &data);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700887 if (ret_val)
888 return ret_val;
889
890 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
Bruce Allanad680762008-03-28 09:15:03 -0700891 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
892 data);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700893 if (ret_val)
894 return ret_val;
895 }
896 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
897 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
898 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
899 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
900 ew32(PHY_CTRL, phy_ctrl);
901
Bruce Allanad680762008-03-28 09:15:03 -0700902 /*
903 * Call gig speed drop workaround on LPLU before accessing
904 * any PHY registers
905 */
Auke Kokbc7f75f2007-09-17 12:30:59 -0700906 if ((hw->mac.type == e1000_ich8lan) &&
907 (hw->phy.type == e1000_phy_igp_3))
908 e1000e_gig_downshift_workaround_ich8lan(hw);
909
910 /* When LPLU is enabled, we should disable SmartSpeed */
Bruce Allanad680762008-03-28 09:15:03 -0700911 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700912 if (ret_val)
913 return ret_val;
914
915 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
Bruce Allanad680762008-03-28 09:15:03 -0700916 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700917 }
918
919 return 0;
920}
921
922/**
Bruce Allanf4187b52008-08-26 18:36:50 -0700923 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
924 * @hw: pointer to the HW structure
925 * @bank: pointer to the variable that returns the active bank
926 *
927 * Reads signature byte from the NVM using the flash access registers.
928 **/
929static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
930{
931 struct e1000_nvm_info *nvm = &hw->nvm;
932 /* flash bank size is in words */
933 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
934 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
935 u8 bank_high_byte = 0;
936
937 if (hw->mac.type != e1000_ich10lan) {
938 if (er32(EECD) & E1000_EECD_SEC1VAL)
939 *bank = 1;
940 else
941 *bank = 0;
942 } else {
943 /*
944 * Make sure the signature for bank 0 is valid,
945 * if not check for bank1
946 */
947 e1000_read_flash_byte_ich8lan(hw, act_offset, &bank_high_byte);
948 if ((bank_high_byte & 0xC0) == 0x80) {
949 *bank = 0;
950 } else {
951 /*
952 * find if segment 1 is valid by verifying
953 * bit 15:14 = 10b in word 0x13
954 */
955 e1000_read_flash_byte_ich8lan(hw,
956 act_offset + bank1_offset,
957 &bank_high_byte);
958
959 /* bank1 has a valid signature equivalent to SEC1V */
960 if ((bank_high_byte & 0xC0) == 0x80) {
961 *bank = 1;
962 } else {
963 hw_dbg(hw, "ERROR: EEPROM not present\n");
964 return -E1000_ERR_NVM;
965 }
966 }
967 }
968
969 return 0;
970}
971
972/**
Auke Kokbc7f75f2007-09-17 12:30:59 -0700973 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
974 * @hw: pointer to the HW structure
975 * @offset: The offset (in bytes) of the word(s) to read.
976 * @words: Size of data to read in words
977 * @data: Pointer to the word(s) to read at offset.
978 *
979 * Reads a word(s) from the NVM using the flash access registers.
980 **/
981static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
982 u16 *data)
983{
984 struct e1000_nvm_info *nvm = &hw->nvm;
985 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
986 u32 act_offset;
987 s32 ret_val;
Bruce Allanf4187b52008-08-26 18:36:50 -0700988 u32 bank = 0;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700989 u16 i, word;
990
991 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
992 (words == 0)) {
993 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
994 return -E1000_ERR_NVM;
995 }
996
997 ret_val = e1000_acquire_swflag_ich8lan(hw);
998 if (ret_val)
999 return ret_val;
1000
Bruce Allanf4187b52008-08-26 18:36:50 -07001001 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1002 if (ret_val)
1003 return ret_val;
1004
1005 act_offset = (bank) ? nvm->flash_bank_size : 0;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001006 act_offset += offset;
1007
1008 for (i = 0; i < words; i++) {
1009 if ((dev_spec->shadow_ram) &&
1010 (dev_spec->shadow_ram[offset+i].modified)) {
1011 data[i] = dev_spec->shadow_ram[offset+i].value;
1012 } else {
1013 ret_val = e1000_read_flash_word_ich8lan(hw,
1014 act_offset + i,
1015 &word);
1016 if (ret_val)
1017 break;
1018 data[i] = word;
1019 }
1020 }
1021
1022 e1000_release_swflag_ich8lan(hw);
1023
1024 return ret_val;
1025}
1026
1027/**
1028 * e1000_flash_cycle_init_ich8lan - Initialize flash
1029 * @hw: pointer to the HW structure
1030 *
1031 * This function does initial flash setup so that a new read/write/erase cycle
1032 * can be started.
1033 **/
1034static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
1035{
1036 union ich8_hws_flash_status hsfsts;
1037 s32 ret_val = -E1000_ERR_NVM;
1038 s32 i = 0;
1039
1040 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1041
1042 /* Check if the flash descriptor is valid */
1043 if (hsfsts.hsf_status.fldesvalid == 0) {
1044 hw_dbg(hw, "Flash descriptor invalid. "
1045 "SW Sequencing must be used.");
1046 return -E1000_ERR_NVM;
1047 }
1048
1049 /* Clear FCERR and DAEL in hw status by writing 1 */
1050 hsfsts.hsf_status.flcerr = 1;
1051 hsfsts.hsf_status.dael = 1;
1052
1053 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1054
Bruce Allanad680762008-03-28 09:15:03 -07001055 /*
1056 * Either we should have a hardware SPI cycle in progress
Auke Kokbc7f75f2007-09-17 12:30:59 -07001057 * bit to check against, in order to start a new cycle or
1058 * FDONE bit should be changed in the hardware so that it
Auke Kok489815c2008-02-21 15:11:07 -08001059 * is 1 after hardware reset, which can then be used as an
Auke Kokbc7f75f2007-09-17 12:30:59 -07001060 * indication whether a cycle is in progress or has been
1061 * completed.
1062 */
1063
1064 if (hsfsts.hsf_status.flcinprog == 0) {
Bruce Allanad680762008-03-28 09:15:03 -07001065 /*
1066 * There is no cycle running at present,
1067 * so we can start a cycle
1068 * Begin by setting Flash Cycle Done.
1069 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001070 hsfsts.hsf_status.flcdone = 1;
1071 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1072 ret_val = 0;
1073 } else {
Bruce Allanad680762008-03-28 09:15:03 -07001074 /*
1075 * otherwise poll for sometime so the current
1076 * cycle has a chance to end before giving up.
1077 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001078 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
1079 hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
1080 if (hsfsts.hsf_status.flcinprog == 0) {
1081 ret_val = 0;
1082 break;
1083 }
1084 udelay(1);
1085 }
1086 if (ret_val == 0) {
Bruce Allanad680762008-03-28 09:15:03 -07001087 /*
1088 * Successful in waiting for previous cycle to timeout,
1089 * now set the Flash Cycle Done.
1090 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001091 hsfsts.hsf_status.flcdone = 1;
1092 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1093 } else {
1094 hw_dbg(hw, "Flash controller busy, cannot get access");
1095 }
1096 }
1097
1098 return ret_val;
1099}
1100
1101/**
1102 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
1103 * @hw: pointer to the HW structure
1104 * @timeout: maximum time to wait for completion
1105 *
1106 * This function starts a flash cycle and waits for its completion.
1107 **/
1108static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
1109{
1110 union ich8_hws_flash_ctrl hsflctl;
1111 union ich8_hws_flash_status hsfsts;
1112 s32 ret_val = -E1000_ERR_NVM;
1113 u32 i = 0;
1114
1115 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
1116 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1117 hsflctl.hsf_ctrl.flcgo = 1;
1118 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1119
1120 /* wait till FDONE bit is set to 1 */
1121 do {
1122 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1123 if (hsfsts.hsf_status.flcdone == 1)
1124 break;
1125 udelay(1);
1126 } while (i++ < timeout);
1127
1128 if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
1129 return 0;
1130
1131 return ret_val;
1132}
1133
1134/**
1135 * e1000_read_flash_word_ich8lan - Read word from flash
1136 * @hw: pointer to the HW structure
1137 * @offset: offset to data location
1138 * @data: pointer to the location for storing the data
1139 *
1140 * Reads the flash word at offset into data. Offset is converted
1141 * to bytes before read.
1142 **/
1143static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
1144 u16 *data)
1145{
1146 /* Must convert offset into bytes. */
1147 offset <<= 1;
1148
1149 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
1150}
1151
1152/**
Bruce Allanf4187b52008-08-26 18:36:50 -07001153 * e1000_read_flash_byte_ich8lan - Read byte from flash
1154 * @hw: pointer to the HW structure
1155 * @offset: The offset of the byte to read.
1156 * @data: Pointer to a byte to store the value read.
1157 *
1158 * Reads a single byte from the NVM using the flash access registers.
1159 **/
1160static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1161 u8 *data)
1162{
1163 s32 ret_val;
1164 u16 word = 0;
1165
1166 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
1167 if (ret_val)
1168 return ret_val;
1169
1170 *data = (u8)word;
1171
1172 return 0;
1173}
1174
1175/**
Auke Kokbc7f75f2007-09-17 12:30:59 -07001176 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
1177 * @hw: pointer to the HW structure
1178 * @offset: The offset (in bytes) of the byte or word to read.
1179 * @size: Size of data to read, 1=byte 2=word
1180 * @data: Pointer to the word to store the value read.
1181 *
1182 * Reads a byte or word from the NVM using the flash access registers.
1183 **/
1184static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1185 u8 size, u16 *data)
1186{
1187 union ich8_hws_flash_status hsfsts;
1188 union ich8_hws_flash_ctrl hsflctl;
1189 u32 flash_linear_addr;
1190 u32 flash_data = 0;
1191 s32 ret_val = -E1000_ERR_NVM;
1192 u8 count = 0;
1193
1194 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
1195 return -E1000_ERR_NVM;
1196
1197 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1198 hw->nvm.flash_base_addr;
1199
1200 do {
1201 udelay(1);
1202 /* Steps */
1203 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1204 if (ret_val != 0)
1205 break;
1206
1207 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1208 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1209 hsflctl.hsf_ctrl.fldbcount = size - 1;
1210 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
1211 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1212
1213 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1214
1215 ret_val = e1000_flash_cycle_ich8lan(hw,
1216 ICH_FLASH_READ_COMMAND_TIMEOUT);
1217
Bruce Allanad680762008-03-28 09:15:03 -07001218 /*
1219 * Check if FCERR is set to 1, if set to 1, clear it
Auke Kokbc7f75f2007-09-17 12:30:59 -07001220 * and try the whole sequence a few more times, else
1221 * read in (shift in) the Flash Data0, the order is
Bruce Allanad680762008-03-28 09:15:03 -07001222 * least significant byte first msb to lsb
1223 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001224 if (ret_val == 0) {
1225 flash_data = er32flash(ICH_FLASH_FDATA0);
1226 if (size == 1) {
1227 *data = (u8)(flash_data & 0x000000FF);
1228 } else if (size == 2) {
1229 *data = (u16)(flash_data & 0x0000FFFF);
1230 }
1231 break;
1232 } else {
Bruce Allanad680762008-03-28 09:15:03 -07001233 /*
1234 * If we've gotten here, then things are probably
Auke Kokbc7f75f2007-09-17 12:30:59 -07001235 * completely hosed, but if the error condition is
1236 * detected, it won't hurt to give it another try...
1237 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
1238 */
1239 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1240 if (hsfsts.hsf_status.flcerr == 1) {
1241 /* Repeat for some time before giving up. */
1242 continue;
1243 } else if (hsfsts.hsf_status.flcdone == 0) {
1244 hw_dbg(hw, "Timeout error - flash cycle "
1245 "did not complete.");
1246 break;
1247 }
1248 }
1249 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1250
1251 return ret_val;
1252}
1253
1254/**
1255 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
1256 * @hw: pointer to the HW structure
1257 * @offset: The offset (in bytes) of the word(s) to write.
1258 * @words: Size of data to write in words
1259 * @data: Pointer to the word(s) to write at offset.
1260 *
1261 * Writes a byte or word to the NVM using the flash access registers.
1262 **/
1263static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1264 u16 *data)
1265{
1266 struct e1000_nvm_info *nvm = &hw->nvm;
1267 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1268 s32 ret_val;
1269 u16 i;
1270
1271 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1272 (words == 0)) {
1273 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1274 return -E1000_ERR_NVM;
1275 }
1276
1277 ret_val = e1000_acquire_swflag_ich8lan(hw);
1278 if (ret_val)
1279 return ret_val;
1280
1281 for (i = 0; i < words; i++) {
1282 dev_spec->shadow_ram[offset+i].modified = 1;
1283 dev_spec->shadow_ram[offset+i].value = data[i];
1284 }
1285
1286 e1000_release_swflag_ich8lan(hw);
1287
1288 return 0;
1289}
1290
1291/**
1292 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
1293 * @hw: pointer to the HW structure
1294 *
1295 * The NVM checksum is updated by calling the generic update_nvm_checksum,
1296 * which writes the checksum to the shadow ram. The changes in the shadow
1297 * ram are then committed to the EEPROM by processing each bank at a time
1298 * checking for the modified bit and writing only the pending changes.
Auke Kok489815c2008-02-21 15:11:07 -08001299 * After a successful commit, the shadow ram is cleared and is ready for
Auke Kokbc7f75f2007-09-17 12:30:59 -07001300 * future writes.
1301 **/
1302static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
1303{
1304 struct e1000_nvm_info *nvm = &hw->nvm;
1305 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
Bruce Allanf4187b52008-08-26 18:36:50 -07001306 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001307 s32 ret_val;
1308 u16 data;
1309
1310 ret_val = e1000e_update_nvm_checksum_generic(hw);
1311 if (ret_val)
Bruce Allanad680762008-03-28 09:15:03 -07001312 return ret_val;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001313
1314 if (nvm->type != e1000_nvm_flash_sw)
Bruce Allanad680762008-03-28 09:15:03 -07001315 return ret_val;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001316
1317 ret_val = e1000_acquire_swflag_ich8lan(hw);
1318 if (ret_val)
Bruce Allanad680762008-03-28 09:15:03 -07001319 return ret_val;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001320
Bruce Allanad680762008-03-28 09:15:03 -07001321 /*
1322 * We're writing to the opposite bank so if we're on bank 1,
Auke Kokbc7f75f2007-09-17 12:30:59 -07001323 * write to bank 0 etc. We also need to erase the segment that
Bruce Allanad680762008-03-28 09:15:03 -07001324 * is going to be written
1325 */
Bruce Allanf4187b52008-08-26 18:36:50 -07001326 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1327 if (ret_val)
1328 return ret_val;
1329
1330 if (bank == 0) {
Auke Kokbc7f75f2007-09-17 12:30:59 -07001331 new_bank_offset = nvm->flash_bank_size;
1332 old_bank_offset = 0;
1333 e1000_erase_flash_bank_ich8lan(hw, 1);
1334 } else {
1335 old_bank_offset = nvm->flash_bank_size;
1336 new_bank_offset = 0;
1337 e1000_erase_flash_bank_ich8lan(hw, 0);
1338 }
1339
1340 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
Bruce Allanad680762008-03-28 09:15:03 -07001341 /*
1342 * Determine whether to write the value stored
Auke Kokbc7f75f2007-09-17 12:30:59 -07001343 * in the other NVM bank or a modified value stored
Bruce Allanad680762008-03-28 09:15:03 -07001344 * in the shadow RAM
1345 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001346 if (dev_spec->shadow_ram[i].modified) {
1347 data = dev_spec->shadow_ram[i].value;
1348 } else {
1349 e1000_read_flash_word_ich8lan(hw,
1350 i + old_bank_offset,
1351 &data);
1352 }
1353
Bruce Allanad680762008-03-28 09:15:03 -07001354 /*
1355 * If the word is 0x13, then make sure the signature bits
Auke Kokbc7f75f2007-09-17 12:30:59 -07001356 * (15:14) are 11b until the commit has completed.
1357 * This will allow us to write 10b which indicates the
1358 * signature is valid. We want to do this after the write
1359 * has completed so that we don't mark the segment valid
Bruce Allanad680762008-03-28 09:15:03 -07001360 * while the write is still in progress
1361 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001362 if (i == E1000_ICH_NVM_SIG_WORD)
1363 data |= E1000_ICH_NVM_SIG_MASK;
1364
1365 /* Convert offset to bytes. */
1366 act_offset = (i + new_bank_offset) << 1;
1367
1368 udelay(100);
1369 /* Write the bytes to the new bank. */
1370 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1371 act_offset,
1372 (u8)data);
1373 if (ret_val)
1374 break;
1375
1376 udelay(100);
1377 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1378 act_offset + 1,
1379 (u8)(data >> 8));
1380 if (ret_val)
1381 break;
1382 }
1383
Bruce Allanad680762008-03-28 09:15:03 -07001384 /*
1385 * Don't bother writing the segment valid bits if sector
1386 * programming failed.
1387 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001388 if (ret_val) {
1389 hw_dbg(hw, "Flash commit failed.\n");
1390 e1000_release_swflag_ich8lan(hw);
1391 return ret_val;
1392 }
1393
Bruce Allanad680762008-03-28 09:15:03 -07001394 /*
1395 * Finally validate the new segment by setting bit 15:14
Auke Kokbc7f75f2007-09-17 12:30:59 -07001396 * to 10b in word 0x13 , this can be done without an
1397 * erase as well since these bits are 11 to start with
Bruce Allanad680762008-03-28 09:15:03 -07001398 * and we need to change bit 14 to 0b
1399 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001400 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
1401 e1000_read_flash_word_ich8lan(hw, act_offset, &data);
1402 data &= 0xBFFF;
1403 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1404 act_offset * 2 + 1,
1405 (u8)(data >> 8));
1406 if (ret_val) {
1407 e1000_release_swflag_ich8lan(hw);
1408 return ret_val;
1409 }
1410
Bruce Allanad680762008-03-28 09:15:03 -07001411 /*
1412 * And invalidate the previously valid segment by setting
Auke Kokbc7f75f2007-09-17 12:30:59 -07001413 * its signature word (0x13) high_byte to 0b. This can be
1414 * done without an erase because flash erase sets all bits
Bruce Allanad680762008-03-28 09:15:03 -07001415 * to 1's. We can write 1's to 0's without an erase
1416 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001417 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
1418 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
1419 if (ret_val) {
1420 e1000_release_swflag_ich8lan(hw);
1421 return ret_val;
1422 }
1423
1424 /* Great! Everything worked, we can now clear the cached entries. */
1425 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
1426 dev_spec->shadow_ram[i].modified = 0;
1427 dev_spec->shadow_ram[i].value = 0xFFFF;
1428 }
1429
1430 e1000_release_swflag_ich8lan(hw);
1431
Bruce Allanad680762008-03-28 09:15:03 -07001432 /*
1433 * Reload the EEPROM, or else modifications will not appear
Auke Kokbc7f75f2007-09-17 12:30:59 -07001434 * until after the next adapter reset.
1435 */
1436 e1000e_reload_nvm(hw);
1437 msleep(10);
1438
1439 return ret_val;
1440}
1441
1442/**
1443 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
1444 * @hw: pointer to the HW structure
1445 *
1446 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
1447 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
1448 * calculated, in which case we need to calculate the checksum and set bit 6.
1449 **/
1450static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
1451{
1452 s32 ret_val;
1453 u16 data;
1454
Bruce Allanad680762008-03-28 09:15:03 -07001455 /*
1456 * Read 0x19 and check bit 6. If this bit is 0, the checksum
Auke Kokbc7f75f2007-09-17 12:30:59 -07001457 * needs to be fixed. This bit is an indication that the NVM
1458 * was prepared by OEM software and did not calculate the
1459 * checksum...a likely scenario.
1460 */
1461 ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
1462 if (ret_val)
1463 return ret_val;
1464
1465 if ((data & 0x40) == 0) {
1466 data |= 0x40;
1467 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
1468 if (ret_val)
1469 return ret_val;
1470 ret_val = e1000e_update_nvm_checksum(hw);
1471 if (ret_val)
1472 return ret_val;
1473 }
1474
1475 return e1000e_validate_nvm_checksum_generic(hw);
1476}
1477
1478/**
1479 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
1480 * @hw: pointer to the HW structure
1481 * @offset: The offset (in bytes) of the byte/word to read.
1482 * @size: Size of data to read, 1=byte 2=word
1483 * @data: The byte(s) to write to the NVM.
1484 *
1485 * Writes one/two bytes to the NVM using the flash access registers.
1486 **/
1487static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1488 u8 size, u16 data)
1489{
1490 union ich8_hws_flash_status hsfsts;
1491 union ich8_hws_flash_ctrl hsflctl;
1492 u32 flash_linear_addr;
1493 u32 flash_data = 0;
1494 s32 ret_val;
1495 u8 count = 0;
1496
1497 if (size < 1 || size > 2 || data > size * 0xff ||
1498 offset > ICH_FLASH_LINEAR_ADDR_MASK)
1499 return -E1000_ERR_NVM;
1500
1501 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1502 hw->nvm.flash_base_addr;
1503
1504 do {
1505 udelay(1);
1506 /* Steps */
1507 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1508 if (ret_val)
1509 break;
1510
1511 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1512 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1513 hsflctl.hsf_ctrl.fldbcount = size -1;
1514 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
1515 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1516
1517 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1518
1519 if (size == 1)
1520 flash_data = (u32)data & 0x00FF;
1521 else
1522 flash_data = (u32)data;
1523
1524 ew32flash(ICH_FLASH_FDATA0, flash_data);
1525
Bruce Allanad680762008-03-28 09:15:03 -07001526 /*
1527 * check if FCERR is set to 1 , if set to 1, clear it
1528 * and try the whole sequence a few more times else done
1529 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001530 ret_val = e1000_flash_cycle_ich8lan(hw,
1531 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
1532 if (!ret_val)
1533 break;
1534
Bruce Allanad680762008-03-28 09:15:03 -07001535 /*
1536 * If we're here, then things are most likely
Auke Kokbc7f75f2007-09-17 12:30:59 -07001537 * completely hosed, but if the error condition
1538 * is detected, it won't hurt to give it another
1539 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
1540 */
1541 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1542 if (hsfsts.hsf_status.flcerr == 1)
1543 /* Repeat for some time before giving up. */
1544 continue;
1545 if (hsfsts.hsf_status.flcdone == 0) {
1546 hw_dbg(hw, "Timeout error - flash cycle "
1547 "did not complete.");
1548 break;
1549 }
1550 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1551
1552 return ret_val;
1553}
1554
1555/**
1556 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
1557 * @hw: pointer to the HW structure
1558 * @offset: The index of the byte to read.
1559 * @data: The byte to write to the NVM.
1560 *
1561 * Writes a single byte to the NVM using the flash access registers.
1562 **/
1563static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1564 u8 data)
1565{
1566 u16 word = (u16)data;
1567
1568 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
1569}
1570
1571/**
1572 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
1573 * @hw: pointer to the HW structure
1574 * @offset: The offset of the byte to write.
1575 * @byte: The byte to write to the NVM.
1576 *
1577 * Writes a single byte to the NVM using the flash access registers.
1578 * Goes through a retry algorithm before giving up.
1579 **/
1580static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
1581 u32 offset, u8 byte)
1582{
1583 s32 ret_val;
1584 u16 program_retries;
1585
1586 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
1587 if (!ret_val)
1588 return ret_val;
1589
1590 for (program_retries = 0; program_retries < 100; program_retries++) {
1591 hw_dbg(hw, "Retrying Byte %2.2X at offset %u\n", byte, offset);
1592 udelay(100);
1593 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
1594 if (!ret_val)
1595 break;
1596 }
1597 if (program_retries == 100)
1598 return -E1000_ERR_NVM;
1599
1600 return 0;
1601}
1602
1603/**
1604 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
1605 * @hw: pointer to the HW structure
1606 * @bank: 0 for first bank, 1 for second bank, etc.
1607 *
1608 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
1609 * bank N is 4096 * N + flash_reg_addr.
1610 **/
1611static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
1612{
1613 struct e1000_nvm_info *nvm = &hw->nvm;
1614 union ich8_hws_flash_status hsfsts;
1615 union ich8_hws_flash_ctrl hsflctl;
1616 u32 flash_linear_addr;
1617 /* bank size is in 16bit words - adjust to bytes */
1618 u32 flash_bank_size = nvm->flash_bank_size * 2;
1619 s32 ret_val;
1620 s32 count = 0;
1621 s32 iteration;
1622 s32 sector_size;
1623 s32 j;
1624
1625 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1626
Bruce Allanad680762008-03-28 09:15:03 -07001627 /*
1628 * Determine HW Sector size: Read BERASE bits of hw flash status
1629 * register
1630 * 00: The Hw sector is 256 bytes, hence we need to erase 16
Auke Kokbc7f75f2007-09-17 12:30:59 -07001631 * consecutive sectors. The start index for the nth Hw sector
1632 * can be calculated as = bank * 4096 + n * 256
1633 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
1634 * The start index for the nth Hw sector can be calculated
1635 * as = bank * 4096
1636 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
1637 * (ich9 only, otherwise error condition)
1638 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
1639 */
1640 switch (hsfsts.hsf_status.berasesz) {
1641 case 0:
1642 /* Hw sector size 256 */
1643 sector_size = ICH_FLASH_SEG_SIZE_256;
1644 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
1645 break;
1646 case 1:
1647 sector_size = ICH_FLASH_SEG_SIZE_4K;
1648 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_4K;
1649 break;
1650 case 2:
1651 if (hw->mac.type == e1000_ich9lan) {
1652 sector_size = ICH_FLASH_SEG_SIZE_8K;
1653 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_8K;
1654 } else {
1655 return -E1000_ERR_NVM;
1656 }
1657 break;
1658 case 3:
1659 sector_size = ICH_FLASH_SEG_SIZE_64K;
1660 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_64K;
1661 break;
1662 default:
1663 return -E1000_ERR_NVM;
1664 }
1665
1666 /* Start with the base address, then add the sector offset. */
1667 flash_linear_addr = hw->nvm.flash_base_addr;
1668 flash_linear_addr += (bank) ? (sector_size * iteration) : 0;
1669
1670 for (j = 0; j < iteration ; j++) {
1671 do {
1672 /* Steps */
1673 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1674 if (ret_val)
1675 return ret_val;
1676
Bruce Allanad680762008-03-28 09:15:03 -07001677 /*
1678 * Write a value 11 (block Erase) in Flash
1679 * Cycle field in hw flash control
1680 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001681 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1682 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
1683 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1684
Bruce Allanad680762008-03-28 09:15:03 -07001685 /*
1686 * Write the last 24 bits of an index within the
Auke Kokbc7f75f2007-09-17 12:30:59 -07001687 * block into Flash Linear address field in Flash
1688 * Address.
1689 */
1690 flash_linear_addr += (j * sector_size);
1691 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1692
1693 ret_val = e1000_flash_cycle_ich8lan(hw,
1694 ICH_FLASH_ERASE_COMMAND_TIMEOUT);
1695 if (ret_val == 0)
1696 break;
1697
Bruce Allanad680762008-03-28 09:15:03 -07001698 /*
1699 * Check if FCERR is set to 1. If 1,
Auke Kokbc7f75f2007-09-17 12:30:59 -07001700 * clear it and try the whole sequence
Bruce Allanad680762008-03-28 09:15:03 -07001701 * a few more times else Done
1702 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001703 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1704 if (hsfsts.hsf_status.flcerr == 1)
Bruce Allanad680762008-03-28 09:15:03 -07001705 /* repeat for some time before giving up */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001706 continue;
1707 else if (hsfsts.hsf_status.flcdone == 0)
1708 return ret_val;
1709 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
1710 }
1711
1712 return 0;
1713}
1714
1715/**
1716 * e1000_valid_led_default_ich8lan - Set the default LED settings
1717 * @hw: pointer to the HW structure
1718 * @data: Pointer to the LED settings
1719 *
1720 * Reads the LED default settings from the NVM to data. If the NVM LED
1721 * settings is all 0's or F's, set the LED default to a valid LED default
1722 * setting.
1723 **/
1724static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
1725{
1726 s32 ret_val;
1727
1728 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1729 if (ret_val) {
1730 hw_dbg(hw, "NVM Read Error\n");
1731 return ret_val;
1732 }
1733
1734 if (*data == ID_LED_RESERVED_0000 ||
1735 *data == ID_LED_RESERVED_FFFF)
1736 *data = ID_LED_DEFAULT_ICH8LAN;
1737
1738 return 0;
1739}
1740
1741/**
1742 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
1743 * @hw: pointer to the HW structure
1744 *
1745 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
1746 * register, so the the bus width is hard coded.
1747 **/
1748static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
1749{
1750 struct e1000_bus_info *bus = &hw->bus;
1751 s32 ret_val;
1752
1753 ret_val = e1000e_get_bus_info_pcie(hw);
1754
Bruce Allanad680762008-03-28 09:15:03 -07001755 /*
1756 * ICH devices are "PCI Express"-ish. They have
Auke Kokbc7f75f2007-09-17 12:30:59 -07001757 * a configuration space, but do not contain
1758 * PCI Express Capability registers, so bus width
1759 * must be hardcoded.
1760 */
1761 if (bus->width == e1000_bus_width_unknown)
1762 bus->width = e1000_bus_width_pcie_x1;
1763
1764 return ret_val;
1765}
1766
1767/**
1768 * e1000_reset_hw_ich8lan - Reset the hardware
1769 * @hw: pointer to the HW structure
1770 *
1771 * Does a full reset of the hardware which includes a reset of the PHY and
1772 * MAC.
1773 **/
1774static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
1775{
1776 u32 ctrl, icr, kab;
1777 s32 ret_val;
1778
Bruce Allanad680762008-03-28 09:15:03 -07001779 /*
1780 * Prevent the PCI-E bus from sticking if there is no TLP connection
Auke Kokbc7f75f2007-09-17 12:30:59 -07001781 * on the last TLP read/write transaction when MAC is reset.
1782 */
1783 ret_val = e1000e_disable_pcie_master(hw);
1784 if (ret_val) {
1785 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
1786 }
1787
1788 hw_dbg(hw, "Masking off all interrupts\n");
1789 ew32(IMC, 0xffffffff);
1790
Bruce Allanad680762008-03-28 09:15:03 -07001791 /*
1792 * Disable the Transmit and Receive units. Then delay to allow
Auke Kokbc7f75f2007-09-17 12:30:59 -07001793 * any pending transactions to complete before we hit the MAC
1794 * with the global reset.
1795 */
1796 ew32(RCTL, 0);
1797 ew32(TCTL, E1000_TCTL_PSP);
1798 e1e_flush();
1799
1800 msleep(10);
1801
1802 /* Workaround for ICH8 bit corruption issue in FIFO memory */
1803 if (hw->mac.type == e1000_ich8lan) {
1804 /* Set Tx and Rx buffer allocation to 8k apiece. */
1805 ew32(PBA, E1000_PBA_8K);
1806 /* Set Packet Buffer Size to 16k. */
1807 ew32(PBS, E1000_PBS_16K);
1808 }
1809
1810 ctrl = er32(CTRL);
1811
1812 if (!e1000_check_reset_block(hw)) {
Bruce Allanad680762008-03-28 09:15:03 -07001813 /*
1814 * PHY HW reset requires MAC CORE reset at the same
Auke Kokbc7f75f2007-09-17 12:30:59 -07001815 * time to make sure the interface between MAC and the
1816 * external PHY is reset.
1817 */
1818 ctrl |= E1000_CTRL_PHY_RST;
1819 }
1820 ret_val = e1000_acquire_swflag_ich8lan(hw);
1821 hw_dbg(hw, "Issuing a global reset to ich8lan");
1822 ew32(CTRL, (ctrl | E1000_CTRL_RST));
1823 msleep(20);
1824
1825 ret_val = e1000e_get_auto_rd_done(hw);
1826 if (ret_val) {
1827 /*
1828 * When auto config read does not complete, do not
1829 * return with an error. This can happen in situations
1830 * where there is no eeprom and prevents getting link.
1831 */
1832 hw_dbg(hw, "Auto Read Done did not complete\n");
1833 }
1834
1835 ew32(IMC, 0xffffffff);
1836 icr = er32(ICR);
1837
1838 kab = er32(KABGTXD);
1839 kab |= E1000_KABGTXD_BGSQLBIAS;
1840 ew32(KABGTXD, kab);
1841
1842 return ret_val;
1843}
1844
1845/**
1846 * e1000_init_hw_ich8lan - Initialize the hardware
1847 * @hw: pointer to the HW structure
1848 *
1849 * Prepares the hardware for transmit and receive by doing the following:
1850 * - initialize hardware bits
1851 * - initialize LED identification
1852 * - setup receive address registers
1853 * - setup flow control
Auke Kok489815c2008-02-21 15:11:07 -08001854 * - setup transmit descriptors
Auke Kokbc7f75f2007-09-17 12:30:59 -07001855 * - clear statistics
1856 **/
1857static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
1858{
1859 struct e1000_mac_info *mac = &hw->mac;
1860 u32 ctrl_ext, txdctl, snoop;
1861 s32 ret_val;
1862 u16 i;
1863
1864 e1000_initialize_hw_bits_ich8lan(hw);
1865
1866 /* Initialize identification LED */
1867 ret_val = e1000e_id_led_init(hw);
1868 if (ret_val) {
1869 hw_dbg(hw, "Error initializing identification LED\n");
1870 return ret_val;
1871 }
1872
1873 /* Setup the receive address. */
1874 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
1875
1876 /* Zero out the Multicast HASH table */
1877 hw_dbg(hw, "Zeroing the MTA\n");
1878 for (i = 0; i < mac->mta_reg_count; i++)
1879 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1880
1881 /* Setup link and flow control */
1882 ret_val = e1000_setup_link_ich8lan(hw);
1883
1884 /* Set the transmit descriptor write-back policy for both queues */
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07001885 txdctl = er32(TXDCTL(0));
Auke Kokbc7f75f2007-09-17 12:30:59 -07001886 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
1887 E1000_TXDCTL_FULL_TX_DESC_WB;
1888 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
1889 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07001890 ew32(TXDCTL(0), txdctl);
1891 txdctl = er32(TXDCTL(1));
Auke Kokbc7f75f2007-09-17 12:30:59 -07001892 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
1893 E1000_TXDCTL_FULL_TX_DESC_WB;
1894 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
1895 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07001896 ew32(TXDCTL(1), txdctl);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001897
Bruce Allanad680762008-03-28 09:15:03 -07001898 /*
1899 * ICH8 has opposite polarity of no_snoop bits.
1900 * By default, we should use snoop behavior.
1901 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001902 if (mac->type == e1000_ich8lan)
1903 snoop = PCIE_ICH8_SNOOP_ALL;
1904 else
1905 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
1906 e1000e_set_pcie_no_snoop(hw, snoop);
1907
1908 ctrl_ext = er32(CTRL_EXT);
1909 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1910 ew32(CTRL_EXT, ctrl_ext);
1911
Bruce Allanad680762008-03-28 09:15:03 -07001912 /*
1913 * Clear all of the statistics registers (clear on read). It is
Auke Kokbc7f75f2007-09-17 12:30:59 -07001914 * important that we do this after we have tried to establish link
1915 * because the symbol error count will increment wildly if there
1916 * is no link.
1917 */
1918 e1000_clear_hw_cntrs_ich8lan(hw);
1919
1920 return 0;
1921}
1922/**
1923 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
1924 * @hw: pointer to the HW structure
1925 *
1926 * Sets/Clears required hardware bits necessary for correctly setting up the
1927 * hardware for transmit and receive.
1928 **/
1929static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
1930{
1931 u32 reg;
1932
1933 /* Extended Device Control */
1934 reg = er32(CTRL_EXT);
1935 reg |= (1 << 22);
1936 ew32(CTRL_EXT, reg);
1937
1938 /* Transmit Descriptor Control 0 */
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07001939 reg = er32(TXDCTL(0));
Auke Kokbc7f75f2007-09-17 12:30:59 -07001940 reg |= (1 << 22);
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07001941 ew32(TXDCTL(0), reg);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001942
1943 /* Transmit Descriptor Control 1 */
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07001944 reg = er32(TXDCTL(1));
Auke Kokbc7f75f2007-09-17 12:30:59 -07001945 reg |= (1 << 22);
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07001946 ew32(TXDCTL(1), reg);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001947
1948 /* Transmit Arbitration Control 0 */
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07001949 reg = er32(TARC(0));
Auke Kokbc7f75f2007-09-17 12:30:59 -07001950 if (hw->mac.type == e1000_ich8lan)
1951 reg |= (1 << 28) | (1 << 29);
1952 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07001953 ew32(TARC(0), reg);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001954
1955 /* Transmit Arbitration Control 1 */
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07001956 reg = er32(TARC(1));
Auke Kokbc7f75f2007-09-17 12:30:59 -07001957 if (er32(TCTL) & E1000_TCTL_MULR)
1958 reg &= ~(1 << 28);
1959 else
1960 reg |= (1 << 28);
1961 reg |= (1 << 24) | (1 << 26) | (1 << 30);
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07001962 ew32(TARC(1), reg);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001963
1964 /* Device Status */
1965 if (hw->mac.type == e1000_ich8lan) {
1966 reg = er32(STATUS);
1967 reg &= ~(1 << 31);
1968 ew32(STATUS, reg);
1969 }
1970}
1971
1972/**
1973 * e1000_setup_link_ich8lan - Setup flow control and link settings
1974 * @hw: pointer to the HW structure
1975 *
1976 * Determines which flow control settings to use, then configures flow
1977 * control. Calls the appropriate media-specific link configuration
1978 * function. Assuming the adapter has a valid link partner, a valid link
1979 * should be established. Assumes the hardware has previously been reset
1980 * and the transmitter and receiver are not enabled.
1981 **/
1982static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
1983{
Auke Kokbc7f75f2007-09-17 12:30:59 -07001984 s32 ret_val;
1985
1986 if (e1000_check_reset_block(hw))
1987 return 0;
1988
Bruce Allanad680762008-03-28 09:15:03 -07001989 /*
1990 * ICH parts do not have a word in the NVM to determine
Auke Kokbc7f75f2007-09-17 12:30:59 -07001991 * the default flow control setting, so we explicitly
1992 * set it to full.
1993 */
Jeff Kirsher318a94d2008-03-28 09:15:16 -07001994 if (hw->fc.type == e1000_fc_default)
1995 hw->fc.type = e1000_fc_full;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001996
Jeff Kirsher318a94d2008-03-28 09:15:16 -07001997 hw->fc.original_type = hw->fc.type;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001998
Jeff Kirsher318a94d2008-03-28 09:15:16 -07001999 hw_dbg(hw, "After fix-ups FlowControl is now = %x\n", hw->fc.type);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002000
2001 /* Continue to configure the copper link. */
2002 ret_val = e1000_setup_copper_link_ich8lan(hw);
2003 if (ret_val)
2004 return ret_val;
2005
Jeff Kirsher318a94d2008-03-28 09:15:16 -07002006 ew32(FCTTV, hw->fc.pause_time);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002007
2008 return e1000e_set_fc_watermarks(hw);
2009}
2010
2011/**
2012 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
2013 * @hw: pointer to the HW structure
2014 *
2015 * Configures the kumeran interface to the PHY to wait the appropriate time
2016 * when polling the PHY, then call the generic setup_copper_link to finish
2017 * configuring the copper link.
2018 **/
2019static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
2020{
2021 u32 ctrl;
2022 s32 ret_val;
2023 u16 reg_data;
2024
2025 ctrl = er32(CTRL);
2026 ctrl |= E1000_CTRL_SLU;
2027 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2028 ew32(CTRL, ctrl);
2029
Bruce Allanad680762008-03-28 09:15:03 -07002030 /*
2031 * Set the mac to wait the maximum time between each iteration
Auke Kokbc7f75f2007-09-17 12:30:59 -07002032 * and increase the max iterations when polling the phy;
Bruce Allanad680762008-03-28 09:15:03 -07002033 * this fixes erroneous timeouts at 10Mbps.
2034 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002035 ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
2036 if (ret_val)
2037 return ret_val;
2038 ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
2039 if (ret_val)
2040 return ret_val;
2041 reg_data |= 0x3F;
2042 ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
2043 if (ret_val)
2044 return ret_val;
2045
2046 if (hw->phy.type == e1000_phy_igp_3) {
2047 ret_val = e1000e_copper_link_setup_igp(hw);
2048 if (ret_val)
2049 return ret_val;
Bruce Allan97ac8ca2008-04-29 09:16:05 -07002050 } else if (hw->phy.type == e1000_phy_bm) {
2051 ret_val = e1000e_copper_link_setup_m88(hw);
2052 if (ret_val)
2053 return ret_val;
Auke Kokbc7f75f2007-09-17 12:30:59 -07002054 }
2055
Bruce Allan97ac8ca2008-04-29 09:16:05 -07002056 if (hw->phy.type == e1000_phy_ife) {
2057 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
2058 if (ret_val)
2059 return ret_val;
2060
2061 reg_data &= ~IFE_PMC_AUTO_MDIX;
2062
2063 switch (hw->phy.mdix) {
2064 case 1:
2065 reg_data &= ~IFE_PMC_FORCE_MDIX;
2066 break;
2067 case 2:
2068 reg_data |= IFE_PMC_FORCE_MDIX;
2069 break;
2070 case 0:
2071 default:
2072 reg_data |= IFE_PMC_AUTO_MDIX;
2073 break;
2074 }
2075 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
2076 if (ret_val)
2077 return ret_val;
2078 }
Auke Kokbc7f75f2007-09-17 12:30:59 -07002079 return e1000e_setup_copper_link(hw);
2080}
2081
2082/**
2083 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
2084 * @hw: pointer to the HW structure
2085 * @speed: pointer to store current link speed
2086 * @duplex: pointer to store the current link duplex
2087 *
Bruce Allanad680762008-03-28 09:15:03 -07002088 * Calls the generic get_speed_and_duplex to retrieve the current link
Auke Kokbc7f75f2007-09-17 12:30:59 -07002089 * information and then calls the Kumeran lock loss workaround for links at
2090 * gigabit speeds.
2091 **/
2092static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
2093 u16 *duplex)
2094{
2095 s32 ret_val;
2096
2097 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
2098 if (ret_val)
2099 return ret_val;
2100
2101 if ((hw->mac.type == e1000_ich8lan) &&
2102 (hw->phy.type == e1000_phy_igp_3) &&
2103 (*speed == SPEED_1000)) {
2104 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
2105 }
2106
2107 return ret_val;
2108}
2109
2110/**
2111 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
2112 * @hw: pointer to the HW structure
2113 *
2114 * Work-around for 82566 Kumeran PCS lock loss:
2115 * On link status change (i.e. PCI reset, speed change) and link is up and
2116 * speed is gigabit-
2117 * 0) if workaround is optionally disabled do nothing
2118 * 1) wait 1ms for Kumeran link to come up
2119 * 2) check Kumeran Diagnostic register PCS lock loss bit
2120 * 3) if not set the link is locked (all is good), otherwise...
2121 * 4) reset the PHY
2122 * 5) repeat up to 10 times
2123 * Note: this is only called for IGP3 copper when speed is 1gb.
2124 **/
2125static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
2126{
2127 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2128 u32 phy_ctrl;
2129 s32 ret_val;
2130 u16 i, data;
2131 bool link;
2132
2133 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
2134 return 0;
2135
Bruce Allanad680762008-03-28 09:15:03 -07002136 /*
2137 * Make sure link is up before proceeding. If not just return.
Auke Kokbc7f75f2007-09-17 12:30:59 -07002138 * Attempting this while link is negotiating fouled up link
Bruce Allanad680762008-03-28 09:15:03 -07002139 * stability
2140 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002141 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2142 if (!link)
2143 return 0;
2144
2145 for (i = 0; i < 10; i++) {
2146 /* read once to clear */
2147 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2148 if (ret_val)
2149 return ret_val;
2150 /* and again to get new status */
2151 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2152 if (ret_val)
2153 return ret_val;
2154
2155 /* check for PCS lock */
2156 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
2157 return 0;
2158
2159 /* Issue PHY reset */
2160 e1000_phy_hw_reset(hw);
2161 mdelay(5);
2162 }
2163 /* Disable GigE link negotiation */
2164 phy_ctrl = er32(PHY_CTRL);
2165 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
2166 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2167 ew32(PHY_CTRL, phy_ctrl);
2168
Bruce Allanad680762008-03-28 09:15:03 -07002169 /*
2170 * Call gig speed drop workaround on Gig disable before accessing
2171 * any PHY registers
2172 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002173 e1000e_gig_downshift_workaround_ich8lan(hw);
2174
2175 /* unable to acquire PCS lock */
2176 return -E1000_ERR_PHY;
2177}
2178
2179/**
Bruce Allanad680762008-03-28 09:15:03 -07002180 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
Auke Kokbc7f75f2007-09-17 12:30:59 -07002181 * @hw: pointer to the HW structure
Auke Kok489815c2008-02-21 15:11:07 -08002182 * @state: boolean value used to set the current Kumeran workaround state
Auke Kokbc7f75f2007-09-17 12:30:59 -07002183 *
2184 * If ICH8, set the current Kumeran workaround state (enabled - TRUE
2185 * /disabled - FALSE).
2186 **/
2187void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
2188 bool state)
2189{
2190 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2191
2192 if (hw->mac.type != e1000_ich8lan) {
2193 hw_dbg(hw, "Workaround applies to ICH8 only.\n");
2194 return;
2195 }
2196
2197 dev_spec->kmrn_lock_loss_workaround_enabled = state;
2198}
2199
2200/**
2201 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
2202 * @hw: pointer to the HW structure
2203 *
2204 * Workaround for 82566 power-down on D3 entry:
2205 * 1) disable gigabit link
2206 * 2) write VR power-down enable
2207 * 3) read it back
2208 * Continue if successful, else issue LCD reset and repeat
2209 **/
2210void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
2211{
2212 u32 reg;
2213 u16 data;
2214 u8 retry = 0;
2215
2216 if (hw->phy.type != e1000_phy_igp_3)
2217 return;
2218
2219 /* Try the workaround twice (if needed) */
2220 do {
2221 /* Disable link */
2222 reg = er32(PHY_CTRL);
2223 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
2224 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2225 ew32(PHY_CTRL, reg);
2226
Bruce Allanad680762008-03-28 09:15:03 -07002227 /*
2228 * Call gig speed drop workaround on Gig disable before
2229 * accessing any PHY registers
2230 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002231 if (hw->mac.type == e1000_ich8lan)
2232 e1000e_gig_downshift_workaround_ich8lan(hw);
2233
2234 /* Write VR power-down enable */
2235 e1e_rphy(hw, IGP3_VR_CTRL, &data);
2236 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
2237 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
2238
2239 /* Read it back and test */
2240 e1e_rphy(hw, IGP3_VR_CTRL, &data);
2241 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
2242 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
2243 break;
2244
2245 /* Issue PHY reset and repeat at most one more time */
2246 reg = er32(CTRL);
2247 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
2248 retry++;
2249 } while (retry);
2250}
2251
2252/**
2253 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
2254 * @hw: pointer to the HW structure
2255 *
2256 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
Auke Kok489815c2008-02-21 15:11:07 -08002257 * LPLU, Gig disable, MDIC PHY reset):
Auke Kokbc7f75f2007-09-17 12:30:59 -07002258 * 1) Set Kumeran Near-end loopback
2259 * 2) Clear Kumeran Near-end loopback
2260 * Should only be called for ICH8[m] devices with IGP_3 Phy.
2261 **/
2262void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
2263{
2264 s32 ret_val;
2265 u16 reg_data;
2266
2267 if ((hw->mac.type != e1000_ich8lan) ||
2268 (hw->phy.type != e1000_phy_igp_3))
2269 return;
2270
2271 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2272 &reg_data);
2273 if (ret_val)
2274 return;
2275 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
2276 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2277 reg_data);
2278 if (ret_val)
2279 return;
2280 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
2281 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2282 reg_data);
2283}
2284
2285/**
Bruce Allan97ac8ca2008-04-29 09:16:05 -07002286 * e1000e_disable_gig_wol_ich8lan - disable gig during WoL
2287 * @hw: pointer to the HW structure
2288 *
2289 * During S0 to Sx transition, it is possible the link remains at gig
2290 * instead of negotiating to a lower speed. Before going to Sx, set
2291 * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
2292 * to a lower speed.
2293 *
Bruce Allanf4187b52008-08-26 18:36:50 -07002294 * Should only be called for ICH9 and ICH10 devices.
Bruce Allan97ac8ca2008-04-29 09:16:05 -07002295 **/
2296void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
2297{
2298 u32 phy_ctrl;
2299
Bruce Allanf4187b52008-08-26 18:36:50 -07002300 if ((hw->mac.type == e1000_ich10lan) ||
2301 (hw->mac.type == e1000_ich9lan)) {
Bruce Allan97ac8ca2008-04-29 09:16:05 -07002302 phy_ctrl = er32(PHY_CTRL);
2303 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU |
2304 E1000_PHY_CTRL_GBE_DISABLE;
2305 ew32(PHY_CTRL, phy_ctrl);
2306 }
2307
2308 return;
2309}
2310
2311/**
Auke Kokbc7f75f2007-09-17 12:30:59 -07002312 * e1000_cleanup_led_ich8lan - Restore the default LED operation
2313 * @hw: pointer to the HW structure
2314 *
2315 * Return the LED back to the default configuration.
2316 **/
2317static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
2318{
2319 if (hw->phy.type == e1000_phy_ife)
2320 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
2321
2322 ew32(LEDCTL, hw->mac.ledctl_default);
2323 return 0;
2324}
2325
2326/**
Auke Kok489815c2008-02-21 15:11:07 -08002327 * e1000_led_on_ich8lan - Turn LEDs on
Auke Kokbc7f75f2007-09-17 12:30:59 -07002328 * @hw: pointer to the HW structure
2329 *
Auke Kok489815c2008-02-21 15:11:07 -08002330 * Turn on the LEDs.
Auke Kokbc7f75f2007-09-17 12:30:59 -07002331 **/
2332static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
2333{
2334 if (hw->phy.type == e1000_phy_ife)
2335 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
2336 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
2337
2338 ew32(LEDCTL, hw->mac.ledctl_mode2);
2339 return 0;
2340}
2341
2342/**
Auke Kok489815c2008-02-21 15:11:07 -08002343 * e1000_led_off_ich8lan - Turn LEDs off
Auke Kokbc7f75f2007-09-17 12:30:59 -07002344 * @hw: pointer to the HW structure
2345 *
Auke Kok489815c2008-02-21 15:11:07 -08002346 * Turn off the LEDs.
Auke Kokbc7f75f2007-09-17 12:30:59 -07002347 **/
2348static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
2349{
2350 if (hw->phy.type == e1000_phy_ife)
2351 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
2352 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
2353
2354 ew32(LEDCTL, hw->mac.ledctl_mode1);
2355 return 0;
2356}
2357
2358/**
Bruce Allanf4187b52008-08-26 18:36:50 -07002359 * e1000_get_cfg_done_ich8lan - Read config done bit
2360 * @hw: pointer to the HW structure
2361 *
2362 * Read the management control register for the config done bit for
2363 * completion status. NOTE: silicon which is EEPROM-less will fail trying
2364 * to read the config done bit, so an error is *ONLY* logged and returns
2365 * E1000_SUCCESS. If we were to return with error, EEPROM-less silicon
2366 * would not be able to be reset or change link.
2367 **/
2368static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
2369{
2370 u32 bank = 0;
2371
2372 e1000e_get_cfg_done(hw);
2373
2374 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
2375 if (hw->mac.type != e1000_ich10lan) {
2376 if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
2377 (hw->phy.type == e1000_phy_igp_3)) {
2378 e1000e_phy_init_script_igp3(hw);
2379 }
2380 } else {
2381 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
2382 /* Maybe we should do a basic PHY config */
2383 hw_dbg(hw, "EEPROM not present\n");
2384 return -E1000_ERR_CONFIG;
2385 }
2386 }
2387
2388 return 0;
2389}
2390
2391/**
Auke Kokbc7f75f2007-09-17 12:30:59 -07002392 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
2393 * @hw: pointer to the HW structure
2394 *
2395 * Clears hardware counters specific to the silicon family and calls
2396 * clear_hw_cntrs_generic to clear all general purpose counters.
2397 **/
2398static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
2399{
2400 u32 temp;
2401
2402 e1000e_clear_hw_cntrs_base(hw);
2403
2404 temp = er32(ALGNERRC);
2405 temp = er32(RXERRC);
2406 temp = er32(TNCRS);
2407 temp = er32(CEXTERR);
2408 temp = er32(TSCTC);
2409 temp = er32(TSCTFC);
2410
2411 temp = er32(MGTPRC);
2412 temp = er32(MGTPDC);
2413 temp = er32(MGTPTC);
2414
2415 temp = er32(IAC);
2416 temp = er32(ICRXOC);
2417
2418}
2419
2420static struct e1000_mac_operations ich8_mac_ops = {
Bruce Allan4662e822008-08-26 18:37:06 -07002421 .check_mng_mode = e1000_check_mng_mode_ich8lan,
Auke Kokbc7f75f2007-09-17 12:30:59 -07002422 .check_for_link = e1000e_check_for_copper_link,
2423 .cleanup_led = e1000_cleanup_led_ich8lan,
2424 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
2425 .get_bus_info = e1000_get_bus_info_ich8lan,
2426 .get_link_up_info = e1000_get_link_up_info_ich8lan,
2427 .led_on = e1000_led_on_ich8lan,
2428 .led_off = e1000_led_off_ich8lan,
Jeff Kirshere2de3eb2008-03-28 09:15:11 -07002429 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
Auke Kokbc7f75f2007-09-17 12:30:59 -07002430 .reset_hw = e1000_reset_hw_ich8lan,
2431 .init_hw = e1000_init_hw_ich8lan,
2432 .setup_link = e1000_setup_link_ich8lan,
2433 .setup_physical_interface= e1000_setup_copper_link_ich8lan,
2434};
2435
2436static struct e1000_phy_operations ich8_phy_ops = {
2437 .acquire_phy = e1000_acquire_swflag_ich8lan,
2438 .check_reset_block = e1000_check_reset_block_ich8lan,
2439 .commit_phy = NULL,
2440 .force_speed_duplex = e1000_phy_force_speed_duplex_ich8lan,
Bruce Allanf4187b52008-08-26 18:36:50 -07002441 .get_cfg_done = e1000_get_cfg_done_ich8lan,
Auke Kokbc7f75f2007-09-17 12:30:59 -07002442 .get_cable_length = e1000e_get_cable_length_igp_2,
2443 .get_phy_info = e1000_get_phy_info_ich8lan,
2444 .read_phy_reg = e1000e_read_phy_reg_igp,
2445 .release_phy = e1000_release_swflag_ich8lan,
2446 .reset_phy = e1000_phy_hw_reset_ich8lan,
2447 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
2448 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
2449 .write_phy_reg = e1000e_write_phy_reg_igp,
2450};
2451
2452static struct e1000_nvm_operations ich8_nvm_ops = {
2453 .acquire_nvm = e1000_acquire_swflag_ich8lan,
2454 .read_nvm = e1000_read_nvm_ich8lan,
2455 .release_nvm = e1000_release_swflag_ich8lan,
2456 .update_nvm = e1000_update_nvm_checksum_ich8lan,
2457 .valid_led_default = e1000_valid_led_default_ich8lan,
2458 .validate_nvm = e1000_validate_nvm_checksum_ich8lan,
2459 .write_nvm = e1000_write_nvm_ich8lan,
2460};
2461
2462struct e1000_info e1000_ich8_info = {
2463 .mac = e1000_ich8lan,
2464 .flags = FLAG_HAS_WOL
Bruce Allan97ac8ca2008-04-29 09:16:05 -07002465 | FLAG_IS_ICH
Auke Kokbc7f75f2007-09-17 12:30:59 -07002466 | FLAG_RX_CSUM_ENABLED
2467 | FLAG_HAS_CTRLEXT_ON_LOAD
2468 | FLAG_HAS_AMT
2469 | FLAG_HAS_FLASH
2470 | FLAG_APME_IN_WUC,
2471 .pba = 8,
Jeff Kirsher69e3fd82008-04-02 13:48:18 -07002472 .get_variants = e1000_get_variants_ich8lan,
Auke Kokbc7f75f2007-09-17 12:30:59 -07002473 .mac_ops = &ich8_mac_ops,
2474 .phy_ops = &ich8_phy_ops,
2475 .nvm_ops = &ich8_nvm_ops,
2476};
2477
2478struct e1000_info e1000_ich9_info = {
2479 .mac = e1000_ich9lan,
2480 .flags = FLAG_HAS_JUMBO_FRAMES
Bruce Allan97ac8ca2008-04-29 09:16:05 -07002481 | FLAG_IS_ICH
Auke Kokbc7f75f2007-09-17 12:30:59 -07002482 | FLAG_HAS_WOL
2483 | FLAG_RX_CSUM_ENABLED
2484 | FLAG_HAS_CTRLEXT_ON_LOAD
2485 | FLAG_HAS_AMT
2486 | FLAG_HAS_ERT
2487 | FLAG_HAS_FLASH
2488 | FLAG_APME_IN_WUC,
2489 .pba = 10,
Jeff Kirsher69e3fd82008-04-02 13:48:18 -07002490 .get_variants = e1000_get_variants_ich8lan,
Auke Kokbc7f75f2007-09-17 12:30:59 -07002491 .mac_ops = &ich8_mac_ops,
2492 .phy_ops = &ich8_phy_ops,
2493 .nvm_ops = &ich8_nvm_ops,
2494};
2495
Bruce Allanf4187b52008-08-26 18:36:50 -07002496struct e1000_info e1000_ich10_info = {
2497 .mac = e1000_ich10lan,
2498 .flags = FLAG_HAS_JUMBO_FRAMES
2499 | FLAG_IS_ICH
2500 | FLAG_HAS_WOL
2501 | FLAG_RX_CSUM_ENABLED
2502 | FLAG_HAS_CTRLEXT_ON_LOAD
2503 | FLAG_HAS_AMT
2504 | FLAG_HAS_ERT
2505 | FLAG_HAS_FLASH
2506 | FLAG_APME_IN_WUC,
2507 .pba = 10,
2508 .get_variants = e1000_get_variants_ich8lan,
2509 .mac_ops = &ich8_mac_ops,
2510 .phy_ops = &ich8_phy_ops,
2511 .nvm_ops = &ich8_nvm_ops,
2512};