Jacob Pan | bb24c47 | 2009-09-02 07:37:17 -0700 | [diff] [blame] | 1 | /* |
| 2 | * apb_timer.c: Driver for Langwell APB timers |
| 3 | * |
| 4 | * (C) Copyright 2009 Intel Corporation |
| 5 | * Author: Jacob Pan (jacob.jun.pan@intel.com) |
| 6 | * |
| 7 | * This program is free software; you can redistribute it and/or |
| 8 | * modify it under the terms of the GNU General Public License |
| 9 | * as published by the Free Software Foundation; version 2 |
| 10 | * of the License. |
| 11 | * |
| 12 | * Note: |
| 13 | * Langwell is the south complex of Intel Moorestown MID platform. There are |
| 14 | * eight external timers in total that can be used by the operating system. |
| 15 | * The timer information, such as frequency and addresses, is provided to the |
| 16 | * OS via SFI tables. |
| 17 | * Timer interrupts are routed via FW/HW emulated IOAPIC independently via |
| 18 | * individual redirection table entries (RTE). |
| 19 | * Unlike HPET, there is no master counter, therefore one of the timers are |
| 20 | * used as clocksource. The overall allocation looks like: |
| 21 | * - timer 0 - NR_CPUs for per cpu timer |
| 22 | * - one timer for clocksource |
| 23 | * - one timer for watchdog driver. |
| 24 | * It is also worth notice that APB timer does not support true one-shot mode, |
| 25 | * free-running mode will be used here to emulate one-shot mode. |
| 26 | * APB timer can also be used as broadcast timer along with per cpu local APIC |
| 27 | * timer, but by default APB timer has higher rating than local APIC timers. |
| 28 | */ |
| 29 | |
| 30 | #include <linux/clocksource.h> |
| 31 | #include <linux/clockchips.h> |
| 32 | #include <linux/delay.h> |
| 33 | #include <linux/errno.h> |
| 34 | #include <linux/init.h> |
| 35 | #include <linux/sysdev.h> |
| 36 | #include <linux/pm.h> |
| 37 | #include <linux/pci.h> |
| 38 | #include <linux/sfi.h> |
| 39 | #include <linux/interrupt.h> |
| 40 | #include <linux/cpu.h> |
| 41 | #include <linux/irq.h> |
| 42 | |
| 43 | #include <asm/fixmap.h> |
| 44 | #include <asm/apb_timer.h> |
| 45 | |
| 46 | #define APBT_MASK CLOCKSOURCE_MASK(32) |
| 47 | #define APBT_SHIFT 22 |
| 48 | #define APBT_CLOCKEVENT_RATING 150 |
| 49 | #define APBT_CLOCKSOURCE_RATING 250 |
| 50 | #define APBT_MIN_DELTA_USEC 200 |
| 51 | |
| 52 | #define EVT_TO_APBT_DEV(evt) container_of(evt, struct apbt_dev, evt) |
| 53 | #define APBT_CLOCKEVENT0_NUM (0) |
| 54 | #define APBT_CLOCKEVENT1_NUM (1) |
| 55 | #define APBT_CLOCKSOURCE_NUM (2) |
| 56 | |
| 57 | static unsigned long apbt_address; |
| 58 | static int apb_timer_block_enabled; |
| 59 | static void __iomem *apbt_virt_address; |
| 60 | static int phy_cs_timer_id; |
| 61 | |
| 62 | /* |
| 63 | * Common DW APB timer info |
| 64 | */ |
| 65 | static uint64_t apbt_freq; |
| 66 | |
| 67 | static void apbt_set_mode(enum clock_event_mode mode, |
| 68 | struct clock_event_device *evt); |
| 69 | static int apbt_next_event(unsigned long delta, |
| 70 | struct clock_event_device *evt); |
| 71 | static cycle_t apbt_read_clocksource(struct clocksource *cs); |
| 72 | static void apbt_restart_clocksource(void); |
| 73 | |
| 74 | struct apbt_dev { |
| 75 | struct clock_event_device evt; |
| 76 | unsigned int num; |
| 77 | int cpu; |
| 78 | unsigned int irq; |
| 79 | unsigned int tick; |
| 80 | unsigned int count; |
| 81 | unsigned int flags; |
| 82 | char name[10]; |
| 83 | }; |
| 84 | |
| 85 | int disable_apbt_percpu __cpuinitdata; |
| 86 | |
Jacob Pan | 3010673 | 2010-03-02 21:01:34 -0800 | [diff] [blame^] | 87 | static DEFINE_PER_CPU(struct apbt_dev, cpu_apbt_dev); |
| 88 | |
Jacob Pan | bb24c47 | 2009-09-02 07:37:17 -0700 | [diff] [blame] | 89 | #ifdef CONFIG_SMP |
| 90 | static unsigned int apbt_num_timers_used; |
Jacob Pan | bb24c47 | 2009-09-02 07:37:17 -0700 | [diff] [blame] | 91 | static struct apbt_dev *apbt_devs; |
| 92 | #endif |
| 93 | |
| 94 | static inline unsigned long apbt_readl_reg(unsigned long a) |
| 95 | { |
| 96 | return readl(apbt_virt_address + a); |
| 97 | } |
| 98 | |
| 99 | static inline void apbt_writel_reg(unsigned long d, unsigned long a) |
| 100 | { |
| 101 | writel(d, apbt_virt_address + a); |
| 102 | } |
| 103 | |
| 104 | static inline unsigned long apbt_readl(int n, unsigned long a) |
| 105 | { |
| 106 | return readl(apbt_virt_address + a + n * APBTMRS_REG_SIZE); |
| 107 | } |
| 108 | |
| 109 | static inline void apbt_writel(int n, unsigned long d, unsigned long a) |
| 110 | { |
| 111 | writel(d, apbt_virt_address + a + n * APBTMRS_REG_SIZE); |
| 112 | } |
| 113 | |
| 114 | static inline void apbt_set_mapping(void) |
| 115 | { |
| 116 | struct sfi_timer_table_entry *mtmr; |
| 117 | |
| 118 | if (apbt_virt_address) { |
| 119 | pr_debug("APBT base already mapped\n"); |
| 120 | return; |
| 121 | } |
| 122 | mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM); |
| 123 | if (mtmr == NULL) { |
| 124 | printk(KERN_ERR "Failed to get MTMR %d from SFI\n", |
| 125 | APBT_CLOCKEVENT0_NUM); |
| 126 | return; |
| 127 | } |
| 128 | apbt_address = (unsigned long)mtmr->phys_addr; |
| 129 | if (!apbt_address) { |
| 130 | printk(KERN_WARNING "No timer base from SFI, use default\n"); |
| 131 | apbt_address = APBT_DEFAULT_BASE; |
| 132 | } |
| 133 | apbt_virt_address = ioremap_nocache(apbt_address, APBT_MMAP_SIZE); |
| 134 | if (apbt_virt_address) { |
| 135 | pr_debug("Mapped APBT physical addr %p at virtual addr %p\n",\ |
| 136 | (void *)apbt_address, (void *)apbt_virt_address); |
| 137 | } else { |
| 138 | pr_debug("Failed mapping APBT phy address at %p\n",\ |
| 139 | (void *)apbt_address); |
| 140 | goto panic_noapbt; |
| 141 | } |
| 142 | apbt_freq = mtmr->freq_hz / USEC_PER_SEC; |
| 143 | sfi_free_mtmr(mtmr); |
| 144 | |
| 145 | /* Now figure out the physical timer id for clocksource device */ |
| 146 | mtmr = sfi_get_mtmr(APBT_CLOCKSOURCE_NUM); |
| 147 | if (mtmr == NULL) |
| 148 | goto panic_noapbt; |
| 149 | |
| 150 | /* Now figure out the physical timer id */ |
| 151 | phy_cs_timer_id = (unsigned int)(mtmr->phys_addr & 0xff) |
| 152 | / APBTMRS_REG_SIZE; |
| 153 | pr_debug("Use timer %d for clocksource\n", phy_cs_timer_id); |
| 154 | return; |
| 155 | |
| 156 | panic_noapbt: |
| 157 | panic("Failed to setup APB system timer\n"); |
| 158 | |
| 159 | } |
| 160 | |
| 161 | static inline void apbt_clear_mapping(void) |
| 162 | { |
| 163 | iounmap(apbt_virt_address); |
| 164 | apbt_virt_address = NULL; |
| 165 | } |
| 166 | |
| 167 | /* |
| 168 | * APBT timer interrupt enable / disable |
| 169 | */ |
| 170 | static inline int is_apbt_capable(void) |
| 171 | { |
| 172 | return apbt_virt_address ? 1 : 0; |
| 173 | } |
| 174 | |
| 175 | static struct clocksource clocksource_apbt = { |
| 176 | .name = "apbt", |
| 177 | .rating = APBT_CLOCKSOURCE_RATING, |
| 178 | .read = apbt_read_clocksource, |
| 179 | .mask = APBT_MASK, |
| 180 | .shift = APBT_SHIFT, |
| 181 | .flags = CLOCK_SOURCE_IS_CONTINUOUS, |
| 182 | .resume = apbt_restart_clocksource, |
| 183 | }; |
| 184 | |
| 185 | /* boot APB clock event device */ |
| 186 | static struct clock_event_device apbt_clockevent = { |
| 187 | .name = "apbt0", |
| 188 | .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, |
| 189 | .set_mode = apbt_set_mode, |
| 190 | .set_next_event = apbt_next_event, |
| 191 | .shift = APBT_SHIFT, |
| 192 | .irq = 0, |
| 193 | .rating = APBT_CLOCKEVENT_RATING, |
| 194 | }; |
| 195 | |
| 196 | /* |
| 197 | * if user does not want to use per CPU apb timer, just give it a lower rating |
| 198 | * than local apic timer and skip the late per cpu timer init. |
| 199 | */ |
| 200 | static inline int __init setup_x86_mrst_timer(char *arg) |
| 201 | { |
| 202 | if (!arg) |
| 203 | return -EINVAL; |
| 204 | |
| 205 | if (strcmp("apbt_only", arg) == 0) |
| 206 | disable_apbt_percpu = 0; |
| 207 | else if (strcmp("lapic_and_apbt", arg) == 0) |
| 208 | disable_apbt_percpu = 1; |
| 209 | else { |
| 210 | pr_warning("X86 MRST timer option %s not recognised" |
| 211 | " use x86_mrst_timer=apbt_only or lapic_and_apbt\n", |
| 212 | arg); |
| 213 | return -EINVAL; |
| 214 | } |
| 215 | return 0; |
| 216 | } |
| 217 | __setup("x86_mrst_timer=", setup_x86_mrst_timer); |
| 218 | |
| 219 | /* |
| 220 | * start count down from 0xffff_ffff. this is done by toggling the enable bit |
| 221 | * then load initial load count to ~0. |
| 222 | */ |
| 223 | static void apbt_start_counter(int n) |
| 224 | { |
| 225 | unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL); |
| 226 | |
| 227 | ctrl &= ~APBTMR_CONTROL_ENABLE; |
| 228 | apbt_writel(n, ctrl, APBTMR_N_CONTROL); |
| 229 | apbt_writel(n, ~0, APBTMR_N_LOAD_COUNT); |
| 230 | /* enable, mask interrupt */ |
| 231 | ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC; |
| 232 | ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT); |
| 233 | apbt_writel(n, ctrl, APBTMR_N_CONTROL); |
| 234 | /* read it once to get cached counter value initialized */ |
| 235 | apbt_read_clocksource(&clocksource_apbt); |
| 236 | } |
| 237 | |
| 238 | static irqreturn_t apbt_interrupt_handler(int irq, void *data) |
| 239 | { |
| 240 | struct apbt_dev *dev = (struct apbt_dev *)data; |
| 241 | struct clock_event_device *aevt = &dev->evt; |
| 242 | |
| 243 | if (!aevt->event_handler) { |
| 244 | printk(KERN_INFO "Spurious APBT timer interrupt on %d\n", |
| 245 | dev->num); |
| 246 | return IRQ_NONE; |
| 247 | } |
| 248 | aevt->event_handler(aevt); |
| 249 | return IRQ_HANDLED; |
| 250 | } |
| 251 | |
| 252 | static void apbt_restart_clocksource(void) |
| 253 | { |
| 254 | apbt_start_counter(phy_cs_timer_id); |
| 255 | } |
| 256 | |
| 257 | /* Setup IRQ routing via IOAPIC */ |
| 258 | #ifdef CONFIG_SMP |
| 259 | static void apbt_setup_irq(struct apbt_dev *adev) |
| 260 | { |
| 261 | struct irq_chip *chip; |
| 262 | struct irq_desc *desc; |
| 263 | |
| 264 | /* timer0 irq has been setup early */ |
| 265 | if (adev->irq == 0) |
| 266 | return; |
| 267 | desc = irq_to_desc(adev->irq); |
| 268 | chip = get_irq_chip(adev->irq); |
| 269 | disable_irq(adev->irq); |
| 270 | desc->status |= IRQ_MOVE_PCNTXT; |
| 271 | irq_set_affinity(adev->irq, cpumask_of(adev->cpu)); |
| 272 | /* APB timer irqs are set up as mp_irqs, timer is edge triggerred */ |
| 273 | set_irq_chip_and_handler_name(adev->irq, chip, handle_edge_irq, "edge"); |
| 274 | enable_irq(adev->irq); |
| 275 | if (system_state == SYSTEM_BOOTING) |
| 276 | if (request_irq(adev->irq, apbt_interrupt_handler, |
| 277 | IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING, |
| 278 | adev->name, adev)) { |
| 279 | printk(KERN_ERR "Failed request IRQ for APBT%d\n", |
| 280 | adev->num); |
| 281 | } |
| 282 | } |
| 283 | #endif |
| 284 | |
| 285 | static void apbt_enable_int(int n) |
| 286 | { |
| 287 | unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL); |
| 288 | /* clear pending intr */ |
| 289 | apbt_readl(n, APBTMR_N_EOI); |
| 290 | ctrl &= ~APBTMR_CONTROL_INT; |
| 291 | apbt_writel(n, ctrl, APBTMR_N_CONTROL); |
| 292 | } |
| 293 | |
| 294 | static void apbt_disable_int(int n) |
| 295 | { |
| 296 | unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL); |
| 297 | |
| 298 | ctrl |= APBTMR_CONTROL_INT; |
| 299 | apbt_writel(n, ctrl, APBTMR_N_CONTROL); |
| 300 | } |
| 301 | |
| 302 | |
| 303 | static int __init apbt_clockevent_register(void) |
| 304 | { |
| 305 | struct sfi_timer_table_entry *mtmr; |
Jacob Pan | 3010673 | 2010-03-02 21:01:34 -0800 | [diff] [blame^] | 306 | struct apbt_dev *adev = &__get_cpu_var(cpu_apbt_dev); |
Jacob Pan | bb24c47 | 2009-09-02 07:37:17 -0700 | [diff] [blame] | 307 | |
| 308 | mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM); |
| 309 | if (mtmr == NULL) { |
| 310 | printk(KERN_ERR "Failed to get MTMR %d from SFI\n", |
| 311 | APBT_CLOCKEVENT0_NUM); |
| 312 | return -ENODEV; |
| 313 | } |
| 314 | |
| 315 | /* |
| 316 | * We need to calculate the scaled math multiplication factor for |
| 317 | * nanosecond to apbt tick conversion. |
| 318 | * mult = (nsec/cycle)*2^APBT_SHIFT |
| 319 | */ |
| 320 | apbt_clockevent.mult = div_sc((unsigned long) mtmr->freq_hz |
| 321 | , NSEC_PER_SEC, APBT_SHIFT); |
| 322 | |
| 323 | /* Calculate the min / max delta */ |
| 324 | apbt_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, |
| 325 | &apbt_clockevent); |
| 326 | apbt_clockevent.min_delta_ns = clockevent_delta2ns( |
| 327 | APBT_MIN_DELTA_USEC*apbt_freq, |
| 328 | &apbt_clockevent); |
| 329 | /* |
| 330 | * Start apbt with the boot cpu mask and make it |
| 331 | * global if not used for per cpu timer. |
| 332 | */ |
| 333 | apbt_clockevent.cpumask = cpumask_of(smp_processor_id()); |
Jacob Pan | 3010673 | 2010-03-02 21:01:34 -0800 | [diff] [blame^] | 334 | adev->num = smp_processor_id(); |
| 335 | memcpy(&adev->evt, &apbt_clockevent, sizeof(struct clock_event_device)); |
Jacob Pan | bb24c47 | 2009-09-02 07:37:17 -0700 | [diff] [blame] | 336 | |
| 337 | if (disable_apbt_percpu) { |
| 338 | apbt_clockevent.rating = APBT_CLOCKEVENT_RATING - 100; |
Jacob Pan | 3010673 | 2010-03-02 21:01:34 -0800 | [diff] [blame^] | 339 | global_clock_event = &adev->evt; |
Jacob Pan | bb24c47 | 2009-09-02 07:37:17 -0700 | [diff] [blame] | 340 | printk(KERN_DEBUG "%s clockevent registered as global\n", |
| 341 | global_clock_event->name); |
| 342 | } |
| 343 | |
| 344 | if (request_irq(apbt_clockevent.irq, apbt_interrupt_handler, |
| 345 | IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING, |
Jacob Pan | 3010673 | 2010-03-02 21:01:34 -0800 | [diff] [blame^] | 346 | apbt_clockevent.name, adev)) { |
Jacob Pan | bb24c47 | 2009-09-02 07:37:17 -0700 | [diff] [blame] | 347 | printk(KERN_ERR "Failed request IRQ for APBT%d\n", |
| 348 | apbt_clockevent.irq); |
| 349 | } |
| 350 | |
Jacob Pan | 3010673 | 2010-03-02 21:01:34 -0800 | [diff] [blame^] | 351 | clockevents_register_device(&adev->evt); |
Jacob Pan | bb24c47 | 2009-09-02 07:37:17 -0700 | [diff] [blame] | 352 | /* Start APBT 0 interrupts */ |
| 353 | apbt_enable_int(APBT_CLOCKEVENT0_NUM); |
| 354 | |
| 355 | sfi_free_mtmr(mtmr); |
| 356 | return 0; |
| 357 | } |
| 358 | |
| 359 | #ifdef CONFIG_SMP |
| 360 | /* Should be called with per cpu */ |
| 361 | void apbt_setup_secondary_clock(void) |
| 362 | { |
| 363 | struct apbt_dev *adev; |
| 364 | struct clock_event_device *aevt; |
| 365 | int cpu; |
| 366 | |
| 367 | /* Don't register boot CPU clockevent */ |
| 368 | cpu = smp_processor_id(); |
| 369 | if (cpu == boot_cpu_id) |
| 370 | return; |
| 371 | /* |
| 372 | * We need to calculate the scaled math multiplication factor for |
| 373 | * nanosecond to apbt tick conversion. |
| 374 | * mult = (nsec/cycle)*2^APBT_SHIFT |
| 375 | */ |
| 376 | printk(KERN_INFO "Init per CPU clockevent %d\n", cpu); |
| 377 | adev = &per_cpu(cpu_apbt_dev, cpu); |
| 378 | aevt = &adev->evt; |
| 379 | |
| 380 | memcpy(aevt, &apbt_clockevent, sizeof(*aevt)); |
| 381 | aevt->cpumask = cpumask_of(cpu); |
| 382 | aevt->name = adev->name; |
| 383 | aevt->mode = CLOCK_EVT_MODE_UNUSED; |
| 384 | |
| 385 | printk(KERN_INFO "Registering CPU %d clockevent device %s, mask %08x\n", |
| 386 | cpu, aevt->name, *(u32 *)aevt->cpumask); |
| 387 | |
| 388 | apbt_setup_irq(adev); |
| 389 | |
| 390 | clockevents_register_device(aevt); |
| 391 | |
| 392 | apbt_enable_int(cpu); |
| 393 | |
| 394 | return; |
| 395 | } |
| 396 | |
| 397 | /* |
| 398 | * this notify handler process CPU hotplug events. in case of S0i3, nonboot |
| 399 | * cpus are disabled/enabled frequently, for performance reasons, we keep the |
| 400 | * per cpu timer irq registered so that we do need to do free_irq/request_irq. |
| 401 | * |
| 402 | * TODO: it might be more reliable to directly disable percpu clockevent device |
| 403 | * without the notifier chain. currently, cpu 0 may get interrupts from other |
| 404 | * cpu timers during the offline process due to the ordering of notification. |
| 405 | * the extra interrupt is harmless. |
| 406 | */ |
| 407 | static int apbt_cpuhp_notify(struct notifier_block *n, |
| 408 | unsigned long action, void *hcpu) |
| 409 | { |
| 410 | unsigned long cpu = (unsigned long)hcpu; |
| 411 | struct apbt_dev *adev = &per_cpu(cpu_apbt_dev, cpu); |
| 412 | |
| 413 | switch (action & 0xf) { |
| 414 | case CPU_DEAD: |
| 415 | apbt_disable_int(cpu); |
| 416 | if (system_state == SYSTEM_RUNNING) |
| 417 | pr_debug("skipping APBT CPU %lu offline\n", cpu); |
| 418 | else if (adev) { |
| 419 | pr_debug("APBT clockevent for cpu %lu offline\n", cpu); |
| 420 | free_irq(adev->irq, adev); |
| 421 | } |
| 422 | break; |
| 423 | default: |
| 424 | pr_debug(KERN_INFO "APBT notified %lu, no action\n", action); |
| 425 | } |
| 426 | return NOTIFY_OK; |
| 427 | } |
| 428 | |
| 429 | static __init int apbt_late_init(void) |
| 430 | { |
| 431 | if (disable_apbt_percpu) |
| 432 | return 0; |
| 433 | /* This notifier should be called after workqueue is ready */ |
| 434 | hotcpu_notifier(apbt_cpuhp_notify, -20); |
| 435 | return 0; |
| 436 | } |
| 437 | fs_initcall(apbt_late_init); |
| 438 | #else |
| 439 | |
| 440 | void apbt_setup_secondary_clock(void) {} |
| 441 | |
| 442 | #endif /* CONFIG_SMP */ |
| 443 | |
| 444 | static void apbt_set_mode(enum clock_event_mode mode, |
| 445 | struct clock_event_device *evt) |
| 446 | { |
| 447 | unsigned long ctrl; |
| 448 | uint64_t delta; |
| 449 | int timer_num; |
| 450 | struct apbt_dev *adev = EVT_TO_APBT_DEV(evt); |
| 451 | |
| 452 | timer_num = adev->num; |
| 453 | pr_debug("%s CPU %d timer %d mode=%d\n", |
| 454 | __func__, first_cpu(*evt->cpumask), timer_num, mode); |
| 455 | |
| 456 | switch (mode) { |
| 457 | case CLOCK_EVT_MODE_PERIODIC: |
| 458 | delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * apbt_clockevent.mult; |
| 459 | delta >>= apbt_clockevent.shift; |
| 460 | ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL); |
| 461 | ctrl |= APBTMR_CONTROL_MODE_PERIODIC; |
| 462 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); |
| 463 | /* |
| 464 | * DW APB p. 46, have to disable timer before load counter, |
| 465 | * may cause sync problem. |
| 466 | */ |
| 467 | ctrl &= ~APBTMR_CONTROL_ENABLE; |
| 468 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); |
| 469 | udelay(1); |
| 470 | pr_debug("Setting clock period %d for HZ %d\n", (int)delta, HZ); |
| 471 | apbt_writel(timer_num, delta, APBTMR_N_LOAD_COUNT); |
| 472 | ctrl |= APBTMR_CONTROL_ENABLE; |
| 473 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); |
| 474 | break; |
| 475 | /* APB timer does not have one-shot mode, use free running mode */ |
| 476 | case CLOCK_EVT_MODE_ONESHOT: |
| 477 | ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL); |
| 478 | /* |
| 479 | * set free running mode, this mode will let timer reload max |
| 480 | * timeout which will give time (3min on 25MHz clock) to rearm |
| 481 | * the next event, therefore emulate the one-shot mode. |
| 482 | */ |
| 483 | ctrl &= ~APBTMR_CONTROL_ENABLE; |
| 484 | ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC; |
| 485 | |
| 486 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); |
| 487 | /* write again to set free running mode */ |
| 488 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); |
| 489 | |
| 490 | /* |
| 491 | * DW APB p. 46, load counter with all 1s before starting free |
| 492 | * running mode. |
| 493 | */ |
| 494 | apbt_writel(timer_num, ~0, APBTMR_N_LOAD_COUNT); |
| 495 | ctrl &= ~APBTMR_CONTROL_INT; |
| 496 | ctrl |= APBTMR_CONTROL_ENABLE; |
| 497 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); |
| 498 | break; |
| 499 | |
| 500 | case CLOCK_EVT_MODE_UNUSED: |
| 501 | case CLOCK_EVT_MODE_SHUTDOWN: |
| 502 | apbt_disable_int(timer_num); |
| 503 | ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL); |
| 504 | ctrl &= ~APBTMR_CONTROL_ENABLE; |
| 505 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); |
| 506 | break; |
| 507 | |
| 508 | case CLOCK_EVT_MODE_RESUME: |
| 509 | apbt_enable_int(timer_num); |
| 510 | break; |
| 511 | } |
| 512 | } |
| 513 | |
| 514 | static int apbt_next_event(unsigned long delta, |
| 515 | struct clock_event_device *evt) |
| 516 | { |
| 517 | unsigned long ctrl; |
| 518 | int timer_num; |
| 519 | |
| 520 | struct apbt_dev *adev = EVT_TO_APBT_DEV(evt); |
| 521 | |
| 522 | timer_num = adev->num; |
| 523 | /* Disable timer */ |
| 524 | ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL); |
| 525 | ctrl &= ~APBTMR_CONTROL_ENABLE; |
| 526 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); |
| 527 | /* write new count */ |
| 528 | apbt_writel(timer_num, delta, APBTMR_N_LOAD_COUNT); |
| 529 | ctrl |= APBTMR_CONTROL_ENABLE; |
| 530 | apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL); |
| 531 | return 0; |
| 532 | } |
| 533 | |
| 534 | /* |
| 535 | * APB timer clock is not in sync with pclk on Langwell, which translates to |
| 536 | * unreliable read value caused by sampling error. the error does not add up |
| 537 | * overtime and only happens when sampling a 0 as a 1 by mistake. so the time |
| 538 | * would go backwards. the following code is trying to prevent time traveling |
| 539 | * backwards. little bit paranoid. |
| 540 | */ |
| 541 | static cycle_t apbt_read_clocksource(struct clocksource *cs) |
| 542 | { |
| 543 | unsigned long t0, t1, t2; |
| 544 | static unsigned long last_read; |
| 545 | |
| 546 | bad_count: |
| 547 | t1 = apbt_readl(phy_cs_timer_id, |
| 548 | APBTMR_N_CURRENT_VALUE); |
| 549 | t2 = apbt_readl(phy_cs_timer_id, |
| 550 | APBTMR_N_CURRENT_VALUE); |
| 551 | if (unlikely(t1 < t2)) { |
| 552 | pr_debug("APBT: read current count error %lx:%lx:%lx\n", |
| 553 | t1, t2, t2 - t1); |
| 554 | goto bad_count; |
| 555 | } |
| 556 | /* |
| 557 | * check against cached last read, makes sure time does not go back. |
| 558 | * it could be a normal rollover but we will do tripple check anyway |
| 559 | */ |
| 560 | if (unlikely(t2 > last_read)) { |
| 561 | /* check if we have a normal rollover */ |
| 562 | unsigned long raw_intr_status = |
| 563 | apbt_readl_reg(APBTMRS_RAW_INT_STATUS); |
| 564 | /* |
| 565 | * cs timer interrupt is masked but raw intr bit is set if |
| 566 | * rollover occurs. then we read EOI reg to clear it. |
| 567 | */ |
| 568 | if (raw_intr_status & (1 << phy_cs_timer_id)) { |
| 569 | apbt_readl(phy_cs_timer_id, APBTMR_N_EOI); |
| 570 | goto out; |
| 571 | } |
| 572 | pr_debug("APB CS going back %lx:%lx:%lx ", |
| 573 | t2, last_read, t2 - last_read); |
| 574 | bad_count_x3: |
| 575 | pr_debug(KERN_INFO "tripple check enforced\n"); |
| 576 | t0 = apbt_readl(phy_cs_timer_id, |
| 577 | APBTMR_N_CURRENT_VALUE); |
| 578 | udelay(1); |
| 579 | t1 = apbt_readl(phy_cs_timer_id, |
| 580 | APBTMR_N_CURRENT_VALUE); |
| 581 | udelay(1); |
| 582 | t2 = apbt_readl(phy_cs_timer_id, |
| 583 | APBTMR_N_CURRENT_VALUE); |
| 584 | if ((t2 > t1) || (t1 > t0)) { |
| 585 | printk(KERN_ERR "Error: APB CS tripple check failed\n"); |
| 586 | goto bad_count_x3; |
| 587 | } |
| 588 | } |
| 589 | out: |
| 590 | last_read = t2; |
| 591 | return (cycle_t)~t2; |
| 592 | } |
| 593 | |
| 594 | static int apbt_clocksource_register(void) |
| 595 | { |
| 596 | u64 start, now; |
| 597 | cycle_t t1; |
| 598 | |
| 599 | /* Start the counter, use timer 2 as source, timer 0/1 for event */ |
| 600 | apbt_start_counter(phy_cs_timer_id); |
| 601 | |
| 602 | /* Verify whether apbt counter works */ |
| 603 | t1 = apbt_read_clocksource(&clocksource_apbt); |
| 604 | rdtscll(start); |
| 605 | |
| 606 | /* |
| 607 | * We don't know the TSC frequency yet, but waiting for |
| 608 | * 200000 TSC cycles is safe: |
| 609 | * 4 GHz == 50us |
| 610 | * 1 GHz == 200us |
| 611 | */ |
| 612 | do { |
| 613 | rep_nop(); |
| 614 | rdtscll(now); |
| 615 | } while ((now - start) < 200000UL); |
| 616 | |
| 617 | /* APBT is the only always on clocksource, it has to work! */ |
| 618 | if (t1 == apbt_read_clocksource(&clocksource_apbt)) |
| 619 | panic("APBT counter not counting. APBT disabled\n"); |
| 620 | |
| 621 | /* |
| 622 | * initialize and register APBT clocksource |
| 623 | * convert that to ns/clock cycle |
| 624 | * mult = (ns/c) * 2^APBT_SHIFT |
| 625 | */ |
| 626 | clocksource_apbt.mult = div_sc(MSEC_PER_SEC, |
| 627 | (unsigned long) apbt_freq, APBT_SHIFT); |
| 628 | clocksource_register(&clocksource_apbt); |
| 629 | |
| 630 | return 0; |
| 631 | } |
| 632 | |
| 633 | /* |
| 634 | * Early setup the APBT timer, only use timer 0 for booting then switch to |
| 635 | * per CPU timer if possible. |
| 636 | * returns 1 if per cpu apbt is setup |
| 637 | * returns 0 if no per cpu apbt is chosen |
| 638 | * panic if set up failed, this is the only platform timer on Moorestown. |
| 639 | */ |
| 640 | void __init apbt_time_init(void) |
| 641 | { |
| 642 | #ifdef CONFIG_SMP |
| 643 | int i; |
| 644 | struct sfi_timer_table_entry *p_mtmr; |
| 645 | unsigned int percpu_timer; |
| 646 | struct apbt_dev *adev; |
| 647 | #endif |
| 648 | |
| 649 | if (apb_timer_block_enabled) |
| 650 | return; |
| 651 | apbt_set_mapping(); |
| 652 | if (apbt_virt_address) { |
| 653 | pr_debug("Found APBT version 0x%lx\n",\ |
| 654 | apbt_readl_reg(APBTMRS_COMP_VERSION)); |
| 655 | } else |
| 656 | goto out_noapbt; |
| 657 | /* |
| 658 | * Read the frequency and check for a sane value, for ESL model |
| 659 | * we extend the possible clock range to allow time scaling. |
| 660 | */ |
| 661 | |
| 662 | if (apbt_freq < APBT_MIN_FREQ || apbt_freq > APBT_MAX_FREQ) { |
| 663 | pr_debug("APBT has invalid freq 0x%llx\n", apbt_freq); |
| 664 | goto out_noapbt; |
| 665 | } |
| 666 | if (apbt_clocksource_register()) { |
| 667 | pr_debug("APBT has failed to register clocksource\n"); |
| 668 | goto out_noapbt; |
| 669 | } |
| 670 | if (!apbt_clockevent_register()) |
| 671 | apb_timer_block_enabled = 1; |
| 672 | else { |
| 673 | pr_debug("APBT has failed to register clockevent\n"); |
| 674 | goto out_noapbt; |
| 675 | } |
| 676 | #ifdef CONFIG_SMP |
| 677 | /* kernel cmdline disable apb timer, so we will use lapic timers */ |
| 678 | if (disable_apbt_percpu) { |
| 679 | printk(KERN_INFO "apbt: disabled per cpu timer\n"); |
| 680 | return; |
| 681 | } |
| 682 | pr_debug("%s: %d CPUs online\n", __func__, num_online_cpus()); |
| 683 | if (num_possible_cpus() <= sfi_mtimer_num) { |
| 684 | percpu_timer = 1; |
| 685 | apbt_num_timers_used = num_possible_cpus(); |
| 686 | } else { |
| 687 | percpu_timer = 0; |
| 688 | apbt_num_timers_used = 1; |
| 689 | adev = &per_cpu(cpu_apbt_dev, 0); |
| 690 | adev->flags &= ~APBT_DEV_USED; |
| 691 | } |
| 692 | pr_debug("%s: %d APB timers used\n", __func__, apbt_num_timers_used); |
| 693 | |
| 694 | /* here we set up per CPU timer data structure */ |
| 695 | apbt_devs = kzalloc(sizeof(struct apbt_dev) * apbt_num_timers_used, |
| 696 | GFP_KERNEL); |
| 697 | if (!apbt_devs) { |
| 698 | printk(KERN_ERR "Failed to allocate APB timer devices\n"); |
| 699 | return; |
| 700 | } |
| 701 | for (i = 0; i < apbt_num_timers_used; i++) { |
| 702 | adev = &per_cpu(cpu_apbt_dev, i); |
| 703 | adev->num = i; |
| 704 | adev->cpu = i; |
| 705 | p_mtmr = sfi_get_mtmr(i); |
| 706 | if (p_mtmr) { |
| 707 | adev->tick = p_mtmr->freq_hz; |
| 708 | adev->irq = p_mtmr->irq; |
| 709 | } else |
| 710 | printk(KERN_ERR "Failed to get timer for cpu %d\n", i); |
| 711 | adev->count = 0; |
| 712 | sprintf(adev->name, "apbt%d", i); |
| 713 | } |
| 714 | #endif |
| 715 | |
| 716 | return; |
| 717 | |
| 718 | out_noapbt: |
| 719 | apbt_clear_mapping(); |
| 720 | apb_timer_block_enabled = 0; |
| 721 | panic("failed to enable APB timer\n"); |
| 722 | } |
| 723 | |
| 724 | static inline void apbt_disable(int n) |
| 725 | { |
| 726 | if (is_apbt_capable()) { |
| 727 | unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL); |
| 728 | ctrl &= ~APBTMR_CONTROL_ENABLE; |
| 729 | apbt_writel(n, ctrl, APBTMR_N_CONTROL); |
| 730 | } |
| 731 | } |
| 732 | |
| 733 | /* called before apb_timer_enable, use early map */ |
| 734 | unsigned long apbt_quick_calibrate() |
| 735 | { |
| 736 | int i, scale; |
| 737 | u64 old, new; |
| 738 | cycle_t t1, t2; |
| 739 | unsigned long khz = 0; |
| 740 | u32 loop, shift; |
| 741 | |
| 742 | apbt_set_mapping(); |
| 743 | apbt_start_counter(phy_cs_timer_id); |
| 744 | |
| 745 | /* check if the timer can count down, otherwise return */ |
| 746 | old = apbt_read_clocksource(&clocksource_apbt); |
| 747 | i = 10000; |
| 748 | while (--i) { |
| 749 | if (old != apbt_read_clocksource(&clocksource_apbt)) |
| 750 | break; |
| 751 | } |
| 752 | if (!i) |
| 753 | goto failed; |
| 754 | |
| 755 | /* count 16 ms */ |
| 756 | loop = (apbt_freq * 1000) << 4; |
| 757 | |
| 758 | /* restart the timer to ensure it won't get to 0 in the calibration */ |
| 759 | apbt_start_counter(phy_cs_timer_id); |
| 760 | |
| 761 | old = apbt_read_clocksource(&clocksource_apbt); |
| 762 | old += loop; |
| 763 | |
| 764 | t1 = __native_read_tsc(); |
| 765 | |
| 766 | do { |
| 767 | new = apbt_read_clocksource(&clocksource_apbt); |
| 768 | } while (new < old); |
| 769 | |
| 770 | t2 = __native_read_tsc(); |
| 771 | |
| 772 | shift = 5; |
| 773 | if (unlikely(loop >> shift == 0)) { |
| 774 | printk(KERN_INFO |
| 775 | "APBT TSC calibration failed, not enough resolution\n"); |
| 776 | return 0; |
| 777 | } |
| 778 | scale = (int)div_u64((t2 - t1), loop >> shift); |
| 779 | khz = (scale * apbt_freq * 1000) >> shift; |
| 780 | printk(KERN_INFO "TSC freq calculated by APB timer is %lu khz\n", khz); |
| 781 | return khz; |
| 782 | failed: |
| 783 | return 0; |
| 784 | } |