| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  *  linux/fs/namespace.c | 
 | 3 |  * | 
 | 4 |  * (C) Copyright Al Viro 2000, 2001 | 
 | 5 |  *	Released under GPL v2. | 
 | 6 |  * | 
 | 7 |  * Based on code from fs/super.c, copyright Linus Torvalds and others. | 
 | 8 |  * Heavily rewritten. | 
 | 9 |  */ | 
 | 10 |  | 
 | 11 | #include <linux/config.h> | 
 | 12 | #include <linux/syscalls.h> | 
 | 13 | #include <linux/slab.h> | 
 | 14 | #include <linux/sched.h> | 
 | 15 | #include <linux/smp_lock.h> | 
 | 16 | #include <linux/init.h> | 
 | 17 | #include <linux/quotaops.h> | 
 | 18 | #include <linux/acct.h> | 
 | 19 | #include <linux/module.h> | 
 | 20 | #include <linux/seq_file.h> | 
 | 21 | #include <linux/namespace.h> | 
 | 22 | #include <linux/namei.h> | 
 | 23 | #include <linux/security.h> | 
 | 24 | #include <linux/mount.h> | 
 | 25 | #include <asm/uaccess.h> | 
 | 26 | #include <asm/unistd.h> | 
 | 27 |  | 
 | 28 | extern int __init init_rootfs(void); | 
 | 29 |  | 
 | 30 | #ifdef CONFIG_SYSFS | 
 | 31 | extern int __init sysfs_init(void); | 
 | 32 | #else | 
 | 33 | static inline int sysfs_init(void) | 
 | 34 | { | 
 | 35 | 	return 0; | 
 | 36 | } | 
 | 37 | #endif | 
 | 38 |  | 
 | 39 | /* spinlock for vfsmount related operations, inplace of dcache_lock */ | 
 | 40 |  __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock); | 
 | 41 |  | 
 | 42 | static struct list_head *mount_hashtable; | 
 | 43 | static int hash_mask, hash_bits; | 
 | 44 | static kmem_cache_t *mnt_cache;  | 
 | 45 |  | 
 | 46 | static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry) | 
 | 47 | { | 
 | 48 | 	unsigned long tmp = ((unsigned long) mnt / L1_CACHE_BYTES); | 
 | 49 | 	tmp += ((unsigned long) dentry / L1_CACHE_BYTES); | 
 | 50 | 	tmp = tmp + (tmp >> hash_bits); | 
 | 51 | 	return tmp & hash_mask; | 
 | 52 | } | 
 | 53 |  | 
 | 54 | struct vfsmount *alloc_vfsmnt(const char *name) | 
 | 55 | { | 
 | 56 | 	struct vfsmount *mnt = kmem_cache_alloc(mnt_cache, GFP_KERNEL);  | 
 | 57 | 	if (mnt) { | 
 | 58 | 		memset(mnt, 0, sizeof(struct vfsmount)); | 
 | 59 | 		atomic_set(&mnt->mnt_count,1); | 
 | 60 | 		INIT_LIST_HEAD(&mnt->mnt_hash); | 
 | 61 | 		INIT_LIST_HEAD(&mnt->mnt_child); | 
 | 62 | 		INIT_LIST_HEAD(&mnt->mnt_mounts); | 
 | 63 | 		INIT_LIST_HEAD(&mnt->mnt_list); | 
 | 64 | 		INIT_LIST_HEAD(&mnt->mnt_fslink); | 
 | 65 | 		if (name) { | 
 | 66 | 			int size = strlen(name)+1; | 
 | 67 | 			char *newname = kmalloc(size, GFP_KERNEL); | 
 | 68 | 			if (newname) { | 
 | 69 | 				memcpy(newname, name, size); | 
 | 70 | 				mnt->mnt_devname = newname; | 
 | 71 | 			} | 
 | 72 | 		} | 
 | 73 | 	} | 
 | 74 | 	return mnt; | 
 | 75 | } | 
 | 76 |  | 
 | 77 | void free_vfsmnt(struct vfsmount *mnt) | 
 | 78 | { | 
 | 79 | 	kfree(mnt->mnt_devname); | 
 | 80 | 	kmem_cache_free(mnt_cache, mnt); | 
 | 81 | } | 
 | 82 |  | 
 | 83 | /* | 
 | 84 |  * Now, lookup_mnt increments the ref count before returning | 
 | 85 |  * the vfsmount struct. | 
 | 86 |  */ | 
 | 87 | struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) | 
 | 88 | { | 
 | 89 | 	struct list_head * head = mount_hashtable + hash(mnt, dentry); | 
 | 90 | 	struct list_head * tmp = head; | 
 | 91 | 	struct vfsmount *p, *found = NULL; | 
 | 92 |  | 
 | 93 | 	spin_lock(&vfsmount_lock); | 
 | 94 | 	for (;;) { | 
 | 95 | 		tmp = tmp->next; | 
 | 96 | 		p = NULL; | 
 | 97 | 		if (tmp == head) | 
 | 98 | 			break; | 
 | 99 | 		p = list_entry(tmp, struct vfsmount, mnt_hash); | 
 | 100 | 		if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) { | 
 | 101 | 			found = mntget(p); | 
 | 102 | 			break; | 
 | 103 | 		} | 
 | 104 | 	} | 
 | 105 | 	spin_unlock(&vfsmount_lock); | 
 | 106 | 	return found; | 
 | 107 | } | 
 | 108 |  | 
 | 109 | static inline int check_mnt(struct vfsmount *mnt) | 
 | 110 | { | 
 | 111 | 	return mnt->mnt_namespace == current->namespace; | 
 | 112 | } | 
 | 113 |  | 
 | 114 | static void detach_mnt(struct vfsmount *mnt, struct nameidata *old_nd) | 
 | 115 | { | 
 | 116 | 	old_nd->dentry = mnt->mnt_mountpoint; | 
 | 117 | 	old_nd->mnt = mnt->mnt_parent; | 
 | 118 | 	mnt->mnt_parent = mnt; | 
 | 119 | 	mnt->mnt_mountpoint = mnt->mnt_root; | 
 | 120 | 	list_del_init(&mnt->mnt_child); | 
 | 121 | 	list_del_init(&mnt->mnt_hash); | 
 | 122 | 	old_nd->dentry->d_mounted--; | 
 | 123 | } | 
 | 124 |  | 
 | 125 | static void attach_mnt(struct vfsmount *mnt, struct nameidata *nd) | 
 | 126 | { | 
 | 127 | 	mnt->mnt_parent = mntget(nd->mnt); | 
 | 128 | 	mnt->mnt_mountpoint = dget(nd->dentry); | 
 | 129 | 	list_add(&mnt->mnt_hash, mount_hashtable+hash(nd->mnt, nd->dentry)); | 
 | 130 | 	list_add_tail(&mnt->mnt_child, &nd->mnt->mnt_mounts); | 
 | 131 | 	nd->dentry->d_mounted++; | 
 | 132 | } | 
 | 133 |  | 
 | 134 | static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root) | 
 | 135 | { | 
 | 136 | 	struct list_head *next = p->mnt_mounts.next; | 
 | 137 | 	if (next == &p->mnt_mounts) { | 
 | 138 | 		while (1) { | 
 | 139 | 			if (p == root) | 
 | 140 | 				return NULL; | 
 | 141 | 			next = p->mnt_child.next; | 
 | 142 | 			if (next != &p->mnt_parent->mnt_mounts) | 
 | 143 | 				break; | 
 | 144 | 			p = p->mnt_parent; | 
 | 145 | 		} | 
 | 146 | 	} | 
 | 147 | 	return list_entry(next, struct vfsmount, mnt_child); | 
 | 148 | } | 
 | 149 |  | 
 | 150 | static struct vfsmount * | 
 | 151 | clone_mnt(struct vfsmount *old, struct dentry *root) | 
 | 152 | { | 
 | 153 | 	struct super_block *sb = old->mnt_sb; | 
 | 154 | 	struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname); | 
 | 155 |  | 
 | 156 | 	if (mnt) { | 
 | 157 | 		mnt->mnt_flags = old->mnt_flags; | 
 | 158 | 		atomic_inc(&sb->s_active); | 
 | 159 | 		mnt->mnt_sb = sb; | 
 | 160 | 		mnt->mnt_root = dget(root); | 
 | 161 | 		mnt->mnt_mountpoint = mnt->mnt_root; | 
 | 162 | 		mnt->mnt_parent = mnt; | 
 | 163 | 		mnt->mnt_namespace = old->mnt_namespace; | 
 | 164 |  | 
 | 165 | 		/* stick the duplicate mount on the same expiry list | 
 | 166 | 		 * as the original if that was on one */ | 
 | 167 | 		spin_lock(&vfsmount_lock); | 
 | 168 | 		if (!list_empty(&old->mnt_fslink)) | 
 | 169 | 			list_add(&mnt->mnt_fslink, &old->mnt_fslink); | 
 | 170 | 		spin_unlock(&vfsmount_lock); | 
 | 171 | 	} | 
 | 172 | 	return mnt; | 
 | 173 | } | 
 | 174 |  | 
 | 175 | void __mntput(struct vfsmount *mnt) | 
 | 176 | { | 
 | 177 | 	struct super_block *sb = mnt->mnt_sb; | 
 | 178 | 	dput(mnt->mnt_root); | 
 | 179 | 	free_vfsmnt(mnt); | 
 | 180 | 	deactivate_super(sb); | 
 | 181 | } | 
 | 182 |  | 
 | 183 | EXPORT_SYMBOL(__mntput); | 
 | 184 |  | 
 | 185 | /* iterator */ | 
 | 186 | static void *m_start(struct seq_file *m, loff_t *pos) | 
 | 187 | { | 
 | 188 | 	struct namespace *n = m->private; | 
 | 189 | 	struct list_head *p; | 
 | 190 | 	loff_t l = *pos; | 
 | 191 |  | 
 | 192 | 	down_read(&n->sem); | 
 | 193 | 	list_for_each(p, &n->list) | 
 | 194 | 		if (!l--) | 
 | 195 | 			return list_entry(p, struct vfsmount, mnt_list); | 
 | 196 | 	return NULL; | 
 | 197 | } | 
 | 198 |  | 
 | 199 | static void *m_next(struct seq_file *m, void *v, loff_t *pos) | 
 | 200 | { | 
 | 201 | 	struct namespace *n = m->private; | 
 | 202 | 	struct list_head *p = ((struct vfsmount *)v)->mnt_list.next; | 
 | 203 | 	(*pos)++; | 
 | 204 | 	return p==&n->list ? NULL : list_entry(p, struct vfsmount, mnt_list); | 
 | 205 | } | 
 | 206 |  | 
 | 207 | static void m_stop(struct seq_file *m, void *v) | 
 | 208 | { | 
 | 209 | 	struct namespace *n = m->private; | 
 | 210 | 	up_read(&n->sem); | 
 | 211 | } | 
 | 212 |  | 
 | 213 | static inline void mangle(struct seq_file *m, const char *s) | 
 | 214 | { | 
 | 215 | 	seq_escape(m, s, " \t\n\\"); | 
 | 216 | } | 
 | 217 |  | 
 | 218 | static int show_vfsmnt(struct seq_file *m, void *v) | 
 | 219 | { | 
 | 220 | 	struct vfsmount *mnt = v; | 
 | 221 | 	int err = 0; | 
 | 222 | 	static struct proc_fs_info { | 
 | 223 | 		int flag; | 
 | 224 | 		char *str; | 
 | 225 | 	} fs_info[] = { | 
 | 226 | 		{ MS_SYNCHRONOUS, ",sync" }, | 
 | 227 | 		{ MS_DIRSYNC, ",dirsync" }, | 
 | 228 | 		{ MS_MANDLOCK, ",mand" }, | 
 | 229 | 		{ MS_NOATIME, ",noatime" }, | 
 | 230 | 		{ MS_NODIRATIME, ",nodiratime" }, | 
 | 231 | 		{ 0, NULL } | 
 | 232 | 	}; | 
 | 233 | 	static struct proc_fs_info mnt_info[] = { | 
 | 234 | 		{ MNT_NOSUID, ",nosuid" }, | 
 | 235 | 		{ MNT_NODEV, ",nodev" }, | 
 | 236 | 		{ MNT_NOEXEC, ",noexec" }, | 
 | 237 | 		{ 0, NULL } | 
 | 238 | 	}; | 
 | 239 | 	struct proc_fs_info *fs_infop; | 
 | 240 |  | 
 | 241 | 	mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none"); | 
 | 242 | 	seq_putc(m, ' '); | 
 | 243 | 	seq_path(m, mnt, mnt->mnt_root, " \t\n\\"); | 
 | 244 | 	seq_putc(m, ' '); | 
 | 245 | 	mangle(m, mnt->mnt_sb->s_type->name); | 
 | 246 | 	seq_puts(m, mnt->mnt_sb->s_flags & MS_RDONLY ? " ro" : " rw"); | 
 | 247 | 	for (fs_infop = fs_info; fs_infop->flag; fs_infop++) { | 
 | 248 | 		if (mnt->mnt_sb->s_flags & fs_infop->flag) | 
 | 249 | 			seq_puts(m, fs_infop->str); | 
 | 250 | 	} | 
 | 251 | 	for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) { | 
 | 252 | 		if (mnt->mnt_flags & fs_infop->flag) | 
 | 253 | 			seq_puts(m, fs_infop->str); | 
 | 254 | 	} | 
 | 255 | 	if (mnt->mnt_sb->s_op->show_options) | 
 | 256 | 		err = mnt->mnt_sb->s_op->show_options(m, mnt); | 
 | 257 | 	seq_puts(m, " 0 0\n"); | 
 | 258 | 	return err; | 
 | 259 | } | 
 | 260 |  | 
 | 261 | struct seq_operations mounts_op = { | 
 | 262 | 	.start	= m_start, | 
 | 263 | 	.next	= m_next, | 
 | 264 | 	.stop	= m_stop, | 
 | 265 | 	.show	= show_vfsmnt | 
 | 266 | }; | 
 | 267 |  | 
 | 268 | /** | 
 | 269 |  * may_umount_tree - check if a mount tree is busy | 
 | 270 |  * @mnt: root of mount tree | 
 | 271 |  * | 
 | 272 |  * This is called to check if a tree of mounts has any | 
 | 273 |  * open files, pwds, chroots or sub mounts that are | 
 | 274 |  * busy. | 
 | 275 |  */ | 
 | 276 | int may_umount_tree(struct vfsmount *mnt) | 
 | 277 | { | 
 | 278 | 	struct list_head *next; | 
 | 279 | 	struct vfsmount *this_parent = mnt; | 
 | 280 | 	int actual_refs; | 
 | 281 | 	int minimum_refs; | 
 | 282 |  | 
 | 283 | 	spin_lock(&vfsmount_lock); | 
 | 284 | 	actual_refs = atomic_read(&mnt->mnt_count); | 
 | 285 | 	minimum_refs = 2; | 
 | 286 | repeat: | 
 | 287 | 	next = this_parent->mnt_mounts.next; | 
 | 288 | resume: | 
 | 289 | 	while (next != &this_parent->mnt_mounts) { | 
 | 290 | 		struct vfsmount *p = list_entry(next, struct vfsmount, mnt_child); | 
 | 291 |  | 
 | 292 | 		next = next->next; | 
 | 293 |  | 
 | 294 | 		actual_refs += atomic_read(&p->mnt_count); | 
 | 295 | 		minimum_refs += 2; | 
 | 296 |  | 
 | 297 | 		if (!list_empty(&p->mnt_mounts)) { | 
 | 298 | 			this_parent = p; | 
 | 299 | 			goto repeat; | 
 | 300 | 		} | 
 | 301 | 	} | 
 | 302 |  | 
 | 303 | 	if (this_parent != mnt) { | 
 | 304 | 		next = this_parent->mnt_child.next; | 
 | 305 | 		this_parent = this_parent->mnt_parent; | 
 | 306 | 		goto resume; | 
 | 307 | 	} | 
 | 308 | 	spin_unlock(&vfsmount_lock); | 
 | 309 |  | 
 | 310 | 	if (actual_refs > minimum_refs) | 
 | 311 | 		return -EBUSY; | 
 | 312 |  | 
 | 313 | 	return 0; | 
 | 314 | } | 
 | 315 |  | 
 | 316 | EXPORT_SYMBOL(may_umount_tree); | 
 | 317 |  | 
 | 318 | /** | 
 | 319 |  * may_umount - check if a mount point is busy | 
 | 320 |  * @mnt: root of mount | 
 | 321 |  * | 
 | 322 |  * This is called to check if a mount point has any | 
 | 323 |  * open files, pwds, chroots or sub mounts. If the | 
 | 324 |  * mount has sub mounts this will return busy | 
 | 325 |  * regardless of whether the sub mounts are busy. | 
 | 326 |  * | 
 | 327 |  * Doesn't take quota and stuff into account. IOW, in some cases it will | 
 | 328 |  * give false negatives. The main reason why it's here is that we need | 
 | 329 |  * a non-destructive way to look for easily umountable filesystems. | 
 | 330 |  */ | 
 | 331 | int may_umount(struct vfsmount *mnt) | 
 | 332 | { | 
 | 333 | 	if (atomic_read(&mnt->mnt_count) > 2) | 
 | 334 | 		return -EBUSY; | 
 | 335 | 	return 0; | 
 | 336 | } | 
 | 337 |  | 
 | 338 | EXPORT_SYMBOL(may_umount); | 
 | 339 |  | 
 | 340 | void umount_tree(struct vfsmount *mnt) | 
 | 341 | { | 
 | 342 | 	struct vfsmount *p; | 
 | 343 | 	LIST_HEAD(kill); | 
 | 344 |  | 
 | 345 | 	for (p = mnt; p; p = next_mnt(p, mnt)) { | 
 | 346 | 		list_del(&p->mnt_list); | 
 | 347 | 		list_add(&p->mnt_list, &kill); | 
 | 348 | 	} | 
 | 349 |  | 
 | 350 | 	while (!list_empty(&kill)) { | 
 | 351 | 		mnt = list_entry(kill.next, struct vfsmount, mnt_list); | 
 | 352 | 		list_del_init(&mnt->mnt_list); | 
 | 353 | 		list_del_init(&mnt->mnt_fslink); | 
 | 354 | 		if (mnt->mnt_parent == mnt) { | 
 | 355 | 			spin_unlock(&vfsmount_lock); | 
 | 356 | 		} else { | 
 | 357 | 			struct nameidata old_nd; | 
 | 358 | 			detach_mnt(mnt, &old_nd); | 
 | 359 | 			spin_unlock(&vfsmount_lock); | 
 | 360 | 			path_release(&old_nd); | 
 | 361 | 		} | 
 | 362 | 		mntput(mnt); | 
 | 363 | 		spin_lock(&vfsmount_lock); | 
 | 364 | 	} | 
 | 365 | } | 
 | 366 |  | 
 | 367 | static int do_umount(struct vfsmount *mnt, int flags) | 
 | 368 | { | 
 | 369 | 	struct super_block * sb = mnt->mnt_sb; | 
 | 370 | 	int retval; | 
 | 371 |  | 
 | 372 | 	retval = security_sb_umount(mnt, flags); | 
 | 373 | 	if (retval) | 
 | 374 | 		return retval; | 
 | 375 |  | 
 | 376 | 	/* | 
 | 377 | 	 * Allow userspace to request a mountpoint be expired rather than | 
 | 378 | 	 * unmounting unconditionally. Unmount only happens if: | 
 | 379 | 	 *  (1) the mark is already set (the mark is cleared by mntput()) | 
 | 380 | 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] | 
 | 381 | 	 */ | 
 | 382 | 	if (flags & MNT_EXPIRE) { | 
 | 383 | 		if (mnt == current->fs->rootmnt || | 
 | 384 | 		    flags & (MNT_FORCE | MNT_DETACH)) | 
 | 385 | 			return -EINVAL; | 
 | 386 |  | 
 | 387 | 		if (atomic_read(&mnt->mnt_count) != 2) | 
 | 388 | 			return -EBUSY; | 
 | 389 |  | 
 | 390 | 		if (!xchg(&mnt->mnt_expiry_mark, 1)) | 
 | 391 | 			return -EAGAIN; | 
 | 392 | 	} | 
 | 393 |  | 
 | 394 | 	/* | 
 | 395 | 	 * If we may have to abort operations to get out of this | 
 | 396 | 	 * mount, and they will themselves hold resources we must | 
 | 397 | 	 * allow the fs to do things. In the Unix tradition of | 
 | 398 | 	 * 'Gee thats tricky lets do it in userspace' the umount_begin | 
 | 399 | 	 * might fail to complete on the first run through as other tasks | 
 | 400 | 	 * must return, and the like. Thats for the mount program to worry | 
 | 401 | 	 * about for the moment. | 
 | 402 | 	 */ | 
 | 403 |  | 
 | 404 | 	lock_kernel(); | 
 | 405 | 	if( (flags&MNT_FORCE) && sb->s_op->umount_begin) | 
 | 406 | 		sb->s_op->umount_begin(sb); | 
 | 407 | 	unlock_kernel(); | 
 | 408 |  | 
 | 409 | 	/* | 
 | 410 | 	 * No sense to grab the lock for this test, but test itself looks | 
 | 411 | 	 * somewhat bogus. Suggestions for better replacement? | 
 | 412 | 	 * Ho-hum... In principle, we might treat that as umount + switch | 
 | 413 | 	 * to rootfs. GC would eventually take care of the old vfsmount. | 
 | 414 | 	 * Actually it makes sense, especially if rootfs would contain a | 
 | 415 | 	 * /reboot - static binary that would close all descriptors and | 
 | 416 | 	 * call reboot(9). Then init(8) could umount root and exec /reboot. | 
 | 417 | 	 */ | 
 | 418 | 	if (mnt == current->fs->rootmnt && !(flags & MNT_DETACH)) { | 
 | 419 | 		/* | 
 | 420 | 		 * Special case for "unmounting" root ... | 
 | 421 | 		 * we just try to remount it readonly. | 
 | 422 | 		 */ | 
 | 423 | 		down_write(&sb->s_umount); | 
 | 424 | 		if (!(sb->s_flags & MS_RDONLY)) { | 
 | 425 | 			lock_kernel(); | 
 | 426 | 			DQUOT_OFF(sb); | 
 | 427 | 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0); | 
 | 428 | 			unlock_kernel(); | 
 | 429 | 		} | 
 | 430 | 		up_write(&sb->s_umount); | 
 | 431 | 		return retval; | 
 | 432 | 	} | 
 | 433 |  | 
 | 434 | 	down_write(¤t->namespace->sem); | 
 | 435 | 	spin_lock(&vfsmount_lock); | 
 | 436 |  | 
 | 437 | 	if (atomic_read(&sb->s_active) == 1) { | 
 | 438 | 		/* last instance - try to be smart */ | 
 | 439 | 		spin_unlock(&vfsmount_lock); | 
 | 440 | 		lock_kernel(); | 
 | 441 | 		DQUOT_OFF(sb); | 
 | 442 | 		acct_auto_close(sb); | 
 | 443 | 		unlock_kernel(); | 
 | 444 | 		security_sb_umount_close(mnt); | 
 | 445 | 		spin_lock(&vfsmount_lock); | 
 | 446 | 	} | 
 | 447 | 	retval = -EBUSY; | 
 | 448 | 	if (atomic_read(&mnt->mnt_count) == 2 || flags & MNT_DETACH) { | 
 | 449 | 		if (!list_empty(&mnt->mnt_list)) | 
 | 450 | 			umount_tree(mnt); | 
 | 451 | 		retval = 0; | 
 | 452 | 	} | 
 | 453 | 	spin_unlock(&vfsmount_lock); | 
 | 454 | 	if (retval) | 
 | 455 | 		security_sb_umount_busy(mnt); | 
 | 456 | 	up_write(¤t->namespace->sem); | 
 | 457 | 	return retval; | 
 | 458 | } | 
 | 459 |  | 
 | 460 | /* | 
 | 461 |  * Now umount can handle mount points as well as block devices. | 
 | 462 |  * This is important for filesystems which use unnamed block devices. | 
 | 463 |  * | 
 | 464 |  * We now support a flag for forced unmount like the other 'big iron' | 
 | 465 |  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD | 
 | 466 |  */ | 
 | 467 |  | 
 | 468 | asmlinkage long sys_umount(char __user * name, int flags) | 
 | 469 | { | 
 | 470 | 	struct nameidata nd; | 
 | 471 | 	int retval; | 
 | 472 |  | 
 | 473 | 	retval = __user_walk(name, LOOKUP_FOLLOW, &nd); | 
 | 474 | 	if (retval) | 
 | 475 | 		goto out; | 
 | 476 | 	retval = -EINVAL; | 
 | 477 | 	if (nd.dentry != nd.mnt->mnt_root) | 
 | 478 | 		goto dput_and_out; | 
 | 479 | 	if (!check_mnt(nd.mnt)) | 
 | 480 | 		goto dput_and_out; | 
 | 481 |  | 
 | 482 | 	retval = -EPERM; | 
 | 483 | 	if (!capable(CAP_SYS_ADMIN)) | 
 | 484 | 		goto dput_and_out; | 
 | 485 |  | 
 | 486 | 	retval = do_umount(nd.mnt, flags); | 
 | 487 | dput_and_out: | 
 | 488 | 	path_release_on_umount(&nd); | 
 | 489 | out: | 
 | 490 | 	return retval; | 
 | 491 | } | 
 | 492 |  | 
 | 493 | #ifdef __ARCH_WANT_SYS_OLDUMOUNT | 
 | 494 |  | 
 | 495 | /* | 
 | 496 |  *	The 2.0 compatible umount. No flags.  | 
 | 497 |  */ | 
 | 498 |   | 
 | 499 | asmlinkage long sys_oldumount(char __user * name) | 
 | 500 | { | 
 | 501 | 	return sys_umount(name,0); | 
 | 502 | } | 
 | 503 |  | 
 | 504 | #endif | 
 | 505 |  | 
 | 506 | static int mount_is_safe(struct nameidata *nd) | 
 | 507 | { | 
 | 508 | 	if (capable(CAP_SYS_ADMIN)) | 
 | 509 | 		return 0; | 
 | 510 | 	return -EPERM; | 
 | 511 | #ifdef notyet | 
 | 512 | 	if (S_ISLNK(nd->dentry->d_inode->i_mode)) | 
 | 513 | 		return -EPERM; | 
 | 514 | 	if (nd->dentry->d_inode->i_mode & S_ISVTX) { | 
 | 515 | 		if (current->uid != nd->dentry->d_inode->i_uid) | 
 | 516 | 			return -EPERM; | 
 | 517 | 	} | 
 | 518 | 	if (permission(nd->dentry->d_inode, MAY_WRITE, nd)) | 
 | 519 | 		return -EPERM; | 
 | 520 | 	return 0; | 
 | 521 | #endif | 
 | 522 | } | 
 | 523 |  | 
 | 524 | static int | 
 | 525 | lives_below_in_same_fs(struct dentry *d, struct dentry *dentry) | 
 | 526 | { | 
 | 527 | 	while (1) { | 
 | 528 | 		if (d == dentry) | 
 | 529 | 			return 1; | 
 | 530 | 		if (d == NULL || d == d->d_parent) | 
 | 531 | 			return 0; | 
 | 532 | 		d = d->d_parent; | 
 | 533 | 	} | 
 | 534 | } | 
 | 535 |  | 
 | 536 | static struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry) | 
 | 537 | { | 
 | 538 | 	struct vfsmount *res, *p, *q, *r, *s; | 
 | 539 | 	struct list_head *h; | 
 | 540 | 	struct nameidata nd; | 
 | 541 |  | 
 | 542 | 	res = q = clone_mnt(mnt, dentry); | 
 | 543 | 	if (!q) | 
 | 544 | 		goto Enomem; | 
 | 545 | 	q->mnt_mountpoint = mnt->mnt_mountpoint; | 
 | 546 |  | 
 | 547 | 	p = mnt; | 
 | 548 | 	for (h = mnt->mnt_mounts.next; h != &mnt->mnt_mounts; h = h->next) { | 
 | 549 | 		r = list_entry(h, struct vfsmount, mnt_child); | 
 | 550 | 		if (!lives_below_in_same_fs(r->mnt_mountpoint, dentry)) | 
 | 551 | 			continue; | 
 | 552 |  | 
 | 553 | 		for (s = r; s; s = next_mnt(s, r)) { | 
 | 554 | 			while (p != s->mnt_parent) { | 
 | 555 | 				p = p->mnt_parent; | 
 | 556 | 				q = q->mnt_parent; | 
 | 557 | 			} | 
 | 558 | 			p = s; | 
 | 559 | 			nd.mnt = q; | 
 | 560 | 			nd.dentry = p->mnt_mountpoint; | 
 | 561 | 			q = clone_mnt(p, p->mnt_root); | 
 | 562 | 			if (!q) | 
 | 563 | 				goto Enomem; | 
 | 564 | 			spin_lock(&vfsmount_lock); | 
 | 565 | 			list_add_tail(&q->mnt_list, &res->mnt_list); | 
 | 566 | 			attach_mnt(q, &nd); | 
 | 567 | 			spin_unlock(&vfsmount_lock); | 
 | 568 | 		} | 
 | 569 | 	} | 
 | 570 | 	return res; | 
 | 571 |  Enomem: | 
 | 572 | 	if (res) { | 
 | 573 | 		spin_lock(&vfsmount_lock); | 
 | 574 | 		umount_tree(res); | 
 | 575 | 		spin_unlock(&vfsmount_lock); | 
 | 576 | 	} | 
 | 577 | 	return NULL; | 
 | 578 | } | 
 | 579 |  | 
 | 580 | static int graft_tree(struct vfsmount *mnt, struct nameidata *nd) | 
 | 581 | { | 
 | 582 | 	int err; | 
 | 583 | 	if (mnt->mnt_sb->s_flags & MS_NOUSER) | 
 | 584 | 		return -EINVAL; | 
 | 585 |  | 
 | 586 | 	if (S_ISDIR(nd->dentry->d_inode->i_mode) != | 
 | 587 | 	      S_ISDIR(mnt->mnt_root->d_inode->i_mode)) | 
 | 588 | 		return -ENOTDIR; | 
 | 589 |  | 
 | 590 | 	err = -ENOENT; | 
 | 591 | 	down(&nd->dentry->d_inode->i_sem); | 
 | 592 | 	if (IS_DEADDIR(nd->dentry->d_inode)) | 
 | 593 | 		goto out_unlock; | 
 | 594 |  | 
 | 595 | 	err = security_sb_check_sb(mnt, nd); | 
 | 596 | 	if (err) | 
 | 597 | 		goto out_unlock; | 
 | 598 |  | 
 | 599 | 	err = -ENOENT; | 
 | 600 | 	spin_lock(&vfsmount_lock); | 
 | 601 | 	if (IS_ROOT(nd->dentry) || !d_unhashed(nd->dentry)) { | 
 | 602 | 		struct list_head head; | 
 | 603 |  | 
 | 604 | 		attach_mnt(mnt, nd); | 
 | 605 | 		list_add_tail(&head, &mnt->mnt_list); | 
 | 606 | 		list_splice(&head, current->namespace->list.prev); | 
 | 607 | 		mntget(mnt); | 
 | 608 | 		err = 0; | 
 | 609 | 	} | 
 | 610 | 	spin_unlock(&vfsmount_lock); | 
 | 611 | out_unlock: | 
 | 612 | 	up(&nd->dentry->d_inode->i_sem); | 
 | 613 | 	if (!err) | 
 | 614 | 		security_sb_post_addmount(mnt, nd); | 
 | 615 | 	return err; | 
 | 616 | } | 
 | 617 |  | 
 | 618 | /* | 
 | 619 |  * do loopback mount. | 
 | 620 |  */ | 
 | 621 | static int do_loopback(struct nameidata *nd, char *old_name, int recurse) | 
 | 622 | { | 
 | 623 | 	struct nameidata old_nd; | 
 | 624 | 	struct vfsmount *mnt = NULL; | 
 | 625 | 	int err = mount_is_safe(nd); | 
 | 626 | 	if (err) | 
 | 627 | 		return err; | 
 | 628 | 	if (!old_name || !*old_name) | 
 | 629 | 		return -EINVAL; | 
 | 630 | 	err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd); | 
 | 631 | 	if (err) | 
 | 632 | 		return err; | 
 | 633 |  | 
 | 634 | 	down_write(¤t->namespace->sem); | 
 | 635 | 	err = -EINVAL; | 
 | 636 | 	if (check_mnt(nd->mnt) && (!recurse || check_mnt(old_nd.mnt))) { | 
 | 637 | 		err = -ENOMEM; | 
 | 638 | 		if (recurse) | 
 | 639 | 			mnt = copy_tree(old_nd.mnt, old_nd.dentry); | 
 | 640 | 		else | 
 | 641 | 			mnt = clone_mnt(old_nd.mnt, old_nd.dentry); | 
 | 642 | 	} | 
 | 643 |  | 
 | 644 | 	if (mnt) { | 
 | 645 | 		/* stop bind mounts from expiring */ | 
 | 646 | 		spin_lock(&vfsmount_lock); | 
 | 647 | 		list_del_init(&mnt->mnt_fslink); | 
 | 648 | 		spin_unlock(&vfsmount_lock); | 
 | 649 |  | 
 | 650 | 		err = graft_tree(mnt, nd); | 
 | 651 | 		if (err) { | 
 | 652 | 			spin_lock(&vfsmount_lock); | 
 | 653 | 			umount_tree(mnt); | 
 | 654 | 			spin_unlock(&vfsmount_lock); | 
 | 655 | 		} else | 
 | 656 | 			mntput(mnt); | 
 | 657 | 	} | 
 | 658 |  | 
 | 659 | 	up_write(¤t->namespace->sem); | 
 | 660 | 	path_release(&old_nd); | 
 | 661 | 	return err; | 
 | 662 | } | 
 | 663 |  | 
 | 664 | /* | 
 | 665 |  * change filesystem flags. dir should be a physical root of filesystem. | 
 | 666 |  * If you've mounted a non-root directory somewhere and want to do remount | 
 | 667 |  * on it - tough luck. | 
 | 668 |  */ | 
 | 669 |  | 
 | 670 | static int do_remount(struct nameidata *nd, int flags, int mnt_flags, | 
 | 671 | 		      void *data) | 
 | 672 | { | 
 | 673 | 	int err; | 
 | 674 | 	struct super_block * sb = nd->mnt->mnt_sb; | 
 | 675 |  | 
 | 676 | 	if (!capable(CAP_SYS_ADMIN)) | 
 | 677 | 		return -EPERM; | 
 | 678 |  | 
 | 679 | 	if (!check_mnt(nd->mnt)) | 
 | 680 | 		return -EINVAL; | 
 | 681 |  | 
 | 682 | 	if (nd->dentry != nd->mnt->mnt_root) | 
 | 683 | 		return -EINVAL; | 
 | 684 |  | 
 | 685 | 	down_write(&sb->s_umount); | 
 | 686 | 	err = do_remount_sb(sb, flags, data, 0); | 
 | 687 | 	if (!err) | 
 | 688 | 		nd->mnt->mnt_flags=mnt_flags; | 
 | 689 | 	up_write(&sb->s_umount); | 
 | 690 | 	if (!err) | 
 | 691 | 		security_sb_post_remount(nd->mnt, flags, data); | 
 | 692 | 	return err; | 
 | 693 | } | 
 | 694 |  | 
 | 695 | static int do_move_mount(struct nameidata *nd, char *old_name) | 
 | 696 | { | 
 | 697 | 	struct nameidata old_nd, parent_nd; | 
 | 698 | 	struct vfsmount *p; | 
 | 699 | 	int err = 0; | 
 | 700 | 	if (!capable(CAP_SYS_ADMIN)) | 
 | 701 | 		return -EPERM; | 
 | 702 | 	if (!old_name || !*old_name) | 
 | 703 | 		return -EINVAL; | 
 | 704 | 	err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd); | 
 | 705 | 	if (err) | 
 | 706 | 		return err; | 
 | 707 |  | 
 | 708 | 	down_write(¤t->namespace->sem); | 
 | 709 | 	while(d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry)) | 
 | 710 | 		; | 
 | 711 | 	err = -EINVAL; | 
 | 712 | 	if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt)) | 
 | 713 | 		goto out; | 
 | 714 |  | 
 | 715 | 	err = -ENOENT; | 
 | 716 | 	down(&nd->dentry->d_inode->i_sem); | 
 | 717 | 	if (IS_DEADDIR(nd->dentry->d_inode)) | 
 | 718 | 		goto out1; | 
 | 719 |  | 
 | 720 | 	spin_lock(&vfsmount_lock); | 
 | 721 | 	if (!IS_ROOT(nd->dentry) && d_unhashed(nd->dentry)) | 
 | 722 | 		goto out2; | 
 | 723 |  | 
 | 724 | 	err = -EINVAL; | 
 | 725 | 	if (old_nd.dentry != old_nd.mnt->mnt_root) | 
 | 726 | 		goto out2; | 
 | 727 |  | 
 | 728 | 	if (old_nd.mnt == old_nd.mnt->mnt_parent) | 
 | 729 | 		goto out2; | 
 | 730 |  | 
 | 731 | 	if (S_ISDIR(nd->dentry->d_inode->i_mode) != | 
 | 732 | 	      S_ISDIR(old_nd.dentry->d_inode->i_mode)) | 
 | 733 | 		goto out2; | 
 | 734 |  | 
 | 735 | 	err = -ELOOP; | 
 | 736 | 	for (p = nd->mnt; p->mnt_parent!=p; p = p->mnt_parent) | 
 | 737 | 		if (p == old_nd.mnt) | 
 | 738 | 			goto out2; | 
 | 739 | 	err = 0; | 
 | 740 |  | 
 | 741 | 	detach_mnt(old_nd.mnt, &parent_nd); | 
 | 742 | 	attach_mnt(old_nd.mnt, nd); | 
 | 743 |  | 
 | 744 | 	/* if the mount is moved, it should no longer be expire | 
 | 745 | 	 * automatically */ | 
 | 746 | 	list_del_init(&old_nd.mnt->mnt_fslink); | 
 | 747 | out2: | 
 | 748 | 	spin_unlock(&vfsmount_lock); | 
 | 749 | out1: | 
 | 750 | 	up(&nd->dentry->d_inode->i_sem); | 
 | 751 | out: | 
 | 752 | 	up_write(¤t->namespace->sem); | 
 | 753 | 	if (!err) | 
 | 754 | 		path_release(&parent_nd); | 
 | 755 | 	path_release(&old_nd); | 
 | 756 | 	return err; | 
 | 757 | } | 
 | 758 |  | 
 | 759 | /* | 
 | 760 |  * create a new mount for userspace and request it to be added into the | 
 | 761 |  * namespace's tree | 
 | 762 |  */ | 
 | 763 | static int do_new_mount(struct nameidata *nd, char *type, int flags, | 
 | 764 | 			int mnt_flags, char *name, void *data) | 
 | 765 | { | 
 | 766 | 	struct vfsmount *mnt; | 
 | 767 |  | 
 | 768 | 	if (!type || !memchr(type, 0, PAGE_SIZE)) | 
 | 769 | 		return -EINVAL; | 
 | 770 |  | 
 | 771 | 	/* we need capabilities... */ | 
 | 772 | 	if (!capable(CAP_SYS_ADMIN)) | 
 | 773 | 		return -EPERM; | 
 | 774 |  | 
 | 775 | 	mnt = do_kern_mount(type, flags, name, data); | 
 | 776 | 	if (IS_ERR(mnt)) | 
 | 777 | 		return PTR_ERR(mnt); | 
 | 778 |  | 
 | 779 | 	return do_add_mount(mnt, nd, mnt_flags, NULL); | 
 | 780 | } | 
 | 781 |  | 
 | 782 | /* | 
 | 783 |  * add a mount into a namespace's mount tree | 
 | 784 |  * - provide the option of adding the new mount to an expiration list | 
 | 785 |  */ | 
 | 786 | int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd, | 
 | 787 | 		 int mnt_flags, struct list_head *fslist) | 
 | 788 | { | 
 | 789 | 	int err; | 
 | 790 |  | 
 | 791 | 	down_write(¤t->namespace->sem); | 
 | 792 | 	/* Something was mounted here while we slept */ | 
 | 793 | 	while(d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry)) | 
 | 794 | 		; | 
 | 795 | 	err = -EINVAL; | 
 | 796 | 	if (!check_mnt(nd->mnt)) | 
 | 797 | 		goto unlock; | 
 | 798 |  | 
 | 799 | 	/* Refuse the same filesystem on the same mount point */ | 
 | 800 | 	err = -EBUSY; | 
 | 801 | 	if (nd->mnt->mnt_sb == newmnt->mnt_sb && | 
 | 802 | 	    nd->mnt->mnt_root == nd->dentry) | 
 | 803 | 		goto unlock; | 
 | 804 |  | 
 | 805 | 	err = -EINVAL; | 
 | 806 | 	if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode)) | 
 | 807 | 		goto unlock; | 
 | 808 |  | 
 | 809 | 	newmnt->mnt_flags = mnt_flags; | 
 | 810 | 	err = graft_tree(newmnt, nd); | 
 | 811 |  | 
 | 812 | 	if (err == 0 && fslist) { | 
 | 813 | 		/* add to the specified expiration list */ | 
 | 814 | 		spin_lock(&vfsmount_lock); | 
 | 815 | 		list_add_tail(&newmnt->mnt_fslink, fslist); | 
 | 816 | 		spin_unlock(&vfsmount_lock); | 
 | 817 | 	} | 
 | 818 |  | 
 | 819 | unlock: | 
 | 820 | 	up_write(¤t->namespace->sem); | 
 | 821 | 	mntput(newmnt); | 
 | 822 | 	return err; | 
 | 823 | } | 
 | 824 |  | 
 | 825 | EXPORT_SYMBOL_GPL(do_add_mount); | 
 | 826 |  | 
 | 827 | /* | 
 | 828 |  * process a list of expirable mountpoints with the intent of discarding any | 
 | 829 |  * mountpoints that aren't in use and haven't been touched since last we came | 
 | 830 |  * here | 
 | 831 |  */ | 
 | 832 | void mark_mounts_for_expiry(struct list_head *mounts) | 
 | 833 | { | 
 | 834 | 	struct namespace *namespace; | 
 | 835 | 	struct vfsmount *mnt, *next; | 
 | 836 | 	LIST_HEAD(graveyard); | 
 | 837 |  | 
 | 838 | 	if (list_empty(mounts)) | 
 | 839 | 		return; | 
 | 840 |  | 
 | 841 | 	spin_lock(&vfsmount_lock); | 
 | 842 |  | 
 | 843 | 	/* extract from the expiration list every vfsmount that matches the | 
 | 844 | 	 * following criteria: | 
 | 845 | 	 * - only referenced by its parent vfsmount | 
 | 846 | 	 * - still marked for expiry (marked on the last call here; marks are | 
 | 847 | 	 *   cleared by mntput()) | 
 | 848 | 	 */ | 
 | 849 | 	list_for_each_entry_safe(mnt, next, mounts, mnt_fslink) { | 
 | 850 | 		if (!xchg(&mnt->mnt_expiry_mark, 1) || | 
 | 851 | 		    atomic_read(&mnt->mnt_count) != 1) | 
 | 852 | 			continue; | 
 | 853 |  | 
 | 854 | 		mntget(mnt); | 
 | 855 | 		list_move(&mnt->mnt_fslink, &graveyard); | 
 | 856 | 	} | 
 | 857 |  | 
 | 858 | 	/* | 
 | 859 | 	 * go through the vfsmounts we've just consigned to the graveyard to | 
 | 860 | 	 * - check that they're still dead | 
 | 861 | 	 * - delete the vfsmount from the appropriate namespace under lock | 
 | 862 | 	 * - dispose of the corpse | 
 | 863 | 	 */ | 
 | 864 | 	while (!list_empty(&graveyard)) { | 
 | 865 | 		mnt = list_entry(graveyard.next, struct vfsmount, mnt_fslink); | 
 | 866 | 		list_del_init(&mnt->mnt_fslink); | 
 | 867 |  | 
 | 868 | 		/* don't do anything if the namespace is dead - all the | 
 | 869 | 		 * vfsmounts from it are going away anyway */ | 
 | 870 | 		namespace = mnt->mnt_namespace; | 
 | 871 | 		if (!namespace || atomic_read(&namespace->count) <= 0) | 
 | 872 | 			continue; | 
 | 873 | 		get_namespace(namespace); | 
 | 874 |  | 
 | 875 | 		spin_unlock(&vfsmount_lock); | 
 | 876 | 		down_write(&namespace->sem); | 
 | 877 | 		spin_lock(&vfsmount_lock); | 
 | 878 |  | 
 | 879 | 		/* check that it is still dead: the count should now be 2 - as | 
 | 880 | 		 * contributed by the vfsmount parent and the mntget above */ | 
 | 881 | 		if (atomic_read(&mnt->mnt_count) == 2) { | 
 | 882 | 			struct vfsmount *xdmnt; | 
 | 883 | 			struct dentry *xdentry; | 
 | 884 |  | 
 | 885 | 			/* delete from the namespace */ | 
 | 886 | 			list_del_init(&mnt->mnt_list); | 
 | 887 | 			list_del_init(&mnt->mnt_child); | 
 | 888 | 			list_del_init(&mnt->mnt_hash); | 
 | 889 | 			mnt->mnt_mountpoint->d_mounted--; | 
 | 890 |  | 
 | 891 | 			xdentry = mnt->mnt_mountpoint; | 
 | 892 | 			mnt->mnt_mountpoint = mnt->mnt_root; | 
 | 893 | 			xdmnt = mnt->mnt_parent; | 
 | 894 | 			mnt->mnt_parent = mnt; | 
 | 895 |  | 
 | 896 | 			spin_unlock(&vfsmount_lock); | 
 | 897 |  | 
 | 898 | 			mntput(xdmnt); | 
 | 899 | 			dput(xdentry); | 
 | 900 |  | 
 | 901 | 			/* now lay it to rest if this was the last ref on the | 
 | 902 | 			 * superblock */ | 
 | 903 | 			if (atomic_read(&mnt->mnt_sb->s_active) == 1) { | 
 | 904 | 				/* last instance - try to be smart */ | 
 | 905 | 				lock_kernel(); | 
 | 906 | 				DQUOT_OFF(mnt->mnt_sb); | 
 | 907 | 				acct_auto_close(mnt->mnt_sb); | 
 | 908 | 				unlock_kernel(); | 
 | 909 | 			} | 
 | 910 |  | 
 | 911 | 			mntput(mnt); | 
 | 912 | 		} else { | 
 | 913 | 			/* someone brought it back to life whilst we didn't | 
 | 914 | 			 * have any locks held so return it to the expiration | 
 | 915 | 			 * list */ | 
 | 916 | 			list_add_tail(&mnt->mnt_fslink, mounts); | 
 | 917 | 			spin_unlock(&vfsmount_lock); | 
 | 918 | 		} | 
 | 919 |  | 
 | 920 | 		up_write(&namespace->sem); | 
 | 921 |  | 
 | 922 | 		mntput(mnt); | 
 | 923 | 		put_namespace(namespace); | 
 | 924 |  | 
 | 925 | 		spin_lock(&vfsmount_lock); | 
 | 926 | 	} | 
 | 927 |  | 
 | 928 | 	spin_unlock(&vfsmount_lock); | 
 | 929 | } | 
 | 930 |  | 
 | 931 | EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); | 
 | 932 |  | 
 | 933 | /* | 
 | 934 |  * Some copy_from_user() implementations do not return the exact number of | 
 | 935 |  * bytes remaining to copy on a fault.  But copy_mount_options() requires that. | 
 | 936 |  * Note that this function differs from copy_from_user() in that it will oops | 
 | 937 |  * on bad values of `to', rather than returning a short copy. | 
 | 938 |  */ | 
 | 939 | static long | 
 | 940 | exact_copy_from_user(void *to, const void __user *from, unsigned long n) | 
 | 941 | { | 
 | 942 | 	char *t = to; | 
 | 943 | 	const char __user *f = from; | 
 | 944 | 	char c; | 
 | 945 |  | 
 | 946 | 	if (!access_ok(VERIFY_READ, from, n)) | 
 | 947 | 		return n; | 
 | 948 |  | 
 | 949 | 	while (n) { | 
 | 950 | 		if (__get_user(c, f)) { | 
 | 951 | 			memset(t, 0, n); | 
 | 952 | 			break; | 
 | 953 | 		} | 
 | 954 | 		*t++ = c; | 
 | 955 | 		f++; | 
 | 956 | 		n--; | 
 | 957 | 	} | 
 | 958 | 	return n; | 
 | 959 | } | 
 | 960 |  | 
 | 961 | int copy_mount_options(const void __user *data, unsigned long *where) | 
 | 962 | { | 
 | 963 | 	int i; | 
 | 964 | 	unsigned long page; | 
 | 965 | 	unsigned long size; | 
 | 966 | 	 | 
 | 967 | 	*where = 0; | 
 | 968 | 	if (!data) | 
 | 969 | 		return 0; | 
 | 970 |  | 
 | 971 | 	if (!(page = __get_free_page(GFP_KERNEL))) | 
 | 972 | 		return -ENOMEM; | 
 | 973 |  | 
 | 974 | 	/* We only care that *some* data at the address the user | 
 | 975 | 	 * gave us is valid.  Just in case, we'll zero | 
 | 976 | 	 * the remainder of the page. | 
 | 977 | 	 */ | 
 | 978 | 	/* copy_from_user cannot cross TASK_SIZE ! */ | 
 | 979 | 	size = TASK_SIZE - (unsigned long)data; | 
 | 980 | 	if (size > PAGE_SIZE) | 
 | 981 | 		size = PAGE_SIZE; | 
 | 982 |  | 
 | 983 | 	i = size - exact_copy_from_user((void *)page, data, size); | 
 | 984 | 	if (!i) { | 
 | 985 | 		free_page(page);  | 
 | 986 | 		return -EFAULT; | 
 | 987 | 	} | 
 | 988 | 	if (i != PAGE_SIZE) | 
 | 989 | 		memset((char *)page + i, 0, PAGE_SIZE - i); | 
 | 990 | 	*where = page; | 
 | 991 | 	return 0; | 
 | 992 | } | 
 | 993 |  | 
 | 994 | /* | 
 | 995 |  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to | 
 | 996 |  * be given to the mount() call (ie: read-only, no-dev, no-suid etc). | 
 | 997 |  * | 
 | 998 |  * data is a (void *) that can point to any structure up to | 
 | 999 |  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent | 
 | 1000 |  * information (or be NULL). | 
 | 1001 |  * | 
 | 1002 |  * Pre-0.97 versions of mount() didn't have a flags word. | 
 | 1003 |  * When the flags word was introduced its top half was required | 
 | 1004 |  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. | 
 | 1005 |  * Therefore, if this magic number is present, it carries no information | 
 | 1006 |  * and must be discarded. | 
 | 1007 |  */ | 
 | 1008 | long do_mount(char * dev_name, char * dir_name, char *type_page, | 
 | 1009 | 		  unsigned long flags, void *data_page) | 
 | 1010 | { | 
 | 1011 | 	struct nameidata nd; | 
 | 1012 | 	int retval = 0; | 
 | 1013 | 	int mnt_flags = 0; | 
 | 1014 |  | 
 | 1015 | 	/* Discard magic */ | 
 | 1016 | 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL) | 
 | 1017 | 		flags &= ~MS_MGC_MSK; | 
 | 1018 |  | 
 | 1019 | 	/* Basic sanity checks */ | 
 | 1020 |  | 
 | 1021 | 	if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE)) | 
 | 1022 | 		return -EINVAL; | 
 | 1023 | 	if (dev_name && !memchr(dev_name, 0, PAGE_SIZE)) | 
 | 1024 | 		return -EINVAL; | 
 | 1025 |  | 
 | 1026 | 	if (data_page) | 
 | 1027 | 		((char *)data_page)[PAGE_SIZE - 1] = 0; | 
 | 1028 |  | 
 | 1029 | 	/* Separate the per-mountpoint flags */ | 
 | 1030 | 	if (flags & MS_NOSUID) | 
 | 1031 | 		mnt_flags |= MNT_NOSUID; | 
 | 1032 | 	if (flags & MS_NODEV) | 
 | 1033 | 		mnt_flags |= MNT_NODEV; | 
 | 1034 | 	if (flags & MS_NOEXEC) | 
 | 1035 | 		mnt_flags |= MNT_NOEXEC; | 
 | 1036 | 	flags &= ~(MS_NOSUID|MS_NOEXEC|MS_NODEV|MS_ACTIVE); | 
 | 1037 |  | 
 | 1038 | 	/* ... and get the mountpoint */ | 
 | 1039 | 	retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd); | 
 | 1040 | 	if (retval) | 
 | 1041 | 		return retval; | 
 | 1042 |  | 
 | 1043 | 	retval = security_sb_mount(dev_name, &nd, type_page, flags, data_page); | 
 | 1044 | 	if (retval) | 
 | 1045 | 		goto dput_out; | 
 | 1046 |  | 
 | 1047 | 	if (flags & MS_REMOUNT) | 
 | 1048 | 		retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags, | 
 | 1049 | 				    data_page); | 
 | 1050 | 	else if (flags & MS_BIND) | 
 | 1051 | 		retval = do_loopback(&nd, dev_name, flags & MS_REC); | 
 | 1052 | 	else if (flags & MS_MOVE) | 
 | 1053 | 		retval = do_move_mount(&nd, dev_name); | 
 | 1054 | 	else | 
 | 1055 | 		retval = do_new_mount(&nd, type_page, flags, mnt_flags, | 
 | 1056 | 				      dev_name, data_page); | 
 | 1057 | dput_out: | 
 | 1058 | 	path_release(&nd); | 
 | 1059 | 	return retval; | 
 | 1060 | } | 
 | 1061 |  | 
 | 1062 | int copy_namespace(int flags, struct task_struct *tsk) | 
 | 1063 | { | 
 | 1064 | 	struct namespace *namespace = tsk->namespace; | 
 | 1065 | 	struct namespace *new_ns; | 
 | 1066 | 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL; | 
 | 1067 | 	struct fs_struct *fs = tsk->fs; | 
 | 1068 | 	struct vfsmount *p, *q; | 
 | 1069 |  | 
 | 1070 | 	if (!namespace) | 
 | 1071 | 		return 0; | 
 | 1072 |  | 
 | 1073 | 	get_namespace(namespace); | 
 | 1074 |  | 
 | 1075 | 	if (!(flags & CLONE_NEWNS)) | 
 | 1076 | 		return 0; | 
 | 1077 |  | 
 | 1078 | 	if (!capable(CAP_SYS_ADMIN)) { | 
 | 1079 | 		put_namespace(namespace); | 
 | 1080 | 		return -EPERM; | 
 | 1081 | 	} | 
 | 1082 |  | 
 | 1083 | 	new_ns = kmalloc(sizeof(struct namespace), GFP_KERNEL); | 
 | 1084 | 	if (!new_ns) | 
 | 1085 | 		goto out; | 
 | 1086 |  | 
 | 1087 | 	atomic_set(&new_ns->count, 1); | 
 | 1088 | 	init_rwsem(&new_ns->sem); | 
 | 1089 | 	INIT_LIST_HEAD(&new_ns->list); | 
 | 1090 |  | 
 | 1091 | 	down_write(&tsk->namespace->sem); | 
 | 1092 | 	/* First pass: copy the tree topology */ | 
 | 1093 | 	new_ns->root = copy_tree(namespace->root, namespace->root->mnt_root); | 
 | 1094 | 	if (!new_ns->root) { | 
 | 1095 | 		up_write(&tsk->namespace->sem); | 
 | 1096 | 		kfree(new_ns); | 
 | 1097 | 		goto out; | 
 | 1098 | 	} | 
 | 1099 | 	spin_lock(&vfsmount_lock); | 
 | 1100 | 	list_add_tail(&new_ns->list, &new_ns->root->mnt_list); | 
 | 1101 | 	spin_unlock(&vfsmount_lock); | 
 | 1102 |  | 
 | 1103 | 	/* | 
 | 1104 | 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts | 
 | 1105 | 	 * as belonging to new namespace.  We have already acquired a private | 
 | 1106 | 	 * fs_struct, so tsk->fs->lock is not needed. | 
 | 1107 | 	 */ | 
 | 1108 | 	p = namespace->root; | 
 | 1109 | 	q = new_ns->root; | 
 | 1110 | 	while (p) { | 
 | 1111 | 		q->mnt_namespace = new_ns; | 
 | 1112 | 		if (fs) { | 
 | 1113 | 			if (p == fs->rootmnt) { | 
 | 1114 | 				rootmnt = p; | 
 | 1115 | 				fs->rootmnt = mntget(q); | 
 | 1116 | 			} | 
 | 1117 | 			if (p == fs->pwdmnt) { | 
 | 1118 | 				pwdmnt = p; | 
 | 1119 | 				fs->pwdmnt = mntget(q); | 
 | 1120 | 			} | 
 | 1121 | 			if (p == fs->altrootmnt) { | 
 | 1122 | 				altrootmnt = p; | 
 | 1123 | 				fs->altrootmnt = mntget(q); | 
 | 1124 | 			} | 
 | 1125 | 		} | 
 | 1126 | 		p = next_mnt(p, namespace->root); | 
 | 1127 | 		q = next_mnt(q, new_ns->root); | 
 | 1128 | 	} | 
 | 1129 | 	up_write(&tsk->namespace->sem); | 
 | 1130 |  | 
 | 1131 | 	tsk->namespace = new_ns; | 
 | 1132 |  | 
 | 1133 | 	if (rootmnt) | 
 | 1134 | 		mntput(rootmnt); | 
 | 1135 | 	if (pwdmnt) | 
 | 1136 | 		mntput(pwdmnt); | 
 | 1137 | 	if (altrootmnt) | 
 | 1138 | 		mntput(altrootmnt); | 
 | 1139 |  | 
 | 1140 | 	put_namespace(namespace); | 
 | 1141 | 	return 0; | 
 | 1142 |  | 
 | 1143 | out: | 
 | 1144 | 	put_namespace(namespace); | 
 | 1145 | 	return -ENOMEM; | 
 | 1146 | } | 
 | 1147 |  | 
 | 1148 | asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name, | 
 | 1149 | 			  char __user * type, unsigned long flags, | 
 | 1150 | 			  void __user * data) | 
 | 1151 | { | 
 | 1152 | 	int retval; | 
 | 1153 | 	unsigned long data_page; | 
 | 1154 | 	unsigned long type_page; | 
 | 1155 | 	unsigned long dev_page; | 
 | 1156 | 	char *dir_page; | 
 | 1157 |  | 
 | 1158 | 	retval = copy_mount_options (type, &type_page); | 
 | 1159 | 	if (retval < 0) | 
 | 1160 | 		return retval; | 
 | 1161 |  | 
 | 1162 | 	dir_page = getname(dir_name); | 
 | 1163 | 	retval = PTR_ERR(dir_page); | 
 | 1164 | 	if (IS_ERR(dir_page)) | 
 | 1165 | 		goto out1; | 
 | 1166 |  | 
 | 1167 | 	retval = copy_mount_options (dev_name, &dev_page); | 
 | 1168 | 	if (retval < 0) | 
 | 1169 | 		goto out2; | 
 | 1170 |  | 
 | 1171 | 	retval = copy_mount_options (data, &data_page); | 
 | 1172 | 	if (retval < 0) | 
 | 1173 | 		goto out3; | 
 | 1174 |  | 
 | 1175 | 	lock_kernel(); | 
 | 1176 | 	retval = do_mount((char*)dev_page, dir_page, (char*)type_page, | 
 | 1177 | 			  flags, (void*)data_page); | 
 | 1178 | 	unlock_kernel(); | 
 | 1179 | 	free_page(data_page); | 
 | 1180 |  | 
 | 1181 | out3: | 
 | 1182 | 	free_page(dev_page); | 
 | 1183 | out2: | 
 | 1184 | 	putname(dir_page); | 
 | 1185 | out1: | 
 | 1186 | 	free_page(type_page); | 
 | 1187 | 	return retval; | 
 | 1188 | } | 
 | 1189 |  | 
 | 1190 | /* | 
 | 1191 |  * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values. | 
 | 1192 |  * It can block. Requires the big lock held. | 
 | 1193 |  */ | 
 | 1194 | void set_fs_root(struct fs_struct *fs, struct vfsmount *mnt, | 
 | 1195 | 		 struct dentry *dentry) | 
 | 1196 | { | 
 | 1197 | 	struct dentry *old_root; | 
 | 1198 | 	struct vfsmount *old_rootmnt; | 
 | 1199 | 	write_lock(&fs->lock); | 
 | 1200 | 	old_root = fs->root; | 
 | 1201 | 	old_rootmnt = fs->rootmnt; | 
 | 1202 | 	fs->rootmnt = mntget(mnt); | 
 | 1203 | 	fs->root = dget(dentry); | 
 | 1204 | 	write_unlock(&fs->lock); | 
 | 1205 | 	if (old_root) { | 
 | 1206 | 		dput(old_root); | 
 | 1207 | 		mntput(old_rootmnt); | 
 | 1208 | 	} | 
 | 1209 | } | 
 | 1210 |  | 
 | 1211 | /* | 
 | 1212 |  * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values. | 
 | 1213 |  * It can block. Requires the big lock held. | 
 | 1214 |  */ | 
 | 1215 | void set_fs_pwd(struct fs_struct *fs, struct vfsmount *mnt, | 
 | 1216 | 		struct dentry *dentry) | 
 | 1217 | { | 
 | 1218 | 	struct dentry *old_pwd; | 
 | 1219 | 	struct vfsmount *old_pwdmnt; | 
 | 1220 |  | 
 | 1221 | 	write_lock(&fs->lock); | 
 | 1222 | 	old_pwd = fs->pwd; | 
 | 1223 | 	old_pwdmnt = fs->pwdmnt; | 
 | 1224 | 	fs->pwdmnt = mntget(mnt); | 
 | 1225 | 	fs->pwd = dget(dentry); | 
 | 1226 | 	write_unlock(&fs->lock); | 
 | 1227 |  | 
 | 1228 | 	if (old_pwd) { | 
 | 1229 | 		dput(old_pwd); | 
 | 1230 | 		mntput(old_pwdmnt); | 
 | 1231 | 	} | 
 | 1232 | } | 
 | 1233 |  | 
 | 1234 | static void chroot_fs_refs(struct nameidata *old_nd, struct nameidata *new_nd) | 
 | 1235 | { | 
 | 1236 | 	struct task_struct *g, *p; | 
 | 1237 | 	struct fs_struct *fs; | 
 | 1238 |  | 
 | 1239 | 	read_lock(&tasklist_lock); | 
 | 1240 | 	do_each_thread(g, p) { | 
 | 1241 | 		task_lock(p); | 
 | 1242 | 		fs = p->fs; | 
 | 1243 | 		if (fs) { | 
 | 1244 | 			atomic_inc(&fs->count); | 
 | 1245 | 			task_unlock(p); | 
 | 1246 | 			if (fs->root==old_nd->dentry&&fs->rootmnt==old_nd->mnt) | 
 | 1247 | 				set_fs_root(fs, new_nd->mnt, new_nd->dentry); | 
 | 1248 | 			if (fs->pwd==old_nd->dentry&&fs->pwdmnt==old_nd->mnt) | 
 | 1249 | 				set_fs_pwd(fs, new_nd->mnt, new_nd->dentry); | 
 | 1250 | 			put_fs_struct(fs); | 
 | 1251 | 		} else | 
 | 1252 | 			task_unlock(p); | 
 | 1253 | 	} while_each_thread(g, p); | 
 | 1254 | 	read_unlock(&tasklist_lock); | 
 | 1255 | } | 
 | 1256 |  | 
 | 1257 | /* | 
 | 1258 |  * pivot_root Semantics: | 
 | 1259 |  * Moves the root file system of the current process to the directory put_old, | 
 | 1260 |  * makes new_root as the new root file system of the current process, and sets | 
 | 1261 |  * root/cwd of all processes which had them on the current root to new_root. | 
 | 1262 |  * | 
 | 1263 |  * Restrictions: | 
 | 1264 |  * The new_root and put_old must be directories, and  must not be on the | 
 | 1265 |  * same file  system as the current process root. The put_old  must  be | 
 | 1266 |  * underneath new_root,  i.e. adding a non-zero number of /.. to the string | 
 | 1267 |  * pointed to by put_old must yield the same directory as new_root. No other | 
 | 1268 |  * file system may be mounted on put_old. After all, new_root is a mountpoint. | 
 | 1269 |  * | 
 | 1270 |  * Notes: | 
 | 1271 |  *  - we don't move root/cwd if they are not at the root (reason: if something | 
 | 1272 |  *    cared enough to change them, it's probably wrong to force them elsewhere) | 
 | 1273 |  *  - it's okay to pick a root that isn't the root of a file system, e.g. | 
 | 1274 |  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint, | 
 | 1275 |  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root | 
 | 1276 |  *    first. | 
 | 1277 |  */ | 
 | 1278 |  | 
 | 1279 | asmlinkage long sys_pivot_root(const char __user *new_root, const char __user *put_old) | 
 | 1280 | { | 
 | 1281 | 	struct vfsmount *tmp; | 
 | 1282 | 	struct nameidata new_nd, old_nd, parent_nd, root_parent, user_nd; | 
 | 1283 | 	int error; | 
 | 1284 |  | 
 | 1285 | 	if (!capable(CAP_SYS_ADMIN)) | 
 | 1286 | 		return -EPERM; | 
 | 1287 |  | 
 | 1288 | 	lock_kernel(); | 
 | 1289 |  | 
 | 1290 | 	error = __user_walk(new_root, LOOKUP_FOLLOW|LOOKUP_DIRECTORY, &new_nd); | 
 | 1291 | 	if (error) | 
 | 1292 | 		goto out0; | 
 | 1293 | 	error = -EINVAL; | 
 | 1294 | 	if (!check_mnt(new_nd.mnt)) | 
 | 1295 | 		goto out1; | 
 | 1296 |  | 
 | 1297 | 	error = __user_walk(put_old, LOOKUP_FOLLOW|LOOKUP_DIRECTORY, &old_nd); | 
 | 1298 | 	if (error) | 
 | 1299 | 		goto out1; | 
 | 1300 |  | 
 | 1301 | 	error = security_sb_pivotroot(&old_nd, &new_nd); | 
 | 1302 | 	if (error) { | 
 | 1303 | 		path_release(&old_nd); | 
 | 1304 | 		goto out1; | 
 | 1305 | 	} | 
 | 1306 |  | 
 | 1307 | 	read_lock(¤t->fs->lock); | 
 | 1308 | 	user_nd.mnt = mntget(current->fs->rootmnt); | 
 | 1309 | 	user_nd.dentry = dget(current->fs->root); | 
 | 1310 | 	read_unlock(¤t->fs->lock); | 
 | 1311 | 	down_write(¤t->namespace->sem); | 
 | 1312 | 	down(&old_nd.dentry->d_inode->i_sem); | 
 | 1313 | 	error = -EINVAL; | 
 | 1314 | 	if (!check_mnt(user_nd.mnt)) | 
 | 1315 | 		goto out2; | 
 | 1316 | 	error = -ENOENT; | 
 | 1317 | 	if (IS_DEADDIR(new_nd.dentry->d_inode)) | 
 | 1318 | 		goto out2; | 
 | 1319 | 	if (d_unhashed(new_nd.dentry) && !IS_ROOT(new_nd.dentry)) | 
 | 1320 | 		goto out2; | 
 | 1321 | 	if (d_unhashed(old_nd.dentry) && !IS_ROOT(old_nd.dentry)) | 
 | 1322 | 		goto out2; | 
 | 1323 | 	error = -EBUSY; | 
 | 1324 | 	if (new_nd.mnt == user_nd.mnt || old_nd.mnt == user_nd.mnt) | 
 | 1325 | 		goto out2; /* loop, on the same file system  */ | 
 | 1326 | 	error = -EINVAL; | 
 | 1327 | 	if (user_nd.mnt->mnt_root != user_nd.dentry) | 
 | 1328 | 		goto out2; /* not a mountpoint */ | 
 | 1329 | 	if (new_nd.mnt->mnt_root != new_nd.dentry) | 
 | 1330 | 		goto out2; /* not a mountpoint */ | 
 | 1331 | 	tmp = old_nd.mnt; /* make sure we can reach put_old from new_root */ | 
 | 1332 | 	spin_lock(&vfsmount_lock); | 
 | 1333 | 	if (tmp != new_nd.mnt) { | 
 | 1334 | 		for (;;) { | 
 | 1335 | 			if (tmp->mnt_parent == tmp) | 
 | 1336 | 				goto out3; /* already mounted on put_old */ | 
 | 1337 | 			if (tmp->mnt_parent == new_nd.mnt) | 
 | 1338 | 				break; | 
 | 1339 | 			tmp = tmp->mnt_parent; | 
 | 1340 | 		} | 
 | 1341 | 		if (!is_subdir(tmp->mnt_mountpoint, new_nd.dentry)) | 
 | 1342 | 			goto out3; | 
 | 1343 | 	} else if (!is_subdir(old_nd.dentry, new_nd.dentry)) | 
 | 1344 | 		goto out3; | 
 | 1345 | 	detach_mnt(new_nd.mnt, &parent_nd); | 
 | 1346 | 	detach_mnt(user_nd.mnt, &root_parent); | 
 | 1347 | 	attach_mnt(user_nd.mnt, &old_nd);     /* mount old root on put_old */ | 
 | 1348 | 	attach_mnt(new_nd.mnt, &root_parent); /* mount new_root on / */ | 
 | 1349 | 	spin_unlock(&vfsmount_lock); | 
 | 1350 | 	chroot_fs_refs(&user_nd, &new_nd); | 
 | 1351 | 	security_sb_post_pivotroot(&user_nd, &new_nd); | 
 | 1352 | 	error = 0; | 
 | 1353 | 	path_release(&root_parent); | 
 | 1354 | 	path_release(&parent_nd); | 
 | 1355 | out2: | 
 | 1356 | 	up(&old_nd.dentry->d_inode->i_sem); | 
 | 1357 | 	up_write(¤t->namespace->sem); | 
 | 1358 | 	path_release(&user_nd); | 
 | 1359 | 	path_release(&old_nd); | 
 | 1360 | out1: | 
 | 1361 | 	path_release(&new_nd); | 
 | 1362 | out0: | 
 | 1363 | 	unlock_kernel(); | 
 | 1364 | 	return error; | 
 | 1365 | out3: | 
 | 1366 | 	spin_unlock(&vfsmount_lock); | 
 | 1367 | 	goto out2; | 
 | 1368 | } | 
 | 1369 |  | 
 | 1370 | static void __init init_mount_tree(void) | 
 | 1371 | { | 
 | 1372 | 	struct vfsmount *mnt; | 
 | 1373 | 	struct namespace *namespace; | 
 | 1374 | 	struct task_struct *g, *p; | 
 | 1375 |  | 
 | 1376 | 	mnt = do_kern_mount("rootfs", 0, "rootfs", NULL); | 
 | 1377 | 	if (IS_ERR(mnt)) | 
 | 1378 | 		panic("Can't create rootfs"); | 
 | 1379 | 	namespace = kmalloc(sizeof(*namespace), GFP_KERNEL); | 
 | 1380 | 	if (!namespace) | 
 | 1381 | 		panic("Can't allocate initial namespace"); | 
 | 1382 | 	atomic_set(&namespace->count, 1); | 
 | 1383 | 	INIT_LIST_HEAD(&namespace->list); | 
 | 1384 | 	init_rwsem(&namespace->sem); | 
 | 1385 | 	list_add(&mnt->mnt_list, &namespace->list); | 
 | 1386 | 	namespace->root = mnt; | 
 | 1387 | 	mnt->mnt_namespace = namespace; | 
 | 1388 |  | 
 | 1389 | 	init_task.namespace = namespace; | 
 | 1390 | 	read_lock(&tasklist_lock); | 
 | 1391 | 	do_each_thread(g, p) { | 
 | 1392 | 		get_namespace(namespace); | 
 | 1393 | 		p->namespace = namespace; | 
 | 1394 | 	} while_each_thread(g, p); | 
 | 1395 | 	read_unlock(&tasklist_lock); | 
 | 1396 |  | 
 | 1397 | 	set_fs_pwd(current->fs, namespace->root, namespace->root->mnt_root); | 
 | 1398 | 	set_fs_root(current->fs, namespace->root, namespace->root->mnt_root); | 
 | 1399 | } | 
 | 1400 |  | 
 | 1401 | void __init mnt_init(unsigned long mempages) | 
 | 1402 | { | 
 | 1403 | 	struct list_head *d; | 
 | 1404 | 	unsigned int nr_hash; | 
 | 1405 | 	int i; | 
 | 1406 |  | 
 | 1407 | 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount), | 
 | 1408 | 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL); | 
 | 1409 |  | 
 | 1410 | 	mount_hashtable = (struct list_head *) | 
 | 1411 | 		__get_free_page(GFP_ATOMIC); | 
 | 1412 |  | 
 | 1413 | 	if (!mount_hashtable) | 
 | 1414 | 		panic("Failed to allocate mount hash table\n"); | 
 | 1415 |  | 
 | 1416 | 	/* | 
 | 1417 | 	 * Find the power-of-two list-heads that can fit into the allocation.. | 
 | 1418 | 	 * We don't guarantee that "sizeof(struct list_head)" is necessarily | 
 | 1419 | 	 * a power-of-two. | 
 | 1420 | 	 */ | 
 | 1421 | 	nr_hash = PAGE_SIZE / sizeof(struct list_head); | 
 | 1422 | 	hash_bits = 0; | 
 | 1423 | 	do { | 
 | 1424 | 		hash_bits++; | 
 | 1425 | 	} while ((nr_hash >> hash_bits) != 0); | 
 | 1426 | 	hash_bits--; | 
 | 1427 |  | 
 | 1428 | 	/* | 
 | 1429 | 	 * Re-calculate the actual number of entries and the mask | 
 | 1430 | 	 * from the number of bits we can fit. | 
 | 1431 | 	 */ | 
 | 1432 | 	nr_hash = 1UL << hash_bits; | 
 | 1433 | 	hash_mask = nr_hash-1; | 
 | 1434 |  | 
 | 1435 | 	printk("Mount-cache hash table entries: %d\n", nr_hash); | 
 | 1436 |  | 
 | 1437 | 	/* And initialize the newly allocated array */ | 
 | 1438 | 	d = mount_hashtable; | 
 | 1439 | 	i = nr_hash; | 
 | 1440 | 	do { | 
 | 1441 | 		INIT_LIST_HEAD(d); | 
 | 1442 | 		d++; | 
 | 1443 | 		i--; | 
 | 1444 | 	} while (i); | 
 | 1445 | 	sysfs_init(); | 
 | 1446 | 	init_rootfs(); | 
 | 1447 | 	init_mount_tree(); | 
 | 1448 | } | 
 | 1449 |  | 
 | 1450 | void __put_namespace(struct namespace *namespace) | 
 | 1451 | { | 
 | 1452 | 	struct vfsmount *mnt; | 
 | 1453 |  | 
 | 1454 | 	down_write(&namespace->sem); | 
 | 1455 | 	spin_lock(&vfsmount_lock); | 
 | 1456 |  | 
 | 1457 | 	list_for_each_entry(mnt, &namespace->list, mnt_list) { | 
 | 1458 | 		mnt->mnt_namespace = NULL; | 
 | 1459 | 	} | 
 | 1460 |  | 
 | 1461 | 	umount_tree(namespace->root); | 
 | 1462 | 	spin_unlock(&vfsmount_lock); | 
 | 1463 | 	up_write(&namespace->sem); | 
 | 1464 | 	kfree(namespace); | 
 | 1465 | } |