| Anton Vorontsov | 83ff9dc | 2008-05-23 20:38:54 +0400 | [diff] [blame] | 1 | /* | 
 | 2 |  * Freescale General-purpose Timers Module | 
 | 3 |  * | 
 | 4 |  * Copyright (c) Freescale Semicondutor, Inc. 2006. | 
 | 5 |  *               Shlomi Gridish <gridish@freescale.com> | 
 | 6 |  *               Jerry Huang <Chang-Ming.Huang@freescale.com> | 
 | 7 |  * Copyright (c) MontaVista Software, Inc. 2008. | 
 | 8 |  *               Anton Vorontsov <avorontsov@ru.mvista.com> | 
 | 9 |  * | 
 | 10 |  * This program is free software; you can redistribute  it and/or modify it | 
 | 11 |  * under  the terms of  the GNU General  Public License as published by the | 
 | 12 |  * Free Software Foundation;  either version 2 of the  License, or (at your | 
 | 13 |  * option) any later version. | 
 | 14 |  */ | 
 | 15 |  | 
 | 16 | #include <linux/kernel.h> | 
| Grant Likely | 22ae782 | 2010-07-29 11:49:01 -0600 | [diff] [blame] | 17 | #include <linux/err.h> | 
| Anton Vorontsov | 83ff9dc | 2008-05-23 20:38:54 +0400 | [diff] [blame] | 18 | #include <linux/errno.h> | 
 | 19 | #include <linux/list.h> | 
 | 20 | #include <linux/io.h> | 
 | 21 | #include <linux/of.h> | 
 | 22 | #include <linux/spinlock.h> | 
 | 23 | #include <linux/bitops.h> | 
| Tejun Heo | 5a0e3ad | 2010-03-24 17:04:11 +0900 | [diff] [blame] | 24 | #include <linux/slab.h> | 
| Paul Gortmaker | 66b15db | 2011-05-27 10:46:24 -0400 | [diff] [blame] | 25 | #include <linux/export.h> | 
| Anton Vorontsov | 83ff9dc | 2008-05-23 20:38:54 +0400 | [diff] [blame] | 26 | #include <asm/fsl_gtm.h> | 
 | 27 |  | 
 | 28 | #define GTCFR_STP(x)		((x) & 1 ? 1 << 5 : 1 << 1) | 
 | 29 | #define GTCFR_RST(x)		((x) & 1 ? 1 << 4 : 1 << 0) | 
 | 30 |  | 
 | 31 | #define GTMDR_ICLK_MASK		(3 << 1) | 
 | 32 | #define GTMDR_ICLK_ICAS		(0 << 1) | 
 | 33 | #define GTMDR_ICLK_ICLK		(1 << 1) | 
 | 34 | #define GTMDR_ICLK_SLGO		(2 << 1) | 
 | 35 | #define GTMDR_FRR		(1 << 3) | 
 | 36 | #define GTMDR_ORI		(1 << 4) | 
 | 37 | #define GTMDR_SPS(x)		((x) << 8) | 
 | 38 |  | 
 | 39 | struct gtm_timers_regs { | 
 | 40 | 	u8	gtcfr1;		/* Timer 1, Timer 2 global config register */ | 
 | 41 | 	u8	res0[0x3]; | 
 | 42 | 	u8	gtcfr2;		/* Timer 3, timer 4 global config register */ | 
 | 43 | 	u8	res1[0xB]; | 
 | 44 | 	__be16	gtmdr1;		/* Timer 1 mode register */ | 
 | 45 | 	__be16	gtmdr2;		/* Timer 2 mode register */ | 
 | 46 | 	__be16	gtrfr1;		/* Timer 1 reference register */ | 
 | 47 | 	__be16	gtrfr2;		/* Timer 2 reference register */ | 
 | 48 | 	__be16	gtcpr1;		/* Timer 1 capture register */ | 
 | 49 | 	__be16	gtcpr2;		/* Timer 2 capture register */ | 
 | 50 | 	__be16	gtcnr1;		/* Timer 1 counter */ | 
 | 51 | 	__be16	gtcnr2;		/* Timer 2 counter */ | 
 | 52 | 	__be16	gtmdr3;		/* Timer 3 mode register */ | 
 | 53 | 	__be16	gtmdr4;		/* Timer 4 mode register */ | 
 | 54 | 	__be16	gtrfr3;		/* Timer 3 reference register */ | 
 | 55 | 	__be16	gtrfr4;		/* Timer 4 reference register */ | 
 | 56 | 	__be16	gtcpr3;		/* Timer 3 capture register */ | 
 | 57 | 	__be16	gtcpr4;		/* Timer 4 capture register */ | 
 | 58 | 	__be16	gtcnr3;		/* Timer 3 counter */ | 
 | 59 | 	__be16	gtcnr4;		/* Timer 4 counter */ | 
 | 60 | 	__be16	gtevr1;		/* Timer 1 event register */ | 
 | 61 | 	__be16	gtevr2;		/* Timer 2 event register */ | 
 | 62 | 	__be16	gtevr3;		/* Timer 3 event register */ | 
 | 63 | 	__be16	gtevr4;		/* Timer 4 event register */ | 
 | 64 | 	__be16	gtpsr1;		/* Timer 1 prescale register */ | 
 | 65 | 	__be16	gtpsr2;		/* Timer 2 prescale register */ | 
 | 66 | 	__be16	gtpsr3;		/* Timer 3 prescale register */ | 
 | 67 | 	__be16	gtpsr4;		/* Timer 4 prescale register */ | 
 | 68 | 	u8 res2[0x40]; | 
 | 69 | } __attribute__ ((packed)); | 
 | 70 |  | 
 | 71 | struct gtm { | 
 | 72 | 	unsigned int clock; | 
 | 73 | 	struct gtm_timers_regs __iomem *regs; | 
 | 74 | 	struct gtm_timer timers[4]; | 
 | 75 | 	spinlock_t lock; | 
 | 76 | 	struct list_head list_node; | 
 | 77 | }; | 
 | 78 |  | 
 | 79 | static LIST_HEAD(gtms); | 
 | 80 |  | 
 | 81 | /** | 
 | 82 |  * gtm_get_timer - request GTM timer to use it with the rest of GTM API | 
 | 83 |  * Context:	non-IRQ | 
 | 84 |  * | 
 | 85 |  * This function reserves GTM timer for later use. It returns gtm_timer | 
 | 86 |  * structure to use with the rest of GTM API, you should use timer->irq | 
 | 87 |  * to manage timer interrupt. | 
 | 88 |  */ | 
 | 89 | struct gtm_timer *gtm_get_timer16(void) | 
 | 90 | { | 
 | 91 | 	struct gtm *gtm = NULL; | 
 | 92 | 	int i; | 
 | 93 |  | 
 | 94 | 	list_for_each_entry(gtm, >ms, list_node) { | 
 | 95 | 		spin_lock_irq(>m->lock); | 
 | 96 |  | 
 | 97 | 		for (i = 0; i < ARRAY_SIZE(gtm->timers); i++) { | 
 | 98 | 			if (!gtm->timers[i].requested) { | 
 | 99 | 				gtm->timers[i].requested = true; | 
 | 100 | 				spin_unlock_irq(>m->lock); | 
 | 101 | 				return >m->timers[i]; | 
 | 102 | 			} | 
 | 103 | 		} | 
 | 104 |  | 
 | 105 | 		spin_unlock_irq(>m->lock); | 
 | 106 | 	} | 
 | 107 |  | 
 | 108 | 	if (gtm) | 
 | 109 | 		return ERR_PTR(-EBUSY); | 
 | 110 | 	return ERR_PTR(-ENODEV); | 
 | 111 | } | 
 | 112 | EXPORT_SYMBOL(gtm_get_timer16); | 
 | 113 |  | 
 | 114 | /** | 
 | 115 |  * gtm_get_specific_timer - request specific GTM timer | 
 | 116 |  * @gtm:	specific GTM, pass here GTM's device_node->data | 
 | 117 |  * @timer:	specific timer number, Timer1 is 0. | 
 | 118 |  * Context:	non-IRQ | 
 | 119 |  * | 
 | 120 |  * This function reserves GTM timer for later use. It returns gtm_timer | 
 | 121 |  * structure to use with the rest of GTM API, you should use timer->irq | 
 | 122 |  * to manage timer interrupt. | 
 | 123 |  */ | 
 | 124 | struct gtm_timer *gtm_get_specific_timer16(struct gtm *gtm, | 
 | 125 | 					   unsigned int timer) | 
 | 126 | { | 
 | 127 | 	struct gtm_timer *ret = ERR_PTR(-EBUSY); | 
 | 128 |  | 
 | 129 | 	if (timer > 3) | 
 | 130 | 		return ERR_PTR(-EINVAL); | 
 | 131 |  | 
 | 132 | 	spin_lock_irq(>m->lock); | 
 | 133 |  | 
 | 134 | 	if (gtm->timers[timer].requested) | 
 | 135 | 		goto out; | 
 | 136 |  | 
 | 137 | 	ret = >m->timers[timer]; | 
 | 138 | 	ret->requested = true; | 
 | 139 |  | 
 | 140 | out: | 
 | 141 | 	spin_unlock_irq(>m->lock); | 
 | 142 | 	return ret; | 
 | 143 | } | 
 | 144 | EXPORT_SYMBOL(gtm_get_specific_timer16); | 
 | 145 |  | 
 | 146 | /** | 
 | 147 |  * gtm_put_timer16 - release 16 bits GTM timer | 
 | 148 |  * @tmr:	pointer to the gtm_timer structure obtained from gtm_get_timer | 
 | 149 |  * Context:	any | 
 | 150 |  * | 
 | 151 |  * This function releases GTM timer so others may request it. | 
 | 152 |  */ | 
 | 153 | void gtm_put_timer16(struct gtm_timer *tmr) | 
 | 154 | { | 
 | 155 | 	gtm_stop_timer16(tmr); | 
 | 156 |  | 
 | 157 | 	spin_lock_irq(&tmr->gtm->lock); | 
 | 158 | 	tmr->requested = false; | 
 | 159 | 	spin_unlock_irq(&tmr->gtm->lock); | 
 | 160 | } | 
 | 161 | EXPORT_SYMBOL(gtm_put_timer16); | 
 | 162 |  | 
 | 163 | /* | 
 | 164 |  * This is back-end for the exported functions, it's used to reset single | 
 | 165 |  * timer in reference mode. | 
 | 166 |  */ | 
 | 167 | static int gtm_set_ref_timer16(struct gtm_timer *tmr, int frequency, | 
 | 168 | 			       int reference_value, bool free_run) | 
 | 169 | { | 
 | 170 | 	struct gtm *gtm = tmr->gtm; | 
 | 171 | 	int num = tmr - >m->timers[0]; | 
 | 172 | 	unsigned int prescaler; | 
 | 173 | 	u8 iclk = GTMDR_ICLK_ICLK; | 
 | 174 | 	u8 psr; | 
 | 175 | 	u8 sps; | 
 | 176 | 	unsigned long flags; | 
 | 177 | 	int max_prescaler = 256 * 256 * 16; | 
 | 178 |  | 
 | 179 | 	/* CPM2 doesn't have primary prescaler */ | 
 | 180 | 	if (!tmr->gtpsr) | 
 | 181 | 		max_prescaler /= 256; | 
 | 182 |  | 
 | 183 | 	prescaler = gtm->clock / frequency; | 
 | 184 | 	/* | 
 | 185 | 	 * We have two 8 bit prescalers -- primary and secondary (psr, sps), | 
 | 186 | 	 * plus "slow go" mode (clk / 16). So, total prescale value is | 
 | 187 | 	 * 16 * (psr + 1) * (sps + 1). Though, for CPM2 GTMs we losing psr. | 
 | 188 | 	 */ | 
 | 189 | 	if (prescaler > max_prescaler) | 
 | 190 | 		return -EINVAL; | 
 | 191 |  | 
 | 192 | 	if (prescaler > max_prescaler / 16) { | 
 | 193 | 		iclk = GTMDR_ICLK_SLGO; | 
 | 194 | 		prescaler /= 16; | 
 | 195 | 	} | 
 | 196 |  | 
 | 197 | 	if (prescaler <= 256) { | 
 | 198 | 		psr = 0; | 
 | 199 | 		sps = prescaler - 1; | 
 | 200 | 	} else { | 
 | 201 | 		psr = 256 - 1; | 
 | 202 | 		sps = prescaler / 256 - 1; | 
 | 203 | 	} | 
 | 204 |  | 
 | 205 | 	spin_lock_irqsave(>m->lock, flags); | 
 | 206 |  | 
 | 207 | 	/* | 
 | 208 | 	 * Properly reset timers: stop, reset, set up prescalers, reference | 
 | 209 | 	 * value and clear event register. | 
 | 210 | 	 */ | 
 | 211 | 	clrsetbits_8(tmr->gtcfr, ~(GTCFR_STP(num) | GTCFR_RST(num)), | 
 | 212 | 				 GTCFR_STP(num) | GTCFR_RST(num)); | 
 | 213 |  | 
 | 214 | 	setbits8(tmr->gtcfr, GTCFR_STP(num)); | 
 | 215 |  | 
 | 216 | 	if (tmr->gtpsr) | 
 | 217 | 		out_be16(tmr->gtpsr, psr); | 
 | 218 | 	clrsetbits_be16(tmr->gtmdr, 0xFFFF, iclk | GTMDR_SPS(sps) | | 
 | 219 | 			GTMDR_ORI | (free_run ? GTMDR_FRR : 0)); | 
 | 220 | 	out_be16(tmr->gtcnr, 0); | 
 | 221 | 	out_be16(tmr->gtrfr, reference_value); | 
 | 222 | 	out_be16(tmr->gtevr, 0xFFFF); | 
 | 223 |  | 
 | 224 | 	/* Let it be. */ | 
 | 225 | 	clrbits8(tmr->gtcfr, GTCFR_STP(num)); | 
 | 226 |  | 
 | 227 | 	spin_unlock_irqrestore(>m->lock, flags); | 
 | 228 |  | 
 | 229 | 	return 0; | 
 | 230 | } | 
 | 231 |  | 
 | 232 | /** | 
 | 233 |  * gtm_set_timer16 - (re)set 16 bit timer with arbitrary precision | 
 | 234 |  * @tmr:	pointer to the gtm_timer structure obtained from gtm_get_timer | 
 | 235 |  * @usec:	timer interval in microseconds | 
 | 236 |  * @reload:	if set, the timer will reset upon expiry rather than | 
 | 237 |  *         	continue running free. | 
 | 238 |  * Context:	any | 
 | 239 |  * | 
 | 240 |  * This function (re)sets the GTM timer so that it counts up to the requested | 
 | 241 |  * interval value, and fires the interrupt when the value is reached. This | 
 | 242 |  * function will reduce the precision of the timer as needed in order for the | 
 | 243 |  * requested timeout to fit in a 16-bit register. | 
 | 244 |  */ | 
 | 245 | int gtm_set_timer16(struct gtm_timer *tmr, unsigned long usec, bool reload) | 
 | 246 | { | 
 | 247 | 	/* quite obvious, frequency which is enough for µSec precision */ | 
 | 248 | 	int freq = 1000000; | 
 | 249 | 	unsigned int bit; | 
 | 250 |  | 
 | 251 | 	bit = fls_long(usec); | 
 | 252 | 	if (bit > 15) { | 
 | 253 | 		freq >>= bit - 15; | 
 | 254 | 		usec >>= bit - 15; | 
 | 255 | 	} | 
 | 256 |  | 
 | 257 | 	if (!freq) | 
 | 258 | 		return -EINVAL; | 
 | 259 |  | 
 | 260 | 	return gtm_set_ref_timer16(tmr, freq, usec, reload); | 
 | 261 | } | 
 | 262 | EXPORT_SYMBOL(gtm_set_timer16); | 
 | 263 |  | 
 | 264 | /** | 
 | 265 |  * gtm_set_exact_utimer16 - (re)set 16 bits timer | 
 | 266 |  * @tmr:	pointer to the gtm_timer structure obtained from gtm_get_timer | 
 | 267 |  * @usec:	timer interval in microseconds | 
 | 268 |  * @reload:	if set, the timer will reset upon expiry rather than | 
 | 269 |  *         	continue running free. | 
 | 270 |  * Context:	any | 
 | 271 |  * | 
 | 272 |  * This function (re)sets GTM timer so that it counts up to the requested | 
 | 273 |  * interval value, and fires the interrupt when the value is reached. If reload | 
 | 274 |  * flag was set, timer will also reset itself upon reference value, otherwise | 
 | 275 |  * it continues to increment. | 
 | 276 |  * | 
 | 277 |  * The _exact_ bit in the function name states that this function will not | 
 | 278 |  * crop precision of the "usec" argument, thus usec is limited to 16 bits | 
 | 279 |  * (single timer width). | 
 | 280 |  */ | 
 | 281 | int gtm_set_exact_timer16(struct gtm_timer *tmr, u16 usec, bool reload) | 
 | 282 | { | 
 | 283 | 	/* quite obvious, frequency which is enough for µSec precision */ | 
 | 284 | 	const int freq = 1000000; | 
 | 285 |  | 
 | 286 | 	/* | 
 | 287 | 	 * We can lower the frequency (and probably power consumption) by | 
 | 288 | 	 * dividing both frequency and usec by 2 until there is no remainder. | 
 | 289 | 	 * But we won't bother with this unless savings are measured, so just | 
 | 290 | 	 * run the timer as is. | 
 | 291 | 	 */ | 
 | 292 |  | 
 | 293 | 	return gtm_set_ref_timer16(tmr, freq, usec, reload); | 
 | 294 | } | 
 | 295 | EXPORT_SYMBOL(gtm_set_exact_timer16); | 
 | 296 |  | 
 | 297 | /** | 
 | 298 |  * gtm_stop_timer16 - stop single timer | 
 | 299 |  * @tmr:	pointer to the gtm_timer structure obtained from gtm_get_timer | 
 | 300 |  * Context:	any | 
 | 301 |  * | 
 | 302 |  * This function simply stops the GTM timer. | 
 | 303 |  */ | 
 | 304 | void gtm_stop_timer16(struct gtm_timer *tmr) | 
 | 305 | { | 
 | 306 | 	struct gtm *gtm = tmr->gtm; | 
 | 307 | 	int num = tmr - >m->timers[0]; | 
 | 308 | 	unsigned long flags; | 
 | 309 |  | 
 | 310 | 	spin_lock_irqsave(>m->lock, flags); | 
 | 311 |  | 
 | 312 | 	setbits8(tmr->gtcfr, GTCFR_STP(num)); | 
 | 313 | 	out_be16(tmr->gtevr, 0xFFFF); | 
 | 314 |  | 
 | 315 | 	spin_unlock_irqrestore(>m->lock, flags); | 
 | 316 | } | 
 | 317 | EXPORT_SYMBOL(gtm_stop_timer16); | 
 | 318 |  | 
 | 319 | /** | 
 | 320 |  * gtm_ack_timer16 - acknowledge timer event (free-run timers only) | 
 | 321 |  * @tmr:	pointer to the gtm_timer structure obtained from gtm_get_timer | 
 | 322 |  * @events:	events mask to ack | 
 | 323 |  * Context:	any | 
 | 324 |  * | 
 | 325 |  * Thus function used to acknowledge timer interrupt event, use it inside the | 
 | 326 |  * interrupt handler. | 
 | 327 |  */ | 
 | 328 | void gtm_ack_timer16(struct gtm_timer *tmr, u16 events) | 
 | 329 | { | 
 | 330 | 	out_be16(tmr->gtevr, events); | 
 | 331 | } | 
 | 332 | EXPORT_SYMBOL(gtm_ack_timer16); | 
 | 333 |  | 
 | 334 | static void __init gtm_set_shortcuts(struct device_node *np, | 
 | 335 | 				     struct gtm_timer *timers, | 
 | 336 | 				     struct gtm_timers_regs __iomem *regs) | 
 | 337 | { | 
 | 338 | 	/* | 
 | 339 | 	 * Yeah, I don't like this either, but timers' registers a bit messed, | 
 | 340 | 	 * so we have to provide shortcuts to write timer independent code. | 
 | 341 | 	 * Alternative option is to create gt*() accessors, but that will be | 
 | 342 | 	 * even uglier and cryptic. | 
 | 343 | 	 */ | 
 | 344 | 	timers[0].gtcfr = ®s->gtcfr1; | 
 | 345 | 	timers[0].gtmdr = ®s->gtmdr1; | 
 | 346 | 	timers[0].gtcnr = ®s->gtcnr1; | 
 | 347 | 	timers[0].gtrfr = ®s->gtrfr1; | 
 | 348 | 	timers[0].gtevr = ®s->gtevr1; | 
 | 349 |  | 
 | 350 | 	timers[1].gtcfr = ®s->gtcfr1; | 
 | 351 | 	timers[1].gtmdr = ®s->gtmdr2; | 
 | 352 | 	timers[1].gtcnr = ®s->gtcnr2; | 
 | 353 | 	timers[1].gtrfr = ®s->gtrfr2; | 
 | 354 | 	timers[1].gtevr = ®s->gtevr2; | 
 | 355 |  | 
 | 356 | 	timers[2].gtcfr = ®s->gtcfr2; | 
 | 357 | 	timers[2].gtmdr = ®s->gtmdr3; | 
 | 358 | 	timers[2].gtcnr = ®s->gtcnr3; | 
 | 359 | 	timers[2].gtrfr = ®s->gtrfr3; | 
 | 360 | 	timers[2].gtevr = ®s->gtevr3; | 
 | 361 |  | 
 | 362 | 	timers[3].gtcfr = ®s->gtcfr2; | 
 | 363 | 	timers[3].gtmdr = ®s->gtmdr4; | 
 | 364 | 	timers[3].gtcnr = ®s->gtcnr4; | 
 | 365 | 	timers[3].gtrfr = ®s->gtrfr4; | 
 | 366 | 	timers[3].gtevr = ®s->gtevr4; | 
 | 367 |  | 
 | 368 | 	/* CPM2 doesn't have primary prescaler */ | 
 | 369 | 	if (!of_device_is_compatible(np, "fsl,cpm2-gtm")) { | 
 | 370 | 		timers[0].gtpsr = ®s->gtpsr1; | 
 | 371 | 		timers[1].gtpsr = ®s->gtpsr2; | 
 | 372 | 		timers[2].gtpsr = ®s->gtpsr3; | 
 | 373 | 		timers[3].gtpsr = ®s->gtpsr4; | 
 | 374 | 	} | 
 | 375 | } | 
 | 376 |  | 
 | 377 | static int __init fsl_gtm_init(void) | 
 | 378 | { | 
 | 379 | 	struct device_node *np; | 
 | 380 |  | 
 | 381 | 	for_each_compatible_node(np, NULL, "fsl,gtm") { | 
 | 382 | 		int i; | 
 | 383 | 		struct gtm *gtm; | 
 | 384 | 		const u32 *clock; | 
 | 385 | 		int size; | 
 | 386 |  | 
 | 387 | 		gtm = kzalloc(sizeof(*gtm), GFP_KERNEL); | 
 | 388 | 		if (!gtm) { | 
 | 389 | 			pr_err("%s: unable to allocate memory\n", | 
 | 390 | 				np->full_name); | 
 | 391 | 			continue; | 
 | 392 | 		} | 
 | 393 |  | 
 | 394 | 		spin_lock_init(>m->lock); | 
 | 395 |  | 
 | 396 | 		clock = of_get_property(np, "clock-frequency", &size); | 
 | 397 | 		if (!clock || size != sizeof(*clock)) { | 
 | 398 | 			pr_err("%s: no clock-frequency\n", np->full_name); | 
 | 399 | 			goto err; | 
 | 400 | 		} | 
 | 401 | 		gtm->clock = *clock; | 
 | 402 |  | 
 | 403 | 		for (i = 0; i < ARRAY_SIZE(gtm->timers); i++) { | 
 | 404 | 			int ret; | 
 | 405 | 			struct resource irq; | 
 | 406 |  | 
 | 407 | 			ret = of_irq_to_resource(np, i, &irq); | 
 | 408 | 			if (ret == NO_IRQ) { | 
 | 409 | 				pr_err("%s: not enough interrupts specified\n", | 
 | 410 | 				       np->full_name); | 
 | 411 | 				goto err; | 
 | 412 | 			} | 
 | 413 | 			gtm->timers[i].irq = irq.start; | 
 | 414 | 			gtm->timers[i].gtm = gtm; | 
 | 415 | 		} | 
 | 416 |  | 
 | 417 | 		gtm->regs = of_iomap(np, 0); | 
 | 418 | 		if (!gtm->regs) { | 
 | 419 | 			pr_err("%s: unable to iomap registers\n", | 
 | 420 | 			       np->full_name); | 
 | 421 | 			goto err; | 
 | 422 | 		} | 
 | 423 |  | 
 | 424 | 		gtm_set_shortcuts(np, gtm->timers, gtm->regs); | 
 | 425 | 		list_add(>m->list_node, >ms); | 
 | 426 |  | 
 | 427 | 		/* We don't want to lose the node and its ->data */ | 
 | 428 | 		np->data = gtm; | 
 | 429 | 		of_node_get(np); | 
 | 430 |  | 
 | 431 | 		continue; | 
 | 432 | err: | 
 | 433 | 		kfree(gtm); | 
 | 434 | 	} | 
 | 435 | 	return 0; | 
 | 436 | } | 
 | 437 | arch_initcall(fsl_gtm_init); |