| Lasse Collin | 24fa040 | 2011-01-12 17:01:22 -0800 | [diff] [blame] | 1 | /* | 
 | 2 |  * Branch/Call/Jump (BCJ) filter decoders | 
 | 3 |  * | 
 | 4 |  * Authors: Lasse Collin <lasse.collin@tukaani.org> | 
 | 5 |  *          Igor Pavlov <http://7-zip.org/> | 
 | 6 |  * | 
 | 7 |  * This file has been put into the public domain. | 
 | 8 |  * You can do whatever you want with this file. | 
 | 9 |  */ | 
 | 10 |  | 
 | 11 | #include "xz_private.h" | 
 | 12 |  | 
 | 13 | /* | 
 | 14 |  * The rest of the file is inside this ifdef. It makes things a little more | 
 | 15 |  * convenient when building without support for any BCJ filters. | 
 | 16 |  */ | 
 | 17 | #ifdef XZ_DEC_BCJ | 
 | 18 |  | 
 | 19 | struct xz_dec_bcj { | 
 | 20 | 	/* Type of the BCJ filter being used */ | 
 | 21 | 	enum { | 
 | 22 | 		BCJ_X86 = 4,        /* x86 or x86-64 */ | 
 | 23 | 		BCJ_POWERPC = 5,    /* Big endian only */ | 
 | 24 | 		BCJ_IA64 = 6,       /* Big or little endian */ | 
 | 25 | 		BCJ_ARM = 7,        /* Little endian only */ | 
 | 26 | 		BCJ_ARMTHUMB = 8,   /* Little endian only */ | 
 | 27 | 		BCJ_SPARC = 9       /* Big or little endian */ | 
 | 28 | 	} type; | 
 | 29 |  | 
 | 30 | 	/* | 
 | 31 | 	 * Return value of the next filter in the chain. We need to preserve | 
 | 32 | 	 * this information across calls, because we must not call the next | 
 | 33 | 	 * filter anymore once it has returned XZ_STREAM_END. | 
 | 34 | 	 */ | 
 | 35 | 	enum xz_ret ret; | 
 | 36 |  | 
 | 37 | 	/* True if we are operating in single-call mode. */ | 
 | 38 | 	bool single_call; | 
 | 39 |  | 
 | 40 | 	/* | 
 | 41 | 	 * Absolute position relative to the beginning of the uncompressed | 
 | 42 | 	 * data (in a single .xz Block). We care only about the lowest 32 | 
 | 43 | 	 * bits so this doesn't need to be uint64_t even with big files. | 
 | 44 | 	 */ | 
 | 45 | 	uint32_t pos; | 
 | 46 |  | 
 | 47 | 	/* x86 filter state */ | 
 | 48 | 	uint32_t x86_prev_mask; | 
 | 49 |  | 
 | 50 | 	/* Temporary space to hold the variables from struct xz_buf */ | 
 | 51 | 	uint8_t *out; | 
 | 52 | 	size_t out_pos; | 
 | 53 | 	size_t out_size; | 
 | 54 |  | 
 | 55 | 	struct { | 
 | 56 | 		/* Amount of already filtered data in the beginning of buf */ | 
 | 57 | 		size_t filtered; | 
 | 58 |  | 
 | 59 | 		/* Total amount of data currently stored in buf  */ | 
 | 60 | 		size_t size; | 
 | 61 |  | 
 | 62 | 		/* | 
 | 63 | 		 * Buffer to hold a mix of filtered and unfiltered data. This | 
 | 64 | 		 * needs to be big enough to hold Alignment + 2 * Look-ahead: | 
 | 65 | 		 * | 
 | 66 | 		 * Type         Alignment   Look-ahead | 
 | 67 | 		 * x86              1           4 | 
 | 68 | 		 * PowerPC          4           0 | 
 | 69 | 		 * IA-64           16           0 | 
 | 70 | 		 * ARM              4           0 | 
 | 71 | 		 * ARM-Thumb        2           2 | 
 | 72 | 		 * SPARC            4           0 | 
 | 73 | 		 */ | 
 | 74 | 		uint8_t buf[16]; | 
 | 75 | 	} temp; | 
 | 76 | }; | 
 | 77 |  | 
 | 78 | #ifdef XZ_DEC_X86 | 
 | 79 | /* | 
 | 80 |  * This is used to test the most significant byte of a memory address | 
 | 81 |  * in an x86 instruction. | 
 | 82 |  */ | 
 | 83 | static inline int bcj_x86_test_msbyte(uint8_t b) | 
 | 84 | { | 
 | 85 | 	return b == 0x00 || b == 0xFF; | 
 | 86 | } | 
 | 87 |  | 
 | 88 | static size_t bcj_x86(struct xz_dec_bcj *s, uint8_t *buf, size_t size) | 
 | 89 | { | 
 | 90 | 	static const bool mask_to_allowed_status[8] | 
 | 91 | 		= { true, true, true, false, true, false, false, false }; | 
 | 92 |  | 
 | 93 | 	static const uint8_t mask_to_bit_num[8] = { 0, 1, 2, 2, 3, 3, 3, 3 }; | 
 | 94 |  | 
 | 95 | 	size_t i; | 
 | 96 | 	size_t prev_pos = (size_t)-1; | 
 | 97 | 	uint32_t prev_mask = s->x86_prev_mask; | 
 | 98 | 	uint32_t src; | 
 | 99 | 	uint32_t dest; | 
 | 100 | 	uint32_t j; | 
 | 101 | 	uint8_t b; | 
 | 102 |  | 
 | 103 | 	if (size <= 4) | 
 | 104 | 		return 0; | 
 | 105 |  | 
 | 106 | 	size -= 4; | 
 | 107 | 	for (i = 0; i < size; ++i) { | 
 | 108 | 		if ((buf[i] & 0xFE) != 0xE8) | 
 | 109 | 			continue; | 
 | 110 |  | 
 | 111 | 		prev_pos = i - prev_pos; | 
 | 112 | 		if (prev_pos > 3) { | 
 | 113 | 			prev_mask = 0; | 
 | 114 | 		} else { | 
 | 115 | 			prev_mask = (prev_mask << (prev_pos - 1)) & 7; | 
 | 116 | 			if (prev_mask != 0) { | 
 | 117 | 				b = buf[i + 4 - mask_to_bit_num[prev_mask]]; | 
 | 118 | 				if (!mask_to_allowed_status[prev_mask] | 
 | 119 | 						|| bcj_x86_test_msbyte(b)) { | 
 | 120 | 					prev_pos = i; | 
 | 121 | 					prev_mask = (prev_mask << 1) | 1; | 
 | 122 | 					continue; | 
 | 123 | 				} | 
 | 124 | 			} | 
 | 125 | 		} | 
 | 126 |  | 
 | 127 | 		prev_pos = i; | 
 | 128 |  | 
 | 129 | 		if (bcj_x86_test_msbyte(buf[i + 4])) { | 
 | 130 | 			src = get_unaligned_le32(buf + i + 1); | 
 | 131 | 			while (true) { | 
 | 132 | 				dest = src - (s->pos + (uint32_t)i + 5); | 
 | 133 | 				if (prev_mask == 0) | 
 | 134 | 					break; | 
 | 135 |  | 
 | 136 | 				j = mask_to_bit_num[prev_mask] * 8; | 
 | 137 | 				b = (uint8_t)(dest >> (24 - j)); | 
 | 138 | 				if (!bcj_x86_test_msbyte(b)) | 
 | 139 | 					break; | 
 | 140 |  | 
 | 141 | 				src = dest ^ (((uint32_t)1 << (32 - j)) - 1); | 
 | 142 | 			} | 
 | 143 |  | 
 | 144 | 			dest &= 0x01FFFFFF; | 
 | 145 | 			dest |= (uint32_t)0 - (dest & 0x01000000); | 
 | 146 | 			put_unaligned_le32(dest, buf + i + 1); | 
 | 147 | 			i += 4; | 
 | 148 | 		} else { | 
 | 149 | 			prev_mask = (prev_mask << 1) | 1; | 
 | 150 | 		} | 
 | 151 | 	} | 
 | 152 |  | 
 | 153 | 	prev_pos = i - prev_pos; | 
 | 154 | 	s->x86_prev_mask = prev_pos > 3 ? 0 : prev_mask << (prev_pos - 1); | 
 | 155 | 	return i; | 
 | 156 | } | 
 | 157 | #endif | 
 | 158 |  | 
 | 159 | #ifdef XZ_DEC_POWERPC | 
 | 160 | static size_t bcj_powerpc(struct xz_dec_bcj *s, uint8_t *buf, size_t size) | 
 | 161 | { | 
 | 162 | 	size_t i; | 
 | 163 | 	uint32_t instr; | 
 | 164 |  | 
 | 165 | 	for (i = 0; i + 4 <= size; i += 4) { | 
 | 166 | 		instr = get_unaligned_be32(buf + i); | 
 | 167 | 		if ((instr & 0xFC000003) == 0x48000001) { | 
 | 168 | 			instr &= 0x03FFFFFC; | 
 | 169 | 			instr -= s->pos + (uint32_t)i; | 
 | 170 | 			instr &= 0x03FFFFFC; | 
 | 171 | 			instr |= 0x48000001; | 
 | 172 | 			put_unaligned_be32(instr, buf + i); | 
 | 173 | 		} | 
 | 174 | 	} | 
 | 175 |  | 
 | 176 | 	return i; | 
 | 177 | } | 
 | 178 | #endif | 
 | 179 |  | 
 | 180 | #ifdef XZ_DEC_IA64 | 
 | 181 | static size_t bcj_ia64(struct xz_dec_bcj *s, uint8_t *buf, size_t size) | 
 | 182 | { | 
 | 183 | 	static const uint8_t branch_table[32] = { | 
 | 184 | 		0, 0, 0, 0, 0, 0, 0, 0, | 
 | 185 | 		0, 0, 0, 0, 0, 0, 0, 0, | 
 | 186 | 		4, 4, 6, 6, 0, 0, 7, 7, | 
 | 187 | 		4, 4, 0, 0, 4, 4, 0, 0 | 
 | 188 | 	}; | 
 | 189 |  | 
 | 190 | 	/* | 
 | 191 | 	 * The local variables take a little bit stack space, but it's less | 
 | 192 | 	 * than what LZMA2 decoder takes, so it doesn't make sense to reduce | 
 | 193 | 	 * stack usage here without doing that for the LZMA2 decoder too. | 
 | 194 | 	 */ | 
 | 195 |  | 
 | 196 | 	/* Loop counters */ | 
 | 197 | 	size_t i; | 
 | 198 | 	size_t j; | 
 | 199 |  | 
 | 200 | 	/* Instruction slot (0, 1, or 2) in the 128-bit instruction word */ | 
 | 201 | 	uint32_t slot; | 
 | 202 |  | 
 | 203 | 	/* Bitwise offset of the instruction indicated by slot */ | 
 | 204 | 	uint32_t bit_pos; | 
 | 205 |  | 
 | 206 | 	/* bit_pos split into byte and bit parts */ | 
 | 207 | 	uint32_t byte_pos; | 
 | 208 | 	uint32_t bit_res; | 
 | 209 |  | 
 | 210 | 	/* Address part of an instruction */ | 
 | 211 | 	uint32_t addr; | 
 | 212 |  | 
 | 213 | 	/* Mask used to detect which instructions to convert */ | 
 | 214 | 	uint32_t mask; | 
 | 215 |  | 
 | 216 | 	/* 41-bit instruction stored somewhere in the lowest 48 bits */ | 
 | 217 | 	uint64_t instr; | 
 | 218 |  | 
 | 219 | 	/* Instruction normalized with bit_res for easier manipulation */ | 
 | 220 | 	uint64_t norm; | 
 | 221 |  | 
 | 222 | 	for (i = 0; i + 16 <= size; i += 16) { | 
 | 223 | 		mask = branch_table[buf[i] & 0x1F]; | 
 | 224 | 		for (slot = 0, bit_pos = 5; slot < 3; ++slot, bit_pos += 41) { | 
 | 225 | 			if (((mask >> slot) & 1) == 0) | 
 | 226 | 				continue; | 
 | 227 |  | 
 | 228 | 			byte_pos = bit_pos >> 3; | 
 | 229 | 			bit_res = bit_pos & 7; | 
 | 230 | 			instr = 0; | 
 | 231 | 			for (j = 0; j < 6; ++j) | 
 | 232 | 				instr |= (uint64_t)(buf[i + j + byte_pos]) | 
 | 233 | 						<< (8 * j); | 
 | 234 |  | 
 | 235 | 			norm = instr >> bit_res; | 
 | 236 |  | 
 | 237 | 			if (((norm >> 37) & 0x0F) == 0x05 | 
 | 238 | 					&& ((norm >> 9) & 0x07) == 0) { | 
 | 239 | 				addr = (norm >> 13) & 0x0FFFFF; | 
 | 240 | 				addr |= ((uint32_t)(norm >> 36) & 1) << 20; | 
 | 241 | 				addr <<= 4; | 
 | 242 | 				addr -= s->pos + (uint32_t)i; | 
 | 243 | 				addr >>= 4; | 
 | 244 |  | 
 | 245 | 				norm &= ~((uint64_t)0x8FFFFF << 13); | 
 | 246 | 				norm |= (uint64_t)(addr & 0x0FFFFF) << 13; | 
 | 247 | 				norm |= (uint64_t)(addr & 0x100000) | 
 | 248 | 						<< (36 - 20); | 
 | 249 |  | 
 | 250 | 				instr &= (1 << bit_res) - 1; | 
 | 251 | 				instr |= norm << bit_res; | 
 | 252 |  | 
 | 253 | 				for (j = 0; j < 6; j++) | 
 | 254 | 					buf[i + j + byte_pos] | 
 | 255 | 						= (uint8_t)(instr >> (8 * j)); | 
 | 256 | 			} | 
 | 257 | 		} | 
 | 258 | 	} | 
 | 259 |  | 
 | 260 | 	return i; | 
 | 261 | } | 
 | 262 | #endif | 
 | 263 |  | 
 | 264 | #ifdef XZ_DEC_ARM | 
 | 265 | static size_t bcj_arm(struct xz_dec_bcj *s, uint8_t *buf, size_t size) | 
 | 266 | { | 
 | 267 | 	size_t i; | 
 | 268 | 	uint32_t addr; | 
 | 269 |  | 
 | 270 | 	for (i = 0; i + 4 <= size; i += 4) { | 
 | 271 | 		if (buf[i + 3] == 0xEB) { | 
 | 272 | 			addr = (uint32_t)buf[i] | ((uint32_t)buf[i + 1] << 8) | 
 | 273 | 					| ((uint32_t)buf[i + 2] << 16); | 
 | 274 | 			addr <<= 2; | 
 | 275 | 			addr -= s->pos + (uint32_t)i + 8; | 
 | 276 | 			addr >>= 2; | 
 | 277 | 			buf[i] = (uint8_t)addr; | 
 | 278 | 			buf[i + 1] = (uint8_t)(addr >> 8); | 
 | 279 | 			buf[i + 2] = (uint8_t)(addr >> 16); | 
 | 280 | 		} | 
 | 281 | 	} | 
 | 282 |  | 
 | 283 | 	return i; | 
 | 284 | } | 
 | 285 | #endif | 
 | 286 |  | 
 | 287 | #ifdef XZ_DEC_ARMTHUMB | 
 | 288 | static size_t bcj_armthumb(struct xz_dec_bcj *s, uint8_t *buf, size_t size) | 
 | 289 | { | 
 | 290 | 	size_t i; | 
 | 291 | 	uint32_t addr; | 
 | 292 |  | 
 | 293 | 	for (i = 0; i + 4 <= size; i += 2) { | 
 | 294 | 		if ((buf[i + 1] & 0xF8) == 0xF0 | 
 | 295 | 				&& (buf[i + 3] & 0xF8) == 0xF8) { | 
 | 296 | 			addr = (((uint32_t)buf[i + 1] & 0x07) << 19) | 
 | 297 | 					| ((uint32_t)buf[i] << 11) | 
 | 298 | 					| (((uint32_t)buf[i + 3] & 0x07) << 8) | 
 | 299 | 					| (uint32_t)buf[i + 2]; | 
 | 300 | 			addr <<= 1; | 
 | 301 | 			addr -= s->pos + (uint32_t)i + 4; | 
 | 302 | 			addr >>= 1; | 
 | 303 | 			buf[i + 1] = (uint8_t)(0xF0 | ((addr >> 19) & 0x07)); | 
 | 304 | 			buf[i] = (uint8_t)(addr >> 11); | 
 | 305 | 			buf[i + 3] = (uint8_t)(0xF8 | ((addr >> 8) & 0x07)); | 
 | 306 | 			buf[i + 2] = (uint8_t)addr; | 
 | 307 | 			i += 2; | 
 | 308 | 		} | 
 | 309 | 	} | 
 | 310 |  | 
 | 311 | 	return i; | 
 | 312 | } | 
 | 313 | #endif | 
 | 314 |  | 
 | 315 | #ifdef XZ_DEC_SPARC | 
 | 316 | static size_t bcj_sparc(struct xz_dec_bcj *s, uint8_t *buf, size_t size) | 
 | 317 | { | 
 | 318 | 	size_t i; | 
 | 319 | 	uint32_t instr; | 
 | 320 |  | 
 | 321 | 	for (i = 0; i + 4 <= size; i += 4) { | 
 | 322 | 		instr = get_unaligned_be32(buf + i); | 
 | 323 | 		if ((instr >> 22) == 0x100 || (instr >> 22) == 0x1FF) { | 
 | 324 | 			instr <<= 2; | 
 | 325 | 			instr -= s->pos + (uint32_t)i; | 
 | 326 | 			instr >>= 2; | 
 | 327 | 			instr = ((uint32_t)0x40000000 - (instr & 0x400000)) | 
 | 328 | 					| 0x40000000 | (instr & 0x3FFFFF); | 
 | 329 | 			put_unaligned_be32(instr, buf + i); | 
 | 330 | 		} | 
 | 331 | 	} | 
 | 332 |  | 
 | 333 | 	return i; | 
 | 334 | } | 
 | 335 | #endif | 
 | 336 |  | 
 | 337 | /* | 
 | 338 |  * Apply the selected BCJ filter. Update *pos and s->pos to match the amount | 
 | 339 |  * of data that got filtered. | 
 | 340 |  * | 
 | 341 |  * NOTE: This is implemented as a switch statement to avoid using function | 
 | 342 |  * pointers, which could be problematic in the kernel boot code, which must | 
 | 343 |  * avoid pointers to static data (at least on x86). | 
 | 344 |  */ | 
 | 345 | static void bcj_apply(struct xz_dec_bcj *s, | 
 | 346 | 		      uint8_t *buf, size_t *pos, size_t size) | 
 | 347 | { | 
 | 348 | 	size_t filtered; | 
 | 349 |  | 
 | 350 | 	buf += *pos; | 
 | 351 | 	size -= *pos; | 
 | 352 |  | 
 | 353 | 	switch (s->type) { | 
 | 354 | #ifdef XZ_DEC_X86 | 
 | 355 | 	case BCJ_X86: | 
 | 356 | 		filtered = bcj_x86(s, buf, size); | 
 | 357 | 		break; | 
 | 358 | #endif | 
 | 359 | #ifdef XZ_DEC_POWERPC | 
 | 360 | 	case BCJ_POWERPC: | 
 | 361 | 		filtered = bcj_powerpc(s, buf, size); | 
 | 362 | 		break; | 
 | 363 | #endif | 
 | 364 | #ifdef XZ_DEC_IA64 | 
 | 365 | 	case BCJ_IA64: | 
 | 366 | 		filtered = bcj_ia64(s, buf, size); | 
 | 367 | 		break; | 
 | 368 | #endif | 
 | 369 | #ifdef XZ_DEC_ARM | 
 | 370 | 	case BCJ_ARM: | 
 | 371 | 		filtered = bcj_arm(s, buf, size); | 
 | 372 | 		break; | 
 | 373 | #endif | 
 | 374 | #ifdef XZ_DEC_ARMTHUMB | 
 | 375 | 	case BCJ_ARMTHUMB: | 
 | 376 | 		filtered = bcj_armthumb(s, buf, size); | 
 | 377 | 		break; | 
 | 378 | #endif | 
 | 379 | #ifdef XZ_DEC_SPARC | 
 | 380 | 	case BCJ_SPARC: | 
 | 381 | 		filtered = bcj_sparc(s, buf, size); | 
 | 382 | 		break; | 
 | 383 | #endif | 
 | 384 | 	default: | 
 | 385 | 		/* Never reached but silence compiler warnings. */ | 
 | 386 | 		filtered = 0; | 
 | 387 | 		break; | 
 | 388 | 	} | 
 | 389 |  | 
 | 390 | 	*pos += filtered; | 
 | 391 | 	s->pos += filtered; | 
 | 392 | } | 
 | 393 |  | 
 | 394 | /* | 
 | 395 |  * Flush pending filtered data from temp to the output buffer. | 
 | 396 |  * Move the remaining mixture of possibly filtered and unfiltered | 
 | 397 |  * data to the beginning of temp. | 
 | 398 |  */ | 
 | 399 | static void bcj_flush(struct xz_dec_bcj *s, struct xz_buf *b) | 
 | 400 | { | 
 | 401 | 	size_t copy_size; | 
 | 402 |  | 
 | 403 | 	copy_size = min_t(size_t, s->temp.filtered, b->out_size - b->out_pos); | 
 | 404 | 	memcpy(b->out + b->out_pos, s->temp.buf, copy_size); | 
 | 405 | 	b->out_pos += copy_size; | 
 | 406 |  | 
 | 407 | 	s->temp.filtered -= copy_size; | 
 | 408 | 	s->temp.size -= copy_size; | 
 | 409 | 	memmove(s->temp.buf, s->temp.buf + copy_size, s->temp.size); | 
 | 410 | } | 
 | 411 |  | 
 | 412 | /* | 
 | 413 |  * The BCJ filter functions are primitive in sense that they process the | 
 | 414 |  * data in chunks of 1-16 bytes. To hide this issue, this function does | 
 | 415 |  * some buffering. | 
 | 416 |  */ | 
 | 417 | XZ_EXTERN enum xz_ret xz_dec_bcj_run(struct xz_dec_bcj *s, | 
 | 418 | 				     struct xz_dec_lzma2 *lzma2, | 
 | 419 | 				     struct xz_buf *b) | 
 | 420 | { | 
 | 421 | 	size_t out_start; | 
 | 422 |  | 
 | 423 | 	/* | 
 | 424 | 	 * Flush pending already filtered data to the output buffer. Return | 
 | 425 | 	 * immediatelly if we couldn't flush everything, or if the next | 
 | 426 | 	 * filter in the chain had already returned XZ_STREAM_END. | 
 | 427 | 	 */ | 
 | 428 | 	if (s->temp.filtered > 0) { | 
 | 429 | 		bcj_flush(s, b); | 
 | 430 | 		if (s->temp.filtered > 0) | 
 | 431 | 			return XZ_OK; | 
 | 432 |  | 
 | 433 | 		if (s->ret == XZ_STREAM_END) | 
 | 434 | 			return XZ_STREAM_END; | 
 | 435 | 	} | 
 | 436 |  | 
 | 437 | 	/* | 
 | 438 | 	 * If we have more output space than what is currently pending in | 
 | 439 | 	 * temp, copy the unfiltered data from temp to the output buffer | 
 | 440 | 	 * and try to fill the output buffer by decoding more data from the | 
 | 441 | 	 * next filter in the chain. Apply the BCJ filter on the new data | 
 | 442 | 	 * in the output buffer. If everything cannot be filtered, copy it | 
 | 443 | 	 * to temp and rewind the output buffer position accordingly. | 
| Lasse Collin | 9c1f859 | 2011-09-21 17:30:50 +0300 | [diff] [blame] | 444 | 	 * | 
 | 445 | 	 * This needs to be always run when temp.size == 0 to handle a special | 
 | 446 | 	 * case where the output buffer is full and the next filter has no | 
 | 447 | 	 * more output coming but hasn't returned XZ_STREAM_END yet. | 
| Lasse Collin | 24fa040 | 2011-01-12 17:01:22 -0800 | [diff] [blame] | 448 | 	 */ | 
| Lasse Collin | 9c1f859 | 2011-09-21 17:30:50 +0300 | [diff] [blame] | 449 | 	if (s->temp.size < b->out_size - b->out_pos || s->temp.size == 0) { | 
| Lasse Collin | 24fa040 | 2011-01-12 17:01:22 -0800 | [diff] [blame] | 450 | 		out_start = b->out_pos; | 
 | 451 | 		memcpy(b->out + b->out_pos, s->temp.buf, s->temp.size); | 
 | 452 | 		b->out_pos += s->temp.size; | 
 | 453 |  | 
 | 454 | 		s->ret = xz_dec_lzma2_run(lzma2, b); | 
 | 455 | 		if (s->ret != XZ_STREAM_END | 
 | 456 | 				&& (s->ret != XZ_OK || s->single_call)) | 
 | 457 | 			return s->ret; | 
 | 458 |  | 
 | 459 | 		bcj_apply(s, b->out, &out_start, b->out_pos); | 
 | 460 |  | 
 | 461 | 		/* | 
 | 462 | 		 * As an exception, if the next filter returned XZ_STREAM_END, | 
 | 463 | 		 * we can do that too, since the last few bytes that remain | 
 | 464 | 		 * unfiltered are meant to remain unfiltered. | 
 | 465 | 		 */ | 
 | 466 | 		if (s->ret == XZ_STREAM_END) | 
 | 467 | 			return XZ_STREAM_END; | 
 | 468 |  | 
 | 469 | 		s->temp.size = b->out_pos - out_start; | 
 | 470 | 		b->out_pos -= s->temp.size; | 
 | 471 | 		memcpy(s->temp.buf, b->out + b->out_pos, s->temp.size); | 
| Lasse Collin | 9c1f859 | 2011-09-21 17:30:50 +0300 | [diff] [blame] | 472 |  | 
 | 473 | 		/* | 
 | 474 | 		 * If there wasn't enough input to the next filter to fill | 
 | 475 | 		 * the output buffer with unfiltered data, there's no point | 
 | 476 | 		 * to try decoding more data to temp. | 
 | 477 | 		 */ | 
 | 478 | 		if (b->out_pos + s->temp.size < b->out_size) | 
 | 479 | 			return XZ_OK; | 
| Lasse Collin | 24fa040 | 2011-01-12 17:01:22 -0800 | [diff] [blame] | 480 | 	} | 
 | 481 |  | 
 | 482 | 	/* | 
| Lasse Collin | 9c1f859 | 2011-09-21 17:30:50 +0300 | [diff] [blame] | 483 | 	 * We have unfiltered data in temp. If the output buffer isn't full | 
 | 484 | 	 * yet, try to fill the temp buffer by decoding more data from the | 
 | 485 | 	 * next filter. Apply the BCJ filter on temp. Then we hopefully can | 
 | 486 | 	 * fill the actual output buffer by copying filtered data from temp. | 
 | 487 | 	 * A mix of filtered and unfiltered data may be left in temp; it will | 
 | 488 | 	 * be taken care on the next call to this function. | 
| Lasse Collin | 24fa040 | 2011-01-12 17:01:22 -0800 | [diff] [blame] | 489 | 	 */ | 
| Lasse Collin | 9c1f859 | 2011-09-21 17:30:50 +0300 | [diff] [blame] | 490 | 	if (b->out_pos < b->out_size) { | 
| Lasse Collin | 24fa040 | 2011-01-12 17:01:22 -0800 | [diff] [blame] | 491 | 		/* Make b->out{,_pos,_size} temporarily point to s->temp. */ | 
 | 492 | 		s->out = b->out; | 
 | 493 | 		s->out_pos = b->out_pos; | 
 | 494 | 		s->out_size = b->out_size; | 
 | 495 | 		b->out = s->temp.buf; | 
 | 496 | 		b->out_pos = s->temp.size; | 
 | 497 | 		b->out_size = sizeof(s->temp.buf); | 
 | 498 |  | 
 | 499 | 		s->ret = xz_dec_lzma2_run(lzma2, b); | 
 | 500 |  | 
 | 501 | 		s->temp.size = b->out_pos; | 
 | 502 | 		b->out = s->out; | 
 | 503 | 		b->out_pos = s->out_pos; | 
 | 504 | 		b->out_size = s->out_size; | 
 | 505 |  | 
 | 506 | 		if (s->ret != XZ_OK && s->ret != XZ_STREAM_END) | 
 | 507 | 			return s->ret; | 
 | 508 |  | 
 | 509 | 		bcj_apply(s, s->temp.buf, &s->temp.filtered, s->temp.size); | 
 | 510 |  | 
 | 511 | 		/* | 
 | 512 | 		 * If the next filter returned XZ_STREAM_END, we mark that | 
 | 513 | 		 * everything is filtered, since the last unfiltered bytes | 
 | 514 | 		 * of the stream are meant to be left as is. | 
 | 515 | 		 */ | 
 | 516 | 		if (s->ret == XZ_STREAM_END) | 
 | 517 | 			s->temp.filtered = s->temp.size; | 
 | 518 |  | 
 | 519 | 		bcj_flush(s, b); | 
 | 520 | 		if (s->temp.filtered > 0) | 
 | 521 | 			return XZ_OK; | 
 | 522 | 	} | 
 | 523 |  | 
 | 524 | 	return s->ret; | 
 | 525 | } | 
 | 526 |  | 
 | 527 | XZ_EXTERN struct xz_dec_bcj *xz_dec_bcj_create(bool single_call) | 
 | 528 | { | 
 | 529 | 	struct xz_dec_bcj *s = kmalloc(sizeof(*s), GFP_KERNEL); | 
 | 530 | 	if (s != NULL) | 
 | 531 | 		s->single_call = single_call; | 
 | 532 |  | 
 | 533 | 	return s; | 
 | 534 | } | 
 | 535 |  | 
 | 536 | XZ_EXTERN enum xz_ret xz_dec_bcj_reset(struct xz_dec_bcj *s, uint8_t id) | 
 | 537 | { | 
 | 538 | 	switch (id) { | 
 | 539 | #ifdef XZ_DEC_X86 | 
 | 540 | 	case BCJ_X86: | 
 | 541 | #endif | 
 | 542 | #ifdef XZ_DEC_POWERPC | 
 | 543 | 	case BCJ_POWERPC: | 
 | 544 | #endif | 
 | 545 | #ifdef XZ_DEC_IA64 | 
 | 546 | 	case BCJ_IA64: | 
 | 547 | #endif | 
 | 548 | #ifdef XZ_DEC_ARM | 
 | 549 | 	case BCJ_ARM: | 
 | 550 | #endif | 
 | 551 | #ifdef XZ_DEC_ARMTHUMB | 
 | 552 | 	case BCJ_ARMTHUMB: | 
 | 553 | #endif | 
 | 554 | #ifdef XZ_DEC_SPARC | 
 | 555 | 	case BCJ_SPARC: | 
 | 556 | #endif | 
 | 557 | 		break; | 
 | 558 |  | 
 | 559 | 	default: | 
 | 560 | 		/* Unsupported Filter ID */ | 
 | 561 | 		return XZ_OPTIONS_ERROR; | 
 | 562 | 	} | 
 | 563 |  | 
 | 564 | 	s->type = id; | 
 | 565 | 	s->ret = XZ_OK; | 
 | 566 | 	s->pos = 0; | 
 | 567 | 	s->x86_prev_mask = 0; | 
 | 568 | 	s->temp.filtered = 0; | 
 | 569 | 	s->temp.size = 0; | 
 | 570 |  | 
 | 571 | 	return XZ_OK; | 
 | 572 | } | 
 | 573 |  | 
 | 574 | #endif |