| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | #ifndef _LINUX_JIFFIES_H | 
 | 2 | #define _LINUX_JIFFIES_H | 
 | 3 |  | 
 | 4 | #include <linux/kernel.h> | 
 | 5 | #include <linux/types.h> | 
 | 6 | #include <linux/time.h> | 
 | 7 | #include <linux/timex.h> | 
 | 8 | #include <asm/param.h>			/* for HZ */ | 
 | 9 | #include <asm/div64.h> | 
 | 10 |  | 
 | 11 | #ifndef div_long_long_rem | 
 | 12 | #define div_long_long_rem(dividend,divisor,remainder) \ | 
 | 13 | ({							\ | 
 | 14 | 	u64 result = dividend;				\ | 
 | 15 | 	*remainder = do_div(result,divisor);		\ | 
 | 16 | 	result;						\ | 
 | 17 | }) | 
 | 18 | #endif | 
 | 19 |  | 
 | 20 | /* | 
 | 21 |  * The following defines establish the engineering parameters of the PLL | 
 | 22 |  * model. The HZ variable establishes the timer interrupt frequency, 100 Hz | 
 | 23 |  * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the | 
 | 24 |  * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the | 
 | 25 |  * nearest power of two in order to avoid hardware multiply operations. | 
 | 26 |  */ | 
 | 27 | #if HZ >= 12 && HZ < 24 | 
 | 28 | # define SHIFT_HZ	4 | 
 | 29 | #elif HZ >= 24 && HZ < 48 | 
 | 30 | # define SHIFT_HZ	5 | 
 | 31 | #elif HZ >= 48 && HZ < 96 | 
 | 32 | # define SHIFT_HZ	6 | 
 | 33 | #elif HZ >= 96 && HZ < 192 | 
 | 34 | # define SHIFT_HZ	7 | 
 | 35 | #elif HZ >= 192 && HZ < 384 | 
 | 36 | # define SHIFT_HZ	8 | 
 | 37 | #elif HZ >= 384 && HZ < 768 | 
 | 38 | # define SHIFT_HZ	9 | 
 | 39 | #elif HZ >= 768 && HZ < 1536 | 
 | 40 | # define SHIFT_HZ	10 | 
 | 41 | #else | 
 | 42 | # error You lose. | 
 | 43 | #endif | 
 | 44 |  | 
 | 45 | /* LATCH is used in the interval timer and ftape setup. */ | 
 | 46 | #define LATCH  ((CLOCK_TICK_RATE + HZ/2) / HZ)	/* For divider */ | 
 | 47 |  | 
 | 48 | /* Suppose we want to devide two numbers NOM and DEN: NOM/DEN, the we can | 
 | 49 |  * improve accuracy by shifting LSH bits, hence calculating: | 
 | 50 |  *     (NOM << LSH) / DEN | 
 | 51 |  * This however means trouble for large NOM, because (NOM << LSH) may no | 
 | 52 |  * longer fit in 32 bits. The following way of calculating this gives us | 
 | 53 |  * some slack, under the following conditions: | 
 | 54 |  *   - (NOM / DEN) fits in (32 - LSH) bits. | 
 | 55 |  *   - (NOM % DEN) fits in (32 - LSH) bits. | 
 | 56 |  */ | 
 | 57 | #define SH_DIV(NOM,DEN,LSH) (   ((NOM / DEN) << LSH)                    \ | 
 | 58 |                              + (((NOM % DEN) << LSH) + DEN / 2) / DEN) | 
 | 59 |  | 
 | 60 | /* HZ is the requested value. ACTHZ is actual HZ ("<< 8" is for accuracy) */ | 
 | 61 | #define ACTHZ (SH_DIV (CLOCK_TICK_RATE, LATCH, 8)) | 
 | 62 |  | 
 | 63 | /* TICK_NSEC is the time between ticks in nsec assuming real ACTHZ */ | 
 | 64 | #define TICK_NSEC (SH_DIV (1000000UL * 1000, ACTHZ, 8)) | 
 | 65 |  | 
 | 66 | /* TICK_USEC is the time between ticks in usec assuming fake USER_HZ */ | 
 | 67 | #define TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ) | 
 | 68 |  | 
 | 69 | /* TICK_USEC_TO_NSEC is the time between ticks in nsec assuming real ACTHZ and	*/ | 
 | 70 | /* a value TUSEC for TICK_USEC (can be set bij adjtimex)		*/ | 
 | 71 | #define TICK_USEC_TO_NSEC(TUSEC) (SH_DIV (TUSEC * USER_HZ * 1000, ACTHZ, 8)) | 
 | 72 |  | 
 | 73 | /* some arch's have a small-data section that can be accessed register-relative | 
 | 74 |  * but that can only take up to, say, 4-byte variables. jiffies being part of | 
 | 75 |  * an 8-byte variable may not be correctly accessed unless we force the issue | 
 | 76 |  */ | 
 | 77 | #define __jiffy_data  __attribute__((section(".data"))) | 
 | 78 |  | 
 | 79 | /* | 
 | 80 |  * The 64-bit value is not volatile - you MUST NOT read it | 
 | 81 |  * without sampling the sequence number in xtime_lock. | 
 | 82 |  * get_jiffies_64() will do this for you as appropriate. | 
 | 83 |  */ | 
 | 84 | extern u64 __jiffy_data jiffies_64; | 
 | 85 | extern unsigned long volatile __jiffy_data jiffies; | 
 | 86 |  | 
 | 87 | #if (BITS_PER_LONG < 64) | 
 | 88 | u64 get_jiffies_64(void); | 
 | 89 | #else | 
 | 90 | static inline u64 get_jiffies_64(void) | 
 | 91 | { | 
 | 92 | 	return (u64)jiffies; | 
 | 93 | } | 
 | 94 | #endif | 
 | 95 |  | 
 | 96 | /* | 
 | 97 |  *	These inlines deal with timer wrapping correctly. You are  | 
 | 98 |  *	strongly encouraged to use them | 
 | 99 |  *	1. Because people otherwise forget | 
 | 100 |  *	2. Because if the timer wrap changes in future you won't have to | 
 | 101 |  *	   alter your driver code. | 
 | 102 |  * | 
 | 103 |  * time_after(a,b) returns true if the time a is after time b. | 
 | 104 |  * | 
 | 105 |  * Do this with "<0" and ">=0" to only test the sign of the result. A | 
 | 106 |  * good compiler would generate better code (and a really good compiler | 
 | 107 |  * wouldn't care). Gcc is currently neither. | 
 | 108 |  */ | 
 | 109 | #define time_after(a,b)		\ | 
 | 110 | 	(typecheck(unsigned long, a) && \ | 
 | 111 | 	 typecheck(unsigned long, b) && \ | 
 | 112 | 	 ((long)(b) - (long)(a) < 0)) | 
 | 113 | #define time_before(a,b)	time_after(b,a) | 
 | 114 |  | 
 | 115 | #define time_after_eq(a,b)	\ | 
 | 116 | 	(typecheck(unsigned long, a) && \ | 
 | 117 | 	 typecheck(unsigned long, b) && \ | 
 | 118 | 	 ((long)(a) - (long)(b) >= 0)) | 
 | 119 | #define time_before_eq(a,b)	time_after_eq(b,a) | 
 | 120 |  | 
 | 121 | /* | 
 | 122 |  * Have the 32 bit jiffies value wrap 5 minutes after boot | 
 | 123 |  * so jiffies wrap bugs show up earlier. | 
 | 124 |  */ | 
 | 125 | #define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ)) | 
 | 126 |  | 
 | 127 | /* | 
 | 128 |  * Change timeval to jiffies, trying to avoid the | 
 | 129 |  * most obvious overflows.. | 
 | 130 |  * | 
 | 131 |  * And some not so obvious. | 
 | 132 |  * | 
 | 133 |  * Note that we don't want to return MAX_LONG, because | 
 | 134 |  * for various timeout reasons we often end up having | 
 | 135 |  * to wait "jiffies+1" in order to guarantee that we wait | 
 | 136 |  * at _least_ "jiffies" - so "jiffies+1" had better still | 
 | 137 |  * be positive. | 
 | 138 |  */ | 
 | 139 | #define MAX_JIFFY_OFFSET ((~0UL >> 1)-1) | 
 | 140 |  | 
 | 141 | /* | 
 | 142 |  * We want to do realistic conversions of time so we need to use the same | 
 | 143 |  * values the update wall clock code uses as the jiffies size.  This value | 
 | 144 |  * is: TICK_NSEC (which is defined in timex.h).  This | 
 | 145 |  * is a constant and is in nanoseconds.  We will used scaled math | 
 | 146 |  * with a set of scales defined here as SEC_JIFFIE_SC,  USEC_JIFFIE_SC and | 
 | 147 |  * NSEC_JIFFIE_SC.  Note that these defines contain nothing but | 
 | 148 |  * constants and so are computed at compile time.  SHIFT_HZ (computed in | 
 | 149 |  * timex.h) adjusts the scaling for different HZ values. | 
 | 150 |  | 
 | 151 |  * Scaled math???  What is that? | 
 | 152 |  * | 
 | 153 |  * Scaled math is a way to do integer math on values that would, | 
 | 154 |  * otherwise, either overflow, underflow, or cause undesired div | 
 | 155 |  * instructions to appear in the execution path.  In short, we "scale" | 
 | 156 |  * up the operands so they take more bits (more precision, less | 
 | 157 |  * underflow), do the desired operation and then "scale" the result back | 
 | 158 |  * by the same amount.  If we do the scaling by shifting we avoid the | 
 | 159 |  * costly mpy and the dastardly div instructions. | 
 | 160 |  | 
 | 161 |  * Suppose, for example, we want to convert from seconds to jiffies | 
 | 162 |  * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE.  The | 
 | 163 |  * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We | 
 | 164 |  * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we | 
 | 165 |  * might calculate at compile time, however, the result will only have | 
 | 166 |  * about 3-4 bits of precision (less for smaller values of HZ). | 
 | 167 |  * | 
 | 168 |  * So, we scale as follows: | 
 | 169 |  * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE); | 
 | 170 |  * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE; | 
 | 171 |  * Then we make SCALE a power of two so: | 
 | 172 |  * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE; | 
 | 173 |  * Now we define: | 
 | 174 |  * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) | 
 | 175 |  * jiff = (sec * SEC_CONV) >> SCALE; | 
 | 176 |  * | 
 | 177 |  * Often the math we use will expand beyond 32-bits so we tell C how to | 
 | 178 |  * do this and pass the 64-bit result of the mpy through the ">> SCALE" | 
 | 179 |  * which should take the result back to 32-bits.  We want this expansion | 
 | 180 |  * to capture as much precision as possible.  At the same time we don't | 
 | 181 |  * want to overflow so we pick the SCALE to avoid this.  In this file, | 
 | 182 |  * that means using a different scale for each range of HZ values (as | 
 | 183 |  * defined in timex.h). | 
 | 184 |  * | 
 | 185 |  * For those who want to know, gcc will give a 64-bit result from a "*" | 
 | 186 |  * operator if the result is a long long AND at least one of the | 
 | 187 |  * operands is cast to long long (usually just prior to the "*" so as | 
 | 188 |  * not to confuse it into thinking it really has a 64-bit operand, | 
 | 189 |  * which, buy the way, it can do, but it take more code and at least 2 | 
 | 190 |  * mpys). | 
 | 191 |  | 
 | 192 |  * We also need to be aware that one second in nanoseconds is only a | 
 | 193 |  * couple of bits away from overflowing a 32-bit word, so we MUST use | 
 | 194 |  * 64-bits to get the full range time in nanoseconds. | 
 | 195 |  | 
 | 196 |  */ | 
 | 197 |  | 
 | 198 | /* | 
 | 199 |  * Here are the scales we will use.  One for seconds, nanoseconds and | 
 | 200 |  * microseconds. | 
 | 201 |  * | 
 | 202 |  * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and | 
 | 203 |  * check if the sign bit is set.  If not, we bump the shift count by 1. | 
 | 204 |  * (Gets an extra bit of precision where we can use it.) | 
 | 205 |  * We know it is set for HZ = 1024 and HZ = 100 not for 1000. | 
 | 206 |  * Haven't tested others. | 
 | 207 |  | 
 | 208 |  * Limits of cpp (for #if expressions) only long (no long long), but | 
 | 209 |  * then we only need the most signicant bit. | 
 | 210 |  */ | 
 | 211 |  | 
 | 212 | #define SEC_JIFFIE_SC (31 - SHIFT_HZ) | 
 | 213 | #if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000) | 
 | 214 | #undef SEC_JIFFIE_SC | 
 | 215 | #define SEC_JIFFIE_SC (32 - SHIFT_HZ) | 
 | 216 | #endif | 
 | 217 | #define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29) | 
 | 218 | #define USEC_JIFFIE_SC (SEC_JIFFIE_SC + 19) | 
 | 219 | #define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\ | 
 | 220 |                                 TICK_NSEC -1) / (u64)TICK_NSEC)) | 
 | 221 |  | 
 | 222 | #define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\ | 
 | 223 |                                         TICK_NSEC -1) / (u64)TICK_NSEC)) | 
 | 224 | #define USEC_CONVERSION  \ | 
 | 225 |                     ((unsigned long)((((u64)NSEC_PER_USEC << USEC_JIFFIE_SC) +\ | 
 | 226 |                                         TICK_NSEC -1) / (u64)TICK_NSEC)) | 
 | 227 | /* | 
 | 228 |  * USEC_ROUND is used in the timeval to jiffie conversion.  See there | 
 | 229 |  * for more details.  It is the scaled resolution rounding value.  Note | 
 | 230 |  * that it is a 64-bit value.  Since, when it is applied, we are already | 
 | 231 |  * in jiffies (albit scaled), it is nothing but the bits we will shift | 
 | 232 |  * off. | 
 | 233 |  */ | 
 | 234 | #define USEC_ROUND (u64)(((u64)1 << USEC_JIFFIE_SC) - 1) | 
 | 235 | /* | 
 | 236 |  * The maximum jiffie value is (MAX_INT >> 1).  Here we translate that | 
 | 237 |  * into seconds.  The 64-bit case will overflow if we are not careful, | 
 | 238 |  * so use the messy SH_DIV macro to do it.  Still all constants. | 
 | 239 |  */ | 
 | 240 | #if BITS_PER_LONG < 64 | 
 | 241 | # define MAX_SEC_IN_JIFFIES \ | 
 | 242 | 	(long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC) | 
 | 243 | #else	/* take care of overflow on 64 bits machines */ | 
 | 244 | # define MAX_SEC_IN_JIFFIES \ | 
 | 245 | 	(SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1) | 
 | 246 |  | 
 | 247 | #endif | 
 | 248 |  | 
 | 249 | /* | 
 | 250 |  * Convert jiffies to milliseconds and back. | 
 | 251 |  * | 
 | 252 |  * Avoid unnecessary multiplications/divisions in the | 
 | 253 |  * two most common HZ cases: | 
 | 254 |  */ | 
 | 255 | static inline unsigned int jiffies_to_msecs(const unsigned long j) | 
 | 256 | { | 
 | 257 | #if HZ <= 1000 && !(1000 % HZ) | 
 | 258 | 	return (1000 / HZ) * j; | 
 | 259 | #elif HZ > 1000 && !(HZ % 1000) | 
 | 260 | 	return (j + (HZ / 1000) - 1)/(HZ / 1000); | 
 | 261 | #else | 
 | 262 | 	return (j * 1000) / HZ; | 
 | 263 | #endif | 
 | 264 | } | 
 | 265 |  | 
 | 266 | static inline unsigned int jiffies_to_usecs(const unsigned long j) | 
 | 267 | { | 
 | 268 | #if HZ <= 1000000 && !(1000000 % HZ) | 
 | 269 | 	return (1000000 / HZ) * j; | 
 | 270 | #elif HZ > 1000000 && !(HZ % 1000000) | 
 | 271 | 	return (j + (HZ / 1000000) - 1)/(HZ / 1000000); | 
 | 272 | #else | 
 | 273 | 	return (j * 1000000) / HZ; | 
 | 274 | #endif | 
 | 275 | } | 
 | 276 |  | 
 | 277 | static inline unsigned long msecs_to_jiffies(const unsigned int m) | 
 | 278 | { | 
 | 279 | 	if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET)) | 
 | 280 | 		return MAX_JIFFY_OFFSET; | 
 | 281 | #if HZ <= 1000 && !(1000 % HZ) | 
 | 282 | 	return (m + (1000 / HZ) - 1) / (1000 / HZ); | 
 | 283 | #elif HZ > 1000 && !(HZ % 1000) | 
 | 284 | 	return m * (HZ / 1000); | 
 | 285 | #else | 
 | 286 | 	return (m * HZ + 999) / 1000; | 
 | 287 | #endif | 
 | 288 | } | 
 | 289 |  | 
 | 290 | static inline unsigned long usecs_to_jiffies(const unsigned int u) | 
 | 291 | { | 
 | 292 | 	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET)) | 
 | 293 | 		return MAX_JIFFY_OFFSET; | 
 | 294 | #if HZ <= 1000000 && !(1000000 % HZ) | 
 | 295 | 	return (u + (1000000 / HZ) - 1) / (1000000 / HZ); | 
 | 296 | #elif HZ > 1000000 && !(HZ % 1000000) | 
 | 297 | 	return u * (HZ / 1000000); | 
 | 298 | #else | 
 | 299 | 	return (u * HZ + 999999) / 1000000; | 
 | 300 | #endif | 
 | 301 | } | 
 | 302 |  | 
 | 303 | /* | 
 | 304 |  * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note | 
 | 305 |  * that a remainder subtract here would not do the right thing as the | 
 | 306 |  * resolution values don't fall on second boundries.  I.e. the line: | 
 | 307 |  * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding. | 
 | 308 |  * | 
 | 309 |  * Rather, we just shift the bits off the right. | 
 | 310 |  * | 
 | 311 |  * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec | 
 | 312 |  * value to a scaled second value. | 
 | 313 |  */ | 
 | 314 | static __inline__ unsigned long | 
 | 315 | timespec_to_jiffies(const struct timespec *value) | 
 | 316 | { | 
 | 317 | 	unsigned long sec = value->tv_sec; | 
 | 318 | 	long nsec = value->tv_nsec + TICK_NSEC - 1; | 
 | 319 |  | 
 | 320 | 	if (sec >= MAX_SEC_IN_JIFFIES){ | 
 | 321 | 		sec = MAX_SEC_IN_JIFFIES; | 
 | 322 | 		nsec = 0; | 
 | 323 | 	} | 
 | 324 | 	return (((u64)sec * SEC_CONVERSION) + | 
 | 325 | 		(((u64)nsec * NSEC_CONVERSION) >> | 
 | 326 | 		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC; | 
 | 327 |  | 
 | 328 | } | 
 | 329 |  | 
 | 330 | static __inline__ void | 
 | 331 | jiffies_to_timespec(const unsigned long jiffies, struct timespec *value) | 
 | 332 | { | 
 | 333 | 	/* | 
 | 334 | 	 * Convert jiffies to nanoseconds and separate with | 
 | 335 | 	 * one divide. | 
 | 336 | 	 */ | 
 | 337 | 	u64 nsec = (u64)jiffies * TICK_NSEC; | 
 | 338 | 	value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_nsec); | 
 | 339 | } | 
 | 340 |  | 
 | 341 | /* Same for "timeval" | 
 | 342 |  * | 
 | 343 |  * Well, almost.  The problem here is that the real system resolution is | 
 | 344 |  * in nanoseconds and the value being converted is in micro seconds. | 
 | 345 |  * Also for some machines (those that use HZ = 1024, in-particular), | 
 | 346 |  * there is a LARGE error in the tick size in microseconds. | 
 | 347 |  | 
 | 348 |  * The solution we use is to do the rounding AFTER we convert the | 
 | 349 |  * microsecond part.  Thus the USEC_ROUND, the bits to be shifted off. | 
 | 350 |  * Instruction wise, this should cost only an additional add with carry | 
 | 351 |  * instruction above the way it was done above. | 
 | 352 |  */ | 
 | 353 | static __inline__ unsigned long | 
 | 354 | timeval_to_jiffies(const struct timeval *value) | 
 | 355 | { | 
 | 356 | 	unsigned long sec = value->tv_sec; | 
 | 357 | 	long usec = value->tv_usec; | 
 | 358 |  | 
 | 359 | 	if (sec >= MAX_SEC_IN_JIFFIES){ | 
 | 360 | 		sec = MAX_SEC_IN_JIFFIES; | 
 | 361 | 		usec = 0; | 
 | 362 | 	} | 
 | 363 | 	return (((u64)sec * SEC_CONVERSION) + | 
 | 364 | 		(((u64)usec * USEC_CONVERSION + USEC_ROUND) >> | 
 | 365 | 		 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC; | 
 | 366 | } | 
 | 367 |  | 
 | 368 | static __inline__ void | 
 | 369 | jiffies_to_timeval(const unsigned long jiffies, struct timeval *value) | 
 | 370 | { | 
 | 371 | 	/* | 
 | 372 | 	 * Convert jiffies to nanoseconds and separate with | 
 | 373 | 	 * one divide. | 
 | 374 | 	 */ | 
 | 375 | 	u64 nsec = (u64)jiffies * TICK_NSEC; | 
 | 376 | 	value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_usec); | 
 | 377 | 	value->tv_usec /= NSEC_PER_USEC; | 
 | 378 | } | 
 | 379 |  | 
 | 380 | /* | 
 | 381 |  * Convert jiffies/jiffies_64 to clock_t and back. | 
 | 382 |  */ | 
 | 383 | static inline clock_t jiffies_to_clock_t(long x) | 
 | 384 | { | 
 | 385 | #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0 | 
 | 386 | 	return x / (HZ / USER_HZ); | 
 | 387 | #else | 
 | 388 | 	u64 tmp = (u64)x * TICK_NSEC; | 
 | 389 | 	do_div(tmp, (NSEC_PER_SEC / USER_HZ)); | 
 | 390 | 	return (long)tmp; | 
 | 391 | #endif | 
 | 392 | } | 
 | 393 |  | 
 | 394 | static inline unsigned long clock_t_to_jiffies(unsigned long x) | 
 | 395 | { | 
 | 396 | #if (HZ % USER_HZ)==0 | 
 | 397 | 	if (x >= ~0UL / (HZ / USER_HZ)) | 
 | 398 | 		return ~0UL; | 
 | 399 | 	return x * (HZ / USER_HZ); | 
 | 400 | #else | 
 | 401 | 	u64 jif; | 
 | 402 |  | 
 | 403 | 	/* Don't worry about loss of precision here .. */ | 
 | 404 | 	if (x >= ~0UL / HZ * USER_HZ) | 
 | 405 | 		return ~0UL; | 
 | 406 |  | 
 | 407 | 	/* .. but do try to contain it here */ | 
 | 408 | 	jif = x * (u64) HZ; | 
 | 409 | 	do_div(jif, USER_HZ); | 
 | 410 | 	return jif; | 
 | 411 | #endif | 
 | 412 | } | 
 | 413 |  | 
 | 414 | static inline u64 jiffies_64_to_clock_t(u64 x) | 
 | 415 | { | 
 | 416 | #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0 | 
 | 417 | 	do_div(x, HZ / USER_HZ); | 
 | 418 | #else | 
 | 419 | 	/* | 
 | 420 | 	 * There are better ways that don't overflow early, | 
 | 421 | 	 * but even this doesn't overflow in hundreds of years | 
 | 422 | 	 * in 64 bits, so.. | 
 | 423 | 	 */ | 
 | 424 | 	x *= TICK_NSEC; | 
 | 425 | 	do_div(x, (NSEC_PER_SEC / USER_HZ)); | 
 | 426 | #endif | 
 | 427 | 	return x; | 
 | 428 | } | 
 | 429 |  | 
 | 430 | static inline u64 nsec_to_clock_t(u64 x) | 
 | 431 | { | 
 | 432 | #if (NSEC_PER_SEC % USER_HZ) == 0 | 
 | 433 | 	do_div(x, (NSEC_PER_SEC / USER_HZ)); | 
 | 434 | #elif (USER_HZ % 512) == 0 | 
 | 435 | 	x *= USER_HZ/512; | 
 | 436 | 	do_div(x, (NSEC_PER_SEC / 512)); | 
 | 437 | #else | 
 | 438 | 	/* | 
 | 439 |          * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024, | 
 | 440 |          * overflow after 64.99 years. | 
 | 441 |          * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ... | 
 | 442 |          */ | 
 | 443 | 	x *= 9; | 
 | 444 | 	do_div(x, (unsigned long)((9ull * NSEC_PER_SEC + (USER_HZ/2)) | 
 | 445 | 	                          / USER_HZ)); | 
 | 446 | #endif | 
 | 447 | 	return x; | 
 | 448 | } | 
 | 449 |  | 
 | 450 | #endif |