blob: 86a99d02234f16b4a7e53bc3eb040c6420f66b77 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/arch/parisc/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
5 * Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
6 * Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
7 *
8 * 1994-07-02 Alan Modra
9 * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10 * 1998-12-20 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 */
Linus Torvalds1da177e2005-04-16 15:20:36 -070013#include <linux/errno.h>
14#include <linux/module.h>
15#include <linux/sched.h>
16#include <linux/kernel.h>
17#include <linux/param.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/interrupt.h>
21#include <linux/time.h>
22#include <linux/init.h>
23#include <linux/smp.h>
24#include <linux/profile.h>
Helge Deller12df29b2007-01-02 23:54:16 +010025#include <linux/clocksource.h>
Kyle McMartin9eb16862008-09-10 14:24:07 +000026#include <linux/platform_device.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070027
28#include <asm/uaccess.h>
29#include <asm/io.h>
30#include <asm/irq.h>
31#include <asm/param.h>
32#include <asm/pdc.h>
33#include <asm/led.h>
34
35#include <linux/timex.h>
36
Grant Grundlerbed583f2006-09-08 23:29:22 -070037static unsigned long clocktick __read_mostly; /* timer cycles per tick */
Linus Torvalds1da177e2005-04-16 15:20:36 -070038
Matthew Wilcox1604f312006-10-04 15:12:52 -060039/*
40 * We keep time on PA-RISC Linux by using the Interval Timer which is
41 * a pair of registers; one is read-only and one is write-only; both
42 * accessed through CR16. The read-only register is 32 or 64 bits wide,
43 * and increments by 1 every CPU clock tick. The architecture only
44 * guarantees us a rate between 0.5 and 2, but all implementations use a
45 * rate of 1. The write-only register is 32-bits wide. When the lowest
46 * 32 bits of the read-only register compare equal to the write-only
47 * register, it raises a maskable external interrupt. Each processor has
48 * an Interval Timer of its own and they are not synchronised.
49 *
50 * We want to generate an interrupt every 1/HZ seconds. So we program
51 * CR16 to interrupt every @clocktick cycles. The it_value in cpu_data
52 * is programmed with the intended time of the next tick. We can be
53 * held off for an arbitrarily long period of time by interrupts being
54 * disabled, so we may miss one or more ticks.
55 */
Matthew Wilcoxc7753f12006-10-07 06:01:11 -060056irqreturn_t timer_interrupt(int irq, void *dev_id)
Linus Torvalds1da177e2005-04-16 15:20:36 -070057{
Grant Grundlerbed583f2006-09-08 23:29:22 -070058 unsigned long now;
59 unsigned long next_tick;
Matthew Wilcox1604f312006-10-04 15:12:52 -060060 unsigned long cycles_elapsed, ticks_elapsed;
Grant Grundler6e5dc422006-09-10 12:57:55 -070061 unsigned long cycles_remainder;
62 unsigned int cpu = smp_processor_id();
Helge Delleref017be2008-12-31 03:12:10 +000063 struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -070064
Grant Grundler6b799d92006-09-04 13:56:11 -070065 /* gcc can optimize for "read-only" case with a local clocktick */
Grant Grundler6e5dc422006-09-10 12:57:55 -070066 unsigned long cpt = clocktick;
Grant Grundler6b799d92006-09-04 13:56:11 -070067
Matthew Wilcoxbe577a52006-10-06 20:47:23 -060068 profile_tick(CPU_PROFILING);
Linus Torvalds1da177e2005-04-16 15:20:36 -070069
Grant Grundlerbed583f2006-09-08 23:29:22 -070070 /* Initialize next_tick to the expected tick time. */
Matthew Wilcoxc7753f12006-10-07 06:01:11 -060071 next_tick = cpuinfo->it_value;
Linus Torvalds1da177e2005-04-16 15:20:36 -070072
Grant Grundlerbed583f2006-09-08 23:29:22 -070073 /* Get current interval timer.
74 * CR16 reads as 64 bits in CPU wide mode.
75 * CR16 reads as 32 bits in CPU narrow mode.
Linus Torvalds1da177e2005-04-16 15:20:36 -070076 */
Grant Grundlerbed583f2006-09-08 23:29:22 -070077 now = mfctl(16);
Linus Torvalds1da177e2005-04-16 15:20:36 -070078
Grant Grundlerbed583f2006-09-08 23:29:22 -070079 cycles_elapsed = now - next_tick;
80
Grant Grundler6e5dc422006-09-10 12:57:55 -070081 if ((cycles_elapsed >> 5) < cpt) {
82 /* use "cheap" math (add/subtract) instead
83 * of the more expensive div/mul method
Grant Grundlerbed583f2006-09-08 23:29:22 -070084 */
Grant Grundler6b799d92006-09-04 13:56:11 -070085 cycles_remainder = cycles_elapsed;
Matthew Wilcox1604f312006-10-04 15:12:52 -060086 ticks_elapsed = 1;
Grant Grundler6e5dc422006-09-10 12:57:55 -070087 while (cycles_remainder > cpt) {
88 cycles_remainder -= cpt;
Matthew Wilcox1604f312006-10-04 15:12:52 -060089 ticks_elapsed++;
Grant Grundler6e5dc422006-09-10 12:57:55 -070090 }
Grant Grundler6b799d92006-09-04 13:56:11 -070091 } else {
Grant Grundler6e5dc422006-09-10 12:57:55 -070092 cycles_remainder = cycles_elapsed % cpt;
Matthew Wilcox1604f312006-10-04 15:12:52 -060093 ticks_elapsed = 1 + cycles_elapsed / cpt;
Grant Grundler6b799d92006-09-04 13:56:11 -070094 }
Grant Grundlerbed583f2006-09-08 23:29:22 -070095
96 /* Can we differentiate between "early CR16" (aka Scenario 1) and
97 * "long delay" (aka Scenario 3)? I don't think so.
98 *
99 * We expected timer_interrupt to be delivered at least a few hundred
100 * cycles after the IT fires. But it's arbitrary how much time passes
101 * before we call it "late". I've picked one second.
102 */
Helge Deller324c7e62007-01-03 19:25:37 +0100103 if (unlikely(ticks_elapsed > HZ)) {
Grant Grundlerbed583f2006-09-08 23:29:22 -0700104 /* Scenario 3: very long delay? bad in any case */
Grant Grundler6b799d92006-09-04 13:56:11 -0700105 printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"
Grant Grundler6e5dc422006-09-10 12:57:55 -0700106 " cycles %lX rem %lX "
Grant Grundlerbed583f2006-09-08 23:29:22 -0700107 " next/now %lX/%lX\n",
108 cpu,
Grant Grundler6e5dc422006-09-10 12:57:55 -0700109 cycles_elapsed, cycles_remainder,
Grant Grundlerbed583f2006-09-08 23:29:22 -0700110 next_tick, now );
Grant Grundlerbed583f2006-09-08 23:29:22 -0700111 }
112
Grant Grundler6e5dc422006-09-10 12:57:55 -0700113 /* convert from "division remainder" to "remainder of clock tick" */
114 cycles_remainder = cpt - cycles_remainder;
Grant Grundlerbed583f2006-09-08 23:29:22 -0700115
116 /* Determine when (in CR16 cycles) next IT interrupt will fire.
117 * We want IT to fire modulo clocktick even if we miss/skip some.
118 * But those interrupts don't in fact get delivered that regularly.
119 */
Grant Grundler6e5dc422006-09-10 12:57:55 -0700120 next_tick = now + cycles_remainder;
121
Matthew Wilcoxc7753f12006-10-07 06:01:11 -0600122 cpuinfo->it_value = next_tick;
Grant Grundler6b799d92006-09-04 13:56:11 -0700123
124 /* Skip one clocktick on purpose if we are likely to miss next_tick.
Grant Grundler6e5dc422006-09-10 12:57:55 -0700125 * We want to avoid the new next_tick being less than CR16.
126 * If that happened, itimer wouldn't fire until CR16 wrapped.
127 * We'll catch the tick we missed on the tick after that.
128 */
129 if (!(cycles_remainder >> 13))
130 next_tick += cpt;
Grant Grundlerbed583f2006-09-08 23:29:22 -0700131
132 /* Program the IT when to deliver the next interrupt. */
Matthew Wilcoxc7753f12006-10-07 06:01:11 -0600133 /* Only bottom 32-bits of next_tick are written to cr16. */
Grant Grundler6b799d92006-09-04 13:56:11 -0700134 mtctl(next_tick, 16);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700135
Grant Grundler6e5dc422006-09-10 12:57:55 -0700136
137 /* Done mucking with unreliable delivery of interrupts.
138 * Go do system house keeping.
Grant Grundlerbed583f2006-09-08 23:29:22 -0700139 */
Matthew Wilcoxc7753f12006-10-07 06:01:11 -0600140
141 if (!--cpuinfo->prof_counter) {
142 cpuinfo->prof_counter = cpuinfo->prof_multiplier;
143 update_process_times(user_mode(get_irq_regs()));
144 }
145
Grant Grundler6e5dc422006-09-10 12:57:55 -0700146 if (cpu == 0) {
147 write_seqlock(&xtime_lock);
Matthew Wilcox1604f312006-10-04 15:12:52 -0600148 do_timer(ticks_elapsed);
Grant Grundler6e5dc422006-09-10 12:57:55 -0700149 write_sequnlock(&xtime_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700150 }
Grant Grundler6e5dc422006-09-10 12:57:55 -0700151
Linus Torvalds1da177e2005-04-16 15:20:36 -0700152 return IRQ_HANDLED;
153}
154
Randolph Chung5cd55b02005-10-21 22:42:18 -0400155
156unsigned long profile_pc(struct pt_regs *regs)
157{
158 unsigned long pc = instruction_pointer(regs);
159
160 if (regs->gr[0] & PSW_N)
161 pc -= 4;
162
163#ifdef CONFIG_SMP
164 if (in_lock_functions(pc))
165 pc = regs->gr[2];
166#endif
167
168 return pc;
169}
170EXPORT_SYMBOL(profile_pc);
171
172
Helge Deller12df29b2007-01-02 23:54:16 +0100173/* clock source code */
174
175static cycle_t read_cr16(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700176{
Helge Deller12df29b2007-01-02 23:54:16 +0100177 return get_cycles();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700178}
179
Helge Deller12df29b2007-01-02 23:54:16 +0100180static struct clocksource clocksource_cr16 = {
181 .name = "cr16",
182 .rating = 300,
183 .read = read_cr16,
184 .mask = CLOCKSOURCE_MASK(BITS_PER_LONG),
185 .mult = 0, /* to be set */
186 .shift = 22,
Kyle McMartin87c81742007-02-26 20:15:18 -0500187 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
Helge Deller12df29b2007-01-02 23:54:16 +0100188};
Linus Torvalds1da177e2005-04-16 15:20:36 -0700189
Kyle McMartinb2a82892007-02-26 21:24:56 -0500190#ifdef CONFIG_SMP
191int update_cr16_clocksource(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700192{
Simon Arlott70226722007-05-11 20:42:34 +0100193 /* since the cr16 cycle counters are not synchronized across CPUs,
Helge Deller324c7e62007-01-03 19:25:37 +0100194 we'll check if we should switch to a safe clocksource: */
195 if (clocksource_cr16.rating != 0 && num_online_cpus() > 1) {
Kyle McMartin00d1f3c2007-02-26 20:10:42 -0500196 clocksource_change_rating(&clocksource_cr16, 0);
Kyle McMartin730e8442007-10-18 00:03:45 -0700197 return 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700198 }
199
Kyle McMartin730e8442007-10-18 00:03:45 -0700200 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700201}
Kyle McMartin01363222007-02-26 22:21:22 -0500202#else
203int update_cr16_clocksource(void)
204{
205 return 0; /* no change */
206}
Kyle McMartinb2a82892007-02-26 21:24:56 -0500207#endif /*CONFIG_SMP*/
Linus Torvalds1da177e2005-04-16 15:20:36 -0700208
Grant Grundler56f335c2006-09-03 00:02:16 -0700209void __init start_cpu_itimer(void)
210{
211 unsigned int cpu = smp_processor_id();
212 unsigned long next_tick = mfctl(16) + clocktick;
213
214 mtctl(next_tick, 16); /* kick off Interval Timer (CR16) */
215
Helge Delleref017be2008-12-31 03:12:10 +0000216 per_cpu(cpu_data, cpu).it_value = next_tick;
Grant Grundler56f335c2006-09-03 00:02:16 -0700217}
218
Geert Uytterhoeven3afe6d02009-02-19 16:46:49 +0100219static struct platform_device rtc_generic_dev = {
220 .name = "rtc-generic",
Kyle McMartin9eb16862008-09-10 14:24:07 +0000221 .id = -1,
222};
223
224static int __init rtc_init(void)
225{
Geert Uytterhoeven3afe6d02009-02-19 16:46:49 +0100226 if (platform_device_register(&rtc_generic_dev) < 0)
Kyle McMartin9eb16862008-09-10 14:24:07 +0000227 printk(KERN_ERR "unable to register rtc device...\n");
228
229 /* not necessarily an error */
230 return 0;
231}
232module_init(rtc_init);
233
Linus Torvalds1da177e2005-04-16 15:20:36 -0700234void __init time_init(void)
235{
Linus Torvalds1da177e2005-04-16 15:20:36 -0700236 static struct pdc_tod tod_data;
Helge Deller12df29b2007-01-02 23:54:16 +0100237 unsigned long current_cr16_khz;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700238
239 clocktick = (100 * PAGE0->mem_10msec) / HZ;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700240
Grant Grundler56f335c2006-09-03 00:02:16 -0700241 start_cpu_itimer(); /* get CPU 0 started */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700242
Helge Deller12df29b2007-01-02 23:54:16 +0100243 /* register at clocksource framework */
244 current_cr16_khz = PAGE0->mem_10msec/10; /* kHz */
245 clocksource_cr16.mult = clocksource_khz2mult(current_cr16_khz,
246 clocksource_cr16.shift);
Helge Deller12df29b2007-01-02 23:54:16 +0100247 clocksource_register(&clocksource_cr16);
248
Kyle McMartin09690b12006-10-05 23:45:45 -0400249 if (pdc_tod_read(&tod_data) == 0) {
250 unsigned long flags;
251
252 write_seqlock_irqsave(&xtime_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700253 xtime.tv_sec = tod_data.tod_sec;
254 xtime.tv_nsec = tod_data.tod_usec * 1000;
255 set_normalized_timespec(&wall_to_monotonic,
256 -xtime.tv_sec, -xtime.tv_nsec);
Kyle McMartin09690b12006-10-05 23:45:45 -0400257 write_sequnlock_irqrestore(&xtime_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700258 } else {
259 printk(KERN_ERR "Error reading tod clock\n");
260 xtime.tv_sec = 0;
261 xtime.tv_nsec = 0;
262 }
263}