| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  * Linux/PA-RISC Project (http://www.parisc-linux.org/) | 
 | 3 |  * | 
 | 4 |  * Floating-point emulation code | 
 | 5 |  *  Copyright (C) 2001 Hewlett-Packard (Paul Bame) <bame@debian.org> | 
 | 6 |  * | 
 | 7 |  *    This program is free software; you can redistribute it and/or modify | 
 | 8 |  *    it under the terms of the GNU General Public License as published by | 
 | 9 |  *    the Free Software Foundation; either version 2, or (at your option) | 
 | 10 |  *    any later version. | 
 | 11 |  * | 
 | 12 |  *    This program is distributed in the hope that it will be useful, | 
 | 13 |  *    but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 | 14 |  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 | 15 |  *    GNU General Public License for more details. | 
 | 16 |  * | 
 | 17 |  *    You should have received a copy of the GNU General Public License | 
 | 18 |  *    along with this program; if not, write to the Free Software | 
 | 19 |  *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA | 
 | 20 |  */ | 
 | 21 | /* | 
 | 22 |  * BEGIN_DESC | 
 | 23 |  * | 
 | 24 |  *  File: | 
 | 25 |  *	@(#)	pa/spmath/dfadd.c		$Revision: 1.1 $ | 
 | 26 |  * | 
 | 27 |  *  Purpose: | 
 | 28 |  *	Double_add: add two double precision values. | 
 | 29 |  * | 
 | 30 |  *  External Interfaces: | 
 | 31 |  *	dbl_fadd(leftptr, rightptr, dstptr, status) | 
 | 32 |  * | 
 | 33 |  *  Internal Interfaces: | 
 | 34 |  * | 
 | 35 |  *  Theory: | 
 | 36 |  *	<<please update with a overview of the operation of this file>> | 
 | 37 |  * | 
 | 38 |  * END_DESC | 
 | 39 | */ | 
 | 40 |  | 
 | 41 |  | 
 | 42 | #include "float.h" | 
 | 43 | #include "dbl_float.h" | 
 | 44 |  | 
 | 45 | /* | 
 | 46 |  * Double_add: add two double precision values. | 
 | 47 |  */ | 
 | 48 | dbl_fadd( | 
 | 49 |     dbl_floating_point *leftptr, | 
 | 50 |     dbl_floating_point *rightptr, | 
 | 51 |     dbl_floating_point *dstptr, | 
 | 52 |     unsigned int *status) | 
 | 53 | { | 
 | 54 |     register unsigned int signless_upper_left, signless_upper_right, save; | 
 | 55 |     register unsigned int leftp1, leftp2, rightp1, rightp2, extent; | 
 | 56 |     register unsigned int resultp1 = 0, resultp2 = 0; | 
 | 57 |      | 
 | 58 |     register int result_exponent, right_exponent, diff_exponent; | 
 | 59 |     register int sign_save, jumpsize; | 
 | 60 |     register boolean inexact = FALSE; | 
 | 61 |     register boolean underflowtrap; | 
 | 62 |          | 
 | 63 |     /* Create local copies of the numbers */ | 
 | 64 |     Dbl_copyfromptr(leftptr,leftp1,leftp2); | 
 | 65 |     Dbl_copyfromptr(rightptr,rightp1,rightp2); | 
 | 66 |  | 
 | 67 |     /* A zero "save" helps discover equal operands (for later),  * | 
 | 68 |      * and is used in swapping operands (if needed).             */ | 
 | 69 |     Dbl_xortointp1(leftp1,rightp1,/*to*/save); | 
 | 70 |  | 
 | 71 |     /* | 
 | 72 |      * check first operand for NaN's or infinity | 
 | 73 |      */ | 
 | 74 |     if ((result_exponent = Dbl_exponent(leftp1)) == DBL_INFINITY_EXPONENT) | 
 | 75 | 	{ | 
 | 76 | 	if (Dbl_iszero_mantissa(leftp1,leftp2))  | 
 | 77 | 	    { | 
 | 78 | 	    if (Dbl_isnotnan(rightp1,rightp2))  | 
 | 79 | 		{ | 
 | 80 | 		if (Dbl_isinfinity(rightp1,rightp2) && save!=0)  | 
 | 81 | 		    { | 
 | 82 | 		    /*  | 
 | 83 | 		     * invalid since operands are opposite signed infinity's | 
 | 84 | 		     */ | 
 | 85 | 		    if (Is_invalidtrap_enabled()) return(INVALIDEXCEPTION); | 
 | 86 |                     Set_invalidflag(); | 
 | 87 |                     Dbl_makequietnan(resultp1,resultp2); | 
 | 88 | 		    Dbl_copytoptr(resultp1,resultp2,dstptr); | 
 | 89 | 		    return(NOEXCEPTION); | 
 | 90 | 		    } | 
 | 91 | 		/* | 
 | 92 | 	 	 * return infinity | 
 | 93 | 	 	 */ | 
 | 94 | 		Dbl_copytoptr(leftp1,leftp2,dstptr); | 
 | 95 | 		return(NOEXCEPTION); | 
 | 96 | 		} | 
 | 97 | 	    } | 
 | 98 | 	else  | 
 | 99 | 	    { | 
 | 100 |             /* | 
 | 101 |              * is NaN; signaling or quiet? | 
 | 102 |              */ | 
 | 103 |             if (Dbl_isone_signaling(leftp1))  | 
 | 104 | 		{ | 
 | 105 |                	/* trap if INVALIDTRAP enabled */ | 
 | 106 | 		if (Is_invalidtrap_enabled()) return(INVALIDEXCEPTION); | 
 | 107 |         	/* make NaN quiet */ | 
 | 108 |         	Set_invalidflag(); | 
 | 109 |         	Dbl_set_quiet(leftp1); | 
 | 110 |         	} | 
 | 111 | 	    /*  | 
 | 112 | 	     * is second operand a signaling NaN?  | 
 | 113 | 	     */ | 
 | 114 | 	    else if (Dbl_is_signalingnan(rightp1))  | 
 | 115 | 		{ | 
 | 116 |         	/* trap if INVALIDTRAP enabled */ | 
 | 117 |                	if (Is_invalidtrap_enabled()) return(INVALIDEXCEPTION); | 
 | 118 | 		/* make NaN quiet */ | 
 | 119 | 		Set_invalidflag(); | 
 | 120 | 		Dbl_set_quiet(rightp1); | 
 | 121 | 		Dbl_copytoptr(rightp1,rightp2,dstptr); | 
 | 122 | 		return(NOEXCEPTION); | 
 | 123 | 		} | 
 | 124 | 	    /* | 
 | 125 |  	     * return quiet NaN | 
 | 126 |  	     */ | 
 | 127 | 	    Dbl_copytoptr(leftp1,leftp2,dstptr); | 
 | 128 |  	    return(NOEXCEPTION); | 
 | 129 | 	    } | 
 | 130 | 	} /* End left NaN or Infinity processing */ | 
 | 131 |     /* | 
 | 132 |      * check second operand for NaN's or infinity | 
 | 133 |      */ | 
 | 134 |     if (Dbl_isinfinity_exponent(rightp1))  | 
 | 135 | 	{ | 
 | 136 | 	if (Dbl_iszero_mantissa(rightp1,rightp2))  | 
 | 137 | 	    { | 
 | 138 | 	    /* return infinity */ | 
 | 139 | 	    Dbl_copytoptr(rightp1,rightp2,dstptr); | 
 | 140 | 	    return(NOEXCEPTION); | 
 | 141 | 	    } | 
 | 142 |         /* | 
 | 143 |          * is NaN; signaling or quiet? | 
 | 144 |          */ | 
 | 145 |         if (Dbl_isone_signaling(rightp1))  | 
 | 146 | 	    { | 
 | 147 |             /* trap if INVALIDTRAP enabled */ | 
 | 148 | 	    if (Is_invalidtrap_enabled()) return(INVALIDEXCEPTION); | 
 | 149 | 	    /* make NaN quiet */ | 
 | 150 | 	    Set_invalidflag(); | 
 | 151 | 	    Dbl_set_quiet(rightp1); | 
 | 152 | 	    } | 
 | 153 | 	/* | 
 | 154 | 	 * return quiet NaN | 
 | 155 |  	 */ | 
 | 156 | 	Dbl_copytoptr(rightp1,rightp2,dstptr); | 
 | 157 | 	return(NOEXCEPTION); | 
 | 158 |     	} /* End right NaN or Infinity processing */ | 
 | 159 |  | 
 | 160 |     /* Invariant: Must be dealing with finite numbers */ | 
 | 161 |  | 
 | 162 |     /* Compare operands by removing the sign */ | 
 | 163 |     Dbl_copytoint_exponentmantissap1(leftp1,signless_upper_left); | 
 | 164 |     Dbl_copytoint_exponentmantissap1(rightp1,signless_upper_right); | 
 | 165 |  | 
 | 166 |     /* sign difference selects add or sub operation. */ | 
 | 167 |     if(Dbl_ismagnitudeless(leftp2,rightp2,signless_upper_left,signless_upper_right)) | 
 | 168 | 	{ | 
 | 169 | 	/* Set the left operand to the larger one by XOR swap * | 
 | 170 | 	 *  First finish the first word using "save"          */ | 
 | 171 | 	Dbl_xorfromintp1(save,rightp1,/*to*/rightp1); | 
 | 172 | 	Dbl_xorfromintp1(save,leftp1,/*to*/leftp1); | 
 | 173 |      	Dbl_swap_lower(leftp2,rightp2); | 
 | 174 | 	result_exponent = Dbl_exponent(leftp1); | 
 | 175 | 	} | 
 | 176 |     /* Invariant:  left is not smaller than right. */  | 
 | 177 |  | 
 | 178 |     if((right_exponent = Dbl_exponent(rightp1)) == 0) | 
 | 179 |         { | 
 | 180 | 	/* Denormalized operands.  First look for zeroes */ | 
 | 181 | 	if(Dbl_iszero_mantissa(rightp1,rightp2))  | 
 | 182 | 	    { | 
 | 183 | 	    /* right is zero */ | 
 | 184 | 	    if(Dbl_iszero_exponentmantissa(leftp1,leftp2)) | 
 | 185 | 		{ | 
 | 186 | 		/* Both operands are zeros */ | 
 | 187 | 		if(Is_rounding_mode(ROUNDMINUS)) | 
 | 188 | 		    { | 
 | 189 | 		    Dbl_or_signs(leftp1,/*with*/rightp1); | 
 | 190 | 		    } | 
 | 191 | 		else | 
 | 192 | 		    { | 
 | 193 | 		    Dbl_and_signs(leftp1,/*with*/rightp1); | 
 | 194 | 		    } | 
 | 195 | 		} | 
 | 196 | 	    else  | 
 | 197 | 		{ | 
 | 198 | 		/* Left is not a zero and must be the result.  Trapped | 
 | 199 | 		 * underflows are signaled if left is denormalized.  Result | 
 | 200 | 		 * is always exact. */ | 
 | 201 | 		if( (result_exponent == 0) && Is_underflowtrap_enabled() ) | 
 | 202 | 		    { | 
 | 203 | 		    /* need to normalize results mantissa */ | 
 | 204 | 	    	    sign_save = Dbl_signextendedsign(leftp1); | 
 | 205 | 		    Dbl_leftshiftby1(leftp1,leftp2); | 
 | 206 | 		    Dbl_normalize(leftp1,leftp2,result_exponent); | 
 | 207 | 		    Dbl_set_sign(leftp1,/*using*/sign_save); | 
 | 208 |                     Dbl_setwrapped_exponent(leftp1,result_exponent,unfl); | 
 | 209 | 		    Dbl_copytoptr(leftp1,leftp2,dstptr); | 
 | 210 | 		    /* inexact = FALSE */ | 
 | 211 | 		    return(UNDERFLOWEXCEPTION); | 
 | 212 | 		    } | 
 | 213 | 		} | 
 | 214 | 	    Dbl_copytoptr(leftp1,leftp2,dstptr); | 
 | 215 | 	    return(NOEXCEPTION); | 
 | 216 | 	    } | 
 | 217 |  | 
 | 218 | 	/* Neither are zeroes */ | 
 | 219 | 	Dbl_clear_sign(rightp1);	/* Exponent is already cleared */ | 
 | 220 | 	if(result_exponent == 0 ) | 
 | 221 | 	    { | 
 | 222 | 	    /* Both operands are denormalized.  The result must be exact | 
 | 223 | 	     * and is simply calculated.  A sum could become normalized and a | 
 | 224 | 	     * difference could cancel to a true zero. */ | 
 | 225 | 	    if( (/*signed*/int) save < 0 ) | 
 | 226 | 		{ | 
 | 227 | 		Dbl_subtract(leftp1,leftp2,/*minus*/rightp1,rightp2, | 
 | 228 | 		/*into*/resultp1,resultp2); | 
 | 229 | 		if(Dbl_iszero_mantissa(resultp1,resultp2)) | 
 | 230 | 		    { | 
 | 231 | 		    if(Is_rounding_mode(ROUNDMINUS)) | 
 | 232 | 			{ | 
 | 233 | 			Dbl_setone_sign(resultp1); | 
 | 234 | 			} | 
 | 235 | 		    else | 
 | 236 | 			{ | 
 | 237 | 			Dbl_setzero_sign(resultp1); | 
 | 238 | 			} | 
 | 239 | 		    Dbl_copytoptr(resultp1,resultp2,dstptr); | 
 | 240 | 		    return(NOEXCEPTION); | 
 | 241 | 		    } | 
 | 242 | 		} | 
 | 243 | 	    else | 
 | 244 | 		{ | 
 | 245 | 		Dbl_addition(leftp1,leftp2,rightp1,rightp2, | 
 | 246 | 		/*into*/resultp1,resultp2); | 
 | 247 | 		if(Dbl_isone_hidden(resultp1)) | 
 | 248 | 		    { | 
 | 249 | 		    Dbl_copytoptr(resultp1,resultp2,dstptr); | 
 | 250 | 		    return(NOEXCEPTION); | 
 | 251 | 		    } | 
 | 252 | 		} | 
 | 253 | 	    if(Is_underflowtrap_enabled()) | 
 | 254 | 		{ | 
 | 255 | 		/* need to normalize result */ | 
 | 256 | 	    	sign_save = Dbl_signextendedsign(resultp1); | 
 | 257 | 		Dbl_leftshiftby1(resultp1,resultp2); | 
 | 258 | 		Dbl_normalize(resultp1,resultp2,result_exponent); | 
 | 259 | 		Dbl_set_sign(resultp1,/*using*/sign_save); | 
 | 260 |                 Dbl_setwrapped_exponent(resultp1,result_exponent,unfl); | 
 | 261 | 	        Dbl_copytoptr(resultp1,resultp2,dstptr); | 
 | 262 | 		/* inexact = FALSE */ | 
 | 263 | 	        return(UNDERFLOWEXCEPTION); | 
 | 264 | 		} | 
 | 265 | 	    Dbl_copytoptr(resultp1,resultp2,dstptr); | 
 | 266 | 	    return(NOEXCEPTION); | 
 | 267 | 	    } | 
 | 268 | 	right_exponent = 1;	/* Set exponent to reflect different bias | 
 | 269 | 				 * with denomalized numbers. */ | 
 | 270 | 	} | 
 | 271 |     else | 
 | 272 | 	{ | 
 | 273 | 	Dbl_clear_signexponent_set_hidden(rightp1); | 
 | 274 | 	} | 
 | 275 |     Dbl_clear_exponent_set_hidden(leftp1); | 
 | 276 |     diff_exponent = result_exponent - right_exponent; | 
 | 277 |  | 
 | 278 |     /*  | 
 | 279 |      * Special case alignment of operands that would force alignment  | 
 | 280 |      * beyond the extent of the extension.  A further optimization | 
 | 281 |      * could special case this but only reduces the path length for this | 
 | 282 |      * infrequent case. | 
 | 283 |      */ | 
 | 284 |     if(diff_exponent > DBL_THRESHOLD) | 
 | 285 | 	{ | 
 | 286 | 	diff_exponent = DBL_THRESHOLD; | 
 | 287 | 	} | 
 | 288 |      | 
 | 289 |     /* Align right operand by shifting to right */ | 
 | 290 |     Dbl_right_align(/*operand*/rightp1,rightp2,/*shifted by*/diff_exponent, | 
 | 291 |     /*and lower to*/extent); | 
 | 292 |  | 
 | 293 |     /* Treat sum and difference of the operands separately. */ | 
 | 294 |     if( (/*signed*/int) save < 0 ) | 
 | 295 | 	{ | 
 | 296 | 	/* | 
 | 297 | 	 * Difference of the two operands.  Their can be no overflow.  A | 
 | 298 | 	 * borrow can occur out of the hidden bit and force a post | 
 | 299 | 	 * normalization phase. | 
 | 300 | 	 */ | 
 | 301 | 	Dbl_subtract_withextension(leftp1,leftp2,/*minus*/rightp1,rightp2, | 
 | 302 | 	/*with*/extent,/*into*/resultp1,resultp2); | 
 | 303 | 	if(Dbl_iszero_hidden(resultp1)) | 
 | 304 | 	    { | 
 | 305 | 	    /* Handle normalization */ | 
 | 306 | 	    /* A straight foward algorithm would now shift the result | 
 | 307 | 	     * and extension left until the hidden bit becomes one.  Not | 
 | 308 | 	     * all of the extension bits need participate in the shift. | 
 | 309 | 	     * Only the two most significant bits (round and guard) are | 
 | 310 | 	     * needed.  If only a single shift is needed then the guard | 
 | 311 | 	     * bit becomes a significant low order bit and the extension | 
 | 312 | 	     * must participate in the rounding.  If more than a single  | 
 | 313 | 	     * shift is needed, then all bits to the right of the guard  | 
 | 314 | 	     * bit are zeros, and the guard bit may or may not be zero. */ | 
 | 315 | 	    sign_save = Dbl_signextendedsign(resultp1); | 
 | 316 |             Dbl_leftshiftby1_withextent(resultp1,resultp2,extent,resultp1,resultp2); | 
 | 317 |  | 
 | 318 |             /* Need to check for a zero result.  The sign and exponent | 
 | 319 | 	     * fields have already been zeroed.  The more efficient test | 
 | 320 | 	     * of the full object can be used. | 
 | 321 | 	     */ | 
 | 322 |     	    if(Dbl_iszero(resultp1,resultp2)) | 
 | 323 | 		/* Must have been "x-x" or "x+(-x)". */ | 
 | 324 | 		{ | 
 | 325 | 		if(Is_rounding_mode(ROUNDMINUS)) Dbl_setone_sign(resultp1); | 
 | 326 | 		Dbl_copytoptr(resultp1,resultp2,dstptr); | 
 | 327 | 		return(NOEXCEPTION); | 
 | 328 | 		} | 
 | 329 | 	    result_exponent--; | 
 | 330 | 	    /* Look to see if normalization is finished. */ | 
 | 331 | 	    if(Dbl_isone_hidden(resultp1)) | 
 | 332 | 		{ | 
 | 333 | 		if(result_exponent==0) | 
 | 334 | 		    { | 
 | 335 | 		    /* Denormalized, exponent should be zero.  Left operand * | 
 | 336 | 		     * was normalized, so extent (guard, round) was zero    */ | 
 | 337 | 		    goto underflow; | 
 | 338 | 		    } | 
 | 339 | 		else | 
 | 340 | 		    { | 
 | 341 | 		    /* No further normalization is needed. */ | 
 | 342 | 		    Dbl_set_sign(resultp1,/*using*/sign_save); | 
 | 343 | 	    	    Ext_leftshiftby1(extent); | 
 | 344 | 		    goto round; | 
 | 345 | 		    } | 
 | 346 | 		} | 
 | 347 |  | 
 | 348 | 	    /* Check for denormalized, exponent should be zero.  Left    * | 
 | 349 | 	     * operand was normalized, so extent (guard, round) was zero */ | 
 | 350 | 	    if(!(underflowtrap = Is_underflowtrap_enabled()) && | 
 | 351 | 	       result_exponent==0) goto underflow; | 
 | 352 |  | 
 | 353 | 	    /* Shift extension to complete one bit of normalization and | 
 | 354 | 	     * update exponent. */ | 
 | 355 | 	    Ext_leftshiftby1(extent); | 
 | 356 |  | 
 | 357 | 	    /* Discover first one bit to determine shift amount.  Use a | 
 | 358 | 	     * modified binary search.  We have already shifted the result | 
 | 359 | 	     * one position right and still not found a one so the remainder | 
 | 360 | 	     * of the extension must be zero and simplifies rounding. */ | 
 | 361 | 	    /* Scan bytes */ | 
 | 362 | 	    while(Dbl_iszero_hiddenhigh7mantissa(resultp1)) | 
 | 363 | 		{ | 
 | 364 | 		Dbl_leftshiftby8(resultp1,resultp2); | 
 | 365 | 		if((result_exponent -= 8) <= 0  && !underflowtrap) | 
 | 366 | 		    goto underflow; | 
 | 367 | 		} | 
 | 368 | 	    /* Now narrow it down to the nibble */ | 
 | 369 | 	    if(Dbl_iszero_hiddenhigh3mantissa(resultp1)) | 
 | 370 | 		{ | 
 | 371 | 		/* The lower nibble contains the normalizing one */ | 
 | 372 | 		Dbl_leftshiftby4(resultp1,resultp2); | 
 | 373 | 		if((result_exponent -= 4) <= 0 && !underflowtrap) | 
 | 374 | 		    goto underflow; | 
 | 375 | 		} | 
 | 376 | 	    /* Select case were first bit is set (already normalized) | 
 | 377 | 	     * otherwise select the proper shift. */ | 
 | 378 | 	    if((jumpsize = Dbl_hiddenhigh3mantissa(resultp1)) > 7) | 
 | 379 | 		{ | 
 | 380 | 		/* Already normalized */ | 
 | 381 | 		if(result_exponent <= 0) goto underflow; | 
 | 382 | 		Dbl_set_sign(resultp1,/*using*/sign_save); | 
 | 383 | 		Dbl_set_exponent(resultp1,/*using*/result_exponent); | 
 | 384 | 		Dbl_copytoptr(resultp1,resultp2,dstptr); | 
 | 385 | 		return(NOEXCEPTION); | 
 | 386 | 		} | 
 | 387 | 	    Dbl_sethigh4bits(resultp1,/*using*/sign_save); | 
 | 388 | 	    switch(jumpsize)  | 
 | 389 | 		{ | 
 | 390 | 		case 1: | 
 | 391 | 		    { | 
 | 392 | 		    Dbl_leftshiftby3(resultp1,resultp2); | 
 | 393 | 		    result_exponent -= 3; | 
 | 394 | 		    break; | 
 | 395 | 		    } | 
 | 396 | 		case 2: | 
 | 397 | 		case 3: | 
 | 398 | 		    { | 
 | 399 | 		    Dbl_leftshiftby2(resultp1,resultp2); | 
 | 400 | 		    result_exponent -= 2; | 
 | 401 | 		    break; | 
 | 402 | 		    } | 
 | 403 | 		case 4: | 
 | 404 | 		case 5: | 
 | 405 | 		case 6: | 
 | 406 | 		case 7: | 
 | 407 | 		    { | 
 | 408 | 		    Dbl_leftshiftby1(resultp1,resultp2); | 
 | 409 | 		    result_exponent -= 1; | 
 | 410 | 		    break; | 
 | 411 | 		    } | 
 | 412 | 		} | 
 | 413 | 	    if(result_exponent > 0)  | 
 | 414 | 		{ | 
 | 415 | 		Dbl_set_exponent(resultp1,/*using*/result_exponent); | 
 | 416 | 		Dbl_copytoptr(resultp1,resultp2,dstptr); | 
 | 417 | 		return(NOEXCEPTION); 	/* Sign bit is already set */ | 
 | 418 | 		} | 
 | 419 | 	    /* Fixup potential underflows */ | 
 | 420 | 	  underflow: | 
 | 421 | 	    if(Is_underflowtrap_enabled()) | 
 | 422 | 		{ | 
 | 423 | 		Dbl_set_sign(resultp1,sign_save); | 
 | 424 |                 Dbl_setwrapped_exponent(resultp1,result_exponent,unfl); | 
 | 425 | 		Dbl_copytoptr(resultp1,resultp2,dstptr); | 
 | 426 | 		/* inexact = FALSE */ | 
 | 427 | 		return(UNDERFLOWEXCEPTION); | 
 | 428 | 		} | 
 | 429 | 	    /*  | 
 | 430 | 	     * Since we cannot get an inexact denormalized result, | 
 | 431 | 	     * we can now return. | 
 | 432 | 	     */ | 
 | 433 | 	    Dbl_fix_overshift(resultp1,resultp2,(1-result_exponent),extent); | 
 | 434 | 	    Dbl_clear_signexponent(resultp1); | 
 | 435 | 	    Dbl_set_sign(resultp1,sign_save); | 
 | 436 | 	    Dbl_copytoptr(resultp1,resultp2,dstptr); | 
 | 437 | 	    return(NOEXCEPTION); | 
 | 438 | 	    } /* end if(hidden...)... */ | 
 | 439 | 	/* Fall through and round */ | 
 | 440 | 	} /* end if(save < 0)... */ | 
 | 441 |     else  | 
 | 442 | 	{ | 
 | 443 | 	/* Add magnitudes */ | 
 | 444 | 	Dbl_addition(leftp1,leftp2,rightp1,rightp2,/*to*/resultp1,resultp2); | 
 | 445 | 	if(Dbl_isone_hiddenoverflow(resultp1)) | 
 | 446 | 	    { | 
 | 447 | 	    /* Prenormalization required. */ | 
 | 448 | 	    Dbl_rightshiftby1_withextent(resultp2,extent,extent); | 
 | 449 | 	    Dbl_arithrightshiftby1(resultp1,resultp2); | 
 | 450 | 	    result_exponent++; | 
 | 451 | 	    } /* end if hiddenoverflow... */ | 
 | 452 | 	} /* end else ...add magnitudes... */ | 
 | 453 |      | 
 | 454 |     /* Round the result.  If the extension is all zeros,then the result is | 
 | 455 |      * exact.  Otherwise round in the correct direction.  No underflow is | 
 | 456 |      * possible. If a postnormalization is necessary, then the mantissa is | 
 | 457 |      * all zeros so no shift is needed. */ | 
 | 458 |   round: | 
 | 459 |     if(Ext_isnotzero(extent)) | 
 | 460 | 	{ | 
 | 461 | 	inexact = TRUE; | 
 | 462 | 	switch(Rounding_mode()) | 
 | 463 | 	    { | 
 | 464 | 	    case ROUNDNEAREST: /* The default. */ | 
 | 465 | 	    if(Ext_isone_sign(extent)) | 
 | 466 | 		{ | 
 | 467 | 		/* at least 1/2 ulp */ | 
 | 468 | 		if(Ext_isnotzero_lower(extent)  || | 
 | 469 | 		  Dbl_isone_lowmantissap2(resultp2)) | 
 | 470 | 		    { | 
 | 471 | 		    /* either exactly half way and odd or more than 1/2ulp */ | 
 | 472 | 		    Dbl_increment(resultp1,resultp2); | 
 | 473 | 		    } | 
 | 474 | 		} | 
 | 475 | 	    break; | 
 | 476 |  | 
 | 477 | 	    case ROUNDPLUS: | 
 | 478 | 	    if(Dbl_iszero_sign(resultp1)) | 
 | 479 | 		{ | 
 | 480 | 		/* Round up positive results */ | 
 | 481 | 		Dbl_increment(resultp1,resultp2); | 
 | 482 | 		} | 
 | 483 | 	    break; | 
 | 484 | 	     | 
 | 485 | 	    case ROUNDMINUS: | 
 | 486 | 	    if(Dbl_isone_sign(resultp1)) | 
 | 487 | 		{ | 
 | 488 | 		/* Round down negative results */ | 
 | 489 | 		Dbl_increment(resultp1,resultp2); | 
 | 490 | 		} | 
 | 491 | 	     | 
 | 492 | 	    case ROUNDZERO:; | 
 | 493 | 	    /* truncate is simple */ | 
 | 494 | 	    } /* end switch... */ | 
 | 495 | 	if(Dbl_isone_hiddenoverflow(resultp1)) result_exponent++; | 
 | 496 | 	} | 
 | 497 |     if(result_exponent == DBL_INFINITY_EXPONENT) | 
 | 498 |         { | 
 | 499 |         /* Overflow */ | 
 | 500 |         if(Is_overflowtrap_enabled()) | 
 | 501 | 	    { | 
 | 502 | 	    Dbl_setwrapped_exponent(resultp1,result_exponent,ovfl); | 
 | 503 | 	    Dbl_copytoptr(resultp1,resultp2,dstptr); | 
 | 504 | 	    if (inexact) | 
 | 505 | 		if (Is_inexacttrap_enabled()) | 
 | 506 | 			return(OVERFLOWEXCEPTION | INEXACTEXCEPTION); | 
 | 507 | 		else Set_inexactflag(); | 
 | 508 | 	    return(OVERFLOWEXCEPTION); | 
 | 509 | 	    } | 
 | 510 |         else | 
 | 511 | 	    { | 
 | 512 | 	    inexact = TRUE; | 
 | 513 | 	    Set_overflowflag(); | 
 | 514 | 	    Dbl_setoverflow(resultp1,resultp2); | 
 | 515 | 	    } | 
 | 516 | 	} | 
 | 517 |     else Dbl_set_exponent(resultp1,result_exponent); | 
 | 518 |     Dbl_copytoptr(resultp1,resultp2,dstptr); | 
 | 519 |     if(inexact)  | 
 | 520 | 	if(Is_inexacttrap_enabled()) | 
 | 521 | 	    return(INEXACTEXCEPTION); | 
 | 522 | 	else Set_inexactflag(); | 
 | 523 |     return(NOEXCEPTION); | 
 | 524 | } |