Bryan Huntsman | 3f2bc4d | 2011-08-16 17:27:22 -0700 | [diff] [blame^] | 1 | /* Qualcomm Crypto Engine driver. |
| 2 | * |
| 3 | * Copyright (c) 2011, Code Aurora Forum. All rights reserved. |
| 4 | * |
| 5 | * This program is free software; you can redistribute it and/or modify |
| 6 | * it under the terms of the GNU General Public License version 2 and |
| 7 | * only version 2 as published by the Free Software Foundation. |
| 8 | * |
| 9 | * This program is distributed in the hope that it will be useful, |
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 12 | * GNU General Public License for more details. |
| 13 | */ |
| 14 | #include <linux/types.h> |
| 15 | #include <linux/kernel.h> |
| 16 | #include <linux/module.h> |
| 17 | #include <linux/mod_devicetable.h> |
| 18 | #include <linux/device.h> |
| 19 | #include <linux/clk.h> |
| 20 | #include <linux/err.h> |
| 21 | #include <linux/dma-mapping.h> |
| 22 | #include <linux/io.h> |
| 23 | #include <linux/platform_device.h> |
| 24 | #include <linux/spinlock.h> |
| 25 | #include <linux/delay.h> |
| 26 | #include <linux/crypto.h> |
| 27 | #include <crypto/hash.h> |
| 28 | #include <crypto/sha.h> |
| 29 | #include <mach/dma.h> |
| 30 | #include <mach/clk.h> |
| 31 | #include "inc/qce.h" |
| 32 | #include "inc/qcedev.h" |
| 33 | #include "inc/qcryptohw_40.h" |
| 34 | |
| 35 | /* ADM definitions */ |
| 36 | #define LI_SG_CMD (1 << 31) /* last index in the scatter gather cmd */ |
| 37 | #define SRC_INDEX_SG_CMD(index) ((index & 0x3fff) << 16) |
| 38 | #define DST_INDEX_SG_CMD(index) (index & 0x3fff) |
| 39 | #define ADM_DESC_LAST (1 << 31) |
| 40 | |
| 41 | /* Data xfer between DM and CE in blocks of 16 bytes */ |
| 42 | #define ADM_CE_BLOCK_SIZE 16 |
| 43 | |
| 44 | #define ADM_DESC_LENGTH_MASK 0xffff |
| 45 | #define ADM_DESC_LENGTH(x) (x & ADM_DESC_LENGTH_MASK) |
| 46 | |
| 47 | struct dmov_desc { |
| 48 | uint32_t addr; |
| 49 | uint32_t len; |
| 50 | }; |
| 51 | |
| 52 | #define ADM_STATUS_OK 0x80000002 |
| 53 | |
| 54 | /* Misc definitions */ |
| 55 | |
| 56 | /* QCE max number of descriptor in a descriptor list */ |
| 57 | #define QCE_MAX_NUM_DESC 128 |
| 58 | |
| 59 | /* State of DM channel */ |
| 60 | enum qce_chan_st_enum { |
| 61 | QCE_CHAN_STATE_IDLE = 0, |
| 62 | QCE_CHAN_STATE_IN_PROG = 1, |
| 63 | QCE_CHAN_STATE_COMP = 2, |
| 64 | QCE_CHAN_STATE_LAST |
| 65 | }; |
| 66 | |
| 67 | /* |
| 68 | * CE HW device structure. |
| 69 | * Each engine has an instance of the structure. |
| 70 | * Each engine can only handle one crypto operation at one time. It is up to |
| 71 | * the sw above to ensure single threading of operation on an engine. |
| 72 | */ |
| 73 | struct qce_device { |
| 74 | struct device *pdev; /* Handle to platform_device structure */ |
| 75 | unsigned char *coh_vmem; /* Allocated coherent virtual memory */ |
| 76 | dma_addr_t coh_pmem; /* Allocated coherent physical memory */ |
| 77 | void __iomem *iobase; /* Virtual io base of CE HW */ |
| 78 | unsigned int phy_iobase; /* Physical io base of CE HW */ |
| 79 | struct clk *ce_core_clk; /* Handle to CE clk */ |
| 80 | struct clk *ce_clk; /* Handle to CE clk */ |
| 81 | unsigned int crci_in; /* CRCI for CE DM IN Channel */ |
| 82 | unsigned int crci_out; /* CRCI for CE DM OUT Channel */ |
| 83 | unsigned int chan_ce_in; /* ADM channel used for CE input |
| 84 | * and auth result if authentication |
| 85 | * only operation. */ |
| 86 | unsigned int chan_ce_out; /* ADM channel used for CE output, |
| 87 | and icv for esp */ |
| 88 | unsigned int *cmd_pointer_list_ce_in; |
| 89 | dma_addr_t phy_cmd_pointer_list_ce_in; |
| 90 | |
| 91 | unsigned int *cmd_pointer_list_ce_out; |
| 92 | dma_addr_t phy_cmd_pointer_list_ce_out; |
| 93 | |
| 94 | unsigned char *cmd_list_ce_in; |
| 95 | dma_addr_t phy_cmd_list_ce_in; |
| 96 | |
| 97 | unsigned char *cmd_list_ce_out; |
| 98 | dma_addr_t phy_cmd_list_ce_out; |
| 99 | |
| 100 | struct dmov_desc *ce_out_src_desc; |
| 101 | dma_addr_t phy_ce_out_src_desc; |
| 102 | |
| 103 | struct dmov_desc *ce_out_dst_desc; |
| 104 | dma_addr_t phy_ce_out_dst_desc; |
| 105 | |
| 106 | struct dmov_desc *ce_in_src_desc; |
| 107 | dma_addr_t phy_ce_in_src_desc; |
| 108 | |
| 109 | struct dmov_desc *ce_in_dst_desc; |
| 110 | dma_addr_t phy_ce_in_dst_desc; |
| 111 | |
| 112 | unsigned char *ce_out_ignore; |
| 113 | dma_addr_t phy_ce_out_ignore; |
| 114 | |
| 115 | unsigned char *ce_pad; |
| 116 | dma_addr_t phy_ce_pad; |
| 117 | |
| 118 | struct msm_dmov_cmd *chan_ce_in_cmd; |
| 119 | struct msm_dmov_cmd *chan_ce_out_cmd; |
| 120 | |
| 121 | uint32_t ce_out_ignore_size; |
| 122 | |
| 123 | int ce_out_dst_desc_index; |
| 124 | int ce_in_dst_desc_index; |
| 125 | |
| 126 | int ce_out_src_desc_index; |
| 127 | int ce_in_src_desc_index; |
| 128 | |
| 129 | enum qce_chan_st_enum chan_ce_in_state; /* chan ce_in state */ |
| 130 | enum qce_chan_st_enum chan_ce_out_state; /* chan ce_out state */ |
| 131 | |
| 132 | int chan_ce_in_status; /* chan ce_in status */ |
| 133 | int chan_ce_out_status; /* chan ce_out status */ |
| 134 | |
| 135 | unsigned char *dig_result; |
| 136 | dma_addr_t phy_dig_result; |
| 137 | |
| 138 | /* cached aes key */ |
| 139 | uint32_t cipher_key[MAX_CIPHER_KEY_SIZE/sizeof(uint32_t)]; |
| 140 | |
| 141 | uint32_t cipher_key_size; /* cached aes key size in bytes */ |
| 142 | qce_comp_func_ptr_t qce_cb; /* qce callback function pointer */ |
| 143 | |
| 144 | int assoc_nents; |
| 145 | int ivsize; |
| 146 | int authsize; |
| 147 | int src_nents; |
| 148 | int dst_nents; |
| 149 | |
| 150 | void *areq; |
| 151 | enum qce_cipher_mode_enum mode; |
| 152 | |
| 153 | dma_addr_t phy_iv_in; |
| 154 | }; |
| 155 | |
| 156 | /* Standard initialization vector for SHA-1, source: FIPS 180-2 */ |
| 157 | static uint32_t _std_init_vector_sha1[] = { |
| 158 | 0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0 |
| 159 | }; |
| 160 | /* Standard initialization vector for SHA-256, source: FIPS 180-2 */ |
| 161 | static uint32_t _std_init_vector_sha256[] = { |
| 162 | 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, |
| 163 | 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19 |
| 164 | }; |
| 165 | |
| 166 | static void _byte_stream_to_net_words(uint32_t *iv, unsigned char *b, |
| 167 | unsigned int len) |
| 168 | { |
| 169 | unsigned n; |
| 170 | |
| 171 | n = len / sizeof(uint32_t) ; |
| 172 | for (; n > 0; n--) { |
| 173 | *iv = ((*b << 24) & 0xff000000) | |
| 174 | (((*(b+1)) << 16) & 0xff0000) | |
| 175 | (((*(b+2)) << 8) & 0xff00) | |
| 176 | (*(b+3) & 0xff); |
| 177 | b += sizeof(uint32_t); |
| 178 | iv++; |
| 179 | } |
| 180 | |
| 181 | n = len % sizeof(uint32_t); |
| 182 | if (n == 3) { |
| 183 | *iv = ((*b << 24) & 0xff000000) | |
| 184 | (((*(b+1)) << 16) & 0xff0000) | |
| 185 | (((*(b+2)) << 8) & 0xff00) ; |
| 186 | } else if (n == 2) { |
| 187 | *iv = ((*b << 24) & 0xff000000) | |
| 188 | (((*(b+1)) << 16) & 0xff0000) ; |
| 189 | } else if (n == 1) { |
| 190 | *iv = ((*b << 24) & 0xff000000) ; |
| 191 | } |
| 192 | } |
| 193 | |
| 194 | static void _byte_stream_swap_to_net_words(uint32_t *iv, unsigned char *b, |
| 195 | unsigned int len) |
| 196 | { |
| 197 | unsigned i, j; |
| 198 | unsigned char swap_iv[AES_IV_LENGTH]; |
| 199 | |
| 200 | memset(swap_iv, 0, AES_IV_LENGTH); |
| 201 | for (i = (AES_IV_LENGTH-len), j = len-1; i < AES_IV_LENGTH; i++, j--) |
| 202 | swap_iv[i] = b[j]; |
| 203 | _byte_stream_to_net_words(iv, swap_iv, AES_IV_LENGTH); |
| 204 | } |
| 205 | |
| 206 | static void _net_words_to_byte_stream(uint32_t *iv, unsigned char *b, |
| 207 | unsigned int len) |
| 208 | { |
| 209 | unsigned n = len / sizeof(uint32_t); |
| 210 | |
| 211 | for (; n > 0; n--) { |
| 212 | *b++ = (unsigned char) ((*iv >> 24) & 0xff); |
| 213 | *b++ = (unsigned char) ((*iv >> 16) & 0xff); |
| 214 | *b++ = (unsigned char) ((*iv >> 8) & 0xff); |
| 215 | *b++ = (unsigned char) (*iv & 0xff); |
| 216 | iv++; |
| 217 | } |
| 218 | n = len % sizeof(uint32_t); |
| 219 | if (n == 3) { |
| 220 | *b++ = (unsigned char) ((*iv >> 24) & 0xff); |
| 221 | *b++ = (unsigned char) ((*iv >> 16) & 0xff); |
| 222 | *b = (unsigned char) ((*iv >> 8) & 0xff); |
| 223 | } else if (n == 2) { |
| 224 | *b++ = (unsigned char) ((*iv >> 24) & 0xff); |
| 225 | *b = (unsigned char) ((*iv >> 16) & 0xff); |
| 226 | } else if (n == 1) { |
| 227 | *b = (unsigned char) ((*iv >> 24) & 0xff); |
| 228 | } |
| 229 | } |
| 230 | |
| 231 | static int count_sg(struct scatterlist *sg, int nbytes) |
| 232 | { |
| 233 | int i; |
| 234 | |
| 235 | for (i = 0; nbytes > 0; i++, sg = sg_next(sg)) |
| 236 | nbytes -= sg->length; |
| 237 | return i; |
| 238 | } |
| 239 | |
| 240 | static int dma_map_pmem_sg(struct buf_info *pmem, unsigned entries, |
| 241 | struct scatterlist *sg) |
| 242 | { |
| 243 | int i; |
| 244 | for (i = 0; i < entries; i++) { |
| 245 | |
| 246 | sg->dma_address = (dma_addr_t)pmem->offset; |
| 247 | sg++; |
| 248 | pmem++; |
| 249 | } |
| 250 | return 0; |
| 251 | } |
| 252 | |
| 253 | static int _probe_ce_engine(struct qce_device *pce_dev) |
| 254 | { |
| 255 | unsigned int val; |
| 256 | unsigned int rev; |
| 257 | |
| 258 | val = readl_relaxed(pce_dev->iobase + CRYPTO_VERSION_REG); |
| 259 | if (((val & 0xfffffff) != 0x0000042) && |
| 260 | ((val & 0xfffffff) != 0x0000040)) { |
| 261 | dev_err(pce_dev->pdev, |
| 262 | "Unknown Qualcomm crypto device at 0x%x 0x%x\n", |
| 263 | pce_dev->phy_iobase, val); |
| 264 | return -EIO; |
| 265 | }; |
| 266 | rev = (val & CRYPTO_CORE_REV_MASK); |
| 267 | if (rev == 0x42) { |
| 268 | dev_info(pce_dev->pdev, |
| 269 | "Qualcomm Crypto 4.2 device found at 0x%x\n", |
| 270 | pce_dev->phy_iobase); |
| 271 | } else { |
| 272 | if (rev == 0x40) { |
| 273 | dev_info(pce_dev->pdev, |
| 274 | "Qualcomm Crypto 4.0 device found at 0x%x\n", |
| 275 | pce_dev->phy_iobase); |
| 276 | } |
| 277 | } |
| 278 | |
| 279 | dev_info(pce_dev->pdev, |
| 280 | "IO base 0x%x, ce_in channel %d, " |
| 281 | "ce_out channel %d, " |
| 282 | "crci_in %d, crci_out %d\n", |
| 283 | (unsigned int) pce_dev->iobase, |
| 284 | pce_dev->chan_ce_in, pce_dev->chan_ce_out, |
| 285 | pce_dev->crci_in, pce_dev->crci_out); |
| 286 | |
| 287 | pce_dev->cipher_key_size = 0; |
| 288 | |
| 289 | return 0; |
| 290 | }; |
| 291 | |
| 292 | static int _init_ce_engine(struct qce_device *pce_dev) |
| 293 | { |
| 294 | unsigned int val; |
| 295 | |
| 296 | /* Reset ce */ |
| 297 | clk_reset(pce_dev->ce_core_clk, CLK_RESET_ASSERT); |
| 298 | clk_reset(pce_dev->ce_core_clk, CLK_RESET_DEASSERT); |
| 299 | /* |
| 300 | * Ensure previous instruction (any writes to CLK registers) |
| 301 | * to toggle the CLK reset lines was completed. |
| 302 | */ |
| 303 | dsb(); |
| 304 | /* configure ce */ |
| 305 | val = (1 << CRYPTO_MASK_DOUT_INTR) | (1 << CRYPTO_MASK_DIN_INTR) | |
| 306 | (1 << CRYPTO_MASK_OP_DONE_INTR) | |
| 307 | (1 << CRYPTO_MASK_ERR_INTR); |
| 308 | writel_relaxed(val, pce_dev->iobase + CRYPTO_CONFIG_REG); |
| 309 | /* |
| 310 | * Ensure previous instruction (writel_relaxed to config register bit) |
| 311 | * was completed. |
| 312 | */ |
| 313 | dsb(); |
| 314 | val = readl_relaxed(pce_dev->iobase + CRYPTO_CONFIG_REG); |
| 315 | if (!val) { |
| 316 | dev_err(pce_dev->pdev, |
| 317 | "unknown Qualcomm crypto device at 0x%x\n", |
| 318 | pce_dev->phy_iobase); |
| 319 | return -EIO; |
| 320 | }; |
| 321 | if (_probe_ce_engine(pce_dev) < 0) |
| 322 | return -EIO; |
| 323 | return 0; |
| 324 | }; |
| 325 | |
| 326 | static int _ce_setup_hash(struct qce_device *pce_dev, struct qce_sha_req *sreq) |
| 327 | { |
| 328 | uint32_t auth32[SHA256_DIGEST_SIZE / sizeof(uint32_t)]; |
| 329 | uint32_t diglen; |
| 330 | int i; |
| 331 | uint32_t auth_cfg = 0; |
| 332 | bool sha1 = false; |
| 333 | |
| 334 | if (sreq->alg == QCE_HASH_AES_CMAC) { |
| 335 | uint32_t authkey32[SHA_HMAC_KEY_SIZE/sizeof(uint32_t)] = { |
| 336 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; |
| 337 | uint32_t authklen32 = sreq->authklen/(sizeof(uint32_t)); |
| 338 | /* Clear auth_ivn, auth_keyn registers */ |
| 339 | for (i = 0; i < 16; i++) { |
| 340 | writel_relaxed(0, (pce_dev->iobase + |
| 341 | (CRYPTO_AUTH_IV0_REG + i * sizeof(uint32_t)))); |
| 342 | writel_relaxed(0, (pce_dev->iobase + |
| 343 | (CRYPTO_AUTH_KEY0_REG + i * sizeof(uint32_t)))); |
| 344 | } |
| 345 | /* write auth_bytecnt 0/1/2/3, start with 0 */ |
| 346 | for (i = 0; i < 4; i++) |
| 347 | writel_relaxed(0, pce_dev->iobase + |
| 348 | CRYPTO_AUTH_BYTECNT0_REG + |
| 349 | i * sizeof(uint32_t)); |
| 350 | |
| 351 | _byte_stream_to_net_words(authkey32, sreq->authkey, |
| 352 | sreq->authklen); |
| 353 | for (i = 0; i < authklen32; i++) |
| 354 | writel_relaxed(authkey32[i], pce_dev->iobase + |
| 355 | CRYPTO_AUTH_KEY0_REG + (i * sizeof(uint32_t))); |
| 356 | /* |
| 357 | * write seg_cfg |
| 358 | */ |
| 359 | auth_cfg |= (1 << CRYPTO_LAST); |
| 360 | auth_cfg |= (CRYPTO_AUTH_MODE_CMAC << CRYPTO_AUTH_MODE); |
| 361 | auth_cfg |= (CRYPTO_AUTH_SIZE_ENUM_16_BYTES << |
| 362 | CRYPTO_AUTH_SIZE); |
| 363 | auth_cfg |= CRYPTO_AUTH_ALG_AES << CRYPTO_AUTH_ALG; |
| 364 | |
| 365 | switch (sreq->authklen) { |
| 366 | case AES128_KEY_SIZE: |
| 367 | auth_cfg |= (CRYPTO_AUTH_KEY_SZ_AES128 << |
| 368 | CRYPTO_AUTH_KEY_SIZE); |
| 369 | break; |
| 370 | case AES256_KEY_SIZE: |
| 371 | auth_cfg |= (CRYPTO_AUTH_KEY_SZ_AES256 << |
| 372 | CRYPTO_AUTH_KEY_SIZE); |
| 373 | break; |
| 374 | default: |
| 375 | break; |
| 376 | } |
| 377 | |
| 378 | goto go_proc; |
| 379 | } |
| 380 | |
| 381 | /* if not the last, the size has to be on the block boundary */ |
| 382 | if (sreq->last_blk == 0 && (sreq->size % SHA256_BLOCK_SIZE)) |
| 383 | return -EIO; |
| 384 | |
| 385 | switch (sreq->alg) { |
| 386 | case QCE_HASH_SHA1: |
| 387 | case QCE_HASH_SHA1_HMAC: |
| 388 | diglen = SHA1_DIGEST_SIZE; |
| 389 | sha1 = true; |
| 390 | break; |
| 391 | case QCE_HASH_SHA256: |
| 392 | case QCE_HASH_SHA256_HMAC: |
| 393 | diglen = SHA256_DIGEST_SIZE; |
| 394 | break; |
| 395 | default: |
| 396 | return -EINVAL; |
| 397 | } |
| 398 | |
| 399 | if ((sreq->alg == QCE_HASH_SHA1_HMAC) || |
| 400 | (sreq->alg == QCE_HASH_SHA256_HMAC)) { |
| 401 | uint32_t hmackey[SHA_HMAC_KEY_SIZE/sizeof(uint32_t)] = { |
| 402 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; |
| 403 | uint32_t hmacklen = sreq->authklen/(sizeof(uint32_t)); |
| 404 | |
| 405 | _byte_stream_to_net_words(hmackey, sreq->authkey, |
| 406 | sreq->authklen); |
| 407 | /* write hmac key */ |
| 408 | for (i = 0; i < hmacklen; i++) |
| 409 | writel_relaxed(hmackey[i], pce_dev->iobase + |
| 410 | CRYPTO_AUTH_KEY0_REG + (i * sizeof(uint32_t))); |
| 411 | |
| 412 | auth_cfg |= (CRYPTO_AUTH_MODE_HMAC << CRYPTO_AUTH_MODE); |
| 413 | } else { |
| 414 | auth_cfg |= (CRYPTO_AUTH_MODE_HASH << CRYPTO_AUTH_MODE); |
| 415 | } |
| 416 | |
| 417 | /* write 20/32 bytes, 5/8 words into auth_iv for SHA1/SHA256 */ |
| 418 | |
| 419 | if (sreq->first_blk) { |
| 420 | if (sha1) { |
| 421 | for (i = 0; i < 5; i++) |
| 422 | auth32[i] = _std_init_vector_sha1[i]; |
| 423 | } else { |
| 424 | for (i = 0; i < 8; i++) |
| 425 | auth32[i] = _std_init_vector_sha256[i]; |
| 426 | } |
| 427 | } else { |
| 428 | _byte_stream_to_net_words(auth32, sreq->digest, diglen); |
| 429 | } |
| 430 | |
| 431 | for (i = 0; i < 5; i++) |
| 432 | writel_relaxed(auth32[i], (pce_dev->iobase + |
| 433 | (CRYPTO_AUTH_IV0_REG + i * sizeof(uint32_t)))); |
| 434 | |
| 435 | if ((sreq->alg == QCE_HASH_SHA256) || |
| 436 | (sreq->alg == QCE_HASH_SHA256_HMAC)) { |
| 437 | writel_relaxed(auth32[5], pce_dev->iobase + |
| 438 | CRYPTO_AUTH_IV5_REG); |
| 439 | writel_relaxed(auth32[6], pce_dev->iobase + |
| 440 | CRYPTO_AUTH_IV6_REG); |
| 441 | writel_relaxed(auth32[7], pce_dev->iobase + |
| 442 | CRYPTO_AUTH_IV7_REG); |
| 443 | } |
| 444 | |
| 445 | /* write auth_bytecnt 0/1, start with 0 */ |
| 446 | for (i = 0; i < 4; i++) |
| 447 | writel_relaxed(sreq->auth_data[i], (pce_dev->iobase + |
| 448 | (CRYPTO_AUTH_BYTECNT0_REG + i * sizeof(uint32_t)))); |
| 449 | |
| 450 | /* write seg_cfg */ |
| 451 | if (sha1) |
| 452 | auth_cfg |= (CRYPTO_AUTH_SIZE_SHA1 << CRYPTO_AUTH_SIZE); |
| 453 | else |
| 454 | auth_cfg |= (CRYPTO_AUTH_SIZE_SHA256 << CRYPTO_AUTH_SIZE); |
| 455 | |
| 456 | if (sreq->last_blk) |
| 457 | auth_cfg |= 1 << CRYPTO_LAST; |
| 458 | |
| 459 | auth_cfg |= CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG; |
| 460 | |
| 461 | go_proc: |
| 462 | auth_cfg |= (CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS); |
| 463 | |
| 464 | /* write seg_cfg */ |
| 465 | writel_relaxed(auth_cfg, pce_dev->iobase + CRYPTO_AUTH_SEG_CFG_REG); |
| 466 | |
| 467 | /* write seg_size */ |
| 468 | writel_relaxed(sreq->size, pce_dev->iobase + CRYPTO_SEG_SIZE_REG); |
| 469 | |
| 470 | /* write auth_seg_size */ |
| 471 | writel_relaxed(sreq->size, pce_dev->iobase + CRYPTO_AUTH_SEG_SIZE_REG); |
| 472 | |
| 473 | /* write auth_seg_start */ |
| 474 | writel_relaxed(0, pce_dev->iobase + CRYPTO_AUTH_SEG_START_REG); |
| 475 | /* |
| 476 | * Ensure previous instructions (write to all AUTH registers) |
| 477 | * was completed before accessing a register that is not in |
| 478 | * in the same 1K range. |
| 479 | */ |
| 480 | dsb(); |
| 481 | |
| 482 | writel_relaxed(0, pce_dev->iobase + CRYPTO_ENCR_SEG_CFG_REG); |
| 483 | /* |
| 484 | * Ensure previous instructions (setting all the CE registers) |
| 485 | * was completed before writing to GO register |
| 486 | */ |
| 487 | dsb(); |
| 488 | /* issue go to crypto */ |
| 489 | writel_relaxed(1 << CRYPTO_GO, pce_dev->iobase + CRYPTO_GOPROC_REG); |
| 490 | /* |
| 491 | * Ensure previous instructions (setting the GO register) |
| 492 | * was completed before issuing a DMA transfer request |
| 493 | */ |
| 494 | dsb(); |
| 495 | |
| 496 | return 0; |
| 497 | } |
| 498 | |
| 499 | static int _ce_setup_cipher(struct qce_device *pce_dev, struct qce_req *creq, |
| 500 | uint32_t totallen_in, uint32_t coffset) |
| 501 | { |
| 502 | uint32_t enckey32[(MAX_CIPHER_KEY_SIZE * 2)/sizeof(uint32_t)] = { |
| 503 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; |
| 504 | uint32_t enciv32[MAX_IV_LENGTH / sizeof(uint32_t)] = { |
| 505 | 0, 0, 0, 0}; |
| 506 | uint32_t enck_size_in_word = creq->encklen / sizeof(uint32_t); |
| 507 | int aes_key_chg; |
| 508 | int i; |
| 509 | uint32_t encr_cfg = 0; |
| 510 | uint32_t ivsize = creq->ivsize; |
| 511 | |
| 512 | if (creq->mode == QCE_MODE_XTS) |
| 513 | _byte_stream_to_net_words(enckey32, creq->enckey, |
| 514 | creq->encklen/2); |
| 515 | else |
| 516 | _byte_stream_to_net_words(enckey32, creq->enckey, |
| 517 | creq->encklen); |
| 518 | |
| 519 | if ((creq->op == QCE_REQ_AEAD) && (creq->mode == QCE_MODE_CCM)) { |
| 520 | uint32_t authklen32 = creq->encklen/sizeof(uint32_t); |
| 521 | uint32_t noncelen32 = MAX_NONCE/sizeof(uint32_t); |
| 522 | uint32_t nonce32[MAX_NONCE/sizeof(uint32_t)] = {0, 0, 0, 0}; |
| 523 | uint32_t auth_cfg = 0; |
| 524 | |
| 525 | /* Clear auth_ivn, auth_keyn registers */ |
| 526 | for (i = 0; i < 16; i++) { |
| 527 | writel_relaxed(0, (pce_dev->iobase + |
| 528 | (CRYPTO_AUTH_IV0_REG + i*sizeof(uint32_t)))); |
| 529 | writel_relaxed(0, (pce_dev->iobase + |
| 530 | (CRYPTO_AUTH_KEY0_REG + i*sizeof(uint32_t)))); |
| 531 | } |
| 532 | /* write auth_bytecnt 0/1/2/3, start with 0 */ |
| 533 | for (i = 0; i < 4; i++) |
| 534 | writel_relaxed(0, pce_dev->iobase + |
| 535 | CRYPTO_AUTH_BYTECNT0_REG + |
| 536 | i * sizeof(uint32_t)); |
| 537 | /* write auth key */ |
| 538 | for (i = 0; i < authklen32; i++) |
| 539 | writel_relaxed(enckey32[i], pce_dev->iobase + |
| 540 | CRYPTO_AUTH_KEY0_REG + (i*sizeof(uint32_t))); |
| 541 | |
| 542 | /* write nonce */ |
| 543 | _byte_stream_to_net_words(nonce32, creq->nonce, MAX_NONCE); |
| 544 | for (i = 0; i < noncelen32; i++) |
| 545 | writel_relaxed(nonce32[i], pce_dev->iobase + |
| 546 | CRYPTO_AUTH_INFO_NONCE0_REG + |
| 547 | (i*sizeof(uint32_t))); |
| 548 | |
| 549 | auth_cfg |= (noncelen32 << CRYPTO_AUTH_NONCE_NUM_WORDS); |
| 550 | auth_cfg &= ~(1 << CRYPTO_USE_HW_KEY_AUTH); |
| 551 | auth_cfg |= (1 << CRYPTO_LAST); |
| 552 | if (creq->dir == QCE_ENCRYPT) |
| 553 | auth_cfg |= (CRYPTO_AUTH_POS_BEFORE << CRYPTO_AUTH_POS); |
| 554 | else |
| 555 | auth_cfg |= (CRYPTO_AUTH_POS_AFTER << CRYPTO_AUTH_POS); |
| 556 | auth_cfg |= (((creq->authsize >> 1) - 2) << CRYPTO_AUTH_SIZE); |
| 557 | auth_cfg |= (CRYPTO_AUTH_MODE_CCM << CRYPTO_AUTH_MODE); |
| 558 | if (creq->authklen == AES128_KEY_SIZE) |
| 559 | auth_cfg |= (CRYPTO_AUTH_KEY_SZ_AES128 << |
| 560 | CRYPTO_AUTH_KEY_SIZE); |
| 561 | else { |
| 562 | if (creq->authklen == AES256_KEY_SIZE) |
| 563 | auth_cfg |= (CRYPTO_AUTH_KEY_SZ_AES256 << |
| 564 | CRYPTO_AUTH_KEY_SIZE); |
| 565 | } |
| 566 | auth_cfg |= (CRYPTO_AUTH_ALG_AES << CRYPTO_AUTH_ALG); |
| 567 | writel_relaxed(auth_cfg, pce_dev->iobase + |
| 568 | CRYPTO_AUTH_SEG_CFG_REG); |
| 569 | if (creq->dir == QCE_ENCRYPT) |
| 570 | writel_relaxed(totallen_in, pce_dev->iobase + |
| 571 | CRYPTO_AUTH_SEG_SIZE_REG); |
| 572 | else |
| 573 | writel_relaxed((totallen_in - creq->authsize), |
| 574 | pce_dev->iobase + CRYPTO_AUTH_SEG_SIZE_REG); |
| 575 | writel_relaxed(0, pce_dev->iobase + CRYPTO_AUTH_SEG_START_REG); |
| 576 | } else { |
| 577 | writel_relaxed(0, pce_dev->iobase + CRYPTO_AUTH_SEG_CFG_REG); |
| 578 | } |
| 579 | /* |
| 580 | * Ensure previous instructions (write to all AUTH registers) |
| 581 | * was completed before accessing a register that is not in |
| 582 | * in the same 1K range. |
| 583 | */ |
| 584 | dsb(); |
| 585 | |
| 586 | switch (creq->mode) { |
| 587 | case QCE_MODE_ECB: |
| 588 | encr_cfg |= (CRYPTO_ENCR_MODE_ECB << CRYPTO_ENCR_MODE); |
| 589 | break; |
| 590 | |
| 591 | case QCE_MODE_CBC: |
| 592 | encr_cfg |= (CRYPTO_ENCR_MODE_CBC << CRYPTO_ENCR_MODE); |
| 593 | break; |
| 594 | |
| 595 | case QCE_MODE_XTS: |
| 596 | encr_cfg |= (CRYPTO_ENCR_MODE_XTS << CRYPTO_ENCR_MODE); |
| 597 | break; |
| 598 | |
| 599 | case QCE_MODE_CCM: |
| 600 | encr_cfg |= (CRYPTO_ENCR_MODE_CCM << CRYPTO_ENCR_MODE); |
| 601 | break; |
| 602 | |
| 603 | case QCE_MODE_CTR: |
| 604 | default: |
| 605 | encr_cfg |= (CRYPTO_ENCR_MODE_CTR << CRYPTO_ENCR_MODE); |
| 606 | break; |
| 607 | } |
| 608 | pce_dev->mode = creq->mode; |
| 609 | |
| 610 | switch (creq->alg) { |
| 611 | case CIPHER_ALG_DES: |
| 612 | if (creq->mode != QCE_MODE_ECB) { |
| 613 | _byte_stream_to_net_words(enciv32, creq->iv, ivsize); |
| 614 | writel_relaxed(enciv32[0], pce_dev->iobase + |
| 615 | CRYPTO_CNTR0_IV0_REG); |
| 616 | writel_relaxed(enciv32[1], pce_dev->iobase + |
| 617 | CRYPTO_CNTR1_IV1_REG); |
| 618 | } |
| 619 | writel_relaxed(enckey32[0], pce_dev->iobase + |
| 620 | CRYPTO_ENCR_KEY0_REG); |
| 621 | writel_relaxed(enckey32[1], pce_dev->iobase + |
| 622 | CRYPTO_ENCR_KEY1_REG); |
| 623 | encr_cfg |= ((CRYPTO_ENCR_KEY_SZ_DES << CRYPTO_ENCR_KEY_SZ) | |
| 624 | (CRYPTO_ENCR_ALG_DES << CRYPTO_ENCR_ALG)); |
| 625 | break; |
| 626 | |
| 627 | case CIPHER_ALG_3DES: |
| 628 | if (creq->mode != QCE_MODE_ECB) { |
| 629 | _byte_stream_to_net_words(enciv32, creq->iv, ivsize); |
| 630 | writel_relaxed(enciv32[0], pce_dev->iobase + |
| 631 | CRYPTO_CNTR0_IV0_REG); |
| 632 | writel_relaxed(enciv32[1], pce_dev->iobase + |
| 633 | CRYPTO_CNTR1_IV1_REG); |
| 634 | } |
| 635 | for (i = 0; i < 6; i++) |
| 636 | writel_relaxed(enckey32[0], (pce_dev->iobase + |
| 637 | (CRYPTO_ENCR_KEY0_REG + i * sizeof(uint32_t)))); |
| 638 | |
| 639 | encr_cfg |= ((CRYPTO_ENCR_KEY_SZ_3DES << CRYPTO_ENCR_KEY_SZ) | |
| 640 | (CRYPTO_ENCR_ALG_DES << CRYPTO_ENCR_ALG)); |
| 641 | break; |
| 642 | |
| 643 | case CIPHER_ALG_AES: |
| 644 | default: |
| 645 | if (creq->mode == QCE_MODE_XTS) { |
| 646 | uint32_t xtskey32[MAX_CIPHER_KEY_SIZE/sizeof(uint32_t)] |
| 647 | = {0, 0, 0, 0, 0, 0, 0, 0}; |
| 648 | uint32_t xtsklen = |
| 649 | creq->encklen/(2 * sizeof(uint32_t)); |
| 650 | |
| 651 | _byte_stream_to_net_words(xtskey32, (creq->enckey + |
| 652 | creq->encklen/2), creq->encklen/2); |
| 653 | for (i = 0; i < xtsklen; i++) |
| 654 | writel_relaxed(xtskey32[i], pce_dev->iobase + |
| 655 | CRYPTO_ENCR_XTS_KEY0_REG + |
| 656 | (i * sizeof(uint32_t))); |
| 657 | |
| 658 | writel_relaxed(creq->cryptlen , |
| 659 | pce_dev->iobase + |
| 660 | CRYPTO_ENCR_XTS_DU_SIZE_REG); |
| 661 | } |
| 662 | if (creq->mode != QCE_MODE_ECB) { |
| 663 | if (creq->mode == QCE_MODE_XTS) |
| 664 | _byte_stream_swap_to_net_words(enciv32, |
| 665 | creq->iv, ivsize); |
| 666 | else |
| 667 | _byte_stream_to_net_words(enciv32, creq->iv, |
| 668 | ivsize); |
| 669 | for (i = 0; i <= 3; i++) |
| 670 | writel_relaxed(enciv32[i], pce_dev->iobase + |
| 671 | CRYPTO_CNTR0_IV0_REG + |
| 672 | (i * sizeof(uint32_t))); |
| 673 | } |
| 674 | /* set number of counter bits */ |
| 675 | writel_relaxed(0xffffffff, pce_dev->iobase + |
| 676 | CRYPTO_CNTR_MASK_REG); |
| 677 | |
| 678 | if (creq->op == QCE_REQ_ABLK_CIPHER_NO_KEY) { |
| 679 | encr_cfg |= (CRYPTO_ENCR_KEY_SZ_AES128 << |
| 680 | CRYPTO_ENCR_KEY_SZ); |
| 681 | encr_cfg |= CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG; |
| 682 | } else { |
| 683 | uint32_t key_size; |
| 684 | |
| 685 | if (creq->mode == QCE_MODE_XTS) { |
| 686 | key_size = creq->encklen/2; |
| 687 | enck_size_in_word = key_size/sizeof(uint32_t); |
| 688 | } else { |
| 689 | key_size = creq->encklen; |
| 690 | } |
| 691 | |
| 692 | switch (key_size) { |
| 693 | case AES128_KEY_SIZE: |
| 694 | encr_cfg |= (CRYPTO_ENCR_KEY_SZ_AES128 << |
| 695 | CRYPTO_ENCR_KEY_SZ); |
| 696 | break; |
| 697 | case AES256_KEY_SIZE: |
| 698 | default: |
| 699 | encr_cfg |= (CRYPTO_ENCR_KEY_SZ_AES256 << |
| 700 | CRYPTO_ENCR_KEY_SZ); |
| 701 | |
| 702 | /* check for null key. If null, use hw key*/ |
| 703 | for (i = 0; i < enck_size_in_word; i++) { |
| 704 | if (enckey32[i] != 0) |
| 705 | break; |
| 706 | } |
| 707 | if (i == enck_size_in_word) |
| 708 | encr_cfg |= 1 << CRYPTO_USE_HW_KEY; |
| 709 | break; |
| 710 | } /* end of switch (creq->encklen) */ |
| 711 | |
| 712 | encr_cfg |= CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG; |
| 713 | if (pce_dev->cipher_key_size != creq->encklen) |
| 714 | aes_key_chg = 1; |
| 715 | else { |
| 716 | for (i = 0; i < enck_size_in_word; i++) { |
| 717 | if (enckey32[i] |
| 718 | != pce_dev->cipher_key[i]) |
| 719 | break; |
| 720 | } |
| 721 | aes_key_chg = (i == enck_size_in_word) ? 0 : 1; |
| 722 | } |
| 723 | |
| 724 | if (aes_key_chg) { |
| 725 | for (i = 0; i < enck_size_in_word; i++) |
| 726 | writel_relaxed(enckey32[i], |
| 727 | pce_dev->iobase + |
| 728 | CRYPTO_ENCR_KEY0_REG + |
| 729 | (i * sizeof(uint32_t))); |
| 730 | pce_dev->cipher_key_size = creq->encklen; |
| 731 | for (i = 0; i < enck_size_in_word; i++) |
| 732 | pce_dev->cipher_key[i] = enckey32[i]; |
| 733 | } /*if (aes_key_chg) { */ |
| 734 | } /* else of if (creq->op == QCE_REQ_ABLK_CIPHER_NO_KEY) */ |
| 735 | break; |
| 736 | } /* end of switch (creq->mode) */ |
| 737 | |
| 738 | /* write encr seg cfg */ |
| 739 | encr_cfg |= ((creq->dir == QCE_ENCRYPT) ? 1 : 0) << CRYPTO_ENCODE; |
| 740 | |
| 741 | /* write encr seg cfg */ |
| 742 | writel_relaxed(encr_cfg, pce_dev->iobase + CRYPTO_ENCR_SEG_CFG_REG); |
| 743 | |
| 744 | /* write encr seg size */ |
| 745 | if ((creq->mode == QCE_MODE_CCM) && (creq->dir == QCE_DECRYPT)) |
| 746 | writel_relaxed((creq->cryptlen + creq->authsize), |
| 747 | pce_dev->iobase + CRYPTO_ENCR_SEG_SIZE_REG); |
| 748 | else |
| 749 | writel_relaxed(creq->cryptlen, |
| 750 | pce_dev->iobase + CRYPTO_ENCR_SEG_SIZE_REG); |
| 751 | /* write encr seg start */ |
| 752 | writel_relaxed((coffset & 0xffff), |
| 753 | pce_dev->iobase + CRYPTO_ENCR_SEG_START_REG); |
| 754 | /* write seg size */ |
| 755 | writel_relaxed(totallen_in, pce_dev->iobase + CRYPTO_SEG_SIZE_REG); |
| 756 | /* |
| 757 | * Ensure previous instructions (setting all the CE registers) |
| 758 | * was completed before writing to GO register |
| 759 | */ |
| 760 | dsb(); |
| 761 | /* issue go to crypto */ |
| 762 | writel_relaxed(1 << CRYPTO_GO, pce_dev->iobase + CRYPTO_GOPROC_REG); |
| 763 | /* |
| 764 | * Ensure previous instructions (setting the GO register) |
| 765 | * was completed before issuing a DMA transfer request |
| 766 | */ |
| 767 | dsb(); |
| 768 | return 0; |
| 769 | }; |
| 770 | |
| 771 | static int _aead_complete(struct qce_device *pce_dev) |
| 772 | { |
| 773 | struct aead_request *areq; |
| 774 | int i; |
| 775 | uint32_t ivsize; |
| 776 | uint32_t iv_out[4]; |
| 777 | unsigned char iv[4 * sizeof(uint32_t)]; |
| 778 | |
| 779 | areq = (struct aead_request *) pce_dev->areq; |
| 780 | ivsize = pce_dev->ivsize; |
| 781 | |
| 782 | if (areq->src != areq->dst) { |
| 783 | dma_unmap_sg(pce_dev->pdev, areq->dst, pce_dev->dst_nents, |
| 784 | DMA_FROM_DEVICE); |
| 785 | } |
| 786 | dma_unmap_sg(pce_dev->pdev, areq->src, pce_dev->src_nents, |
| 787 | (areq->src == areq->dst) ? DMA_BIDIRECTIONAL : |
| 788 | DMA_TO_DEVICE); |
| 789 | |
| 790 | if (pce_dev->mode != QCE_MODE_CCM) |
| 791 | dma_unmap_single(pce_dev->pdev, pce_dev->phy_iv_in, |
| 792 | ivsize, DMA_TO_DEVICE); |
| 793 | dma_unmap_sg(pce_dev->pdev, areq->assoc, pce_dev->assoc_nents, |
| 794 | DMA_TO_DEVICE); |
| 795 | |
| 796 | /* get iv out */ |
| 797 | if ((pce_dev->mode == QCE_MODE_ECB) || |
| 798 | (pce_dev->mode == QCE_MODE_CCM)) { |
| 799 | if (pce_dev->mode == QCE_MODE_CCM) { |
| 800 | int result; |
| 801 | result = readl_relaxed(pce_dev->iobase + |
| 802 | CRYPTO_STATUS_REG); |
| 803 | result &= (1 << CRYPTO_MAC_FAILED); |
| 804 | result |= (pce_dev->chan_ce_in_status | |
| 805 | pce_dev->chan_ce_out_status); |
| 806 | dsb(); |
| 807 | pce_dev->qce_cb(areq, pce_dev->dig_result, NULL, |
| 808 | result); |
| 809 | } else { |
| 810 | pce_dev->qce_cb(areq, pce_dev->dig_result, NULL, |
| 811 | pce_dev->chan_ce_in_status | |
| 812 | pce_dev->chan_ce_out_status); |
| 813 | } |
| 814 | } else { |
| 815 | for (i = 0; i < 4; i++) |
| 816 | iv_out[i] = readl_relaxed(pce_dev->iobase + |
| 817 | (CRYPTO_CNTR0_IV0_REG + i * sizeof(uint32_t))); |
| 818 | |
| 819 | _net_words_to_byte_stream(iv_out, iv, sizeof(iv)); |
| 820 | pce_dev->qce_cb(areq, pce_dev->dig_result, iv, |
| 821 | pce_dev->chan_ce_in_status | |
| 822 | pce_dev->chan_ce_out_status); |
| 823 | }; |
| 824 | return 0; |
| 825 | }; |
| 826 | |
| 827 | static void _sha_complete(struct qce_device *pce_dev) |
| 828 | { |
| 829 | |
| 830 | struct ahash_request *areq; |
| 831 | uint32_t auth_data[4]; |
| 832 | uint32_t digest[8]; |
| 833 | int i; |
| 834 | |
| 835 | areq = (struct ahash_request *) pce_dev->areq; |
| 836 | dma_unmap_sg(pce_dev->pdev, areq->src, pce_dev->src_nents, |
| 837 | DMA_TO_DEVICE); |
| 838 | |
| 839 | for (i = 0; i < 4; i++) |
| 840 | auth_data[i] = readl_relaxed(pce_dev->iobase + |
| 841 | (CRYPTO_AUTH_BYTECNT0_REG + |
| 842 | i * sizeof(uint32_t))); |
| 843 | |
| 844 | for (i = 0; i < 8; i++) |
| 845 | digest[i] = readl_relaxed(pce_dev->iobase + |
| 846 | CRYPTO_AUTH_IV0_REG + (i * sizeof(uint32_t))); |
| 847 | |
| 848 | _net_words_to_byte_stream(digest, pce_dev->dig_result, |
| 849 | SHA256_DIGEST_SIZE); |
| 850 | |
| 851 | pce_dev->qce_cb(areq, pce_dev->dig_result, (unsigned char *)auth_data, |
| 852 | pce_dev->chan_ce_in_status); |
| 853 | }; |
| 854 | |
| 855 | static int _ablk_cipher_complete(struct qce_device *pce_dev) |
| 856 | { |
| 857 | struct ablkcipher_request *areq; |
| 858 | uint32_t iv_out[4]; |
| 859 | unsigned char iv[4 * sizeof(uint32_t)]; |
| 860 | |
| 861 | areq = (struct ablkcipher_request *) pce_dev->areq; |
| 862 | |
| 863 | if (areq->src != areq->dst) { |
| 864 | dma_unmap_sg(pce_dev->pdev, areq->dst, |
| 865 | pce_dev->dst_nents, DMA_FROM_DEVICE); |
| 866 | } |
| 867 | dma_unmap_sg(pce_dev->pdev, areq->src, pce_dev->src_nents, |
| 868 | (areq->src == areq->dst) ? DMA_BIDIRECTIONAL : |
| 869 | DMA_TO_DEVICE); |
| 870 | /* get iv out */ |
| 871 | if (pce_dev->mode == QCE_MODE_ECB) { |
| 872 | pce_dev->qce_cb(areq, NULL, NULL, pce_dev->chan_ce_in_status | |
| 873 | pce_dev->chan_ce_out_status); |
| 874 | } else { |
| 875 | int i; |
| 876 | |
| 877 | for (i = 0; i < 4; i++) |
| 878 | iv_out[i] = readl_relaxed(pce_dev->iobase + |
| 879 | (CRYPTO_CNTR0_IV0_REG + i * sizeof(uint32_t))); |
| 880 | |
| 881 | _net_words_to_byte_stream(iv_out, iv, sizeof(iv)); |
| 882 | pce_dev->qce_cb(areq, NULL, iv, pce_dev->chan_ce_in_status | |
| 883 | pce_dev->chan_ce_out_status); |
| 884 | } |
| 885 | |
| 886 | return 0; |
| 887 | }; |
| 888 | |
| 889 | static int _ablk_cipher_use_pmem_complete(struct qce_device *pce_dev) |
| 890 | { |
| 891 | struct ablkcipher_request *areq; |
| 892 | uint32_t iv_out[4]; |
| 893 | unsigned char iv[4 * sizeof(uint32_t)]; |
| 894 | |
| 895 | areq = (struct ablkcipher_request *) pce_dev->areq; |
| 896 | |
| 897 | /* get iv out */ |
| 898 | if (pce_dev->mode == QCE_MODE_ECB) { |
| 899 | pce_dev->qce_cb(areq, NULL, NULL, pce_dev->chan_ce_in_status | |
| 900 | pce_dev->chan_ce_out_status); |
| 901 | } else { |
| 902 | int i; |
| 903 | |
| 904 | for (i = 0; i < 4; i++) |
| 905 | iv_out[i] = readl_relaxed(pce_dev->iobase + |
| 906 | CRYPTO_CNTR0_IV0_REG + (i * sizeof(uint32_t))); |
| 907 | |
| 908 | _net_words_to_byte_stream(iv_out, iv, sizeof(iv)); |
| 909 | pce_dev->qce_cb(areq, NULL, iv, pce_dev->chan_ce_in_status | |
| 910 | pce_dev->chan_ce_out_status); |
| 911 | } |
| 912 | |
| 913 | return 0; |
| 914 | }; |
| 915 | |
| 916 | static int qce_split_and_insert_dm_desc(struct dmov_desc *pdesc, |
| 917 | unsigned int plen, unsigned int paddr, int *index) |
| 918 | { |
| 919 | while (plen > 0x8000) { |
| 920 | pdesc->len = 0x8000; |
| 921 | if (paddr > 0) { |
| 922 | pdesc->addr = paddr; |
| 923 | paddr += 0x8000; |
| 924 | } |
| 925 | plen -= pdesc->len; |
| 926 | if (plen > 0) { |
| 927 | *index = (*index) + 1; |
| 928 | if ((*index) >= QCE_MAX_NUM_DESC) |
| 929 | return -ENOMEM; |
| 930 | pdesc++; |
| 931 | } |
| 932 | } |
| 933 | if ((plen > 0) && (plen <= 0x8000)) { |
| 934 | pdesc->len = plen; |
| 935 | if (paddr > 0) |
| 936 | pdesc->addr = paddr; |
| 937 | } |
| 938 | |
| 939 | return 0; |
| 940 | } |
| 941 | |
| 942 | static int _chain_sg_buffer_in(struct qce_device *pce_dev, |
| 943 | struct scatterlist *sg, unsigned int nbytes) |
| 944 | { |
| 945 | unsigned int len; |
| 946 | unsigned int dlen; |
| 947 | struct dmov_desc *pdesc; |
| 948 | |
| 949 | pdesc = pce_dev->ce_in_dst_desc + pce_dev->ce_in_dst_desc_index; |
| 950 | if (nbytes > 0x8000) |
| 951 | qce_split_and_insert_dm_desc(pdesc, nbytes, 0, |
| 952 | &pce_dev->ce_in_dst_desc_index); |
| 953 | else |
| 954 | pdesc->len = nbytes; |
| 955 | |
| 956 | pdesc = pce_dev->ce_in_src_desc + pce_dev->ce_in_src_desc_index; |
| 957 | /* |
| 958 | * Two consective chunks may be handled by the old |
| 959 | * buffer descriptor. |
| 960 | */ |
| 961 | while (nbytes > 0) { |
| 962 | len = min(nbytes, sg_dma_len(sg)); |
| 963 | dlen = pdesc->len & ADM_DESC_LENGTH_MASK; |
| 964 | nbytes -= len; |
| 965 | if (dlen == 0) { |
| 966 | pdesc->addr = sg_dma_address(sg); |
| 967 | pdesc->len = len; |
| 968 | if (pdesc->len > 0x8000) |
| 969 | qce_split_and_insert_dm_desc(pdesc, pdesc->len, |
| 970 | sg_dma_address(sg), |
| 971 | &pce_dev->ce_in_src_desc_index); |
| 972 | } else if (sg_dma_address(sg) == (pdesc->addr + dlen)) { |
| 973 | pdesc->len = dlen + len; |
| 974 | if (pdesc->len > 0x8000) |
| 975 | qce_split_and_insert_dm_desc(pdesc, pdesc->len, |
| 976 | pdesc->addr, |
| 977 | &pce_dev->ce_in_src_desc_index); |
| 978 | } else { |
| 979 | pce_dev->ce_in_src_desc_index++; |
| 980 | if (pce_dev->ce_in_src_desc_index >= QCE_MAX_NUM_DESC) |
| 981 | return -ENOMEM; |
| 982 | pdesc++; |
| 983 | pdesc->len = len; |
| 984 | pdesc->addr = sg_dma_address(sg); |
| 985 | if (pdesc->len > 0x8000) |
| 986 | qce_split_and_insert_dm_desc(pdesc, pdesc->len, |
| 987 | sg_dma_address(sg), |
| 988 | &pce_dev->ce_in_src_desc_index); |
| 989 | } |
| 990 | if (nbytes > 0) |
| 991 | sg = sg_next(sg); |
| 992 | } |
| 993 | return 0; |
| 994 | } |
| 995 | |
| 996 | static int _chain_pm_buffer_in(struct qce_device *pce_dev, |
| 997 | unsigned int pmem, unsigned int nbytes) |
| 998 | { |
| 999 | unsigned int dlen; |
| 1000 | struct dmov_desc *pdesc; |
| 1001 | |
| 1002 | pdesc = pce_dev->ce_in_src_desc + pce_dev->ce_in_src_desc_index; |
| 1003 | dlen = pdesc->len & ADM_DESC_LENGTH_MASK; |
| 1004 | if (dlen == 0) { |
| 1005 | pdesc->addr = pmem; |
| 1006 | pdesc->len = nbytes; |
| 1007 | } else if (pmem == (pdesc->addr + dlen)) { |
| 1008 | pdesc->len = dlen + nbytes; |
| 1009 | } else { |
| 1010 | pce_dev->ce_in_src_desc_index++; |
| 1011 | if (pce_dev->ce_in_src_desc_index >= QCE_MAX_NUM_DESC) |
| 1012 | return -ENOMEM; |
| 1013 | pdesc++; |
| 1014 | pdesc->len = nbytes; |
| 1015 | pdesc->addr = pmem; |
| 1016 | } |
| 1017 | pdesc = pce_dev->ce_in_dst_desc + pce_dev->ce_in_dst_desc_index; |
| 1018 | pdesc->len += nbytes; |
| 1019 | |
| 1020 | return 0; |
| 1021 | } |
| 1022 | |
| 1023 | static void _chain_buffer_in_init(struct qce_device *pce_dev) |
| 1024 | { |
| 1025 | struct dmov_desc *pdesc; |
| 1026 | |
| 1027 | pce_dev->ce_in_src_desc_index = 0; |
| 1028 | pce_dev->ce_in_dst_desc_index = 0; |
| 1029 | pdesc = pce_dev->ce_in_src_desc; |
| 1030 | pdesc->len = 0; |
| 1031 | } |
| 1032 | |
| 1033 | static void _ce_in_final(struct qce_device *pce_dev, unsigned total) |
| 1034 | { |
| 1035 | struct dmov_desc *pdesc; |
| 1036 | dmov_sg *pcmd; |
| 1037 | |
| 1038 | pdesc = pce_dev->ce_in_src_desc + pce_dev->ce_in_src_desc_index; |
| 1039 | pdesc->len |= ADM_DESC_LAST; |
| 1040 | pdesc = pce_dev->ce_in_dst_desc + pce_dev->ce_in_dst_desc_index; |
| 1041 | pdesc->len |= ADM_DESC_LAST; |
| 1042 | |
| 1043 | pcmd = (dmov_sg *) pce_dev->cmd_list_ce_in; |
| 1044 | pcmd->cmd |= CMD_LC; |
| 1045 | } |
| 1046 | |
| 1047 | #ifdef QCE_DEBUG |
| 1048 | static void _ce_in_dump(struct qce_device *pce_dev) |
| 1049 | { |
| 1050 | int i; |
| 1051 | struct dmov_desc *pdesc; |
| 1052 | |
| 1053 | dev_info(pce_dev->pdev, "_ce_in_dump: src\n"); |
| 1054 | for (i = 0; i <= pce_dev->ce_in_src_desc_index; i++) { |
| 1055 | pdesc = pce_dev->ce_in_src_desc + i; |
| 1056 | dev_info(pce_dev->pdev, "%x , %x\n", pdesc->addr, |
| 1057 | pdesc->len); |
| 1058 | } |
| 1059 | dev_info(pce_dev->pdev, "_ce_in_dump: dst\n"); |
| 1060 | for (i = 0; i <= pce_dev->ce_in_dst_desc_index; i++) { |
| 1061 | pdesc = pce_dev->ce_in_dst_desc + i; |
| 1062 | dev_info(pce_dev->pdev, "%x , %x\n", pdesc->addr, |
| 1063 | pdesc->len); |
| 1064 | } |
| 1065 | }; |
| 1066 | |
| 1067 | static void _ce_out_dump(struct qce_device *pce_dev) |
| 1068 | { |
| 1069 | int i; |
| 1070 | struct dmov_desc *pdesc; |
| 1071 | |
| 1072 | dev_info(pce_dev->pdev, "_ce_out_dump: src\n"); |
| 1073 | for (i = 0; i <= pce_dev->ce_out_src_desc_index; i++) { |
| 1074 | pdesc = pce_dev->ce_out_src_desc + i; |
| 1075 | dev_info(pce_dev->pdev, "%x , %x\n", pdesc->addr, |
| 1076 | pdesc->len); |
| 1077 | } |
| 1078 | |
| 1079 | dev_info(pce_dev->pdev, "_ce_out_dump: dst\n"); |
| 1080 | for (i = 0; i <= pce_dev->ce_out_dst_desc_index; i++) { |
| 1081 | pdesc = pce_dev->ce_out_dst_desc + i; |
| 1082 | dev_info(pce_dev->pdev, "%x , %x\n", pdesc->addr, |
| 1083 | pdesc->len); |
| 1084 | } |
| 1085 | }; |
| 1086 | |
| 1087 | #else |
| 1088 | |
| 1089 | static void _ce_in_dump(struct qce_device *pce_dev) |
| 1090 | { |
| 1091 | }; |
| 1092 | |
| 1093 | static void _ce_out_dump(struct qce_device *pce_dev) |
| 1094 | { |
| 1095 | }; |
| 1096 | |
| 1097 | #endif |
| 1098 | |
| 1099 | static int _chain_sg_buffer_out(struct qce_device *pce_dev, |
| 1100 | struct scatterlist *sg, unsigned int nbytes) |
| 1101 | { |
| 1102 | unsigned int len; |
| 1103 | unsigned int dlen; |
| 1104 | struct dmov_desc *pdesc; |
| 1105 | |
| 1106 | pdesc = pce_dev->ce_out_src_desc + pce_dev->ce_out_src_desc_index; |
| 1107 | if (nbytes > 0x8000) |
| 1108 | qce_split_and_insert_dm_desc(pdesc, nbytes, 0, |
| 1109 | &pce_dev->ce_out_src_desc_index); |
| 1110 | else |
| 1111 | pdesc->len = nbytes; |
| 1112 | |
| 1113 | pdesc = pce_dev->ce_out_dst_desc + pce_dev->ce_out_dst_desc_index; |
| 1114 | /* |
| 1115 | * Two consective chunks may be handled by the old |
| 1116 | * buffer descriptor. |
| 1117 | */ |
| 1118 | while (nbytes > 0) { |
| 1119 | len = min(nbytes, sg_dma_len(sg)); |
| 1120 | dlen = pdesc->len & ADM_DESC_LENGTH_MASK; |
| 1121 | nbytes -= len; |
| 1122 | if (dlen == 0) { |
| 1123 | pdesc->addr = sg_dma_address(sg); |
| 1124 | pdesc->len = len; |
| 1125 | if (pdesc->len > 0x8000) |
| 1126 | qce_split_and_insert_dm_desc(pdesc, pdesc->len, |
| 1127 | sg_dma_address(sg), |
| 1128 | &pce_dev->ce_out_dst_desc_index); |
| 1129 | } else if (sg_dma_address(sg) == (pdesc->addr + dlen)) { |
| 1130 | pdesc->len = dlen + len; |
| 1131 | if (pdesc->len > 0x8000) |
| 1132 | qce_split_and_insert_dm_desc(pdesc, pdesc->len, |
| 1133 | pdesc->addr, |
| 1134 | &pce_dev->ce_out_dst_desc_index); |
| 1135 | |
| 1136 | } else { |
| 1137 | pce_dev->ce_out_dst_desc_index++; |
| 1138 | if (pce_dev->ce_out_dst_desc_index >= QCE_MAX_NUM_DESC) |
| 1139 | return -EIO; |
| 1140 | pdesc++; |
| 1141 | pdesc->len = len; |
| 1142 | pdesc->addr = sg_dma_address(sg); |
| 1143 | if (pdesc->len > 0x8000) |
| 1144 | qce_split_and_insert_dm_desc(pdesc, pdesc->len, |
| 1145 | sg_dma_address(sg), |
| 1146 | &pce_dev->ce_out_dst_desc_index); |
| 1147 | |
| 1148 | } |
| 1149 | if (nbytes > 0) |
| 1150 | sg = sg_next(sg); |
| 1151 | } |
| 1152 | return 0; |
| 1153 | } |
| 1154 | |
| 1155 | static int _chain_pm_buffer_out(struct qce_device *pce_dev, |
| 1156 | unsigned int pmem, unsigned int nbytes) |
| 1157 | { |
| 1158 | unsigned int dlen; |
| 1159 | struct dmov_desc *pdesc; |
| 1160 | |
| 1161 | pdesc = pce_dev->ce_out_dst_desc + pce_dev->ce_out_dst_desc_index; |
| 1162 | dlen = pdesc->len & ADM_DESC_LENGTH_MASK; |
| 1163 | |
| 1164 | if (dlen == 0) { |
| 1165 | pdesc->addr = pmem; |
| 1166 | pdesc->len = nbytes; |
| 1167 | } else if (pmem == (pdesc->addr + dlen)) { |
| 1168 | pdesc->len = dlen + nbytes; |
| 1169 | } else { |
| 1170 | pce_dev->ce_out_dst_desc_index++; |
| 1171 | if (pce_dev->ce_out_dst_desc_index >= QCE_MAX_NUM_DESC) |
| 1172 | return -EIO; |
| 1173 | pdesc++; |
| 1174 | pdesc->len = nbytes; |
| 1175 | pdesc->addr = pmem; |
| 1176 | } |
| 1177 | pdesc = pce_dev->ce_out_src_desc + pce_dev->ce_out_src_desc_index; |
| 1178 | pdesc->len += nbytes; |
| 1179 | |
| 1180 | return 0; |
| 1181 | }; |
| 1182 | |
| 1183 | static void _chain_buffer_out_init(struct qce_device *pce_dev) |
| 1184 | { |
| 1185 | struct dmov_desc *pdesc; |
| 1186 | |
| 1187 | pce_dev->ce_out_dst_desc_index = 0; |
| 1188 | pce_dev->ce_out_src_desc_index = 0; |
| 1189 | pdesc = pce_dev->ce_out_dst_desc; |
| 1190 | pdesc->len = 0; |
| 1191 | }; |
| 1192 | |
| 1193 | static void _ce_out_final(struct qce_device *pce_dev, unsigned total) |
| 1194 | { |
| 1195 | struct dmov_desc *pdesc; |
| 1196 | dmov_sg *pcmd; |
| 1197 | |
| 1198 | pdesc = pce_dev->ce_out_dst_desc + pce_dev->ce_out_dst_desc_index; |
| 1199 | pdesc->len |= ADM_DESC_LAST; |
| 1200 | pdesc = pce_dev->ce_out_src_desc + pce_dev->ce_out_src_desc_index; |
| 1201 | pdesc->len |= ADM_DESC_LAST; |
| 1202 | pcmd = (dmov_sg *) pce_dev->cmd_list_ce_out; |
| 1203 | pcmd->cmd |= CMD_LC; |
| 1204 | }; |
| 1205 | |
| 1206 | static void _aead_ce_in_call_back(struct msm_dmov_cmd *cmd_ptr, |
| 1207 | unsigned int result, struct msm_dmov_errdata *err) |
| 1208 | { |
| 1209 | struct qce_device *pce_dev; |
| 1210 | |
| 1211 | pce_dev = (struct qce_device *) cmd_ptr->user; |
| 1212 | if (result != ADM_STATUS_OK) { |
| 1213 | dev_err(pce_dev->pdev, "Qualcomm ADM status error %x\n", |
| 1214 | result); |
| 1215 | pce_dev->chan_ce_in_status = -1; |
| 1216 | } else { |
| 1217 | pce_dev->chan_ce_in_status = 0; |
| 1218 | } |
| 1219 | |
| 1220 | pce_dev->chan_ce_in_state = QCE_CHAN_STATE_COMP; |
| 1221 | if (pce_dev->chan_ce_out_state == QCE_CHAN_STATE_COMP) { |
| 1222 | pce_dev->chan_ce_in_state = QCE_CHAN_STATE_IDLE; |
| 1223 | pce_dev->chan_ce_out_state = QCE_CHAN_STATE_IDLE; |
| 1224 | |
| 1225 | /* done */ |
| 1226 | _aead_complete(pce_dev); |
| 1227 | } |
| 1228 | }; |
| 1229 | |
| 1230 | static void _aead_ce_out_call_back(struct msm_dmov_cmd *cmd_ptr, |
| 1231 | unsigned int result, struct msm_dmov_errdata *err) |
| 1232 | { |
| 1233 | struct qce_device *pce_dev; |
| 1234 | |
| 1235 | pce_dev = (struct qce_device *) cmd_ptr->user; |
| 1236 | if (result != ADM_STATUS_OK) { |
| 1237 | dev_err(pce_dev->pdev, "Qualcomm ADM status error %x\n", |
| 1238 | result); |
| 1239 | pce_dev->chan_ce_out_status = -1; |
| 1240 | } else { |
| 1241 | pce_dev->chan_ce_out_status = 0; |
| 1242 | }; |
| 1243 | |
| 1244 | pce_dev->chan_ce_out_state = QCE_CHAN_STATE_COMP; |
| 1245 | if (pce_dev->chan_ce_in_state == QCE_CHAN_STATE_COMP) { |
| 1246 | pce_dev->chan_ce_in_state = QCE_CHAN_STATE_IDLE; |
| 1247 | pce_dev->chan_ce_out_state = QCE_CHAN_STATE_IDLE; |
| 1248 | |
| 1249 | /* done */ |
| 1250 | _aead_complete(pce_dev); |
| 1251 | } |
| 1252 | |
| 1253 | }; |
| 1254 | |
| 1255 | static void _sha_ce_in_call_back(struct msm_dmov_cmd *cmd_ptr, |
| 1256 | unsigned int result, struct msm_dmov_errdata *err) |
| 1257 | { |
| 1258 | struct qce_device *pce_dev; |
| 1259 | |
| 1260 | pce_dev = (struct qce_device *) cmd_ptr->user; |
| 1261 | if (result != ADM_STATUS_OK) { |
| 1262 | dev_err(pce_dev->pdev, "Qualcomm ADM status error %x\n", |
| 1263 | result); |
| 1264 | pce_dev->chan_ce_in_status = -1; |
| 1265 | } else { |
| 1266 | pce_dev->chan_ce_in_status = 0; |
| 1267 | } |
| 1268 | pce_dev->chan_ce_in_state = QCE_CHAN_STATE_IDLE; |
| 1269 | _sha_complete(pce_dev); |
| 1270 | }; |
| 1271 | |
| 1272 | static void _ablk_cipher_ce_in_call_back(struct msm_dmov_cmd *cmd_ptr, |
| 1273 | unsigned int result, struct msm_dmov_errdata *err) |
| 1274 | { |
| 1275 | struct qce_device *pce_dev; |
| 1276 | |
| 1277 | pce_dev = (struct qce_device *) cmd_ptr->user; |
| 1278 | if (result != ADM_STATUS_OK) { |
| 1279 | dev_err(pce_dev->pdev, "Qualcomm ADM status error %x\n", |
| 1280 | result); |
| 1281 | pce_dev->chan_ce_in_status = -1; |
| 1282 | } else { |
| 1283 | pce_dev->chan_ce_in_status = 0; |
| 1284 | } |
| 1285 | |
| 1286 | pce_dev->chan_ce_in_state = QCE_CHAN_STATE_COMP; |
| 1287 | if (pce_dev->chan_ce_out_state == QCE_CHAN_STATE_COMP) { |
| 1288 | pce_dev->chan_ce_in_state = QCE_CHAN_STATE_IDLE; |
| 1289 | pce_dev->chan_ce_out_state = QCE_CHAN_STATE_IDLE; |
| 1290 | |
| 1291 | /* done */ |
| 1292 | _ablk_cipher_complete(pce_dev); |
| 1293 | } |
| 1294 | }; |
| 1295 | |
| 1296 | static void _ablk_cipher_ce_out_call_back(struct msm_dmov_cmd *cmd_ptr, |
| 1297 | unsigned int result, struct msm_dmov_errdata *err) |
| 1298 | { |
| 1299 | struct qce_device *pce_dev; |
| 1300 | |
| 1301 | pce_dev = (struct qce_device *) cmd_ptr->user; |
| 1302 | if (result != ADM_STATUS_OK) { |
| 1303 | dev_err(pce_dev->pdev, "Qualcomm ADM status error %x\n", |
| 1304 | result); |
| 1305 | pce_dev->chan_ce_out_status = -1; |
| 1306 | } else { |
| 1307 | pce_dev->chan_ce_out_status = 0; |
| 1308 | }; |
| 1309 | |
| 1310 | pce_dev->chan_ce_out_state = QCE_CHAN_STATE_COMP; |
| 1311 | if (pce_dev->chan_ce_in_state == QCE_CHAN_STATE_COMP) { |
| 1312 | pce_dev->chan_ce_in_state = QCE_CHAN_STATE_IDLE; |
| 1313 | pce_dev->chan_ce_out_state = QCE_CHAN_STATE_IDLE; |
| 1314 | |
| 1315 | /* done */ |
| 1316 | _ablk_cipher_complete(pce_dev); |
| 1317 | } |
| 1318 | }; |
| 1319 | |
| 1320 | |
| 1321 | static void _ablk_cipher_ce_in_call_back_pmem(struct msm_dmov_cmd *cmd_ptr, |
| 1322 | unsigned int result, struct msm_dmov_errdata *err) |
| 1323 | { |
| 1324 | struct qce_device *pce_dev; |
| 1325 | |
| 1326 | pce_dev = (struct qce_device *) cmd_ptr->user; |
| 1327 | if (result != ADM_STATUS_OK) { |
| 1328 | dev_err(pce_dev->pdev, "Qualcomm ADM status error %x\n", |
| 1329 | result); |
| 1330 | pce_dev->chan_ce_in_status = -1; |
| 1331 | } else { |
| 1332 | pce_dev->chan_ce_in_status = 0; |
| 1333 | } |
| 1334 | |
| 1335 | pce_dev->chan_ce_in_state = QCE_CHAN_STATE_COMP; |
| 1336 | if (pce_dev->chan_ce_out_state == QCE_CHAN_STATE_COMP) { |
| 1337 | pce_dev->chan_ce_in_state = QCE_CHAN_STATE_IDLE; |
| 1338 | pce_dev->chan_ce_out_state = QCE_CHAN_STATE_IDLE; |
| 1339 | |
| 1340 | /* done */ |
| 1341 | _ablk_cipher_use_pmem_complete(pce_dev); |
| 1342 | } |
| 1343 | }; |
| 1344 | |
| 1345 | static void _ablk_cipher_ce_out_call_back_pmem(struct msm_dmov_cmd *cmd_ptr, |
| 1346 | unsigned int result, struct msm_dmov_errdata *err) |
| 1347 | { |
| 1348 | struct qce_device *pce_dev; |
| 1349 | |
| 1350 | pce_dev = (struct qce_device *) cmd_ptr->user; |
| 1351 | if (result != ADM_STATUS_OK) { |
| 1352 | dev_err(pce_dev->pdev, "Qualcomm ADM status error %x\n", |
| 1353 | result); |
| 1354 | pce_dev->chan_ce_out_status = -1; |
| 1355 | } else { |
| 1356 | pce_dev->chan_ce_out_status = 0; |
| 1357 | }; |
| 1358 | |
| 1359 | pce_dev->chan_ce_out_state = QCE_CHAN_STATE_COMP; |
| 1360 | if (pce_dev->chan_ce_in_state == QCE_CHAN_STATE_COMP) { |
| 1361 | pce_dev->chan_ce_in_state = QCE_CHAN_STATE_IDLE; |
| 1362 | pce_dev->chan_ce_out_state = QCE_CHAN_STATE_IDLE; |
| 1363 | |
| 1364 | /* done */ |
| 1365 | _ablk_cipher_use_pmem_complete(pce_dev); |
| 1366 | } |
| 1367 | }; |
| 1368 | |
| 1369 | static int _setup_cmd_template(struct qce_device *pce_dev) |
| 1370 | { |
| 1371 | dmov_sg *pcmd; |
| 1372 | struct dmov_desc *pdesc; |
| 1373 | unsigned char *vaddr; |
| 1374 | int i = 0; |
| 1375 | |
| 1376 | /* Divide up the 4K coherent memory */ |
| 1377 | |
| 1378 | /* 1. ce_in channel 1st command src descriptors, 128 entries */ |
| 1379 | vaddr = pce_dev->coh_vmem; |
| 1380 | vaddr = (unsigned char *) ALIGN(((unsigned int)vaddr), 16); |
| 1381 | pce_dev->ce_in_src_desc = (struct dmov_desc *) vaddr; |
| 1382 | pce_dev->phy_ce_in_src_desc = pce_dev->coh_pmem + |
| 1383 | (vaddr - pce_dev->coh_vmem); |
| 1384 | vaddr = vaddr + (sizeof(struct dmov_desc) * QCE_MAX_NUM_DESC); |
| 1385 | |
| 1386 | /* 2. ce_in channel 1st command dst descriptor, 1 entry */ |
| 1387 | vaddr = (unsigned char *) ALIGN(((unsigned int)vaddr), 16); |
| 1388 | pce_dev->ce_in_dst_desc = (struct dmov_desc *) vaddr; |
| 1389 | pce_dev->phy_ce_in_dst_desc = pce_dev->coh_pmem + |
| 1390 | (vaddr - pce_dev->coh_vmem); |
| 1391 | vaddr = vaddr + (sizeof(struct dmov_desc) * QCE_MAX_NUM_DESC); |
| 1392 | |
| 1393 | /* 3. ce_in channel command list of one scatter gather command */ |
| 1394 | pce_dev->cmd_list_ce_in = vaddr; |
| 1395 | pce_dev->phy_cmd_list_ce_in = pce_dev->coh_pmem |
| 1396 | + (vaddr - pce_dev->coh_vmem); |
| 1397 | vaddr = vaddr + sizeof(dmov_sg); |
| 1398 | |
| 1399 | /* 4. authentication result. */ |
| 1400 | pce_dev->dig_result = vaddr; |
| 1401 | pce_dev->phy_dig_result = pce_dev->coh_pmem + |
| 1402 | (vaddr - pce_dev->coh_vmem); |
| 1403 | vaddr = vaddr + SHA256_DIGESTSIZE; |
| 1404 | |
| 1405 | /* 5. ce_out channel command list of one scatter gather command */ |
| 1406 | pce_dev->cmd_list_ce_out = vaddr; |
| 1407 | pce_dev->phy_cmd_list_ce_out = pce_dev->coh_pmem |
| 1408 | + (vaddr - pce_dev->coh_vmem); |
| 1409 | vaddr = vaddr + sizeof(dmov_sg); |
| 1410 | |
| 1411 | /* 6. ce_out channel command src descriptors, 1 entry */ |
| 1412 | vaddr = (unsigned char *) ALIGN(((unsigned int)vaddr), 16); |
| 1413 | pce_dev->ce_out_src_desc = (struct dmov_desc *) vaddr; |
| 1414 | pce_dev->phy_ce_out_src_desc = pce_dev->coh_pmem |
| 1415 | + (vaddr - pce_dev->coh_vmem); |
| 1416 | vaddr = vaddr + (sizeof(struct dmov_desc) * QCE_MAX_NUM_DESC); |
| 1417 | |
| 1418 | /* 7. ce_out channel command dst descriptors, 128 entries. */ |
| 1419 | vaddr = (unsigned char *) ALIGN(((unsigned int)vaddr), 16); |
| 1420 | pce_dev->ce_out_dst_desc = (struct dmov_desc *) vaddr; |
| 1421 | pce_dev->phy_ce_out_dst_desc = pce_dev->coh_pmem |
| 1422 | + (vaddr - pce_dev->coh_vmem); |
| 1423 | vaddr = vaddr + (sizeof(struct dmov_desc) * QCE_MAX_NUM_DESC); |
| 1424 | |
| 1425 | /* 8. pad area. */ |
| 1426 | pce_dev->ce_pad = vaddr; |
| 1427 | pce_dev->phy_ce_pad = pce_dev->coh_pmem + |
| 1428 | (vaddr - pce_dev->coh_vmem); |
| 1429 | |
| 1430 | /* Padding length is set to twice for worst case scenario in AES-CCM */ |
| 1431 | vaddr = vaddr + 2 * ADM_CE_BLOCK_SIZE; |
| 1432 | |
| 1433 | /* 9. ce_in channel command pointer list. */ |
| 1434 | vaddr = (unsigned char *) ALIGN(((unsigned int) vaddr), 8); |
| 1435 | pce_dev->cmd_pointer_list_ce_in = (unsigned int *) vaddr; |
| 1436 | pce_dev->phy_cmd_pointer_list_ce_in = pce_dev->coh_pmem + |
| 1437 | (vaddr - pce_dev->coh_vmem); |
| 1438 | vaddr = vaddr + sizeof(unsigned char *); |
| 1439 | |
| 1440 | /* 10. ce_ou channel command pointer list. */ |
| 1441 | vaddr = (unsigned char *) ALIGN(((unsigned int) vaddr), 8); |
| 1442 | pce_dev->cmd_pointer_list_ce_out = (unsigned int *) vaddr; |
| 1443 | pce_dev->phy_cmd_pointer_list_ce_out = pce_dev->coh_pmem + |
| 1444 | (vaddr - pce_dev->coh_vmem); |
| 1445 | vaddr = vaddr + sizeof(unsigned char *); |
| 1446 | |
| 1447 | /* 11. throw away area to store by-pass data from ce_out. */ |
| 1448 | pce_dev->ce_out_ignore = (unsigned char *) vaddr; |
| 1449 | pce_dev->phy_ce_out_ignore = pce_dev->coh_pmem |
| 1450 | + (vaddr - pce_dev->coh_vmem); |
| 1451 | pce_dev->ce_out_ignore_size = PAGE_SIZE - (vaddr - |
| 1452 | pce_dev->coh_vmem); /* at least 1.5 K of space */ |
| 1453 | /* |
| 1454 | * The first command of command list ce_in is for the input of |
| 1455 | * concurrent operation of encrypt/decrypt or for the input |
| 1456 | * of authentication. |
| 1457 | */ |
| 1458 | pcmd = (dmov_sg *) pce_dev->cmd_list_ce_in; |
| 1459 | /* swap byte and half word , dst crci , scatter gather */ |
| 1460 | pcmd->cmd = CMD_DST_SWAP_BYTES | CMD_DST_SWAP_SHORTS | |
| 1461 | CMD_DST_CRCI(pce_dev->crci_in) | CMD_MODE_SG; |
| 1462 | pdesc = pce_dev->ce_in_src_desc; |
| 1463 | pdesc->addr = 0; /* to be filled in each operation */ |
| 1464 | pdesc->len = 0; /* to be filled in each operation */ |
| 1465 | pcmd->src_dscr = (unsigned) pce_dev->phy_ce_in_src_desc; |
| 1466 | |
| 1467 | pdesc = pce_dev->ce_in_dst_desc; |
| 1468 | for (i = 0; i < QCE_MAX_NUM_DESC; i++) { |
| 1469 | pdesc->addr = (CRYPTO_DATA_SHADOW0 + pce_dev->phy_iobase); |
| 1470 | pdesc->len = 0; /* to be filled in each operation */ |
| 1471 | pdesc++; |
| 1472 | } |
| 1473 | pcmd->dst_dscr = (unsigned) pce_dev->phy_ce_in_dst_desc; |
| 1474 | pcmd->_reserved = LI_SG_CMD | SRC_INDEX_SG_CMD(0) | |
| 1475 | DST_INDEX_SG_CMD(0); |
| 1476 | pcmd++; |
| 1477 | |
| 1478 | /* setup command pointer list */ |
| 1479 | *(pce_dev->cmd_pointer_list_ce_in) = (CMD_PTR_LP | DMOV_CMD_LIST | |
| 1480 | DMOV_CMD_ADDR((unsigned int) |
| 1481 | pce_dev->phy_cmd_list_ce_in)); |
| 1482 | pce_dev->chan_ce_in_cmd->user = (void *) pce_dev; |
| 1483 | pce_dev->chan_ce_in_cmd->exec_func = NULL; |
| 1484 | pce_dev->chan_ce_in_cmd->cmdptr = DMOV_CMD_ADDR( |
| 1485 | (unsigned int) pce_dev->phy_cmd_pointer_list_ce_in); |
| 1486 | pce_dev->chan_ce_in_cmd->crci_mask = msm_dmov_build_crci_mask(1, |
| 1487 | pce_dev->crci_in); |
| 1488 | |
| 1489 | |
| 1490 | /* |
| 1491 | * The first command in the command list ce_out. |
| 1492 | * It is for encry/decryp output. |
| 1493 | * If hashing only, ce_out is not used. |
| 1494 | */ |
| 1495 | pcmd = (dmov_sg *) pce_dev->cmd_list_ce_out; |
| 1496 | /* swap byte, half word, source crci, scatter gather */ |
| 1497 | pcmd->cmd = CMD_SRC_SWAP_BYTES | CMD_SRC_SWAP_SHORTS | |
| 1498 | CMD_SRC_CRCI(pce_dev->crci_out) | CMD_MODE_SG; |
| 1499 | |
| 1500 | pdesc = pce_dev->ce_out_src_desc; |
| 1501 | for (i = 0; i < QCE_MAX_NUM_DESC; i++) { |
| 1502 | pdesc->addr = (CRYPTO_DATA_SHADOW0 + pce_dev->phy_iobase); |
| 1503 | pdesc->len = 0; /* to be filled in each operation */ |
| 1504 | pdesc++; |
| 1505 | } |
| 1506 | pcmd->src_dscr = (unsigned) pce_dev->phy_ce_out_src_desc; |
| 1507 | |
| 1508 | pdesc = pce_dev->ce_out_dst_desc; |
| 1509 | pdesc->addr = 0; /* to be filled in each operation */ |
| 1510 | pdesc->len = 0; /* to be filled in each operation */ |
| 1511 | pcmd->dst_dscr = (unsigned) pce_dev->phy_ce_out_dst_desc; |
| 1512 | pcmd->_reserved = LI_SG_CMD | SRC_INDEX_SG_CMD(0) | |
| 1513 | DST_INDEX_SG_CMD(0); |
| 1514 | |
| 1515 | pcmd++; |
| 1516 | |
| 1517 | /* setup command pointer list */ |
| 1518 | *(pce_dev->cmd_pointer_list_ce_out) = (CMD_PTR_LP | DMOV_CMD_LIST | |
| 1519 | DMOV_CMD_ADDR((unsigned int)pce_dev-> |
| 1520 | phy_cmd_list_ce_out)); |
| 1521 | |
| 1522 | pce_dev->chan_ce_out_cmd->user = pce_dev; |
| 1523 | pce_dev->chan_ce_out_cmd->exec_func = NULL; |
| 1524 | pce_dev->chan_ce_out_cmd->cmdptr = DMOV_CMD_ADDR( |
| 1525 | (unsigned int) pce_dev->phy_cmd_pointer_list_ce_out); |
| 1526 | pce_dev->chan_ce_out_cmd->crci_mask = msm_dmov_build_crci_mask(1, |
| 1527 | pce_dev->crci_out); |
| 1528 | |
| 1529 | return 0; |
| 1530 | }; |
| 1531 | |
| 1532 | static int _qce_start_dma(struct qce_device *pce_dev, bool ce_in, bool ce_out) |
| 1533 | { |
| 1534 | |
| 1535 | if (ce_in) |
| 1536 | pce_dev->chan_ce_in_state = QCE_CHAN_STATE_IN_PROG; |
| 1537 | else |
| 1538 | pce_dev->chan_ce_in_state = QCE_CHAN_STATE_COMP; |
| 1539 | |
| 1540 | if (ce_out) |
| 1541 | pce_dev->chan_ce_out_state = QCE_CHAN_STATE_IN_PROG; |
| 1542 | else |
| 1543 | pce_dev->chan_ce_out_state = QCE_CHAN_STATE_COMP; |
| 1544 | |
| 1545 | if (ce_in) |
| 1546 | msm_dmov_enqueue_cmd(pce_dev->chan_ce_in, |
| 1547 | pce_dev->chan_ce_in_cmd); |
| 1548 | if (ce_out) |
| 1549 | msm_dmov_enqueue_cmd(pce_dev->chan_ce_out, |
| 1550 | pce_dev->chan_ce_out_cmd); |
| 1551 | |
| 1552 | return 0; |
| 1553 | }; |
| 1554 | |
| 1555 | int qce_aead_req(void *handle, struct qce_req *q_req) |
| 1556 | { |
| 1557 | struct qce_device *pce_dev = (struct qce_device *) handle; |
| 1558 | struct aead_request *areq = (struct aead_request *) q_req->areq; |
| 1559 | uint32_t authsize = q_req->authsize; |
| 1560 | uint32_t totallen_in, totallen_out, out_len; |
| 1561 | uint32_t pad_len_in, pad_len_out; |
| 1562 | uint32_t pad_mac_len_out, pad_ptx_len_out; |
| 1563 | int rc = 0; |
| 1564 | |
| 1565 | if (q_req->dir == QCE_ENCRYPT) { |
| 1566 | q_req->cryptlen = areq->cryptlen; |
| 1567 | totallen_in = q_req->cryptlen + areq->assoclen; |
| 1568 | totallen_out = q_req->cryptlen + authsize + areq->assoclen; |
| 1569 | out_len = areq->cryptlen + authsize; |
| 1570 | pad_len_in = ALIGN(totallen_in, ADM_CE_BLOCK_SIZE) - |
| 1571 | totallen_in; |
| 1572 | pad_mac_len_out = ALIGN(authsize, ADM_CE_BLOCK_SIZE) - |
| 1573 | authsize; |
| 1574 | pad_ptx_len_out = ALIGN(q_req->cryptlen, ADM_CE_BLOCK_SIZE) - |
| 1575 | q_req->cryptlen; |
| 1576 | pad_len_out = pad_ptx_len_out + pad_mac_len_out; |
| 1577 | totallen_out += pad_len_out; |
| 1578 | } else { |
| 1579 | q_req->cryptlen = areq->cryptlen - authsize; |
| 1580 | totallen_in = areq->cryptlen + areq->assoclen; |
| 1581 | totallen_out = q_req->cryptlen + areq->assoclen; |
| 1582 | out_len = areq->cryptlen - authsize; |
| 1583 | pad_len_in = ALIGN(areq->cryptlen, ADM_CE_BLOCK_SIZE) - |
| 1584 | areq->cryptlen; |
| 1585 | pad_len_out = pad_len_in + authsize; |
| 1586 | totallen_out += pad_len_out; |
| 1587 | } |
| 1588 | |
| 1589 | _chain_buffer_in_init(pce_dev); |
| 1590 | _chain_buffer_out_init(pce_dev); |
| 1591 | |
| 1592 | pce_dev->assoc_nents = 0; |
| 1593 | pce_dev->src_nents = 0; |
| 1594 | pce_dev->dst_nents = 0; |
| 1595 | pce_dev->ivsize = q_req->ivsize; |
| 1596 | pce_dev->authsize = q_req->authsize; |
| 1597 | |
| 1598 | /* associated data input */ |
| 1599 | pce_dev->assoc_nents = count_sg(areq->assoc, areq->assoclen); |
| 1600 | dma_map_sg(pce_dev->pdev, areq->assoc, pce_dev->assoc_nents, |
| 1601 | DMA_TO_DEVICE); |
| 1602 | if (_chain_sg_buffer_in(pce_dev, areq->assoc, areq->assoclen) < 0) { |
| 1603 | rc = -ENOMEM; |
| 1604 | goto bad; |
| 1605 | } |
| 1606 | /* cipher input */ |
| 1607 | pce_dev->src_nents = count_sg(areq->src, areq->cryptlen); |
| 1608 | dma_map_sg(pce_dev->pdev, areq->src, pce_dev->src_nents, |
| 1609 | (areq->src == areq->dst) ? DMA_BIDIRECTIONAL : |
| 1610 | DMA_TO_DEVICE); |
| 1611 | if (_chain_sg_buffer_in(pce_dev, areq->src, areq->cryptlen) < 0) { |
| 1612 | rc = -ENOMEM; |
| 1613 | goto bad; |
| 1614 | } |
| 1615 | /* pad data in */ |
| 1616 | if (pad_len_in) { |
| 1617 | if (_chain_pm_buffer_in(pce_dev, pce_dev->phy_ce_pad, |
| 1618 | pad_len_in) < 0) { |
| 1619 | rc = -ENOMEM; |
| 1620 | goto bad; |
| 1621 | } |
| 1622 | } |
| 1623 | |
| 1624 | /* ignore associated data */ |
| 1625 | if (_chain_pm_buffer_out(pce_dev, pce_dev->phy_ce_out_ignore, |
| 1626 | areq->assoclen) < 0) { |
| 1627 | rc = -ENOMEM; |
| 1628 | goto bad; |
| 1629 | } |
| 1630 | /* cipher + mac output for encryption */ |
| 1631 | if (areq->src != areq->dst) { |
| 1632 | pce_dev->dst_nents = count_sg(areq->dst, out_len); |
| 1633 | dma_map_sg(pce_dev->pdev, areq->dst, pce_dev->dst_nents, |
| 1634 | DMA_FROM_DEVICE); |
| 1635 | }; |
| 1636 | if (_chain_sg_buffer_out(pce_dev, areq->dst, out_len) < 0) { |
| 1637 | rc = -ENOMEM; |
| 1638 | goto bad; |
| 1639 | } |
| 1640 | /* pad data out */ |
| 1641 | if (pad_len_out) { |
| 1642 | if (_chain_pm_buffer_out(pce_dev, pce_dev->phy_ce_pad, |
| 1643 | pad_len_out) < 0) { |
| 1644 | rc = -ENOMEM; |
| 1645 | goto bad; |
| 1646 | } |
| 1647 | } |
| 1648 | |
| 1649 | /* finalize the ce_in and ce_out channels command lists */ |
| 1650 | _ce_in_final(pce_dev, ALIGN(totallen_in, ADM_CE_BLOCK_SIZE)); |
| 1651 | _ce_out_final(pce_dev, ALIGN(totallen_out, ADM_CE_BLOCK_SIZE)); |
| 1652 | |
| 1653 | /* set up crypto device */ |
| 1654 | rc = _ce_setup_cipher(pce_dev, q_req, totallen_in, areq->assoclen); |
| 1655 | if (rc < 0) |
| 1656 | goto bad; |
| 1657 | |
| 1658 | /* setup for callback, and issue command to adm */ |
| 1659 | pce_dev->areq = q_req->areq; |
| 1660 | pce_dev->qce_cb = q_req->qce_cb; |
| 1661 | |
| 1662 | pce_dev->chan_ce_in_cmd->complete_func = _aead_ce_in_call_back; |
| 1663 | pce_dev->chan_ce_out_cmd->complete_func = _aead_ce_out_call_back; |
| 1664 | |
| 1665 | _ce_in_dump(pce_dev); |
| 1666 | _ce_out_dump(pce_dev); |
| 1667 | |
| 1668 | rc = _qce_start_dma(pce_dev, true, true); |
| 1669 | if (rc == 0) |
| 1670 | return 0; |
| 1671 | bad: |
| 1672 | if (pce_dev->assoc_nents) { |
| 1673 | dma_unmap_sg(pce_dev->pdev, areq->assoc, pce_dev->assoc_nents, |
| 1674 | DMA_TO_DEVICE); |
| 1675 | } |
| 1676 | |
| 1677 | if (pce_dev->src_nents) { |
| 1678 | dma_unmap_sg(pce_dev->pdev, areq->src, pce_dev->src_nents, |
| 1679 | (areq->src == areq->dst) ? DMA_BIDIRECTIONAL : |
| 1680 | DMA_TO_DEVICE); |
| 1681 | } |
| 1682 | if (pce_dev->dst_nents) { |
| 1683 | dma_unmap_sg(pce_dev->pdev, areq->dst, pce_dev->dst_nents, |
| 1684 | DMA_FROM_DEVICE); |
| 1685 | } |
| 1686 | return rc; |
| 1687 | } |
| 1688 | EXPORT_SYMBOL(qce_aead_req); |
| 1689 | |
| 1690 | int qce_ablk_cipher_req(void *handle, struct qce_req *c_req) |
| 1691 | { |
| 1692 | int rc = 0; |
| 1693 | struct qce_device *pce_dev = (struct qce_device *) handle; |
| 1694 | struct ablkcipher_request *areq = (struct ablkcipher_request *) |
| 1695 | c_req->areq; |
| 1696 | |
| 1697 | uint32_t pad_len = ALIGN(areq->nbytes, ADM_CE_BLOCK_SIZE) |
| 1698 | - areq->nbytes; |
| 1699 | |
| 1700 | _chain_buffer_in_init(pce_dev); |
| 1701 | _chain_buffer_out_init(pce_dev); |
| 1702 | |
| 1703 | pce_dev->src_nents = 0; |
| 1704 | pce_dev->dst_nents = 0; |
| 1705 | |
| 1706 | /* cipher input */ |
| 1707 | pce_dev->src_nents = count_sg(areq->src, areq->nbytes); |
| 1708 | |
| 1709 | if (c_req->use_pmem != 1) |
| 1710 | dma_map_sg(pce_dev->pdev, areq->src, pce_dev->src_nents, |
| 1711 | (areq->src == areq->dst) ? DMA_BIDIRECTIONAL : |
| 1712 | DMA_TO_DEVICE); |
| 1713 | else |
| 1714 | dma_map_pmem_sg(&c_req->pmem->src[0], pce_dev->src_nents, |
| 1715 | areq->src); |
| 1716 | |
| 1717 | if (_chain_sg_buffer_in(pce_dev, areq->src, areq->nbytes) < 0) { |
| 1718 | rc = -ENOMEM; |
| 1719 | goto bad; |
| 1720 | } |
| 1721 | |
| 1722 | /* cipher output */ |
| 1723 | if (areq->src != areq->dst) { |
| 1724 | pce_dev->dst_nents = count_sg(areq->dst, areq->nbytes); |
| 1725 | if (c_req->use_pmem != 1) |
| 1726 | dma_map_sg(pce_dev->pdev, areq->dst, pce_dev->dst_nents, |
| 1727 | DMA_FROM_DEVICE); |
| 1728 | else |
| 1729 | dma_map_pmem_sg(&c_req->pmem->dst[0], |
| 1730 | pce_dev->dst_nents, areq->dst); |
| 1731 | }; |
| 1732 | if (_chain_sg_buffer_out(pce_dev, areq->dst, areq->nbytes) < 0) { |
| 1733 | rc = -ENOMEM; |
| 1734 | goto bad; |
| 1735 | } |
| 1736 | |
| 1737 | /* pad data */ |
| 1738 | if (pad_len) { |
| 1739 | if (_chain_pm_buffer_in(pce_dev, pce_dev->phy_ce_pad, |
| 1740 | pad_len) < 0) { |
| 1741 | rc = -ENOMEM; |
| 1742 | goto bad; |
| 1743 | } |
| 1744 | if (_chain_pm_buffer_out(pce_dev, pce_dev->phy_ce_pad, |
| 1745 | pad_len) < 0) { |
| 1746 | rc = -ENOMEM; |
| 1747 | goto bad; |
| 1748 | } |
| 1749 | } |
| 1750 | |
| 1751 | /* finalize the ce_in and ce_out channels command lists */ |
| 1752 | _ce_in_final(pce_dev, areq->nbytes + pad_len); |
| 1753 | _ce_out_final(pce_dev, areq->nbytes + pad_len); |
| 1754 | |
| 1755 | _ce_in_dump(pce_dev); |
| 1756 | _ce_out_dump(pce_dev); |
| 1757 | |
| 1758 | /* set up crypto device */ |
| 1759 | rc = _ce_setup_cipher(pce_dev, c_req, areq->nbytes, 0); |
| 1760 | if (rc < 0) |
| 1761 | goto bad; |
| 1762 | |
| 1763 | /* setup for callback, and issue command to adm */ |
| 1764 | pce_dev->areq = areq; |
| 1765 | pce_dev->qce_cb = c_req->qce_cb; |
| 1766 | if (c_req->use_pmem == 1) { |
| 1767 | pce_dev->chan_ce_in_cmd->complete_func = |
| 1768 | _ablk_cipher_ce_in_call_back_pmem; |
| 1769 | pce_dev->chan_ce_out_cmd->complete_func = |
| 1770 | _ablk_cipher_ce_out_call_back_pmem; |
| 1771 | } else { |
| 1772 | pce_dev->chan_ce_in_cmd->complete_func = |
| 1773 | _ablk_cipher_ce_in_call_back; |
| 1774 | pce_dev->chan_ce_out_cmd->complete_func = |
| 1775 | _ablk_cipher_ce_out_call_back; |
| 1776 | } |
| 1777 | rc = _qce_start_dma(pce_dev, true, true); |
| 1778 | |
| 1779 | if (rc == 0) |
| 1780 | return 0; |
| 1781 | bad: |
| 1782 | if (c_req->use_pmem != 1) { |
| 1783 | if (pce_dev->dst_nents) { |
| 1784 | dma_unmap_sg(pce_dev->pdev, areq->dst, |
| 1785 | pce_dev->dst_nents, DMA_FROM_DEVICE); |
| 1786 | } |
| 1787 | if (pce_dev->src_nents) { |
| 1788 | dma_unmap_sg(pce_dev->pdev, areq->src, |
| 1789 | pce_dev->src_nents, |
| 1790 | (areq->src == areq->dst) ? |
| 1791 | DMA_BIDIRECTIONAL : |
| 1792 | DMA_TO_DEVICE); |
| 1793 | } |
| 1794 | } |
| 1795 | return rc; |
| 1796 | } |
| 1797 | EXPORT_SYMBOL(qce_ablk_cipher_req); |
| 1798 | |
| 1799 | int qce_process_sha_req(void *handle, struct qce_sha_req *sreq) |
| 1800 | { |
| 1801 | struct qce_device *pce_dev = (struct qce_device *) handle; |
| 1802 | int rc; |
| 1803 | uint32_t pad_len = ALIGN(sreq->size, ADM_CE_BLOCK_SIZE) - sreq->size; |
| 1804 | struct ahash_request *areq = (struct ahash_request *)sreq->areq; |
| 1805 | |
| 1806 | _chain_buffer_in_init(pce_dev); |
| 1807 | pce_dev->src_nents = count_sg(sreq->src, sreq->size); |
| 1808 | dma_map_sg(pce_dev->pdev, sreq->src, pce_dev->src_nents, |
| 1809 | DMA_TO_DEVICE); |
| 1810 | |
| 1811 | if (_chain_sg_buffer_in(pce_dev, sreq->src, sreq->size) < 0) { |
| 1812 | rc = -ENOMEM; |
| 1813 | goto bad; |
| 1814 | } |
| 1815 | |
| 1816 | if (pad_len) { |
| 1817 | if (_chain_pm_buffer_in(pce_dev, pce_dev->phy_ce_pad, |
| 1818 | pad_len) < 0) { |
| 1819 | rc = -ENOMEM; |
| 1820 | goto bad; |
| 1821 | } |
| 1822 | } |
| 1823 | _ce_in_final(pce_dev, sreq->size + pad_len); |
| 1824 | |
| 1825 | _ce_in_dump(pce_dev); |
| 1826 | |
| 1827 | rc = _ce_setup_hash(pce_dev, sreq); |
| 1828 | |
| 1829 | if (rc < 0) |
| 1830 | goto bad; |
| 1831 | |
| 1832 | pce_dev->areq = areq; |
| 1833 | pce_dev->qce_cb = sreq->qce_cb; |
| 1834 | pce_dev->chan_ce_in_cmd->complete_func = _sha_ce_in_call_back; |
| 1835 | |
| 1836 | rc = _qce_start_dma(pce_dev, true, false); |
| 1837 | |
| 1838 | if (rc == 0) |
| 1839 | return 0; |
| 1840 | bad: |
| 1841 | if (pce_dev->src_nents) { |
| 1842 | dma_unmap_sg(pce_dev->pdev, sreq->src, |
| 1843 | pce_dev->src_nents, DMA_TO_DEVICE); |
| 1844 | } |
| 1845 | |
| 1846 | return rc; |
| 1847 | } |
| 1848 | EXPORT_SYMBOL(qce_process_sha_req); |
| 1849 | |
| 1850 | /* crypto engine open function. */ |
| 1851 | void *qce_open(struct platform_device *pdev, int *rc) |
| 1852 | { |
| 1853 | struct qce_device *pce_dev; |
| 1854 | struct resource *resource; |
| 1855 | struct clk *ce_core_clk; |
| 1856 | struct clk *ce_clk; |
| 1857 | |
| 1858 | pce_dev = kzalloc(sizeof(struct qce_device), GFP_KERNEL); |
| 1859 | if (!pce_dev) { |
| 1860 | *rc = -ENOMEM; |
| 1861 | dev_err(&pdev->dev, "Can not allocate memory\n"); |
| 1862 | return NULL; |
| 1863 | } |
| 1864 | pce_dev->pdev = &pdev->dev; |
| 1865 | |
| 1866 | resource = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| 1867 | if (!resource) { |
| 1868 | *rc = -ENXIO; |
| 1869 | dev_err(pce_dev->pdev, "Missing MEM resource\n"); |
| 1870 | goto err_pce_dev; |
| 1871 | }; |
| 1872 | pce_dev->phy_iobase = resource->start; |
| 1873 | pce_dev->iobase = ioremap_nocache(resource->start, |
| 1874 | resource->end - resource->start + 1); |
| 1875 | if (!pce_dev->iobase) { |
| 1876 | *rc = -ENOMEM; |
| 1877 | dev_err(pce_dev->pdev, "Can not map io memory\n"); |
| 1878 | goto err_pce_dev; |
| 1879 | } |
| 1880 | |
| 1881 | pce_dev->chan_ce_in_cmd = kzalloc(sizeof(struct msm_dmov_cmd), |
| 1882 | GFP_KERNEL); |
| 1883 | pce_dev->chan_ce_out_cmd = kzalloc(sizeof(struct msm_dmov_cmd), |
| 1884 | GFP_KERNEL); |
| 1885 | if (pce_dev->chan_ce_in_cmd == NULL || |
| 1886 | pce_dev->chan_ce_out_cmd == NULL) { |
| 1887 | dev_err(pce_dev->pdev, "Can not allocate memory\n"); |
| 1888 | *rc = -ENOMEM; |
| 1889 | goto err_dm_chan_cmd; |
| 1890 | } |
| 1891 | |
| 1892 | resource = platform_get_resource_byname(pdev, IORESOURCE_DMA, |
| 1893 | "crypto_channels"); |
| 1894 | if (!resource) { |
| 1895 | *rc = -ENXIO; |
| 1896 | dev_err(pce_dev->pdev, "Missing DMA channel resource\n"); |
| 1897 | goto err_dm_chan_cmd; |
| 1898 | }; |
| 1899 | pce_dev->chan_ce_in = resource->start; |
| 1900 | pce_dev->chan_ce_out = resource->end; |
| 1901 | resource = platform_get_resource_byname(pdev, IORESOURCE_DMA, |
| 1902 | "crypto_crci_in"); |
| 1903 | if (!resource) { |
| 1904 | *rc = -ENXIO; |
| 1905 | dev_err(pce_dev->pdev, "Missing DMA crci in resource\n"); |
| 1906 | goto err_dm_chan_cmd; |
| 1907 | }; |
| 1908 | pce_dev->crci_in = resource->start; |
| 1909 | resource = platform_get_resource_byname(pdev, IORESOURCE_DMA, |
| 1910 | "crypto_crci_out"); |
| 1911 | if (!resource) { |
| 1912 | *rc = -ENXIO; |
| 1913 | dev_err(pce_dev->pdev, "Missing DMA crci out resource\n"); |
| 1914 | goto err_dm_chan_cmd; |
| 1915 | }; |
| 1916 | pce_dev->crci_out = resource->start; |
| 1917 | |
| 1918 | pce_dev->coh_vmem = dma_alloc_coherent(pce_dev->pdev, |
| 1919 | 2*PAGE_SIZE, &pce_dev->coh_pmem, GFP_KERNEL); |
| 1920 | |
| 1921 | if (pce_dev->coh_vmem == NULL) { |
| 1922 | *rc = -ENOMEM; |
| 1923 | dev_err(pce_dev->pdev, "Can not allocate coherent memory.\n"); |
| 1924 | goto err; |
| 1925 | } |
| 1926 | |
| 1927 | /* Get CE core clk */ |
| 1928 | ce_core_clk = clk_get(pce_dev->pdev, "ce_clk"); |
| 1929 | if (IS_ERR(ce_core_clk)) { |
| 1930 | *rc = PTR_ERR(ce_core_clk); |
| 1931 | goto err; |
| 1932 | } |
| 1933 | pce_dev->ce_core_clk = ce_core_clk; |
| 1934 | /* Get CE clk */ |
| 1935 | ce_clk = clk_get(pce_dev->pdev, "ce_pclk"); |
| 1936 | if (IS_ERR(ce_clk)) { |
| 1937 | *rc = PTR_ERR(ce_clk); |
| 1938 | clk_put(pce_dev->ce_core_clk); |
| 1939 | goto err; |
| 1940 | } |
| 1941 | pce_dev->ce_clk = ce_clk; |
| 1942 | |
| 1943 | /* Enable CE core clk */ |
| 1944 | *rc = clk_enable(pce_dev->ce_core_clk); |
| 1945 | if (*rc) { |
| 1946 | clk_put(pce_dev->ce_core_clk); |
| 1947 | clk_put(pce_dev->ce_clk); |
| 1948 | goto err; |
| 1949 | } else { |
| 1950 | /* Enable CE clk */ |
| 1951 | *rc = clk_enable(pce_dev->ce_clk); |
| 1952 | if (*rc) { |
| 1953 | clk_disable(pce_dev->ce_core_clk); |
| 1954 | clk_put(pce_dev->ce_core_clk); |
| 1955 | clk_put(pce_dev->ce_clk); |
| 1956 | goto err; |
| 1957 | |
| 1958 | } |
| 1959 | } |
| 1960 | _setup_cmd_template(pce_dev); |
| 1961 | |
| 1962 | pce_dev->chan_ce_in_state = QCE_CHAN_STATE_IDLE; |
| 1963 | pce_dev->chan_ce_out_state = QCE_CHAN_STATE_IDLE; |
| 1964 | |
| 1965 | if (_init_ce_engine(pce_dev)) { |
| 1966 | *rc = -ENXIO; |
| 1967 | goto err; |
| 1968 | } |
| 1969 | *rc = 0; |
| 1970 | return pce_dev; |
| 1971 | |
| 1972 | err: |
| 1973 | if (pce_dev->coh_vmem) |
| 1974 | dma_free_coherent(pce_dev->pdev, PAGE_SIZE, pce_dev->coh_vmem, |
| 1975 | pce_dev->coh_pmem); |
| 1976 | err_dm_chan_cmd: |
| 1977 | kfree(pce_dev->chan_ce_in_cmd); |
| 1978 | kfree(pce_dev->chan_ce_out_cmd); |
| 1979 | if (pce_dev->iobase) |
| 1980 | iounmap(pce_dev->iobase); |
| 1981 | |
| 1982 | err_pce_dev: |
| 1983 | |
| 1984 | kfree(pce_dev); |
| 1985 | |
| 1986 | return NULL; |
| 1987 | } |
| 1988 | EXPORT_SYMBOL(qce_open); |
| 1989 | |
| 1990 | /* crypto engine close function. */ |
| 1991 | int qce_close(void *handle) |
| 1992 | { |
| 1993 | struct qce_device *pce_dev = (struct qce_device *) handle; |
| 1994 | |
| 1995 | if (handle == NULL) |
| 1996 | return -ENODEV; |
| 1997 | if (pce_dev->iobase) |
| 1998 | iounmap(pce_dev->iobase); |
| 1999 | |
| 2000 | if (pce_dev->coh_vmem) |
| 2001 | dma_free_coherent(pce_dev->pdev, 2*PAGE_SIZE, pce_dev->coh_vmem, |
| 2002 | pce_dev->coh_pmem); |
| 2003 | clk_disable(pce_dev->ce_clk); |
| 2004 | clk_disable(pce_dev->ce_core_clk); |
| 2005 | |
| 2006 | clk_put(pce_dev->ce_clk); |
| 2007 | clk_put(pce_dev->ce_core_clk); |
| 2008 | |
| 2009 | kfree(pce_dev->chan_ce_in_cmd); |
| 2010 | kfree(pce_dev->chan_ce_out_cmd); |
| 2011 | kfree(handle); |
| 2012 | |
| 2013 | return 0; |
| 2014 | } |
| 2015 | EXPORT_SYMBOL(qce_close); |
| 2016 | |
| 2017 | int qce_hw_support(void *handle, struct ce_hw_support *ce_support) |
| 2018 | { |
| 2019 | if (ce_support == NULL) |
| 2020 | return -EINVAL; |
| 2021 | |
| 2022 | ce_support->sha1_hmac_20 = false; |
| 2023 | ce_support->sha1_hmac = false; |
| 2024 | ce_support->sha256_hmac = false; |
| 2025 | ce_support->sha_hmac = false; |
| 2026 | ce_support->cmac = true; |
| 2027 | ce_support->aes_key_192 = false; |
| 2028 | ce_support->aes_xts = true; |
| 2029 | ce_support->aes_ccm = true; |
| 2030 | ce_support->ota = false; |
| 2031 | return 0; |
| 2032 | } |
| 2033 | EXPORT_SYMBOL(qce_hw_support); |
| 2034 | |
| 2035 | MODULE_LICENSE("GPL v2"); |
| 2036 | MODULE_AUTHOR("Mona Hossain <mhossain@codeaurora.org>"); |
| 2037 | MODULE_DESCRIPTION("Crypto Engine driver"); |
| 2038 | MODULE_VERSION("2.04"); |