| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  * pSeries NUMA support | 
 | 3 |  * | 
 | 4 |  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM | 
 | 5 |  * | 
 | 6 |  * This program is free software; you can redistribute it and/or | 
 | 7 |  * modify it under the terms of the GNU General Public License | 
 | 8 |  * as published by the Free Software Foundation; either version | 
 | 9 |  * 2 of the License, or (at your option) any later version. | 
 | 10 |  */ | 
 | 11 | #include <linux/threads.h> | 
 | 12 | #include <linux/bootmem.h> | 
 | 13 | #include <linux/init.h> | 
 | 14 | #include <linux/mm.h> | 
 | 15 | #include <linux/mmzone.h> | 
 | 16 | #include <linux/module.h> | 
 | 17 | #include <linux/nodemask.h> | 
 | 18 | #include <linux/cpu.h> | 
 | 19 | #include <linux/notifier.h> | 
 | 20 | #include <asm/lmb.h> | 
 | 21 | #include <asm/machdep.h> | 
 | 22 | #include <asm/abs_addr.h> | 
| Paul Mackerras | cf00a8d | 2005-10-31 13:07:02 +1100 | [diff] [blame] | 23 | #include <asm/system.h> | 
| Paul Mackerras | 2249ca9 | 2005-11-07 13:18:13 +1100 | [diff] [blame] | 24 | #include <asm/smp.h> | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 25 |  | 
 | 26 | static int numa_enabled = 1; | 
 | 27 |  | 
 | 28 | static int numa_debug; | 
 | 29 | #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); } | 
 | 30 |  | 
 | 31 | #ifdef DEBUG_NUMA | 
 | 32 | #define ARRAY_INITIALISER -1 | 
 | 33 | #else | 
 | 34 | #define ARRAY_INITIALISER 0 | 
 | 35 | #endif | 
 | 36 |  | 
 | 37 | int numa_cpu_lookup_table[NR_CPUS] = { [ 0 ... (NR_CPUS - 1)] = | 
 | 38 | 	ARRAY_INITIALISER}; | 
 | 39 | char *numa_memory_lookup_table; | 
 | 40 | cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES]; | 
 | 41 | int nr_cpus_in_node[MAX_NUMNODES] = { [0 ... (MAX_NUMNODES -1)] = 0}; | 
 | 42 |  | 
 | 43 | struct pglist_data *node_data[MAX_NUMNODES]; | 
 | 44 | bootmem_data_t __initdata plat_node_bdata[MAX_NUMNODES]; | 
 | 45 | static int min_common_depth; | 
 | 46 |  | 
 | 47 | /* | 
 | 48 |  * We need somewhere to store start/span for each node until we have | 
 | 49 |  * allocated the real node_data structures. | 
 | 50 |  */ | 
 | 51 | static struct { | 
 | 52 | 	unsigned long node_start_pfn; | 
 | 53 | 	unsigned long node_end_pfn; | 
 | 54 | 	unsigned long node_present_pages; | 
 | 55 | } init_node_data[MAX_NUMNODES] __initdata; | 
 | 56 |  | 
 | 57 | EXPORT_SYMBOL(node_data); | 
 | 58 | EXPORT_SYMBOL(numa_cpu_lookup_table); | 
 | 59 | EXPORT_SYMBOL(numa_memory_lookup_table); | 
 | 60 | EXPORT_SYMBOL(numa_cpumask_lookup_table); | 
 | 61 | EXPORT_SYMBOL(nr_cpus_in_node); | 
 | 62 |  | 
 | 63 | static inline void map_cpu_to_node(int cpu, int node) | 
 | 64 | { | 
 | 65 | 	numa_cpu_lookup_table[cpu] = node; | 
 | 66 | 	if (!(cpu_isset(cpu, numa_cpumask_lookup_table[node]))) { | 
 | 67 | 		cpu_set(cpu, numa_cpumask_lookup_table[node]); | 
 | 68 | 		nr_cpus_in_node[node]++; | 
 | 69 | 	} | 
 | 70 | } | 
 | 71 |  | 
 | 72 | #ifdef CONFIG_HOTPLUG_CPU | 
 | 73 | static void unmap_cpu_from_node(unsigned long cpu) | 
 | 74 | { | 
 | 75 | 	int node = numa_cpu_lookup_table[cpu]; | 
 | 76 |  | 
 | 77 | 	dbg("removing cpu %lu from node %d\n", cpu, node); | 
 | 78 |  | 
 | 79 | 	if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) { | 
 | 80 | 		cpu_clear(cpu, numa_cpumask_lookup_table[node]); | 
 | 81 | 		nr_cpus_in_node[node]--; | 
 | 82 | 	} else { | 
 | 83 | 		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n", | 
 | 84 | 		       cpu, node); | 
 | 85 | 	} | 
 | 86 | } | 
 | 87 | #endif /* CONFIG_HOTPLUG_CPU */ | 
 | 88 |  | 
 | 89 | static struct device_node * __devinit find_cpu_node(unsigned int cpu) | 
 | 90 | { | 
 | 91 | 	unsigned int hw_cpuid = get_hard_smp_processor_id(cpu); | 
 | 92 | 	struct device_node *cpu_node = NULL; | 
 | 93 | 	unsigned int *interrupt_server, *reg; | 
 | 94 | 	int len; | 
 | 95 |  | 
 | 96 | 	while ((cpu_node = of_find_node_by_type(cpu_node, "cpu")) != NULL) { | 
 | 97 | 		/* Try interrupt server first */ | 
 | 98 | 		interrupt_server = (unsigned int *)get_property(cpu_node, | 
 | 99 | 					"ibm,ppc-interrupt-server#s", &len); | 
 | 100 |  | 
 | 101 | 		len = len / sizeof(u32); | 
 | 102 |  | 
 | 103 | 		if (interrupt_server && (len > 0)) { | 
 | 104 | 			while (len--) { | 
 | 105 | 				if (interrupt_server[len] == hw_cpuid) | 
 | 106 | 					return cpu_node; | 
 | 107 | 			} | 
 | 108 | 		} else { | 
 | 109 | 			reg = (unsigned int *)get_property(cpu_node, | 
 | 110 | 							   "reg", &len); | 
 | 111 | 			if (reg && (len > 0) && (reg[0] == hw_cpuid)) | 
 | 112 | 				return cpu_node; | 
 | 113 | 		} | 
 | 114 | 	} | 
 | 115 |  | 
 | 116 | 	return NULL; | 
 | 117 | } | 
 | 118 |  | 
 | 119 | /* must hold reference to node during call */ | 
 | 120 | static int *of_get_associativity(struct device_node *dev) | 
 | 121 | { | 
 | 122 | 	return (unsigned int *)get_property(dev, "ibm,associativity", NULL); | 
 | 123 | } | 
 | 124 |  | 
 | 125 | static int of_node_numa_domain(struct device_node *device) | 
 | 126 | { | 
 | 127 | 	int numa_domain; | 
 | 128 | 	unsigned int *tmp; | 
 | 129 |  | 
 | 130 | 	if (min_common_depth == -1) | 
 | 131 | 		return 0; | 
 | 132 |  | 
 | 133 | 	tmp = of_get_associativity(device); | 
 | 134 | 	if (tmp && (tmp[0] >= min_common_depth)) { | 
 | 135 | 		numa_domain = tmp[min_common_depth]; | 
 | 136 | 	} else { | 
 | 137 | 		dbg("WARNING: no NUMA information for %s\n", | 
 | 138 | 		    device->full_name); | 
 | 139 | 		numa_domain = 0; | 
 | 140 | 	} | 
 | 141 | 	return numa_domain; | 
 | 142 | } | 
 | 143 |  | 
 | 144 | /* | 
 | 145 |  * In theory, the "ibm,associativity" property may contain multiple | 
 | 146 |  * associativity lists because a resource may be multiply connected | 
 | 147 |  * into the machine.  This resource then has different associativity | 
 | 148 |  * characteristics relative to its multiple connections.  We ignore | 
 | 149 |  * this for now.  We also assume that all cpu and memory sets have | 
 | 150 |  * their distances represented at a common level.  This won't be | 
 | 151 |  * true for heirarchical NUMA. | 
 | 152 |  * | 
 | 153 |  * In any case the ibm,associativity-reference-points should give | 
 | 154 |  * the correct depth for a normal NUMA system. | 
 | 155 |  * | 
 | 156 |  * - Dave Hansen <haveblue@us.ibm.com> | 
 | 157 |  */ | 
 | 158 | static int __init find_min_common_depth(void) | 
 | 159 | { | 
 | 160 | 	int depth; | 
 | 161 | 	unsigned int *ref_points; | 
 | 162 | 	struct device_node *rtas_root; | 
 | 163 | 	unsigned int len; | 
 | 164 |  | 
 | 165 | 	rtas_root = of_find_node_by_path("/rtas"); | 
 | 166 |  | 
 | 167 | 	if (!rtas_root) | 
 | 168 | 		return -1; | 
 | 169 |  | 
 | 170 | 	/* | 
 | 171 | 	 * this property is 2 32-bit integers, each representing a level of | 
 | 172 | 	 * depth in the associativity nodes.  The first is for an SMP | 
 | 173 | 	 * configuration (should be all 0's) and the second is for a normal | 
 | 174 | 	 * NUMA configuration. | 
 | 175 | 	 */ | 
 | 176 | 	ref_points = (unsigned int *)get_property(rtas_root, | 
 | 177 | 			"ibm,associativity-reference-points", &len); | 
 | 178 |  | 
 | 179 | 	if ((len >= 1) && ref_points) { | 
 | 180 | 		depth = ref_points[1]; | 
 | 181 | 	} else { | 
 | 182 | 		dbg("WARNING: could not find NUMA " | 
 | 183 | 		    "associativity reference point\n"); | 
 | 184 | 		depth = -1; | 
 | 185 | 	} | 
 | 186 | 	of_node_put(rtas_root); | 
 | 187 |  | 
 | 188 | 	return depth; | 
 | 189 | } | 
 | 190 |  | 
 | 191 | static int __init get_mem_addr_cells(void) | 
 | 192 | { | 
 | 193 | 	struct device_node *memory = NULL; | 
 | 194 | 	int rc; | 
 | 195 |  | 
 | 196 | 	memory = of_find_node_by_type(memory, "memory"); | 
 | 197 | 	if (!memory) | 
 | 198 | 		return 0; /* it won't matter */ | 
 | 199 |  | 
 | 200 | 	rc = prom_n_addr_cells(memory); | 
 | 201 | 	return rc; | 
 | 202 | } | 
 | 203 |  | 
 | 204 | static int __init get_mem_size_cells(void) | 
 | 205 | { | 
 | 206 | 	struct device_node *memory = NULL; | 
 | 207 | 	int rc; | 
 | 208 |  | 
 | 209 | 	memory = of_find_node_by_type(memory, "memory"); | 
 | 210 | 	if (!memory) | 
 | 211 | 		return 0; /* it won't matter */ | 
 | 212 | 	rc = prom_n_size_cells(memory); | 
 | 213 | 	return rc; | 
 | 214 | } | 
 | 215 |  | 
 | 216 | static unsigned long read_n_cells(int n, unsigned int **buf) | 
 | 217 | { | 
 | 218 | 	unsigned long result = 0; | 
 | 219 |  | 
 | 220 | 	while (n--) { | 
 | 221 | 		result = (result << 32) | **buf; | 
 | 222 | 		(*buf)++; | 
 | 223 | 	} | 
 | 224 | 	return result; | 
 | 225 | } | 
 | 226 |  | 
 | 227 | /* | 
 | 228 |  * Figure out to which domain a cpu belongs and stick it there. | 
 | 229 |  * Return the id of the domain used. | 
 | 230 |  */ | 
 | 231 | static int numa_setup_cpu(unsigned long lcpu) | 
 | 232 | { | 
 | 233 | 	int numa_domain = 0; | 
 | 234 | 	struct device_node *cpu = find_cpu_node(lcpu); | 
 | 235 |  | 
 | 236 | 	if (!cpu) { | 
 | 237 | 		WARN_ON(1); | 
 | 238 | 		goto out; | 
 | 239 | 	} | 
 | 240 |  | 
 | 241 | 	numa_domain = of_node_numa_domain(cpu); | 
 | 242 |  | 
 | 243 | 	if (numa_domain >= num_online_nodes()) { | 
 | 244 | 		/* | 
 | 245 | 		 * POWER4 LPAR uses 0xffff as invalid node, | 
 | 246 | 		 * dont warn in this case. | 
 | 247 | 		 */ | 
 | 248 | 		if (numa_domain != 0xffff) | 
 | 249 | 			printk(KERN_ERR "WARNING: cpu %ld " | 
 | 250 | 			       "maps to invalid NUMA node %d\n", | 
 | 251 | 			       lcpu, numa_domain); | 
 | 252 | 		numa_domain = 0; | 
 | 253 | 	} | 
 | 254 | out: | 
 | 255 | 	node_set_online(numa_domain); | 
 | 256 |  | 
 | 257 | 	map_cpu_to_node(lcpu, numa_domain); | 
 | 258 |  | 
 | 259 | 	of_node_put(cpu); | 
 | 260 |  | 
 | 261 | 	return numa_domain; | 
 | 262 | } | 
 | 263 |  | 
 | 264 | static int cpu_numa_callback(struct notifier_block *nfb, | 
 | 265 | 			     unsigned long action, | 
 | 266 | 			     void *hcpu) | 
 | 267 | { | 
 | 268 | 	unsigned long lcpu = (unsigned long)hcpu; | 
 | 269 | 	int ret = NOTIFY_DONE; | 
 | 270 |  | 
 | 271 | 	switch (action) { | 
 | 272 | 	case CPU_UP_PREPARE: | 
 | 273 | 		if (min_common_depth == -1 || !numa_enabled) | 
 | 274 | 			map_cpu_to_node(lcpu, 0); | 
 | 275 | 		else | 
 | 276 | 			numa_setup_cpu(lcpu); | 
 | 277 | 		ret = NOTIFY_OK; | 
 | 278 | 		break; | 
 | 279 | #ifdef CONFIG_HOTPLUG_CPU | 
 | 280 | 	case CPU_DEAD: | 
 | 281 | 	case CPU_UP_CANCELED: | 
 | 282 | 		unmap_cpu_from_node(lcpu); | 
 | 283 | 		break; | 
 | 284 | 		ret = NOTIFY_OK; | 
 | 285 | #endif | 
 | 286 | 	} | 
 | 287 | 	return ret; | 
 | 288 | } | 
 | 289 |  | 
 | 290 | /* | 
 | 291 |  * Check and possibly modify a memory region to enforce the memory limit. | 
 | 292 |  * | 
 | 293 |  * Returns the size the region should have to enforce the memory limit. | 
 | 294 |  * This will either be the original value of size, a truncated value, | 
 | 295 |  * or zero. If the returned value of size is 0 the region should be | 
 | 296 |  * discarded as it lies wholy above the memory limit. | 
 | 297 |  */ | 
 | 298 | static unsigned long __init numa_enforce_memory_limit(unsigned long start, unsigned long size) | 
 | 299 | { | 
 | 300 | 	/* | 
 | 301 | 	 * We use lmb_end_of_DRAM() in here instead of memory_limit because | 
 | 302 | 	 * we've already adjusted it for the limit and it takes care of | 
 | 303 | 	 * having memory holes below the limit. | 
 | 304 | 	 */ | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 305 |  | 
 | 306 | 	if (! memory_limit) | 
 | 307 | 		return size; | 
 | 308 |  | 
 | 309 | 	if (start + size <= lmb_end_of_DRAM()) | 
 | 310 | 		return size; | 
 | 311 |  | 
 | 312 | 	if (start >= lmb_end_of_DRAM()) | 
 | 313 | 		return 0; | 
 | 314 |  | 
 | 315 | 	return lmb_end_of_DRAM() - start; | 
 | 316 | } | 
 | 317 |  | 
 | 318 | static int __init parse_numa_properties(void) | 
 | 319 | { | 
 | 320 | 	struct device_node *cpu = NULL; | 
 | 321 | 	struct device_node *memory = NULL; | 
 | 322 | 	int addr_cells, size_cells; | 
 | 323 | 	int max_domain = 0; | 
 | 324 | 	long entries = lmb_end_of_DRAM() >> MEMORY_INCREMENT_SHIFT; | 
 | 325 | 	unsigned long i; | 
 | 326 |  | 
 | 327 | 	if (numa_enabled == 0) { | 
 | 328 | 		printk(KERN_WARNING "NUMA disabled by user\n"); | 
 | 329 | 		return -1; | 
 | 330 | 	} | 
 | 331 |  | 
 | 332 | 	numa_memory_lookup_table = | 
 | 333 | 		(char *)abs_to_virt(lmb_alloc(entries * sizeof(char), 1)); | 
 | 334 | 	memset(numa_memory_lookup_table, 0, entries * sizeof(char)); | 
 | 335 |  | 
 | 336 | 	for (i = 0; i < entries ; i++) | 
 | 337 | 		numa_memory_lookup_table[i] = ARRAY_INITIALISER; | 
 | 338 |  | 
 | 339 | 	min_common_depth = find_min_common_depth(); | 
 | 340 |  | 
 | 341 | 	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth); | 
 | 342 | 	if (min_common_depth < 0) | 
 | 343 | 		return min_common_depth; | 
 | 344 |  | 
 | 345 | 	max_domain = numa_setup_cpu(boot_cpuid); | 
 | 346 |  | 
 | 347 | 	/* | 
 | 348 | 	 * Even though we connect cpus to numa domains later in SMP init, | 
 | 349 | 	 * we need to know the maximum node id now. This is because each | 
 | 350 | 	 * node id must have NODE_DATA etc backing it. | 
 | 351 | 	 * As a result of hotplug we could still have cpus appear later on | 
 | 352 | 	 * with larger node ids. In that case we force the cpu into node 0. | 
 | 353 | 	 */ | 
 | 354 | 	for_each_cpu(i) { | 
 | 355 | 		int numa_domain; | 
 | 356 |  | 
 | 357 | 		cpu = find_cpu_node(i); | 
 | 358 |  | 
 | 359 | 		if (cpu) { | 
 | 360 | 			numa_domain = of_node_numa_domain(cpu); | 
 | 361 | 			of_node_put(cpu); | 
 | 362 |  | 
 | 363 | 			if (numa_domain < MAX_NUMNODES && | 
 | 364 | 			    max_domain < numa_domain) | 
 | 365 | 				max_domain = numa_domain; | 
 | 366 | 		} | 
 | 367 | 	} | 
 | 368 |  | 
 | 369 | 	addr_cells = get_mem_addr_cells(); | 
 | 370 | 	size_cells = get_mem_size_cells(); | 
 | 371 | 	memory = NULL; | 
 | 372 | 	while ((memory = of_find_node_by_type(memory, "memory")) != NULL) { | 
 | 373 | 		unsigned long start; | 
 | 374 | 		unsigned long size; | 
 | 375 | 		int numa_domain; | 
 | 376 | 		int ranges; | 
 | 377 | 		unsigned int *memcell_buf; | 
 | 378 | 		unsigned int len; | 
 | 379 |  | 
 | 380 | 		memcell_buf = (unsigned int *)get_property(memory, "reg", &len); | 
 | 381 | 		if (!memcell_buf || len <= 0) | 
 | 382 | 			continue; | 
 | 383 |  | 
 | 384 | 		ranges = memory->n_addrs; | 
 | 385 | new_range: | 
 | 386 | 		/* these are order-sensitive, and modify the buffer pointer */ | 
 | 387 | 		start = read_n_cells(addr_cells, &memcell_buf); | 
 | 388 | 		size = read_n_cells(size_cells, &memcell_buf); | 
 | 389 |  | 
 | 390 | 		start = _ALIGN_DOWN(start, MEMORY_INCREMENT); | 
 | 391 | 		size = _ALIGN_UP(size, MEMORY_INCREMENT); | 
 | 392 |  | 
 | 393 | 		numa_domain = of_node_numa_domain(memory); | 
 | 394 |  | 
 | 395 | 		if (numa_domain >= MAX_NUMNODES) { | 
 | 396 | 			if (numa_domain != 0xffff) | 
 | 397 | 				printk(KERN_ERR "WARNING: memory at %lx maps " | 
 | 398 | 				       "to invalid NUMA node %d\n", start, | 
 | 399 | 				       numa_domain); | 
 | 400 | 			numa_domain = 0; | 
 | 401 | 		} | 
 | 402 |  | 
 | 403 | 		if (max_domain < numa_domain) | 
 | 404 | 			max_domain = numa_domain; | 
 | 405 |  | 
 | 406 | 		if (! (size = numa_enforce_memory_limit(start, size))) { | 
 | 407 | 			if (--ranges) | 
 | 408 | 				goto new_range; | 
 | 409 | 			else | 
 | 410 | 				continue; | 
 | 411 | 		} | 
 | 412 |  | 
 | 413 | 		/* | 
 | 414 | 		 * Initialize new node struct, or add to an existing one. | 
 | 415 | 		 */ | 
 | 416 | 		if (init_node_data[numa_domain].node_end_pfn) { | 
 | 417 | 			if ((start / PAGE_SIZE) < | 
 | 418 | 			    init_node_data[numa_domain].node_start_pfn) | 
 | 419 | 				init_node_data[numa_domain].node_start_pfn = | 
 | 420 | 					start / PAGE_SIZE; | 
 | 421 | 			if (((start / PAGE_SIZE) + (size / PAGE_SIZE)) > | 
 | 422 | 			    init_node_data[numa_domain].node_end_pfn) | 
 | 423 | 				init_node_data[numa_domain].node_end_pfn = | 
 | 424 | 					(start / PAGE_SIZE) + | 
 | 425 | 					(size / PAGE_SIZE); | 
 | 426 |  | 
 | 427 | 			init_node_data[numa_domain].node_present_pages += | 
 | 428 | 				size / PAGE_SIZE; | 
 | 429 | 		} else { | 
 | 430 | 			node_set_online(numa_domain); | 
 | 431 |  | 
 | 432 | 			init_node_data[numa_domain].node_start_pfn = | 
 | 433 | 				start / PAGE_SIZE; | 
 | 434 | 			init_node_data[numa_domain].node_end_pfn = | 
 | 435 | 				init_node_data[numa_domain].node_start_pfn + | 
 | 436 | 				size / PAGE_SIZE; | 
 | 437 | 			init_node_data[numa_domain].node_present_pages = | 
 | 438 | 				size / PAGE_SIZE; | 
 | 439 | 		} | 
 | 440 |  | 
 | 441 | 		for (i = start ; i < (start+size); i += MEMORY_INCREMENT) | 
 | 442 | 			numa_memory_lookup_table[i >> MEMORY_INCREMENT_SHIFT] = | 
 | 443 | 				numa_domain; | 
 | 444 |  | 
 | 445 | 		if (--ranges) | 
 | 446 | 			goto new_range; | 
 | 447 | 	} | 
 | 448 |  | 
 | 449 | 	for (i = 0; i <= max_domain; i++) | 
 | 450 | 		node_set_online(i); | 
 | 451 |  | 
 | 452 | 	return 0; | 
 | 453 | } | 
 | 454 |  | 
 | 455 | static void __init setup_nonnuma(void) | 
 | 456 | { | 
 | 457 | 	unsigned long top_of_ram = lmb_end_of_DRAM(); | 
 | 458 | 	unsigned long total_ram = lmb_phys_mem_size(); | 
 | 459 | 	unsigned long i; | 
 | 460 |  | 
 | 461 | 	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", | 
 | 462 | 	       top_of_ram, total_ram); | 
 | 463 | 	printk(KERN_INFO "Memory hole size: %ldMB\n", | 
 | 464 | 	       (top_of_ram - total_ram) >> 20); | 
 | 465 |  | 
 | 466 | 	if (!numa_memory_lookup_table) { | 
 | 467 | 		long entries = top_of_ram >> MEMORY_INCREMENT_SHIFT; | 
 | 468 | 		numa_memory_lookup_table = | 
 | 469 | 			(char *)abs_to_virt(lmb_alloc(entries * sizeof(char), 1)); | 
 | 470 | 		memset(numa_memory_lookup_table, 0, entries * sizeof(char)); | 
 | 471 | 		for (i = 0; i < entries ; i++) | 
 | 472 | 			numa_memory_lookup_table[i] = ARRAY_INITIALISER; | 
 | 473 | 	} | 
 | 474 |  | 
 | 475 | 	map_cpu_to_node(boot_cpuid, 0); | 
 | 476 |  | 
 | 477 | 	node_set_online(0); | 
 | 478 |  | 
 | 479 | 	init_node_data[0].node_start_pfn = 0; | 
 | 480 | 	init_node_data[0].node_end_pfn = lmb_end_of_DRAM() / PAGE_SIZE; | 
 | 481 | 	init_node_data[0].node_present_pages = total_ram / PAGE_SIZE; | 
 | 482 |  | 
 | 483 | 	for (i = 0 ; i < top_of_ram; i += MEMORY_INCREMENT) | 
 | 484 | 		numa_memory_lookup_table[i >> MEMORY_INCREMENT_SHIFT] = 0; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 485 | } | 
 | 486 |  | 
 | 487 | static void __init dump_numa_topology(void) | 
 | 488 | { | 
 | 489 | 	unsigned int node; | 
 | 490 | 	unsigned int count; | 
 | 491 |  | 
 | 492 | 	if (min_common_depth == -1 || !numa_enabled) | 
 | 493 | 		return; | 
 | 494 |  | 
 | 495 | 	for_each_online_node(node) { | 
 | 496 | 		unsigned long i; | 
 | 497 |  | 
 | 498 | 		printk(KERN_INFO "Node %d Memory:", node); | 
 | 499 |  | 
 | 500 | 		count = 0; | 
 | 501 |  | 
 | 502 | 		for (i = 0; i < lmb_end_of_DRAM(); i += MEMORY_INCREMENT) { | 
 | 503 | 			if (numa_memory_lookup_table[i >> MEMORY_INCREMENT_SHIFT] == node) { | 
 | 504 | 				if (count == 0) | 
 | 505 | 					printk(" 0x%lx", i); | 
 | 506 | 				++count; | 
 | 507 | 			} else { | 
 | 508 | 				if (count > 0) | 
 | 509 | 					printk("-0x%lx", i); | 
 | 510 | 				count = 0; | 
 | 511 | 			} | 
 | 512 | 		} | 
 | 513 |  | 
 | 514 | 		if (count > 0) | 
 | 515 | 			printk("-0x%lx", i); | 
 | 516 | 		printk("\n"); | 
 | 517 | 	} | 
 | 518 | 	return; | 
 | 519 | } | 
 | 520 |  | 
 | 521 | /* | 
 | 522 |  * Allocate some memory, satisfying the lmb or bootmem allocator where | 
 | 523 |  * required. nid is the preferred node and end is the physical address of | 
 | 524 |  * the highest address in the node. | 
 | 525 |  * | 
 | 526 |  * Returns the physical address of the memory. | 
 | 527 |  */ | 
 | 528 | static unsigned long careful_allocation(int nid, unsigned long size, | 
 | 529 | 					unsigned long align, unsigned long end) | 
 | 530 | { | 
 | 531 | 	unsigned long ret = lmb_alloc_base(size, align, end); | 
 | 532 |  | 
 | 533 | 	/* retry over all memory */ | 
 | 534 | 	if (!ret) | 
 | 535 | 		ret = lmb_alloc_base(size, align, lmb_end_of_DRAM()); | 
 | 536 |  | 
 | 537 | 	if (!ret) | 
 | 538 | 		panic("numa.c: cannot allocate %lu bytes on node %d", | 
 | 539 | 		      size, nid); | 
 | 540 |  | 
 | 541 | 	/* | 
 | 542 | 	 * If the memory came from a previously allocated node, we must | 
 | 543 | 	 * retry with the bootmem allocator. | 
 | 544 | 	 */ | 
 | 545 | 	if (pa_to_nid(ret) < nid) { | 
 | 546 | 		nid = pa_to_nid(ret); | 
 | 547 | 		ret = (unsigned long)__alloc_bootmem_node(NODE_DATA(nid), | 
 | 548 | 				size, align, 0); | 
 | 549 |  | 
 | 550 | 		if (!ret) | 
 | 551 | 			panic("numa.c: cannot allocate %lu bytes on node %d", | 
 | 552 | 			      size, nid); | 
 | 553 |  | 
 | 554 | 		ret = virt_to_abs(ret); | 
 | 555 |  | 
 | 556 | 		dbg("alloc_bootmem %lx %lx\n", ret, size); | 
 | 557 | 	} | 
 | 558 |  | 
 | 559 | 	return ret; | 
 | 560 | } | 
 | 561 |  | 
 | 562 | void __init do_init_bootmem(void) | 
 | 563 | { | 
 | 564 | 	int nid; | 
 | 565 | 	int addr_cells, size_cells; | 
 | 566 | 	struct device_node *memory = NULL; | 
 | 567 | 	static struct notifier_block ppc64_numa_nb = { | 
 | 568 | 		.notifier_call = cpu_numa_callback, | 
 | 569 | 		.priority = 1 /* Must run before sched domains notifier. */ | 
 | 570 | 	}; | 
 | 571 |  | 
 | 572 | 	min_low_pfn = 0; | 
 | 573 | 	max_low_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT; | 
 | 574 | 	max_pfn = max_low_pfn; | 
 | 575 |  | 
 | 576 | 	if (parse_numa_properties()) | 
 | 577 | 		setup_nonnuma(); | 
 | 578 | 	else | 
 | 579 | 		dump_numa_topology(); | 
 | 580 |  | 
 | 581 | 	register_cpu_notifier(&ppc64_numa_nb); | 
 | 582 |  | 
 | 583 | 	for_each_online_node(nid) { | 
 | 584 | 		unsigned long start_paddr, end_paddr; | 
 | 585 | 		int i; | 
 | 586 | 		unsigned long bootmem_paddr; | 
 | 587 | 		unsigned long bootmap_pages; | 
 | 588 |  | 
 | 589 | 		start_paddr = init_node_data[nid].node_start_pfn * PAGE_SIZE; | 
 | 590 | 		end_paddr = init_node_data[nid].node_end_pfn * PAGE_SIZE; | 
 | 591 |  | 
 | 592 | 		/* Allocate the node structure node local if possible */ | 
 | 593 | 		NODE_DATA(nid) = (struct pglist_data *)careful_allocation(nid, | 
 | 594 | 					sizeof(struct pglist_data), | 
 | 595 | 					SMP_CACHE_BYTES, end_paddr); | 
 | 596 | 		NODE_DATA(nid) = abs_to_virt(NODE_DATA(nid)); | 
 | 597 | 		memset(NODE_DATA(nid), 0, sizeof(struct pglist_data)); | 
 | 598 |  | 
 | 599 |   		dbg("node %d\n", nid); | 
 | 600 | 		dbg("NODE_DATA() = %p\n", NODE_DATA(nid)); | 
 | 601 |  | 
 | 602 | 		NODE_DATA(nid)->bdata = &plat_node_bdata[nid]; | 
 | 603 | 		NODE_DATA(nid)->node_start_pfn = | 
 | 604 | 			init_node_data[nid].node_start_pfn; | 
 | 605 | 		NODE_DATA(nid)->node_spanned_pages = | 
 | 606 | 			end_paddr - start_paddr; | 
 | 607 |  | 
 | 608 | 		if (NODE_DATA(nid)->node_spanned_pages == 0) | 
 | 609 |   			continue; | 
 | 610 |  | 
 | 611 |   		dbg("start_paddr = %lx\n", start_paddr); | 
 | 612 |   		dbg("end_paddr = %lx\n", end_paddr); | 
 | 613 |  | 
 | 614 | 		bootmap_pages = bootmem_bootmap_pages((end_paddr - start_paddr) >> PAGE_SHIFT); | 
 | 615 |  | 
 | 616 | 		bootmem_paddr = careful_allocation(nid, | 
 | 617 | 				bootmap_pages << PAGE_SHIFT, | 
 | 618 | 				PAGE_SIZE, end_paddr); | 
 | 619 | 		memset(abs_to_virt(bootmem_paddr), 0, | 
 | 620 | 		       bootmap_pages << PAGE_SHIFT); | 
 | 621 | 		dbg("bootmap_paddr = %lx\n", bootmem_paddr); | 
 | 622 |  | 
 | 623 | 		init_bootmem_node(NODE_DATA(nid), bootmem_paddr >> PAGE_SHIFT, | 
 | 624 | 				  start_paddr >> PAGE_SHIFT, | 
 | 625 | 				  end_paddr >> PAGE_SHIFT); | 
 | 626 |  | 
 | 627 | 		/* | 
 | 628 | 		 * We need to do another scan of all memory sections to | 
 | 629 | 		 * associate memory with the correct node. | 
 | 630 | 		 */ | 
 | 631 | 		addr_cells = get_mem_addr_cells(); | 
 | 632 | 		size_cells = get_mem_size_cells(); | 
 | 633 | 		memory = NULL; | 
 | 634 | 		while ((memory = of_find_node_by_type(memory, "memory")) != NULL) { | 
 | 635 | 			unsigned long mem_start, mem_size; | 
 | 636 | 			int numa_domain, ranges; | 
 | 637 | 			unsigned int *memcell_buf; | 
 | 638 | 			unsigned int len; | 
 | 639 |  | 
 | 640 | 			memcell_buf = (unsigned int *)get_property(memory, "reg", &len); | 
 | 641 | 			if (!memcell_buf || len <= 0) | 
 | 642 | 				continue; | 
 | 643 |  | 
 | 644 | 			ranges = memory->n_addrs;	/* ranges in cell */ | 
 | 645 | new_range: | 
 | 646 | 			mem_start = read_n_cells(addr_cells, &memcell_buf); | 
 | 647 | 			mem_size = read_n_cells(size_cells, &memcell_buf); | 
| Mike Kravetz | 96cd5b0 | 2005-08-01 21:11:48 -0700 | [diff] [blame] | 648 | 			if (numa_enabled) { | 
 | 649 | 				numa_domain = of_node_numa_domain(memory); | 
 | 650 | 				if (numa_domain  >= MAX_NUMNODES) | 
 | 651 | 					numa_domain = 0; | 
 | 652 | 			} else | 
 | 653 | 				numa_domain =  0; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 654 |  | 
 | 655 | 			if (numa_domain != nid) | 
 | 656 | 				continue; | 
 | 657 |  | 
 | 658 | 			mem_size = numa_enforce_memory_limit(mem_start, mem_size); | 
 | 659 |   			if (mem_size) { | 
 | 660 |   				dbg("free_bootmem %lx %lx\n", mem_start, mem_size); | 
 | 661 |   				free_bootmem_node(NODE_DATA(nid), mem_start, mem_size); | 
 | 662 | 			} | 
 | 663 |  | 
 | 664 | 			if (--ranges)		/* process all ranges in cell */ | 
 | 665 | 				goto new_range; | 
 | 666 | 		} | 
 | 667 |  | 
 | 668 | 		/* | 
 | 669 | 		 * Mark reserved regions on this node | 
 | 670 | 		 */ | 
 | 671 | 		for (i = 0; i < lmb.reserved.cnt; i++) { | 
| Michael Ellerman | 180379d | 2005-08-03 20:21:26 +1000 | [diff] [blame] | 672 | 			unsigned long physbase = lmb.reserved.region[i].base; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 673 | 			unsigned long size = lmb.reserved.region[i].size; | 
 | 674 |  | 
 | 675 | 			if (pa_to_nid(physbase) != nid && | 
 | 676 | 			    pa_to_nid(physbase+size-1) != nid) | 
 | 677 | 				continue; | 
 | 678 |  | 
 | 679 | 			if (physbase < end_paddr && | 
 | 680 | 			    (physbase+size) > start_paddr) { | 
 | 681 | 				/* overlaps */ | 
 | 682 | 				if (physbase < start_paddr) { | 
 | 683 | 					size -= start_paddr - physbase; | 
 | 684 | 					physbase = start_paddr; | 
 | 685 | 				} | 
 | 686 |  | 
 | 687 | 				if (size > end_paddr - physbase) | 
 | 688 | 					size = end_paddr - physbase; | 
 | 689 |  | 
 | 690 | 				dbg("reserve_bootmem %lx %lx\n", physbase, | 
 | 691 | 				    size); | 
 | 692 | 				reserve_bootmem_node(NODE_DATA(nid), physbase, | 
 | 693 | 						     size); | 
 | 694 | 			} | 
 | 695 | 		} | 
| Bob Picco | 802f192 | 2005-09-03 15:54:26 -0700 | [diff] [blame] | 696 | 		/* | 
 | 697 | 		 * This loop may look famaliar, but we have to do it again | 
 | 698 | 		 * after marking our reserved memory to mark memory present | 
 | 699 | 		 * for sparsemem. | 
 | 700 | 		 */ | 
 | 701 | 		addr_cells = get_mem_addr_cells(); | 
 | 702 | 		size_cells = get_mem_size_cells(); | 
 | 703 | 		memory = NULL; | 
 | 704 | 		while ((memory = of_find_node_by_type(memory, "memory")) != NULL) { | 
 | 705 | 			unsigned long mem_start, mem_size; | 
 | 706 | 			int numa_domain, ranges; | 
 | 707 | 			unsigned int *memcell_buf; | 
 | 708 | 			unsigned int len; | 
 | 709 |  | 
 | 710 | 			memcell_buf = (unsigned int *)get_property(memory, "reg", &len); | 
 | 711 | 			if (!memcell_buf || len <= 0) | 
 | 712 | 				continue; | 
 | 713 |  | 
 | 714 | 			ranges = memory->n_addrs;	/* ranges in cell */ | 
 | 715 | new_range2: | 
 | 716 | 			mem_start = read_n_cells(addr_cells, &memcell_buf); | 
 | 717 | 			mem_size = read_n_cells(size_cells, &memcell_buf); | 
 | 718 | 			if (numa_enabled) { | 
 | 719 | 				numa_domain = of_node_numa_domain(memory); | 
 | 720 | 				if (numa_domain  >= MAX_NUMNODES) | 
 | 721 | 					numa_domain = 0; | 
 | 722 | 			} else | 
 | 723 | 				numa_domain =  0; | 
 | 724 |  | 
 | 725 | 			if (numa_domain != nid) | 
 | 726 | 				continue; | 
 | 727 |  | 
 | 728 | 			mem_size = numa_enforce_memory_limit(mem_start, mem_size); | 
 | 729 | 			memory_present(numa_domain, mem_start >> PAGE_SHIFT, | 
 | 730 | 				       (mem_start + mem_size) >> PAGE_SHIFT); | 
 | 731 |  | 
 | 732 | 			if (--ranges)		/* process all ranges in cell */ | 
 | 733 | 				goto new_range2; | 
 | 734 | 		} | 
 | 735 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 736 | 	} | 
 | 737 | } | 
 | 738 |  | 
 | 739 | void __init paging_init(void) | 
 | 740 | { | 
 | 741 | 	unsigned long zones_size[MAX_NR_ZONES]; | 
 | 742 | 	unsigned long zholes_size[MAX_NR_ZONES]; | 
 | 743 | 	int nid; | 
 | 744 |  | 
 | 745 | 	memset(zones_size, 0, sizeof(zones_size)); | 
 | 746 | 	memset(zholes_size, 0, sizeof(zholes_size)); | 
 | 747 |  | 
 | 748 | 	for_each_online_node(nid) { | 
 | 749 | 		unsigned long start_pfn; | 
 | 750 | 		unsigned long end_pfn; | 
 | 751 |  | 
 | 752 | 		start_pfn = init_node_data[nid].node_start_pfn; | 
 | 753 | 		end_pfn = init_node_data[nid].node_end_pfn; | 
 | 754 |  | 
 | 755 | 		zones_size[ZONE_DMA] = end_pfn - start_pfn; | 
 | 756 | 		zholes_size[ZONE_DMA] = zones_size[ZONE_DMA] - | 
 | 757 | 			init_node_data[nid].node_present_pages; | 
 | 758 |  | 
 | 759 | 		dbg("free_area_init node %d %lx %lx (hole: %lx)\n", nid, | 
 | 760 | 		    zones_size[ZONE_DMA], start_pfn, zholes_size[ZONE_DMA]); | 
 | 761 |  | 
 | 762 | 		free_area_init_node(nid, NODE_DATA(nid), zones_size, | 
 | 763 | 							start_pfn, zholes_size); | 
 | 764 | 	} | 
 | 765 | } | 
 | 766 |  | 
 | 767 | static int __init early_numa(char *p) | 
 | 768 | { | 
 | 769 | 	if (!p) | 
 | 770 | 		return 0; | 
 | 771 |  | 
 | 772 | 	if (strstr(p, "off")) | 
 | 773 | 		numa_enabled = 0; | 
 | 774 |  | 
 | 775 | 	if (strstr(p, "debug")) | 
 | 776 | 		numa_debug = 1; | 
 | 777 |  | 
 | 778 | 	return 0; | 
 | 779 | } | 
 | 780 | early_param("numa", early_numa); |