blob: 6e5a89ba4f76a0e083836ae4a90b4b0c052e2f3b [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/nmi.h>
24#include <linux/init.h>
25#include <asm/uaccess.h>
26#include <linux/highmem.h>
27#include <linux/smp_lock.h>
28#include <asm/mmu_context.h>
29#include <linux/interrupt.h>
Randy.Dunlapc59ede72006-01-11 12:17:46 -080030#include <linux/capability.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070031#include <linux/completion.h>
32#include <linux/kernel_stat.h>
Ingo Molnar9a11b49a2006-07-03 00:24:33 -070033#include <linux/debug_locks.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070034#include <linux/security.h>
35#include <linux/notifier.h>
36#include <linux/profile.h>
Nigel Cunningham7dfb7102006-12-06 20:34:23 -080037#include <linux/freezer.h>
akpm@osdl.org198e2f12006-01-12 01:05:30 -080038#include <linux/vmalloc.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070039#include <linux/blkdev.h>
40#include <linux/delay.h>
41#include <linux/smp.h>
42#include <linux/threads.h>
43#include <linux/timer.h>
44#include <linux/rcupdate.h>
45#include <linux/cpu.h>
46#include <linux/cpuset.h>
47#include <linux/percpu.h>
48#include <linux/kthread.h>
49#include <linux/seq_file.h>
50#include <linux/syscalls.h>
51#include <linux/times.h>
Jay Lan8f0ab512006-09-30 23:28:59 -070052#include <linux/tsacct_kern.h>
bibo maoc6fd91f2006-03-26 01:38:20 -080053#include <linux/kprobes.h>
Shailabh Nagar0ff92242006-07-14 00:24:37 -070054#include <linux/delayacct.h>
Eric Dumazet5517d862007-05-08 00:32:57 -070055#include <linux/reciprocal_div.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070056
Eric Dumazet5517d862007-05-08 00:32:57 -070057#include <asm/tlb.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070058#include <asm/unistd.h>
59
60/*
Alexey Dobriyanb035b6d2007-02-10 01:45:10 -080061 * Scheduler clock - returns current time in nanosec units.
62 * This is default implementation.
63 * Architectures and sub-architectures can override this.
64 */
65unsigned long long __attribute__((weak)) sched_clock(void)
66{
67 return (unsigned long long)jiffies * (1000000000 / HZ);
68}
69
70/*
Linus Torvalds1da177e2005-04-16 15:20:36 -070071 * Convert user-nice values [ -20 ... 0 ... 19 ]
72 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
73 * and back.
74 */
75#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
76#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
77#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
78
79/*
80 * 'User priority' is the nice value converted to something we
81 * can work with better when scaling various scheduler parameters,
82 * it's a [ 0 ... 39 ] range.
83 */
84#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
85#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
86#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
87
88/*
89 * Some helpers for converting nanosecond timing to jiffy resolution
90 */
91#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
92#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
93
Ingo Molnar6aa645e2007-07-09 18:51:58 +020094#define NICE_0_LOAD SCHED_LOAD_SCALE
95#define NICE_0_SHIFT SCHED_LOAD_SHIFT
96
Linus Torvalds1da177e2005-04-16 15:20:36 -070097/*
98 * These are the 'tuning knobs' of the scheduler:
99 *
100 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
101 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
102 * Timeslices get refilled after they expire.
103 */
104#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
105#define DEF_TIMESLICE (100 * HZ / 1000)
106#define ON_RUNQUEUE_WEIGHT 30
107#define CHILD_PENALTY 95
108#define PARENT_PENALTY 100
109#define EXIT_WEIGHT 3
110#define PRIO_BONUS_RATIO 25
111#define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
112#define INTERACTIVE_DELTA 2
113#define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
114#define STARVATION_LIMIT (MAX_SLEEP_AVG)
115#define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
116
117/*
118 * If a task is 'interactive' then we reinsert it in the active
119 * array after it has expired its current timeslice. (it will not
120 * continue to run immediately, it will still roundrobin with
121 * other interactive tasks.)
122 *
123 * This part scales the interactivity limit depending on niceness.
124 *
125 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
126 * Here are a few examples of different nice levels:
127 *
128 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
129 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
130 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
131 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
132 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
133 *
134 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
135 * priority range a task can explore, a value of '1' means the
136 * task is rated interactive.)
137 *
138 * Ie. nice +19 tasks can never get 'interactive' enough to be
139 * reinserted into the active array. And only heavily CPU-hog nice -20
140 * tasks will be expired. Default nice 0 tasks are somewhere between,
141 * it takes some effort for them to get interactive, but it's not
142 * too hard.
143 */
144
145#define CURRENT_BONUS(p) \
146 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
147 MAX_SLEEP_AVG)
148
149#define GRANULARITY (10 * HZ / 1000 ? : 1)
150
151#ifdef CONFIG_SMP
152#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
153 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
154 num_online_cpus())
155#else
156#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
157 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
158#endif
159
160#define SCALE(v1,v1_max,v2_max) \
161 (v1) * (v2_max) / (v1_max)
162
163#define DELTA(p) \
Martin Andersson013d3862006-03-27 01:15:18 -0800164 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
165 INTERACTIVE_DELTA)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700166
167#define TASK_INTERACTIVE(p) \
168 ((p)->prio <= (p)->static_prio - DELTA(p))
169
170#define INTERACTIVE_SLEEP(p) \
171 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
172 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
173
174#define TASK_PREEMPTS_CURR(p, rq) \
Andrew Mortond5f9f942007-05-08 20:27:06 -0700175 ((p)->prio < (rq)->curr->prio)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700176
Linus Torvalds1da177e2005-04-16 15:20:36 -0700177#define SCALE_PRIO(x, prio) \
Peter Williams2dd73a42006-06-27 02:54:34 -0700178 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700179
Peter Williams2dd73a42006-06-27 02:54:34 -0700180static unsigned int static_prio_timeslice(int static_prio)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700181{
Peter Williams2dd73a42006-06-27 02:54:34 -0700182 if (static_prio < NICE_TO_PRIO(0))
183 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700184 else
Peter Williams2dd73a42006-06-27 02:54:34 -0700185 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700186}
Peter Williams2dd73a42006-06-27 02:54:34 -0700187
Eric Dumazet5517d862007-05-08 00:32:57 -0700188#ifdef CONFIG_SMP
189/*
190 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
191 * Since cpu_power is a 'constant', we can use a reciprocal divide.
192 */
193static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
194{
195 return reciprocal_divide(load, sg->reciprocal_cpu_power);
196}
197
198/*
199 * Each time a sched group cpu_power is changed,
200 * we must compute its reciprocal value
201 */
202static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
203{
204 sg->__cpu_power += val;
205 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
206}
207#endif
208
Borislav Petkov91fcdd42006-10-19 23:28:29 -0700209/*
210 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
211 * to time slice values: [800ms ... 100ms ... 5ms]
212 *
213 * The higher a thread's priority, the bigger timeslices
214 * it gets during one round of execution. But even the lowest
215 * priority thread gets MIN_TIMESLICE worth of execution time.
216 */
217
Ingo Molnar36c8b582006-07-03 00:25:41 -0700218static inline unsigned int task_timeslice(struct task_struct *p)
Peter Williams2dd73a42006-06-27 02:54:34 -0700219{
220 return static_prio_timeslice(p->static_prio);
221}
222
Ingo Molnare05606d2007-07-09 18:51:59 +0200223static inline int rt_policy(int policy)
224{
225 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
226 return 1;
227 return 0;
228}
229
230static inline int task_has_rt_policy(struct task_struct *p)
231{
232 return rt_policy(p->policy);
233}
234
Linus Torvalds1da177e2005-04-16 15:20:36 -0700235/*
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200236 * This is the priority-queue data structure of the RT scheduling class:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700237 */
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200238struct rt_prio_array {
239 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
240 struct list_head queue[MAX_RT_PRIO];
241};
Linus Torvalds1da177e2005-04-16 15:20:36 -0700242
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200243struct load_stat {
244 struct load_weight load;
245 u64 load_update_start, load_update_last;
246 unsigned long delta_fair, delta_exec, delta_stat;
247};
248
249/* CFS-related fields in a runqueue */
250struct cfs_rq {
251 struct load_weight load;
252 unsigned long nr_running;
253
254 s64 fair_clock;
255 u64 exec_clock;
256 s64 wait_runtime;
257 u64 sleeper_bonus;
258 unsigned long wait_runtime_overruns, wait_runtime_underruns;
259
260 struct rb_root tasks_timeline;
261 struct rb_node *rb_leftmost;
262 struct rb_node *rb_load_balance_curr;
263#ifdef CONFIG_FAIR_GROUP_SCHED
264 /* 'curr' points to currently running entity on this cfs_rq.
265 * It is set to NULL otherwise (i.e when none are currently running).
266 */
267 struct sched_entity *curr;
268 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
269
270 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
271 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
272 * (like users, containers etc.)
273 *
274 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
275 * list is used during load balance.
276 */
277 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
278#endif
279};
280
281/* Real-Time classes' related field in a runqueue: */
282struct rt_rq {
283 struct rt_prio_array active;
284 int rt_load_balance_idx;
285 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
286};
287
288/*
289 * The prio-array type of the old scheduler:
290 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700291struct prio_array {
292 unsigned int nr_active;
Steven Rostedtd4448862006-06-27 02:54:29 -0700293 DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700294 struct list_head queue[MAX_PRIO];
295};
296
297/*
298 * This is the main, per-CPU runqueue data structure.
299 *
300 * Locking rule: those places that want to lock multiple runqueues
301 * (such as the load balancing or the thread migration code), lock
302 * acquire operations must be ordered by ascending &runqueue.
303 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700304struct rq {
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200305 spinlock_t lock; /* runqueue lock */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700306
307 /*
308 * nr_running and cpu_load should be in the same cacheline because
309 * remote CPUs use both these fields when doing load calculation.
310 */
311 unsigned long nr_running;
Peter Williams2dd73a42006-06-27 02:54:34 -0700312 unsigned long raw_weighted_load;
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200313 #define CPU_LOAD_IDX_MAX 5
314 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
Siddha, Suresh Bbdecea32007-05-08 00:32:48 -0700315 unsigned char idle_at_tick;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -0700316#ifdef CONFIG_NO_HZ
317 unsigned char in_nohz_recently;
318#endif
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200319 struct load_stat ls; /* capture load from *all* tasks on this cpu */
320 unsigned long nr_load_updates;
321 u64 nr_switches;
322
323 struct cfs_rq cfs;
324#ifdef CONFIG_FAIR_GROUP_SCHED
325 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700326#endif
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200327 struct rt_rq rt;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700328
329 /*
330 * This is part of a global counter where only the total sum
331 * over all CPUs matters. A task can increase this counter on
332 * one CPU and if it got migrated afterwards it may decrease
333 * it on another CPU. Always updated under the runqueue lock:
334 */
335 unsigned long nr_uninterruptible;
336
337 unsigned long expired_timestamp;
Mike Galbraithb18ec802006-12-10 02:20:31 -0800338 unsigned long long most_recent_timestamp;
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200339
Ingo Molnar36c8b582006-07-03 00:25:41 -0700340 struct task_struct *curr, *idle;
Christoph Lameterc9819f42006-12-10 02:20:25 -0800341 unsigned long next_balance;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700342 struct mm_struct *prev_mm;
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200343
Ingo Molnar70b97a72006-07-03 00:25:42 -0700344 struct prio_array *active, *expired, arrays[2];
Linus Torvalds1da177e2005-04-16 15:20:36 -0700345 int best_expired_prio;
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200346
347 u64 clock, prev_clock_raw;
348 s64 clock_max_delta;
349
350 unsigned int clock_warps, clock_overflows;
351 unsigned int clock_unstable_events;
352
353 struct sched_class *load_balance_class;
354
Linus Torvalds1da177e2005-04-16 15:20:36 -0700355 atomic_t nr_iowait;
356
357#ifdef CONFIG_SMP
358 struct sched_domain *sd;
359
360 /* For active balancing */
361 int active_balance;
362 int push_cpu;
Christoph Lameter0a2966b2006-09-25 23:30:51 -0700363 int cpu; /* cpu of this runqueue */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700364
Ingo Molnar36c8b582006-07-03 00:25:41 -0700365 struct task_struct *migration_thread;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700366 struct list_head migration_queue;
367#endif
368
369#ifdef CONFIG_SCHEDSTATS
370 /* latency stats */
371 struct sched_info rq_sched_info;
372
373 /* sys_sched_yield() stats */
374 unsigned long yld_exp_empty;
375 unsigned long yld_act_empty;
376 unsigned long yld_both_empty;
377 unsigned long yld_cnt;
378
379 /* schedule() stats */
380 unsigned long sched_switch;
381 unsigned long sched_cnt;
382 unsigned long sched_goidle;
383
384 /* try_to_wake_up() stats */
385 unsigned long ttwu_cnt;
386 unsigned long ttwu_local;
387#endif
Ingo Molnarfcb99372006-07-03 00:25:10 -0700388 struct lock_class_key rq_lock_key;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700389};
390
Siddha, Suresh Bc3396622007-05-08 00:33:09 -0700391static DEFINE_PER_CPU(struct rq, runqueues) ____cacheline_aligned_in_smp;
Gautham R Shenoy5be93612007-05-09 02:34:04 -0700392static DEFINE_MUTEX(sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700393
Christoph Lameter0a2966b2006-09-25 23:30:51 -0700394static inline int cpu_of(struct rq *rq)
395{
396#ifdef CONFIG_SMP
397 return rq->cpu;
398#else
399 return 0;
400#endif
401}
402
Nick Piggin674311d2005-06-25 14:57:27 -0700403/*
Ingo Molnar20d315d2007-07-09 18:51:58 +0200404 * Per-runqueue clock, as finegrained as the platform can give us:
405 */
406static unsigned long long __rq_clock(struct rq *rq)
407{
408 u64 prev_raw = rq->prev_clock_raw;
409 u64 now = sched_clock();
410 s64 delta = now - prev_raw;
411 u64 clock = rq->clock;
412
413 /*
414 * Protect against sched_clock() occasionally going backwards:
415 */
416 if (unlikely(delta < 0)) {
417 clock++;
418 rq->clock_warps++;
419 } else {
420 /*
421 * Catch too large forward jumps too:
422 */
423 if (unlikely(delta > 2*TICK_NSEC)) {
424 clock++;
425 rq->clock_overflows++;
426 } else {
427 if (unlikely(delta > rq->clock_max_delta))
428 rq->clock_max_delta = delta;
429 clock += delta;
430 }
431 }
432
433 rq->prev_clock_raw = now;
434 rq->clock = clock;
435
436 return clock;
437}
438
439static inline unsigned long long rq_clock(struct rq *rq)
440{
441 int this_cpu = smp_processor_id();
442
443 if (this_cpu == cpu_of(rq))
444 return __rq_clock(rq);
445
446 return rq->clock;
447}
448
449/*
Nick Piggin674311d2005-06-25 14:57:27 -0700450 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -0700451 * See detach_destroy_domains: synchronize_sched for details.
Nick Piggin674311d2005-06-25 14:57:27 -0700452 *
453 * The domain tree of any CPU may only be accessed from within
454 * preempt-disabled sections.
455 */
Ingo Molnar48f24c42006-07-03 00:25:40 -0700456#define for_each_domain(cpu, __sd) \
457 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700458
459#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
460#define this_rq() (&__get_cpu_var(runqueues))
461#define task_rq(p) cpu_rq(task_cpu(p))
462#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
463
Ingo Molnar138a8ae2007-07-09 18:51:58 +0200464#ifdef CONFIG_FAIR_GROUP_SCHED
465/* Change a task's ->cfs_rq if it moves across CPUs */
466static inline void set_task_cfs_rq(struct task_struct *p)
467{
468 p->se.cfs_rq = &task_rq(p)->cfs;
469}
470#else
471static inline void set_task_cfs_rq(struct task_struct *p)
472{
473}
474#endif
475
Linus Torvalds1da177e2005-04-16 15:20:36 -0700476#ifndef prepare_arch_switch
Nick Piggin4866cde2005-06-25 14:57:23 -0700477# define prepare_arch_switch(next) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700478#endif
Nick Piggin4866cde2005-06-25 14:57:23 -0700479#ifndef finish_arch_switch
480# define finish_arch_switch(prev) do { } while (0)
481#endif
482
483#ifndef __ARCH_WANT_UNLOCKED_CTXSW
Ingo Molnar70b97a72006-07-03 00:25:42 -0700484static inline int task_running(struct rq *rq, struct task_struct *p)
Nick Piggin4866cde2005-06-25 14:57:23 -0700485{
486 return rq->curr == p;
487}
488
Ingo Molnar70b97a72006-07-03 00:25:42 -0700489static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
Nick Piggin4866cde2005-06-25 14:57:23 -0700490{
491}
492
Ingo Molnar70b97a72006-07-03 00:25:42 -0700493static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
Nick Piggin4866cde2005-06-25 14:57:23 -0700494{
Ingo Molnarda04c032005-09-13 11:17:59 +0200495#ifdef CONFIG_DEBUG_SPINLOCK
496 /* this is a valid case when another task releases the spinlock */
497 rq->lock.owner = current;
498#endif
Ingo Molnar8a25d5d2006-07-03 00:24:54 -0700499 /*
500 * If we are tracking spinlock dependencies then we have to
501 * fix up the runqueue lock - which gets 'carried over' from
502 * prev into current:
503 */
504 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
505
Nick Piggin4866cde2005-06-25 14:57:23 -0700506 spin_unlock_irq(&rq->lock);
507}
508
509#else /* __ARCH_WANT_UNLOCKED_CTXSW */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700510static inline int task_running(struct rq *rq, struct task_struct *p)
Nick Piggin4866cde2005-06-25 14:57:23 -0700511{
512#ifdef CONFIG_SMP
513 return p->oncpu;
514#else
515 return rq->curr == p;
516#endif
517}
518
Ingo Molnar70b97a72006-07-03 00:25:42 -0700519static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
Nick Piggin4866cde2005-06-25 14:57:23 -0700520{
521#ifdef CONFIG_SMP
522 /*
523 * We can optimise this out completely for !SMP, because the
524 * SMP rebalancing from interrupt is the only thing that cares
525 * here.
526 */
527 next->oncpu = 1;
528#endif
529#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
530 spin_unlock_irq(&rq->lock);
531#else
532 spin_unlock(&rq->lock);
533#endif
534}
535
Ingo Molnar70b97a72006-07-03 00:25:42 -0700536static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
Nick Piggin4866cde2005-06-25 14:57:23 -0700537{
538#ifdef CONFIG_SMP
539 /*
540 * After ->oncpu is cleared, the task can be moved to a different CPU.
541 * We must ensure this doesn't happen until the switch is completely
542 * finished.
543 */
544 smp_wmb();
545 prev->oncpu = 0;
546#endif
547#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
548 local_irq_enable();
549#endif
550}
551#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700552
553/*
Ingo Molnarb29739f2006-06-27 02:54:51 -0700554 * __task_rq_lock - lock the runqueue a given task resides on.
555 * Must be called interrupts disabled.
556 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700557static inline struct rq *__task_rq_lock(struct task_struct *p)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700558 __acquires(rq->lock)
559{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700560 struct rq *rq;
Ingo Molnarb29739f2006-06-27 02:54:51 -0700561
562repeat_lock_task:
563 rq = task_rq(p);
564 spin_lock(&rq->lock);
565 if (unlikely(rq != task_rq(p))) {
566 spin_unlock(&rq->lock);
567 goto repeat_lock_task;
568 }
569 return rq;
570}
571
572/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700573 * task_rq_lock - lock the runqueue a given task resides on and disable
574 * interrupts. Note the ordering: we can safely lookup the task_rq without
575 * explicitly disabling preemption.
576 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700577static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700578 __acquires(rq->lock)
579{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700580 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700581
582repeat_lock_task:
583 local_irq_save(*flags);
584 rq = task_rq(p);
585 spin_lock(&rq->lock);
586 if (unlikely(rq != task_rq(p))) {
587 spin_unlock_irqrestore(&rq->lock, *flags);
588 goto repeat_lock_task;
589 }
590 return rq;
591}
592
Ingo Molnar70b97a72006-07-03 00:25:42 -0700593static inline void __task_rq_unlock(struct rq *rq)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700594 __releases(rq->lock)
595{
596 spin_unlock(&rq->lock);
597}
598
Ingo Molnar70b97a72006-07-03 00:25:42 -0700599static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700600 __releases(rq->lock)
601{
602 spin_unlock_irqrestore(&rq->lock, *flags);
603}
604
Linus Torvalds1da177e2005-04-16 15:20:36 -0700605/*
Robert P. J. Daycc2a73b2006-12-10 02:20:00 -0800606 * this_rq_lock - lock this runqueue and disable interrupts.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700607 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700608static inline struct rq *this_rq_lock(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700609 __acquires(rq->lock)
610{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700611 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700612
613 local_irq_disable();
614 rq = this_rq();
615 spin_lock(&rq->lock);
616
617 return rq;
618}
619
Ingo Molnarc24d20d2007-07-09 18:51:59 +0200620/*
621 * resched_task - mark a task 'to be rescheduled now'.
622 *
623 * On UP this means the setting of the need_resched flag, on SMP it
624 * might also involve a cross-CPU call to trigger the scheduler on
625 * the target CPU.
626 */
627#ifdef CONFIG_SMP
628
629#ifndef tsk_is_polling
630#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
631#endif
632
633static void resched_task(struct task_struct *p)
634{
635 int cpu;
636
637 assert_spin_locked(&task_rq(p)->lock);
638
639 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
640 return;
641
642 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
643
644 cpu = task_cpu(p);
645 if (cpu == smp_processor_id())
646 return;
647
648 /* NEED_RESCHED must be visible before we test polling */
649 smp_mb();
650 if (!tsk_is_polling(p))
651 smp_send_reschedule(cpu);
652}
653
654static void resched_cpu(int cpu)
655{
656 struct rq *rq = cpu_rq(cpu);
657 unsigned long flags;
658
659 if (!spin_trylock_irqsave(&rq->lock, flags))
660 return;
661 resched_task(cpu_curr(cpu));
662 spin_unlock_irqrestore(&rq->lock, flags);
663}
664#else
665static inline void resched_task(struct task_struct *p)
666{
667 assert_spin_locked(&task_rq(p)->lock);
668 set_tsk_need_resched(p);
669}
670#endif
671
Ingo Molnar425e0962007-07-09 18:51:58 +0200672#include "sched_stats.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -0700673
Ingo Molnar45bf76d2007-07-09 18:51:59 +0200674static u64 div64_likely32(u64 divident, unsigned long divisor)
675{
676#if BITS_PER_LONG == 32
677 if (likely(divident <= 0xffffffffULL))
678 return (u32)divident / divisor;
679 do_div(divident, divisor);
680
681 return divident;
682#else
683 return divident / divisor;
684#endif
685}
686
687#if BITS_PER_LONG == 32
688# define WMULT_CONST (~0UL)
689#else
690# define WMULT_CONST (1UL << 32)
691#endif
692
693#define WMULT_SHIFT 32
694
695static inline unsigned long
696calc_delta_mine(unsigned long delta_exec, unsigned long weight,
697 struct load_weight *lw)
698{
699 u64 tmp;
700
701 if (unlikely(!lw->inv_weight))
702 lw->inv_weight = WMULT_CONST / lw->weight;
703
704 tmp = (u64)delta_exec * weight;
705 /*
706 * Check whether we'd overflow the 64-bit multiplication:
707 */
708 if (unlikely(tmp > WMULT_CONST)) {
709 tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
710 >> (WMULT_SHIFT/2);
711 } else {
712 tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
713 }
714
715 return (unsigned long)min(tmp, (u64)sysctl_sched_runtime_limit);
716}
717
718static inline unsigned long
719calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
720{
721 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
722}
723
724static void update_load_add(struct load_weight *lw, unsigned long inc)
725{
726 lw->weight += inc;
727 lw->inv_weight = 0;
728}
729
730static void update_load_sub(struct load_weight *lw, unsigned long dec)
731{
732 lw->weight -= dec;
733 lw->inv_weight = 0;
734}
735
736static void __update_curr_load(struct rq *rq, struct load_stat *ls)
737{
738 if (rq->curr != rq->idle && ls->load.weight) {
739 ls->delta_exec += ls->delta_stat;
740 ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
741 ls->delta_stat = 0;
742 }
743}
744
745/*
746 * Update delta_exec, delta_fair fields for rq.
747 *
748 * delta_fair clock advances at a rate inversely proportional to
749 * total load (rq->ls.load.weight) on the runqueue, while
750 * delta_exec advances at the same rate as wall-clock (provided
751 * cpu is not idle).
752 *
753 * delta_exec / delta_fair is a measure of the (smoothened) load on this
754 * runqueue over any given interval. This (smoothened) load is used
755 * during load balance.
756 *
757 * This function is called /before/ updating rq->ls.load
758 * and when switching tasks.
759 */
760static void update_curr_load(struct rq *rq, u64 now)
761{
762 struct load_stat *ls = &rq->ls;
763 u64 start;
764
765 start = ls->load_update_start;
766 ls->load_update_start = now;
767 ls->delta_stat += now - start;
768 /*
769 * Stagger updates to ls->delta_fair. Very frequent updates
770 * can be expensive.
771 */
772 if (ls->delta_stat >= sysctl_sched_stat_granularity)
773 __update_curr_load(rq, ls);
774}
775
Linus Torvalds1da177e2005-04-16 15:20:36 -0700776/*
Peter Williams2dd73a42006-06-27 02:54:34 -0700777 * To aid in avoiding the subversion of "niceness" due to uneven distribution
778 * of tasks with abnormal "nice" values across CPUs the contribution that
779 * each task makes to its run queue's load is weighted according to its
780 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
781 * scaled version of the new time slice allocation that they receive on time
782 * slice expiry etc.
783 */
784
785/*
786 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
787 * If static_prio_timeslice() is ever changed to break this assumption then
788 * this code will need modification
789 */
790#define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
791#define LOAD_WEIGHT(lp) \
792 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
793#define PRIO_TO_LOAD_WEIGHT(prio) \
794 LOAD_WEIGHT(static_prio_timeslice(prio))
795#define RTPRIO_TO_LOAD_WEIGHT(rp) \
796 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
797
Ingo Molnar36c8b582006-07-03 00:25:41 -0700798static inline void
Ingo Molnar70b97a72006-07-03 00:25:42 -0700799inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
Peter Williams2dd73a42006-06-27 02:54:34 -0700800{
801 rq->raw_weighted_load += p->load_weight;
802}
803
Ingo Molnar36c8b582006-07-03 00:25:41 -0700804static inline void
Ingo Molnar70b97a72006-07-03 00:25:42 -0700805dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
Peter Williams2dd73a42006-06-27 02:54:34 -0700806{
807 rq->raw_weighted_load -= p->load_weight;
808}
809
Ingo Molnar70b97a72006-07-03 00:25:42 -0700810static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
Peter Williams2dd73a42006-06-27 02:54:34 -0700811{
812 rq->nr_running++;
813 inc_raw_weighted_load(rq, p);
814}
815
Ingo Molnar70b97a72006-07-03 00:25:42 -0700816static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
Peter Williams2dd73a42006-06-27 02:54:34 -0700817{
818 rq->nr_running--;
819 dec_raw_weighted_load(rq, p);
820}
821
Ingo Molnar45bf76d2007-07-09 18:51:59 +0200822static void set_load_weight(struct task_struct *p)
823{
824 if (task_has_rt_policy(p)) {
825#ifdef CONFIG_SMP
826 if (p == task_rq(p)->migration_thread)
827 /*
828 * The migration thread does the actual balancing.
829 * Giving its load any weight will skew balancing
830 * adversely.
831 */
832 p->load_weight = 0;
833 else
834#endif
835 p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
836 } else
837 p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
838}
839
Peter Williams2dd73a42006-06-27 02:54:34 -0700840/*
Ingo Molnar71f8bd42007-07-09 18:51:59 +0200841 * Adding/removing a task to/from a priority array:
842 */
843static void dequeue_task(struct task_struct *p, struct prio_array *array)
844{
845 array->nr_active--;
846 list_del(&p->run_list);
847 if (list_empty(array->queue + p->prio))
848 __clear_bit(p->prio, array->bitmap);
849}
850
851static void enqueue_task(struct task_struct *p, struct prio_array *array)
852{
853 sched_info_queued(p);
854 list_add_tail(&p->run_list, array->queue + p->prio);
855 __set_bit(p->prio, array->bitmap);
856 array->nr_active++;
857 p->array = array;
858}
859
860/*
861 * Put task to the end of the run list without the overhead of dequeue
862 * followed by enqueue.
863 */
864static void requeue_task(struct task_struct *p, struct prio_array *array)
865{
866 list_move_tail(&p->run_list, array->queue + p->prio);
867}
868
869static inline void
870enqueue_task_head(struct task_struct *p, struct prio_array *array)
871{
872 list_add(&p->run_list, array->queue + p->prio);
873 __set_bit(p->prio, array->bitmap);
874 array->nr_active++;
875 p->array = array;
876}
877
878/*
Ingo Molnar14531182007-07-09 18:51:59 +0200879 * __normal_prio - return the priority that is based on the static
880 * priority but is modified by bonuses/penalties.
881 *
882 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
883 * into the -5 ... 0 ... +5 bonus/penalty range.
884 *
885 * We use 25% of the full 0...39 priority range so that:
886 *
887 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
888 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
889 *
890 * Both properties are important to certain workloads.
891 */
892
893static inline int __normal_prio(struct task_struct *p)
894{
895 int bonus, prio;
896
897 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
898
899 prio = p->static_prio - bonus;
900 if (prio < MAX_RT_PRIO)
901 prio = MAX_RT_PRIO;
902 if (prio > MAX_PRIO-1)
903 prio = MAX_PRIO-1;
904 return prio;
905}
906
907/*
Ingo Molnarb29739f2006-06-27 02:54:51 -0700908 * Calculate the expected normal priority: i.e. priority
909 * without taking RT-inheritance into account. Might be
910 * boosted by interactivity modifiers. Changes upon fork,
911 * setprio syscalls, and whenever the interactivity
912 * estimator recalculates.
913 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700914static inline int normal_prio(struct task_struct *p)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700915{
916 int prio;
917
Ingo Molnare05606d2007-07-09 18:51:59 +0200918 if (task_has_rt_policy(p))
Ingo Molnarb29739f2006-06-27 02:54:51 -0700919 prio = MAX_RT_PRIO-1 - p->rt_priority;
920 else
921 prio = __normal_prio(p);
922 return prio;
923}
924
925/*
926 * Calculate the current priority, i.e. the priority
927 * taken into account by the scheduler. This value might
928 * be boosted by RT tasks, or might be boosted by
929 * interactivity modifiers. Will be RT if the task got
930 * RT-boosted. If not then it returns p->normal_prio.
931 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700932static int effective_prio(struct task_struct *p)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700933{
934 p->normal_prio = normal_prio(p);
935 /*
936 * If we are RT tasks or we were boosted to RT priority,
937 * keep the priority unchanged. Otherwise, update priority
938 * to the normal priority:
939 */
940 if (!rt_prio(p->prio))
941 return p->normal_prio;
942 return p->prio;
943}
944
945/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700946 * __activate_task - move a task to the runqueue.
947 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700948static void __activate_task(struct task_struct *p, struct rq *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700949{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700950 struct prio_array *target = rq->active;
Con Kolivasd425b272006-03-31 02:31:29 -0800951
Linus Torvaldsf1adad72006-05-21 18:54:09 -0700952 if (batch_task(p))
Con Kolivasd425b272006-03-31 02:31:29 -0800953 target = rq->expired;
954 enqueue_task(p, target);
Peter Williams2dd73a42006-06-27 02:54:34 -0700955 inc_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700956}
957
958/*
959 * __activate_idle_task - move idle task to the _front_ of runqueue.
960 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700961static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700962{
963 enqueue_task_head(p, rq->active);
Peter Williams2dd73a42006-06-27 02:54:34 -0700964 inc_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700965}
966
Ingo Molnarb29739f2006-06-27 02:54:51 -0700967/*
968 * Recalculate p->normal_prio and p->prio after having slept,
969 * updating the sleep-average too:
970 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700971static int recalc_task_prio(struct task_struct *p, unsigned long long now)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700972{
973 /* Caller must always ensure 'now >= p->timestamp' */
Con Kolivas72d28542006-06-27 02:54:30 -0700974 unsigned long sleep_time = now - p->timestamp;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700975
Con Kolivasd425b272006-03-31 02:31:29 -0800976 if (batch_task(p))
Ingo Molnarb0a94992006-01-14 13:20:41 -0800977 sleep_time = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700978
979 if (likely(sleep_time > 0)) {
980 /*
Con Kolivas72d28542006-06-27 02:54:30 -0700981 * This ceiling is set to the lowest priority that would allow
982 * a task to be reinserted into the active array on timeslice
983 * completion.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700984 */
Con Kolivas72d28542006-06-27 02:54:30 -0700985 unsigned long ceiling = INTERACTIVE_SLEEP(p);
Con Kolivase72ff0b2006-03-31 02:31:26 -0800986
Con Kolivas72d28542006-06-27 02:54:30 -0700987 if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
988 /*
989 * Prevents user tasks from achieving best priority
990 * with one single large enough sleep.
991 */
992 p->sleep_avg = ceiling;
993 /*
994 * Using INTERACTIVE_SLEEP() as a ceiling places a
995 * nice(0) task 1ms sleep away from promotion, and
996 * gives it 700ms to round-robin with no chance of
997 * being demoted. This is more than generous, so
998 * mark this sleep as non-interactive to prevent the
999 * on-runqueue bonus logic from intervening should
1000 * this task not receive cpu immediately.
1001 */
1002 p->sleep_type = SLEEP_NONINTERACTIVE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001003 } else {
1004 /*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001005 * Tasks waking from uninterruptible sleep are
1006 * limited in their sleep_avg rise as they
1007 * are likely to be waiting on I/O
1008 */
Con Kolivas3dee3862006-03-31 02:31:23 -08001009 if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
Con Kolivas72d28542006-06-27 02:54:30 -07001010 if (p->sleep_avg >= ceiling)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001011 sleep_time = 0;
1012 else if (p->sleep_avg + sleep_time >=
Con Kolivas72d28542006-06-27 02:54:30 -07001013 ceiling) {
1014 p->sleep_avg = ceiling;
1015 sleep_time = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001016 }
1017 }
1018
1019 /*
1020 * This code gives a bonus to interactive tasks.
1021 *
1022 * The boost works by updating the 'average sleep time'
1023 * value here, based on ->timestamp. The more time a
1024 * task spends sleeping, the higher the average gets -
1025 * and the higher the priority boost gets as well.
1026 */
1027 p->sleep_avg += sleep_time;
1028
Linus Torvalds1da177e2005-04-16 15:20:36 -07001029 }
Con Kolivas72d28542006-06-27 02:54:30 -07001030 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
1031 p->sleep_avg = NS_MAX_SLEEP_AVG;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001032 }
1033
Chen Shanga3464a12005-06-25 14:57:31 -07001034 return effective_prio(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001035}
1036
1037/*
1038 * activate_task - move a task to the runqueue and do priority recalculation
1039 *
1040 * Update all the scheduling statistics stuff. (sleep average
1041 * calculation, priority modifiers, etc.)
1042 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07001043static void activate_task(struct task_struct *p, struct rq *rq, int local)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001044{
1045 unsigned long long now;
1046
Chen, Kenneth W62ab6162006-12-10 02:20:36 -08001047 if (rt_task(p))
1048 goto out;
1049
Linus Torvalds1da177e2005-04-16 15:20:36 -07001050 now = sched_clock();
1051#ifdef CONFIG_SMP
1052 if (!local) {
1053 /* Compensate for drifting sched_clock */
Ingo Molnar70b97a72006-07-03 00:25:42 -07001054 struct rq *this_rq = this_rq();
Mike Galbraithb18ec802006-12-10 02:20:31 -08001055 now = (now - this_rq->most_recent_timestamp)
1056 + rq->most_recent_timestamp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001057 }
1058#endif
1059
Ingo Molnarece8a682006-12-06 20:37:24 -08001060 /*
1061 * Sleep time is in units of nanosecs, so shift by 20 to get a
1062 * milliseconds-range estimation of the amount of time that the task
1063 * spent sleeping:
1064 */
1065 if (unlikely(prof_on == SLEEP_PROFILING)) {
1066 if (p->state == TASK_UNINTERRUPTIBLE)
1067 profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
1068 (now - p->timestamp) >> 20);
1069 }
1070
Chen, Kenneth W62ab6162006-12-10 02:20:36 -08001071 p->prio = recalc_task_prio(p, now);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001072
1073 /*
1074 * This checks to make sure it's not an uninterruptible task
1075 * that is now waking up.
1076 */
Con Kolivas3dee3862006-03-31 02:31:23 -08001077 if (p->sleep_type == SLEEP_NORMAL) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001078 /*
1079 * Tasks which were woken up by interrupts (ie. hw events)
1080 * are most likely of interactive nature. So we give them
1081 * the credit of extending their sleep time to the period
1082 * of time they spend on the runqueue, waiting for execution
1083 * on a CPU, first time around:
1084 */
1085 if (in_interrupt())
Con Kolivas3dee3862006-03-31 02:31:23 -08001086 p->sleep_type = SLEEP_INTERRUPTED;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001087 else {
1088 /*
1089 * Normal first-time wakeups get a credit too for
1090 * on-runqueue time, but it will be weighted down:
1091 */
Con Kolivas3dee3862006-03-31 02:31:23 -08001092 p->sleep_type = SLEEP_INTERACTIVE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001093 }
1094 }
1095 p->timestamp = now;
Chen, Kenneth W62ab6162006-12-10 02:20:36 -08001096out:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001097 __activate_task(p, rq);
1098}
1099
1100/*
1101 * deactivate_task - remove a task from the runqueue.
1102 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07001103static void deactivate_task(struct task_struct *p, struct rq *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001104{
Peter Williams2dd73a42006-06-27 02:54:34 -07001105 dec_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001106 dequeue_task(p, p->array);
1107 p->array = NULL;
1108}
1109
Linus Torvalds1da177e2005-04-16 15:20:36 -07001110/**
1111 * task_curr - is this task currently executing on a CPU?
1112 * @p: the task in question.
1113 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001114inline int task_curr(const struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001115{
1116 return cpu_curr(task_cpu(p)) == p;
1117}
1118
Peter Williams2dd73a42006-06-27 02:54:34 -07001119/* Used instead of source_load when we know the type == 0 */
1120unsigned long weighted_cpuload(const int cpu)
1121{
1122 return cpu_rq(cpu)->raw_weighted_load;
1123}
1124
Linus Torvalds1da177e2005-04-16 15:20:36 -07001125#ifdef CONFIG_SMP
Ingo Molnarc65cc872007-07-09 18:51:58 +02001126
1127void set_task_cpu(struct task_struct *p, unsigned int cpu)
1128{
1129 task_thread_info(p)->cpu = cpu;
1130}
1131
Ingo Molnar70b97a72006-07-03 00:25:42 -07001132struct migration_req {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001133 struct list_head list;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001134
Ingo Molnar36c8b582006-07-03 00:25:41 -07001135 struct task_struct *task;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001136 int dest_cpu;
1137
Linus Torvalds1da177e2005-04-16 15:20:36 -07001138 struct completion done;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001139};
Linus Torvalds1da177e2005-04-16 15:20:36 -07001140
1141/*
1142 * The task's runqueue lock must be held.
1143 * Returns true if you have to wait for migration thread.
1144 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001145static int
Ingo Molnar70b97a72006-07-03 00:25:42 -07001146migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001147{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001148 struct rq *rq = task_rq(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001149
1150 /*
1151 * If the task is not on a runqueue (and not running), then
1152 * it is sufficient to simply update the task's cpu field.
1153 */
1154 if (!p->array && !task_running(rq, p)) {
1155 set_task_cpu(p, dest_cpu);
1156 return 0;
1157 }
1158
1159 init_completion(&req->done);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001160 req->task = p;
1161 req->dest_cpu = dest_cpu;
1162 list_add(&req->list, &rq->migration_queue);
Ingo Molnar48f24c42006-07-03 00:25:40 -07001163
Linus Torvalds1da177e2005-04-16 15:20:36 -07001164 return 1;
1165}
1166
1167/*
1168 * wait_task_inactive - wait for a thread to unschedule.
1169 *
1170 * The caller must ensure that the task *will* unschedule sometime soon,
1171 * else this function might spin for a *long* time. This function can't
1172 * be called with interrupts off, or it may introduce deadlock with
1173 * smp_call_function() if an IPI is sent by the same process we are
1174 * waiting to become inactive.
1175 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001176void wait_task_inactive(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001177{
1178 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001179 struct rq *rq;
Linus Torvaldsfa490cf2007-06-18 09:34:40 -07001180 struct prio_array *array;
1181 int running;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001182
1183repeat:
Linus Torvaldsfa490cf2007-06-18 09:34:40 -07001184 /*
1185 * We do the initial early heuristics without holding
1186 * any task-queue locks at all. We'll only try to get
1187 * the runqueue lock when things look like they will
1188 * work out!
1189 */
1190 rq = task_rq(p);
1191
1192 /*
1193 * If the task is actively running on another CPU
1194 * still, just relax and busy-wait without holding
1195 * any locks.
1196 *
1197 * NOTE! Since we don't hold any locks, it's not
1198 * even sure that "rq" stays as the right runqueue!
1199 * But we don't care, since "task_running()" will
1200 * return false if the runqueue has changed and p
1201 * is actually now running somewhere else!
1202 */
1203 while (task_running(rq, p))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001204 cpu_relax();
Linus Torvaldsfa490cf2007-06-18 09:34:40 -07001205
1206 /*
1207 * Ok, time to look more closely! We need the rq
1208 * lock now, to be *sure*. If we're wrong, we'll
1209 * just go back and repeat.
1210 */
1211 rq = task_rq_lock(p, &flags);
1212 running = task_running(rq, p);
1213 array = p->array;
1214 task_rq_unlock(rq, &flags);
1215
1216 /*
1217 * Was it really running after all now that we
1218 * checked with the proper locks actually held?
1219 *
1220 * Oops. Go back and try again..
1221 */
1222 if (unlikely(running)) {
1223 cpu_relax();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001224 goto repeat;
1225 }
Linus Torvaldsfa490cf2007-06-18 09:34:40 -07001226
1227 /*
1228 * It's not enough that it's not actively running,
1229 * it must be off the runqueue _entirely_, and not
1230 * preempted!
1231 *
1232 * So if it wa still runnable (but just not actively
1233 * running right now), it's preempted, and we should
1234 * yield - it could be a while.
1235 */
1236 if (unlikely(array)) {
1237 yield();
1238 goto repeat;
1239 }
1240
1241 /*
1242 * Ahh, all good. It wasn't running, and it wasn't
1243 * runnable, which means that it will never become
1244 * running in the future either. We're all done!
1245 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001246}
1247
1248/***
1249 * kick_process - kick a running thread to enter/exit the kernel
1250 * @p: the to-be-kicked thread
1251 *
1252 * Cause a process which is running on another CPU to enter
1253 * kernel-mode, without any delay. (to get signals handled.)
1254 *
1255 * NOTE: this function doesnt have to take the runqueue lock,
1256 * because all it wants to ensure is that the remote task enters
1257 * the kernel. If the IPI races and the task has been migrated
1258 * to another CPU then no harm is done and the purpose has been
1259 * achieved as well.
1260 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001261void kick_process(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001262{
1263 int cpu;
1264
1265 preempt_disable();
1266 cpu = task_cpu(p);
1267 if ((cpu != smp_processor_id()) && task_curr(p))
1268 smp_send_reschedule(cpu);
1269 preempt_enable();
1270}
1271
1272/*
Peter Williams2dd73a42006-06-27 02:54:34 -07001273 * Return a low guess at the load of a migration-source cpu weighted
1274 * according to the scheduling class and "nice" value.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001275 *
1276 * We want to under-estimate the load of migration sources, to
1277 * balance conservatively.
1278 */
Con Kolivasb9104722005-11-08 21:38:55 -08001279static inline unsigned long source_load(int cpu, int type)
1280{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001281 struct rq *rq = cpu_rq(cpu);
Nick Piggina2000572006-02-10 01:51:02 -08001282
Peter Williams2dd73a42006-06-27 02:54:34 -07001283 if (type == 0)
1284 return rq->raw_weighted_load;
1285
1286 return min(rq->cpu_load[type-1], rq->raw_weighted_load);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001287}
1288
1289/*
Peter Williams2dd73a42006-06-27 02:54:34 -07001290 * Return a high guess at the load of a migration-target cpu weighted
1291 * according to the scheduling class and "nice" value.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001292 */
Con Kolivasb9104722005-11-08 21:38:55 -08001293static inline unsigned long target_load(int cpu, int type)
1294{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001295 struct rq *rq = cpu_rq(cpu);
Nick Piggina2000572006-02-10 01:51:02 -08001296
Peter Williams2dd73a42006-06-27 02:54:34 -07001297 if (type == 0)
1298 return rq->raw_weighted_load;
1299
1300 return max(rq->cpu_load[type-1], rq->raw_weighted_load);
1301}
1302
1303/*
1304 * Return the average load per task on the cpu's run queue
1305 */
1306static inline unsigned long cpu_avg_load_per_task(int cpu)
1307{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001308 struct rq *rq = cpu_rq(cpu);
Peter Williams2dd73a42006-06-27 02:54:34 -07001309 unsigned long n = rq->nr_running;
1310
Ingo Molnar48f24c42006-07-03 00:25:40 -07001311 return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001312}
1313
Nick Piggin147cbb42005-06-25 14:57:19 -07001314/*
1315 * find_idlest_group finds and returns the least busy CPU group within the
1316 * domain.
1317 */
1318static struct sched_group *
1319find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1320{
1321 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1322 unsigned long min_load = ULONG_MAX, this_load = 0;
1323 int load_idx = sd->forkexec_idx;
1324 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1325
1326 do {
1327 unsigned long load, avg_load;
1328 int local_group;
1329 int i;
1330
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001331 /* Skip over this group if it has no CPUs allowed */
1332 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1333 goto nextgroup;
1334
Nick Piggin147cbb42005-06-25 14:57:19 -07001335 local_group = cpu_isset(this_cpu, group->cpumask);
Nick Piggin147cbb42005-06-25 14:57:19 -07001336
1337 /* Tally up the load of all CPUs in the group */
1338 avg_load = 0;
1339
1340 for_each_cpu_mask(i, group->cpumask) {
1341 /* Bias balancing toward cpus of our domain */
1342 if (local_group)
1343 load = source_load(i, load_idx);
1344 else
1345 load = target_load(i, load_idx);
1346
1347 avg_load += load;
1348 }
1349
1350 /* Adjust by relative CPU power of the group */
Eric Dumazet5517d862007-05-08 00:32:57 -07001351 avg_load = sg_div_cpu_power(group,
1352 avg_load * SCHED_LOAD_SCALE);
Nick Piggin147cbb42005-06-25 14:57:19 -07001353
1354 if (local_group) {
1355 this_load = avg_load;
1356 this = group;
1357 } else if (avg_load < min_load) {
1358 min_load = avg_load;
1359 idlest = group;
1360 }
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001361nextgroup:
Nick Piggin147cbb42005-06-25 14:57:19 -07001362 group = group->next;
1363 } while (group != sd->groups);
1364
1365 if (!idlest || 100*this_load < imbalance*min_load)
1366 return NULL;
1367 return idlest;
1368}
1369
1370/*
Satoru Takeuchi0feaece2006-10-03 01:14:10 -07001371 * find_idlest_cpu - find the idlest cpu among the cpus in group.
Nick Piggin147cbb42005-06-25 14:57:19 -07001372 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07001373static int
1374find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
Nick Piggin147cbb42005-06-25 14:57:19 -07001375{
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001376 cpumask_t tmp;
Nick Piggin147cbb42005-06-25 14:57:19 -07001377 unsigned long load, min_load = ULONG_MAX;
1378 int idlest = -1;
1379 int i;
1380
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001381 /* Traverse only the allowed CPUs */
1382 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1383
1384 for_each_cpu_mask(i, tmp) {
Peter Williams2dd73a42006-06-27 02:54:34 -07001385 load = weighted_cpuload(i);
Nick Piggin147cbb42005-06-25 14:57:19 -07001386
1387 if (load < min_load || (load == min_load && i == this_cpu)) {
1388 min_load = load;
1389 idlest = i;
1390 }
1391 }
1392
1393 return idlest;
1394}
1395
Nick Piggin476d1392005-06-25 14:57:29 -07001396/*
1397 * sched_balance_self: balance the current task (running on cpu) in domains
1398 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1399 * SD_BALANCE_EXEC.
1400 *
1401 * Balance, ie. select the least loaded group.
1402 *
1403 * Returns the target CPU number, or the same CPU if no balancing is needed.
1404 *
1405 * preempt must be disabled.
1406 */
1407static int sched_balance_self(int cpu, int flag)
1408{
1409 struct task_struct *t = current;
1410 struct sched_domain *tmp, *sd = NULL;
Nick Piggin147cbb42005-06-25 14:57:19 -07001411
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07001412 for_each_domain(cpu, tmp) {
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07001413 /*
1414 * If power savings logic is enabled for a domain, stop there.
1415 */
1416 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1417 break;
Nick Piggin476d1392005-06-25 14:57:29 -07001418 if (tmp->flags & flag)
1419 sd = tmp;
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07001420 }
Nick Piggin476d1392005-06-25 14:57:29 -07001421
1422 while (sd) {
1423 cpumask_t span;
1424 struct sched_group *group;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001425 int new_cpu, weight;
1426
1427 if (!(sd->flags & flag)) {
1428 sd = sd->child;
1429 continue;
1430 }
Nick Piggin476d1392005-06-25 14:57:29 -07001431
1432 span = sd->span;
1433 group = find_idlest_group(sd, t, cpu);
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001434 if (!group) {
1435 sd = sd->child;
1436 continue;
1437 }
Nick Piggin476d1392005-06-25 14:57:29 -07001438
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001439 new_cpu = find_idlest_cpu(group, t, cpu);
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001440 if (new_cpu == -1 || new_cpu == cpu) {
1441 /* Now try balancing at a lower domain level of cpu */
1442 sd = sd->child;
1443 continue;
1444 }
Nick Piggin476d1392005-06-25 14:57:29 -07001445
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001446 /* Now try balancing at a lower domain level of new_cpu */
Nick Piggin476d1392005-06-25 14:57:29 -07001447 cpu = new_cpu;
Nick Piggin476d1392005-06-25 14:57:29 -07001448 sd = NULL;
1449 weight = cpus_weight(span);
1450 for_each_domain(cpu, tmp) {
1451 if (weight <= cpus_weight(tmp->span))
1452 break;
1453 if (tmp->flags & flag)
1454 sd = tmp;
1455 }
1456 /* while loop will break here if sd == NULL */
1457 }
1458
1459 return cpu;
1460}
1461
1462#endif /* CONFIG_SMP */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001463
1464/*
1465 * wake_idle() will wake a task on an idle cpu if task->cpu is
1466 * not idle and an idle cpu is available. The span of cpus to
1467 * search starts with cpus closest then further out as needed,
1468 * so we always favor a closer, idle cpu.
1469 *
1470 * Returns the CPU we should wake onto.
1471 */
1472#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
Ingo Molnar36c8b582006-07-03 00:25:41 -07001473static int wake_idle(int cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001474{
1475 cpumask_t tmp;
1476 struct sched_domain *sd;
1477 int i;
1478
Siddha, Suresh B49531982007-05-08 00:33:01 -07001479 /*
1480 * If it is idle, then it is the best cpu to run this task.
1481 *
1482 * This cpu is also the best, if it has more than one task already.
1483 * Siblings must be also busy(in most cases) as they didn't already
1484 * pickup the extra load from this cpu and hence we need not check
1485 * sibling runqueue info. This will avoid the checks and cache miss
1486 * penalities associated with that.
1487 */
1488 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001489 return cpu;
1490
1491 for_each_domain(cpu, sd) {
1492 if (sd->flags & SD_WAKE_IDLE) {
Nick Piggine0f364f2005-06-25 14:57:06 -07001493 cpus_and(tmp, sd->span, p->cpus_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001494 for_each_cpu_mask(i, tmp) {
1495 if (idle_cpu(i))
1496 return i;
1497 }
1498 }
Nick Piggine0f364f2005-06-25 14:57:06 -07001499 else
1500 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001501 }
1502 return cpu;
1503}
1504#else
Ingo Molnar36c8b582006-07-03 00:25:41 -07001505static inline int wake_idle(int cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001506{
1507 return cpu;
1508}
1509#endif
1510
1511/***
1512 * try_to_wake_up - wake up a thread
1513 * @p: the to-be-woken-up thread
1514 * @state: the mask of task states that can be woken
1515 * @sync: do a synchronous wakeup?
1516 *
1517 * Put it on the run-queue if it's not already there. The "current"
1518 * thread is always on the run-queue (except when the actual
1519 * re-schedule is in progress), and as such you're allowed to do
1520 * the simpler "current->state = TASK_RUNNING" to mark yourself
1521 * runnable without the overhead of this.
1522 *
1523 * returns failure only if the task is already active.
1524 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001525static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001526{
1527 int cpu, this_cpu, success = 0;
1528 unsigned long flags;
1529 long old_state;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001530 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001531#ifdef CONFIG_SMP
Nick Piggin78979862005-06-25 14:57:13 -07001532 struct sched_domain *sd, *this_sd = NULL;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001533 unsigned long load, this_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001534 int new_cpu;
1535#endif
1536
1537 rq = task_rq_lock(p, &flags);
1538 old_state = p->state;
1539 if (!(old_state & state))
1540 goto out;
1541
1542 if (p->array)
1543 goto out_running;
1544
1545 cpu = task_cpu(p);
1546 this_cpu = smp_processor_id();
1547
1548#ifdef CONFIG_SMP
1549 if (unlikely(task_running(rq, p)))
1550 goto out_activate;
1551
Nick Piggin78979862005-06-25 14:57:13 -07001552 new_cpu = cpu;
1553
Linus Torvalds1da177e2005-04-16 15:20:36 -07001554 schedstat_inc(rq, ttwu_cnt);
1555 if (cpu == this_cpu) {
1556 schedstat_inc(rq, ttwu_local);
Nick Piggin78979862005-06-25 14:57:13 -07001557 goto out_set_cpu;
1558 }
1559
1560 for_each_domain(this_cpu, sd) {
1561 if (cpu_isset(cpu, sd->span)) {
1562 schedstat_inc(sd, ttwu_wake_remote);
1563 this_sd = sd;
1564 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001565 }
1566 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001567
Nick Piggin78979862005-06-25 14:57:13 -07001568 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001569 goto out_set_cpu;
1570
Linus Torvalds1da177e2005-04-16 15:20:36 -07001571 /*
Nick Piggin78979862005-06-25 14:57:13 -07001572 * Check for affine wakeup and passive balancing possibilities.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001573 */
Nick Piggin78979862005-06-25 14:57:13 -07001574 if (this_sd) {
1575 int idx = this_sd->wake_idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001576 unsigned int imbalance;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001577
Nick Piggina3f21bc2005-06-25 14:57:15 -07001578 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1579
Nick Piggin78979862005-06-25 14:57:13 -07001580 load = source_load(cpu, idx);
1581 this_load = target_load(this_cpu, idx);
1582
Nick Piggin78979862005-06-25 14:57:13 -07001583 new_cpu = this_cpu; /* Wake to this CPU if we can */
1584
Nick Piggina3f21bc2005-06-25 14:57:15 -07001585 if (this_sd->flags & SD_WAKE_AFFINE) {
1586 unsigned long tl = this_load;
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08001587 unsigned long tl_per_task;
1588
1589 tl_per_task = cpu_avg_load_per_task(this_cpu);
Peter Williams2dd73a42006-06-27 02:54:34 -07001590
Linus Torvalds1da177e2005-04-16 15:20:36 -07001591 /*
Nick Piggina3f21bc2005-06-25 14:57:15 -07001592 * If sync wakeup then subtract the (maximum possible)
1593 * effect of the currently running task from the load
1594 * of the current CPU:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001595 */
Nick Piggina3f21bc2005-06-25 14:57:15 -07001596 if (sync)
Peter Williams2dd73a42006-06-27 02:54:34 -07001597 tl -= current->load_weight;
Nick Piggina3f21bc2005-06-25 14:57:15 -07001598
1599 if ((tl <= load &&
Peter Williams2dd73a42006-06-27 02:54:34 -07001600 tl + target_load(cpu, idx) <= tl_per_task) ||
1601 100*(tl + p->load_weight) <= imbalance*load) {
Nick Piggina3f21bc2005-06-25 14:57:15 -07001602 /*
1603 * This domain has SD_WAKE_AFFINE and
1604 * p is cache cold in this domain, and
1605 * there is no bad imbalance.
1606 */
1607 schedstat_inc(this_sd, ttwu_move_affine);
1608 goto out_set_cpu;
1609 }
1610 }
1611
1612 /*
1613 * Start passive balancing when half the imbalance_pct
1614 * limit is reached.
1615 */
1616 if (this_sd->flags & SD_WAKE_BALANCE) {
1617 if (imbalance*this_load <= 100*load) {
1618 schedstat_inc(this_sd, ttwu_move_balance);
1619 goto out_set_cpu;
1620 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001621 }
1622 }
1623
1624 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1625out_set_cpu:
1626 new_cpu = wake_idle(new_cpu, p);
1627 if (new_cpu != cpu) {
1628 set_task_cpu(p, new_cpu);
1629 task_rq_unlock(rq, &flags);
1630 /* might preempt at this point */
1631 rq = task_rq_lock(p, &flags);
1632 old_state = p->state;
1633 if (!(old_state & state))
1634 goto out;
1635 if (p->array)
1636 goto out_running;
1637
1638 this_cpu = smp_processor_id();
1639 cpu = task_cpu(p);
1640 }
1641
1642out_activate:
1643#endif /* CONFIG_SMP */
1644 if (old_state == TASK_UNINTERRUPTIBLE) {
1645 rq->nr_uninterruptible--;
1646 /*
1647 * Tasks on involuntary sleep don't earn
1648 * sleep_avg beyond just interactive state.
1649 */
Con Kolivas3dee3862006-03-31 02:31:23 -08001650 p->sleep_type = SLEEP_NONINTERACTIVE;
Con Kolivase7c38cb2006-03-31 02:31:25 -08001651 } else
Linus Torvalds1da177e2005-04-16 15:20:36 -07001652
1653 /*
Ingo Molnard79fc0f2005-09-10 00:26:12 -07001654 * Tasks that have marked their sleep as noninteractive get
Con Kolivase7c38cb2006-03-31 02:31:25 -08001655 * woken up with their sleep average not weighted in an
1656 * interactive way.
Ingo Molnard79fc0f2005-09-10 00:26:12 -07001657 */
Con Kolivase7c38cb2006-03-31 02:31:25 -08001658 if (old_state & TASK_NONINTERACTIVE)
1659 p->sleep_type = SLEEP_NONINTERACTIVE;
1660
1661
1662 activate_task(p, rq, cpu == this_cpu);
Ingo Molnard79fc0f2005-09-10 00:26:12 -07001663 /*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001664 * Sync wakeups (i.e. those types of wakeups where the waker
1665 * has indicated that it will leave the CPU in short order)
1666 * don't trigger a preemption, if the woken up task will run on
1667 * this cpu. (in this case the 'I will reschedule' promise of
1668 * the waker guarantees that the freshly woken up task is going
1669 * to be considered on this CPU.)
1670 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001671 if (!sync || cpu != this_cpu) {
1672 if (TASK_PREEMPTS_CURR(p, rq))
1673 resched_task(rq->curr);
1674 }
1675 success = 1;
1676
1677out_running:
1678 p->state = TASK_RUNNING;
1679out:
1680 task_rq_unlock(rq, &flags);
1681
1682 return success;
1683}
1684
Ingo Molnar36c8b582006-07-03 00:25:41 -07001685int fastcall wake_up_process(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001686{
1687 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1688 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1689}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001690EXPORT_SYMBOL(wake_up_process);
1691
Ingo Molnar36c8b582006-07-03 00:25:41 -07001692int fastcall wake_up_state(struct task_struct *p, unsigned int state)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001693{
1694 return try_to_wake_up(p, state, 0);
1695}
1696
Peter Williamsbc947632006-12-19 12:48:50 +10001697static void task_running_tick(struct rq *rq, struct task_struct *p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001698/*
1699 * Perform scheduler related setup for a newly forked process p.
1700 * p is forked by current.
1701 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001702void fastcall sched_fork(struct task_struct *p, int clone_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001703{
Nick Piggin476d1392005-06-25 14:57:29 -07001704 int cpu = get_cpu();
1705
1706#ifdef CONFIG_SMP
1707 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1708#endif
1709 set_task_cpu(p, cpu);
1710
Linus Torvalds1da177e2005-04-16 15:20:36 -07001711 /*
1712 * We mark the process as running here, but have not actually
1713 * inserted it onto the runqueue yet. This guarantees that
1714 * nobody will actually run it, and a signal or other external
1715 * event cannot wake it up and insert it on the runqueue either.
1716 */
1717 p->state = TASK_RUNNING;
Ingo Molnarb29739f2006-06-27 02:54:51 -07001718
1719 /*
1720 * Make sure we do not leak PI boosting priority to the child:
1721 */
1722 p->prio = current->normal_prio;
1723
Linus Torvalds1da177e2005-04-16 15:20:36 -07001724 INIT_LIST_HEAD(&p->run_list);
1725 p->array = NULL;
Chandra Seetharaman52f17b62006-07-14 00:24:38 -07001726#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1727 if (unlikely(sched_info_on()))
1728 memset(&p->sched_info, 0, sizeof(p->sched_info));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001729#endif
Chen, Kenneth Wd6077cb2006-02-14 13:53:10 -08001730#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
Nick Piggin4866cde2005-06-25 14:57:23 -07001731 p->oncpu = 0;
1732#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001733#ifdef CONFIG_PREEMPT
Nick Piggin4866cde2005-06-25 14:57:23 -07001734 /* Want to start with kernel preemption disabled. */
Al Viroa1261f52005-11-13 16:06:55 -08001735 task_thread_info(p)->preempt_count = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001736#endif
1737 /*
1738 * Share the timeslice between parent and child, thus the
1739 * total amount of pending timeslices in the system doesn't change,
1740 * resulting in more scheduling fairness.
1741 */
1742 local_irq_disable();
1743 p->time_slice = (current->time_slice + 1) >> 1;
1744 /*
1745 * The remainder of the first timeslice might be recovered by
1746 * the parent if the child exits early enough.
1747 */
1748 p->first_time_slice = 1;
1749 current->time_slice >>= 1;
1750 p->timestamp = sched_clock();
1751 if (unlikely(!current->time_slice)) {
1752 /*
1753 * This case is rare, it happens when the parent has only
1754 * a single jiffy left from its timeslice. Taking the
1755 * runqueue lock is not a problem.
1756 */
1757 current->time_slice = 1;
Peter Williamsbc947632006-12-19 12:48:50 +10001758 task_running_tick(cpu_rq(cpu), current);
Nick Piggin476d1392005-06-25 14:57:29 -07001759 }
1760 local_irq_enable();
1761 put_cpu();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001762}
1763
1764/*
1765 * wake_up_new_task - wake up a newly created task for the first time.
1766 *
1767 * This function will do some initial scheduler statistics housekeeping
1768 * that must be done for every newly created context, then puts the task
1769 * on the runqueue and wakes it.
1770 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001771void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001772{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001773 struct rq *rq, *this_rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001774 unsigned long flags;
1775 int this_cpu, cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001776
1777 rq = task_rq_lock(p, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001778 BUG_ON(p->state != TASK_RUNNING);
Nick Piggin147cbb42005-06-25 14:57:19 -07001779 this_cpu = smp_processor_id();
1780 cpu = task_cpu(p);
1781
Linus Torvalds1da177e2005-04-16 15:20:36 -07001782 /*
1783 * We decrease the sleep average of forking parents
1784 * and children as well, to keep max-interactive tasks
1785 * from forking tasks that are max-interactive. The parent
1786 * (current) is done further down, under its lock.
1787 */
1788 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1789 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1790
1791 p->prio = effective_prio(p);
1792
1793 if (likely(cpu == this_cpu)) {
1794 if (!(clone_flags & CLONE_VM)) {
1795 /*
1796 * The VM isn't cloned, so we're in a good position to
1797 * do child-runs-first in anticipation of an exec. This
1798 * usually avoids a lot of COW overhead.
1799 */
1800 if (unlikely(!current->array))
1801 __activate_task(p, rq);
1802 else {
1803 p->prio = current->prio;
Ingo Molnarb29739f2006-06-27 02:54:51 -07001804 p->normal_prio = current->normal_prio;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001805 list_add_tail(&p->run_list, &current->run_list);
1806 p->array = current->array;
1807 p->array->nr_active++;
Peter Williams2dd73a42006-06-27 02:54:34 -07001808 inc_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001809 }
1810 set_need_resched();
1811 } else
1812 /* Run child last */
1813 __activate_task(p, rq);
1814 /*
1815 * We skip the following code due to cpu == this_cpu
1816 *
1817 * task_rq_unlock(rq, &flags);
1818 * this_rq = task_rq_lock(current, &flags);
1819 */
1820 this_rq = rq;
1821 } else {
1822 this_rq = cpu_rq(this_cpu);
1823
1824 /*
1825 * Not the local CPU - must adjust timestamp. This should
1826 * get optimised away in the !CONFIG_SMP case.
1827 */
Mike Galbraithb18ec802006-12-10 02:20:31 -08001828 p->timestamp = (p->timestamp - this_rq->most_recent_timestamp)
1829 + rq->most_recent_timestamp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001830 __activate_task(p, rq);
1831 if (TASK_PREEMPTS_CURR(p, rq))
1832 resched_task(rq->curr);
1833
1834 /*
1835 * Parent and child are on different CPUs, now get the
1836 * parent runqueue to update the parent's ->sleep_avg:
1837 */
1838 task_rq_unlock(rq, &flags);
1839 this_rq = task_rq_lock(current, &flags);
1840 }
1841 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1842 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1843 task_rq_unlock(this_rq, &flags);
1844}
1845
Linus Torvalds1da177e2005-04-16 15:20:36 -07001846/**
Nick Piggin4866cde2005-06-25 14:57:23 -07001847 * prepare_task_switch - prepare to switch tasks
1848 * @rq: the runqueue preparing to switch
1849 * @next: the task we are going to switch to.
1850 *
1851 * This is called with the rq lock held and interrupts off. It must
1852 * be paired with a subsequent finish_task_switch after the context
1853 * switch.
1854 *
1855 * prepare_task_switch sets up locking and calls architecture specific
1856 * hooks.
1857 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07001858static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
Nick Piggin4866cde2005-06-25 14:57:23 -07001859{
1860 prepare_lock_switch(rq, next);
1861 prepare_arch_switch(next);
1862}
1863
1864/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07001865 * finish_task_switch - clean up after a task-switch
Jeff Garzik344baba2005-09-07 01:15:17 -04001866 * @rq: runqueue associated with task-switch
Linus Torvalds1da177e2005-04-16 15:20:36 -07001867 * @prev: the thread we just switched away from.
1868 *
Nick Piggin4866cde2005-06-25 14:57:23 -07001869 * finish_task_switch must be called after the context switch, paired
1870 * with a prepare_task_switch call before the context switch.
1871 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1872 * and do any other architecture-specific cleanup actions.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001873 *
1874 * Note that we may have delayed dropping an mm in context_switch(). If
1875 * so, we finish that here outside of the runqueue lock. (Doing it
1876 * with the lock held can cause deadlocks; see schedule() for
1877 * details.)
1878 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07001879static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001880 __releases(rq->lock)
1881{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001882 struct mm_struct *mm = rq->prev_mm;
Oleg Nesterov55a101f2006-09-29 02:01:10 -07001883 long prev_state;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001884
1885 rq->prev_mm = NULL;
1886
1887 /*
1888 * A task struct has one reference for the use as "current".
Oleg Nesterovc394cc92006-09-29 02:01:11 -07001889 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
Oleg Nesterov55a101f2006-09-29 02:01:10 -07001890 * schedule one last time. The schedule call will never return, and
1891 * the scheduled task must drop that reference.
Oleg Nesterovc394cc92006-09-29 02:01:11 -07001892 * The test for TASK_DEAD must occur while the runqueue locks are
Linus Torvalds1da177e2005-04-16 15:20:36 -07001893 * still held, otherwise prev could be scheduled on another cpu, die
1894 * there before we look at prev->state, and then the reference would
1895 * be dropped twice.
1896 * Manfred Spraul <manfred@colorfullife.com>
1897 */
Oleg Nesterov55a101f2006-09-29 02:01:10 -07001898 prev_state = prev->state;
Nick Piggin4866cde2005-06-25 14:57:23 -07001899 finish_arch_switch(prev);
1900 finish_lock_switch(rq, prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001901 if (mm)
1902 mmdrop(mm);
Oleg Nesterovc394cc92006-09-29 02:01:11 -07001903 if (unlikely(prev_state == TASK_DEAD)) {
bibo maoc6fd91f2006-03-26 01:38:20 -08001904 /*
1905 * Remove function-return probe instances associated with this
1906 * task and put them back on the free list.
1907 */
1908 kprobe_flush_task(prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001909 put_task_struct(prev);
bibo maoc6fd91f2006-03-26 01:38:20 -08001910 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001911}
1912
1913/**
1914 * schedule_tail - first thing a freshly forked thread must call.
1915 * @prev: the thread we just switched away from.
1916 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001917asmlinkage void schedule_tail(struct task_struct *prev)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001918 __releases(rq->lock)
1919{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001920 struct rq *rq = this_rq();
1921
Nick Piggin4866cde2005-06-25 14:57:23 -07001922 finish_task_switch(rq, prev);
1923#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1924 /* In this case, finish_task_switch does not reenable preemption */
1925 preempt_enable();
1926#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001927 if (current->set_child_tid)
1928 put_user(current->pid, current->set_child_tid);
1929}
1930
1931/*
1932 * context_switch - switch to the new MM and the new
1933 * thread's register state.
1934 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001935static inline struct task_struct *
Ingo Molnar70b97a72006-07-03 00:25:42 -07001936context_switch(struct rq *rq, struct task_struct *prev,
Ingo Molnar36c8b582006-07-03 00:25:41 -07001937 struct task_struct *next)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001938{
1939 struct mm_struct *mm = next->mm;
1940 struct mm_struct *oldmm = prev->active_mm;
1941
Zachary Amsden9226d122007-02-13 13:26:21 +01001942 /*
1943 * For paravirt, this is coupled with an exit in switch_to to
1944 * combine the page table reload and the switch backend into
1945 * one hypercall.
1946 */
1947 arch_enter_lazy_cpu_mode();
1948
Nick Pigginbeed33a2006-10-11 01:21:52 -07001949 if (!mm) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001950 next->active_mm = oldmm;
1951 atomic_inc(&oldmm->mm_count);
1952 enter_lazy_tlb(oldmm, next);
1953 } else
1954 switch_mm(oldmm, mm, next);
1955
Nick Pigginbeed33a2006-10-11 01:21:52 -07001956 if (!prev->mm) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001957 prev->active_mm = NULL;
1958 WARN_ON(rq->prev_mm);
1959 rq->prev_mm = oldmm;
1960 }
Ingo Molnar3a5f5e42006-07-14 00:24:27 -07001961 /*
1962 * Since the runqueue lock will be released by the next
1963 * task (which is an invalid locking op but in the case
1964 * of the scheduler it's an obvious special-case), so we
1965 * do an early lockdep release here:
1966 */
1967#ifndef __ARCH_WANT_UNLOCKED_CTXSW
Ingo Molnar8a25d5d2006-07-03 00:24:54 -07001968 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
Ingo Molnar3a5f5e42006-07-14 00:24:27 -07001969#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001970
1971 /* Here we just switch the register state and the stack. */
1972 switch_to(prev, next, prev);
1973
1974 return prev;
1975}
1976
1977/*
1978 * nr_running, nr_uninterruptible and nr_context_switches:
1979 *
1980 * externally visible scheduler statistics: current number of runnable
1981 * threads, current number of uninterruptible-sleeping threads, total
1982 * number of context switches performed since bootup.
1983 */
1984unsigned long nr_running(void)
1985{
1986 unsigned long i, sum = 0;
1987
1988 for_each_online_cpu(i)
1989 sum += cpu_rq(i)->nr_running;
1990
1991 return sum;
1992}
1993
1994unsigned long nr_uninterruptible(void)
1995{
1996 unsigned long i, sum = 0;
1997
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08001998 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001999 sum += cpu_rq(i)->nr_uninterruptible;
2000
2001 /*
2002 * Since we read the counters lockless, it might be slightly
2003 * inaccurate. Do not allow it to go below zero though:
2004 */
2005 if (unlikely((long)sum < 0))
2006 sum = 0;
2007
2008 return sum;
2009}
2010
2011unsigned long long nr_context_switches(void)
2012{
Steven Rostedtcc94abf2006-06-27 02:54:31 -07002013 int i;
2014 unsigned long long sum = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002015
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08002016 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002017 sum += cpu_rq(i)->nr_switches;
2018
2019 return sum;
2020}
2021
2022unsigned long nr_iowait(void)
2023{
2024 unsigned long i, sum = 0;
2025
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08002026 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002027 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2028
2029 return sum;
2030}
2031
Jack Steinerdb1b1fe2006-03-31 02:31:21 -08002032unsigned long nr_active(void)
2033{
2034 unsigned long i, running = 0, uninterruptible = 0;
2035
2036 for_each_online_cpu(i) {
2037 running += cpu_rq(i)->nr_running;
2038 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2039 }
2040
2041 if (unlikely((long)uninterruptible < 0))
2042 uninterruptible = 0;
2043
2044 return running + uninterruptible;
2045}
2046
Linus Torvalds1da177e2005-04-16 15:20:36 -07002047#ifdef CONFIG_SMP
2048
2049/*
Ingo Molnar48f24c42006-07-03 00:25:40 -07002050 * Is this task likely cache-hot:
2051 */
2052static inline int
2053task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
2054{
2055 return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
2056}
2057
2058/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002059 * double_rq_lock - safely lock two runqueues
2060 *
2061 * Note this does not disable interrupts like task_rq_lock,
2062 * you need to do so manually before calling.
2063 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002064static void double_rq_lock(struct rq *rq1, struct rq *rq2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002065 __acquires(rq1->lock)
2066 __acquires(rq2->lock)
2067{
Kirill Korotaev054b9102006-12-10 02:20:11 -08002068 BUG_ON(!irqs_disabled());
Linus Torvalds1da177e2005-04-16 15:20:36 -07002069 if (rq1 == rq2) {
2070 spin_lock(&rq1->lock);
2071 __acquire(rq2->lock); /* Fake it out ;) */
2072 } else {
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002073 if (rq1 < rq2) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002074 spin_lock(&rq1->lock);
2075 spin_lock(&rq2->lock);
2076 } else {
2077 spin_lock(&rq2->lock);
2078 spin_lock(&rq1->lock);
2079 }
2080 }
2081}
2082
2083/*
2084 * double_rq_unlock - safely unlock two runqueues
2085 *
2086 * Note this does not restore interrupts like task_rq_unlock,
2087 * you need to do so manually after calling.
2088 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002089static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002090 __releases(rq1->lock)
2091 __releases(rq2->lock)
2092{
2093 spin_unlock(&rq1->lock);
2094 if (rq1 != rq2)
2095 spin_unlock(&rq2->lock);
2096 else
2097 __release(rq2->lock);
2098}
2099
2100/*
2101 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2102 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002103static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002104 __releases(this_rq->lock)
2105 __acquires(busiest->lock)
2106 __acquires(this_rq->lock)
2107{
Kirill Korotaev054b9102006-12-10 02:20:11 -08002108 if (unlikely(!irqs_disabled())) {
2109 /* printk() doesn't work good under rq->lock */
2110 spin_unlock(&this_rq->lock);
2111 BUG_ON(1);
2112 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002113 if (unlikely(!spin_trylock(&busiest->lock))) {
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002114 if (busiest < this_rq) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002115 spin_unlock(&this_rq->lock);
2116 spin_lock(&busiest->lock);
2117 spin_lock(&this_rq->lock);
2118 } else
2119 spin_lock(&busiest->lock);
2120 }
2121}
2122
2123/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002124 * If dest_cpu is allowed for this process, migrate the task to it.
2125 * This is accomplished by forcing the cpu_allowed mask to only
2126 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2127 * the cpu_allowed mask is restored.
2128 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07002129static void sched_migrate_task(struct task_struct *p, int dest_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002130{
Ingo Molnar70b97a72006-07-03 00:25:42 -07002131 struct migration_req req;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002132 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002133 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002134
2135 rq = task_rq_lock(p, &flags);
2136 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2137 || unlikely(cpu_is_offline(dest_cpu)))
2138 goto out;
2139
2140 /* force the process onto the specified CPU */
2141 if (migrate_task(p, dest_cpu, &req)) {
2142 /* Need to wait for migration thread (might exit: take ref). */
2143 struct task_struct *mt = rq->migration_thread;
Ingo Molnar36c8b582006-07-03 00:25:41 -07002144
Linus Torvalds1da177e2005-04-16 15:20:36 -07002145 get_task_struct(mt);
2146 task_rq_unlock(rq, &flags);
2147 wake_up_process(mt);
2148 put_task_struct(mt);
2149 wait_for_completion(&req.done);
Ingo Molnar36c8b582006-07-03 00:25:41 -07002150
Linus Torvalds1da177e2005-04-16 15:20:36 -07002151 return;
2152 }
2153out:
2154 task_rq_unlock(rq, &flags);
2155}
2156
2157/*
Nick Piggin476d1392005-06-25 14:57:29 -07002158 * sched_exec - execve() is a valuable balancing opportunity, because at
2159 * this point the task has the smallest effective memory and cache footprint.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002160 */
2161void sched_exec(void)
2162{
Linus Torvalds1da177e2005-04-16 15:20:36 -07002163 int new_cpu, this_cpu = get_cpu();
Nick Piggin476d1392005-06-25 14:57:29 -07002164 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002165 put_cpu();
Nick Piggin476d1392005-06-25 14:57:29 -07002166 if (new_cpu != this_cpu)
2167 sched_migrate_task(current, new_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002168}
2169
2170/*
2171 * pull_task - move a task from a remote runqueue to the local runqueue.
2172 * Both runqueues must be locked.
2173 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002174static void pull_task(struct rq *src_rq, struct prio_array *src_array,
2175 struct task_struct *p, struct rq *this_rq,
2176 struct prio_array *this_array, int this_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002177{
2178 dequeue_task(p, src_array);
Peter Williams2dd73a42006-06-27 02:54:34 -07002179 dec_nr_running(p, src_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002180 set_task_cpu(p, this_cpu);
Peter Williams2dd73a42006-06-27 02:54:34 -07002181 inc_nr_running(p, this_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002182 enqueue_task(p, this_array);
Mike Galbraithb18ec802006-12-10 02:20:31 -08002183 p->timestamp = (p->timestamp - src_rq->most_recent_timestamp)
2184 + this_rq->most_recent_timestamp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002185 /*
2186 * Note that idle threads have a prio of MAX_PRIO, for this test
2187 * to be always true for them.
2188 */
2189 if (TASK_PREEMPTS_CURR(p, this_rq))
2190 resched_task(this_rq->curr);
2191}
2192
2193/*
2194 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2195 */
Arjan van de Ven858119e2006-01-14 13:20:43 -08002196static
Ingo Molnar70b97a72006-07-03 00:25:42 -07002197int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002198 struct sched_domain *sd, enum cpu_idle_type idle,
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07002199 int *all_pinned)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002200{
2201 /*
2202 * We do not migrate tasks that are:
2203 * 1) running (obviously), or
2204 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2205 * 3) are cache-hot on their current CPU.
2206 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002207 if (!cpu_isset(this_cpu, p->cpus_allowed))
2208 return 0;
Nick Piggin81026792005-06-25 14:57:07 -07002209 *all_pinned = 0;
2210
2211 if (task_running(rq, p))
2212 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002213
2214 /*
2215 * Aggressive migration if:
Nick Piggincafb20c2005-06-25 14:57:17 -07002216 * 1) task is cache cold, or
Linus Torvalds1da177e2005-04-16 15:20:36 -07002217 * 2) too many balance attempts have failed.
2218 */
2219
Mike Galbraithb18ec802006-12-10 02:20:31 -08002220 if (sd->nr_balance_failed > sd->cache_nice_tries) {
2221#ifdef CONFIG_SCHEDSTATS
2222 if (task_hot(p, rq->most_recent_timestamp, sd))
2223 schedstat_inc(sd, lb_hot_gained[idle]);
2224#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002225 return 1;
Mike Galbraithb18ec802006-12-10 02:20:31 -08002226 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002227
Mike Galbraithb18ec802006-12-10 02:20:31 -08002228 if (task_hot(p, rq->most_recent_timestamp, sd))
Nick Piggin81026792005-06-25 14:57:07 -07002229 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002230 return 1;
2231}
2232
Peter Williams615052d2006-06-27 02:54:37 -07002233#define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
Ingo Molnar48f24c42006-07-03 00:25:40 -07002234
Linus Torvalds1da177e2005-04-16 15:20:36 -07002235/*
Peter Williams2dd73a42006-06-27 02:54:34 -07002236 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2237 * load from busiest to this_rq, as part of a balancing operation within
2238 * "domain". Returns the number of tasks moved.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002239 *
2240 * Called with both runqueues locked.
2241 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002242static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
Peter Williams2dd73a42006-06-27 02:54:34 -07002243 unsigned long max_nr_move, unsigned long max_load_move,
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002244 struct sched_domain *sd, enum cpu_idle_type idle,
Peter Williams2dd73a42006-06-27 02:54:34 -07002245 int *all_pinned)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002246{
Ingo Molnar48f24c42006-07-03 00:25:40 -07002247 int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
2248 best_prio_seen, skip_for_load;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002249 struct prio_array *array, *dst_array;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002250 struct list_head *head, *curr;
Ingo Molnar36c8b582006-07-03 00:25:41 -07002251 struct task_struct *tmp;
Peter Williams2dd73a42006-06-27 02:54:34 -07002252 long rem_load_move;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002253
Peter Williams2dd73a42006-06-27 02:54:34 -07002254 if (max_nr_move == 0 || max_load_move == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002255 goto out;
2256
Peter Williams2dd73a42006-06-27 02:54:34 -07002257 rem_load_move = max_load_move;
Nick Piggin81026792005-06-25 14:57:07 -07002258 pinned = 1;
Peter Williams615052d2006-06-27 02:54:37 -07002259 this_best_prio = rq_best_prio(this_rq);
Ingo Molnar48f24c42006-07-03 00:25:40 -07002260 best_prio = rq_best_prio(busiest);
Peter Williams615052d2006-06-27 02:54:37 -07002261 /*
2262 * Enable handling of the case where there is more than one task
2263 * with the best priority. If the current running task is one
Ingo Molnar48f24c42006-07-03 00:25:40 -07002264 * of those with prio==best_prio we know it won't be moved
Peter Williams615052d2006-06-27 02:54:37 -07002265 * and therefore it's safe to override the skip (based on load) of
2266 * any task we find with that prio.
2267 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07002268 best_prio_seen = best_prio == busiest->curr->prio;
Nick Piggin81026792005-06-25 14:57:07 -07002269
Linus Torvalds1da177e2005-04-16 15:20:36 -07002270 /*
2271 * We first consider expired tasks. Those will likely not be
2272 * executed in the near future, and they are most likely to
2273 * be cache-cold, thus switching CPUs has the least effect
2274 * on them.
2275 */
2276 if (busiest->expired->nr_active) {
2277 array = busiest->expired;
2278 dst_array = this_rq->expired;
2279 } else {
2280 array = busiest->active;
2281 dst_array = this_rq->active;
2282 }
2283
2284new_array:
2285 /* Start searching at priority 0: */
2286 idx = 0;
2287skip_bitmap:
2288 if (!idx)
2289 idx = sched_find_first_bit(array->bitmap);
2290 else
2291 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
2292 if (idx >= MAX_PRIO) {
2293 if (array == busiest->expired && busiest->active->nr_active) {
2294 array = busiest->active;
2295 dst_array = this_rq->active;
2296 goto new_array;
2297 }
2298 goto out;
2299 }
2300
2301 head = array->queue + idx;
2302 curr = head->prev;
2303skip_queue:
Ingo Molnar36c8b582006-07-03 00:25:41 -07002304 tmp = list_entry(curr, struct task_struct, run_list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002305
2306 curr = curr->prev;
2307
Peter Williams50ddd962006-06-27 02:54:36 -07002308 /*
2309 * To help distribute high priority tasks accross CPUs we don't
2310 * skip a task if it will be the highest priority task (i.e. smallest
2311 * prio value) on its new queue regardless of its load weight
2312 */
Peter Williams615052d2006-06-27 02:54:37 -07002313 skip_for_load = tmp->load_weight > rem_load_move;
2314 if (skip_for_load && idx < this_best_prio)
Ingo Molnar48f24c42006-07-03 00:25:40 -07002315 skip_for_load = !best_prio_seen && idx == best_prio;
Peter Williams615052d2006-06-27 02:54:37 -07002316 if (skip_for_load ||
Peter Williams2dd73a42006-06-27 02:54:34 -07002317 !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07002318
2319 best_prio_seen |= idx == best_prio;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002320 if (curr != head)
2321 goto skip_queue;
2322 idx++;
2323 goto skip_bitmap;
2324 }
2325
Linus Torvalds1da177e2005-04-16 15:20:36 -07002326 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
2327 pulled++;
Peter Williams2dd73a42006-06-27 02:54:34 -07002328 rem_load_move -= tmp->load_weight;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002329
Peter Williams2dd73a42006-06-27 02:54:34 -07002330 /*
2331 * We only want to steal up to the prescribed number of tasks
2332 * and the prescribed amount of weighted load.
2333 */
2334 if (pulled < max_nr_move && rem_load_move > 0) {
Peter Williams615052d2006-06-27 02:54:37 -07002335 if (idx < this_best_prio)
2336 this_best_prio = idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002337 if (curr != head)
2338 goto skip_queue;
2339 idx++;
2340 goto skip_bitmap;
2341 }
2342out:
2343 /*
2344 * Right now, this is the only place pull_task() is called,
2345 * so we can safely collect pull_task() stats here rather than
2346 * inside pull_task().
2347 */
2348 schedstat_add(sd, lb_gained[idle], pulled);
Nick Piggin81026792005-06-25 14:57:07 -07002349
2350 if (all_pinned)
2351 *all_pinned = pinned;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002352 return pulled;
2353}
2354
2355/*
2356 * find_busiest_group finds and returns the busiest CPU group within the
Ingo Molnar48f24c42006-07-03 00:25:40 -07002357 * domain. It calculates and returns the amount of weighted load which
2358 * should be moved to restore balance via the imbalance parameter.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002359 */
2360static struct sched_group *
2361find_busiest_group(struct sched_domain *sd, int this_cpu,
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002362 unsigned long *imbalance, enum cpu_idle_type idle, int *sd_idle,
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002363 cpumask_t *cpus, int *balance)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002364{
2365 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2366 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002367 unsigned long max_pull;
Peter Williams2dd73a42006-06-27 02:54:34 -07002368 unsigned long busiest_load_per_task, busiest_nr_running;
2369 unsigned long this_load_per_task, this_nr_running;
Nick Piggin78979862005-06-25 14:57:13 -07002370 int load_idx;
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002371#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2372 int power_savings_balance = 1;
2373 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2374 unsigned long min_nr_running = ULONG_MAX;
2375 struct sched_group *group_min = NULL, *group_leader = NULL;
2376#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002377
2378 max_load = this_load = total_load = total_pwr = 0;
Peter Williams2dd73a42006-06-27 02:54:34 -07002379 busiest_load_per_task = busiest_nr_running = 0;
2380 this_load_per_task = this_nr_running = 0;
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002381 if (idle == CPU_NOT_IDLE)
Nick Piggin78979862005-06-25 14:57:13 -07002382 load_idx = sd->busy_idx;
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002383 else if (idle == CPU_NEWLY_IDLE)
Nick Piggin78979862005-06-25 14:57:13 -07002384 load_idx = sd->newidle_idx;
2385 else
2386 load_idx = sd->idle_idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002387
2388 do {
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002389 unsigned long load, group_capacity;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002390 int local_group;
2391 int i;
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002392 unsigned int balance_cpu = -1, first_idle_cpu = 0;
Peter Williams2dd73a42006-06-27 02:54:34 -07002393 unsigned long sum_nr_running, sum_weighted_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002394
2395 local_group = cpu_isset(this_cpu, group->cpumask);
2396
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002397 if (local_group)
2398 balance_cpu = first_cpu(group->cpumask);
2399
Linus Torvalds1da177e2005-04-16 15:20:36 -07002400 /* Tally up the load of all CPUs in the group */
Peter Williams2dd73a42006-06-27 02:54:34 -07002401 sum_weighted_load = sum_nr_running = avg_load = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002402
2403 for_each_cpu_mask(i, group->cpumask) {
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002404 struct rq *rq;
2405
2406 if (!cpu_isset(i, *cpus))
2407 continue;
2408
2409 rq = cpu_rq(i);
Peter Williams2dd73a42006-06-27 02:54:34 -07002410
Nick Piggin5969fe02005-09-10 00:26:19 -07002411 if (*sd_idle && !idle_cpu(i))
2412 *sd_idle = 0;
2413
Linus Torvalds1da177e2005-04-16 15:20:36 -07002414 /* Bias balancing toward cpus of our domain */
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002415 if (local_group) {
2416 if (idle_cpu(i) && !first_idle_cpu) {
2417 first_idle_cpu = 1;
2418 balance_cpu = i;
2419 }
2420
Nick Piggina2000572006-02-10 01:51:02 -08002421 load = target_load(i, load_idx);
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002422 } else
Nick Piggina2000572006-02-10 01:51:02 -08002423 load = source_load(i, load_idx);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002424
2425 avg_load += load;
Peter Williams2dd73a42006-06-27 02:54:34 -07002426 sum_nr_running += rq->nr_running;
2427 sum_weighted_load += rq->raw_weighted_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002428 }
2429
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002430 /*
2431 * First idle cpu or the first cpu(busiest) in this sched group
2432 * is eligible for doing load balancing at this and above
2433 * domains.
2434 */
2435 if (local_group && balance_cpu != this_cpu && balance) {
2436 *balance = 0;
2437 goto ret;
2438 }
2439
Linus Torvalds1da177e2005-04-16 15:20:36 -07002440 total_load += avg_load;
Eric Dumazet5517d862007-05-08 00:32:57 -07002441 total_pwr += group->__cpu_power;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002442
2443 /* Adjust by relative CPU power of the group */
Eric Dumazet5517d862007-05-08 00:32:57 -07002444 avg_load = sg_div_cpu_power(group,
2445 avg_load * SCHED_LOAD_SCALE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002446
Eric Dumazet5517d862007-05-08 00:32:57 -07002447 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002448
Linus Torvalds1da177e2005-04-16 15:20:36 -07002449 if (local_group) {
2450 this_load = avg_load;
2451 this = group;
Peter Williams2dd73a42006-06-27 02:54:34 -07002452 this_nr_running = sum_nr_running;
2453 this_load_per_task = sum_weighted_load;
2454 } else if (avg_load > max_load &&
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002455 sum_nr_running > group_capacity) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002456 max_load = avg_load;
2457 busiest = group;
Peter Williams2dd73a42006-06-27 02:54:34 -07002458 busiest_nr_running = sum_nr_running;
2459 busiest_load_per_task = sum_weighted_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002460 }
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002461
2462#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2463 /*
2464 * Busy processors will not participate in power savings
2465 * balance.
2466 */
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002467 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002468 goto group_next;
2469
2470 /*
2471 * If the local group is idle or completely loaded
2472 * no need to do power savings balance at this domain
2473 */
2474 if (local_group && (this_nr_running >= group_capacity ||
2475 !this_nr_running))
2476 power_savings_balance = 0;
2477
2478 /*
2479 * If a group is already running at full capacity or idle,
2480 * don't include that group in power savings calculations
2481 */
2482 if (!power_savings_balance || sum_nr_running >= group_capacity
2483 || !sum_nr_running)
2484 goto group_next;
2485
2486 /*
2487 * Calculate the group which has the least non-idle load.
2488 * This is the group from where we need to pick up the load
2489 * for saving power
2490 */
2491 if ((sum_nr_running < min_nr_running) ||
2492 (sum_nr_running == min_nr_running &&
2493 first_cpu(group->cpumask) <
2494 first_cpu(group_min->cpumask))) {
2495 group_min = group;
2496 min_nr_running = sum_nr_running;
2497 min_load_per_task = sum_weighted_load /
2498 sum_nr_running;
2499 }
2500
2501 /*
2502 * Calculate the group which is almost near its
2503 * capacity but still has some space to pick up some load
2504 * from other group and save more power
2505 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07002506 if (sum_nr_running <= group_capacity - 1) {
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002507 if (sum_nr_running > leader_nr_running ||
2508 (sum_nr_running == leader_nr_running &&
2509 first_cpu(group->cpumask) >
2510 first_cpu(group_leader->cpumask))) {
2511 group_leader = group;
2512 leader_nr_running = sum_nr_running;
2513 }
Ingo Molnar48f24c42006-07-03 00:25:40 -07002514 }
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002515group_next:
2516#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002517 group = group->next;
2518 } while (group != sd->groups);
2519
Peter Williams2dd73a42006-06-27 02:54:34 -07002520 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002521 goto out_balanced;
2522
2523 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2524
2525 if (this_load >= avg_load ||
2526 100*max_load <= sd->imbalance_pct*this_load)
2527 goto out_balanced;
2528
Peter Williams2dd73a42006-06-27 02:54:34 -07002529 busiest_load_per_task /= busiest_nr_running;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002530 /*
2531 * We're trying to get all the cpus to the average_load, so we don't
2532 * want to push ourselves above the average load, nor do we wish to
2533 * reduce the max loaded cpu below the average load, as either of these
2534 * actions would just result in more rebalancing later, and ping-pong
2535 * tasks around. Thus we look for the minimum possible imbalance.
2536 * Negative imbalances (*we* are more loaded than anyone else) will
2537 * be counted as no imbalance for these purposes -- we can't fix that
2538 * by pulling tasks to us. Be careful of negative numbers as they'll
2539 * appear as very large values with unsigned longs.
2540 */
Peter Williams2dd73a42006-06-27 02:54:34 -07002541 if (max_load <= busiest_load_per_task)
2542 goto out_balanced;
2543
2544 /*
2545 * In the presence of smp nice balancing, certain scenarios can have
2546 * max load less than avg load(as we skip the groups at or below
2547 * its cpu_power, while calculating max_load..)
2548 */
2549 if (max_load < avg_load) {
2550 *imbalance = 0;
2551 goto small_imbalance;
2552 }
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002553
2554 /* Don't want to pull so many tasks that a group would go idle */
Peter Williams2dd73a42006-06-27 02:54:34 -07002555 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002556
Linus Torvalds1da177e2005-04-16 15:20:36 -07002557 /* How much load to actually move to equalise the imbalance */
Eric Dumazet5517d862007-05-08 00:32:57 -07002558 *imbalance = min(max_pull * busiest->__cpu_power,
2559 (avg_load - this_load) * this->__cpu_power)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002560 / SCHED_LOAD_SCALE;
2561
Peter Williams2dd73a42006-06-27 02:54:34 -07002562 /*
2563 * if *imbalance is less than the average load per runnable task
2564 * there is no gaurantee that any tasks will be moved so we'll have
2565 * a think about bumping its value to force at least one task to be
2566 * moved
2567 */
2568 if (*imbalance < busiest_load_per_task) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07002569 unsigned long tmp, pwr_now, pwr_move;
Peter Williams2dd73a42006-06-27 02:54:34 -07002570 unsigned int imbn;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002571
Peter Williams2dd73a42006-06-27 02:54:34 -07002572small_imbalance:
2573 pwr_move = pwr_now = 0;
2574 imbn = 2;
2575 if (this_nr_running) {
2576 this_load_per_task /= this_nr_running;
2577 if (busiest_load_per_task > this_load_per_task)
2578 imbn = 1;
2579 } else
2580 this_load_per_task = SCHED_LOAD_SCALE;
2581
2582 if (max_load - this_load >= busiest_load_per_task * imbn) {
2583 *imbalance = busiest_load_per_task;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002584 return busiest;
2585 }
2586
2587 /*
2588 * OK, we don't have enough imbalance to justify moving tasks,
2589 * however we may be able to increase total CPU power used by
2590 * moving them.
2591 */
2592
Eric Dumazet5517d862007-05-08 00:32:57 -07002593 pwr_now += busiest->__cpu_power *
2594 min(busiest_load_per_task, max_load);
2595 pwr_now += this->__cpu_power *
2596 min(this_load_per_task, this_load);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002597 pwr_now /= SCHED_LOAD_SCALE;
2598
2599 /* Amount of load we'd subtract */
Eric Dumazet5517d862007-05-08 00:32:57 -07002600 tmp = sg_div_cpu_power(busiest,
2601 busiest_load_per_task * SCHED_LOAD_SCALE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002602 if (max_load > tmp)
Eric Dumazet5517d862007-05-08 00:32:57 -07002603 pwr_move += busiest->__cpu_power *
Peter Williams2dd73a42006-06-27 02:54:34 -07002604 min(busiest_load_per_task, max_load - tmp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002605
2606 /* Amount of load we'd add */
Eric Dumazet5517d862007-05-08 00:32:57 -07002607 if (max_load * busiest->__cpu_power <
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08002608 busiest_load_per_task * SCHED_LOAD_SCALE)
Eric Dumazet5517d862007-05-08 00:32:57 -07002609 tmp = sg_div_cpu_power(this,
2610 max_load * busiest->__cpu_power);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002611 else
Eric Dumazet5517d862007-05-08 00:32:57 -07002612 tmp = sg_div_cpu_power(this,
2613 busiest_load_per_task * SCHED_LOAD_SCALE);
2614 pwr_move += this->__cpu_power *
2615 min(this_load_per_task, this_load + tmp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002616 pwr_move /= SCHED_LOAD_SCALE;
2617
2618 /* Move if we gain throughput */
2619 if (pwr_move <= pwr_now)
2620 goto out_balanced;
2621
Peter Williams2dd73a42006-06-27 02:54:34 -07002622 *imbalance = busiest_load_per_task;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002623 }
2624
Linus Torvalds1da177e2005-04-16 15:20:36 -07002625 return busiest;
2626
2627out_balanced:
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002628#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002629 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002630 goto ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002631
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002632 if (this == group_leader && group_leader != group_min) {
2633 *imbalance = min_load_per_task;
2634 return group_min;
2635 }
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002636#endif
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002637ret:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002638 *imbalance = 0;
2639 return NULL;
2640}
2641
2642/*
2643 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2644 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002645static struct rq *
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002646find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002647 unsigned long imbalance, cpumask_t *cpus)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002648{
Ingo Molnar70b97a72006-07-03 00:25:42 -07002649 struct rq *busiest = NULL, *rq;
Peter Williams2dd73a42006-06-27 02:54:34 -07002650 unsigned long max_load = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002651 int i;
2652
2653 for_each_cpu_mask(i, group->cpumask) {
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002654
2655 if (!cpu_isset(i, *cpus))
2656 continue;
2657
Ingo Molnar48f24c42006-07-03 00:25:40 -07002658 rq = cpu_rq(i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002659
Ingo Molnar48f24c42006-07-03 00:25:40 -07002660 if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
Peter Williams2dd73a42006-06-27 02:54:34 -07002661 continue;
2662
Ingo Molnar48f24c42006-07-03 00:25:40 -07002663 if (rq->raw_weighted_load > max_load) {
2664 max_load = rq->raw_weighted_load;
2665 busiest = rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002666 }
2667 }
2668
2669 return busiest;
2670}
2671
2672/*
Nick Piggin77391d72005-06-25 14:57:30 -07002673 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2674 * so long as it is large enough.
2675 */
2676#define MAX_PINNED_INTERVAL 512
2677
Ingo Molnar48f24c42006-07-03 00:25:40 -07002678static inline unsigned long minus_1_or_zero(unsigned long n)
2679{
2680 return n > 0 ? n - 1 : 0;
2681}
2682
Nick Piggin77391d72005-06-25 14:57:30 -07002683/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002684 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2685 * tasks if there is an imbalance.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002686 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002687static int load_balance(int this_cpu, struct rq *this_rq,
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002688 struct sched_domain *sd, enum cpu_idle_type idle,
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002689 int *balance)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002690{
Ingo Molnar48f24c42006-07-03 00:25:40 -07002691 int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002692 struct sched_group *group;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002693 unsigned long imbalance;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002694 struct rq *busiest;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002695 cpumask_t cpus = CPU_MASK_ALL;
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002696 unsigned long flags;
Nick Piggin5969fe02005-09-10 00:26:19 -07002697
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002698 /*
2699 * When power savings policy is enabled for the parent domain, idle
2700 * sibling can pick up load irrespective of busy siblings. In this case,
2701 * let the state of idle sibling percolate up as IDLE, instead of
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002702 * portraying it as CPU_NOT_IDLE.
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002703 */
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002704 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002705 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002706 sd_idle = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002707
Linus Torvalds1da177e2005-04-16 15:20:36 -07002708 schedstat_inc(sd, lb_cnt[idle]);
2709
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002710redo:
2711 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002712 &cpus, balance);
2713
Chen, Kenneth W06066712006-12-10 02:20:35 -08002714 if (*balance == 0)
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002715 goto out_balanced;
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002716
Linus Torvalds1da177e2005-04-16 15:20:36 -07002717 if (!group) {
2718 schedstat_inc(sd, lb_nobusyg[idle]);
2719 goto out_balanced;
2720 }
2721
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002722 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002723 if (!busiest) {
2724 schedstat_inc(sd, lb_nobusyq[idle]);
2725 goto out_balanced;
2726 }
2727
Nick Piggindb935db2005-06-25 14:57:11 -07002728 BUG_ON(busiest == this_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002729
2730 schedstat_add(sd, lb_imbalance[idle], imbalance);
2731
2732 nr_moved = 0;
2733 if (busiest->nr_running > 1) {
2734 /*
2735 * Attempt to move tasks. If find_busiest_group has found
2736 * an imbalance but busiest->nr_running <= 1, the group is
2737 * still unbalanced. nr_moved simply stays zero, so it is
2738 * correctly treated as an imbalance.
2739 */
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002740 local_irq_save(flags);
Nick Piggine17224b2005-09-10 00:26:18 -07002741 double_rq_lock(this_rq, busiest);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002742 nr_moved = move_tasks(this_rq, this_cpu, busiest,
Ingo Molnar48f24c42006-07-03 00:25:40 -07002743 minus_1_or_zero(busiest->nr_running),
2744 imbalance, sd, idle, &all_pinned);
Nick Piggine17224b2005-09-10 00:26:18 -07002745 double_rq_unlock(this_rq, busiest);
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002746 local_irq_restore(flags);
Nick Piggin81026792005-06-25 14:57:07 -07002747
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002748 /*
2749 * some other cpu did the load balance for us.
2750 */
2751 if (nr_moved && this_cpu != smp_processor_id())
2752 resched_cpu(this_cpu);
2753
Nick Piggin81026792005-06-25 14:57:07 -07002754 /* All tasks on this runqueue were pinned by CPU affinity */
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002755 if (unlikely(all_pinned)) {
2756 cpu_clear(cpu_of(busiest), cpus);
2757 if (!cpus_empty(cpus))
2758 goto redo;
Nick Piggin81026792005-06-25 14:57:07 -07002759 goto out_balanced;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002760 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002761 }
Nick Piggin81026792005-06-25 14:57:07 -07002762
Linus Torvalds1da177e2005-04-16 15:20:36 -07002763 if (!nr_moved) {
2764 schedstat_inc(sd, lb_failed[idle]);
2765 sd->nr_balance_failed++;
2766
2767 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002768
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002769 spin_lock_irqsave(&busiest->lock, flags);
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002770
2771 /* don't kick the migration_thread, if the curr
2772 * task on busiest cpu can't be moved to this_cpu
2773 */
2774 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002775 spin_unlock_irqrestore(&busiest->lock, flags);
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002776 all_pinned = 1;
2777 goto out_one_pinned;
2778 }
2779
Linus Torvalds1da177e2005-04-16 15:20:36 -07002780 if (!busiest->active_balance) {
2781 busiest->active_balance = 1;
2782 busiest->push_cpu = this_cpu;
Nick Piggin81026792005-06-25 14:57:07 -07002783 active_balance = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002784 }
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002785 spin_unlock_irqrestore(&busiest->lock, flags);
Nick Piggin81026792005-06-25 14:57:07 -07002786 if (active_balance)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002787 wake_up_process(busiest->migration_thread);
2788
2789 /*
2790 * We've kicked active balancing, reset the failure
2791 * counter.
2792 */
Nick Piggin39507452005-06-25 14:57:09 -07002793 sd->nr_balance_failed = sd->cache_nice_tries+1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002794 }
Nick Piggin81026792005-06-25 14:57:07 -07002795 } else
Linus Torvalds1da177e2005-04-16 15:20:36 -07002796 sd->nr_balance_failed = 0;
2797
Nick Piggin81026792005-06-25 14:57:07 -07002798 if (likely(!active_balance)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002799 /* We were unbalanced, so reset the balancing interval */
2800 sd->balance_interval = sd->min_interval;
Nick Piggin81026792005-06-25 14:57:07 -07002801 } else {
2802 /*
2803 * If we've begun active balancing, start to back off. This
2804 * case may not be covered by the all_pinned logic if there
2805 * is only 1 task on the busy runqueue (because we don't call
2806 * move_tasks).
2807 */
2808 if (sd->balance_interval < sd->max_interval)
2809 sd->balance_interval *= 2;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002810 }
2811
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002812 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002813 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002814 return -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002815 return nr_moved;
2816
2817out_balanced:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002818 schedstat_inc(sd, lb_balanced[idle]);
2819
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002820 sd->nr_balance_failed = 0;
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002821
2822out_one_pinned:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002823 /* tune up the balancing interval */
Nick Piggin77391d72005-06-25 14:57:30 -07002824 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2825 (sd->balance_interval < sd->max_interval))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002826 sd->balance_interval *= 2;
2827
Ingo Molnar48f24c42006-07-03 00:25:40 -07002828 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002829 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002830 return -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002831 return 0;
2832}
2833
2834/*
2835 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2836 * tasks if there is an imbalance.
2837 *
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002838 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
Linus Torvalds1da177e2005-04-16 15:20:36 -07002839 * this_rq is locked.
2840 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07002841static int
Ingo Molnar70b97a72006-07-03 00:25:42 -07002842load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002843{
2844 struct sched_group *group;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002845 struct rq *busiest = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002846 unsigned long imbalance;
2847 int nr_moved = 0;
Nick Piggin5969fe02005-09-10 00:26:19 -07002848 int sd_idle = 0;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002849 cpumask_t cpus = CPU_MASK_ALL;
Nick Piggin5969fe02005-09-10 00:26:19 -07002850
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002851 /*
2852 * When power savings policy is enabled for the parent domain, idle
2853 * sibling can pick up load irrespective of busy siblings. In this case,
2854 * let the state of idle sibling percolate up as IDLE, instead of
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002855 * portraying it as CPU_NOT_IDLE.
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002856 */
2857 if (sd->flags & SD_SHARE_CPUPOWER &&
2858 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002859 sd_idle = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002860
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002861 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002862redo:
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002863 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002864 &sd_idle, &cpus, NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002865 if (!group) {
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002866 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002867 goto out_balanced;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002868 }
2869
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002870 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002871 &cpus);
Nick Piggindb935db2005-06-25 14:57:11 -07002872 if (!busiest) {
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002873 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002874 goto out_balanced;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002875 }
2876
Nick Piggindb935db2005-06-25 14:57:11 -07002877 BUG_ON(busiest == this_rq);
2878
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002879 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002880
2881 nr_moved = 0;
2882 if (busiest->nr_running > 1) {
2883 /* Attempt to move tasks */
2884 double_lock_balance(this_rq, busiest);
2885 nr_moved = move_tasks(this_rq, this_cpu, busiest,
Peter Williams2dd73a42006-06-27 02:54:34 -07002886 minus_1_or_zero(busiest->nr_running),
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002887 imbalance, sd, CPU_NEWLY_IDLE, NULL);
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002888 spin_unlock(&busiest->lock);
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002889
2890 if (!nr_moved) {
2891 cpu_clear(cpu_of(busiest), cpus);
2892 if (!cpus_empty(cpus))
2893 goto redo;
2894 }
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002895 }
2896
Nick Piggin5969fe02005-09-10 00:26:19 -07002897 if (!nr_moved) {
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002898 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002899 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2900 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002901 return -1;
2902 } else
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002903 sd->nr_balance_failed = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002904
Linus Torvalds1da177e2005-04-16 15:20:36 -07002905 return nr_moved;
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002906
2907out_balanced:
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002908 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
Ingo Molnar48f24c42006-07-03 00:25:40 -07002909 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002910 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002911 return -1;
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002912 sd->nr_balance_failed = 0;
Ingo Molnar48f24c42006-07-03 00:25:40 -07002913
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002914 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002915}
2916
2917/*
2918 * idle_balance is called by schedule() if this_cpu is about to become
2919 * idle. Attempts to pull tasks from other CPUs.
2920 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002921static void idle_balance(int this_cpu, struct rq *this_rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002922{
2923 struct sched_domain *sd;
Christoph Lameter1bd77f22006-12-10 02:20:27 -08002924 int pulled_task = 0;
2925 unsigned long next_balance = jiffies + 60 * HZ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002926
2927 for_each_domain(this_cpu, sd) {
Christoph Lameter92c4ca52007-06-23 17:16:33 -07002928 unsigned long interval;
2929
2930 if (!(sd->flags & SD_LOAD_BALANCE))
2931 continue;
2932
2933 if (sd->flags & SD_BALANCE_NEWIDLE)
Ingo Molnar48f24c42006-07-03 00:25:40 -07002934 /* If we've pulled tasks over stop searching: */
Christoph Lameter1bd77f22006-12-10 02:20:27 -08002935 pulled_task = load_balance_newidle(this_cpu,
Christoph Lameter92c4ca52007-06-23 17:16:33 -07002936 this_rq, sd);
2937
2938 interval = msecs_to_jiffies(sd->balance_interval);
2939 if (time_after(next_balance, sd->last_balance + interval))
2940 next_balance = sd->last_balance + interval;
2941 if (pulled_task)
2942 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002943 }
Christoph Lameter1bd77f22006-12-10 02:20:27 -08002944 if (!pulled_task)
2945 /*
2946 * We are going idle. next_balance may be set based on
2947 * a busy processor. So reset next_balance.
2948 */
2949 this_rq->next_balance = next_balance;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002950}
2951
2952/*
2953 * active_load_balance is run by migration threads. It pushes running tasks
2954 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2955 * running on each physical CPU where possible, and avoids physical /
2956 * logical imbalances.
2957 *
2958 * Called with busiest_rq locked.
2959 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002960static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002961{
Nick Piggin39507452005-06-25 14:57:09 -07002962 int target_cpu = busiest_rq->push_cpu;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002963 struct sched_domain *sd;
2964 struct rq *target_rq;
Nick Piggin39507452005-06-25 14:57:09 -07002965
Ingo Molnar48f24c42006-07-03 00:25:40 -07002966 /* Is there any task to move? */
Nick Piggin39507452005-06-25 14:57:09 -07002967 if (busiest_rq->nr_running <= 1)
Nick Piggin39507452005-06-25 14:57:09 -07002968 return;
2969
2970 target_rq = cpu_rq(target_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002971
2972 /*
Nick Piggin39507452005-06-25 14:57:09 -07002973 * This condition is "impossible", if it occurs
2974 * we need to fix it. Originally reported by
2975 * Bjorn Helgaas on a 128-cpu setup.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002976 */
Nick Piggin39507452005-06-25 14:57:09 -07002977 BUG_ON(busiest_rq == target_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002978
Nick Piggin39507452005-06-25 14:57:09 -07002979 /* move a task from busiest_rq to target_rq */
2980 double_lock_balance(busiest_rq, target_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002981
Nick Piggin39507452005-06-25 14:57:09 -07002982 /* Search for an sd spanning us and the target CPU. */
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002983 for_each_domain(target_cpu, sd) {
Nick Piggin39507452005-06-25 14:57:09 -07002984 if ((sd->flags & SD_LOAD_BALANCE) &&
Ingo Molnar48f24c42006-07-03 00:25:40 -07002985 cpu_isset(busiest_cpu, sd->span))
Nick Piggin39507452005-06-25 14:57:09 -07002986 break;
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002987 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002988
Ingo Molnar48f24c42006-07-03 00:25:40 -07002989 if (likely(sd)) {
2990 schedstat_inc(sd, alb_cnt);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002991
Ingo Molnar48f24c42006-07-03 00:25:40 -07002992 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002993 RTPRIO_TO_LOAD_WEIGHT(100), sd, CPU_IDLE,
Ingo Molnar48f24c42006-07-03 00:25:40 -07002994 NULL))
2995 schedstat_inc(sd, alb_pushed);
2996 else
2997 schedstat_inc(sd, alb_failed);
2998 }
Nick Piggin39507452005-06-25 14:57:09 -07002999 spin_unlock(&target_rq->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003000}
3001
Christoph Lameter7835b982006-12-10 02:20:22 -08003002static void update_load(struct rq *this_rq)
Ingo Molnar48f24c42006-07-03 00:25:40 -07003003{
Christoph Lameter7835b982006-12-10 02:20:22 -08003004 unsigned long this_load;
Nick Pigginff916912007-02-12 00:53:51 -08003005 unsigned int i, scale;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003006
Peter Williams2dd73a42006-06-27 02:54:34 -07003007 this_load = this_rq->raw_weighted_load;
Ingo Molnar48f24c42006-07-03 00:25:40 -07003008
3009 /* Update our load: */
Nick Pigginff916912007-02-12 00:53:51 -08003010 for (i = 0, scale = 1; i < 3; i++, scale += scale) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07003011 unsigned long old_load, new_load;
3012
Nick Pigginff916912007-02-12 00:53:51 -08003013 /* scale is effectively 1 << i now, and >> i divides by scale */
3014
Nick Piggin78979862005-06-25 14:57:13 -07003015 old_load = this_rq->cpu_load[i];
Ingo Molnar48f24c42006-07-03 00:25:40 -07003016 new_load = this_load;
Nick Piggin78979862005-06-25 14:57:13 -07003017 /*
3018 * Round up the averaging division if load is increasing. This
3019 * prevents us from getting stuck on 9 if the load is 10, for
3020 * example.
3021 */
3022 if (new_load > old_load)
3023 new_load += scale-1;
Nick Pigginff916912007-02-12 00:53:51 -08003024 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
Nick Piggin78979862005-06-25 14:57:13 -07003025 }
Christoph Lameter7835b982006-12-10 02:20:22 -08003026}
3027
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003028#ifdef CONFIG_NO_HZ
3029static struct {
3030 atomic_t load_balancer;
3031 cpumask_t cpu_mask;
3032} nohz ____cacheline_aligned = {
3033 .load_balancer = ATOMIC_INIT(-1),
3034 .cpu_mask = CPU_MASK_NONE,
3035};
3036
Christoph Lameter7835b982006-12-10 02:20:22 -08003037/*
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003038 * This routine will try to nominate the ilb (idle load balancing)
3039 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3040 * load balancing on behalf of all those cpus. If all the cpus in the system
3041 * go into this tickless mode, then there will be no ilb owner (as there is
3042 * no need for one) and all the cpus will sleep till the next wakeup event
3043 * arrives...
Christoph Lameter7835b982006-12-10 02:20:22 -08003044 *
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003045 * For the ilb owner, tick is not stopped. And this tick will be used
3046 * for idle load balancing. ilb owner will still be part of
3047 * nohz.cpu_mask..
3048 *
3049 * While stopping the tick, this cpu will become the ilb owner if there
3050 * is no other owner. And will be the owner till that cpu becomes busy
3051 * or if all cpus in the system stop their ticks at which point
3052 * there is no need for ilb owner.
3053 *
3054 * When the ilb owner becomes busy, it nominates another owner, during the
3055 * next busy scheduler_tick()
3056 */
3057int select_nohz_load_balancer(int stop_tick)
3058{
3059 int cpu = smp_processor_id();
3060
3061 if (stop_tick) {
3062 cpu_set(cpu, nohz.cpu_mask);
3063 cpu_rq(cpu)->in_nohz_recently = 1;
3064
3065 /*
3066 * If we are going offline and still the leader, give up!
3067 */
3068 if (cpu_is_offline(cpu) &&
3069 atomic_read(&nohz.load_balancer) == cpu) {
3070 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3071 BUG();
3072 return 0;
3073 }
3074
3075 /* time for ilb owner also to sleep */
3076 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3077 if (atomic_read(&nohz.load_balancer) == cpu)
3078 atomic_set(&nohz.load_balancer, -1);
3079 return 0;
3080 }
3081
3082 if (atomic_read(&nohz.load_balancer) == -1) {
3083 /* make me the ilb owner */
3084 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3085 return 1;
3086 } else if (atomic_read(&nohz.load_balancer) == cpu)
3087 return 1;
3088 } else {
3089 if (!cpu_isset(cpu, nohz.cpu_mask))
3090 return 0;
3091
3092 cpu_clear(cpu, nohz.cpu_mask);
3093
3094 if (atomic_read(&nohz.load_balancer) == cpu)
3095 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3096 BUG();
3097 }
3098 return 0;
3099}
3100#endif
3101
3102static DEFINE_SPINLOCK(balancing);
3103
3104/*
Christoph Lameter7835b982006-12-10 02:20:22 -08003105 * It checks each scheduling domain to see if it is due to be balanced,
3106 * and initiates a balancing operation if so.
3107 *
3108 * Balancing parameters are set up in arch_init_sched_domains.
3109 */
Ingo Molnard15bcfd2007-07-09 18:51:57 +02003110static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
Christoph Lameter7835b982006-12-10 02:20:22 -08003111{
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003112 int balance = 1;
3113 struct rq *rq = cpu_rq(cpu);
Christoph Lameter7835b982006-12-10 02:20:22 -08003114 unsigned long interval;
3115 struct sched_domain *sd;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003116 /* Earliest time when we have to do rebalance again */
Christoph Lameterc9819f42006-12-10 02:20:25 -08003117 unsigned long next_balance = jiffies + 60*HZ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003118
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003119 for_each_domain(cpu, sd) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003120 if (!(sd->flags & SD_LOAD_BALANCE))
3121 continue;
3122
3123 interval = sd->balance_interval;
Ingo Molnard15bcfd2007-07-09 18:51:57 +02003124 if (idle != CPU_IDLE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003125 interval *= sd->busy_factor;
3126
3127 /* scale ms to jiffies */
3128 interval = msecs_to_jiffies(interval);
3129 if (unlikely(!interval))
3130 interval = 1;
3131
Christoph Lameter08c183f2006-12-10 02:20:29 -08003132 if (sd->flags & SD_SERIALIZE) {
3133 if (!spin_trylock(&balancing))
3134 goto out;
3135 }
3136
Christoph Lameterc9819f42006-12-10 02:20:25 -08003137 if (time_after_eq(jiffies, sd->last_balance + interval)) {
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003138 if (load_balance(cpu, rq, sd, idle, &balance)) {
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07003139 /*
3140 * We've pulled tasks over so either we're no
Nick Piggin5969fe02005-09-10 00:26:19 -07003141 * longer idle, or one of our SMT siblings is
3142 * not idle.
3143 */
Ingo Molnard15bcfd2007-07-09 18:51:57 +02003144 idle = CPU_NOT_IDLE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003145 }
Christoph Lameter1bd77f22006-12-10 02:20:27 -08003146 sd->last_balance = jiffies;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003147 }
Christoph Lameter08c183f2006-12-10 02:20:29 -08003148 if (sd->flags & SD_SERIALIZE)
3149 spin_unlock(&balancing);
3150out:
Christoph Lameterc9819f42006-12-10 02:20:25 -08003151 if (time_after(next_balance, sd->last_balance + interval))
3152 next_balance = sd->last_balance + interval;
Siddha, Suresh B783609c2006-12-10 02:20:33 -08003153
3154 /*
3155 * Stop the load balance at this level. There is another
3156 * CPU in our sched group which is doing load balancing more
3157 * actively.
3158 */
3159 if (!balance)
3160 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003161 }
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003162 rq->next_balance = next_balance;
3163}
3164
3165/*
3166 * run_rebalance_domains is triggered when needed from the scheduler tick.
3167 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3168 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3169 */
3170static void run_rebalance_domains(struct softirq_action *h)
3171{
3172 int local_cpu = smp_processor_id();
3173 struct rq *local_rq = cpu_rq(local_cpu);
Ingo Molnard15bcfd2007-07-09 18:51:57 +02003174 enum cpu_idle_type idle = local_rq->idle_at_tick ? CPU_IDLE : CPU_NOT_IDLE;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003175
3176 rebalance_domains(local_cpu, idle);
3177
3178#ifdef CONFIG_NO_HZ
3179 /*
3180 * If this cpu is the owner for idle load balancing, then do the
3181 * balancing on behalf of the other idle cpus whose ticks are
3182 * stopped.
3183 */
3184 if (local_rq->idle_at_tick &&
3185 atomic_read(&nohz.load_balancer) == local_cpu) {
3186 cpumask_t cpus = nohz.cpu_mask;
3187 struct rq *rq;
3188 int balance_cpu;
3189
3190 cpu_clear(local_cpu, cpus);
3191 for_each_cpu_mask(balance_cpu, cpus) {
3192 /*
3193 * If this cpu gets work to do, stop the load balancing
3194 * work being done for other cpus. Next load
3195 * balancing owner will pick it up.
3196 */
3197 if (need_resched())
3198 break;
3199
Ingo Molnard15bcfd2007-07-09 18:51:57 +02003200 rebalance_domains(balance_cpu, CPU_IDLE);
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003201
3202 rq = cpu_rq(balance_cpu);
3203 if (time_after(local_rq->next_balance, rq->next_balance))
3204 local_rq->next_balance = rq->next_balance;
3205 }
3206 }
3207#endif
3208}
3209
3210/*
3211 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3212 *
3213 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3214 * idle load balancing owner or decide to stop the periodic load balancing,
3215 * if the whole system is idle.
3216 */
3217static inline void trigger_load_balance(int cpu)
3218{
3219 struct rq *rq = cpu_rq(cpu);
3220#ifdef CONFIG_NO_HZ
3221 /*
3222 * If we were in the nohz mode recently and busy at the current
3223 * scheduler tick, then check if we need to nominate new idle
3224 * load balancer.
3225 */
3226 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3227 rq->in_nohz_recently = 0;
3228
3229 if (atomic_read(&nohz.load_balancer) == cpu) {
3230 cpu_clear(cpu, nohz.cpu_mask);
3231 atomic_set(&nohz.load_balancer, -1);
3232 }
3233
3234 if (atomic_read(&nohz.load_balancer) == -1) {
3235 /*
3236 * simple selection for now: Nominate the
3237 * first cpu in the nohz list to be the next
3238 * ilb owner.
3239 *
3240 * TBD: Traverse the sched domains and nominate
3241 * the nearest cpu in the nohz.cpu_mask.
3242 */
3243 int ilb = first_cpu(nohz.cpu_mask);
3244
3245 if (ilb != NR_CPUS)
3246 resched_cpu(ilb);
3247 }
3248 }
3249
3250 /*
3251 * If this cpu is idle and doing idle load balancing for all the
3252 * cpus with ticks stopped, is it time for that to stop?
3253 */
3254 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3255 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3256 resched_cpu(cpu);
3257 return;
3258 }
3259
3260 /*
3261 * If this cpu is idle and the idle load balancing is done by
3262 * someone else, then no need raise the SCHED_SOFTIRQ
3263 */
3264 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3265 cpu_isset(cpu, nohz.cpu_mask))
3266 return;
3267#endif
3268 if (time_after_eq(jiffies, rq->next_balance))
3269 raise_softirq(SCHED_SOFTIRQ);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003270}
3271#else
3272/*
3273 * on UP we do not need to balance between CPUs:
3274 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07003275static inline void idle_balance(int cpu, struct rq *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003276{
3277}
3278#endif
3279
Linus Torvalds1da177e2005-04-16 15:20:36 -07003280DEFINE_PER_CPU(struct kernel_stat, kstat);
3281
3282EXPORT_PER_CPU_SYMBOL(kstat);
3283
3284/*
Ingo Molnar41b86e92007-07-09 18:51:58 +02003285 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3286 * that have not yet been banked in case the task is currently running.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003287 */
Ingo Molnar41b86e92007-07-09 18:51:58 +02003288unsigned long long task_sched_runtime(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003289{
Linus Torvalds1da177e2005-04-16 15:20:36 -07003290 unsigned long flags;
Ingo Molnar41b86e92007-07-09 18:51:58 +02003291 u64 ns, delta_exec;
3292 struct rq *rq;
Ingo Molnar48f24c42006-07-03 00:25:40 -07003293
Ingo Molnar41b86e92007-07-09 18:51:58 +02003294 rq = task_rq_lock(p, &flags);
3295 ns = p->se.sum_exec_runtime;
3296 if (rq->curr == p) {
3297 delta_exec = rq_clock(rq) - p->se.exec_start;
3298 if ((s64)delta_exec > 0)
3299 ns += delta_exec;
3300 }
3301 task_rq_unlock(rq, &flags);
Ingo Molnar48f24c42006-07-03 00:25:40 -07003302
Linus Torvalds1da177e2005-04-16 15:20:36 -07003303 return ns;
3304}
3305
3306/*
Linus Torvaldsf1adad72006-05-21 18:54:09 -07003307 * We place interactive tasks back into the active array, if possible.
3308 *
3309 * To guarantee that this does not starve expired tasks we ignore the
3310 * interactivity of a task if the first expired task had to wait more
3311 * than a 'reasonable' amount of time. This deadline timeout is
3312 * load-dependent, as the frequency of array switched decreases with
3313 * increasing number of running tasks. We also ignore the interactivity
3314 * if a better static_prio task has expired:
3315 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07003316static inline int expired_starving(struct rq *rq)
Ingo Molnar48f24c42006-07-03 00:25:40 -07003317{
3318 if (rq->curr->static_prio > rq->best_expired_prio)
3319 return 1;
3320 if (!STARVATION_LIMIT || !rq->expired_timestamp)
3321 return 0;
3322 if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
3323 return 1;
3324 return 0;
3325}
Linus Torvaldsf1adad72006-05-21 18:54:09 -07003326
3327/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07003328 * Account user cpu time to a process.
3329 * @p: the process that the cpu time gets accounted to
3330 * @hardirq_offset: the offset to subtract from hardirq_count()
3331 * @cputime: the cpu time spent in user space since the last update
3332 */
3333void account_user_time(struct task_struct *p, cputime_t cputime)
3334{
3335 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3336 cputime64_t tmp;
3337
3338 p->utime = cputime_add(p->utime, cputime);
3339
3340 /* Add user time to cpustat. */
3341 tmp = cputime_to_cputime64(cputime);
3342 if (TASK_NICE(p) > 0)
3343 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3344 else
3345 cpustat->user = cputime64_add(cpustat->user, tmp);
3346}
3347
3348/*
3349 * Account system cpu time to a process.
3350 * @p: the process that the cpu time gets accounted to
3351 * @hardirq_offset: the offset to subtract from hardirq_count()
3352 * @cputime: the cpu time spent in kernel space since the last update
3353 */
3354void account_system_time(struct task_struct *p, int hardirq_offset,
3355 cputime_t cputime)
3356{
3357 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
Ingo Molnar70b97a72006-07-03 00:25:42 -07003358 struct rq *rq = this_rq();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003359 cputime64_t tmp;
3360
3361 p->stime = cputime_add(p->stime, cputime);
3362
3363 /* Add system time to cpustat. */
3364 tmp = cputime_to_cputime64(cputime);
3365 if (hardirq_count() - hardirq_offset)
3366 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3367 else if (softirq_count())
3368 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3369 else if (p != rq->idle)
3370 cpustat->system = cputime64_add(cpustat->system, tmp);
3371 else if (atomic_read(&rq->nr_iowait) > 0)
3372 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3373 else
3374 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3375 /* Account for system time used */
3376 acct_update_integrals(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003377}
3378
3379/*
3380 * Account for involuntary wait time.
3381 * @p: the process from which the cpu time has been stolen
3382 * @steal: the cpu time spent in involuntary wait
3383 */
3384void account_steal_time(struct task_struct *p, cputime_t steal)
3385{
3386 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3387 cputime64_t tmp = cputime_to_cputime64(steal);
Ingo Molnar70b97a72006-07-03 00:25:42 -07003388 struct rq *rq = this_rq();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003389
3390 if (p == rq->idle) {
3391 p->stime = cputime_add(p->stime, steal);
3392 if (atomic_read(&rq->nr_iowait) > 0)
3393 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3394 else
3395 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3396 } else
3397 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3398}
3399
Christoph Lameter7835b982006-12-10 02:20:22 -08003400static void task_running_tick(struct rq *rq, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003401{
Linus Torvalds1da177e2005-04-16 15:20:36 -07003402 if (p->array != rq->active) {
Christoph Lameter7835b982006-12-10 02:20:22 -08003403 /* Task has expired but was not scheduled yet */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003404 set_tsk_need_resched(p);
Christoph Lameter7835b982006-12-10 02:20:22 -08003405 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003406 }
3407 spin_lock(&rq->lock);
3408 /*
3409 * The task was running during this tick - update the
3410 * time slice counter. Note: we do not update a thread's
3411 * priority until it either goes to sleep or uses up its
3412 * timeslice. This makes it possible for interactive tasks
3413 * to use up their timeslices at their highest priority levels.
3414 */
3415 if (rt_task(p)) {
3416 /*
3417 * RR tasks need a special form of timeslice management.
3418 * FIFO tasks have no timeslices.
3419 */
3420 if ((p->policy == SCHED_RR) && !--p->time_slice) {
3421 p->time_slice = task_timeslice(p);
3422 p->first_time_slice = 0;
3423 set_tsk_need_resched(p);
3424
3425 /* put it at the end of the queue: */
3426 requeue_task(p, rq->active);
3427 }
3428 goto out_unlock;
3429 }
3430 if (!--p->time_slice) {
3431 dequeue_task(p, rq->active);
3432 set_tsk_need_resched(p);
3433 p->prio = effective_prio(p);
3434 p->time_slice = task_timeslice(p);
3435 p->first_time_slice = 0;
3436
3437 if (!rq->expired_timestamp)
3438 rq->expired_timestamp = jiffies;
Ingo Molnar48f24c42006-07-03 00:25:40 -07003439 if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003440 enqueue_task(p, rq->expired);
3441 if (p->static_prio < rq->best_expired_prio)
3442 rq->best_expired_prio = p->static_prio;
3443 } else
3444 enqueue_task(p, rq->active);
3445 } else {
3446 /*
3447 * Prevent a too long timeslice allowing a task to monopolize
3448 * the CPU. We do this by splitting up the timeslice into
3449 * smaller pieces.
3450 *
3451 * Note: this does not mean the task's timeslices expire or
3452 * get lost in any way, they just might be preempted by
3453 * another task of equal priority. (one with higher
3454 * priority would have preempted this task already.) We
3455 * requeue this task to the end of the list on this priority
3456 * level, which is in essence a round-robin of tasks with
3457 * equal priority.
3458 *
3459 * This only applies to tasks in the interactive
3460 * delta range with at least TIMESLICE_GRANULARITY to requeue.
3461 */
3462 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
3463 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
3464 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
3465 (p->array == rq->active)) {
3466
3467 requeue_task(p, rq->active);
3468 set_tsk_need_resched(p);
3469 }
3470 }
3471out_unlock:
3472 spin_unlock(&rq->lock);
Christoph Lameter7835b982006-12-10 02:20:22 -08003473}
3474
3475/*
3476 * This function gets called by the timer code, with HZ frequency.
3477 * We call it with interrupts disabled.
3478 *
3479 * It also gets called by the fork code, when changing the parent's
3480 * timeslices.
3481 */
3482void scheduler_tick(void)
3483{
Christoph Lameter7835b982006-12-10 02:20:22 -08003484 struct task_struct *p = current;
3485 int cpu = smp_processor_id();
Siddha, Suresh Bbdecea32007-05-08 00:32:48 -07003486 int idle_at_tick = idle_cpu(cpu);
Christoph Lameter7835b982006-12-10 02:20:22 -08003487 struct rq *rq = cpu_rq(cpu);
Christoph Lameter7835b982006-12-10 02:20:22 -08003488
Siddha, Suresh Bbdecea32007-05-08 00:32:48 -07003489 if (!idle_at_tick)
Christoph Lameter7835b982006-12-10 02:20:22 -08003490 task_running_tick(rq, p);
Christoph Lametere418e1c2006-12-10 02:20:23 -08003491#ifdef CONFIG_SMP
Christoph Lameter7835b982006-12-10 02:20:22 -08003492 update_load(rq);
Siddha, Suresh Bbdecea32007-05-08 00:32:48 -07003493 rq->idle_at_tick = idle_at_tick;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003494 trigger_load_balance(cpu);
Christoph Lametere418e1c2006-12-10 02:20:23 -08003495#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07003496}
3497
Linus Torvalds1da177e2005-04-16 15:20:36 -07003498#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3499
3500void fastcall add_preempt_count(int val)
3501{
3502 /*
3503 * Underflow?
3504 */
Ingo Molnar9a11b49a2006-07-03 00:24:33 -07003505 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3506 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003507 preempt_count() += val;
3508 /*
3509 * Spinlock count overflowing soon?
3510 */
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08003511 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3512 PREEMPT_MASK - 10);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003513}
3514EXPORT_SYMBOL(add_preempt_count);
3515
3516void fastcall sub_preempt_count(int val)
3517{
3518 /*
3519 * Underflow?
3520 */
Ingo Molnar9a11b49a2006-07-03 00:24:33 -07003521 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3522 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003523 /*
3524 * Is the spinlock portion underflowing?
3525 */
Ingo Molnar9a11b49a2006-07-03 00:24:33 -07003526 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3527 !(preempt_count() & PREEMPT_MASK)))
3528 return;
3529
Linus Torvalds1da177e2005-04-16 15:20:36 -07003530 preempt_count() -= val;
3531}
3532EXPORT_SYMBOL(sub_preempt_count);
3533
3534#endif
3535
Con Kolivas3dee3862006-03-31 02:31:23 -08003536static inline int interactive_sleep(enum sleep_type sleep_type)
3537{
3538 return (sleep_type == SLEEP_INTERACTIVE ||
3539 sleep_type == SLEEP_INTERRUPTED);
3540}
3541
Linus Torvalds1da177e2005-04-16 15:20:36 -07003542/*
3543 * schedule() is the main scheduler function.
3544 */
3545asmlinkage void __sched schedule(void)
3546{
Ingo Molnar36c8b582006-07-03 00:25:41 -07003547 struct task_struct *prev, *next;
Ingo Molnar70b97a72006-07-03 00:25:42 -07003548 struct prio_array *array;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003549 struct list_head *queue;
3550 unsigned long long now;
3551 unsigned long run_time;
Chen Shanga3464a12005-06-25 14:57:31 -07003552 int cpu, idx, new_prio;
Ingo Molnar48f24c42006-07-03 00:25:40 -07003553 long *switch_count;
Ingo Molnar70b97a72006-07-03 00:25:42 -07003554 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003555
3556 /*
3557 * Test if we are atomic. Since do_exit() needs to call into
3558 * schedule() atomically, we ignore that path for now.
3559 * Otherwise, whine if we are scheduling when we should not be.
3560 */
Andreas Mohr77e4bfb2006-03-27 01:15:20 -08003561 if (unlikely(in_atomic() && !current->exit_state)) {
3562 printk(KERN_ERR "BUG: scheduling while atomic: "
3563 "%s/0x%08x/%d\n",
3564 current->comm, preempt_count(), current->pid);
Peter Zijlstraa4c410f2006-12-06 20:37:21 -08003565 debug_show_held_locks(current);
Ingo Molnar3117df02006-12-13 00:34:43 -08003566 if (irqs_disabled())
3567 print_irqtrace_events(current);
Andreas Mohr77e4bfb2006-03-27 01:15:20 -08003568 dump_stack();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003569 }
3570 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3571
3572need_resched:
3573 preempt_disable();
3574 prev = current;
3575 release_kernel_lock(prev);
3576need_resched_nonpreemptible:
3577 rq = this_rq();
3578
3579 /*
3580 * The idle thread is not allowed to schedule!
3581 * Remove this check after it has been exercised a bit.
3582 */
3583 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
3584 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
3585 dump_stack();
3586 }
3587
3588 schedstat_inc(rq, sched_cnt);
3589 now = sched_clock();
Ingo Molnar238628e2005-04-18 10:58:36 -07003590 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003591 run_time = now - prev->timestamp;
Ingo Molnar238628e2005-04-18 10:58:36 -07003592 if (unlikely((long long)(now - prev->timestamp) < 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003593 run_time = 0;
3594 } else
3595 run_time = NS_MAX_SLEEP_AVG;
3596
3597 /*
3598 * Tasks charged proportionately less run_time at high sleep_avg to
3599 * delay them losing their interactive status
3600 */
3601 run_time /= (CURRENT_BONUS(prev) ? : 1);
3602
3603 spin_lock_irq(&rq->lock);
3604
Linus Torvalds1da177e2005-04-16 15:20:36 -07003605 switch_count = &prev->nivcsw;
3606 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3607 switch_count = &prev->nvcsw;
3608 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3609 unlikely(signal_pending(prev))))
3610 prev->state = TASK_RUNNING;
3611 else {
3612 if (prev->state == TASK_UNINTERRUPTIBLE)
3613 rq->nr_uninterruptible++;
3614 deactivate_task(prev, rq);
3615 }
3616 }
3617
3618 cpu = smp_processor_id();
3619 if (unlikely(!rq->nr_running)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003620 idle_balance(cpu, rq);
3621 if (!rq->nr_running) {
3622 next = rq->idle;
3623 rq->expired_timestamp = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003624 goto switch_tasks;
3625 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003626 }
3627
3628 array = rq->active;
3629 if (unlikely(!array->nr_active)) {
3630 /*
3631 * Switch the active and expired arrays.
3632 */
3633 schedstat_inc(rq, sched_switch);
3634 rq->active = rq->expired;
3635 rq->expired = array;
3636 array = rq->active;
3637 rq->expired_timestamp = 0;
3638 rq->best_expired_prio = MAX_PRIO;
3639 }
3640
3641 idx = sched_find_first_bit(array->bitmap);
3642 queue = array->queue + idx;
Ingo Molnar36c8b582006-07-03 00:25:41 -07003643 next = list_entry(queue->next, struct task_struct, run_list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003644
Con Kolivas3dee3862006-03-31 02:31:23 -08003645 if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003646 unsigned long long delta = now - next->timestamp;
Ingo Molnar238628e2005-04-18 10:58:36 -07003647 if (unlikely((long long)(now - next->timestamp) < 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003648 delta = 0;
3649
Con Kolivas3dee3862006-03-31 02:31:23 -08003650 if (next->sleep_type == SLEEP_INTERACTIVE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003651 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3652
3653 array = next->array;
Chen Shanga3464a12005-06-25 14:57:31 -07003654 new_prio = recalc_task_prio(next, next->timestamp + delta);
3655
3656 if (unlikely(next->prio != new_prio)) {
3657 dequeue_task(next, array);
3658 next->prio = new_prio;
3659 enqueue_task(next, array);
Con Kolivas7c4bb1f2006-03-31 02:31:29 -08003660 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003661 }
Con Kolivas3dee3862006-03-31 02:31:23 -08003662 next->sleep_type = SLEEP_NORMAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003663switch_tasks:
3664 if (next == rq->idle)
3665 schedstat_inc(rq, sched_goidle);
3666 prefetch(next);
Chen, Kenneth W383f2832005-09-09 13:02:02 -07003667 prefetch_stack(next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003668 clear_tsk_need_resched(prev);
3669 rcu_qsctr_inc(task_cpu(prev));
3670
Linus Torvalds1da177e2005-04-16 15:20:36 -07003671 prev->sleep_avg -= run_time;
3672 if ((long)prev->sleep_avg <= 0)
3673 prev->sleep_avg = 0;
3674 prev->timestamp = prev->last_ran = now;
3675
3676 sched_info_switch(prev, next);
3677 if (likely(prev != next)) {
Thomas Gleixnerc1e16aa2007-02-28 20:12:19 -08003678 next->timestamp = next->last_ran = now;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003679 rq->nr_switches++;
3680 rq->curr = next;
3681 ++*switch_count;
3682
Nick Piggin4866cde2005-06-25 14:57:23 -07003683 prepare_task_switch(rq, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003684 prev = context_switch(rq, prev, next);
3685 barrier();
Nick Piggin4866cde2005-06-25 14:57:23 -07003686 /*
3687 * this_rq must be evaluated again because prev may have moved
3688 * CPUs since it called schedule(), thus the 'rq' on its stack
3689 * frame will be invalid.
3690 */
3691 finish_task_switch(this_rq(), prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003692 } else
3693 spin_unlock_irq(&rq->lock);
3694
3695 prev = current;
3696 if (unlikely(reacquire_kernel_lock(prev) < 0))
3697 goto need_resched_nonpreemptible;
3698 preempt_enable_no_resched();
3699 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3700 goto need_resched;
3701}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003702EXPORT_SYMBOL(schedule);
3703
3704#ifdef CONFIG_PREEMPT
3705/*
Andreas Mohr2ed6e342006-07-10 04:43:52 -07003706 * this is the entry point to schedule() from in-kernel preemption
Linus Torvalds1da177e2005-04-16 15:20:36 -07003707 * off of preempt_enable. Kernel preemptions off return from interrupt
3708 * occur there and call schedule directly.
3709 */
3710asmlinkage void __sched preempt_schedule(void)
3711{
3712 struct thread_info *ti = current_thread_info();
3713#ifdef CONFIG_PREEMPT_BKL
3714 struct task_struct *task = current;
3715 int saved_lock_depth;
3716#endif
3717 /*
3718 * If there is a non-zero preempt_count or interrupts are disabled,
3719 * we do not want to preempt the current task. Just return..
3720 */
Nick Pigginbeed33a2006-10-11 01:21:52 -07003721 if (likely(ti->preempt_count || irqs_disabled()))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003722 return;
3723
3724need_resched:
3725 add_preempt_count(PREEMPT_ACTIVE);
3726 /*
3727 * We keep the big kernel semaphore locked, but we
3728 * clear ->lock_depth so that schedule() doesnt
3729 * auto-release the semaphore:
3730 */
3731#ifdef CONFIG_PREEMPT_BKL
3732 saved_lock_depth = task->lock_depth;
3733 task->lock_depth = -1;
3734#endif
3735 schedule();
3736#ifdef CONFIG_PREEMPT_BKL
3737 task->lock_depth = saved_lock_depth;
3738#endif
3739 sub_preempt_count(PREEMPT_ACTIVE);
3740
3741 /* we could miss a preemption opportunity between schedule and now */
3742 barrier();
3743 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3744 goto need_resched;
3745}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003746EXPORT_SYMBOL(preempt_schedule);
3747
3748/*
Andreas Mohr2ed6e342006-07-10 04:43:52 -07003749 * this is the entry point to schedule() from kernel preemption
Linus Torvalds1da177e2005-04-16 15:20:36 -07003750 * off of irq context.
3751 * Note, that this is called and return with irqs disabled. This will
3752 * protect us against recursive calling from irq.
3753 */
3754asmlinkage void __sched preempt_schedule_irq(void)
3755{
3756 struct thread_info *ti = current_thread_info();
3757#ifdef CONFIG_PREEMPT_BKL
3758 struct task_struct *task = current;
3759 int saved_lock_depth;
3760#endif
Andreas Mohr2ed6e342006-07-10 04:43:52 -07003761 /* Catch callers which need to be fixed */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003762 BUG_ON(ti->preempt_count || !irqs_disabled());
3763
3764need_resched:
3765 add_preempt_count(PREEMPT_ACTIVE);
3766 /*
3767 * We keep the big kernel semaphore locked, but we
3768 * clear ->lock_depth so that schedule() doesnt
3769 * auto-release the semaphore:
3770 */
3771#ifdef CONFIG_PREEMPT_BKL
3772 saved_lock_depth = task->lock_depth;
3773 task->lock_depth = -1;
3774#endif
3775 local_irq_enable();
3776 schedule();
3777 local_irq_disable();
3778#ifdef CONFIG_PREEMPT_BKL
3779 task->lock_depth = saved_lock_depth;
3780#endif
3781 sub_preempt_count(PREEMPT_ACTIVE);
3782
3783 /* we could miss a preemption opportunity between schedule and now */
3784 barrier();
3785 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3786 goto need_resched;
3787}
3788
3789#endif /* CONFIG_PREEMPT */
3790
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003791int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3792 void *key)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003793{
Ingo Molnar48f24c42006-07-03 00:25:40 -07003794 return try_to_wake_up(curr->private, mode, sync);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003795}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003796EXPORT_SYMBOL(default_wake_function);
3797
3798/*
3799 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3800 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3801 * number) then we wake all the non-exclusive tasks and one exclusive task.
3802 *
3803 * There are circumstances in which we can try to wake a task which has already
3804 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3805 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3806 */
3807static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3808 int nr_exclusive, int sync, void *key)
3809{
3810 struct list_head *tmp, *next;
3811
3812 list_for_each_safe(tmp, next, &q->task_list) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07003813 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3814 unsigned flags = curr->flags;
3815
Linus Torvalds1da177e2005-04-16 15:20:36 -07003816 if (curr->func(curr, mode, sync, key) &&
Ingo Molnar48f24c42006-07-03 00:25:40 -07003817 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003818 break;
3819 }
3820}
3821
3822/**
3823 * __wake_up - wake up threads blocked on a waitqueue.
3824 * @q: the waitqueue
3825 * @mode: which threads
3826 * @nr_exclusive: how many wake-one or wake-many threads to wake up
Martin Waitz67be2dd2005-05-01 08:59:26 -07003827 * @key: is directly passed to the wakeup function
Linus Torvalds1da177e2005-04-16 15:20:36 -07003828 */
3829void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003830 int nr_exclusive, void *key)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003831{
3832 unsigned long flags;
3833
3834 spin_lock_irqsave(&q->lock, flags);
3835 __wake_up_common(q, mode, nr_exclusive, 0, key);
3836 spin_unlock_irqrestore(&q->lock, flags);
3837}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003838EXPORT_SYMBOL(__wake_up);
3839
3840/*
3841 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3842 */
3843void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3844{
3845 __wake_up_common(q, mode, 1, 0, NULL);
3846}
3847
3848/**
Martin Waitz67be2dd2005-05-01 08:59:26 -07003849 * __wake_up_sync - wake up threads blocked on a waitqueue.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003850 * @q: the waitqueue
3851 * @mode: which threads
3852 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3853 *
3854 * The sync wakeup differs that the waker knows that it will schedule
3855 * away soon, so while the target thread will be woken up, it will not
3856 * be migrated to another CPU - ie. the two threads are 'synchronized'
3857 * with each other. This can prevent needless bouncing between CPUs.
3858 *
3859 * On UP it can prevent extra preemption.
3860 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003861void fastcall
3862__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003863{
3864 unsigned long flags;
3865 int sync = 1;
3866
3867 if (unlikely(!q))
3868 return;
3869
3870 if (unlikely(!nr_exclusive))
3871 sync = 0;
3872
3873 spin_lock_irqsave(&q->lock, flags);
3874 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3875 spin_unlock_irqrestore(&q->lock, flags);
3876}
3877EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3878
3879void fastcall complete(struct completion *x)
3880{
3881 unsigned long flags;
3882
3883 spin_lock_irqsave(&x->wait.lock, flags);
3884 x->done++;
3885 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3886 1, 0, NULL);
3887 spin_unlock_irqrestore(&x->wait.lock, flags);
3888}
3889EXPORT_SYMBOL(complete);
3890
3891void fastcall complete_all(struct completion *x)
3892{
3893 unsigned long flags;
3894
3895 spin_lock_irqsave(&x->wait.lock, flags);
3896 x->done += UINT_MAX/2;
3897 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3898 0, 0, NULL);
3899 spin_unlock_irqrestore(&x->wait.lock, flags);
3900}
3901EXPORT_SYMBOL(complete_all);
3902
3903void fastcall __sched wait_for_completion(struct completion *x)
3904{
3905 might_sleep();
Ingo Molnar48f24c42006-07-03 00:25:40 -07003906
Linus Torvalds1da177e2005-04-16 15:20:36 -07003907 spin_lock_irq(&x->wait.lock);
3908 if (!x->done) {
3909 DECLARE_WAITQUEUE(wait, current);
3910
3911 wait.flags |= WQ_FLAG_EXCLUSIVE;
3912 __add_wait_queue_tail(&x->wait, &wait);
3913 do {
3914 __set_current_state(TASK_UNINTERRUPTIBLE);
3915 spin_unlock_irq(&x->wait.lock);
3916 schedule();
3917 spin_lock_irq(&x->wait.lock);
3918 } while (!x->done);
3919 __remove_wait_queue(&x->wait, &wait);
3920 }
3921 x->done--;
3922 spin_unlock_irq(&x->wait.lock);
3923}
3924EXPORT_SYMBOL(wait_for_completion);
3925
3926unsigned long fastcall __sched
3927wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3928{
3929 might_sleep();
3930
3931 spin_lock_irq(&x->wait.lock);
3932 if (!x->done) {
3933 DECLARE_WAITQUEUE(wait, current);
3934
3935 wait.flags |= WQ_FLAG_EXCLUSIVE;
3936 __add_wait_queue_tail(&x->wait, &wait);
3937 do {
3938 __set_current_state(TASK_UNINTERRUPTIBLE);
3939 spin_unlock_irq(&x->wait.lock);
3940 timeout = schedule_timeout(timeout);
3941 spin_lock_irq(&x->wait.lock);
3942 if (!timeout) {
3943 __remove_wait_queue(&x->wait, &wait);
3944 goto out;
3945 }
3946 } while (!x->done);
3947 __remove_wait_queue(&x->wait, &wait);
3948 }
3949 x->done--;
3950out:
3951 spin_unlock_irq(&x->wait.lock);
3952 return timeout;
3953}
3954EXPORT_SYMBOL(wait_for_completion_timeout);
3955
3956int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3957{
3958 int ret = 0;
3959
3960 might_sleep();
3961
3962 spin_lock_irq(&x->wait.lock);
3963 if (!x->done) {
3964 DECLARE_WAITQUEUE(wait, current);
3965
3966 wait.flags |= WQ_FLAG_EXCLUSIVE;
3967 __add_wait_queue_tail(&x->wait, &wait);
3968 do {
3969 if (signal_pending(current)) {
3970 ret = -ERESTARTSYS;
3971 __remove_wait_queue(&x->wait, &wait);
3972 goto out;
3973 }
3974 __set_current_state(TASK_INTERRUPTIBLE);
3975 spin_unlock_irq(&x->wait.lock);
3976 schedule();
3977 spin_lock_irq(&x->wait.lock);
3978 } while (!x->done);
3979 __remove_wait_queue(&x->wait, &wait);
3980 }
3981 x->done--;
3982out:
3983 spin_unlock_irq(&x->wait.lock);
3984
3985 return ret;
3986}
3987EXPORT_SYMBOL(wait_for_completion_interruptible);
3988
3989unsigned long fastcall __sched
3990wait_for_completion_interruptible_timeout(struct completion *x,
3991 unsigned long timeout)
3992{
3993 might_sleep();
3994
3995 spin_lock_irq(&x->wait.lock);
3996 if (!x->done) {
3997 DECLARE_WAITQUEUE(wait, current);
3998
3999 wait.flags |= WQ_FLAG_EXCLUSIVE;
4000 __add_wait_queue_tail(&x->wait, &wait);
4001 do {
4002 if (signal_pending(current)) {
4003 timeout = -ERESTARTSYS;
4004 __remove_wait_queue(&x->wait, &wait);
4005 goto out;
4006 }
4007 __set_current_state(TASK_INTERRUPTIBLE);
4008 spin_unlock_irq(&x->wait.lock);
4009 timeout = schedule_timeout(timeout);
4010 spin_lock_irq(&x->wait.lock);
4011 if (!timeout) {
4012 __remove_wait_queue(&x->wait, &wait);
4013 goto out;
4014 }
4015 } while (!x->done);
4016 __remove_wait_queue(&x->wait, &wait);
4017 }
4018 x->done--;
4019out:
4020 spin_unlock_irq(&x->wait.lock);
4021 return timeout;
4022}
4023EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4024
4025
4026#define SLEEP_ON_VAR \
4027 unsigned long flags; \
4028 wait_queue_t wait; \
4029 init_waitqueue_entry(&wait, current);
4030
4031#define SLEEP_ON_HEAD \
4032 spin_lock_irqsave(&q->lock,flags); \
4033 __add_wait_queue(q, &wait); \
4034 spin_unlock(&q->lock);
4035
4036#define SLEEP_ON_TAIL \
4037 spin_lock_irq(&q->lock); \
4038 __remove_wait_queue(q, &wait); \
4039 spin_unlock_irqrestore(&q->lock, flags);
4040
4041void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
4042{
4043 SLEEP_ON_VAR
4044
4045 current->state = TASK_INTERRUPTIBLE;
4046
4047 SLEEP_ON_HEAD
4048 schedule();
4049 SLEEP_ON_TAIL
4050}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004051EXPORT_SYMBOL(interruptible_sleep_on);
4052
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004053long fastcall __sched
4054interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004055{
4056 SLEEP_ON_VAR
4057
4058 current->state = TASK_INTERRUPTIBLE;
4059
4060 SLEEP_ON_HEAD
4061 timeout = schedule_timeout(timeout);
4062 SLEEP_ON_TAIL
4063
4064 return timeout;
4065}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004066EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4067
4068void fastcall __sched sleep_on(wait_queue_head_t *q)
4069{
4070 SLEEP_ON_VAR
4071
4072 current->state = TASK_UNINTERRUPTIBLE;
4073
4074 SLEEP_ON_HEAD
4075 schedule();
4076 SLEEP_ON_TAIL
4077}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004078EXPORT_SYMBOL(sleep_on);
4079
4080long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4081{
4082 SLEEP_ON_VAR
4083
4084 current->state = TASK_UNINTERRUPTIBLE;
4085
4086 SLEEP_ON_HEAD
4087 timeout = schedule_timeout(timeout);
4088 SLEEP_ON_TAIL
4089
4090 return timeout;
4091}
4092
4093EXPORT_SYMBOL(sleep_on_timeout);
4094
Ingo Molnarb29739f2006-06-27 02:54:51 -07004095#ifdef CONFIG_RT_MUTEXES
4096
4097/*
4098 * rt_mutex_setprio - set the current priority of a task
4099 * @p: task
4100 * @prio: prio value (kernel-internal form)
4101 *
4102 * This function changes the 'effective' priority of a task. It does
4103 * not touch ->normal_prio like __setscheduler().
4104 *
4105 * Used by the rt_mutex code to implement priority inheritance logic.
4106 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004107void rt_mutex_setprio(struct task_struct *p, int prio)
Ingo Molnarb29739f2006-06-27 02:54:51 -07004108{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004109 struct prio_array *array;
Ingo Molnarb29739f2006-06-27 02:54:51 -07004110 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07004111 struct rq *rq;
Andrew Mortond5f9f942007-05-08 20:27:06 -07004112 int oldprio;
Ingo Molnarb29739f2006-06-27 02:54:51 -07004113
4114 BUG_ON(prio < 0 || prio > MAX_PRIO);
4115
4116 rq = task_rq_lock(p, &flags);
4117
Andrew Mortond5f9f942007-05-08 20:27:06 -07004118 oldprio = p->prio;
Ingo Molnarb29739f2006-06-27 02:54:51 -07004119 array = p->array;
4120 if (array)
4121 dequeue_task(p, array);
4122 p->prio = prio;
4123
4124 if (array) {
4125 /*
4126 * If changing to an RT priority then queue it
4127 * in the active array!
4128 */
4129 if (rt_task(p))
4130 array = rq->active;
4131 enqueue_task(p, array);
4132 /*
4133 * Reschedule if we are currently running on this runqueue and
Andrew Mortond5f9f942007-05-08 20:27:06 -07004134 * our priority decreased, or if we are not currently running on
4135 * this runqueue and our priority is higher than the current's
Ingo Molnarb29739f2006-06-27 02:54:51 -07004136 */
Andrew Mortond5f9f942007-05-08 20:27:06 -07004137 if (task_running(rq, p)) {
4138 if (p->prio > oldprio)
4139 resched_task(rq->curr);
4140 } else if (TASK_PREEMPTS_CURR(p, rq))
Ingo Molnarb29739f2006-06-27 02:54:51 -07004141 resched_task(rq->curr);
4142 }
4143 task_rq_unlock(rq, &flags);
4144}
4145
4146#endif
4147
Ingo Molnar36c8b582006-07-03 00:25:41 -07004148void set_user_nice(struct task_struct *p, long nice)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004149{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004150 struct prio_array *array;
Ingo Molnar48f24c42006-07-03 00:25:40 -07004151 int old_prio, delta;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004152 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07004153 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004154
4155 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4156 return;
4157 /*
4158 * We have to be careful, if called from sys_setpriority(),
4159 * the task might be in the middle of scheduling on another CPU.
4160 */
4161 rq = task_rq_lock(p, &flags);
4162 /*
4163 * The RT priorities are set via sched_setscheduler(), but we still
4164 * allow the 'normal' nice value to be set - but as expected
4165 * it wont have any effect on scheduling until the task is
Ingo Molnarb0a94992006-01-14 13:20:41 -08004166 * not SCHED_NORMAL/SCHED_BATCH:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004167 */
Ingo Molnare05606d2007-07-09 18:51:59 +02004168 if (task_has_rt_policy(p)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004169 p->static_prio = NICE_TO_PRIO(nice);
4170 goto out_unlock;
4171 }
4172 array = p->array;
Peter Williams2dd73a42006-06-27 02:54:34 -07004173 if (array) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004174 dequeue_task(p, array);
Peter Williams2dd73a42006-06-27 02:54:34 -07004175 dec_raw_weighted_load(rq, p);
4176 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004177
Linus Torvalds1da177e2005-04-16 15:20:36 -07004178 p->static_prio = NICE_TO_PRIO(nice);
Peter Williams2dd73a42006-06-27 02:54:34 -07004179 set_load_weight(p);
Ingo Molnarb29739f2006-06-27 02:54:51 -07004180 old_prio = p->prio;
4181 p->prio = effective_prio(p);
4182 delta = p->prio - old_prio;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004183
4184 if (array) {
4185 enqueue_task(p, array);
Peter Williams2dd73a42006-06-27 02:54:34 -07004186 inc_raw_weighted_load(rq, p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004187 /*
Andrew Mortond5f9f942007-05-08 20:27:06 -07004188 * If the task increased its priority or is running and
4189 * lowered its priority, then reschedule its CPU:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004190 */
Andrew Mortond5f9f942007-05-08 20:27:06 -07004191 if (delta < 0 || (delta > 0 && task_running(rq, p)))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004192 resched_task(rq->curr);
4193 }
4194out_unlock:
4195 task_rq_unlock(rq, &flags);
4196}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004197EXPORT_SYMBOL(set_user_nice);
4198
Matt Mackalle43379f2005-05-01 08:59:00 -07004199/*
4200 * can_nice - check if a task can reduce its nice value
4201 * @p: task
4202 * @nice: nice value
4203 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004204int can_nice(const struct task_struct *p, const int nice)
Matt Mackalle43379f2005-05-01 08:59:00 -07004205{
Matt Mackall024f4742005-08-18 11:24:19 -07004206 /* convert nice value [19,-20] to rlimit style value [1,40] */
4207 int nice_rlim = 20 - nice;
Ingo Molnar48f24c42006-07-03 00:25:40 -07004208
Matt Mackalle43379f2005-05-01 08:59:00 -07004209 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4210 capable(CAP_SYS_NICE));
4211}
4212
Linus Torvalds1da177e2005-04-16 15:20:36 -07004213#ifdef __ARCH_WANT_SYS_NICE
4214
4215/*
4216 * sys_nice - change the priority of the current process.
4217 * @increment: priority increment
4218 *
4219 * sys_setpriority is a more generic, but much slower function that
4220 * does similar things.
4221 */
4222asmlinkage long sys_nice(int increment)
4223{
Ingo Molnar48f24c42006-07-03 00:25:40 -07004224 long nice, retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004225
4226 /*
4227 * Setpriority might change our priority at the same moment.
4228 * We don't have to worry. Conceptually one call occurs first
4229 * and we have a single winner.
4230 */
Matt Mackalle43379f2005-05-01 08:59:00 -07004231 if (increment < -40)
4232 increment = -40;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004233 if (increment > 40)
4234 increment = 40;
4235
4236 nice = PRIO_TO_NICE(current->static_prio) + increment;
4237 if (nice < -20)
4238 nice = -20;
4239 if (nice > 19)
4240 nice = 19;
4241
Matt Mackalle43379f2005-05-01 08:59:00 -07004242 if (increment < 0 && !can_nice(current, nice))
4243 return -EPERM;
4244
Linus Torvalds1da177e2005-04-16 15:20:36 -07004245 retval = security_task_setnice(current, nice);
4246 if (retval)
4247 return retval;
4248
4249 set_user_nice(current, nice);
4250 return 0;
4251}
4252
4253#endif
4254
4255/**
4256 * task_prio - return the priority value of a given task.
4257 * @p: the task in question.
4258 *
4259 * This is the priority value as seen by users in /proc.
4260 * RT tasks are offset by -200. Normal tasks are centered
4261 * around 0, value goes from -16 to +15.
4262 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004263int task_prio(const struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004264{
4265 return p->prio - MAX_RT_PRIO;
4266}
4267
4268/**
4269 * task_nice - return the nice value of a given task.
4270 * @p: the task in question.
4271 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004272int task_nice(const struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004273{
4274 return TASK_NICE(p);
4275}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004276EXPORT_SYMBOL_GPL(task_nice);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004277
4278/**
4279 * idle_cpu - is a given cpu idle currently?
4280 * @cpu: the processor in question.
4281 */
4282int idle_cpu(int cpu)
4283{
4284 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4285}
4286
Linus Torvalds1da177e2005-04-16 15:20:36 -07004287/**
4288 * idle_task - return the idle task for a given cpu.
4289 * @cpu: the processor in question.
4290 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004291struct task_struct *idle_task(int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004292{
4293 return cpu_rq(cpu)->idle;
4294}
4295
4296/**
4297 * find_process_by_pid - find a process with a matching PID value.
4298 * @pid: the pid in question.
4299 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004300static inline struct task_struct *find_process_by_pid(pid_t pid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004301{
4302 return pid ? find_task_by_pid(pid) : current;
4303}
4304
4305/* Actually do priority change: must hold rq lock. */
4306static void __setscheduler(struct task_struct *p, int policy, int prio)
4307{
4308 BUG_ON(p->array);
Ingo Molnar48f24c42006-07-03 00:25:40 -07004309
Linus Torvalds1da177e2005-04-16 15:20:36 -07004310 p->policy = policy;
4311 p->rt_priority = prio;
Ingo Molnarb29739f2006-06-27 02:54:51 -07004312 p->normal_prio = normal_prio(p);
4313 /* we are holding p->pi_lock already */
4314 p->prio = rt_mutex_getprio(p);
4315 /*
4316 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
4317 */
4318 if (policy == SCHED_BATCH)
4319 p->sleep_avg = 0;
Peter Williams2dd73a42006-06-27 02:54:34 -07004320 set_load_weight(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004321}
4322
4323/**
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08004324 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004325 * @p: the task in question.
4326 * @policy: new policy.
4327 * @param: structure containing the new RT priority.
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004328 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08004329 * NOTE that the task may be already dead.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004330 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004331int sched_setscheduler(struct task_struct *p, int policy,
4332 struct sched_param *param)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004333{
Ingo Molnar48f24c42006-07-03 00:25:40 -07004334 int retval, oldprio, oldpolicy = -1;
Ingo Molnar70b97a72006-07-03 00:25:42 -07004335 struct prio_array *array;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004336 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07004337 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004338
Steven Rostedt66e53932006-06-27 02:54:44 -07004339 /* may grab non-irq protected spin_locks */
4340 BUG_ON(in_interrupt());
Linus Torvalds1da177e2005-04-16 15:20:36 -07004341recheck:
4342 /* double check policy once rq lock held */
4343 if (policy < 0)
4344 policy = oldpolicy = p->policy;
4345 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
Ingo Molnarb0a94992006-01-14 13:20:41 -08004346 policy != SCHED_NORMAL && policy != SCHED_BATCH)
4347 return -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004348 /*
4349 * Valid priorities for SCHED_FIFO and SCHED_RR are
Ingo Molnarb0a94992006-01-14 13:20:41 -08004350 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
4351 * SCHED_BATCH is 0.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004352 */
4353 if (param->sched_priority < 0 ||
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004354 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
Steven Rostedtd46523e2005-07-25 16:28:39 -04004355 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004356 return -EINVAL;
Ingo Molnare05606d2007-07-09 18:51:59 +02004357 if (rt_policy(policy) != (param->sched_priority != 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004358 return -EINVAL;
4359
Olivier Croquette37e4ab32005-06-25 14:57:32 -07004360 /*
4361 * Allow unprivileged RT tasks to decrease priority:
4362 */
4363 if (!capable(CAP_SYS_NICE)) {
Ingo Molnare05606d2007-07-09 18:51:59 +02004364 if (rt_policy(policy)) {
Oleg Nesterov8dc3e902006-09-29 02:00:50 -07004365 unsigned long rlim_rtprio;
4366 unsigned long flags;
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004367
Oleg Nesterov8dc3e902006-09-29 02:00:50 -07004368 if (!lock_task_sighand(p, &flags))
4369 return -ESRCH;
4370 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4371 unlock_task_sighand(p, &flags);
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004372
Oleg Nesterov8dc3e902006-09-29 02:00:50 -07004373 /* can't set/change the rt policy */
4374 if (policy != p->policy && !rlim_rtprio)
4375 return -EPERM;
4376
4377 /* can't increase priority */
4378 if (param->sched_priority > p->rt_priority &&
4379 param->sched_priority > rlim_rtprio)
4380 return -EPERM;
4381 }
4382
Olivier Croquette37e4ab32005-06-25 14:57:32 -07004383 /* can't change other user's priorities */
4384 if ((current->euid != p->euid) &&
4385 (current->euid != p->uid))
4386 return -EPERM;
4387 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004388
4389 retval = security_task_setscheduler(p, policy, param);
4390 if (retval)
4391 return retval;
4392 /*
Ingo Molnarb29739f2006-06-27 02:54:51 -07004393 * make sure no PI-waiters arrive (or leave) while we are
4394 * changing the priority of the task:
4395 */
4396 spin_lock_irqsave(&p->pi_lock, flags);
4397 /*
Linus Torvalds1da177e2005-04-16 15:20:36 -07004398 * To be able to change p->policy safely, the apropriate
4399 * runqueue lock must be held.
4400 */
Ingo Molnarb29739f2006-06-27 02:54:51 -07004401 rq = __task_rq_lock(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004402 /* recheck policy now with rq lock held */
4403 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4404 policy = oldpolicy = -1;
Ingo Molnarb29739f2006-06-27 02:54:51 -07004405 __task_rq_unlock(rq);
4406 spin_unlock_irqrestore(&p->pi_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004407 goto recheck;
4408 }
4409 array = p->array;
4410 if (array)
4411 deactivate_task(p, rq);
4412 oldprio = p->prio;
4413 __setscheduler(p, policy, param->sched_priority);
4414 if (array) {
4415 __activate_task(p, rq);
4416 /*
4417 * Reschedule if we are currently running on this runqueue and
Andrew Mortond5f9f942007-05-08 20:27:06 -07004418 * our priority decreased, or if we are not currently running on
4419 * this runqueue and our priority is higher than the current's
Linus Torvalds1da177e2005-04-16 15:20:36 -07004420 */
Andrew Mortond5f9f942007-05-08 20:27:06 -07004421 if (task_running(rq, p)) {
4422 if (p->prio > oldprio)
4423 resched_task(rq->curr);
4424 } else if (TASK_PREEMPTS_CURR(p, rq))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004425 resched_task(rq->curr);
4426 }
Ingo Molnarb29739f2006-06-27 02:54:51 -07004427 __task_rq_unlock(rq);
4428 spin_unlock_irqrestore(&p->pi_lock, flags);
4429
Thomas Gleixner95e02ca2006-06-27 02:55:02 -07004430 rt_mutex_adjust_pi(p);
4431
Linus Torvalds1da177e2005-04-16 15:20:36 -07004432 return 0;
4433}
4434EXPORT_SYMBOL_GPL(sched_setscheduler);
4435
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004436static int
4437do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004438{
Linus Torvalds1da177e2005-04-16 15:20:36 -07004439 struct sched_param lparam;
4440 struct task_struct *p;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004441 int retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004442
4443 if (!param || pid < 0)
4444 return -EINVAL;
4445 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4446 return -EFAULT;
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004447
4448 rcu_read_lock();
4449 retval = -ESRCH;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004450 p = find_process_by_pid(pid);
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004451 if (p != NULL)
4452 retval = sched_setscheduler(p, policy, &lparam);
4453 rcu_read_unlock();
Ingo Molnar36c8b582006-07-03 00:25:41 -07004454
Linus Torvalds1da177e2005-04-16 15:20:36 -07004455 return retval;
4456}
4457
4458/**
4459 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4460 * @pid: the pid in question.
4461 * @policy: new policy.
4462 * @param: structure containing the new RT priority.
4463 */
4464asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4465 struct sched_param __user *param)
4466{
Jason Baronc21761f2006-01-18 17:43:03 -08004467 /* negative values for policy are not valid */
4468 if (policy < 0)
4469 return -EINVAL;
4470
Linus Torvalds1da177e2005-04-16 15:20:36 -07004471 return do_sched_setscheduler(pid, policy, param);
4472}
4473
4474/**
4475 * sys_sched_setparam - set/change the RT priority of a thread
4476 * @pid: the pid in question.
4477 * @param: structure containing the new RT priority.
4478 */
4479asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4480{
4481 return do_sched_setscheduler(pid, -1, param);
4482}
4483
4484/**
4485 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4486 * @pid: the pid in question.
4487 */
4488asmlinkage long sys_sched_getscheduler(pid_t pid)
4489{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004490 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004491 int retval = -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004492
4493 if (pid < 0)
4494 goto out_nounlock;
4495
4496 retval = -ESRCH;
4497 read_lock(&tasklist_lock);
4498 p = find_process_by_pid(pid);
4499 if (p) {
4500 retval = security_task_getscheduler(p);
4501 if (!retval)
4502 retval = p->policy;
4503 }
4504 read_unlock(&tasklist_lock);
4505
4506out_nounlock:
4507 return retval;
4508}
4509
4510/**
4511 * sys_sched_getscheduler - get the RT priority of a thread
4512 * @pid: the pid in question.
4513 * @param: structure containing the RT priority.
4514 */
4515asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4516{
4517 struct sched_param lp;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004518 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004519 int retval = -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004520
4521 if (!param || pid < 0)
4522 goto out_nounlock;
4523
4524 read_lock(&tasklist_lock);
4525 p = find_process_by_pid(pid);
4526 retval = -ESRCH;
4527 if (!p)
4528 goto out_unlock;
4529
4530 retval = security_task_getscheduler(p);
4531 if (retval)
4532 goto out_unlock;
4533
4534 lp.sched_priority = p->rt_priority;
4535 read_unlock(&tasklist_lock);
4536
4537 /*
4538 * This one might sleep, we cannot do it with a spinlock held ...
4539 */
4540 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4541
4542out_nounlock:
4543 return retval;
4544
4545out_unlock:
4546 read_unlock(&tasklist_lock);
4547 return retval;
4548}
4549
4550long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4551{
Linus Torvalds1da177e2005-04-16 15:20:36 -07004552 cpumask_t cpus_allowed;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004553 struct task_struct *p;
4554 int retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004555
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004556 mutex_lock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004557 read_lock(&tasklist_lock);
4558
4559 p = find_process_by_pid(pid);
4560 if (!p) {
4561 read_unlock(&tasklist_lock);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004562 mutex_unlock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004563 return -ESRCH;
4564 }
4565
4566 /*
4567 * It is not safe to call set_cpus_allowed with the
4568 * tasklist_lock held. We will bump the task_struct's
4569 * usage count and then drop tasklist_lock.
4570 */
4571 get_task_struct(p);
4572 read_unlock(&tasklist_lock);
4573
4574 retval = -EPERM;
4575 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4576 !capable(CAP_SYS_NICE))
4577 goto out_unlock;
4578
David Quigleye7834f82006-06-23 02:03:59 -07004579 retval = security_task_setscheduler(p, 0, NULL);
4580 if (retval)
4581 goto out_unlock;
4582
Linus Torvalds1da177e2005-04-16 15:20:36 -07004583 cpus_allowed = cpuset_cpus_allowed(p);
4584 cpus_and(new_mask, new_mask, cpus_allowed);
4585 retval = set_cpus_allowed(p, new_mask);
4586
4587out_unlock:
4588 put_task_struct(p);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004589 mutex_unlock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004590 return retval;
4591}
4592
4593static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4594 cpumask_t *new_mask)
4595{
4596 if (len < sizeof(cpumask_t)) {
4597 memset(new_mask, 0, sizeof(cpumask_t));
4598 } else if (len > sizeof(cpumask_t)) {
4599 len = sizeof(cpumask_t);
4600 }
4601 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4602}
4603
4604/**
4605 * sys_sched_setaffinity - set the cpu affinity of a process
4606 * @pid: pid of the process
4607 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4608 * @user_mask_ptr: user-space pointer to the new cpu mask
4609 */
4610asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4611 unsigned long __user *user_mask_ptr)
4612{
4613 cpumask_t new_mask;
4614 int retval;
4615
4616 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4617 if (retval)
4618 return retval;
4619
4620 return sched_setaffinity(pid, new_mask);
4621}
4622
4623/*
4624 * Represents all cpu's present in the system
4625 * In systems capable of hotplug, this map could dynamically grow
4626 * as new cpu's are detected in the system via any platform specific
4627 * method, such as ACPI for e.g.
4628 */
4629
Andi Kleen4cef0c62006-01-11 22:44:57 +01004630cpumask_t cpu_present_map __read_mostly;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004631EXPORT_SYMBOL(cpu_present_map);
4632
4633#ifndef CONFIG_SMP
Andi Kleen4cef0c62006-01-11 22:44:57 +01004634cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
Greg Bankse16b38f2006-10-02 02:17:40 -07004635EXPORT_SYMBOL(cpu_online_map);
4636
Andi Kleen4cef0c62006-01-11 22:44:57 +01004637cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
Greg Bankse16b38f2006-10-02 02:17:40 -07004638EXPORT_SYMBOL(cpu_possible_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004639#endif
4640
4641long sched_getaffinity(pid_t pid, cpumask_t *mask)
4642{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004643 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004644 int retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004645
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004646 mutex_lock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004647 read_lock(&tasklist_lock);
4648
4649 retval = -ESRCH;
4650 p = find_process_by_pid(pid);
4651 if (!p)
4652 goto out_unlock;
4653
David Quigleye7834f82006-06-23 02:03:59 -07004654 retval = security_task_getscheduler(p);
4655 if (retval)
4656 goto out_unlock;
4657
Jack Steiner2f7016d2006-02-01 03:05:18 -08004658 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004659
4660out_unlock:
4661 read_unlock(&tasklist_lock);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004662 mutex_unlock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004663 if (retval)
4664 return retval;
4665
4666 return 0;
4667}
4668
4669/**
4670 * sys_sched_getaffinity - get the cpu affinity of a process
4671 * @pid: pid of the process
4672 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4673 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4674 */
4675asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4676 unsigned long __user *user_mask_ptr)
4677{
4678 int ret;
4679 cpumask_t mask;
4680
4681 if (len < sizeof(cpumask_t))
4682 return -EINVAL;
4683
4684 ret = sched_getaffinity(pid, &mask);
4685 if (ret < 0)
4686 return ret;
4687
4688 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4689 return -EFAULT;
4690
4691 return sizeof(cpumask_t);
4692}
4693
4694/**
4695 * sys_sched_yield - yield the current processor to other threads.
4696 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08004697 * This function yields the current CPU by moving the calling thread
Linus Torvalds1da177e2005-04-16 15:20:36 -07004698 * to the expired array. If there are no other threads running on this
4699 * CPU then this function will return.
4700 */
4701asmlinkage long sys_sched_yield(void)
4702{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004703 struct rq *rq = this_rq_lock();
4704 struct prio_array *array = current->array, *target = rq->expired;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004705
4706 schedstat_inc(rq, yld_cnt);
4707 /*
4708 * We implement yielding by moving the task into the expired
4709 * queue.
4710 *
4711 * (special rule: RT tasks will just roundrobin in the active
4712 * array.)
4713 */
4714 if (rt_task(current))
4715 target = rq->active;
4716
Renaud Lienhart5927ad72005-09-10 00:26:20 -07004717 if (array->nr_active == 1) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004718 schedstat_inc(rq, yld_act_empty);
4719 if (!rq->expired->nr_active)
4720 schedstat_inc(rq, yld_both_empty);
4721 } else if (!rq->expired->nr_active)
4722 schedstat_inc(rq, yld_exp_empty);
4723
4724 if (array != target) {
4725 dequeue_task(current, array);
4726 enqueue_task(current, target);
4727 } else
4728 /*
4729 * requeue_task is cheaper so perform that if possible.
4730 */
4731 requeue_task(current, array);
4732
4733 /*
4734 * Since we are going to call schedule() anyway, there's
4735 * no need to preempt or enable interrupts:
4736 */
4737 __release(rq->lock);
Ingo Molnar8a25d5d2006-07-03 00:24:54 -07004738 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004739 _raw_spin_unlock(&rq->lock);
4740 preempt_enable_no_resched();
4741
4742 schedule();
4743
4744 return 0;
4745}
4746
Andrew Mortone7b38402006-06-30 01:56:00 -07004747static void __cond_resched(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004748{
Ingo Molnar8e0a43d2006-06-23 02:05:23 -07004749#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4750 __might_sleep(__FILE__, __LINE__);
4751#endif
Ingo Molnar5bbcfd92005-07-07 17:57:04 -07004752 /*
4753 * The BKS might be reacquired before we have dropped
4754 * PREEMPT_ACTIVE, which could trigger a second
4755 * cond_resched() call.
4756 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07004757 do {
4758 add_preempt_count(PREEMPT_ACTIVE);
4759 schedule();
4760 sub_preempt_count(PREEMPT_ACTIVE);
4761 } while (need_resched());
4762}
4763
4764int __sched cond_resched(void)
4765{
Ingo Molnar94142322006-12-29 16:48:13 -08004766 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4767 system_state == SYSTEM_RUNNING) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004768 __cond_resched();
4769 return 1;
4770 }
4771 return 0;
4772}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004773EXPORT_SYMBOL(cond_resched);
4774
4775/*
4776 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4777 * call schedule, and on return reacquire the lock.
4778 *
4779 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4780 * operations here to prevent schedule() from being called twice (once via
4781 * spin_unlock(), once by hand).
4782 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004783int cond_resched_lock(spinlock_t *lock)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004784{
Jan Kara6df3cec2005-06-13 15:52:32 -07004785 int ret = 0;
4786
Linus Torvalds1da177e2005-04-16 15:20:36 -07004787 if (need_lockbreak(lock)) {
4788 spin_unlock(lock);
4789 cpu_relax();
Jan Kara6df3cec2005-06-13 15:52:32 -07004790 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004791 spin_lock(lock);
4792 }
Ingo Molnar94142322006-12-29 16:48:13 -08004793 if (need_resched() && system_state == SYSTEM_RUNNING) {
Ingo Molnar8a25d5d2006-07-03 00:24:54 -07004794 spin_release(&lock->dep_map, 1, _THIS_IP_);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004795 _raw_spin_unlock(lock);
4796 preempt_enable_no_resched();
4797 __cond_resched();
Jan Kara6df3cec2005-06-13 15:52:32 -07004798 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004799 spin_lock(lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004800 }
Jan Kara6df3cec2005-06-13 15:52:32 -07004801 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004802}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004803EXPORT_SYMBOL(cond_resched_lock);
4804
4805int __sched cond_resched_softirq(void)
4806{
4807 BUG_ON(!in_softirq());
4808
Ingo Molnar94142322006-12-29 16:48:13 -08004809 if (need_resched() && system_state == SYSTEM_RUNNING) {
Thomas Gleixner98d82562007-05-23 13:58:18 -07004810 local_bh_enable();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004811 __cond_resched();
4812 local_bh_disable();
4813 return 1;
4814 }
4815 return 0;
4816}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004817EXPORT_SYMBOL(cond_resched_softirq);
4818
Linus Torvalds1da177e2005-04-16 15:20:36 -07004819/**
4820 * yield - yield the current processor to other threads.
4821 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08004822 * This is a shortcut for kernel-space yielding - it marks the
Linus Torvalds1da177e2005-04-16 15:20:36 -07004823 * thread runnable and calls sys_sched_yield().
4824 */
4825void __sched yield(void)
4826{
4827 set_current_state(TASK_RUNNING);
4828 sys_sched_yield();
4829}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004830EXPORT_SYMBOL(yield);
4831
4832/*
4833 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4834 * that process accounting knows that this is a task in IO wait state.
4835 *
4836 * But don't do that if it is a deliberate, throttling IO wait (this task
4837 * has set its backing_dev_info: the queue against which it should throttle)
4838 */
4839void __sched io_schedule(void)
4840{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004841 struct rq *rq = &__raw_get_cpu_var(runqueues);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004842
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004843 delayacct_blkio_start();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004844 atomic_inc(&rq->nr_iowait);
4845 schedule();
4846 atomic_dec(&rq->nr_iowait);
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004847 delayacct_blkio_end();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004848}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004849EXPORT_SYMBOL(io_schedule);
4850
4851long __sched io_schedule_timeout(long timeout)
4852{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004853 struct rq *rq = &__raw_get_cpu_var(runqueues);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004854 long ret;
4855
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004856 delayacct_blkio_start();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004857 atomic_inc(&rq->nr_iowait);
4858 ret = schedule_timeout(timeout);
4859 atomic_dec(&rq->nr_iowait);
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004860 delayacct_blkio_end();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004861 return ret;
4862}
4863
4864/**
4865 * sys_sched_get_priority_max - return maximum RT priority.
4866 * @policy: scheduling class.
4867 *
4868 * this syscall returns the maximum rt_priority that can be used
4869 * by a given scheduling class.
4870 */
4871asmlinkage long sys_sched_get_priority_max(int policy)
4872{
4873 int ret = -EINVAL;
4874
4875 switch (policy) {
4876 case SCHED_FIFO:
4877 case SCHED_RR:
4878 ret = MAX_USER_RT_PRIO-1;
4879 break;
4880 case SCHED_NORMAL:
Ingo Molnarb0a94992006-01-14 13:20:41 -08004881 case SCHED_BATCH:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004882 ret = 0;
4883 break;
4884 }
4885 return ret;
4886}
4887
4888/**
4889 * sys_sched_get_priority_min - return minimum RT priority.
4890 * @policy: scheduling class.
4891 *
4892 * this syscall returns the minimum rt_priority that can be used
4893 * by a given scheduling class.
4894 */
4895asmlinkage long sys_sched_get_priority_min(int policy)
4896{
4897 int ret = -EINVAL;
4898
4899 switch (policy) {
4900 case SCHED_FIFO:
4901 case SCHED_RR:
4902 ret = 1;
4903 break;
4904 case SCHED_NORMAL:
Ingo Molnarb0a94992006-01-14 13:20:41 -08004905 case SCHED_BATCH:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004906 ret = 0;
4907 }
4908 return ret;
4909}
4910
4911/**
4912 * sys_sched_rr_get_interval - return the default timeslice of a process.
4913 * @pid: pid of the process.
4914 * @interval: userspace pointer to the timeslice value.
4915 *
4916 * this syscall writes the default timeslice value of a given process
4917 * into the user-space timespec buffer. A value of '0' means infinity.
4918 */
4919asmlinkage
4920long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4921{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004922 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004923 int retval = -EINVAL;
4924 struct timespec t;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004925
4926 if (pid < 0)
4927 goto out_nounlock;
4928
4929 retval = -ESRCH;
4930 read_lock(&tasklist_lock);
4931 p = find_process_by_pid(pid);
4932 if (!p)
4933 goto out_unlock;
4934
4935 retval = security_task_getscheduler(p);
4936 if (retval)
4937 goto out_unlock;
4938
Peter Williamsb78709c2006-06-26 16:58:00 +10004939 jiffies_to_timespec(p->policy == SCHED_FIFO ?
Linus Torvalds1da177e2005-04-16 15:20:36 -07004940 0 : task_timeslice(p), &t);
4941 read_unlock(&tasklist_lock);
4942 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4943out_nounlock:
4944 return retval;
4945out_unlock:
4946 read_unlock(&tasklist_lock);
4947 return retval;
4948}
4949
Andreas Mohr2ed6e342006-07-10 04:43:52 -07004950static const char stat_nam[] = "RSDTtZX";
Ingo Molnar36c8b582006-07-03 00:25:41 -07004951
4952static void show_task(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004953{
Linus Torvalds1da177e2005-04-16 15:20:36 -07004954 unsigned long free = 0;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004955 unsigned state;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004956
Linus Torvalds1da177e2005-04-16 15:20:36 -07004957 state = p->state ? __ffs(p->state) + 1 : 0;
Andreas Mohr2ed6e342006-07-10 04:43:52 -07004958 printk("%-13.13s %c", p->comm,
4959 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
Linus Torvalds1da177e2005-04-16 15:20:36 -07004960#if (BITS_PER_LONG == 32)
4961 if (state == TASK_RUNNING)
4962 printk(" running ");
4963 else
4964 printk(" %08lX ", thread_saved_pc(p));
4965#else
4966 if (state == TASK_RUNNING)
4967 printk(" running task ");
4968 else
4969 printk(" %016lx ", thread_saved_pc(p));
4970#endif
4971#ifdef CONFIG_DEBUG_STACK_USAGE
4972 {
Al Viro10ebffd2005-11-13 16:06:56 -08004973 unsigned long *n = end_of_stack(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004974 while (!*n)
4975 n++;
Al Viro10ebffd2005-11-13 16:06:56 -08004976 free = (unsigned long)n - (unsigned long)end_of_stack(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004977 }
4978#endif
Ingo Molnar35f6f752007-04-06 21:18:06 +02004979 printk("%5lu %5d %6d", free, p->pid, p->parent->pid);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004980 if (!p->mm)
4981 printk(" (L-TLB)\n");
4982 else
4983 printk(" (NOTLB)\n");
4984
4985 if (state != TASK_RUNNING)
4986 show_stack(p, NULL);
4987}
4988
Ingo Molnare59e2ae2006-12-06 20:35:59 -08004989void show_state_filter(unsigned long state_filter)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004990{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004991 struct task_struct *g, *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004992
4993#if (BITS_PER_LONG == 32)
4994 printk("\n"
Chris Caputo301827a2006-12-06 20:39:11 -08004995 " free sibling\n");
4996 printk(" task PC stack pid father child younger older\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004997#else
4998 printk("\n"
Chris Caputo301827a2006-12-06 20:39:11 -08004999 " free sibling\n");
5000 printk(" task PC stack pid father child younger older\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005001#endif
5002 read_lock(&tasklist_lock);
5003 do_each_thread(g, p) {
5004 /*
5005 * reset the NMI-timeout, listing all files on a slow
5006 * console might take alot of time:
5007 */
5008 touch_nmi_watchdog();
Ingo Molnar39bc89f2007-04-25 20:50:03 -07005009 if (!state_filter || (p->state & state_filter))
Ingo Molnare59e2ae2006-12-06 20:35:59 -08005010 show_task(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005011 } while_each_thread(g, p);
5012
Jeremy Fitzhardinge04c91672007-05-08 00:28:05 -07005013 touch_all_softlockup_watchdogs();
5014
Linus Torvalds1da177e2005-04-16 15:20:36 -07005015 read_unlock(&tasklist_lock);
Ingo Molnare59e2ae2006-12-06 20:35:59 -08005016 /*
5017 * Only show locks if all tasks are dumped:
5018 */
5019 if (state_filter == -1)
5020 debug_show_all_locks();
Linus Torvalds1da177e2005-04-16 15:20:36 -07005021}
5022
Ingo Molnar1df21052007-07-09 18:51:58 +02005023void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5024{
5025 /* nothing yet */
5026}
5027
Ingo Molnarf340c0d2005-06-28 16:40:42 +02005028/**
5029 * init_idle - set up an idle thread for a given CPU
5030 * @idle: task in question
5031 * @cpu: cpu the idle task belongs to
5032 *
5033 * NOTE: this function does not set the idle thread's NEED_RESCHED
5034 * flag, to make booting more robust.
5035 */
Nick Piggin5c1e1762006-10-03 01:14:04 -07005036void __cpuinit init_idle(struct task_struct *idle, int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005037{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005038 struct rq *rq = cpu_rq(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005039 unsigned long flags;
5040
Ingo Molnar81c29a82006-03-07 21:55:27 -08005041 idle->timestamp = sched_clock();
Linus Torvalds1da177e2005-04-16 15:20:36 -07005042 idle->sleep_avg = 0;
5043 idle->array = NULL;
Ingo Molnarb29739f2006-06-27 02:54:51 -07005044 idle->prio = idle->normal_prio = MAX_PRIO;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005045 idle->state = TASK_RUNNING;
5046 idle->cpus_allowed = cpumask_of_cpu(cpu);
5047 set_task_cpu(idle, cpu);
5048
5049 spin_lock_irqsave(&rq->lock, flags);
5050 rq->curr = rq->idle = idle;
Nick Piggin4866cde2005-06-25 14:57:23 -07005051#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5052 idle->oncpu = 1;
5053#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07005054 spin_unlock_irqrestore(&rq->lock, flags);
5055
5056 /* Set the preempt count _outside_ the spinlocks! */
5057#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
Al Viroa1261f52005-11-13 16:06:55 -08005058 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005059#else
Al Viroa1261f52005-11-13 16:06:55 -08005060 task_thread_info(idle)->preempt_count = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005061#endif
5062}
5063
5064/*
5065 * In a system that switches off the HZ timer nohz_cpu_mask
5066 * indicates which cpus entered this state. This is used
5067 * in the rcu update to wait only for active cpus. For system
5068 * which do not switch off the HZ timer nohz_cpu_mask should
5069 * always be CPU_MASK_NONE.
5070 */
5071cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5072
5073#ifdef CONFIG_SMP
5074/*
5075 * This is how migration works:
5076 *
Ingo Molnar70b97a72006-07-03 00:25:42 -07005077 * 1) we queue a struct migration_req structure in the source CPU's
Linus Torvalds1da177e2005-04-16 15:20:36 -07005078 * runqueue and wake up that CPU's migration thread.
5079 * 2) we down() the locked semaphore => thread blocks.
5080 * 3) migration thread wakes up (implicitly it forces the migrated
5081 * thread off the CPU)
5082 * 4) it gets the migration request and checks whether the migrated
5083 * task is still in the wrong runqueue.
5084 * 5) if it's in the wrong runqueue then the migration thread removes
5085 * it and puts it into the right queue.
5086 * 6) migration thread up()s the semaphore.
5087 * 7) we wake up and the migration is done.
5088 */
5089
5090/*
5091 * Change a given task's CPU affinity. Migrate the thread to a
5092 * proper CPU and schedule it away if the CPU it's executing on
5093 * is removed from the allowed bitmask.
5094 *
5095 * NOTE: the caller must have a valid reference to the task, the
5096 * task must not exit() & deallocate itself prematurely. The
5097 * call is not atomic; no spinlocks may be held.
5098 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07005099int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005100{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005101 struct migration_req req;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005102 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07005103 struct rq *rq;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005104 int ret = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005105
5106 rq = task_rq_lock(p, &flags);
5107 if (!cpus_intersects(new_mask, cpu_online_map)) {
5108 ret = -EINVAL;
5109 goto out;
5110 }
5111
5112 p->cpus_allowed = new_mask;
5113 /* Can the task run on the task's current CPU? If so, we're done */
5114 if (cpu_isset(task_cpu(p), new_mask))
5115 goto out;
5116
5117 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5118 /* Need help from migration thread: drop lock and wait. */
5119 task_rq_unlock(rq, &flags);
5120 wake_up_process(rq->migration_thread);
5121 wait_for_completion(&req.done);
5122 tlb_migrate_finish(p->mm);
5123 return 0;
5124 }
5125out:
5126 task_rq_unlock(rq, &flags);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005127
Linus Torvalds1da177e2005-04-16 15:20:36 -07005128 return ret;
5129}
Linus Torvalds1da177e2005-04-16 15:20:36 -07005130EXPORT_SYMBOL_GPL(set_cpus_allowed);
5131
5132/*
5133 * Move (not current) task off this cpu, onto dest cpu. We're doing
5134 * this because either it can't run here any more (set_cpus_allowed()
5135 * away from this CPU, or CPU going down), or because we're
5136 * attempting to rebalance this task on exec (sched_exec).
5137 *
5138 * So we race with normal scheduler movements, but that's OK, as long
5139 * as the task is no longer on this CPU.
Kirill Korotaevefc30812006-06-27 02:54:32 -07005140 *
5141 * Returns non-zero if task was successfully migrated.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005142 */
Kirill Korotaevefc30812006-06-27 02:54:32 -07005143static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005144{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005145 struct rq *rq_dest, *rq_src;
Kirill Korotaevefc30812006-06-27 02:54:32 -07005146 int ret = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005147
5148 if (unlikely(cpu_is_offline(dest_cpu)))
Kirill Korotaevefc30812006-06-27 02:54:32 -07005149 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005150
5151 rq_src = cpu_rq(src_cpu);
5152 rq_dest = cpu_rq(dest_cpu);
5153
5154 double_rq_lock(rq_src, rq_dest);
5155 /* Already moved. */
5156 if (task_cpu(p) != src_cpu)
5157 goto out;
5158 /* Affinity changed (again). */
5159 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5160 goto out;
5161
5162 set_task_cpu(p, dest_cpu);
5163 if (p->array) {
5164 /*
5165 * Sync timestamp with rq_dest's before activating.
5166 * The same thing could be achieved by doing this step
5167 * afterwards, and pretending it was a local activate.
5168 * This way is cleaner and logically correct.
5169 */
Mike Galbraithb18ec802006-12-10 02:20:31 -08005170 p->timestamp = p->timestamp - rq_src->most_recent_timestamp
5171 + rq_dest->most_recent_timestamp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005172 deactivate_task(p, rq_src);
Peter Williams0a565f72006-07-10 04:43:51 -07005173 __activate_task(p, rq_dest);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005174 if (TASK_PREEMPTS_CURR(p, rq_dest))
5175 resched_task(rq_dest->curr);
5176 }
Kirill Korotaevefc30812006-06-27 02:54:32 -07005177 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005178out:
5179 double_rq_unlock(rq_src, rq_dest);
Kirill Korotaevefc30812006-06-27 02:54:32 -07005180 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005181}
5182
5183/*
5184 * migration_thread - this is a highprio system thread that performs
5185 * thread migration by bumping thread off CPU then 'pushing' onto
5186 * another runqueue.
5187 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07005188static int migration_thread(void *data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005189{
Linus Torvalds1da177e2005-04-16 15:20:36 -07005190 int cpu = (long)data;
Ingo Molnar70b97a72006-07-03 00:25:42 -07005191 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005192
5193 rq = cpu_rq(cpu);
5194 BUG_ON(rq->migration_thread != current);
5195
5196 set_current_state(TASK_INTERRUPTIBLE);
5197 while (!kthread_should_stop()) {
Ingo Molnar70b97a72006-07-03 00:25:42 -07005198 struct migration_req *req;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005199 struct list_head *head;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005200
Christoph Lameter3e1d1d22005-06-24 23:13:50 -07005201 try_to_freeze();
Linus Torvalds1da177e2005-04-16 15:20:36 -07005202
5203 spin_lock_irq(&rq->lock);
5204
5205 if (cpu_is_offline(cpu)) {
5206 spin_unlock_irq(&rq->lock);
5207 goto wait_to_die;
5208 }
5209
5210 if (rq->active_balance) {
5211 active_load_balance(rq, cpu);
5212 rq->active_balance = 0;
5213 }
5214
5215 head = &rq->migration_queue;
5216
5217 if (list_empty(head)) {
5218 spin_unlock_irq(&rq->lock);
5219 schedule();
5220 set_current_state(TASK_INTERRUPTIBLE);
5221 continue;
5222 }
Ingo Molnar70b97a72006-07-03 00:25:42 -07005223 req = list_entry(head->next, struct migration_req, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005224 list_del_init(head->next);
5225
Nick Piggin674311d2005-06-25 14:57:27 -07005226 spin_unlock(&rq->lock);
5227 __migrate_task(req->task, cpu, req->dest_cpu);
5228 local_irq_enable();
Linus Torvalds1da177e2005-04-16 15:20:36 -07005229
5230 complete(&req->done);
5231 }
5232 __set_current_state(TASK_RUNNING);
5233 return 0;
5234
5235wait_to_die:
5236 /* Wait for kthread_stop */
5237 set_current_state(TASK_INTERRUPTIBLE);
5238 while (!kthread_should_stop()) {
5239 schedule();
5240 set_current_state(TASK_INTERRUPTIBLE);
5241 }
5242 __set_current_state(TASK_RUNNING);
5243 return 0;
5244}
5245
5246#ifdef CONFIG_HOTPLUG_CPU
Kirill Korotaev054b9102006-12-10 02:20:11 -08005247/*
5248 * Figure out where task on dead CPU should go, use force if neccessary.
5249 * NOTE: interrupts should be disabled by the caller
5250 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005251static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005252{
Kirill Korotaevefc30812006-06-27 02:54:32 -07005253 unsigned long flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005254 cpumask_t mask;
Ingo Molnar70b97a72006-07-03 00:25:42 -07005255 struct rq *rq;
5256 int dest_cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005257
Kirill Korotaevefc30812006-06-27 02:54:32 -07005258restart:
Linus Torvalds1da177e2005-04-16 15:20:36 -07005259 /* On same node? */
5260 mask = node_to_cpumask(cpu_to_node(dead_cpu));
Ingo Molnar48f24c42006-07-03 00:25:40 -07005261 cpus_and(mask, mask, p->cpus_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005262 dest_cpu = any_online_cpu(mask);
5263
5264 /* On any allowed CPU? */
5265 if (dest_cpu == NR_CPUS)
Ingo Molnar48f24c42006-07-03 00:25:40 -07005266 dest_cpu = any_online_cpu(p->cpus_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005267
5268 /* No more Mr. Nice Guy. */
5269 if (dest_cpu == NR_CPUS) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07005270 rq = task_rq_lock(p, &flags);
5271 cpus_setall(p->cpus_allowed);
5272 dest_cpu = any_online_cpu(p->cpus_allowed);
Kirill Korotaevefc30812006-06-27 02:54:32 -07005273 task_rq_unlock(rq, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005274
5275 /*
5276 * Don't tell them about moving exiting tasks or
5277 * kernel threads (both mm NULL), since they never
5278 * leave kernel.
5279 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005280 if (p->mm && printk_ratelimit())
Linus Torvalds1da177e2005-04-16 15:20:36 -07005281 printk(KERN_INFO "process %d (%s) no "
5282 "longer affine to cpu%d\n",
Ingo Molnar48f24c42006-07-03 00:25:40 -07005283 p->pid, p->comm, dead_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005284 }
Ingo Molnar48f24c42006-07-03 00:25:40 -07005285 if (!__migrate_task(p, dead_cpu, dest_cpu))
Kirill Korotaevefc30812006-06-27 02:54:32 -07005286 goto restart;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005287}
5288
5289/*
5290 * While a dead CPU has no uninterruptible tasks queued at this point,
5291 * it might still have a nonzero ->nr_uninterruptible counter, because
5292 * for performance reasons the counter is not stricly tracking tasks to
5293 * their home CPUs. So we just add the counter to another CPU's counter,
5294 * to keep the global sum constant after CPU-down:
5295 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07005296static void migrate_nr_uninterruptible(struct rq *rq_src)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005297{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005298 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005299 unsigned long flags;
5300
5301 local_irq_save(flags);
5302 double_rq_lock(rq_src, rq_dest);
5303 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5304 rq_src->nr_uninterruptible = 0;
5305 double_rq_unlock(rq_src, rq_dest);
5306 local_irq_restore(flags);
5307}
5308
5309/* Run through task list and migrate tasks from the dead cpu. */
5310static void migrate_live_tasks(int src_cpu)
5311{
Ingo Molnar48f24c42006-07-03 00:25:40 -07005312 struct task_struct *p, *t;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005313
5314 write_lock_irq(&tasklist_lock);
5315
Ingo Molnar48f24c42006-07-03 00:25:40 -07005316 do_each_thread(t, p) {
5317 if (p == current)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005318 continue;
5319
Ingo Molnar48f24c42006-07-03 00:25:40 -07005320 if (task_cpu(p) == src_cpu)
5321 move_task_off_dead_cpu(src_cpu, p);
5322 } while_each_thread(t, p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005323
5324 write_unlock_irq(&tasklist_lock);
5325}
5326
5327/* Schedules idle task to be the next runnable task on current CPU.
5328 * It does so by boosting its priority to highest possible and adding it to
Ingo Molnar48f24c42006-07-03 00:25:40 -07005329 * the _front_ of the runqueue. Used by CPU offline code.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005330 */
5331void sched_idle_next(void)
5332{
Ingo Molnar48f24c42006-07-03 00:25:40 -07005333 int this_cpu = smp_processor_id();
Ingo Molnar70b97a72006-07-03 00:25:42 -07005334 struct rq *rq = cpu_rq(this_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005335 struct task_struct *p = rq->idle;
5336 unsigned long flags;
5337
5338 /* cpu has to be offline */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005339 BUG_ON(cpu_online(this_cpu));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005340
Ingo Molnar48f24c42006-07-03 00:25:40 -07005341 /*
5342 * Strictly not necessary since rest of the CPUs are stopped by now
5343 * and interrupts disabled on the current cpu.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005344 */
5345 spin_lock_irqsave(&rq->lock, flags);
5346
5347 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005348
5349 /* Add idle task to the _front_ of its priority queue: */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005350 __activate_idle_task(p, rq);
5351
5352 spin_unlock_irqrestore(&rq->lock, flags);
5353}
5354
Ingo Molnar48f24c42006-07-03 00:25:40 -07005355/*
5356 * Ensures that the idle task is using init_mm right before its cpu goes
Linus Torvalds1da177e2005-04-16 15:20:36 -07005357 * offline.
5358 */
5359void idle_task_exit(void)
5360{
5361 struct mm_struct *mm = current->active_mm;
5362
5363 BUG_ON(cpu_online(smp_processor_id()));
5364
5365 if (mm != &init_mm)
5366 switch_mm(mm, &init_mm, current);
5367 mmdrop(mm);
5368}
5369
Kirill Korotaev054b9102006-12-10 02:20:11 -08005370/* called under rq->lock with disabled interrupts */
Ingo Molnar36c8b582006-07-03 00:25:41 -07005371static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005372{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005373 struct rq *rq = cpu_rq(dead_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005374
5375 /* Must be exiting, otherwise would be on tasklist. */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005376 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005377
5378 /* Cannot have done final schedule yet: would have vanished. */
Oleg Nesterovc394cc92006-09-29 02:01:11 -07005379 BUG_ON(p->state == TASK_DEAD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005380
Ingo Molnar48f24c42006-07-03 00:25:40 -07005381 get_task_struct(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005382
5383 /*
5384 * Drop lock around migration; if someone else moves it,
5385 * that's OK. No task can be added to this CPU, so iteration is
5386 * fine.
Kirill Korotaev054b9102006-12-10 02:20:11 -08005387 * NOTE: interrupts should be left disabled --dev@
Linus Torvalds1da177e2005-04-16 15:20:36 -07005388 */
Kirill Korotaev054b9102006-12-10 02:20:11 -08005389 spin_unlock(&rq->lock);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005390 move_task_off_dead_cpu(dead_cpu, p);
Kirill Korotaev054b9102006-12-10 02:20:11 -08005391 spin_lock(&rq->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005392
Ingo Molnar48f24c42006-07-03 00:25:40 -07005393 put_task_struct(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005394}
5395
5396/* release_task() removes task from tasklist, so we won't find dead tasks. */
5397static void migrate_dead_tasks(unsigned int dead_cpu)
5398{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005399 struct rq *rq = cpu_rq(dead_cpu);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005400 unsigned int arr, i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005401
5402 for (arr = 0; arr < 2; arr++) {
5403 for (i = 0; i < MAX_PRIO; i++) {
5404 struct list_head *list = &rq->arrays[arr].queue[i];
Ingo Molnar48f24c42006-07-03 00:25:40 -07005405
Linus Torvalds1da177e2005-04-16 15:20:36 -07005406 while (!list_empty(list))
Ingo Molnar36c8b582006-07-03 00:25:41 -07005407 migrate_dead(dead_cpu, list_entry(list->next,
5408 struct task_struct, run_list));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005409 }
5410 }
5411}
5412#endif /* CONFIG_HOTPLUG_CPU */
5413
5414/*
5415 * migration_call - callback that gets triggered when a CPU is added.
5416 * Here we can start up the necessary migration thread for the new CPU.
5417 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005418static int __cpuinit
5419migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005420{
Linus Torvalds1da177e2005-04-16 15:20:36 -07005421 struct task_struct *p;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005422 int cpu = (long)hcpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005423 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07005424 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005425
5426 switch (action) {
Gautham R Shenoy5be93612007-05-09 02:34:04 -07005427 case CPU_LOCK_ACQUIRE:
5428 mutex_lock(&sched_hotcpu_mutex);
5429 break;
5430
Linus Torvalds1da177e2005-04-16 15:20:36 -07005431 case CPU_UP_PREPARE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07005432 case CPU_UP_PREPARE_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07005433 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
5434 if (IS_ERR(p))
5435 return NOTIFY_BAD;
5436 p->flags |= PF_NOFREEZE;
5437 kthread_bind(p, cpu);
5438 /* Must be high prio: stop_machine expects to yield to it. */
5439 rq = task_rq_lock(p, &flags);
5440 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5441 task_rq_unlock(rq, &flags);
5442 cpu_rq(cpu)->migration_thread = p;
5443 break;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005444
Linus Torvalds1da177e2005-04-16 15:20:36 -07005445 case CPU_ONLINE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07005446 case CPU_ONLINE_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07005447 /* Strictly unneccessary, as first user will wake it. */
5448 wake_up_process(cpu_rq(cpu)->migration_thread);
5449 break;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005450
Linus Torvalds1da177e2005-04-16 15:20:36 -07005451#ifdef CONFIG_HOTPLUG_CPU
5452 case CPU_UP_CANCELED:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07005453 case CPU_UP_CANCELED_FROZEN:
Heiko Carstensfc75cdf2006-06-25 05:49:10 -07005454 if (!cpu_rq(cpu)->migration_thread)
5455 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005456 /* Unbind it from offline cpu so it can run. Fall thru. */
Heiko Carstensa4c4af72005-11-07 00:58:38 -08005457 kthread_bind(cpu_rq(cpu)->migration_thread,
5458 any_online_cpu(cpu_online_map));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005459 kthread_stop(cpu_rq(cpu)->migration_thread);
5460 cpu_rq(cpu)->migration_thread = NULL;
5461 break;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005462
Linus Torvalds1da177e2005-04-16 15:20:36 -07005463 case CPU_DEAD:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07005464 case CPU_DEAD_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07005465 migrate_live_tasks(cpu);
5466 rq = cpu_rq(cpu);
5467 kthread_stop(rq->migration_thread);
5468 rq->migration_thread = NULL;
5469 /* Idle task back to normal (off runqueue, low prio) */
5470 rq = task_rq_lock(rq->idle, &flags);
5471 deactivate_task(rq->idle, rq);
5472 rq->idle->static_prio = MAX_PRIO;
5473 __setscheduler(rq->idle, SCHED_NORMAL, 0);
5474 migrate_dead_tasks(cpu);
5475 task_rq_unlock(rq, &flags);
5476 migrate_nr_uninterruptible(rq);
5477 BUG_ON(rq->nr_running != 0);
5478
5479 /* No need to migrate the tasks: it was best-effort if
Gautham R Shenoy5be93612007-05-09 02:34:04 -07005480 * they didn't take sched_hotcpu_mutex. Just wake up
Linus Torvalds1da177e2005-04-16 15:20:36 -07005481 * the requestors. */
5482 spin_lock_irq(&rq->lock);
5483 while (!list_empty(&rq->migration_queue)) {
Ingo Molnar70b97a72006-07-03 00:25:42 -07005484 struct migration_req *req;
5485
Linus Torvalds1da177e2005-04-16 15:20:36 -07005486 req = list_entry(rq->migration_queue.next,
Ingo Molnar70b97a72006-07-03 00:25:42 -07005487 struct migration_req, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005488 list_del_init(&req->list);
5489 complete(&req->done);
5490 }
5491 spin_unlock_irq(&rq->lock);
5492 break;
5493#endif
Gautham R Shenoy5be93612007-05-09 02:34:04 -07005494 case CPU_LOCK_RELEASE:
5495 mutex_unlock(&sched_hotcpu_mutex);
5496 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005497 }
5498 return NOTIFY_OK;
5499}
5500
5501/* Register at highest priority so that task migration (migrate_all_tasks)
5502 * happens before everything else.
5503 */
Chandra Seetharaman26c21432006-06-27 02:54:10 -07005504static struct notifier_block __cpuinitdata migration_notifier = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005505 .notifier_call = migration_call,
5506 .priority = 10
5507};
5508
5509int __init migration_init(void)
5510{
5511 void *cpu = (void *)(long)smp_processor_id();
Akinobu Mita07dccf32006-09-29 02:00:22 -07005512 int err;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005513
5514 /* Start one for the boot CPU: */
Akinobu Mita07dccf32006-09-29 02:00:22 -07005515 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5516 BUG_ON(err == NOTIFY_BAD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005517 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5518 register_cpu_notifier(&migration_notifier);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005519
Linus Torvalds1da177e2005-04-16 15:20:36 -07005520 return 0;
5521}
5522#endif
5523
5524#ifdef CONFIG_SMP
Christoph Lameter476f3532007-05-06 14:48:58 -07005525
5526/* Number of possible processor ids */
5527int nr_cpu_ids __read_mostly = NR_CPUS;
5528EXPORT_SYMBOL(nr_cpu_ids);
5529
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005530#undef SCHED_DOMAIN_DEBUG
Linus Torvalds1da177e2005-04-16 15:20:36 -07005531#ifdef SCHED_DOMAIN_DEBUG
5532static void sched_domain_debug(struct sched_domain *sd, int cpu)
5533{
5534 int level = 0;
5535
Nick Piggin41c7ce92005-06-25 14:57:24 -07005536 if (!sd) {
5537 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5538 return;
5539 }
5540
Linus Torvalds1da177e2005-04-16 15:20:36 -07005541 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5542
5543 do {
5544 int i;
5545 char str[NR_CPUS];
5546 struct sched_group *group = sd->groups;
5547 cpumask_t groupmask;
5548
5549 cpumask_scnprintf(str, NR_CPUS, sd->span);
5550 cpus_clear(groupmask);
5551
5552 printk(KERN_DEBUG);
5553 for (i = 0; i < level + 1; i++)
5554 printk(" ");
5555 printk("domain %d: ", level);
5556
5557 if (!(sd->flags & SD_LOAD_BALANCE)) {
5558 printk("does not load-balance\n");
5559 if (sd->parent)
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005560 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5561 " has parent");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005562 break;
5563 }
5564
5565 printk("span %s\n", str);
5566
5567 if (!cpu_isset(cpu, sd->span))
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005568 printk(KERN_ERR "ERROR: domain->span does not contain "
5569 "CPU%d\n", cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005570 if (!cpu_isset(cpu, group->cpumask))
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005571 printk(KERN_ERR "ERROR: domain->groups does not contain"
5572 " CPU%d\n", cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005573
5574 printk(KERN_DEBUG);
5575 for (i = 0; i < level + 2; i++)
5576 printk(" ");
5577 printk("groups:");
5578 do {
5579 if (!group) {
5580 printk("\n");
5581 printk(KERN_ERR "ERROR: group is NULL\n");
5582 break;
5583 }
5584
Eric Dumazet5517d862007-05-08 00:32:57 -07005585 if (!group->__cpu_power) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005586 printk("\n");
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005587 printk(KERN_ERR "ERROR: domain->cpu_power not "
5588 "set\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005589 }
5590
5591 if (!cpus_weight(group->cpumask)) {
5592 printk("\n");
5593 printk(KERN_ERR "ERROR: empty group\n");
5594 }
5595
5596 if (cpus_intersects(groupmask, group->cpumask)) {
5597 printk("\n");
5598 printk(KERN_ERR "ERROR: repeated CPUs\n");
5599 }
5600
5601 cpus_or(groupmask, groupmask, group->cpumask);
5602
5603 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5604 printk(" %s", str);
5605
5606 group = group->next;
5607 } while (group != sd->groups);
5608 printk("\n");
5609
5610 if (!cpus_equal(sd->span, groupmask))
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005611 printk(KERN_ERR "ERROR: groups don't span "
5612 "domain->span\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005613
5614 level++;
5615 sd = sd->parent;
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005616 if (!sd)
5617 continue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005618
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005619 if (!cpus_subset(groupmask, sd->span))
5620 printk(KERN_ERR "ERROR: parent span is not a superset "
5621 "of domain->span\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005622
5623 } while (sd);
5624}
5625#else
Ingo Molnar48f24c42006-07-03 00:25:40 -07005626# define sched_domain_debug(sd, cpu) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005627#endif
5628
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005629static int sd_degenerate(struct sched_domain *sd)
Suresh Siddha245af2c2005-06-25 14:57:25 -07005630{
5631 if (cpus_weight(sd->span) == 1)
5632 return 1;
5633
5634 /* Following flags need at least 2 groups */
5635 if (sd->flags & (SD_LOAD_BALANCE |
5636 SD_BALANCE_NEWIDLE |
5637 SD_BALANCE_FORK |
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005638 SD_BALANCE_EXEC |
5639 SD_SHARE_CPUPOWER |
5640 SD_SHARE_PKG_RESOURCES)) {
Suresh Siddha245af2c2005-06-25 14:57:25 -07005641 if (sd->groups != sd->groups->next)
5642 return 0;
5643 }
5644
5645 /* Following flags don't use groups */
5646 if (sd->flags & (SD_WAKE_IDLE |
5647 SD_WAKE_AFFINE |
5648 SD_WAKE_BALANCE))
5649 return 0;
5650
5651 return 1;
5652}
5653
Ingo Molnar48f24c42006-07-03 00:25:40 -07005654static int
5655sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
Suresh Siddha245af2c2005-06-25 14:57:25 -07005656{
5657 unsigned long cflags = sd->flags, pflags = parent->flags;
5658
5659 if (sd_degenerate(parent))
5660 return 1;
5661
5662 if (!cpus_equal(sd->span, parent->span))
5663 return 0;
5664
5665 /* Does parent contain flags not in child? */
5666 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5667 if (cflags & SD_WAKE_AFFINE)
5668 pflags &= ~SD_WAKE_BALANCE;
5669 /* Flags needing groups don't count if only 1 group in parent */
5670 if (parent->groups == parent->groups->next) {
5671 pflags &= ~(SD_LOAD_BALANCE |
5672 SD_BALANCE_NEWIDLE |
5673 SD_BALANCE_FORK |
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005674 SD_BALANCE_EXEC |
5675 SD_SHARE_CPUPOWER |
5676 SD_SHARE_PKG_RESOURCES);
Suresh Siddha245af2c2005-06-25 14:57:25 -07005677 }
5678 if (~cflags & pflags)
5679 return 0;
5680
5681 return 1;
5682}
5683
Linus Torvalds1da177e2005-04-16 15:20:36 -07005684/*
5685 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5686 * hold the hotplug lock.
5687 */
John Hawkes9c1cfda2005-09-06 15:18:14 -07005688static void cpu_attach_domain(struct sched_domain *sd, int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005689{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005690 struct rq *rq = cpu_rq(cpu);
Suresh Siddha245af2c2005-06-25 14:57:25 -07005691 struct sched_domain *tmp;
5692
5693 /* Remove the sched domains which do not contribute to scheduling. */
5694 for (tmp = sd; tmp; tmp = tmp->parent) {
5695 struct sched_domain *parent = tmp->parent;
5696 if (!parent)
5697 break;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005698 if (sd_parent_degenerate(tmp, parent)) {
Suresh Siddha245af2c2005-06-25 14:57:25 -07005699 tmp->parent = parent->parent;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005700 if (parent->parent)
5701 parent->parent->child = tmp;
5702 }
Suresh Siddha245af2c2005-06-25 14:57:25 -07005703 }
5704
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005705 if (sd && sd_degenerate(sd)) {
Suresh Siddha245af2c2005-06-25 14:57:25 -07005706 sd = sd->parent;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005707 if (sd)
5708 sd->child = NULL;
5709 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005710
5711 sched_domain_debug(sd, cpu);
5712
Nick Piggin674311d2005-06-25 14:57:27 -07005713 rcu_assign_pointer(rq->sd, sd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005714}
5715
5716/* cpus with isolated domains */
Tim Chen67af63a2006-12-22 01:07:50 -08005717static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005718
5719/* Setup the mask of cpus configured for isolated domains */
5720static int __init isolated_cpu_setup(char *str)
5721{
5722 int ints[NR_CPUS], i;
5723
5724 str = get_options(str, ARRAY_SIZE(ints), ints);
5725 cpus_clear(cpu_isolated_map);
5726 for (i = 1; i <= ints[0]; i++)
5727 if (ints[i] < NR_CPUS)
5728 cpu_set(ints[i], cpu_isolated_map);
5729 return 1;
5730}
5731
5732__setup ("isolcpus=", isolated_cpu_setup);
5733
5734/*
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005735 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5736 * to a function which identifies what group(along with sched group) a CPU
5737 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5738 * (due to the fact that we keep track of groups covered with a cpumask_t).
Linus Torvalds1da177e2005-04-16 15:20:36 -07005739 *
5740 * init_sched_build_groups will build a circular linked list of the groups
5741 * covered by the given span, and will set each group's ->cpumask correctly,
5742 * and ->cpu_power to 0.
5743 */
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005744static void
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005745init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5746 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5747 struct sched_group **sg))
Linus Torvalds1da177e2005-04-16 15:20:36 -07005748{
5749 struct sched_group *first = NULL, *last = NULL;
5750 cpumask_t covered = CPU_MASK_NONE;
5751 int i;
5752
5753 for_each_cpu_mask(i, span) {
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005754 struct sched_group *sg;
5755 int group = group_fn(i, cpu_map, &sg);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005756 int j;
5757
5758 if (cpu_isset(i, covered))
5759 continue;
5760
5761 sg->cpumask = CPU_MASK_NONE;
Eric Dumazet5517d862007-05-08 00:32:57 -07005762 sg->__cpu_power = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005763
5764 for_each_cpu_mask(j, span) {
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005765 if (group_fn(j, cpu_map, NULL) != group)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005766 continue;
5767
5768 cpu_set(j, covered);
5769 cpu_set(j, sg->cpumask);
5770 }
5771 if (!first)
5772 first = sg;
5773 if (last)
5774 last->next = sg;
5775 last = sg;
5776 }
5777 last->next = first;
5778}
5779
John Hawkes9c1cfda2005-09-06 15:18:14 -07005780#define SD_NODES_PER_DOMAIN 16
Linus Torvalds1da177e2005-04-16 15:20:36 -07005781
John Hawkes9c1cfda2005-09-06 15:18:14 -07005782#ifdef CONFIG_NUMA
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005783
John Hawkes9c1cfda2005-09-06 15:18:14 -07005784/**
5785 * find_next_best_node - find the next node to include in a sched_domain
5786 * @node: node whose sched_domain we're building
5787 * @used_nodes: nodes already in the sched_domain
5788 *
5789 * Find the next node to include in a given scheduling domain. Simply
5790 * finds the closest node not already in the @used_nodes map.
5791 *
5792 * Should use nodemask_t.
5793 */
5794static int find_next_best_node(int node, unsigned long *used_nodes)
5795{
5796 int i, n, val, min_val, best_node = 0;
5797
5798 min_val = INT_MAX;
5799
5800 for (i = 0; i < MAX_NUMNODES; i++) {
5801 /* Start at @node */
5802 n = (node + i) % MAX_NUMNODES;
5803
5804 if (!nr_cpus_node(n))
5805 continue;
5806
5807 /* Skip already used nodes */
5808 if (test_bit(n, used_nodes))
5809 continue;
5810
5811 /* Simple min distance search */
5812 val = node_distance(node, n);
5813
5814 if (val < min_val) {
5815 min_val = val;
5816 best_node = n;
5817 }
5818 }
5819
5820 set_bit(best_node, used_nodes);
5821 return best_node;
5822}
5823
5824/**
5825 * sched_domain_node_span - get a cpumask for a node's sched_domain
5826 * @node: node whose cpumask we're constructing
5827 * @size: number of nodes to include in this span
5828 *
5829 * Given a node, construct a good cpumask for its sched_domain to span. It
5830 * should be one that prevents unnecessary balancing, but also spreads tasks
5831 * out optimally.
5832 */
5833static cpumask_t sched_domain_node_span(int node)
5834{
John Hawkes9c1cfda2005-09-06 15:18:14 -07005835 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005836 cpumask_t span, nodemask;
5837 int i;
John Hawkes9c1cfda2005-09-06 15:18:14 -07005838
5839 cpus_clear(span);
5840 bitmap_zero(used_nodes, MAX_NUMNODES);
5841
5842 nodemask = node_to_cpumask(node);
5843 cpus_or(span, span, nodemask);
5844 set_bit(node, used_nodes);
5845
5846 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5847 int next_node = find_next_best_node(node, used_nodes);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005848
John Hawkes9c1cfda2005-09-06 15:18:14 -07005849 nodemask = node_to_cpumask(next_node);
5850 cpus_or(span, span, nodemask);
5851 }
5852
5853 return span;
5854}
5855#endif
5856
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07005857int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005858
John Hawkes9c1cfda2005-09-06 15:18:14 -07005859/*
Ingo Molnar48f24c42006-07-03 00:25:40 -07005860 * SMT sched-domains:
John Hawkes9c1cfda2005-09-06 15:18:14 -07005861 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005862#ifdef CONFIG_SCHED_SMT
5863static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005864static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005865
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005866static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5867 struct sched_group **sg)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005868{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005869 if (sg)
5870 *sg = &per_cpu(sched_group_cpus, cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005871 return cpu;
5872}
5873#endif
5874
Ingo Molnar48f24c42006-07-03 00:25:40 -07005875/*
5876 * multi-core sched-domains:
5877 */
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005878#ifdef CONFIG_SCHED_MC
5879static DEFINE_PER_CPU(struct sched_domain, core_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005880static DEFINE_PER_CPU(struct sched_group, sched_group_core);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005881#endif
5882
5883#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005884static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5885 struct sched_group **sg)
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005886{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005887 int group;
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005888 cpumask_t mask = cpu_sibling_map[cpu];
5889 cpus_and(mask, mask, *cpu_map);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005890 group = first_cpu(mask);
5891 if (sg)
5892 *sg = &per_cpu(sched_group_core, group);
5893 return group;
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005894}
5895#elif defined(CONFIG_SCHED_MC)
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005896static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5897 struct sched_group **sg)
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005898{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005899 if (sg)
5900 *sg = &per_cpu(sched_group_core, cpu);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005901 return cpu;
5902}
5903#endif
5904
Linus Torvalds1da177e2005-04-16 15:20:36 -07005905static DEFINE_PER_CPU(struct sched_domain, phys_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005906static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005907
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005908static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5909 struct sched_group **sg)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005910{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005911 int group;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005912#ifdef CONFIG_SCHED_MC
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005913 cpumask_t mask = cpu_coregroup_map(cpu);
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005914 cpus_and(mask, mask, *cpu_map);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005915 group = first_cpu(mask);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005916#elif defined(CONFIG_SCHED_SMT)
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005917 cpumask_t mask = cpu_sibling_map[cpu];
5918 cpus_and(mask, mask, *cpu_map);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005919 group = first_cpu(mask);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005920#else
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005921 group = cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005922#endif
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005923 if (sg)
5924 *sg = &per_cpu(sched_group_phys, group);
5925 return group;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005926}
5927
5928#ifdef CONFIG_NUMA
John Hawkes9c1cfda2005-09-06 15:18:14 -07005929/*
5930 * The init_sched_build_groups can't handle what we want to do with node
5931 * groups, so roll our own. Now each node has its own list of groups which
5932 * gets dynamically allocated.
5933 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005934static DEFINE_PER_CPU(struct sched_domain, node_domains);
John Hawkesd1b55132005-09-06 15:18:14 -07005935static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
John Hawkes9c1cfda2005-09-06 15:18:14 -07005936
5937static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005938static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
John Hawkes9c1cfda2005-09-06 15:18:14 -07005939
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005940static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5941 struct sched_group **sg)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005942{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005943 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5944 int group;
5945
5946 cpus_and(nodemask, nodemask, *cpu_map);
5947 group = first_cpu(nodemask);
5948
5949 if (sg)
5950 *sg = &per_cpu(sched_group_allnodes, group);
5951 return group;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005952}
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005953
Siddha, Suresh B08069032006-03-27 01:15:23 -08005954static void init_numa_sched_groups_power(struct sched_group *group_head)
5955{
5956 struct sched_group *sg = group_head;
5957 int j;
5958
5959 if (!sg)
5960 return;
5961next_sg:
5962 for_each_cpu_mask(j, sg->cpumask) {
5963 struct sched_domain *sd;
5964
5965 sd = &per_cpu(phys_domains, j);
5966 if (j != first_cpu(sd->groups->cpumask)) {
5967 /*
5968 * Only add "power" once for each
5969 * physical package.
5970 */
5971 continue;
5972 }
5973
Eric Dumazet5517d862007-05-08 00:32:57 -07005974 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
Siddha, Suresh B08069032006-03-27 01:15:23 -08005975 }
5976 sg = sg->next;
5977 if (sg != group_head)
5978 goto next_sg;
5979}
Linus Torvalds1da177e2005-04-16 15:20:36 -07005980#endif
5981
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005982#ifdef CONFIG_NUMA
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005983/* Free memory allocated for various sched_group structures */
5984static void free_sched_groups(const cpumask_t *cpu_map)
5985{
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005986 int cpu, i;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005987
5988 for_each_cpu_mask(cpu, *cpu_map) {
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005989 struct sched_group **sched_group_nodes
5990 = sched_group_nodes_bycpu[cpu];
5991
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005992 if (!sched_group_nodes)
5993 continue;
5994
5995 for (i = 0; i < MAX_NUMNODES; i++) {
5996 cpumask_t nodemask = node_to_cpumask(i);
5997 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5998
5999 cpus_and(nodemask, nodemask, *cpu_map);
6000 if (cpus_empty(nodemask))
6001 continue;
6002
6003 if (sg == NULL)
6004 continue;
6005 sg = sg->next;
6006next_sg:
6007 oldsg = sg;
6008 sg = sg->next;
6009 kfree(oldsg);
6010 if (oldsg != sched_group_nodes[i])
6011 goto next_sg;
6012 }
6013 kfree(sched_group_nodes);
6014 sched_group_nodes_bycpu[cpu] = NULL;
6015 }
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006016}
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006017#else
6018static void free_sched_groups(const cpumask_t *cpu_map)
6019{
6020}
6021#endif
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006022
Linus Torvalds1da177e2005-04-16 15:20:36 -07006023/*
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006024 * Initialize sched groups cpu_power.
6025 *
6026 * cpu_power indicates the capacity of sched group, which is used while
6027 * distributing the load between different sched groups in a sched domain.
6028 * Typically cpu_power for all the groups in a sched domain will be same unless
6029 * there are asymmetries in the topology. If there are asymmetries, group
6030 * having more cpu_power will pickup more load compared to the group having
6031 * less cpu_power.
6032 *
6033 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6034 * the maximum number of tasks a group can handle in the presence of other idle
6035 * or lightly loaded groups in the same sched domain.
6036 */
6037static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6038{
6039 struct sched_domain *child;
6040 struct sched_group *group;
6041
6042 WARN_ON(!sd || !sd->groups);
6043
6044 if (cpu != first_cpu(sd->groups->cpumask))
6045 return;
6046
6047 child = sd->child;
6048
Eric Dumazet5517d862007-05-08 00:32:57 -07006049 sd->groups->__cpu_power = 0;
6050
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006051 /*
6052 * For perf policy, if the groups in child domain share resources
6053 * (for example cores sharing some portions of the cache hierarchy
6054 * or SMT), then set this domain groups cpu_power such that each group
6055 * can handle only one task, when there are other idle groups in the
6056 * same sched domain.
6057 */
6058 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6059 (child->flags &
6060 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
Eric Dumazet5517d862007-05-08 00:32:57 -07006061 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006062 return;
6063 }
6064
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006065 /*
6066 * add cpu_power of each child group to this groups cpu_power
6067 */
6068 group = child->groups;
6069 do {
Eric Dumazet5517d862007-05-08 00:32:57 -07006070 sg_inc_cpu_power(sd->groups, group->__cpu_power);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006071 group = group->next;
6072 } while (group != child->groups);
6073}
6074
6075/*
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006076 * Build sched domains for a given set of cpus and attach the sched domains
6077 * to the individual cpus
Linus Torvalds1da177e2005-04-16 15:20:36 -07006078 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006079static int build_sched_domains(const cpumask_t *cpu_map)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006080{
6081 int i;
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006082 struct sched_domain *sd;
John Hawkesd1b55132005-09-06 15:18:14 -07006083#ifdef CONFIG_NUMA
6084 struct sched_group **sched_group_nodes = NULL;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006085 int sd_allnodes = 0;
John Hawkesd1b55132005-09-06 15:18:14 -07006086
6087 /*
6088 * Allocate the per-node list of sched groups
6089 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006090 sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
Srivatsa Vaddagirid3a5aa92006-06-27 02:54:39 -07006091 GFP_KERNEL);
John Hawkesd1b55132005-09-06 15:18:14 -07006092 if (!sched_group_nodes) {
6093 printk(KERN_WARNING "Can not alloc sched group node list\n");
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006094 return -ENOMEM;
John Hawkesd1b55132005-09-06 15:18:14 -07006095 }
6096 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6097#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07006098
6099 /*
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006100 * Set up domains for cpus specified by the cpu_map.
Linus Torvalds1da177e2005-04-16 15:20:36 -07006101 */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006102 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006103 struct sched_domain *sd = NULL, *p;
6104 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6105
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006106 cpus_and(nodemask, nodemask, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006107
6108#ifdef CONFIG_NUMA
John Hawkesd1b55132005-09-06 15:18:14 -07006109 if (cpus_weight(*cpu_map)
John Hawkes9c1cfda2005-09-06 15:18:14 -07006110 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6111 sd = &per_cpu(allnodes_domains, i);
6112 *sd = SD_ALLNODES_INIT;
6113 sd->span = *cpu_map;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006114 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006115 p = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006116 sd_allnodes = 1;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006117 } else
6118 p = NULL;
6119
Linus Torvalds1da177e2005-04-16 15:20:36 -07006120 sd = &per_cpu(node_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006121 *sd = SD_NODE_INIT;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006122 sd->span = sched_domain_node_span(cpu_to_node(i));
6123 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07006124 if (p)
6125 p->child = sd;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006126 cpus_and(sd->span, sd->span, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006127#endif
6128
6129 p = sd;
6130 sd = &per_cpu(phys_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006131 *sd = SD_CPU_INIT;
6132 sd->span = nodemask;
6133 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07006134 if (p)
6135 p->child = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006136 cpu_to_phys_group(i, cpu_map, &sd->groups);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006137
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006138#ifdef CONFIG_SCHED_MC
6139 p = sd;
6140 sd = &per_cpu(core_domains, i);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006141 *sd = SD_MC_INIT;
6142 sd->span = cpu_coregroup_map(i);
6143 cpus_and(sd->span, sd->span, *cpu_map);
6144 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07006145 p->child = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006146 cpu_to_core_group(i, cpu_map, &sd->groups);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006147#endif
6148
Linus Torvalds1da177e2005-04-16 15:20:36 -07006149#ifdef CONFIG_SCHED_SMT
6150 p = sd;
6151 sd = &per_cpu(cpu_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006152 *sd = SD_SIBLING_INIT;
6153 sd->span = cpu_sibling_map[i];
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006154 cpus_and(sd->span, sd->span, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006155 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07006156 p->child = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006157 cpu_to_cpu_group(i, cpu_map, &sd->groups);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006158#endif
6159 }
6160
6161#ifdef CONFIG_SCHED_SMT
6162 /* Set up CPU (sibling) groups */
John Hawkes9c1cfda2005-09-06 15:18:14 -07006163 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006164 cpumask_t this_sibling_map = cpu_sibling_map[i];
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006165 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006166 if (i != first_cpu(this_sibling_map))
6167 continue;
6168
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006169 init_sched_build_groups(this_sibling_map, cpu_map, &cpu_to_cpu_group);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006170 }
6171#endif
6172
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006173#ifdef CONFIG_SCHED_MC
6174 /* Set up multi-core groups */
6175 for_each_cpu_mask(i, *cpu_map) {
6176 cpumask_t this_core_map = cpu_coregroup_map(i);
6177 cpus_and(this_core_map, this_core_map, *cpu_map);
6178 if (i != first_cpu(this_core_map))
6179 continue;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006180 init_sched_build_groups(this_core_map, cpu_map, &cpu_to_core_group);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006181 }
6182#endif
6183
6184
Linus Torvalds1da177e2005-04-16 15:20:36 -07006185 /* Set up physical groups */
6186 for (i = 0; i < MAX_NUMNODES; i++) {
6187 cpumask_t nodemask = node_to_cpumask(i);
6188
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006189 cpus_and(nodemask, nodemask, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006190 if (cpus_empty(nodemask))
6191 continue;
6192
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006193 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006194 }
6195
6196#ifdef CONFIG_NUMA
6197 /* Set up node groups */
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006198 if (sd_allnodes)
6199 init_sched_build_groups(*cpu_map, cpu_map, &cpu_to_allnodes_group);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006200
6201 for (i = 0; i < MAX_NUMNODES; i++) {
6202 /* Set up node groups */
6203 struct sched_group *sg, *prev;
6204 cpumask_t nodemask = node_to_cpumask(i);
6205 cpumask_t domainspan;
6206 cpumask_t covered = CPU_MASK_NONE;
6207 int j;
6208
6209 cpus_and(nodemask, nodemask, *cpu_map);
John Hawkesd1b55132005-09-06 15:18:14 -07006210 if (cpus_empty(nodemask)) {
6211 sched_group_nodes[i] = NULL;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006212 continue;
John Hawkesd1b55132005-09-06 15:18:14 -07006213 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006214
6215 domainspan = sched_domain_node_span(i);
6216 cpus_and(domainspan, domainspan, *cpu_map);
6217
Srivatsa Vaddagiri15f0b672006-06-27 02:54:40 -07006218 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006219 if (!sg) {
6220 printk(KERN_WARNING "Can not alloc domain group for "
6221 "node %d\n", i);
6222 goto error;
6223 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006224 sched_group_nodes[i] = sg;
6225 for_each_cpu_mask(j, nodemask) {
6226 struct sched_domain *sd;
6227 sd = &per_cpu(node_domains, j);
6228 sd->groups = sg;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006229 }
Eric Dumazet5517d862007-05-08 00:32:57 -07006230 sg->__cpu_power = 0;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006231 sg->cpumask = nodemask;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006232 sg->next = sg;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006233 cpus_or(covered, covered, nodemask);
6234 prev = sg;
6235
6236 for (j = 0; j < MAX_NUMNODES; j++) {
6237 cpumask_t tmp, notcovered;
6238 int n = (i + j) % MAX_NUMNODES;
6239
6240 cpus_complement(notcovered, covered);
6241 cpus_and(tmp, notcovered, *cpu_map);
6242 cpus_and(tmp, tmp, domainspan);
6243 if (cpus_empty(tmp))
6244 break;
6245
6246 nodemask = node_to_cpumask(n);
6247 cpus_and(tmp, tmp, nodemask);
6248 if (cpus_empty(tmp))
6249 continue;
6250
Srivatsa Vaddagiri15f0b672006-06-27 02:54:40 -07006251 sg = kmalloc_node(sizeof(struct sched_group),
6252 GFP_KERNEL, i);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006253 if (!sg) {
6254 printk(KERN_WARNING
6255 "Can not alloc domain group for node %d\n", j);
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006256 goto error;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006257 }
Eric Dumazet5517d862007-05-08 00:32:57 -07006258 sg->__cpu_power = 0;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006259 sg->cpumask = tmp;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006260 sg->next = prev->next;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006261 cpus_or(covered, covered, tmp);
6262 prev->next = sg;
6263 prev = sg;
6264 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006265 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07006266#endif
6267
6268 /* Calculate CPU power for physical packages and nodes */
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006269#ifdef CONFIG_SCHED_SMT
6270 for_each_cpu_mask(i, *cpu_map) {
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006271 sd = &per_cpu(cpu_domains, i);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006272 init_sched_groups_power(i, sd);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006273 }
6274#endif
6275#ifdef CONFIG_SCHED_MC
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006276 for_each_cpu_mask(i, *cpu_map) {
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006277 sd = &per_cpu(core_domains, i);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006278 init_sched_groups_power(i, sd);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006279 }
6280#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07006281
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006282 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006283 sd = &per_cpu(phys_domains, i);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006284 init_sched_groups_power(i, sd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006285 }
6286
John Hawkes9c1cfda2005-09-06 15:18:14 -07006287#ifdef CONFIG_NUMA
Siddha, Suresh B08069032006-03-27 01:15:23 -08006288 for (i = 0; i < MAX_NUMNODES; i++)
6289 init_numa_sched_groups_power(sched_group_nodes[i]);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006290
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006291 if (sd_allnodes) {
6292 struct sched_group *sg;
Siddha, Suresh Bf712c0c2006-07-30 03:02:59 -07006293
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006294 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
Siddha, Suresh Bf712c0c2006-07-30 03:02:59 -07006295 init_numa_sched_groups_power(sg);
6296 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006297#endif
6298
Linus Torvalds1da177e2005-04-16 15:20:36 -07006299 /* Attach the domains */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006300 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006301 struct sched_domain *sd;
6302#ifdef CONFIG_SCHED_SMT
6303 sd = &per_cpu(cpu_domains, i);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006304#elif defined(CONFIG_SCHED_MC)
6305 sd = &per_cpu(core_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006306#else
6307 sd = &per_cpu(phys_domains, i);
6308#endif
6309 cpu_attach_domain(sd, i);
6310 }
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006311
6312 return 0;
6313
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006314#ifdef CONFIG_NUMA
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006315error:
6316 free_sched_groups(cpu_map);
6317 return -ENOMEM;
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006318#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07006319}
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006320/*
6321 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6322 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006323static int arch_init_sched_domains(const cpumask_t *cpu_map)
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006324{
6325 cpumask_t cpu_default_map;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006326 int err;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006327
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006328 /*
6329 * Setup mask for cpus without special case scheduling requirements.
6330 * For now this just excludes isolated cpus, but could be used to
6331 * exclude other special cases in the future.
6332 */
6333 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6334
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006335 err = build_sched_domains(&cpu_default_map);
6336
6337 return err;
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006338}
6339
6340static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006341{
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006342 free_sched_groups(cpu_map);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006343}
Linus Torvalds1da177e2005-04-16 15:20:36 -07006344
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006345/*
6346 * Detach sched domains from a group of cpus specified in cpu_map
6347 * These cpus will now be attached to the NULL domain
6348 */
Arjan van de Ven858119e2006-01-14 13:20:43 -08006349static void detach_destroy_domains(const cpumask_t *cpu_map)
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006350{
6351 int i;
6352
6353 for_each_cpu_mask(i, *cpu_map)
6354 cpu_attach_domain(NULL, i);
6355 synchronize_sched();
6356 arch_destroy_sched_domains(cpu_map);
6357}
6358
6359/*
6360 * Partition sched domains as specified by the cpumasks below.
6361 * This attaches all cpus from the cpumasks to the NULL domain,
6362 * waits for a RCU quiescent period, recalculates sched
6363 * domain information and then attaches them back to the
6364 * correct sched domains
6365 * Call with hotplug lock held
6366 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006367int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006368{
6369 cpumask_t change_map;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006370 int err = 0;
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006371
6372 cpus_and(*partition1, *partition1, cpu_online_map);
6373 cpus_and(*partition2, *partition2, cpu_online_map);
6374 cpus_or(change_map, *partition1, *partition2);
6375
6376 /* Detach sched domains from all of the affected cpus */
6377 detach_destroy_domains(&change_map);
6378 if (!cpus_empty(*partition1))
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006379 err = build_sched_domains(partition1);
6380 if (!err && !cpus_empty(*partition2))
6381 err = build_sched_domains(partition2);
6382
6383 return err;
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006384}
6385
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006386#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6387int arch_reinit_sched_domains(void)
6388{
6389 int err;
6390
Gautham R Shenoy5be93612007-05-09 02:34:04 -07006391 mutex_lock(&sched_hotcpu_mutex);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006392 detach_destroy_domains(&cpu_online_map);
6393 err = arch_init_sched_domains(&cpu_online_map);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07006394 mutex_unlock(&sched_hotcpu_mutex);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006395
6396 return err;
6397}
6398
6399static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6400{
6401 int ret;
6402
6403 if (buf[0] != '0' && buf[0] != '1')
6404 return -EINVAL;
6405
6406 if (smt)
6407 sched_smt_power_savings = (buf[0] == '1');
6408 else
6409 sched_mc_power_savings = (buf[0] == '1');
6410
6411 ret = arch_reinit_sched_domains();
6412
6413 return ret ? ret : count;
6414}
6415
6416int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6417{
6418 int err = 0;
Ingo Molnar48f24c42006-07-03 00:25:40 -07006419
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006420#ifdef CONFIG_SCHED_SMT
6421 if (smt_capable())
6422 err = sysfs_create_file(&cls->kset.kobj,
6423 &attr_sched_smt_power_savings.attr);
6424#endif
6425#ifdef CONFIG_SCHED_MC
6426 if (!err && mc_capable())
6427 err = sysfs_create_file(&cls->kset.kobj,
6428 &attr_sched_mc_power_savings.attr);
6429#endif
6430 return err;
6431}
6432#endif
6433
6434#ifdef CONFIG_SCHED_MC
6435static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6436{
6437 return sprintf(page, "%u\n", sched_mc_power_savings);
6438}
Ingo Molnar48f24c42006-07-03 00:25:40 -07006439static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6440 const char *buf, size_t count)
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006441{
6442 return sched_power_savings_store(buf, count, 0);
6443}
6444SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6445 sched_mc_power_savings_store);
6446#endif
6447
6448#ifdef CONFIG_SCHED_SMT
6449static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6450{
6451 return sprintf(page, "%u\n", sched_smt_power_savings);
6452}
Ingo Molnar48f24c42006-07-03 00:25:40 -07006453static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6454 const char *buf, size_t count)
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006455{
6456 return sched_power_savings_store(buf, count, 1);
6457}
6458SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6459 sched_smt_power_savings_store);
6460#endif
6461
Linus Torvalds1da177e2005-04-16 15:20:36 -07006462/*
6463 * Force a reinitialization of the sched domains hierarchy. The domains
6464 * and groups cannot be updated in place without racing with the balancing
Nick Piggin41c7ce92005-06-25 14:57:24 -07006465 * code, so we temporarily attach all running cpus to the NULL domain
Linus Torvalds1da177e2005-04-16 15:20:36 -07006466 * which will prevent rebalancing while the sched domains are recalculated.
6467 */
6468static int update_sched_domains(struct notifier_block *nfb,
6469 unsigned long action, void *hcpu)
6470{
Linus Torvalds1da177e2005-04-16 15:20:36 -07006471 switch (action) {
6472 case CPU_UP_PREPARE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006473 case CPU_UP_PREPARE_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006474 case CPU_DOWN_PREPARE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006475 case CPU_DOWN_PREPARE_FROZEN:
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006476 detach_destroy_domains(&cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006477 return NOTIFY_OK;
6478
6479 case CPU_UP_CANCELED:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006480 case CPU_UP_CANCELED_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006481 case CPU_DOWN_FAILED:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006482 case CPU_DOWN_FAILED_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006483 case CPU_ONLINE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006484 case CPU_ONLINE_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006485 case CPU_DEAD:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006486 case CPU_DEAD_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006487 /*
6488 * Fall through and re-initialise the domains.
6489 */
6490 break;
6491 default:
6492 return NOTIFY_DONE;
6493 }
6494
6495 /* The hotplug lock is already held by cpu_up/cpu_down */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006496 arch_init_sched_domains(&cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006497
6498 return NOTIFY_OK;
6499}
Linus Torvalds1da177e2005-04-16 15:20:36 -07006500
6501void __init sched_init_smp(void)
6502{
Nick Piggin5c1e1762006-10-03 01:14:04 -07006503 cpumask_t non_isolated_cpus;
6504
Gautham R Shenoy5be93612007-05-09 02:34:04 -07006505 mutex_lock(&sched_hotcpu_mutex);
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006506 arch_init_sched_domains(&cpu_online_map);
Nathan Lynche5e56732007-01-10 23:15:28 -08006507 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
Nick Piggin5c1e1762006-10-03 01:14:04 -07006508 if (cpus_empty(non_isolated_cpus))
6509 cpu_set(smp_processor_id(), non_isolated_cpus);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07006510 mutex_unlock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006511 /* XXX: Theoretical race here - CPU may be hotplugged now */
6512 hotcpu_notifier(update_sched_domains, 0);
Nick Piggin5c1e1762006-10-03 01:14:04 -07006513
6514 /* Move init over to a non-isolated CPU */
6515 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6516 BUG();
Linus Torvalds1da177e2005-04-16 15:20:36 -07006517}
6518#else
6519void __init sched_init_smp(void)
6520{
6521}
6522#endif /* CONFIG_SMP */
6523
6524int in_sched_functions(unsigned long addr)
6525{
6526 /* Linker adds these: start and end of __sched functions */
6527 extern char __sched_text_start[], __sched_text_end[];
Ingo Molnar48f24c42006-07-03 00:25:40 -07006528
Linus Torvalds1da177e2005-04-16 15:20:36 -07006529 return in_lock_functions(addr) ||
6530 (addr >= (unsigned long)__sched_text_start
6531 && addr < (unsigned long)__sched_text_end);
6532}
6533
6534void __init sched_init(void)
6535{
Linus Torvalds1da177e2005-04-16 15:20:36 -07006536 int i, j, k;
Christoph Lameter476f3532007-05-06 14:48:58 -07006537 int highest_cpu = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006538
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08006539 for_each_possible_cpu(i) {
Ingo Molnar70b97a72006-07-03 00:25:42 -07006540 struct prio_array *array;
6541 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006542
6543 rq = cpu_rq(i);
6544 spin_lock_init(&rq->lock);
Ingo Molnarfcb99372006-07-03 00:25:10 -07006545 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
Nick Piggin78979862005-06-25 14:57:13 -07006546 rq->nr_running = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006547 rq->active = rq->arrays;
6548 rq->expired = rq->arrays + 1;
6549 rq->best_expired_prio = MAX_PRIO;
6550
6551#ifdef CONFIG_SMP
Nick Piggin41c7ce92005-06-25 14:57:24 -07006552 rq->sd = NULL;
Nick Piggin78979862005-06-25 14:57:13 -07006553 for (j = 1; j < 3; j++)
6554 rq->cpu_load[j] = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006555 rq->active_balance = 0;
6556 rq->push_cpu = 0;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07006557 rq->cpu = i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006558 rq->migration_thread = NULL;
6559 INIT_LIST_HEAD(&rq->migration_queue);
6560#endif
6561 atomic_set(&rq->nr_iowait, 0);
6562
6563 for (j = 0; j < 2; j++) {
6564 array = rq->arrays + j;
6565 for (k = 0; k < MAX_PRIO; k++) {
6566 INIT_LIST_HEAD(array->queue + k);
6567 __clear_bit(k, array->bitmap);
6568 }
6569 // delimiter for bitsearch
6570 __set_bit(MAX_PRIO, array->bitmap);
6571 }
Christoph Lameter476f3532007-05-06 14:48:58 -07006572 highest_cpu = i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006573 }
6574
Peter Williams2dd73a42006-06-27 02:54:34 -07006575 set_load_weight(&init_task);
Heiko Carstensb50f60c2006-07-30 03:03:52 -07006576
Christoph Lameterc9819f42006-12-10 02:20:25 -08006577#ifdef CONFIG_SMP
Christoph Lameter476f3532007-05-06 14:48:58 -07006578 nr_cpu_ids = highest_cpu + 1;
Christoph Lameterc9819f42006-12-10 02:20:25 -08006579 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6580#endif
6581
Heiko Carstensb50f60c2006-07-30 03:03:52 -07006582#ifdef CONFIG_RT_MUTEXES
6583 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6584#endif
6585
Linus Torvalds1da177e2005-04-16 15:20:36 -07006586 /*
6587 * The boot idle thread does lazy MMU switching as well:
6588 */
6589 atomic_inc(&init_mm.mm_count);
6590 enter_lazy_tlb(&init_mm, current);
6591
6592 /*
6593 * Make us the idle thread. Technically, schedule() should not be
6594 * called from this thread, however somewhere below it might be,
6595 * but because we are the idle thread, we just pick up running again
6596 * when this runqueue becomes "idle".
6597 */
6598 init_idle(current, smp_processor_id());
6599}
6600
6601#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6602void __might_sleep(char *file, int line)
6603{
Ingo Molnar48f24c42006-07-03 00:25:40 -07006604#ifdef in_atomic
Linus Torvalds1da177e2005-04-16 15:20:36 -07006605 static unsigned long prev_jiffy; /* ratelimiting */
6606
6607 if ((in_atomic() || irqs_disabled()) &&
6608 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6609 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6610 return;
6611 prev_jiffy = jiffies;
Ingo Molnar91368d72006-03-23 03:00:54 -08006612 printk(KERN_ERR "BUG: sleeping function called from invalid"
Linus Torvalds1da177e2005-04-16 15:20:36 -07006613 " context at %s:%d\n", file, line);
6614 printk("in_atomic():%d, irqs_disabled():%d\n",
6615 in_atomic(), irqs_disabled());
Peter Zijlstraa4c410f2006-12-06 20:37:21 -08006616 debug_show_held_locks(current);
Ingo Molnar3117df02006-12-13 00:34:43 -08006617 if (irqs_disabled())
6618 print_irqtrace_events(current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006619 dump_stack();
6620 }
6621#endif
6622}
6623EXPORT_SYMBOL(__might_sleep);
6624#endif
6625
6626#ifdef CONFIG_MAGIC_SYSRQ
6627void normalize_rt_tasks(void)
6628{
Ingo Molnar70b97a72006-07-03 00:25:42 -07006629 struct prio_array *array;
Ingo Molnara0f98a12007-06-17 18:37:45 +02006630 struct task_struct *g, *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006631 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07006632 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006633
6634 read_lock_irq(&tasklist_lock);
Ingo Molnara0f98a12007-06-17 18:37:45 +02006635
6636 do_each_thread(g, p) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006637 if (!rt_task(p))
6638 continue;
6639
Ingo Molnarb29739f2006-06-27 02:54:51 -07006640 spin_lock_irqsave(&p->pi_lock, flags);
6641 rq = __task_rq_lock(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006642
6643 array = p->array;
6644 if (array)
6645 deactivate_task(p, task_rq(p));
6646 __setscheduler(p, SCHED_NORMAL, 0);
6647 if (array) {
6648 __activate_task(p, task_rq(p));
6649 resched_task(rq->curr);
6650 }
6651
Ingo Molnarb29739f2006-06-27 02:54:51 -07006652 __task_rq_unlock(rq);
6653 spin_unlock_irqrestore(&p->pi_lock, flags);
Ingo Molnara0f98a12007-06-17 18:37:45 +02006654 } while_each_thread(g, p);
6655
Linus Torvalds1da177e2005-04-16 15:20:36 -07006656 read_unlock_irq(&tasklist_lock);
6657}
6658
6659#endif /* CONFIG_MAGIC_SYSRQ */
Linus Torvalds1df5c102005-09-12 07:59:21 -07006660
6661#ifdef CONFIG_IA64
6662/*
6663 * These functions are only useful for the IA64 MCA handling.
6664 *
6665 * They can only be called when the whole system has been
6666 * stopped - every CPU needs to be quiescent, and no scheduling
6667 * activity can take place. Using them for anything else would
6668 * be a serious bug, and as a result, they aren't even visible
6669 * under any other configuration.
6670 */
6671
6672/**
6673 * curr_task - return the current task for a given cpu.
6674 * @cpu: the processor in question.
6675 *
6676 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6677 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07006678struct task_struct *curr_task(int cpu)
Linus Torvalds1df5c102005-09-12 07:59:21 -07006679{
6680 return cpu_curr(cpu);
6681}
6682
6683/**
6684 * set_curr_task - set the current task for a given cpu.
6685 * @cpu: the processor in question.
6686 * @p: the task pointer to set.
6687 *
6688 * Description: This function must only be used when non-maskable interrupts
6689 * are serviced on a separate stack. It allows the architecture to switch the
6690 * notion of the current task on a cpu in a non-blocking manner. This function
6691 * must be called with all CPU's synchronized, and interrupts disabled, the
6692 * and caller must save the original value of the current task (see
6693 * curr_task() above) and restore that value before reenabling interrupts and
6694 * re-starting the system.
6695 *
6696 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6697 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07006698void set_curr_task(int cpu, struct task_struct *p)
Linus Torvalds1df5c102005-09-12 07:59:21 -07006699{
6700 cpu_curr(cpu) = p;
6701}
6702
6703#endif