blob: b8a2c7353b0a5f3f8d0b7e755fbbcd23430f7336 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/* $Id: bbc_envctrl.c,v 1.4 2001/04/06 16:48:08 davem Exp $
2 * bbc_envctrl.c: UltraSPARC-III environment control driver.
3 *
4 * Copyright (C) 2001 David S. Miller (davem@redhat.com)
5 */
6
David S. Miller4b502422005-07-24 19:35:08 -07007#define __KERNEL_SYSCALLS__
8
Linus Torvalds1da177e2005-04-16 15:20:36 -07009#include <linux/kernel.h>
10#include <linux/sched.h>
11#include <linux/slab.h>
12#include <linux/delay.h>
13#include <asm/oplib.h>
14#include <asm/ebus.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070015static int errno;
16#include <asm/unistd.h>
17
18#include "bbc_i2c.h"
19#include "max1617.h"
20
21#undef ENVCTRL_TRACE
22
23/* WARNING: Making changes to this driver is very dangerous.
24 * If you misprogram the sensor chips they can
25 * cut the power on you instantly.
26 */
27
28/* Two temperature sensors exist in the SunBLADE-1000 enclosure.
29 * Both are implemented using max1617 i2c devices. Each max1617
30 * monitors 2 temperatures, one for one of the cpu dies and the other
31 * for the ambient temperature.
32 *
33 * The max1617 is capable of being programmed with power-off
34 * temperature values, one low limit and one high limit. These
35 * can be controlled independently for the cpu or ambient temperature.
36 * If a limit is violated, the power is simply shut off. The frequency
37 * with which the max1617 does temperature sampling can be controlled
38 * as well.
39 *
40 * Three fans exist inside the machine, all three are controlled with
41 * an i2c digital to analog converter. There is a fan directed at the
42 * two processor slots, another for the rest of the enclosure, and the
43 * third is for the power supply. The first two fans may be speed
44 * controlled by changing the voltage fed to them. The third fan may
45 * only be completely off or on. The third fan is meant to only be
46 * disabled/enabled when entering/exiting the lowest power-saving
47 * mode of the machine.
48 *
49 * An environmental control kernel thread periodically monitors all
50 * temperature sensors. Based upon the samples it will adjust the
51 * fan speeds to try and keep the system within a certain temperature
52 * range (the goal being to make the fans as quiet as possible without
53 * allowing the system to get too hot).
54 *
55 * If the temperature begins to rise/fall outside of the acceptable
56 * operating range, a periodic warning will be sent to the kernel log.
57 * The fans will be put on full blast to attempt to deal with this
58 * situation. After exceeding the acceptable operating range by a
59 * certain threshold, the kernel thread will shut down the system.
60 * Here, the thread is attempting to shut the machine down cleanly
61 * before the hardware based power-off event is triggered.
62 */
63
64/* These settings are in Celsius. We use these defaults only
65 * if we cannot interrogate the cpu-fru SEEPROM.
66 */
67struct temp_limits {
68 s8 high_pwroff, high_shutdown, high_warn;
69 s8 low_warn, low_shutdown, low_pwroff;
70};
71
72static struct temp_limits cpu_temp_limits[2] = {
73 { 100, 85, 80, 5, -5, -10 },
74 { 100, 85, 80, 5, -5, -10 },
75};
76
77static struct temp_limits amb_temp_limits[2] = {
78 { 65, 55, 40, 5, -5, -10 },
79 { 65, 55, 40, 5, -5, -10 },
80};
81
82enum fan_action { FAN_SLOWER, FAN_SAME, FAN_FASTER, FAN_FULLBLAST, FAN_STATE_MAX };
83
84struct bbc_cpu_temperature {
85 struct bbc_cpu_temperature *next;
86
87 struct bbc_i2c_client *client;
88 int index;
89
90 /* Current readings, and history. */
91 s8 curr_cpu_temp;
92 s8 curr_amb_temp;
93 s8 prev_cpu_temp;
94 s8 prev_amb_temp;
95 s8 avg_cpu_temp;
96 s8 avg_amb_temp;
97
98 int sample_tick;
99
100 enum fan_action fan_todo[2];
101#define FAN_AMBIENT 0
102#define FAN_CPU 1
103};
104
105struct bbc_cpu_temperature *all_bbc_temps;
106
107struct bbc_fan_control {
108 struct bbc_fan_control *next;
109
110 struct bbc_i2c_client *client;
111 int index;
112
113 int psupply_fan_on;
114 int cpu_fan_speed;
115 int system_fan_speed;
116};
117
118struct bbc_fan_control *all_bbc_fans;
119
120#define CPU_FAN_REG 0xf0
121#define SYS_FAN_REG 0xf2
122#define PSUPPLY_FAN_REG 0xf4
123
124#define FAN_SPEED_MIN 0x0c
125#define FAN_SPEED_MAX 0x3f
126
127#define PSUPPLY_FAN_ON 0x1f
128#define PSUPPLY_FAN_OFF 0x00
129
130static void set_fan_speeds(struct bbc_fan_control *fp)
131{
132 /* Put temperatures into range so we don't mis-program
133 * the hardware.
134 */
135 if (fp->cpu_fan_speed < FAN_SPEED_MIN)
136 fp->cpu_fan_speed = FAN_SPEED_MIN;
137 if (fp->cpu_fan_speed > FAN_SPEED_MAX)
138 fp->cpu_fan_speed = FAN_SPEED_MAX;
139 if (fp->system_fan_speed < FAN_SPEED_MIN)
140 fp->system_fan_speed = FAN_SPEED_MIN;
141 if (fp->system_fan_speed > FAN_SPEED_MAX)
142 fp->system_fan_speed = FAN_SPEED_MAX;
143#ifdef ENVCTRL_TRACE
144 printk("fan%d: Changed fan speed to cpu(%02x) sys(%02x)\n",
145 fp->index,
146 fp->cpu_fan_speed, fp->system_fan_speed);
147#endif
148
149 bbc_i2c_writeb(fp->client, fp->cpu_fan_speed, CPU_FAN_REG);
150 bbc_i2c_writeb(fp->client, fp->system_fan_speed, SYS_FAN_REG);
151 bbc_i2c_writeb(fp->client,
152 (fp->psupply_fan_on ?
153 PSUPPLY_FAN_ON : PSUPPLY_FAN_OFF),
154 PSUPPLY_FAN_REG);
155}
156
157static void get_current_temps(struct bbc_cpu_temperature *tp)
158{
159 tp->prev_amb_temp = tp->curr_amb_temp;
160 bbc_i2c_readb(tp->client,
161 (unsigned char *) &tp->curr_amb_temp,
162 MAX1617_AMB_TEMP);
163 tp->prev_cpu_temp = tp->curr_cpu_temp;
164 bbc_i2c_readb(tp->client,
165 (unsigned char *) &tp->curr_cpu_temp,
166 MAX1617_CPU_TEMP);
167#ifdef ENVCTRL_TRACE
168 printk("temp%d: cpu(%d C) amb(%d C)\n",
169 tp->index,
170 (int) tp->curr_cpu_temp, (int) tp->curr_amb_temp);
171#endif
172}
173
174
175static void do_envctrl_shutdown(struct bbc_cpu_temperature *tp)
176{
177 static int shutting_down = 0;
178 static char *envp[] = { "HOME=/", "TERM=linux", "PATH=/sbin:/usr/sbin:/bin:/usr/bin", NULL };
179 char *argv[] = { "/sbin/shutdown", "-h", "now", NULL };
180 char *type = "???";
181 s8 val = -1;
182
183 if (shutting_down != 0)
184 return;
185
186 if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_shutdown ||
187 tp->curr_amb_temp < amb_temp_limits[tp->index].low_shutdown) {
188 type = "ambient";
189 val = tp->curr_amb_temp;
190 } else if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_shutdown ||
191 tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_shutdown) {
192 type = "CPU";
193 val = tp->curr_cpu_temp;
194 }
195
196 printk(KERN_CRIT "temp%d: Outside of safe %s "
197 "operating temperature, %d C.\n",
198 tp->index, type, val);
199
200 printk(KERN_CRIT "kenvctrld: Shutting down the system now.\n");
201
202 shutting_down = 1;
203 if (execve("/sbin/shutdown", argv, envp) < 0)
204 printk(KERN_CRIT "envctrl: shutdown execution failed\n");
205}
206
207#define WARN_INTERVAL (30 * HZ)
208
209static void analyze_ambient_temp(struct bbc_cpu_temperature *tp, unsigned long *last_warn, int tick)
210{
211 int ret = 0;
212
213 if (time_after(jiffies, (*last_warn + WARN_INTERVAL))) {
214 if (tp->curr_amb_temp >=
215 amb_temp_limits[tp->index].high_warn) {
216 printk(KERN_WARNING "temp%d: "
217 "Above safe ambient operating temperature, %d C.\n",
218 tp->index, (int) tp->curr_amb_temp);
219 ret = 1;
220 } else if (tp->curr_amb_temp <
221 amb_temp_limits[tp->index].low_warn) {
222 printk(KERN_WARNING "temp%d: "
223 "Below safe ambient operating temperature, %d C.\n",
224 tp->index, (int) tp->curr_amb_temp);
225 ret = 1;
226 }
227 if (ret)
228 *last_warn = jiffies;
229 } else if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_warn ||
230 tp->curr_amb_temp < amb_temp_limits[tp->index].low_warn)
231 ret = 1;
232
233 /* Now check the shutdown limits. */
234 if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_shutdown ||
235 tp->curr_amb_temp < amb_temp_limits[tp->index].low_shutdown) {
236 do_envctrl_shutdown(tp);
237 ret = 1;
238 }
239
240 if (ret) {
241 tp->fan_todo[FAN_AMBIENT] = FAN_FULLBLAST;
242 } else if ((tick & (8 - 1)) == 0) {
243 s8 amb_goal_hi = amb_temp_limits[tp->index].high_warn - 10;
244 s8 amb_goal_lo;
245
246 amb_goal_lo = amb_goal_hi - 3;
247
248 /* We do not try to avoid 'too cold' events. Basically we
249 * only try to deal with over-heating and fan noise reduction.
250 */
251 if (tp->avg_amb_temp < amb_goal_hi) {
252 if (tp->avg_amb_temp >= amb_goal_lo)
253 tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
254 else
255 tp->fan_todo[FAN_AMBIENT] = FAN_SLOWER;
256 } else {
257 tp->fan_todo[FAN_AMBIENT] = FAN_FASTER;
258 }
259 } else {
260 tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
261 }
262}
263
264static void analyze_cpu_temp(struct bbc_cpu_temperature *tp, unsigned long *last_warn, int tick)
265{
266 int ret = 0;
267
268 if (time_after(jiffies, (*last_warn + WARN_INTERVAL))) {
269 if (tp->curr_cpu_temp >=
270 cpu_temp_limits[tp->index].high_warn) {
271 printk(KERN_WARNING "temp%d: "
272 "Above safe CPU operating temperature, %d C.\n",
273 tp->index, (int) tp->curr_cpu_temp);
274 ret = 1;
275 } else if (tp->curr_cpu_temp <
276 cpu_temp_limits[tp->index].low_warn) {
277 printk(KERN_WARNING "temp%d: "
278 "Below safe CPU operating temperature, %d C.\n",
279 tp->index, (int) tp->curr_cpu_temp);
280 ret = 1;
281 }
282 if (ret)
283 *last_warn = jiffies;
284 } else if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_warn ||
285 tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_warn)
286 ret = 1;
287
288 /* Now check the shutdown limits. */
289 if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_shutdown ||
290 tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_shutdown) {
291 do_envctrl_shutdown(tp);
292 ret = 1;
293 }
294
295 if (ret) {
296 tp->fan_todo[FAN_CPU] = FAN_FULLBLAST;
297 } else if ((tick & (8 - 1)) == 0) {
298 s8 cpu_goal_hi = cpu_temp_limits[tp->index].high_warn - 10;
299 s8 cpu_goal_lo;
300
301 cpu_goal_lo = cpu_goal_hi - 3;
302
303 /* We do not try to avoid 'too cold' events. Basically we
304 * only try to deal with over-heating and fan noise reduction.
305 */
306 if (tp->avg_cpu_temp < cpu_goal_hi) {
307 if (tp->avg_cpu_temp >= cpu_goal_lo)
308 tp->fan_todo[FAN_CPU] = FAN_SAME;
309 else
310 tp->fan_todo[FAN_CPU] = FAN_SLOWER;
311 } else {
312 tp->fan_todo[FAN_CPU] = FAN_FASTER;
313 }
314 } else {
315 tp->fan_todo[FAN_CPU] = FAN_SAME;
316 }
317}
318
319static void analyze_temps(struct bbc_cpu_temperature *tp, unsigned long *last_warn)
320{
321 tp->avg_amb_temp = (s8)((int)((int)tp->avg_amb_temp + (int)tp->curr_amb_temp) / 2);
322 tp->avg_cpu_temp = (s8)((int)((int)tp->avg_cpu_temp + (int)tp->curr_cpu_temp) / 2);
323
324 analyze_ambient_temp(tp, last_warn, tp->sample_tick);
325 analyze_cpu_temp(tp, last_warn, tp->sample_tick);
326
327 tp->sample_tick++;
328}
329
330static enum fan_action prioritize_fan_action(int which_fan)
331{
332 struct bbc_cpu_temperature *tp;
333 enum fan_action decision = FAN_STATE_MAX;
334
335 /* Basically, prioritize what the temperature sensors
336 * recommend we do, and perform that action on all the
337 * fans.
338 */
339 for (tp = all_bbc_temps; tp; tp = tp->next) {
340 if (tp->fan_todo[which_fan] == FAN_FULLBLAST) {
341 decision = FAN_FULLBLAST;
342 break;
343 }
344 if (tp->fan_todo[which_fan] == FAN_SAME &&
345 decision != FAN_FASTER)
346 decision = FAN_SAME;
347 else if (tp->fan_todo[which_fan] == FAN_FASTER)
348 decision = FAN_FASTER;
349 else if (decision != FAN_FASTER &&
350 decision != FAN_SAME &&
351 tp->fan_todo[which_fan] == FAN_SLOWER)
352 decision = FAN_SLOWER;
353 }
354 if (decision == FAN_STATE_MAX)
355 decision = FAN_SAME;
356
357 return decision;
358}
359
360static int maybe_new_ambient_fan_speed(struct bbc_fan_control *fp)
361{
362 enum fan_action decision = prioritize_fan_action(FAN_AMBIENT);
363 int ret;
364
365 if (decision == FAN_SAME)
366 return 0;
367
368 ret = 1;
369 if (decision == FAN_FULLBLAST) {
370 if (fp->system_fan_speed >= FAN_SPEED_MAX)
371 ret = 0;
372 else
373 fp->system_fan_speed = FAN_SPEED_MAX;
374 } else {
375 if (decision == FAN_FASTER) {
376 if (fp->system_fan_speed >= FAN_SPEED_MAX)
377 ret = 0;
378 else
379 fp->system_fan_speed += 2;
380 } else {
381 int orig_speed = fp->system_fan_speed;
382
383 if (orig_speed <= FAN_SPEED_MIN ||
384 orig_speed <= (fp->cpu_fan_speed - 3))
385 ret = 0;
386 else
387 fp->system_fan_speed -= 1;
388 }
389 }
390
391 return ret;
392}
393
394static int maybe_new_cpu_fan_speed(struct bbc_fan_control *fp)
395{
396 enum fan_action decision = prioritize_fan_action(FAN_CPU);
397 int ret;
398
399 if (decision == FAN_SAME)
400 return 0;
401
402 ret = 1;
403 if (decision == FAN_FULLBLAST) {
404 if (fp->cpu_fan_speed >= FAN_SPEED_MAX)
405 ret = 0;
406 else
407 fp->cpu_fan_speed = FAN_SPEED_MAX;
408 } else {
409 if (decision == FAN_FASTER) {
410 if (fp->cpu_fan_speed >= FAN_SPEED_MAX)
411 ret = 0;
412 else {
413 fp->cpu_fan_speed += 2;
414 if (fp->system_fan_speed <
415 (fp->cpu_fan_speed - 3))
416 fp->system_fan_speed =
417 fp->cpu_fan_speed - 3;
418 }
419 } else {
420 if (fp->cpu_fan_speed <= FAN_SPEED_MIN)
421 ret = 0;
422 else
423 fp->cpu_fan_speed -= 1;
424 }
425 }
426
427 return ret;
428}
429
430static void maybe_new_fan_speeds(struct bbc_fan_control *fp)
431{
432 int new;
433
434 new = maybe_new_ambient_fan_speed(fp);
435 new |= maybe_new_cpu_fan_speed(fp);
436
437 if (new)
438 set_fan_speeds(fp);
439}
440
441static void fans_full_blast(void)
442{
443 struct bbc_fan_control *fp;
444
445 /* Since we will not be monitoring things anymore, put
446 * the fans on full blast.
447 */
448 for (fp = all_bbc_fans; fp; fp = fp->next) {
449 fp->cpu_fan_speed = FAN_SPEED_MAX;
450 fp->system_fan_speed = FAN_SPEED_MAX;
451 fp->psupply_fan_on = 1;
452 set_fan_speeds(fp);
453 }
454}
455
456#define POLL_INTERVAL (5 * 1000)
457static unsigned long last_warning_jiffies;
458static struct task_struct *kenvctrld_task;
459
460static int kenvctrld(void *__unused)
461{
462 daemonize("kenvctrld");
463 allow_signal(SIGKILL);
464 kenvctrld_task = current;
465
466 printk(KERN_INFO "bbc_envctrl: kenvctrld starting...\n");
467 last_warning_jiffies = jiffies - WARN_INTERVAL;
468 for (;;) {
469 struct bbc_cpu_temperature *tp;
470 struct bbc_fan_control *fp;
471
472 msleep_interruptible(POLL_INTERVAL);
473 if (signal_pending(current))
474 break;
475
476 for (tp = all_bbc_temps; tp; tp = tp->next) {
477 get_current_temps(tp);
478 analyze_temps(tp, &last_warning_jiffies);
479 }
480 for (fp = all_bbc_fans; fp; fp = fp->next)
481 maybe_new_fan_speeds(fp);
482 }
483 printk(KERN_INFO "bbc_envctrl: kenvctrld exiting...\n");
484
485 fans_full_blast();
486
487 return 0;
488}
489
490static void attach_one_temp(struct linux_ebus_child *echild, int temp_idx)
491{
492 struct bbc_cpu_temperature *tp = kmalloc(sizeof(*tp), GFP_KERNEL);
493
494 if (!tp)
495 return;
496 memset(tp, 0, sizeof(*tp));
497 tp->client = bbc_i2c_attach(echild);
498 if (!tp->client) {
499 kfree(tp);
500 return;
501 }
502
503 tp->index = temp_idx;
504 {
505 struct bbc_cpu_temperature **tpp = &all_bbc_temps;
506 while (*tpp)
507 tpp = &((*tpp)->next);
508 tp->next = NULL;
509 *tpp = tp;
510 }
511
512 /* Tell it to convert once every 5 seconds, clear all cfg
513 * bits.
514 */
515 bbc_i2c_writeb(tp->client, 0x00, MAX1617_WR_CFG_BYTE);
516 bbc_i2c_writeb(tp->client, 0x02, MAX1617_WR_CVRATE_BYTE);
517
518 /* Program the hard temperature limits into the chip. */
519 bbc_i2c_writeb(tp->client, amb_temp_limits[tp->index].high_pwroff,
520 MAX1617_WR_AMB_HIGHLIM);
521 bbc_i2c_writeb(tp->client, amb_temp_limits[tp->index].low_pwroff,
522 MAX1617_WR_AMB_LOWLIM);
523 bbc_i2c_writeb(tp->client, cpu_temp_limits[tp->index].high_pwroff,
524 MAX1617_WR_CPU_HIGHLIM);
525 bbc_i2c_writeb(tp->client, cpu_temp_limits[tp->index].low_pwroff,
526 MAX1617_WR_CPU_LOWLIM);
527
528 get_current_temps(tp);
529 tp->prev_cpu_temp = tp->avg_cpu_temp = tp->curr_cpu_temp;
530 tp->prev_amb_temp = tp->avg_amb_temp = tp->curr_amb_temp;
531
532 tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
533 tp->fan_todo[FAN_CPU] = FAN_SAME;
534}
535
536static void attach_one_fan(struct linux_ebus_child *echild, int fan_idx)
537{
538 struct bbc_fan_control *fp = kmalloc(sizeof(*fp), GFP_KERNEL);
539
540 if (!fp)
541 return;
542 memset(fp, 0, sizeof(*fp));
543 fp->client = bbc_i2c_attach(echild);
544 if (!fp->client) {
545 kfree(fp);
546 return;
547 }
548
549 fp->index = fan_idx;
550
551 {
552 struct bbc_fan_control **fpp = &all_bbc_fans;
553 while (*fpp)
554 fpp = &((*fpp)->next);
555 fp->next = NULL;
556 *fpp = fp;
557 }
558
559 /* The i2c device controlling the fans is write-only.
560 * So the only way to keep track of the current power
561 * level fed to the fans is via software. Choose half
562 * power for cpu/system and 'on' fo the powersupply fan
563 * and set it now.
564 */
565 fp->psupply_fan_on = 1;
566 fp->cpu_fan_speed = (FAN_SPEED_MAX - FAN_SPEED_MIN) / 2;
567 fp->cpu_fan_speed += FAN_SPEED_MIN;
568 fp->system_fan_speed = (FAN_SPEED_MAX - FAN_SPEED_MIN) / 2;
569 fp->system_fan_speed += FAN_SPEED_MIN;
570
571 set_fan_speeds(fp);
572}
573
574int bbc_envctrl_init(void)
575{
576 struct linux_ebus_child *echild;
577 int temp_index = 0;
578 int fan_index = 0;
579 int devidx = 0;
580 int err = 0;
581
582 while ((echild = bbc_i2c_getdev(devidx++)) != NULL) {
583 if (!strcmp(echild->prom_name, "temperature"))
584 attach_one_temp(echild, temp_index++);
585 if (!strcmp(echild->prom_name, "fan-control"))
586 attach_one_fan(echild, fan_index++);
587 }
588 if (temp_index != 0 && fan_index != 0)
589 err = kernel_thread(kenvctrld, NULL, CLONE_FS | CLONE_FILES);
590 return err;
591}
592
593static void destroy_one_temp(struct bbc_cpu_temperature *tp)
594{
595 bbc_i2c_detach(tp->client);
596 kfree(tp);
597}
598
599static void destroy_one_fan(struct bbc_fan_control *fp)
600{
601 bbc_i2c_detach(fp->client);
602 kfree(fp);
603}
604
605void bbc_envctrl_cleanup(void)
606{
607 struct bbc_cpu_temperature *tp;
608 struct bbc_fan_control *fp;
609
610 if (kenvctrld_task != NULL) {
611 force_sig(SIGKILL, kenvctrld_task);
612 for (;;) {
613 struct task_struct *p;
614 int found = 0;
615
616 read_lock(&tasklist_lock);
617 for_each_process(p) {
618 if (p == kenvctrld_task) {
619 found = 1;
620 break;
621 }
622 }
623 read_unlock(&tasklist_lock);
624 if (!found)
625 break;
626 msleep(1000);
627 }
628 kenvctrld_task = NULL;
629 }
630
631 tp = all_bbc_temps;
632 while (tp != NULL) {
633 struct bbc_cpu_temperature *next = tp->next;
634 destroy_one_temp(tp);
635 tp = next;
636 }
637 all_bbc_temps = NULL;
638
639 fp = all_bbc_fans;
640 while (fp != NULL) {
641 struct bbc_fan_control *next = fp->next;
642 destroy_one_fan(fp);
643 fp = next;
644 }
645 all_bbc_fans = NULL;
646}