blob: 0b0d5f72fe7d83a3c6695ed9d589f090b96a7c3e [file] [log] [blame]
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001/*
Ingo Molnar57c0c152009-09-21 12:20:38 +02002 * Performance events core code:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
Ingo Molnar57c0c152009-09-21 12:20:38 +02009 * For licensing details see kernel-base/COPYING
Ingo Molnarcdd6c482009-09-21 12:02:48 +020010 */
11
12#include <linux/fs.h>
13#include <linux/mm.h>
14#include <linux/cpu.h>
15#include <linux/smp.h>
16#include <linux/file.h>
17#include <linux/poll.h>
18#include <linux/sysfs.h>
19#include <linux/dcache.h>
20#include <linux/percpu.h>
21#include <linux/ptrace.h>
22#include <linux/vmstat.h>
Peter Zijlstra906010b2009-09-21 16:08:49 +020023#include <linux/vmalloc.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020024#include <linux/hardirq.h>
25#include <linux/rculist.h>
26#include <linux/uaccess.h>
27#include <linux/syscalls.h>
28#include <linux/anon_inodes.h>
29#include <linux/kernel_stat.h>
30#include <linux/perf_event.h>
Li Zefan6fb29152009-10-15 11:21:42 +080031#include <linux/ftrace_event.h>
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +020032#include <linux/hw_breakpoint.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020033
34#include <asm/irq_regs.h>
35
36/*
37 * Each CPU has a list of per CPU events:
38 */
39DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
40
41int perf_max_events __read_mostly = 1;
42static int perf_reserved_percpu __read_mostly;
43static int perf_overcommit __read_mostly = 1;
44
45static atomic_t nr_events __read_mostly;
46static atomic_t nr_mmap_events __read_mostly;
47static atomic_t nr_comm_events __read_mostly;
48static atomic_t nr_task_events __read_mostly;
49
50/*
51 * perf event paranoia level:
52 * -1 - not paranoid at all
53 * 0 - disallow raw tracepoint access for unpriv
54 * 1 - disallow cpu events for unpriv
55 * 2 - disallow kernel profiling for unpriv
56 */
57int sysctl_perf_event_paranoid __read_mostly = 1;
58
59static inline bool perf_paranoid_tracepoint_raw(void)
60{
61 return sysctl_perf_event_paranoid > -1;
62}
63
64static inline bool perf_paranoid_cpu(void)
65{
66 return sysctl_perf_event_paranoid > 0;
67}
68
69static inline bool perf_paranoid_kernel(void)
70{
71 return sysctl_perf_event_paranoid > 1;
72}
73
74int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
75
76/*
77 * max perf event sample rate
78 */
79int sysctl_perf_event_sample_rate __read_mostly = 100000;
80
81static atomic64_t perf_event_id;
82
83/*
84 * Lock for (sysadmin-configurable) event reservations:
85 */
86static DEFINE_SPINLOCK(perf_resource_lock);
87
88/*
89 * Architecture provided APIs - weak aliases:
90 */
91extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
92{
93 return NULL;
94}
95
96void __weak hw_perf_disable(void) { barrier(); }
97void __weak hw_perf_enable(void) { barrier(); }
98
99void __weak hw_perf_event_setup(int cpu) { barrier(); }
100void __weak hw_perf_event_setup_online(int cpu) { barrier(); }
101
102int __weak
103hw_perf_group_sched_in(struct perf_event *group_leader,
104 struct perf_cpu_context *cpuctx,
105 struct perf_event_context *ctx, int cpu)
106{
107 return 0;
108}
109
110void __weak perf_event_print_debug(void) { }
111
112static DEFINE_PER_CPU(int, perf_disable_count);
113
114void __perf_disable(void)
115{
116 __get_cpu_var(perf_disable_count)++;
117}
118
119bool __perf_enable(void)
120{
121 return !--__get_cpu_var(perf_disable_count);
122}
123
124void perf_disable(void)
125{
126 __perf_disable();
127 hw_perf_disable();
128}
129
130void perf_enable(void)
131{
132 if (__perf_enable())
133 hw_perf_enable();
134}
135
136static void get_ctx(struct perf_event_context *ctx)
137{
138 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
139}
140
141static void free_ctx(struct rcu_head *head)
142{
143 struct perf_event_context *ctx;
144
145 ctx = container_of(head, struct perf_event_context, rcu_head);
146 kfree(ctx);
147}
148
149static void put_ctx(struct perf_event_context *ctx)
150{
151 if (atomic_dec_and_test(&ctx->refcount)) {
152 if (ctx->parent_ctx)
153 put_ctx(ctx->parent_ctx);
154 if (ctx->task)
155 put_task_struct(ctx->task);
156 call_rcu(&ctx->rcu_head, free_ctx);
157 }
158}
159
160static void unclone_ctx(struct perf_event_context *ctx)
161{
162 if (ctx->parent_ctx) {
163 put_ctx(ctx->parent_ctx);
164 ctx->parent_ctx = NULL;
165 }
166}
167
168/*
169 * If we inherit events we want to return the parent event id
170 * to userspace.
171 */
172static u64 primary_event_id(struct perf_event *event)
173{
174 u64 id = event->id;
175
176 if (event->parent)
177 id = event->parent->id;
178
179 return id;
180}
181
182/*
183 * Get the perf_event_context for a task and lock it.
184 * This has to cope with with the fact that until it is locked,
185 * the context could get moved to another task.
186 */
187static struct perf_event_context *
188perf_lock_task_context(struct task_struct *task, unsigned long *flags)
189{
190 struct perf_event_context *ctx;
191
192 rcu_read_lock();
193 retry:
194 ctx = rcu_dereference(task->perf_event_ctxp);
195 if (ctx) {
196 /*
197 * If this context is a clone of another, it might
198 * get swapped for another underneath us by
199 * perf_event_task_sched_out, though the
200 * rcu_read_lock() protects us from any context
201 * getting freed. Lock the context and check if it
202 * got swapped before we could get the lock, and retry
203 * if so. If we locked the right context, then it
204 * can't get swapped on us any more.
205 */
206 spin_lock_irqsave(&ctx->lock, *flags);
207 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
208 spin_unlock_irqrestore(&ctx->lock, *flags);
209 goto retry;
210 }
211
212 if (!atomic_inc_not_zero(&ctx->refcount)) {
213 spin_unlock_irqrestore(&ctx->lock, *flags);
214 ctx = NULL;
215 }
216 }
217 rcu_read_unlock();
218 return ctx;
219}
220
221/*
222 * Get the context for a task and increment its pin_count so it
223 * can't get swapped to another task. This also increments its
224 * reference count so that the context can't get freed.
225 */
226static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
227{
228 struct perf_event_context *ctx;
229 unsigned long flags;
230
231 ctx = perf_lock_task_context(task, &flags);
232 if (ctx) {
233 ++ctx->pin_count;
234 spin_unlock_irqrestore(&ctx->lock, flags);
235 }
236 return ctx;
237}
238
239static void perf_unpin_context(struct perf_event_context *ctx)
240{
241 unsigned long flags;
242
243 spin_lock_irqsave(&ctx->lock, flags);
244 --ctx->pin_count;
245 spin_unlock_irqrestore(&ctx->lock, flags);
246 put_ctx(ctx);
247}
248
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100249static inline u64 perf_clock(void)
250{
251 return cpu_clock(smp_processor_id());
252}
253
254/*
255 * Update the record of the current time in a context.
256 */
257static void update_context_time(struct perf_event_context *ctx)
258{
259 u64 now = perf_clock();
260
261 ctx->time += now - ctx->timestamp;
262 ctx->timestamp = now;
263}
264
265/*
266 * Update the total_time_enabled and total_time_running fields for a event.
267 */
268static void update_event_times(struct perf_event *event)
269{
270 struct perf_event_context *ctx = event->ctx;
271 u64 run_end;
272
273 if (event->state < PERF_EVENT_STATE_INACTIVE ||
274 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
275 return;
276
277 event->total_time_enabled = ctx->time - event->tstamp_enabled;
278
279 if (event->state == PERF_EVENT_STATE_INACTIVE)
280 run_end = event->tstamp_stopped;
281 else
282 run_end = ctx->time;
283
284 event->total_time_running = run_end - event->tstamp_running;
285}
286
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200287/*
288 * Add a event from the lists for its context.
289 * Must be called with ctx->mutex and ctx->lock held.
290 */
291static void
292list_add_event(struct perf_event *event, struct perf_event_context *ctx)
293{
294 struct perf_event *group_leader = event->group_leader;
295
296 /*
297 * Depending on whether it is a standalone or sibling event,
298 * add it straight to the context's event list, or to the group
299 * leader's sibling list:
300 */
301 if (group_leader == event)
302 list_add_tail(&event->group_entry, &ctx->group_list);
303 else {
304 list_add_tail(&event->group_entry, &group_leader->sibling_list);
305 group_leader->nr_siblings++;
306 }
307
308 list_add_rcu(&event->event_entry, &ctx->event_list);
309 ctx->nr_events++;
310 if (event->attr.inherit_stat)
311 ctx->nr_stat++;
312}
313
314/*
315 * Remove a event from the lists for its context.
316 * Must be called with ctx->mutex and ctx->lock held.
317 */
318static void
319list_del_event(struct perf_event *event, struct perf_event_context *ctx)
320{
321 struct perf_event *sibling, *tmp;
322
323 if (list_empty(&event->group_entry))
324 return;
325 ctx->nr_events--;
326 if (event->attr.inherit_stat)
327 ctx->nr_stat--;
328
329 list_del_init(&event->group_entry);
330 list_del_rcu(&event->event_entry);
331
332 if (event->group_leader != event)
333 event->group_leader->nr_siblings--;
334
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100335 update_event_times(event);
Peter Zijlstra2e2af502009-11-23 11:37:25 +0100336 event->state = PERF_EVENT_STATE_OFF;
337
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200338 /*
339 * If this was a group event with sibling events then
340 * upgrade the siblings to singleton events by adding them
341 * to the context list directly:
342 */
343 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
344
345 list_move_tail(&sibling->group_entry, &ctx->group_list);
346 sibling->group_leader = sibling;
347 }
348}
349
350static void
351event_sched_out(struct perf_event *event,
352 struct perf_cpu_context *cpuctx,
353 struct perf_event_context *ctx)
354{
355 if (event->state != PERF_EVENT_STATE_ACTIVE)
356 return;
357
358 event->state = PERF_EVENT_STATE_INACTIVE;
359 if (event->pending_disable) {
360 event->pending_disable = 0;
361 event->state = PERF_EVENT_STATE_OFF;
362 }
363 event->tstamp_stopped = ctx->time;
364 event->pmu->disable(event);
365 event->oncpu = -1;
366
367 if (!is_software_event(event))
368 cpuctx->active_oncpu--;
369 ctx->nr_active--;
370 if (event->attr.exclusive || !cpuctx->active_oncpu)
371 cpuctx->exclusive = 0;
372}
373
374static void
375group_sched_out(struct perf_event *group_event,
376 struct perf_cpu_context *cpuctx,
377 struct perf_event_context *ctx)
378{
379 struct perf_event *event;
380
381 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
382 return;
383
384 event_sched_out(group_event, cpuctx, ctx);
385
386 /*
387 * Schedule out siblings (if any):
388 */
389 list_for_each_entry(event, &group_event->sibling_list, group_entry)
390 event_sched_out(event, cpuctx, ctx);
391
392 if (group_event->attr.exclusive)
393 cpuctx->exclusive = 0;
394}
395
396/*
397 * Cross CPU call to remove a performance event
398 *
399 * We disable the event on the hardware level first. After that we
400 * remove it from the context list.
401 */
402static void __perf_event_remove_from_context(void *info)
403{
404 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
405 struct perf_event *event = info;
406 struct perf_event_context *ctx = event->ctx;
407
408 /*
409 * If this is a task context, we need to check whether it is
410 * the current task context of this cpu. If not it has been
411 * scheduled out before the smp call arrived.
412 */
413 if (ctx->task && cpuctx->task_ctx != ctx)
414 return;
415
416 spin_lock(&ctx->lock);
417 /*
418 * Protect the list operation against NMI by disabling the
419 * events on a global level.
420 */
421 perf_disable();
422
423 event_sched_out(event, cpuctx, ctx);
424
425 list_del_event(event, ctx);
426
427 if (!ctx->task) {
428 /*
429 * Allow more per task events with respect to the
430 * reservation:
431 */
432 cpuctx->max_pertask =
433 min(perf_max_events - ctx->nr_events,
434 perf_max_events - perf_reserved_percpu);
435 }
436
437 perf_enable();
438 spin_unlock(&ctx->lock);
439}
440
441
442/*
443 * Remove the event from a task's (or a CPU's) list of events.
444 *
445 * Must be called with ctx->mutex held.
446 *
447 * CPU events are removed with a smp call. For task events we only
448 * call when the task is on a CPU.
449 *
450 * If event->ctx is a cloned context, callers must make sure that
451 * every task struct that event->ctx->task could possibly point to
452 * remains valid. This is OK when called from perf_release since
453 * that only calls us on the top-level context, which can't be a clone.
454 * When called from perf_event_exit_task, it's OK because the
455 * context has been detached from its task.
456 */
457static void perf_event_remove_from_context(struct perf_event *event)
458{
459 struct perf_event_context *ctx = event->ctx;
460 struct task_struct *task = ctx->task;
461
462 if (!task) {
463 /*
464 * Per cpu events are removed via an smp call and
465 * the removal is always sucessful.
466 */
467 smp_call_function_single(event->cpu,
468 __perf_event_remove_from_context,
469 event, 1);
470 return;
471 }
472
473retry:
474 task_oncpu_function_call(task, __perf_event_remove_from_context,
475 event);
476
477 spin_lock_irq(&ctx->lock);
478 /*
479 * If the context is active we need to retry the smp call.
480 */
481 if (ctx->nr_active && !list_empty(&event->group_entry)) {
482 spin_unlock_irq(&ctx->lock);
483 goto retry;
484 }
485
486 /*
487 * The lock prevents that this context is scheduled in so we
488 * can remove the event safely, if the call above did not
489 * succeed.
490 */
Peter Zijlstra6c2bfcb2009-11-23 11:37:24 +0100491 if (!list_empty(&event->group_entry))
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200492 list_del_event(event, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200493 spin_unlock_irq(&ctx->lock);
494}
495
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200496/*
497 * Update total_time_enabled and total_time_running for all events in a group.
498 */
499static void update_group_times(struct perf_event *leader)
500{
501 struct perf_event *event;
502
503 update_event_times(leader);
504 list_for_each_entry(event, &leader->sibling_list, group_entry)
505 update_event_times(event);
506}
507
508/*
509 * Cross CPU call to disable a performance event
510 */
511static void __perf_event_disable(void *info)
512{
513 struct perf_event *event = info;
514 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
515 struct perf_event_context *ctx = event->ctx;
516
517 /*
518 * If this is a per-task event, need to check whether this
519 * event's task is the current task on this cpu.
520 */
521 if (ctx->task && cpuctx->task_ctx != ctx)
522 return;
523
524 spin_lock(&ctx->lock);
525
526 /*
527 * If the event is on, turn it off.
528 * If it is in error state, leave it in error state.
529 */
530 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
531 update_context_time(ctx);
532 update_group_times(event);
533 if (event == event->group_leader)
534 group_sched_out(event, cpuctx, ctx);
535 else
536 event_sched_out(event, cpuctx, ctx);
537 event->state = PERF_EVENT_STATE_OFF;
538 }
539
540 spin_unlock(&ctx->lock);
541}
542
543/*
544 * Disable a event.
545 *
546 * If event->ctx is a cloned context, callers must make sure that
547 * every task struct that event->ctx->task could possibly point to
548 * remains valid. This condition is satisifed when called through
549 * perf_event_for_each_child or perf_event_for_each because they
550 * hold the top-level event's child_mutex, so any descendant that
551 * goes to exit will block in sync_child_event.
552 * When called from perf_pending_event it's OK because event->ctx
553 * is the current context on this CPU and preemption is disabled,
554 * hence we can't get into perf_event_task_sched_out for this context.
555 */
556static void perf_event_disable(struct perf_event *event)
557{
558 struct perf_event_context *ctx = event->ctx;
559 struct task_struct *task = ctx->task;
560
561 if (!task) {
562 /*
563 * Disable the event on the cpu that it's on
564 */
565 smp_call_function_single(event->cpu, __perf_event_disable,
566 event, 1);
567 return;
568 }
569
570 retry:
571 task_oncpu_function_call(task, __perf_event_disable, event);
572
573 spin_lock_irq(&ctx->lock);
574 /*
575 * If the event is still active, we need to retry the cross-call.
576 */
577 if (event->state == PERF_EVENT_STATE_ACTIVE) {
578 spin_unlock_irq(&ctx->lock);
579 goto retry;
580 }
581
582 /*
583 * Since we have the lock this context can't be scheduled
584 * in, so we can change the state safely.
585 */
586 if (event->state == PERF_EVENT_STATE_INACTIVE) {
587 update_group_times(event);
588 event->state = PERF_EVENT_STATE_OFF;
589 }
590
591 spin_unlock_irq(&ctx->lock);
592}
593
594static int
595event_sched_in(struct perf_event *event,
596 struct perf_cpu_context *cpuctx,
597 struct perf_event_context *ctx,
598 int cpu)
599{
600 if (event->state <= PERF_EVENT_STATE_OFF)
601 return 0;
602
603 event->state = PERF_EVENT_STATE_ACTIVE;
604 event->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
605 /*
606 * The new state must be visible before we turn it on in the hardware:
607 */
608 smp_wmb();
609
610 if (event->pmu->enable(event)) {
611 event->state = PERF_EVENT_STATE_INACTIVE;
612 event->oncpu = -1;
613 return -EAGAIN;
614 }
615
616 event->tstamp_running += ctx->time - event->tstamp_stopped;
617
618 if (!is_software_event(event))
619 cpuctx->active_oncpu++;
620 ctx->nr_active++;
621
622 if (event->attr.exclusive)
623 cpuctx->exclusive = 1;
624
625 return 0;
626}
627
628static int
629group_sched_in(struct perf_event *group_event,
630 struct perf_cpu_context *cpuctx,
631 struct perf_event_context *ctx,
632 int cpu)
633{
634 struct perf_event *event, *partial_group;
635 int ret;
636
637 if (group_event->state == PERF_EVENT_STATE_OFF)
638 return 0;
639
640 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
641 if (ret)
642 return ret < 0 ? ret : 0;
643
644 if (event_sched_in(group_event, cpuctx, ctx, cpu))
645 return -EAGAIN;
646
647 /*
648 * Schedule in siblings as one group (if any):
649 */
650 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
651 if (event_sched_in(event, cpuctx, ctx, cpu)) {
652 partial_group = event;
653 goto group_error;
654 }
655 }
656
657 return 0;
658
659group_error:
660 /*
661 * Groups can be scheduled in as one unit only, so undo any
662 * partial group before returning:
663 */
664 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
665 if (event == partial_group)
666 break;
667 event_sched_out(event, cpuctx, ctx);
668 }
669 event_sched_out(group_event, cpuctx, ctx);
670
671 return -EAGAIN;
672}
673
674/*
675 * Return 1 for a group consisting entirely of software events,
676 * 0 if the group contains any hardware events.
677 */
678static int is_software_only_group(struct perf_event *leader)
679{
680 struct perf_event *event;
681
682 if (!is_software_event(leader))
683 return 0;
684
685 list_for_each_entry(event, &leader->sibling_list, group_entry)
686 if (!is_software_event(event))
687 return 0;
688
689 return 1;
690}
691
692/*
693 * Work out whether we can put this event group on the CPU now.
694 */
695static int group_can_go_on(struct perf_event *event,
696 struct perf_cpu_context *cpuctx,
697 int can_add_hw)
698{
699 /*
700 * Groups consisting entirely of software events can always go on.
701 */
702 if (is_software_only_group(event))
703 return 1;
704 /*
705 * If an exclusive group is already on, no other hardware
706 * events can go on.
707 */
708 if (cpuctx->exclusive)
709 return 0;
710 /*
711 * If this group is exclusive and there are already
712 * events on the CPU, it can't go on.
713 */
714 if (event->attr.exclusive && cpuctx->active_oncpu)
715 return 0;
716 /*
717 * Otherwise, try to add it if all previous groups were able
718 * to go on.
719 */
720 return can_add_hw;
721}
722
723static void add_event_to_ctx(struct perf_event *event,
724 struct perf_event_context *ctx)
725{
726 list_add_event(event, ctx);
727 event->tstamp_enabled = ctx->time;
728 event->tstamp_running = ctx->time;
729 event->tstamp_stopped = ctx->time;
730}
731
732/*
733 * Cross CPU call to install and enable a performance event
734 *
735 * Must be called with ctx->mutex held
736 */
737static void __perf_install_in_context(void *info)
738{
739 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
740 struct perf_event *event = info;
741 struct perf_event_context *ctx = event->ctx;
742 struct perf_event *leader = event->group_leader;
743 int cpu = smp_processor_id();
744 int err;
745
746 /*
747 * If this is a task context, we need to check whether it is
748 * the current task context of this cpu. If not it has been
749 * scheduled out before the smp call arrived.
750 * Or possibly this is the right context but it isn't
751 * on this cpu because it had no events.
752 */
753 if (ctx->task && cpuctx->task_ctx != ctx) {
754 if (cpuctx->task_ctx || ctx->task != current)
755 return;
756 cpuctx->task_ctx = ctx;
757 }
758
759 spin_lock(&ctx->lock);
760 ctx->is_active = 1;
761 update_context_time(ctx);
762
763 /*
764 * Protect the list operation against NMI by disabling the
765 * events on a global level. NOP for non NMI based events.
766 */
767 perf_disable();
768
769 add_event_to_ctx(event, ctx);
770
771 /*
772 * Don't put the event on if it is disabled or if
773 * it is in a group and the group isn't on.
774 */
775 if (event->state != PERF_EVENT_STATE_INACTIVE ||
776 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
777 goto unlock;
778
779 /*
780 * An exclusive event can't go on if there are already active
781 * hardware events, and no hardware event can go on if there
782 * is already an exclusive event on.
783 */
784 if (!group_can_go_on(event, cpuctx, 1))
785 err = -EEXIST;
786 else
787 err = event_sched_in(event, cpuctx, ctx, cpu);
788
789 if (err) {
790 /*
791 * This event couldn't go on. If it is in a group
792 * then we have to pull the whole group off.
793 * If the event group is pinned then put it in error state.
794 */
795 if (leader != event)
796 group_sched_out(leader, cpuctx, ctx);
797 if (leader->attr.pinned) {
798 update_group_times(leader);
799 leader->state = PERF_EVENT_STATE_ERROR;
800 }
801 }
802
803 if (!err && !ctx->task && cpuctx->max_pertask)
804 cpuctx->max_pertask--;
805
806 unlock:
807 perf_enable();
808
809 spin_unlock(&ctx->lock);
810}
811
812/*
813 * Attach a performance event to a context
814 *
815 * First we add the event to the list with the hardware enable bit
816 * in event->hw_config cleared.
817 *
818 * If the event is attached to a task which is on a CPU we use a smp
819 * call to enable it in the task context. The task might have been
820 * scheduled away, but we check this in the smp call again.
821 *
822 * Must be called with ctx->mutex held.
823 */
824static void
825perf_install_in_context(struct perf_event_context *ctx,
826 struct perf_event *event,
827 int cpu)
828{
829 struct task_struct *task = ctx->task;
830
831 if (!task) {
832 /*
833 * Per cpu events are installed via an smp call and
834 * the install is always sucessful.
835 */
836 smp_call_function_single(cpu, __perf_install_in_context,
837 event, 1);
838 return;
839 }
840
841retry:
842 task_oncpu_function_call(task, __perf_install_in_context,
843 event);
844
845 spin_lock_irq(&ctx->lock);
846 /*
847 * we need to retry the smp call.
848 */
849 if (ctx->is_active && list_empty(&event->group_entry)) {
850 spin_unlock_irq(&ctx->lock);
851 goto retry;
852 }
853
854 /*
855 * The lock prevents that this context is scheduled in so we
856 * can add the event safely, if it the call above did not
857 * succeed.
858 */
859 if (list_empty(&event->group_entry))
860 add_event_to_ctx(event, ctx);
861 spin_unlock_irq(&ctx->lock);
862}
863
864/*
865 * Put a event into inactive state and update time fields.
866 * Enabling the leader of a group effectively enables all
867 * the group members that aren't explicitly disabled, so we
868 * have to update their ->tstamp_enabled also.
869 * Note: this works for group members as well as group leaders
870 * since the non-leader members' sibling_lists will be empty.
871 */
872static void __perf_event_mark_enabled(struct perf_event *event,
873 struct perf_event_context *ctx)
874{
875 struct perf_event *sub;
876
877 event->state = PERF_EVENT_STATE_INACTIVE;
878 event->tstamp_enabled = ctx->time - event->total_time_enabled;
879 list_for_each_entry(sub, &event->sibling_list, group_entry)
880 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
881 sub->tstamp_enabled =
882 ctx->time - sub->total_time_enabled;
883}
884
885/*
886 * Cross CPU call to enable a performance event
887 */
888static void __perf_event_enable(void *info)
889{
890 struct perf_event *event = info;
891 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
892 struct perf_event_context *ctx = event->ctx;
893 struct perf_event *leader = event->group_leader;
894 int err;
895
896 /*
897 * If this is a per-task event, need to check whether this
898 * event's task is the current task on this cpu.
899 */
900 if (ctx->task && cpuctx->task_ctx != ctx) {
901 if (cpuctx->task_ctx || ctx->task != current)
902 return;
903 cpuctx->task_ctx = ctx;
904 }
905
906 spin_lock(&ctx->lock);
907 ctx->is_active = 1;
908 update_context_time(ctx);
909
910 if (event->state >= PERF_EVENT_STATE_INACTIVE)
911 goto unlock;
912 __perf_event_mark_enabled(event, ctx);
913
914 /*
915 * If the event is in a group and isn't the group leader,
916 * then don't put it on unless the group is on.
917 */
918 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
919 goto unlock;
920
921 if (!group_can_go_on(event, cpuctx, 1)) {
922 err = -EEXIST;
923 } else {
924 perf_disable();
925 if (event == leader)
926 err = group_sched_in(event, cpuctx, ctx,
927 smp_processor_id());
928 else
929 err = event_sched_in(event, cpuctx, ctx,
930 smp_processor_id());
931 perf_enable();
932 }
933
934 if (err) {
935 /*
936 * If this event can't go on and it's part of a
937 * group, then the whole group has to come off.
938 */
939 if (leader != event)
940 group_sched_out(leader, cpuctx, ctx);
941 if (leader->attr.pinned) {
942 update_group_times(leader);
943 leader->state = PERF_EVENT_STATE_ERROR;
944 }
945 }
946
947 unlock:
948 spin_unlock(&ctx->lock);
949}
950
951/*
952 * Enable a event.
953 *
954 * If event->ctx is a cloned context, callers must make sure that
955 * every task struct that event->ctx->task could possibly point to
956 * remains valid. This condition is satisfied when called through
957 * perf_event_for_each_child or perf_event_for_each as described
958 * for perf_event_disable.
959 */
960static void perf_event_enable(struct perf_event *event)
961{
962 struct perf_event_context *ctx = event->ctx;
963 struct task_struct *task = ctx->task;
964
965 if (!task) {
966 /*
967 * Enable the event on the cpu that it's on
968 */
969 smp_call_function_single(event->cpu, __perf_event_enable,
970 event, 1);
971 return;
972 }
973
974 spin_lock_irq(&ctx->lock);
975 if (event->state >= PERF_EVENT_STATE_INACTIVE)
976 goto out;
977
978 /*
979 * If the event is in error state, clear that first.
980 * That way, if we see the event in error state below, we
981 * know that it has gone back into error state, as distinct
982 * from the task having been scheduled away before the
983 * cross-call arrived.
984 */
985 if (event->state == PERF_EVENT_STATE_ERROR)
986 event->state = PERF_EVENT_STATE_OFF;
987
988 retry:
989 spin_unlock_irq(&ctx->lock);
990 task_oncpu_function_call(task, __perf_event_enable, event);
991
992 spin_lock_irq(&ctx->lock);
993
994 /*
995 * If the context is active and the event is still off,
996 * we need to retry the cross-call.
997 */
998 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
999 goto retry;
1000
1001 /*
1002 * Since we have the lock this context can't be scheduled
1003 * in, so we can change the state safely.
1004 */
1005 if (event->state == PERF_EVENT_STATE_OFF)
1006 __perf_event_mark_enabled(event, ctx);
1007
1008 out:
1009 spin_unlock_irq(&ctx->lock);
1010}
1011
1012static int perf_event_refresh(struct perf_event *event, int refresh)
1013{
1014 /*
1015 * not supported on inherited events
1016 */
1017 if (event->attr.inherit)
1018 return -EINVAL;
1019
1020 atomic_add(refresh, &event->event_limit);
1021 perf_event_enable(event);
1022
1023 return 0;
1024}
1025
1026void __perf_event_sched_out(struct perf_event_context *ctx,
1027 struct perf_cpu_context *cpuctx)
1028{
1029 struct perf_event *event;
1030
1031 spin_lock(&ctx->lock);
1032 ctx->is_active = 0;
1033 if (likely(!ctx->nr_events))
1034 goto out;
1035 update_context_time(ctx);
1036
1037 perf_disable();
Peter Zijlstra6c2bfcb2009-11-23 11:37:24 +01001038 if (ctx->nr_active) {
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001039 list_for_each_entry(event, &ctx->group_list, group_entry)
1040 group_sched_out(event, cpuctx, ctx);
Peter Zijlstra6c2bfcb2009-11-23 11:37:24 +01001041 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001042 perf_enable();
1043 out:
1044 spin_unlock(&ctx->lock);
1045}
1046
1047/*
1048 * Test whether two contexts are equivalent, i.e. whether they
1049 * have both been cloned from the same version of the same context
1050 * and they both have the same number of enabled events.
1051 * If the number of enabled events is the same, then the set
1052 * of enabled events should be the same, because these are both
1053 * inherited contexts, therefore we can't access individual events
1054 * in them directly with an fd; we can only enable/disable all
1055 * events via prctl, or enable/disable all events in a family
1056 * via ioctl, which will have the same effect on both contexts.
1057 */
1058static int context_equiv(struct perf_event_context *ctx1,
1059 struct perf_event_context *ctx2)
1060{
1061 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1062 && ctx1->parent_gen == ctx2->parent_gen
1063 && !ctx1->pin_count && !ctx2->pin_count;
1064}
1065
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001066static void __perf_event_sync_stat(struct perf_event *event,
1067 struct perf_event *next_event)
1068{
1069 u64 value;
1070
1071 if (!event->attr.inherit_stat)
1072 return;
1073
1074 /*
1075 * Update the event value, we cannot use perf_event_read()
1076 * because we're in the middle of a context switch and have IRQs
1077 * disabled, which upsets smp_call_function_single(), however
1078 * we know the event must be on the current CPU, therefore we
1079 * don't need to use it.
1080 */
1081 switch (event->state) {
1082 case PERF_EVENT_STATE_ACTIVE:
Peter Zijlstra3dbebf12009-11-20 22:19:52 +01001083 event->pmu->read(event);
1084 /* fall-through */
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001085
1086 case PERF_EVENT_STATE_INACTIVE:
1087 update_event_times(event);
1088 break;
1089
1090 default:
1091 break;
1092 }
1093
1094 /*
1095 * In order to keep per-task stats reliable we need to flip the event
1096 * values when we flip the contexts.
1097 */
1098 value = atomic64_read(&next_event->count);
1099 value = atomic64_xchg(&event->count, value);
1100 atomic64_set(&next_event->count, value);
1101
1102 swap(event->total_time_enabled, next_event->total_time_enabled);
1103 swap(event->total_time_running, next_event->total_time_running);
1104
1105 /*
1106 * Since we swizzled the values, update the user visible data too.
1107 */
1108 perf_event_update_userpage(event);
1109 perf_event_update_userpage(next_event);
1110}
1111
1112#define list_next_entry(pos, member) \
1113 list_entry(pos->member.next, typeof(*pos), member)
1114
1115static void perf_event_sync_stat(struct perf_event_context *ctx,
1116 struct perf_event_context *next_ctx)
1117{
1118 struct perf_event *event, *next_event;
1119
1120 if (!ctx->nr_stat)
1121 return;
1122
Peter Zijlstra02ffdbc2009-11-20 22:19:50 +01001123 update_context_time(ctx);
1124
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001125 event = list_first_entry(&ctx->event_list,
1126 struct perf_event, event_entry);
1127
1128 next_event = list_first_entry(&next_ctx->event_list,
1129 struct perf_event, event_entry);
1130
1131 while (&event->event_entry != &ctx->event_list &&
1132 &next_event->event_entry != &next_ctx->event_list) {
1133
1134 __perf_event_sync_stat(event, next_event);
1135
1136 event = list_next_entry(event, event_entry);
1137 next_event = list_next_entry(next_event, event_entry);
1138 }
1139}
1140
1141/*
1142 * Called from scheduler to remove the events of the current task,
1143 * with interrupts disabled.
1144 *
1145 * We stop each event and update the event value in event->count.
1146 *
1147 * This does not protect us against NMI, but disable()
1148 * sets the disabled bit in the control field of event _before_
1149 * accessing the event control register. If a NMI hits, then it will
1150 * not restart the event.
1151 */
1152void perf_event_task_sched_out(struct task_struct *task,
1153 struct task_struct *next, int cpu)
1154{
1155 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1156 struct perf_event_context *ctx = task->perf_event_ctxp;
1157 struct perf_event_context *next_ctx;
1158 struct perf_event_context *parent;
1159 struct pt_regs *regs;
1160 int do_switch = 1;
1161
1162 regs = task_pt_regs(task);
1163 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1164
1165 if (likely(!ctx || !cpuctx->task_ctx))
1166 return;
1167
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001168 rcu_read_lock();
1169 parent = rcu_dereference(ctx->parent_ctx);
1170 next_ctx = next->perf_event_ctxp;
1171 if (parent && next_ctx &&
1172 rcu_dereference(next_ctx->parent_ctx) == parent) {
1173 /*
1174 * Looks like the two contexts are clones, so we might be
1175 * able to optimize the context switch. We lock both
1176 * contexts and check that they are clones under the
1177 * lock (including re-checking that neither has been
1178 * uncloned in the meantime). It doesn't matter which
1179 * order we take the locks because no other cpu could
1180 * be trying to lock both of these tasks.
1181 */
1182 spin_lock(&ctx->lock);
1183 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1184 if (context_equiv(ctx, next_ctx)) {
1185 /*
1186 * XXX do we need a memory barrier of sorts
1187 * wrt to rcu_dereference() of perf_event_ctxp
1188 */
1189 task->perf_event_ctxp = next_ctx;
1190 next->perf_event_ctxp = ctx;
1191 ctx->task = next;
1192 next_ctx->task = task;
1193 do_switch = 0;
1194
1195 perf_event_sync_stat(ctx, next_ctx);
1196 }
1197 spin_unlock(&next_ctx->lock);
1198 spin_unlock(&ctx->lock);
1199 }
1200 rcu_read_unlock();
1201
1202 if (do_switch) {
1203 __perf_event_sched_out(ctx, cpuctx);
1204 cpuctx->task_ctx = NULL;
1205 }
1206}
1207
1208/*
1209 * Called with IRQs disabled
1210 */
1211static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1212{
1213 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1214
1215 if (!cpuctx->task_ctx)
1216 return;
1217
1218 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1219 return;
1220
1221 __perf_event_sched_out(ctx, cpuctx);
1222 cpuctx->task_ctx = NULL;
1223}
1224
1225/*
1226 * Called with IRQs disabled
1227 */
1228static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx)
1229{
1230 __perf_event_sched_out(&cpuctx->ctx, cpuctx);
1231}
1232
1233static void
1234__perf_event_sched_in(struct perf_event_context *ctx,
1235 struct perf_cpu_context *cpuctx, int cpu)
1236{
1237 struct perf_event *event;
1238 int can_add_hw = 1;
1239
1240 spin_lock(&ctx->lock);
1241 ctx->is_active = 1;
1242 if (likely(!ctx->nr_events))
1243 goto out;
1244
1245 ctx->timestamp = perf_clock();
1246
1247 perf_disable();
1248
1249 /*
1250 * First go through the list and put on any pinned groups
1251 * in order to give them the best chance of going on.
1252 */
1253 list_for_each_entry(event, &ctx->group_list, group_entry) {
1254 if (event->state <= PERF_EVENT_STATE_OFF ||
1255 !event->attr.pinned)
1256 continue;
1257 if (event->cpu != -1 && event->cpu != cpu)
1258 continue;
1259
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001260 if (group_can_go_on(event, cpuctx, 1))
1261 group_sched_in(event, cpuctx, ctx, cpu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001262
1263 /*
1264 * If this pinned group hasn't been scheduled,
1265 * put it in error state.
1266 */
1267 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1268 update_group_times(event);
1269 event->state = PERF_EVENT_STATE_ERROR;
1270 }
1271 }
1272
1273 list_for_each_entry(event, &ctx->group_list, group_entry) {
1274 /*
1275 * Ignore events in OFF or ERROR state, and
1276 * ignore pinned events since we did them already.
1277 */
1278 if (event->state <= PERF_EVENT_STATE_OFF ||
1279 event->attr.pinned)
1280 continue;
1281
1282 /*
1283 * Listen to the 'cpu' scheduling filter constraint
1284 * of events:
1285 */
1286 if (event->cpu != -1 && event->cpu != cpu)
1287 continue;
1288
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001289 if (group_can_go_on(event, cpuctx, can_add_hw))
1290 if (group_sched_in(event, cpuctx, ctx, cpu))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001291 can_add_hw = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001292 }
1293 perf_enable();
1294 out:
1295 spin_unlock(&ctx->lock);
1296}
1297
1298/*
1299 * Called from scheduler to add the events of the current task
1300 * with interrupts disabled.
1301 *
1302 * We restore the event value and then enable it.
1303 *
1304 * This does not protect us against NMI, but enable()
1305 * sets the enabled bit in the control field of event _before_
1306 * accessing the event control register. If a NMI hits, then it will
1307 * keep the event running.
1308 */
1309void perf_event_task_sched_in(struct task_struct *task, int cpu)
1310{
1311 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1312 struct perf_event_context *ctx = task->perf_event_ctxp;
1313
1314 if (likely(!ctx))
1315 return;
1316 if (cpuctx->task_ctx == ctx)
1317 return;
1318 __perf_event_sched_in(ctx, cpuctx, cpu);
1319 cpuctx->task_ctx = ctx;
1320}
1321
1322static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1323{
1324 struct perf_event_context *ctx = &cpuctx->ctx;
1325
1326 __perf_event_sched_in(ctx, cpuctx, cpu);
1327}
1328
1329#define MAX_INTERRUPTS (~0ULL)
1330
1331static void perf_log_throttle(struct perf_event *event, int enable);
1332
1333static void perf_adjust_period(struct perf_event *event, u64 events)
1334{
1335 struct hw_perf_event *hwc = &event->hw;
1336 u64 period, sample_period;
1337 s64 delta;
1338
1339 events *= hwc->sample_period;
1340 period = div64_u64(events, event->attr.sample_freq);
1341
1342 delta = (s64)(period - hwc->sample_period);
1343 delta = (delta + 7) / 8; /* low pass filter */
1344
1345 sample_period = hwc->sample_period + delta;
1346
1347 if (!sample_period)
1348 sample_period = 1;
1349
1350 hwc->sample_period = sample_period;
1351}
1352
1353static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1354{
1355 struct perf_event *event;
1356 struct hw_perf_event *hwc;
1357 u64 interrupts, freq;
1358
1359 spin_lock(&ctx->lock);
Paul Mackerras03541f82009-10-14 16:58:03 +11001360 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001361 if (event->state != PERF_EVENT_STATE_ACTIVE)
1362 continue;
1363
1364 hwc = &event->hw;
1365
1366 interrupts = hwc->interrupts;
1367 hwc->interrupts = 0;
1368
1369 /*
1370 * unthrottle events on the tick
1371 */
1372 if (interrupts == MAX_INTERRUPTS) {
1373 perf_log_throttle(event, 1);
1374 event->pmu->unthrottle(event);
1375 interrupts = 2*sysctl_perf_event_sample_rate/HZ;
1376 }
1377
1378 if (!event->attr.freq || !event->attr.sample_freq)
1379 continue;
1380
1381 /*
1382 * if the specified freq < HZ then we need to skip ticks
1383 */
1384 if (event->attr.sample_freq < HZ) {
1385 freq = event->attr.sample_freq;
1386
1387 hwc->freq_count += freq;
1388 hwc->freq_interrupts += interrupts;
1389
1390 if (hwc->freq_count < HZ)
1391 continue;
1392
1393 interrupts = hwc->freq_interrupts;
1394 hwc->freq_interrupts = 0;
1395 hwc->freq_count -= HZ;
1396 } else
1397 freq = HZ;
1398
1399 perf_adjust_period(event, freq * interrupts);
1400
1401 /*
1402 * In order to avoid being stalled by an (accidental) huge
1403 * sample period, force reset the sample period if we didn't
1404 * get any events in this freq period.
1405 */
1406 if (!interrupts) {
1407 perf_disable();
1408 event->pmu->disable(event);
1409 atomic64_set(&hwc->period_left, 0);
1410 event->pmu->enable(event);
1411 perf_enable();
1412 }
1413 }
1414 spin_unlock(&ctx->lock);
1415}
1416
1417/*
1418 * Round-robin a context's events:
1419 */
1420static void rotate_ctx(struct perf_event_context *ctx)
1421{
1422 struct perf_event *event;
1423
1424 if (!ctx->nr_events)
1425 return;
1426
1427 spin_lock(&ctx->lock);
1428 /*
1429 * Rotate the first entry last (works just fine for group events too):
1430 */
1431 perf_disable();
1432 list_for_each_entry(event, &ctx->group_list, group_entry) {
1433 list_move_tail(&event->group_entry, &ctx->group_list);
1434 break;
1435 }
1436 perf_enable();
1437
1438 spin_unlock(&ctx->lock);
1439}
1440
1441void perf_event_task_tick(struct task_struct *curr, int cpu)
1442{
1443 struct perf_cpu_context *cpuctx;
1444 struct perf_event_context *ctx;
1445
1446 if (!atomic_read(&nr_events))
1447 return;
1448
1449 cpuctx = &per_cpu(perf_cpu_context, cpu);
1450 ctx = curr->perf_event_ctxp;
1451
1452 perf_ctx_adjust_freq(&cpuctx->ctx);
1453 if (ctx)
1454 perf_ctx_adjust_freq(ctx);
1455
1456 perf_event_cpu_sched_out(cpuctx);
1457 if (ctx)
1458 __perf_event_task_sched_out(ctx);
1459
1460 rotate_ctx(&cpuctx->ctx);
1461 if (ctx)
1462 rotate_ctx(ctx);
1463
1464 perf_event_cpu_sched_in(cpuctx, cpu);
1465 if (ctx)
1466 perf_event_task_sched_in(curr, cpu);
1467}
1468
1469/*
1470 * Enable all of a task's events that have been marked enable-on-exec.
1471 * This expects task == current.
1472 */
1473static void perf_event_enable_on_exec(struct task_struct *task)
1474{
1475 struct perf_event_context *ctx;
1476 struct perf_event *event;
1477 unsigned long flags;
1478 int enabled = 0;
1479
1480 local_irq_save(flags);
1481 ctx = task->perf_event_ctxp;
1482 if (!ctx || !ctx->nr_events)
1483 goto out;
1484
1485 __perf_event_task_sched_out(ctx);
1486
1487 spin_lock(&ctx->lock);
1488
1489 list_for_each_entry(event, &ctx->group_list, group_entry) {
1490 if (!event->attr.enable_on_exec)
1491 continue;
1492 event->attr.enable_on_exec = 0;
1493 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1494 continue;
1495 __perf_event_mark_enabled(event, ctx);
1496 enabled = 1;
1497 }
1498
1499 /*
1500 * Unclone this context if we enabled any event.
1501 */
1502 if (enabled)
1503 unclone_ctx(ctx);
1504
1505 spin_unlock(&ctx->lock);
1506
1507 perf_event_task_sched_in(task, smp_processor_id());
1508 out:
1509 local_irq_restore(flags);
1510}
1511
1512/*
1513 * Cross CPU call to read the hardware event
1514 */
1515static void __perf_event_read(void *info)
1516{
1517 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1518 struct perf_event *event = info;
1519 struct perf_event_context *ctx = event->ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001520
1521 /*
1522 * If this is a task context, we need to check whether it is
1523 * the current task context of this cpu. If not it has been
1524 * scheduled out before the smp call arrived. In that case
1525 * event->count would have been updated to a recent sample
1526 * when the event was scheduled out.
1527 */
1528 if (ctx->task && cpuctx->task_ctx != ctx)
1529 return;
1530
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001531 spin_lock(&ctx->lock);
Peter Zijlstra58e5ad12009-11-20 22:19:53 +01001532 update_context_time(ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001533 update_event_times(event);
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001534 spin_unlock(&ctx->lock);
1535
Peter Zijlstra58e5ad12009-11-20 22:19:53 +01001536 event->pmu->read(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001537}
1538
1539static u64 perf_event_read(struct perf_event *event)
1540{
1541 /*
1542 * If event is enabled and currently active on a CPU, update the
1543 * value in the event structure:
1544 */
1545 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1546 smp_call_function_single(event->oncpu,
1547 __perf_event_read, event, 1);
1548 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001549 struct perf_event_context *ctx = event->ctx;
1550 unsigned long flags;
1551
1552 spin_lock_irqsave(&ctx->lock, flags);
1553 update_context_time(ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001554 update_event_times(event);
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001555 spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001556 }
1557
1558 return atomic64_read(&event->count);
1559}
1560
1561/*
1562 * Initialize the perf_event context in a task_struct:
1563 */
1564static void
1565__perf_event_init_context(struct perf_event_context *ctx,
1566 struct task_struct *task)
1567{
1568 memset(ctx, 0, sizeof(*ctx));
1569 spin_lock_init(&ctx->lock);
1570 mutex_init(&ctx->mutex);
1571 INIT_LIST_HEAD(&ctx->group_list);
1572 INIT_LIST_HEAD(&ctx->event_list);
1573 atomic_set(&ctx->refcount, 1);
1574 ctx->task = task;
1575}
1576
1577static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1578{
1579 struct perf_event_context *ctx;
1580 struct perf_cpu_context *cpuctx;
1581 struct task_struct *task;
1582 unsigned long flags;
1583 int err;
1584
1585 /*
1586 * If cpu is not a wildcard then this is a percpu event:
1587 */
1588 if (cpu != -1) {
1589 /* Must be root to operate on a CPU event: */
1590 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1591 return ERR_PTR(-EACCES);
1592
1593 if (cpu < 0 || cpu > num_possible_cpus())
1594 return ERR_PTR(-EINVAL);
1595
1596 /*
1597 * We could be clever and allow to attach a event to an
1598 * offline CPU and activate it when the CPU comes up, but
1599 * that's for later.
1600 */
1601 if (!cpu_isset(cpu, cpu_online_map))
1602 return ERR_PTR(-ENODEV);
1603
1604 cpuctx = &per_cpu(perf_cpu_context, cpu);
1605 ctx = &cpuctx->ctx;
1606 get_ctx(ctx);
1607
1608 return ctx;
1609 }
1610
1611 rcu_read_lock();
1612 if (!pid)
1613 task = current;
1614 else
1615 task = find_task_by_vpid(pid);
1616 if (task)
1617 get_task_struct(task);
1618 rcu_read_unlock();
1619
1620 if (!task)
1621 return ERR_PTR(-ESRCH);
1622
1623 /*
1624 * Can't attach events to a dying task.
1625 */
1626 err = -ESRCH;
1627 if (task->flags & PF_EXITING)
1628 goto errout;
1629
1630 /* Reuse ptrace permission checks for now. */
1631 err = -EACCES;
1632 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1633 goto errout;
1634
1635 retry:
1636 ctx = perf_lock_task_context(task, &flags);
1637 if (ctx) {
1638 unclone_ctx(ctx);
1639 spin_unlock_irqrestore(&ctx->lock, flags);
1640 }
1641
1642 if (!ctx) {
1643 ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1644 err = -ENOMEM;
1645 if (!ctx)
1646 goto errout;
1647 __perf_event_init_context(ctx, task);
1648 get_ctx(ctx);
1649 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1650 /*
1651 * We raced with some other task; use
1652 * the context they set.
1653 */
1654 kfree(ctx);
1655 goto retry;
1656 }
1657 get_task_struct(task);
1658 }
1659
1660 put_task_struct(task);
1661 return ctx;
1662
1663 errout:
1664 put_task_struct(task);
1665 return ERR_PTR(err);
1666}
1667
Li Zefan6fb29152009-10-15 11:21:42 +08001668static void perf_event_free_filter(struct perf_event *event);
1669
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001670static void free_event_rcu(struct rcu_head *head)
1671{
1672 struct perf_event *event;
1673
1674 event = container_of(head, struct perf_event, rcu_head);
1675 if (event->ns)
1676 put_pid_ns(event->ns);
Li Zefan6fb29152009-10-15 11:21:42 +08001677 perf_event_free_filter(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001678 kfree(event);
1679}
1680
1681static void perf_pending_sync(struct perf_event *event);
1682
1683static void free_event(struct perf_event *event)
1684{
1685 perf_pending_sync(event);
1686
1687 if (!event->parent) {
1688 atomic_dec(&nr_events);
1689 if (event->attr.mmap)
1690 atomic_dec(&nr_mmap_events);
1691 if (event->attr.comm)
1692 atomic_dec(&nr_comm_events);
1693 if (event->attr.task)
1694 atomic_dec(&nr_task_events);
1695 }
1696
1697 if (event->output) {
1698 fput(event->output->filp);
1699 event->output = NULL;
1700 }
1701
1702 if (event->destroy)
1703 event->destroy(event);
1704
1705 put_ctx(event->ctx);
1706 call_rcu(&event->rcu_head, free_event_rcu);
1707}
1708
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001709int perf_event_release_kernel(struct perf_event *event)
1710{
1711 struct perf_event_context *ctx = event->ctx;
1712
1713 WARN_ON_ONCE(ctx->parent_ctx);
1714 mutex_lock(&ctx->mutex);
1715 perf_event_remove_from_context(event);
1716 mutex_unlock(&ctx->mutex);
1717
1718 mutex_lock(&event->owner->perf_event_mutex);
1719 list_del_init(&event->owner_entry);
1720 mutex_unlock(&event->owner->perf_event_mutex);
1721 put_task_struct(event->owner);
1722
1723 free_event(event);
1724
1725 return 0;
1726}
1727EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1728
Peter Zijlstraa66a3052009-11-23 11:37:23 +01001729/*
1730 * Called when the last reference to the file is gone.
1731 */
1732static int perf_release(struct inode *inode, struct file *file)
1733{
1734 struct perf_event *event = file->private_data;
1735
1736 file->private_data = NULL;
1737
1738 return perf_event_release_kernel(event);
1739}
1740
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001741static int perf_event_read_size(struct perf_event *event)
1742{
1743 int entry = sizeof(u64); /* value */
1744 int size = 0;
1745 int nr = 1;
1746
1747 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1748 size += sizeof(u64);
1749
1750 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1751 size += sizeof(u64);
1752
1753 if (event->attr.read_format & PERF_FORMAT_ID)
1754 entry += sizeof(u64);
1755
1756 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1757 nr += event->group_leader->nr_siblings;
1758 size += sizeof(u64);
1759 }
1760
1761 size += entry * nr;
1762
1763 return size;
1764}
1765
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001766u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001767{
1768 struct perf_event *child;
1769 u64 total = 0;
1770
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001771 *enabled = 0;
1772 *running = 0;
1773
Peter Zijlstra6f105812009-11-20 22:19:56 +01001774 mutex_lock(&event->child_mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001775 total += perf_event_read(event);
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001776 *enabled += event->total_time_enabled +
1777 atomic64_read(&event->child_total_time_enabled);
1778 *running += event->total_time_running +
1779 atomic64_read(&event->child_total_time_running);
1780
1781 list_for_each_entry(child, &event->child_list, child_list) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001782 total += perf_event_read(child);
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001783 *enabled += child->total_time_enabled;
1784 *running += child->total_time_running;
1785 }
Peter Zijlstra6f105812009-11-20 22:19:56 +01001786 mutex_unlock(&event->child_mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001787
1788 return total;
1789}
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001790EXPORT_SYMBOL_GPL(perf_event_read_value);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001791
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001792static int perf_event_read_group(struct perf_event *event,
1793 u64 read_format, char __user *buf)
1794{
1795 struct perf_event *leader = event->group_leader, *sub;
Peter Zijlstra6f105812009-11-20 22:19:56 +01001796 int n = 0, size = 0, ret = -EFAULT;
1797 struct perf_event_context *ctx = leader->ctx;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001798 u64 values[5];
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001799 u64 count, enabled, running;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001800
Peter Zijlstra6f105812009-11-20 22:19:56 +01001801 mutex_lock(&ctx->mutex);
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001802 count = perf_event_read_value(leader, &enabled, &running);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001803
1804 values[n++] = 1 + leader->nr_siblings;
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001805 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1806 values[n++] = enabled;
1807 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1808 values[n++] = running;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001809 values[n++] = count;
1810 if (read_format & PERF_FORMAT_ID)
1811 values[n++] = primary_event_id(leader);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001812
1813 size = n * sizeof(u64);
1814
1815 if (copy_to_user(buf, values, size))
Peter Zijlstra6f105812009-11-20 22:19:56 +01001816 goto unlock;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001817
Peter Zijlstra6f105812009-11-20 22:19:56 +01001818 ret = size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001819
1820 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
Peter Zijlstraabf48682009-11-20 22:19:49 +01001821 n = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001822
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001823 values[n++] = perf_event_read_value(sub, &enabled, &running);
Peter Zijlstraabf48682009-11-20 22:19:49 +01001824 if (read_format & PERF_FORMAT_ID)
1825 values[n++] = primary_event_id(sub);
1826
1827 size = n * sizeof(u64);
1828
Peter Zijlstra6f105812009-11-20 22:19:56 +01001829 if (copy_to_user(buf + size, values, size)) {
1830 ret = -EFAULT;
1831 goto unlock;
1832 }
Peter Zijlstraabf48682009-11-20 22:19:49 +01001833
1834 ret += size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001835 }
Peter Zijlstra6f105812009-11-20 22:19:56 +01001836unlock:
1837 mutex_unlock(&ctx->mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001838
Peter Zijlstraabf48682009-11-20 22:19:49 +01001839 return ret;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001840}
1841
1842static int perf_event_read_one(struct perf_event *event,
1843 u64 read_format, char __user *buf)
1844{
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001845 u64 enabled, running;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001846 u64 values[4];
1847 int n = 0;
1848
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001849 values[n++] = perf_event_read_value(event, &enabled, &running);
1850 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1851 values[n++] = enabled;
1852 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1853 values[n++] = running;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001854 if (read_format & PERF_FORMAT_ID)
1855 values[n++] = primary_event_id(event);
1856
1857 if (copy_to_user(buf, values, n * sizeof(u64)))
1858 return -EFAULT;
1859
1860 return n * sizeof(u64);
1861}
1862
1863/*
1864 * Read the performance event - simple non blocking version for now
1865 */
1866static ssize_t
1867perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
1868{
1869 u64 read_format = event->attr.read_format;
1870 int ret;
1871
1872 /*
1873 * Return end-of-file for a read on a event that is in
1874 * error state (i.e. because it was pinned but it couldn't be
1875 * scheduled on to the CPU at some point).
1876 */
1877 if (event->state == PERF_EVENT_STATE_ERROR)
1878 return 0;
1879
1880 if (count < perf_event_read_size(event))
1881 return -ENOSPC;
1882
1883 WARN_ON_ONCE(event->ctx->parent_ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001884 if (read_format & PERF_FORMAT_GROUP)
1885 ret = perf_event_read_group(event, read_format, buf);
1886 else
1887 ret = perf_event_read_one(event, read_format, buf);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001888
1889 return ret;
1890}
1891
1892static ssize_t
1893perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1894{
1895 struct perf_event *event = file->private_data;
1896
1897 return perf_read_hw(event, buf, count);
1898}
1899
1900static unsigned int perf_poll(struct file *file, poll_table *wait)
1901{
1902 struct perf_event *event = file->private_data;
1903 struct perf_mmap_data *data;
1904 unsigned int events = POLL_HUP;
1905
1906 rcu_read_lock();
1907 data = rcu_dereference(event->data);
1908 if (data)
1909 events = atomic_xchg(&data->poll, 0);
1910 rcu_read_unlock();
1911
1912 poll_wait(file, &event->waitq, wait);
1913
1914 return events;
1915}
1916
1917static void perf_event_reset(struct perf_event *event)
1918{
1919 (void)perf_event_read(event);
1920 atomic64_set(&event->count, 0);
1921 perf_event_update_userpage(event);
1922}
1923
1924/*
1925 * Holding the top-level event's child_mutex means that any
1926 * descendant process that has inherited this event will block
1927 * in sync_child_event if it goes to exit, thus satisfying the
1928 * task existence requirements of perf_event_enable/disable.
1929 */
1930static void perf_event_for_each_child(struct perf_event *event,
1931 void (*func)(struct perf_event *))
1932{
1933 struct perf_event *child;
1934
1935 WARN_ON_ONCE(event->ctx->parent_ctx);
1936 mutex_lock(&event->child_mutex);
1937 func(event);
1938 list_for_each_entry(child, &event->child_list, child_list)
1939 func(child);
1940 mutex_unlock(&event->child_mutex);
1941}
1942
1943static void perf_event_for_each(struct perf_event *event,
1944 void (*func)(struct perf_event *))
1945{
1946 struct perf_event_context *ctx = event->ctx;
1947 struct perf_event *sibling;
1948
1949 WARN_ON_ONCE(ctx->parent_ctx);
1950 mutex_lock(&ctx->mutex);
1951 event = event->group_leader;
1952
1953 perf_event_for_each_child(event, func);
1954 func(event);
1955 list_for_each_entry(sibling, &event->sibling_list, group_entry)
1956 perf_event_for_each_child(event, func);
1957 mutex_unlock(&ctx->mutex);
1958}
1959
1960static int perf_event_period(struct perf_event *event, u64 __user *arg)
1961{
1962 struct perf_event_context *ctx = event->ctx;
1963 unsigned long size;
1964 int ret = 0;
1965 u64 value;
1966
1967 if (!event->attr.sample_period)
1968 return -EINVAL;
1969
1970 size = copy_from_user(&value, arg, sizeof(value));
1971 if (size != sizeof(value))
1972 return -EFAULT;
1973
1974 if (!value)
1975 return -EINVAL;
1976
1977 spin_lock_irq(&ctx->lock);
1978 if (event->attr.freq) {
1979 if (value > sysctl_perf_event_sample_rate) {
1980 ret = -EINVAL;
1981 goto unlock;
1982 }
1983
1984 event->attr.sample_freq = value;
1985 } else {
1986 event->attr.sample_period = value;
1987 event->hw.sample_period = value;
1988 }
1989unlock:
1990 spin_unlock_irq(&ctx->lock);
1991
1992 return ret;
1993}
1994
Li Zefan6fb29152009-10-15 11:21:42 +08001995static int perf_event_set_output(struct perf_event *event, int output_fd);
1996static int perf_event_set_filter(struct perf_event *event, void __user *arg);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001997
1998static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1999{
2000 struct perf_event *event = file->private_data;
2001 void (*func)(struct perf_event *);
2002 u32 flags = arg;
2003
2004 switch (cmd) {
2005 case PERF_EVENT_IOC_ENABLE:
2006 func = perf_event_enable;
2007 break;
2008 case PERF_EVENT_IOC_DISABLE:
2009 func = perf_event_disable;
2010 break;
2011 case PERF_EVENT_IOC_RESET:
2012 func = perf_event_reset;
2013 break;
2014
2015 case PERF_EVENT_IOC_REFRESH:
2016 return perf_event_refresh(event, arg);
2017
2018 case PERF_EVENT_IOC_PERIOD:
2019 return perf_event_period(event, (u64 __user *)arg);
2020
2021 case PERF_EVENT_IOC_SET_OUTPUT:
2022 return perf_event_set_output(event, arg);
2023
Li Zefan6fb29152009-10-15 11:21:42 +08002024 case PERF_EVENT_IOC_SET_FILTER:
2025 return perf_event_set_filter(event, (void __user *)arg);
2026
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002027 default:
2028 return -ENOTTY;
2029 }
2030
2031 if (flags & PERF_IOC_FLAG_GROUP)
2032 perf_event_for_each(event, func);
2033 else
2034 perf_event_for_each_child(event, func);
2035
2036 return 0;
2037}
2038
2039int perf_event_task_enable(void)
2040{
2041 struct perf_event *event;
2042
2043 mutex_lock(&current->perf_event_mutex);
2044 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2045 perf_event_for_each_child(event, perf_event_enable);
2046 mutex_unlock(&current->perf_event_mutex);
2047
2048 return 0;
2049}
2050
2051int perf_event_task_disable(void)
2052{
2053 struct perf_event *event;
2054
2055 mutex_lock(&current->perf_event_mutex);
2056 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2057 perf_event_for_each_child(event, perf_event_disable);
2058 mutex_unlock(&current->perf_event_mutex);
2059
2060 return 0;
2061}
2062
2063#ifndef PERF_EVENT_INDEX_OFFSET
2064# define PERF_EVENT_INDEX_OFFSET 0
2065#endif
2066
2067static int perf_event_index(struct perf_event *event)
2068{
2069 if (event->state != PERF_EVENT_STATE_ACTIVE)
2070 return 0;
2071
2072 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2073}
2074
2075/*
2076 * Callers need to ensure there can be no nesting of this function, otherwise
2077 * the seqlock logic goes bad. We can not serialize this because the arch
2078 * code calls this from NMI context.
2079 */
2080void perf_event_update_userpage(struct perf_event *event)
2081{
2082 struct perf_event_mmap_page *userpg;
2083 struct perf_mmap_data *data;
2084
2085 rcu_read_lock();
2086 data = rcu_dereference(event->data);
2087 if (!data)
2088 goto unlock;
2089
2090 userpg = data->user_page;
2091
2092 /*
2093 * Disable preemption so as to not let the corresponding user-space
2094 * spin too long if we get preempted.
2095 */
2096 preempt_disable();
2097 ++userpg->lock;
2098 barrier();
2099 userpg->index = perf_event_index(event);
2100 userpg->offset = atomic64_read(&event->count);
2101 if (event->state == PERF_EVENT_STATE_ACTIVE)
2102 userpg->offset -= atomic64_read(&event->hw.prev_count);
2103
2104 userpg->time_enabled = event->total_time_enabled +
2105 atomic64_read(&event->child_total_time_enabled);
2106
2107 userpg->time_running = event->total_time_running +
2108 atomic64_read(&event->child_total_time_running);
2109
2110 barrier();
2111 ++userpg->lock;
2112 preempt_enable();
2113unlock:
2114 rcu_read_unlock();
2115}
2116
Peter Zijlstra906010b2009-09-21 16:08:49 +02002117static unsigned long perf_data_size(struct perf_mmap_data *data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002118{
Peter Zijlstra906010b2009-09-21 16:08:49 +02002119 return data->nr_pages << (PAGE_SHIFT + data->data_order);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002120}
2121
Peter Zijlstra906010b2009-09-21 16:08:49 +02002122#ifndef CONFIG_PERF_USE_VMALLOC
2123
2124/*
2125 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2126 */
2127
2128static struct page *
2129perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2130{
2131 if (pgoff > data->nr_pages)
2132 return NULL;
2133
2134 if (pgoff == 0)
2135 return virt_to_page(data->user_page);
2136
2137 return virt_to_page(data->data_pages[pgoff - 1]);
2138}
2139
2140static struct perf_mmap_data *
2141perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002142{
2143 struct perf_mmap_data *data;
2144 unsigned long size;
2145 int i;
2146
2147 WARN_ON(atomic_read(&event->mmap_count));
2148
2149 size = sizeof(struct perf_mmap_data);
2150 size += nr_pages * sizeof(void *);
2151
2152 data = kzalloc(size, GFP_KERNEL);
2153 if (!data)
2154 goto fail;
2155
2156 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2157 if (!data->user_page)
2158 goto fail_user_page;
2159
2160 for (i = 0; i < nr_pages; i++) {
2161 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2162 if (!data->data_pages[i])
2163 goto fail_data_pages;
2164 }
2165
Peter Zijlstra906010b2009-09-21 16:08:49 +02002166 data->data_order = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002167 data->nr_pages = nr_pages;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002168
Peter Zijlstra906010b2009-09-21 16:08:49 +02002169 return data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002170
2171fail_data_pages:
2172 for (i--; i >= 0; i--)
2173 free_page((unsigned long)data->data_pages[i]);
2174
2175 free_page((unsigned long)data->user_page);
2176
2177fail_user_page:
2178 kfree(data);
2179
2180fail:
Peter Zijlstra906010b2009-09-21 16:08:49 +02002181 return NULL;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002182}
2183
2184static void perf_mmap_free_page(unsigned long addr)
2185{
2186 struct page *page = virt_to_page((void *)addr);
2187
2188 page->mapping = NULL;
2189 __free_page(page);
2190}
2191
Peter Zijlstra906010b2009-09-21 16:08:49 +02002192static void perf_mmap_data_free(struct perf_mmap_data *data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002193{
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002194 int i;
2195
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002196 perf_mmap_free_page((unsigned long)data->user_page);
2197 for (i = 0; i < data->nr_pages; i++)
2198 perf_mmap_free_page((unsigned long)data->data_pages[i]);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002199}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002200
Peter Zijlstra906010b2009-09-21 16:08:49 +02002201#else
2202
2203/*
2204 * Back perf_mmap() with vmalloc memory.
2205 *
2206 * Required for architectures that have d-cache aliasing issues.
2207 */
2208
2209static struct page *
2210perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2211{
2212 if (pgoff > (1UL << data->data_order))
2213 return NULL;
2214
2215 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2216}
2217
2218static void perf_mmap_unmark_page(void *addr)
2219{
2220 struct page *page = vmalloc_to_page(addr);
2221
2222 page->mapping = NULL;
2223}
2224
2225static void perf_mmap_data_free_work(struct work_struct *work)
2226{
2227 struct perf_mmap_data *data;
2228 void *base;
2229 int i, nr;
2230
2231 data = container_of(work, struct perf_mmap_data, work);
2232 nr = 1 << data->data_order;
2233
2234 base = data->user_page;
2235 for (i = 0; i < nr + 1; i++)
2236 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2237
2238 vfree(base);
2239}
2240
2241static void perf_mmap_data_free(struct perf_mmap_data *data)
2242{
2243 schedule_work(&data->work);
2244}
2245
2246static struct perf_mmap_data *
2247perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2248{
2249 struct perf_mmap_data *data;
2250 unsigned long size;
2251 void *all_buf;
2252
2253 WARN_ON(atomic_read(&event->mmap_count));
2254
2255 size = sizeof(struct perf_mmap_data);
2256 size += sizeof(void *);
2257
2258 data = kzalloc(size, GFP_KERNEL);
2259 if (!data)
2260 goto fail;
2261
2262 INIT_WORK(&data->work, perf_mmap_data_free_work);
2263
2264 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2265 if (!all_buf)
2266 goto fail_all_buf;
2267
2268 data->user_page = all_buf;
2269 data->data_pages[0] = all_buf + PAGE_SIZE;
2270 data->data_order = ilog2(nr_pages);
2271 data->nr_pages = 1;
2272
2273 return data;
2274
2275fail_all_buf:
2276 kfree(data);
2277
2278fail:
2279 return NULL;
2280}
2281
2282#endif
2283
2284static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2285{
2286 struct perf_event *event = vma->vm_file->private_data;
2287 struct perf_mmap_data *data;
2288 int ret = VM_FAULT_SIGBUS;
2289
2290 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2291 if (vmf->pgoff == 0)
2292 ret = 0;
2293 return ret;
2294 }
2295
2296 rcu_read_lock();
2297 data = rcu_dereference(event->data);
2298 if (!data)
2299 goto unlock;
2300
2301 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2302 goto unlock;
2303
2304 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2305 if (!vmf->page)
2306 goto unlock;
2307
2308 get_page(vmf->page);
2309 vmf->page->mapping = vma->vm_file->f_mapping;
2310 vmf->page->index = vmf->pgoff;
2311
2312 ret = 0;
2313unlock:
2314 rcu_read_unlock();
2315
2316 return ret;
2317}
2318
2319static void
2320perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2321{
2322 long max_size = perf_data_size(data);
2323
2324 atomic_set(&data->lock, -1);
2325
2326 if (event->attr.watermark) {
2327 data->watermark = min_t(long, max_size,
2328 event->attr.wakeup_watermark);
2329 }
2330
2331 if (!data->watermark)
Stephane Eranian8904b182009-11-20 22:19:57 +01002332 data->watermark = max_size / 2;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002333
2334
2335 rcu_assign_pointer(event->data, data);
2336}
2337
2338static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2339{
2340 struct perf_mmap_data *data;
2341
2342 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2343 perf_mmap_data_free(data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002344 kfree(data);
2345}
2346
Peter Zijlstra906010b2009-09-21 16:08:49 +02002347static void perf_mmap_data_release(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002348{
2349 struct perf_mmap_data *data = event->data;
2350
2351 WARN_ON(atomic_read(&event->mmap_count));
2352
2353 rcu_assign_pointer(event->data, NULL);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002354 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002355}
2356
2357static void perf_mmap_open(struct vm_area_struct *vma)
2358{
2359 struct perf_event *event = vma->vm_file->private_data;
2360
2361 atomic_inc(&event->mmap_count);
2362}
2363
2364static void perf_mmap_close(struct vm_area_struct *vma)
2365{
2366 struct perf_event *event = vma->vm_file->private_data;
2367
2368 WARN_ON_ONCE(event->ctx->parent_ctx);
2369 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
Peter Zijlstra906010b2009-09-21 16:08:49 +02002370 unsigned long size = perf_data_size(event->data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002371 struct user_struct *user = current_user();
2372
Peter Zijlstra906010b2009-09-21 16:08:49 +02002373 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002374 vma->vm_mm->locked_vm -= event->data->nr_locked;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002375 perf_mmap_data_release(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002376 mutex_unlock(&event->mmap_mutex);
2377 }
2378}
2379
Alexey Dobriyanf0f37e22009-09-27 22:29:37 +04002380static const struct vm_operations_struct perf_mmap_vmops = {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002381 .open = perf_mmap_open,
2382 .close = perf_mmap_close,
2383 .fault = perf_mmap_fault,
2384 .page_mkwrite = perf_mmap_fault,
2385};
2386
2387static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2388{
2389 struct perf_event *event = file->private_data;
2390 unsigned long user_locked, user_lock_limit;
2391 struct user_struct *user = current_user();
2392 unsigned long locked, lock_limit;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002393 struct perf_mmap_data *data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002394 unsigned long vma_size;
2395 unsigned long nr_pages;
2396 long user_extra, extra;
2397 int ret = 0;
2398
2399 if (!(vma->vm_flags & VM_SHARED))
2400 return -EINVAL;
2401
2402 vma_size = vma->vm_end - vma->vm_start;
2403 nr_pages = (vma_size / PAGE_SIZE) - 1;
2404
2405 /*
2406 * If we have data pages ensure they're a power-of-two number, so we
2407 * can do bitmasks instead of modulo.
2408 */
2409 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2410 return -EINVAL;
2411
2412 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2413 return -EINVAL;
2414
2415 if (vma->vm_pgoff != 0)
2416 return -EINVAL;
2417
2418 WARN_ON_ONCE(event->ctx->parent_ctx);
2419 mutex_lock(&event->mmap_mutex);
2420 if (event->output) {
2421 ret = -EINVAL;
2422 goto unlock;
2423 }
2424
2425 if (atomic_inc_not_zero(&event->mmap_count)) {
2426 if (nr_pages != event->data->nr_pages)
2427 ret = -EINVAL;
2428 goto unlock;
2429 }
2430
2431 user_extra = nr_pages + 1;
2432 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2433
2434 /*
2435 * Increase the limit linearly with more CPUs:
2436 */
2437 user_lock_limit *= num_online_cpus();
2438
2439 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2440
2441 extra = 0;
2442 if (user_locked > user_lock_limit)
2443 extra = user_locked - user_lock_limit;
2444
2445 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2446 lock_limit >>= PAGE_SHIFT;
2447 locked = vma->vm_mm->locked_vm + extra;
2448
2449 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2450 !capable(CAP_IPC_LOCK)) {
2451 ret = -EPERM;
2452 goto unlock;
2453 }
2454
2455 WARN_ON(event->data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002456
2457 data = perf_mmap_data_alloc(event, nr_pages);
2458 ret = -ENOMEM;
2459 if (!data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002460 goto unlock;
2461
Peter Zijlstra906010b2009-09-21 16:08:49 +02002462 ret = 0;
2463 perf_mmap_data_init(event, data);
2464
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002465 atomic_set(&event->mmap_count, 1);
2466 atomic_long_add(user_extra, &user->locked_vm);
2467 vma->vm_mm->locked_vm += extra;
2468 event->data->nr_locked = extra;
2469 if (vma->vm_flags & VM_WRITE)
2470 event->data->writable = 1;
2471
2472unlock:
2473 mutex_unlock(&event->mmap_mutex);
2474
2475 vma->vm_flags |= VM_RESERVED;
2476 vma->vm_ops = &perf_mmap_vmops;
2477
2478 return ret;
2479}
2480
2481static int perf_fasync(int fd, struct file *filp, int on)
2482{
2483 struct inode *inode = filp->f_path.dentry->d_inode;
2484 struct perf_event *event = filp->private_data;
2485 int retval;
2486
2487 mutex_lock(&inode->i_mutex);
2488 retval = fasync_helper(fd, filp, on, &event->fasync);
2489 mutex_unlock(&inode->i_mutex);
2490
2491 if (retval < 0)
2492 return retval;
2493
2494 return 0;
2495}
2496
2497static const struct file_operations perf_fops = {
2498 .release = perf_release,
2499 .read = perf_read,
2500 .poll = perf_poll,
2501 .unlocked_ioctl = perf_ioctl,
2502 .compat_ioctl = perf_ioctl,
2503 .mmap = perf_mmap,
2504 .fasync = perf_fasync,
2505};
2506
2507/*
2508 * Perf event wakeup
2509 *
2510 * If there's data, ensure we set the poll() state and publish everything
2511 * to user-space before waking everybody up.
2512 */
2513
2514void perf_event_wakeup(struct perf_event *event)
2515{
2516 wake_up_all(&event->waitq);
2517
2518 if (event->pending_kill) {
2519 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2520 event->pending_kill = 0;
2521 }
2522}
2523
2524/*
2525 * Pending wakeups
2526 *
2527 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2528 *
2529 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2530 * single linked list and use cmpxchg() to add entries lockless.
2531 */
2532
2533static void perf_pending_event(struct perf_pending_entry *entry)
2534{
2535 struct perf_event *event = container_of(entry,
2536 struct perf_event, pending);
2537
2538 if (event->pending_disable) {
2539 event->pending_disable = 0;
2540 __perf_event_disable(event);
2541 }
2542
2543 if (event->pending_wakeup) {
2544 event->pending_wakeup = 0;
2545 perf_event_wakeup(event);
2546 }
2547}
2548
2549#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2550
2551static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2552 PENDING_TAIL,
2553};
2554
2555static void perf_pending_queue(struct perf_pending_entry *entry,
2556 void (*func)(struct perf_pending_entry *))
2557{
2558 struct perf_pending_entry **head;
2559
2560 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2561 return;
2562
2563 entry->func = func;
2564
2565 head = &get_cpu_var(perf_pending_head);
2566
2567 do {
2568 entry->next = *head;
2569 } while (cmpxchg(head, entry->next, entry) != entry->next);
2570
2571 set_perf_event_pending();
2572
2573 put_cpu_var(perf_pending_head);
2574}
2575
2576static int __perf_pending_run(void)
2577{
2578 struct perf_pending_entry *list;
2579 int nr = 0;
2580
2581 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2582 while (list != PENDING_TAIL) {
2583 void (*func)(struct perf_pending_entry *);
2584 struct perf_pending_entry *entry = list;
2585
2586 list = list->next;
2587
2588 func = entry->func;
2589 entry->next = NULL;
2590 /*
2591 * Ensure we observe the unqueue before we issue the wakeup,
2592 * so that we won't be waiting forever.
2593 * -- see perf_not_pending().
2594 */
2595 smp_wmb();
2596
2597 func(entry);
2598 nr++;
2599 }
2600
2601 return nr;
2602}
2603
2604static inline int perf_not_pending(struct perf_event *event)
2605{
2606 /*
2607 * If we flush on whatever cpu we run, there is a chance we don't
2608 * need to wait.
2609 */
2610 get_cpu();
2611 __perf_pending_run();
2612 put_cpu();
2613
2614 /*
2615 * Ensure we see the proper queue state before going to sleep
2616 * so that we do not miss the wakeup. -- see perf_pending_handle()
2617 */
2618 smp_rmb();
2619 return event->pending.next == NULL;
2620}
2621
2622static void perf_pending_sync(struct perf_event *event)
2623{
2624 wait_event(event->waitq, perf_not_pending(event));
2625}
2626
2627void perf_event_do_pending(void)
2628{
2629 __perf_pending_run();
2630}
2631
2632/*
2633 * Callchain support -- arch specific
2634 */
2635
2636__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2637{
2638 return NULL;
2639}
2640
2641/*
2642 * Output
2643 */
2644static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2645 unsigned long offset, unsigned long head)
2646{
2647 unsigned long mask;
2648
2649 if (!data->writable)
2650 return true;
2651
Peter Zijlstra906010b2009-09-21 16:08:49 +02002652 mask = perf_data_size(data) - 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002653
2654 offset = (offset - tail) & mask;
2655 head = (head - tail) & mask;
2656
2657 if ((int)(head - offset) < 0)
2658 return false;
2659
2660 return true;
2661}
2662
2663static void perf_output_wakeup(struct perf_output_handle *handle)
2664{
2665 atomic_set(&handle->data->poll, POLL_IN);
2666
2667 if (handle->nmi) {
2668 handle->event->pending_wakeup = 1;
2669 perf_pending_queue(&handle->event->pending,
2670 perf_pending_event);
2671 } else
2672 perf_event_wakeup(handle->event);
2673}
2674
2675/*
2676 * Curious locking construct.
2677 *
2678 * We need to ensure a later event_id doesn't publish a head when a former
2679 * event_id isn't done writing. However since we need to deal with NMIs we
2680 * cannot fully serialize things.
2681 *
2682 * What we do is serialize between CPUs so we only have to deal with NMI
2683 * nesting on a single CPU.
2684 *
2685 * We only publish the head (and generate a wakeup) when the outer-most
2686 * event_id completes.
2687 */
2688static void perf_output_lock(struct perf_output_handle *handle)
2689{
2690 struct perf_mmap_data *data = handle->data;
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002691 int cur, cpu = get_cpu();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002692
2693 handle->locked = 0;
2694
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002695 for (;;) {
2696 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2697 if (cur == -1) {
2698 handle->locked = 1;
2699 break;
2700 }
2701 if (cur == cpu)
2702 break;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002703
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002704 cpu_relax();
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002705 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002706}
2707
2708static void perf_output_unlock(struct perf_output_handle *handle)
2709{
2710 struct perf_mmap_data *data = handle->data;
2711 unsigned long head;
2712 int cpu;
2713
2714 data->done_head = data->head;
2715
2716 if (!handle->locked)
2717 goto out;
2718
2719again:
2720 /*
2721 * The xchg implies a full barrier that ensures all writes are done
2722 * before we publish the new head, matched by a rmb() in userspace when
2723 * reading this position.
2724 */
2725 while ((head = atomic_long_xchg(&data->done_head, 0)))
2726 data->user_page->data_head = head;
2727
2728 /*
2729 * NMI can happen here, which means we can miss a done_head update.
2730 */
2731
2732 cpu = atomic_xchg(&data->lock, -1);
2733 WARN_ON_ONCE(cpu != smp_processor_id());
2734
2735 /*
2736 * Therefore we have to validate we did not indeed do so.
2737 */
2738 if (unlikely(atomic_long_read(&data->done_head))) {
2739 /*
2740 * Since we had it locked, we can lock it again.
2741 */
2742 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2743 cpu_relax();
2744
2745 goto again;
2746 }
2747
2748 if (atomic_xchg(&data->wakeup, 0))
2749 perf_output_wakeup(handle);
2750out:
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002751 put_cpu();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002752}
2753
2754void perf_output_copy(struct perf_output_handle *handle,
2755 const void *buf, unsigned int len)
2756{
2757 unsigned int pages_mask;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002758 unsigned long offset;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002759 unsigned int size;
2760 void **pages;
2761
2762 offset = handle->offset;
2763 pages_mask = handle->data->nr_pages - 1;
2764 pages = handle->data->data_pages;
2765
2766 do {
Peter Zijlstra906010b2009-09-21 16:08:49 +02002767 unsigned long page_offset;
2768 unsigned long page_size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002769 int nr;
2770
2771 nr = (offset >> PAGE_SHIFT) & pages_mask;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002772 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
2773 page_offset = offset & (page_size - 1);
2774 size = min_t(unsigned int, page_size - page_offset, len);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002775
2776 memcpy(pages[nr] + page_offset, buf, size);
2777
2778 len -= size;
2779 buf += size;
2780 offset += size;
2781 } while (len);
2782
2783 handle->offset = offset;
2784
2785 /*
2786 * Check we didn't copy past our reservation window, taking the
2787 * possible unsigned int wrap into account.
2788 */
2789 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2790}
2791
2792int perf_output_begin(struct perf_output_handle *handle,
2793 struct perf_event *event, unsigned int size,
2794 int nmi, int sample)
2795{
2796 struct perf_event *output_event;
2797 struct perf_mmap_data *data;
2798 unsigned long tail, offset, head;
2799 int have_lost;
2800 struct {
2801 struct perf_event_header header;
2802 u64 id;
2803 u64 lost;
2804 } lost_event;
2805
2806 rcu_read_lock();
2807 /*
2808 * For inherited events we send all the output towards the parent.
2809 */
2810 if (event->parent)
2811 event = event->parent;
2812
2813 output_event = rcu_dereference(event->output);
2814 if (output_event)
2815 event = output_event;
2816
2817 data = rcu_dereference(event->data);
2818 if (!data)
2819 goto out;
2820
2821 handle->data = data;
2822 handle->event = event;
2823 handle->nmi = nmi;
2824 handle->sample = sample;
2825
2826 if (!data->nr_pages)
2827 goto fail;
2828
2829 have_lost = atomic_read(&data->lost);
2830 if (have_lost)
2831 size += sizeof(lost_event);
2832
2833 perf_output_lock(handle);
2834
2835 do {
2836 /*
2837 * Userspace could choose to issue a mb() before updating the
2838 * tail pointer. So that all reads will be completed before the
2839 * write is issued.
2840 */
2841 tail = ACCESS_ONCE(data->user_page->data_tail);
2842 smp_rmb();
2843 offset = head = atomic_long_read(&data->head);
2844 head += size;
2845 if (unlikely(!perf_output_space(data, tail, offset, head)))
2846 goto fail;
2847 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2848
2849 handle->offset = offset;
2850 handle->head = head;
2851
2852 if (head - tail > data->watermark)
2853 atomic_set(&data->wakeup, 1);
2854
2855 if (have_lost) {
2856 lost_event.header.type = PERF_RECORD_LOST;
2857 lost_event.header.misc = 0;
2858 lost_event.header.size = sizeof(lost_event);
2859 lost_event.id = event->id;
2860 lost_event.lost = atomic_xchg(&data->lost, 0);
2861
2862 perf_output_put(handle, lost_event);
2863 }
2864
2865 return 0;
2866
2867fail:
2868 atomic_inc(&data->lost);
2869 perf_output_unlock(handle);
2870out:
2871 rcu_read_unlock();
2872
2873 return -ENOSPC;
2874}
2875
2876void perf_output_end(struct perf_output_handle *handle)
2877{
2878 struct perf_event *event = handle->event;
2879 struct perf_mmap_data *data = handle->data;
2880
2881 int wakeup_events = event->attr.wakeup_events;
2882
2883 if (handle->sample && wakeup_events) {
2884 int events = atomic_inc_return(&data->events);
2885 if (events >= wakeup_events) {
2886 atomic_sub(wakeup_events, &data->events);
2887 atomic_set(&data->wakeup, 1);
2888 }
2889 }
2890
2891 perf_output_unlock(handle);
2892 rcu_read_unlock();
2893}
2894
2895static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
2896{
2897 /*
2898 * only top level events have the pid namespace they were created in
2899 */
2900 if (event->parent)
2901 event = event->parent;
2902
2903 return task_tgid_nr_ns(p, event->ns);
2904}
2905
2906static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
2907{
2908 /*
2909 * only top level events have the pid namespace they were created in
2910 */
2911 if (event->parent)
2912 event = event->parent;
2913
2914 return task_pid_nr_ns(p, event->ns);
2915}
2916
2917static void perf_output_read_one(struct perf_output_handle *handle,
2918 struct perf_event *event)
2919{
2920 u64 read_format = event->attr.read_format;
2921 u64 values[4];
2922 int n = 0;
2923
2924 values[n++] = atomic64_read(&event->count);
2925 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2926 values[n++] = event->total_time_enabled +
2927 atomic64_read(&event->child_total_time_enabled);
2928 }
2929 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2930 values[n++] = event->total_time_running +
2931 atomic64_read(&event->child_total_time_running);
2932 }
2933 if (read_format & PERF_FORMAT_ID)
2934 values[n++] = primary_event_id(event);
2935
2936 perf_output_copy(handle, values, n * sizeof(u64));
2937}
2938
2939/*
2940 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2941 */
2942static void perf_output_read_group(struct perf_output_handle *handle,
2943 struct perf_event *event)
2944{
2945 struct perf_event *leader = event->group_leader, *sub;
2946 u64 read_format = event->attr.read_format;
2947 u64 values[5];
2948 int n = 0;
2949
2950 values[n++] = 1 + leader->nr_siblings;
2951
2952 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2953 values[n++] = leader->total_time_enabled;
2954
2955 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2956 values[n++] = leader->total_time_running;
2957
2958 if (leader != event)
2959 leader->pmu->read(leader);
2960
2961 values[n++] = atomic64_read(&leader->count);
2962 if (read_format & PERF_FORMAT_ID)
2963 values[n++] = primary_event_id(leader);
2964
2965 perf_output_copy(handle, values, n * sizeof(u64));
2966
2967 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2968 n = 0;
2969
2970 if (sub != event)
2971 sub->pmu->read(sub);
2972
2973 values[n++] = atomic64_read(&sub->count);
2974 if (read_format & PERF_FORMAT_ID)
2975 values[n++] = primary_event_id(sub);
2976
2977 perf_output_copy(handle, values, n * sizeof(u64));
2978 }
2979}
2980
2981static void perf_output_read(struct perf_output_handle *handle,
2982 struct perf_event *event)
2983{
2984 if (event->attr.read_format & PERF_FORMAT_GROUP)
2985 perf_output_read_group(handle, event);
2986 else
2987 perf_output_read_one(handle, event);
2988}
2989
2990void perf_output_sample(struct perf_output_handle *handle,
2991 struct perf_event_header *header,
2992 struct perf_sample_data *data,
2993 struct perf_event *event)
2994{
2995 u64 sample_type = data->type;
2996
2997 perf_output_put(handle, *header);
2998
2999 if (sample_type & PERF_SAMPLE_IP)
3000 perf_output_put(handle, data->ip);
3001
3002 if (sample_type & PERF_SAMPLE_TID)
3003 perf_output_put(handle, data->tid_entry);
3004
3005 if (sample_type & PERF_SAMPLE_TIME)
3006 perf_output_put(handle, data->time);
3007
3008 if (sample_type & PERF_SAMPLE_ADDR)
3009 perf_output_put(handle, data->addr);
3010
3011 if (sample_type & PERF_SAMPLE_ID)
3012 perf_output_put(handle, data->id);
3013
3014 if (sample_type & PERF_SAMPLE_STREAM_ID)
3015 perf_output_put(handle, data->stream_id);
3016
3017 if (sample_type & PERF_SAMPLE_CPU)
3018 perf_output_put(handle, data->cpu_entry);
3019
3020 if (sample_type & PERF_SAMPLE_PERIOD)
3021 perf_output_put(handle, data->period);
3022
3023 if (sample_type & PERF_SAMPLE_READ)
3024 perf_output_read(handle, event);
3025
3026 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3027 if (data->callchain) {
3028 int size = 1;
3029
3030 if (data->callchain)
3031 size += data->callchain->nr;
3032
3033 size *= sizeof(u64);
3034
3035 perf_output_copy(handle, data->callchain, size);
3036 } else {
3037 u64 nr = 0;
3038 perf_output_put(handle, nr);
3039 }
3040 }
3041
3042 if (sample_type & PERF_SAMPLE_RAW) {
3043 if (data->raw) {
3044 perf_output_put(handle, data->raw->size);
3045 perf_output_copy(handle, data->raw->data,
3046 data->raw->size);
3047 } else {
3048 struct {
3049 u32 size;
3050 u32 data;
3051 } raw = {
3052 .size = sizeof(u32),
3053 .data = 0,
3054 };
3055 perf_output_put(handle, raw);
3056 }
3057 }
3058}
3059
3060void perf_prepare_sample(struct perf_event_header *header,
3061 struct perf_sample_data *data,
3062 struct perf_event *event,
3063 struct pt_regs *regs)
3064{
3065 u64 sample_type = event->attr.sample_type;
3066
3067 data->type = sample_type;
3068
3069 header->type = PERF_RECORD_SAMPLE;
3070 header->size = sizeof(*header);
3071
3072 header->misc = 0;
3073 header->misc |= perf_misc_flags(regs);
3074
3075 if (sample_type & PERF_SAMPLE_IP) {
3076 data->ip = perf_instruction_pointer(regs);
3077
3078 header->size += sizeof(data->ip);
3079 }
3080
3081 if (sample_type & PERF_SAMPLE_TID) {
3082 /* namespace issues */
3083 data->tid_entry.pid = perf_event_pid(event, current);
3084 data->tid_entry.tid = perf_event_tid(event, current);
3085
3086 header->size += sizeof(data->tid_entry);
3087 }
3088
3089 if (sample_type & PERF_SAMPLE_TIME) {
3090 data->time = perf_clock();
3091
3092 header->size += sizeof(data->time);
3093 }
3094
3095 if (sample_type & PERF_SAMPLE_ADDR)
3096 header->size += sizeof(data->addr);
3097
3098 if (sample_type & PERF_SAMPLE_ID) {
3099 data->id = primary_event_id(event);
3100
3101 header->size += sizeof(data->id);
3102 }
3103
3104 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3105 data->stream_id = event->id;
3106
3107 header->size += sizeof(data->stream_id);
3108 }
3109
3110 if (sample_type & PERF_SAMPLE_CPU) {
3111 data->cpu_entry.cpu = raw_smp_processor_id();
3112 data->cpu_entry.reserved = 0;
3113
3114 header->size += sizeof(data->cpu_entry);
3115 }
3116
3117 if (sample_type & PERF_SAMPLE_PERIOD)
3118 header->size += sizeof(data->period);
3119
3120 if (sample_type & PERF_SAMPLE_READ)
3121 header->size += perf_event_read_size(event);
3122
3123 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3124 int size = 1;
3125
3126 data->callchain = perf_callchain(regs);
3127
3128 if (data->callchain)
3129 size += data->callchain->nr;
3130
3131 header->size += size * sizeof(u64);
3132 }
3133
3134 if (sample_type & PERF_SAMPLE_RAW) {
3135 int size = sizeof(u32);
3136
3137 if (data->raw)
3138 size += data->raw->size;
3139 else
3140 size += sizeof(u32);
3141
3142 WARN_ON_ONCE(size & (sizeof(u64)-1));
3143 header->size += size;
3144 }
3145}
3146
3147static void perf_event_output(struct perf_event *event, int nmi,
3148 struct perf_sample_data *data,
3149 struct pt_regs *regs)
3150{
3151 struct perf_output_handle handle;
3152 struct perf_event_header header;
3153
3154 perf_prepare_sample(&header, data, event, regs);
3155
3156 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3157 return;
3158
3159 perf_output_sample(&handle, &header, data, event);
3160
3161 perf_output_end(&handle);
3162}
3163
3164/*
3165 * read event_id
3166 */
3167
3168struct perf_read_event {
3169 struct perf_event_header header;
3170
3171 u32 pid;
3172 u32 tid;
3173};
3174
3175static void
3176perf_event_read_event(struct perf_event *event,
3177 struct task_struct *task)
3178{
3179 struct perf_output_handle handle;
3180 struct perf_read_event read_event = {
3181 .header = {
3182 .type = PERF_RECORD_READ,
3183 .misc = 0,
3184 .size = sizeof(read_event) + perf_event_read_size(event),
3185 },
3186 .pid = perf_event_pid(event, task),
3187 .tid = perf_event_tid(event, task),
3188 };
3189 int ret;
3190
3191 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3192 if (ret)
3193 return;
3194
3195 perf_output_put(&handle, read_event);
3196 perf_output_read(&handle, event);
3197
3198 perf_output_end(&handle);
3199}
3200
3201/*
3202 * task tracking -- fork/exit
3203 *
3204 * enabled by: attr.comm | attr.mmap | attr.task
3205 */
3206
3207struct perf_task_event {
3208 struct task_struct *task;
3209 struct perf_event_context *task_ctx;
3210
3211 struct {
3212 struct perf_event_header header;
3213
3214 u32 pid;
3215 u32 ppid;
3216 u32 tid;
3217 u32 ptid;
3218 u64 time;
3219 } event_id;
3220};
3221
3222static void perf_event_task_output(struct perf_event *event,
3223 struct perf_task_event *task_event)
3224{
3225 struct perf_output_handle handle;
3226 int size;
3227 struct task_struct *task = task_event->task;
3228 int ret;
3229
3230 size = task_event->event_id.header.size;
3231 ret = perf_output_begin(&handle, event, size, 0, 0);
3232
3233 if (ret)
3234 return;
3235
3236 task_event->event_id.pid = perf_event_pid(event, task);
3237 task_event->event_id.ppid = perf_event_pid(event, current);
3238
3239 task_event->event_id.tid = perf_event_tid(event, task);
3240 task_event->event_id.ptid = perf_event_tid(event, current);
3241
3242 task_event->event_id.time = perf_clock();
3243
3244 perf_output_put(&handle, task_event->event_id);
3245
3246 perf_output_end(&handle);
3247}
3248
3249static int perf_event_task_match(struct perf_event *event)
3250{
3251 if (event->attr.comm || event->attr.mmap || event->attr.task)
3252 return 1;
3253
3254 return 0;
3255}
3256
3257static void perf_event_task_ctx(struct perf_event_context *ctx,
3258 struct perf_task_event *task_event)
3259{
3260 struct perf_event *event;
3261
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003262 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3263 if (perf_event_task_match(event))
3264 perf_event_task_output(event, task_event);
3265 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003266}
3267
3268static void perf_event_task_event(struct perf_task_event *task_event)
3269{
3270 struct perf_cpu_context *cpuctx;
3271 struct perf_event_context *ctx = task_event->task_ctx;
3272
Peter Zijlstrad6ff86c2009-11-20 22:19:46 +01003273 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003274 cpuctx = &get_cpu_var(perf_cpu_context);
3275 perf_event_task_ctx(&cpuctx->ctx, task_event);
3276 put_cpu_var(perf_cpu_context);
3277
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003278 if (!ctx)
3279 ctx = rcu_dereference(task_event->task->perf_event_ctxp);
3280 if (ctx)
3281 perf_event_task_ctx(ctx, task_event);
3282 rcu_read_unlock();
3283}
3284
3285static void perf_event_task(struct task_struct *task,
3286 struct perf_event_context *task_ctx,
3287 int new)
3288{
3289 struct perf_task_event task_event;
3290
3291 if (!atomic_read(&nr_comm_events) &&
3292 !atomic_read(&nr_mmap_events) &&
3293 !atomic_read(&nr_task_events))
3294 return;
3295
3296 task_event = (struct perf_task_event){
3297 .task = task,
3298 .task_ctx = task_ctx,
3299 .event_id = {
3300 .header = {
3301 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3302 .misc = 0,
3303 .size = sizeof(task_event.event_id),
3304 },
3305 /* .pid */
3306 /* .ppid */
3307 /* .tid */
3308 /* .ptid */
3309 },
3310 };
3311
3312 perf_event_task_event(&task_event);
3313}
3314
3315void perf_event_fork(struct task_struct *task)
3316{
3317 perf_event_task(task, NULL, 1);
3318}
3319
3320/*
3321 * comm tracking
3322 */
3323
3324struct perf_comm_event {
3325 struct task_struct *task;
3326 char *comm;
3327 int comm_size;
3328
3329 struct {
3330 struct perf_event_header header;
3331
3332 u32 pid;
3333 u32 tid;
3334 } event_id;
3335};
3336
3337static void perf_event_comm_output(struct perf_event *event,
3338 struct perf_comm_event *comm_event)
3339{
3340 struct perf_output_handle handle;
3341 int size = comm_event->event_id.header.size;
3342 int ret = perf_output_begin(&handle, event, size, 0, 0);
3343
3344 if (ret)
3345 return;
3346
3347 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3348 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3349
3350 perf_output_put(&handle, comm_event->event_id);
3351 perf_output_copy(&handle, comm_event->comm,
3352 comm_event->comm_size);
3353 perf_output_end(&handle);
3354}
3355
3356static int perf_event_comm_match(struct perf_event *event)
3357{
3358 if (event->attr.comm)
3359 return 1;
3360
3361 return 0;
3362}
3363
3364static void perf_event_comm_ctx(struct perf_event_context *ctx,
3365 struct perf_comm_event *comm_event)
3366{
3367 struct perf_event *event;
3368
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003369 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3370 if (perf_event_comm_match(event))
3371 perf_event_comm_output(event, comm_event);
3372 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003373}
3374
3375static void perf_event_comm_event(struct perf_comm_event *comm_event)
3376{
3377 struct perf_cpu_context *cpuctx;
3378 struct perf_event_context *ctx;
3379 unsigned int size;
3380 char comm[TASK_COMM_LEN];
3381
3382 memset(comm, 0, sizeof(comm));
Márton Németh96b02d72009-11-21 23:10:15 +01003383 strlcpy(comm, comm_event->task->comm, sizeof(comm));
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003384 size = ALIGN(strlen(comm)+1, sizeof(u64));
3385
3386 comm_event->comm = comm;
3387 comm_event->comm_size = size;
3388
3389 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3390
Peter Zijlstraf6595f32009-11-20 22:19:47 +01003391 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003392 cpuctx = &get_cpu_var(perf_cpu_context);
3393 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3394 put_cpu_var(perf_cpu_context);
3395
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003396 /*
3397 * doesn't really matter which of the child contexts the
3398 * events ends up in.
3399 */
3400 ctx = rcu_dereference(current->perf_event_ctxp);
3401 if (ctx)
3402 perf_event_comm_ctx(ctx, comm_event);
3403 rcu_read_unlock();
3404}
3405
3406void perf_event_comm(struct task_struct *task)
3407{
3408 struct perf_comm_event comm_event;
3409
3410 if (task->perf_event_ctxp)
3411 perf_event_enable_on_exec(task);
3412
3413 if (!atomic_read(&nr_comm_events))
3414 return;
3415
3416 comm_event = (struct perf_comm_event){
3417 .task = task,
3418 /* .comm */
3419 /* .comm_size */
3420 .event_id = {
3421 .header = {
3422 .type = PERF_RECORD_COMM,
3423 .misc = 0,
3424 /* .size */
3425 },
3426 /* .pid */
3427 /* .tid */
3428 },
3429 };
3430
3431 perf_event_comm_event(&comm_event);
3432}
3433
3434/*
3435 * mmap tracking
3436 */
3437
3438struct perf_mmap_event {
3439 struct vm_area_struct *vma;
3440
3441 const char *file_name;
3442 int file_size;
3443
3444 struct {
3445 struct perf_event_header header;
3446
3447 u32 pid;
3448 u32 tid;
3449 u64 start;
3450 u64 len;
3451 u64 pgoff;
3452 } event_id;
3453};
3454
3455static void perf_event_mmap_output(struct perf_event *event,
3456 struct perf_mmap_event *mmap_event)
3457{
3458 struct perf_output_handle handle;
3459 int size = mmap_event->event_id.header.size;
3460 int ret = perf_output_begin(&handle, event, size, 0, 0);
3461
3462 if (ret)
3463 return;
3464
3465 mmap_event->event_id.pid = perf_event_pid(event, current);
3466 mmap_event->event_id.tid = perf_event_tid(event, current);
3467
3468 perf_output_put(&handle, mmap_event->event_id);
3469 perf_output_copy(&handle, mmap_event->file_name,
3470 mmap_event->file_size);
3471 perf_output_end(&handle);
3472}
3473
3474static int perf_event_mmap_match(struct perf_event *event,
3475 struct perf_mmap_event *mmap_event)
3476{
3477 if (event->attr.mmap)
3478 return 1;
3479
3480 return 0;
3481}
3482
3483static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3484 struct perf_mmap_event *mmap_event)
3485{
3486 struct perf_event *event;
3487
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003488 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3489 if (perf_event_mmap_match(event, mmap_event))
3490 perf_event_mmap_output(event, mmap_event);
3491 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003492}
3493
3494static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3495{
3496 struct perf_cpu_context *cpuctx;
3497 struct perf_event_context *ctx;
3498 struct vm_area_struct *vma = mmap_event->vma;
3499 struct file *file = vma->vm_file;
3500 unsigned int size;
3501 char tmp[16];
3502 char *buf = NULL;
3503 const char *name;
3504
3505 memset(tmp, 0, sizeof(tmp));
3506
3507 if (file) {
3508 /*
3509 * d_path works from the end of the buffer backwards, so we
3510 * need to add enough zero bytes after the string to handle
3511 * the 64bit alignment we do later.
3512 */
3513 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3514 if (!buf) {
3515 name = strncpy(tmp, "//enomem", sizeof(tmp));
3516 goto got_name;
3517 }
3518 name = d_path(&file->f_path, buf, PATH_MAX);
3519 if (IS_ERR(name)) {
3520 name = strncpy(tmp, "//toolong", sizeof(tmp));
3521 goto got_name;
3522 }
3523 } else {
3524 if (arch_vma_name(mmap_event->vma)) {
3525 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3526 sizeof(tmp));
3527 goto got_name;
3528 }
3529
3530 if (!vma->vm_mm) {
3531 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3532 goto got_name;
3533 }
3534
3535 name = strncpy(tmp, "//anon", sizeof(tmp));
3536 goto got_name;
3537 }
3538
3539got_name:
3540 size = ALIGN(strlen(name)+1, sizeof(u64));
3541
3542 mmap_event->file_name = name;
3543 mmap_event->file_size = size;
3544
3545 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3546
Peter Zijlstraf6d9dd22009-11-20 22:19:48 +01003547 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003548 cpuctx = &get_cpu_var(perf_cpu_context);
3549 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3550 put_cpu_var(perf_cpu_context);
3551
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003552 /*
3553 * doesn't really matter which of the child contexts the
3554 * events ends up in.
3555 */
3556 ctx = rcu_dereference(current->perf_event_ctxp);
3557 if (ctx)
3558 perf_event_mmap_ctx(ctx, mmap_event);
3559 rcu_read_unlock();
3560
3561 kfree(buf);
3562}
3563
3564void __perf_event_mmap(struct vm_area_struct *vma)
3565{
3566 struct perf_mmap_event mmap_event;
3567
3568 if (!atomic_read(&nr_mmap_events))
3569 return;
3570
3571 mmap_event = (struct perf_mmap_event){
3572 .vma = vma,
3573 /* .file_name */
3574 /* .file_size */
3575 .event_id = {
3576 .header = {
3577 .type = PERF_RECORD_MMAP,
3578 .misc = 0,
3579 /* .size */
3580 },
3581 /* .pid */
3582 /* .tid */
3583 .start = vma->vm_start,
3584 .len = vma->vm_end - vma->vm_start,
3585 .pgoff = vma->vm_pgoff,
3586 },
3587 };
3588
3589 perf_event_mmap_event(&mmap_event);
3590}
3591
3592/*
3593 * IRQ throttle logging
3594 */
3595
3596static void perf_log_throttle(struct perf_event *event, int enable)
3597{
3598 struct perf_output_handle handle;
3599 int ret;
3600
3601 struct {
3602 struct perf_event_header header;
3603 u64 time;
3604 u64 id;
3605 u64 stream_id;
3606 } throttle_event = {
3607 .header = {
3608 .type = PERF_RECORD_THROTTLE,
3609 .misc = 0,
3610 .size = sizeof(throttle_event),
3611 },
3612 .time = perf_clock(),
3613 .id = primary_event_id(event),
3614 .stream_id = event->id,
3615 };
3616
3617 if (enable)
3618 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3619
3620 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3621 if (ret)
3622 return;
3623
3624 perf_output_put(&handle, throttle_event);
3625 perf_output_end(&handle);
3626}
3627
3628/*
3629 * Generic event overflow handling, sampling.
3630 */
3631
3632static int __perf_event_overflow(struct perf_event *event, int nmi,
3633 int throttle, struct perf_sample_data *data,
3634 struct pt_regs *regs)
3635{
3636 int events = atomic_read(&event->event_limit);
3637 struct hw_perf_event *hwc = &event->hw;
3638 int ret = 0;
3639
3640 throttle = (throttle && event->pmu->unthrottle != NULL);
3641
3642 if (!throttle) {
3643 hwc->interrupts++;
3644 } else {
3645 if (hwc->interrupts != MAX_INTERRUPTS) {
3646 hwc->interrupts++;
3647 if (HZ * hwc->interrupts >
3648 (u64)sysctl_perf_event_sample_rate) {
3649 hwc->interrupts = MAX_INTERRUPTS;
3650 perf_log_throttle(event, 0);
3651 ret = 1;
3652 }
3653 } else {
3654 /*
3655 * Keep re-disabling events even though on the previous
3656 * pass we disabled it - just in case we raced with a
3657 * sched-in and the event got enabled again:
3658 */
3659 ret = 1;
3660 }
3661 }
3662
3663 if (event->attr.freq) {
3664 u64 now = perf_clock();
3665 s64 delta = now - hwc->freq_stamp;
3666
3667 hwc->freq_stamp = now;
3668
3669 if (delta > 0 && delta < TICK_NSEC)
3670 perf_adjust_period(event, NSEC_PER_SEC / (int)delta);
3671 }
3672
3673 /*
3674 * XXX event_limit might not quite work as expected on inherited
3675 * events
3676 */
3677
3678 event->pending_kill = POLL_IN;
3679 if (events && atomic_dec_and_test(&event->event_limit)) {
3680 ret = 1;
3681 event->pending_kill = POLL_HUP;
3682 if (nmi) {
3683 event->pending_disable = 1;
3684 perf_pending_queue(&event->pending,
3685 perf_pending_event);
3686 } else
3687 perf_event_disable(event);
3688 }
3689
Peter Zijlstra453f19e2009-11-20 22:19:43 +01003690 if (event->overflow_handler)
3691 event->overflow_handler(event, nmi, data, regs);
3692 else
3693 perf_event_output(event, nmi, data, regs);
3694
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003695 return ret;
3696}
3697
3698int perf_event_overflow(struct perf_event *event, int nmi,
3699 struct perf_sample_data *data,
3700 struct pt_regs *regs)
3701{
3702 return __perf_event_overflow(event, nmi, 1, data, regs);
3703}
3704
3705/*
3706 * Generic software event infrastructure
3707 */
3708
3709/*
3710 * We directly increment event->count and keep a second value in
3711 * event->hw.period_left to count intervals. This period event
3712 * is kept in the range [-sample_period, 0] so that we can use the
3713 * sign as trigger.
3714 */
3715
3716static u64 perf_swevent_set_period(struct perf_event *event)
3717{
3718 struct hw_perf_event *hwc = &event->hw;
3719 u64 period = hwc->last_period;
3720 u64 nr, offset;
3721 s64 old, val;
3722
3723 hwc->last_period = hwc->sample_period;
3724
3725again:
3726 old = val = atomic64_read(&hwc->period_left);
3727 if (val < 0)
3728 return 0;
3729
3730 nr = div64_u64(period + val, period);
3731 offset = nr * period;
3732 val -= offset;
3733 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3734 goto again;
3735
3736 return nr;
3737}
3738
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003739static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003740 int nmi, struct perf_sample_data *data,
3741 struct pt_regs *regs)
3742{
3743 struct hw_perf_event *hwc = &event->hw;
3744 int throttle = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003745
3746 data->period = event->hw.last_period;
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003747 if (!overflow)
3748 overflow = perf_swevent_set_period(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003749
3750 if (hwc->interrupts == MAX_INTERRUPTS)
3751 return;
3752
3753 for (; overflow; overflow--) {
3754 if (__perf_event_overflow(event, nmi, throttle,
3755 data, regs)) {
3756 /*
3757 * We inhibit the overflow from happening when
3758 * hwc->interrupts == MAX_INTERRUPTS.
3759 */
3760 break;
3761 }
3762 throttle = 1;
3763 }
3764}
3765
3766static void perf_swevent_unthrottle(struct perf_event *event)
3767{
3768 /*
3769 * Nothing to do, we already reset hwc->interrupts.
3770 */
3771}
3772
3773static void perf_swevent_add(struct perf_event *event, u64 nr,
3774 int nmi, struct perf_sample_data *data,
3775 struct pt_regs *regs)
3776{
3777 struct hw_perf_event *hwc = &event->hw;
3778
3779 atomic64_add(nr, &event->count);
3780
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003781 if (!regs)
3782 return;
3783
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003784 if (!hwc->sample_period)
3785 return;
3786
3787 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3788 return perf_swevent_overflow(event, 1, nmi, data, regs);
3789
3790 if (atomic64_add_negative(nr, &hwc->period_left))
3791 return;
3792
3793 perf_swevent_overflow(event, 0, nmi, data, regs);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003794}
3795
3796static int perf_swevent_is_counting(struct perf_event *event)
3797{
3798 /*
3799 * The event is active, we're good!
3800 */
3801 if (event->state == PERF_EVENT_STATE_ACTIVE)
3802 return 1;
3803
3804 /*
3805 * The event is off/error, not counting.
3806 */
3807 if (event->state != PERF_EVENT_STATE_INACTIVE)
3808 return 0;
3809
3810 /*
3811 * The event is inactive, if the context is active
3812 * we're part of a group that didn't make it on the 'pmu',
3813 * not counting.
3814 */
3815 if (event->ctx->is_active)
3816 return 0;
3817
3818 /*
3819 * We're inactive and the context is too, this means the
3820 * task is scheduled out, we're counting events that happen
3821 * to us, like migration events.
3822 */
3823 return 1;
3824}
3825
Li Zefan6fb29152009-10-15 11:21:42 +08003826static int perf_tp_event_match(struct perf_event *event,
3827 struct perf_sample_data *data);
3828
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003829static int perf_swevent_match(struct perf_event *event,
3830 enum perf_type_id type,
Li Zefan6fb29152009-10-15 11:21:42 +08003831 u32 event_id,
3832 struct perf_sample_data *data,
3833 struct pt_regs *regs)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003834{
3835 if (!perf_swevent_is_counting(event))
3836 return 0;
3837
3838 if (event->attr.type != type)
3839 return 0;
3840 if (event->attr.config != event_id)
3841 return 0;
3842
3843 if (regs) {
3844 if (event->attr.exclude_user && user_mode(regs))
3845 return 0;
3846
3847 if (event->attr.exclude_kernel && !user_mode(regs))
3848 return 0;
3849 }
3850
Li Zefan6fb29152009-10-15 11:21:42 +08003851 if (event->attr.type == PERF_TYPE_TRACEPOINT &&
3852 !perf_tp_event_match(event, data))
3853 return 0;
3854
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003855 return 1;
3856}
3857
3858static void perf_swevent_ctx_event(struct perf_event_context *ctx,
3859 enum perf_type_id type,
3860 u32 event_id, u64 nr, int nmi,
3861 struct perf_sample_data *data,
3862 struct pt_regs *regs)
3863{
3864 struct perf_event *event;
3865
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003866 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
Li Zefan6fb29152009-10-15 11:21:42 +08003867 if (perf_swevent_match(event, type, event_id, data, regs))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003868 perf_swevent_add(event, nr, nmi, data, regs);
3869 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003870}
3871
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003872int perf_swevent_get_recursion_context(void)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003873{
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003874 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3875 int rctx;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003876
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003877 if (in_nmi())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003878 rctx = 3;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003879 else if (in_irq())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003880 rctx = 2;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003881 else if (in_softirq())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003882 rctx = 1;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003883 else
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003884 rctx = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003885
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003886 if (cpuctx->recursion[rctx]) {
3887 put_cpu_var(perf_cpu_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003888 return -1;
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003889 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003890
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003891 cpuctx->recursion[rctx]++;
3892 barrier();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003893
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003894 return rctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003895}
Ingo Molnar645e8cc2009-11-22 12:20:19 +01003896EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003897
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003898void perf_swevent_put_recursion_context(int rctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003899{
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003900 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3901 barrier();
3902 cpuctx->recursion[rctx]++;
3903 put_cpu_var(perf_cpu_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003904}
Ingo Molnar645e8cc2009-11-22 12:20:19 +01003905EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003906
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003907static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
3908 u64 nr, int nmi,
3909 struct perf_sample_data *data,
3910 struct pt_regs *regs)
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003911{
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003912 struct perf_cpu_context *cpuctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003913 struct perf_event_context *ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003914
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003915 cpuctx = &__get_cpu_var(perf_cpu_context);
Peter Zijlstra81520182009-11-20 22:19:45 +01003916 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003917 perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
3918 nr, nmi, data, regs);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003919 /*
3920 * doesn't really matter which of the child contexts the
3921 * events ends up in.
3922 */
3923 ctx = rcu_dereference(current->perf_event_ctxp);
3924 if (ctx)
3925 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
3926 rcu_read_unlock();
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003927}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003928
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003929void __perf_sw_event(u32 event_id, u64 nr, int nmi,
3930 struct pt_regs *regs, u64 addr)
3931{
Ingo Molnara4234bf2009-11-23 10:57:59 +01003932 struct perf_sample_data data;
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003933 int rctx;
3934
3935 rctx = perf_swevent_get_recursion_context();
3936 if (rctx < 0)
3937 return;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003938
Ingo Molnara4234bf2009-11-23 10:57:59 +01003939 data.addr = addr;
3940 data.raw = NULL;
3941
3942 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003943
3944 perf_swevent_put_recursion_context(rctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003945}
3946
3947static void perf_swevent_read(struct perf_event *event)
3948{
3949}
3950
3951static int perf_swevent_enable(struct perf_event *event)
3952{
3953 struct hw_perf_event *hwc = &event->hw;
3954
3955 if (hwc->sample_period) {
3956 hwc->last_period = hwc->sample_period;
3957 perf_swevent_set_period(event);
3958 }
3959 return 0;
3960}
3961
3962static void perf_swevent_disable(struct perf_event *event)
3963{
3964}
3965
3966static const struct pmu perf_ops_generic = {
3967 .enable = perf_swevent_enable,
3968 .disable = perf_swevent_disable,
3969 .read = perf_swevent_read,
3970 .unthrottle = perf_swevent_unthrottle,
3971};
3972
3973/*
3974 * hrtimer based swevent callback
3975 */
3976
3977static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
3978{
3979 enum hrtimer_restart ret = HRTIMER_RESTART;
3980 struct perf_sample_data data;
3981 struct pt_regs *regs;
3982 struct perf_event *event;
3983 u64 period;
3984
3985 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
3986 event->pmu->read(event);
3987
3988 data.addr = 0;
3989 regs = get_irq_regs();
3990 /*
3991 * In case we exclude kernel IPs or are somehow not in interrupt
3992 * context, provide the next best thing, the user IP.
3993 */
3994 if ((event->attr.exclude_kernel || !regs) &&
3995 !event->attr.exclude_user)
3996 regs = task_pt_regs(current);
3997
3998 if (regs) {
Soeren Sandmann54f44072009-10-22 18:34:08 +02003999 if (!(event->attr.exclude_idle && current->pid == 0))
4000 if (perf_event_overflow(event, 0, &data, regs))
4001 ret = HRTIMER_NORESTART;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004002 }
4003
4004 period = max_t(u64, 10000, event->hw.sample_period);
4005 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4006
4007 return ret;
4008}
4009
Soeren Sandmann721a6692009-09-15 14:33:08 +02004010static void perf_swevent_start_hrtimer(struct perf_event *event)
4011{
4012 struct hw_perf_event *hwc = &event->hw;
4013
4014 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4015 hwc->hrtimer.function = perf_swevent_hrtimer;
4016 if (hwc->sample_period) {
4017 u64 period;
4018
4019 if (hwc->remaining) {
4020 if (hwc->remaining < 0)
4021 period = 10000;
4022 else
4023 period = hwc->remaining;
4024 hwc->remaining = 0;
4025 } else {
4026 period = max_t(u64, 10000, hwc->sample_period);
4027 }
4028 __hrtimer_start_range_ns(&hwc->hrtimer,
4029 ns_to_ktime(period), 0,
4030 HRTIMER_MODE_REL, 0);
4031 }
4032}
4033
4034static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4035{
4036 struct hw_perf_event *hwc = &event->hw;
4037
4038 if (hwc->sample_period) {
4039 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4040 hwc->remaining = ktime_to_ns(remaining);
4041
4042 hrtimer_cancel(&hwc->hrtimer);
4043 }
4044}
4045
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004046/*
4047 * Software event: cpu wall time clock
4048 */
4049
4050static void cpu_clock_perf_event_update(struct perf_event *event)
4051{
4052 int cpu = raw_smp_processor_id();
4053 s64 prev;
4054 u64 now;
4055
4056 now = cpu_clock(cpu);
4057 prev = atomic64_read(&event->hw.prev_count);
4058 atomic64_set(&event->hw.prev_count, now);
4059 atomic64_add(now - prev, &event->count);
4060}
4061
4062static int cpu_clock_perf_event_enable(struct perf_event *event)
4063{
4064 struct hw_perf_event *hwc = &event->hw;
4065 int cpu = raw_smp_processor_id();
4066
4067 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
Soeren Sandmann721a6692009-09-15 14:33:08 +02004068 perf_swevent_start_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004069
4070 return 0;
4071}
4072
4073static void cpu_clock_perf_event_disable(struct perf_event *event)
4074{
Soeren Sandmann721a6692009-09-15 14:33:08 +02004075 perf_swevent_cancel_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004076 cpu_clock_perf_event_update(event);
4077}
4078
4079static void cpu_clock_perf_event_read(struct perf_event *event)
4080{
4081 cpu_clock_perf_event_update(event);
4082}
4083
4084static const struct pmu perf_ops_cpu_clock = {
4085 .enable = cpu_clock_perf_event_enable,
4086 .disable = cpu_clock_perf_event_disable,
4087 .read = cpu_clock_perf_event_read,
4088};
4089
4090/*
4091 * Software event: task time clock
4092 */
4093
4094static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4095{
4096 u64 prev;
4097 s64 delta;
4098
4099 prev = atomic64_xchg(&event->hw.prev_count, now);
4100 delta = now - prev;
4101 atomic64_add(delta, &event->count);
4102}
4103
4104static int task_clock_perf_event_enable(struct perf_event *event)
4105{
4106 struct hw_perf_event *hwc = &event->hw;
4107 u64 now;
4108
4109 now = event->ctx->time;
4110
4111 atomic64_set(&hwc->prev_count, now);
Soeren Sandmann721a6692009-09-15 14:33:08 +02004112
4113 perf_swevent_start_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004114
4115 return 0;
4116}
4117
4118static void task_clock_perf_event_disable(struct perf_event *event)
4119{
Soeren Sandmann721a6692009-09-15 14:33:08 +02004120 perf_swevent_cancel_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004121 task_clock_perf_event_update(event, event->ctx->time);
4122
4123}
4124
4125static void task_clock_perf_event_read(struct perf_event *event)
4126{
4127 u64 time;
4128
4129 if (!in_nmi()) {
4130 update_context_time(event->ctx);
4131 time = event->ctx->time;
4132 } else {
4133 u64 now = perf_clock();
4134 u64 delta = now - event->ctx->timestamp;
4135 time = event->ctx->time + delta;
4136 }
4137
4138 task_clock_perf_event_update(event, time);
4139}
4140
4141static const struct pmu perf_ops_task_clock = {
4142 .enable = task_clock_perf_event_enable,
4143 .disable = task_clock_perf_event_disable,
4144 .read = task_clock_perf_event_read,
4145};
4146
4147#ifdef CONFIG_EVENT_PROFILE
Li Zefan6fb29152009-10-15 11:21:42 +08004148
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004149void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4150 int entry_size)
4151{
4152 struct perf_raw_record raw = {
4153 .size = entry_size,
4154 .data = record,
4155 };
4156
4157 struct perf_sample_data data = {
4158 .addr = addr,
4159 .raw = &raw,
4160 };
4161
4162 struct pt_regs *regs = get_irq_regs();
4163
4164 if (!regs)
4165 regs = task_pt_regs(current);
4166
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004167 /* Trace events already protected against recursion */
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004168 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004169 &data, regs);
4170}
4171EXPORT_SYMBOL_GPL(perf_tp_event);
4172
Li Zefan6fb29152009-10-15 11:21:42 +08004173static int perf_tp_event_match(struct perf_event *event,
4174 struct perf_sample_data *data)
4175{
4176 void *record = data->raw->data;
4177
4178 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4179 return 1;
4180 return 0;
4181}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004182
4183static void tp_perf_event_destroy(struct perf_event *event)
4184{
4185 ftrace_profile_disable(event->attr.config);
4186}
4187
4188static const struct pmu *tp_perf_event_init(struct perf_event *event)
4189{
4190 /*
4191 * Raw tracepoint data is a severe data leak, only allow root to
4192 * have these.
4193 */
4194 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4195 perf_paranoid_tracepoint_raw() &&
4196 !capable(CAP_SYS_ADMIN))
4197 return ERR_PTR(-EPERM);
4198
4199 if (ftrace_profile_enable(event->attr.config))
4200 return NULL;
4201
4202 event->destroy = tp_perf_event_destroy;
4203
4204 return &perf_ops_generic;
4205}
Li Zefan6fb29152009-10-15 11:21:42 +08004206
4207static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4208{
4209 char *filter_str;
4210 int ret;
4211
4212 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4213 return -EINVAL;
4214
4215 filter_str = strndup_user(arg, PAGE_SIZE);
4216 if (IS_ERR(filter_str))
4217 return PTR_ERR(filter_str);
4218
4219 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4220
4221 kfree(filter_str);
4222 return ret;
4223}
4224
4225static void perf_event_free_filter(struct perf_event *event)
4226{
4227 ftrace_profile_free_filter(event);
4228}
4229
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004230#else
Li Zefan6fb29152009-10-15 11:21:42 +08004231
4232static int perf_tp_event_match(struct perf_event *event,
4233 struct perf_sample_data *data)
4234{
4235 return 1;
4236}
4237
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004238static const struct pmu *tp_perf_event_init(struct perf_event *event)
4239{
4240 return NULL;
4241}
Li Zefan6fb29152009-10-15 11:21:42 +08004242
4243static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4244{
4245 return -ENOENT;
4246}
4247
4248static void perf_event_free_filter(struct perf_event *event)
4249{
4250}
4251
4252#endif /* CONFIG_EVENT_PROFILE */
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004253
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004254#ifdef CONFIG_HAVE_HW_BREAKPOINT
4255static void bp_perf_event_destroy(struct perf_event *event)
4256{
4257 release_bp_slot(event);
4258}
4259
4260static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4261{
4262 int err;
4263 /*
4264 * The breakpoint is already filled if we haven't created the counter
4265 * through perf syscall
4266 * FIXME: manage to get trigerred to NULL if it comes from syscalls
4267 */
4268 if (!bp->callback)
4269 err = register_perf_hw_breakpoint(bp);
4270 else
4271 err = __register_perf_hw_breakpoint(bp);
4272 if (err)
4273 return ERR_PTR(err);
4274
4275 bp->destroy = bp_perf_event_destroy;
4276
4277 return &perf_ops_bp;
4278}
4279
4280void perf_bp_event(struct perf_event *bp, void *regs)
4281{
4282 /* TODO */
4283}
4284#else
4285static void bp_perf_event_destroy(struct perf_event *event)
4286{
4287}
4288
4289static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4290{
4291 return NULL;
4292}
4293
4294void perf_bp_event(struct perf_event *bp, void *regs)
4295{
4296}
4297#endif
4298
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004299atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4300
4301static void sw_perf_event_destroy(struct perf_event *event)
4302{
4303 u64 event_id = event->attr.config;
4304
4305 WARN_ON(event->parent);
4306
4307 atomic_dec(&perf_swevent_enabled[event_id]);
4308}
4309
4310static const struct pmu *sw_perf_event_init(struct perf_event *event)
4311{
4312 const struct pmu *pmu = NULL;
4313 u64 event_id = event->attr.config;
4314
4315 /*
4316 * Software events (currently) can't in general distinguish
4317 * between user, kernel and hypervisor events.
4318 * However, context switches and cpu migrations are considered
4319 * to be kernel events, and page faults are never hypervisor
4320 * events.
4321 */
4322 switch (event_id) {
4323 case PERF_COUNT_SW_CPU_CLOCK:
4324 pmu = &perf_ops_cpu_clock;
4325
4326 break;
4327 case PERF_COUNT_SW_TASK_CLOCK:
4328 /*
4329 * If the user instantiates this as a per-cpu event,
4330 * use the cpu_clock event instead.
4331 */
4332 if (event->ctx->task)
4333 pmu = &perf_ops_task_clock;
4334 else
4335 pmu = &perf_ops_cpu_clock;
4336
4337 break;
4338 case PERF_COUNT_SW_PAGE_FAULTS:
4339 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4340 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4341 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4342 case PERF_COUNT_SW_CPU_MIGRATIONS:
Anton Blanchardf7d79862009-10-18 01:09:29 +00004343 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4344 case PERF_COUNT_SW_EMULATION_FAULTS:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004345 if (!event->parent) {
4346 atomic_inc(&perf_swevent_enabled[event_id]);
4347 event->destroy = sw_perf_event_destroy;
4348 }
4349 pmu = &perf_ops_generic;
4350 break;
4351 }
4352
4353 return pmu;
4354}
4355
4356/*
4357 * Allocate and initialize a event structure
4358 */
4359static struct perf_event *
4360perf_event_alloc(struct perf_event_attr *attr,
4361 int cpu,
4362 struct perf_event_context *ctx,
4363 struct perf_event *group_leader,
4364 struct perf_event *parent_event,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004365 perf_callback_t callback,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004366 gfp_t gfpflags)
4367{
4368 const struct pmu *pmu;
4369 struct perf_event *event;
4370 struct hw_perf_event *hwc;
4371 long err;
4372
4373 event = kzalloc(sizeof(*event), gfpflags);
4374 if (!event)
4375 return ERR_PTR(-ENOMEM);
4376
4377 /*
4378 * Single events are their own group leaders, with an
4379 * empty sibling list:
4380 */
4381 if (!group_leader)
4382 group_leader = event;
4383
4384 mutex_init(&event->child_mutex);
4385 INIT_LIST_HEAD(&event->child_list);
4386
4387 INIT_LIST_HEAD(&event->group_entry);
4388 INIT_LIST_HEAD(&event->event_entry);
4389 INIT_LIST_HEAD(&event->sibling_list);
4390 init_waitqueue_head(&event->waitq);
4391
4392 mutex_init(&event->mmap_mutex);
4393
4394 event->cpu = cpu;
4395 event->attr = *attr;
4396 event->group_leader = group_leader;
4397 event->pmu = NULL;
4398 event->ctx = ctx;
4399 event->oncpu = -1;
4400
4401 event->parent = parent_event;
4402
4403 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4404 event->id = atomic64_inc_return(&perf_event_id);
4405
4406 event->state = PERF_EVENT_STATE_INACTIVE;
4407
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004408 if (!callback && parent_event)
4409 callback = parent_event->callback;
4410
4411 event->callback = callback;
4412
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004413 if (attr->disabled)
4414 event->state = PERF_EVENT_STATE_OFF;
4415
4416 pmu = NULL;
4417
4418 hwc = &event->hw;
4419 hwc->sample_period = attr->sample_period;
4420 if (attr->freq && attr->sample_freq)
4421 hwc->sample_period = 1;
4422 hwc->last_period = hwc->sample_period;
4423
4424 atomic64_set(&hwc->period_left, hwc->sample_period);
4425
4426 /*
4427 * we currently do not support PERF_FORMAT_GROUP on inherited events
4428 */
4429 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4430 goto done;
4431
4432 switch (attr->type) {
4433 case PERF_TYPE_RAW:
4434 case PERF_TYPE_HARDWARE:
4435 case PERF_TYPE_HW_CACHE:
4436 pmu = hw_perf_event_init(event);
4437 break;
4438
4439 case PERF_TYPE_SOFTWARE:
4440 pmu = sw_perf_event_init(event);
4441 break;
4442
4443 case PERF_TYPE_TRACEPOINT:
4444 pmu = tp_perf_event_init(event);
4445 break;
4446
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004447 case PERF_TYPE_BREAKPOINT:
4448 pmu = bp_perf_event_init(event);
4449 break;
4450
4451
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004452 default:
4453 break;
4454 }
4455done:
4456 err = 0;
4457 if (!pmu)
4458 err = -EINVAL;
4459 else if (IS_ERR(pmu))
4460 err = PTR_ERR(pmu);
4461
4462 if (err) {
4463 if (event->ns)
4464 put_pid_ns(event->ns);
4465 kfree(event);
4466 return ERR_PTR(err);
4467 }
4468
4469 event->pmu = pmu;
4470
4471 if (!event->parent) {
4472 atomic_inc(&nr_events);
4473 if (event->attr.mmap)
4474 atomic_inc(&nr_mmap_events);
4475 if (event->attr.comm)
4476 atomic_inc(&nr_comm_events);
4477 if (event->attr.task)
4478 atomic_inc(&nr_task_events);
4479 }
4480
4481 return event;
4482}
4483
4484static int perf_copy_attr(struct perf_event_attr __user *uattr,
4485 struct perf_event_attr *attr)
4486{
4487 u32 size;
4488 int ret;
4489
4490 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4491 return -EFAULT;
4492
4493 /*
4494 * zero the full structure, so that a short copy will be nice.
4495 */
4496 memset(attr, 0, sizeof(*attr));
4497
4498 ret = get_user(size, &uattr->size);
4499 if (ret)
4500 return ret;
4501
4502 if (size > PAGE_SIZE) /* silly large */
4503 goto err_size;
4504
4505 if (!size) /* abi compat */
4506 size = PERF_ATTR_SIZE_VER0;
4507
4508 if (size < PERF_ATTR_SIZE_VER0)
4509 goto err_size;
4510
4511 /*
4512 * If we're handed a bigger struct than we know of,
4513 * ensure all the unknown bits are 0 - i.e. new
4514 * user-space does not rely on any kernel feature
4515 * extensions we dont know about yet.
4516 */
4517 if (size > sizeof(*attr)) {
4518 unsigned char __user *addr;
4519 unsigned char __user *end;
4520 unsigned char val;
4521
4522 addr = (void __user *)uattr + sizeof(*attr);
4523 end = (void __user *)uattr + size;
4524
4525 for (; addr < end; addr++) {
4526 ret = get_user(val, addr);
4527 if (ret)
4528 return ret;
4529 if (val)
4530 goto err_size;
4531 }
4532 size = sizeof(*attr);
4533 }
4534
4535 ret = copy_from_user(attr, uattr, size);
4536 if (ret)
4537 return -EFAULT;
4538
4539 /*
4540 * If the type exists, the corresponding creation will verify
4541 * the attr->config.
4542 */
4543 if (attr->type >= PERF_TYPE_MAX)
4544 return -EINVAL;
4545
4546 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
4547 return -EINVAL;
4548
4549 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4550 return -EINVAL;
4551
4552 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4553 return -EINVAL;
4554
4555out:
4556 return ret;
4557
4558err_size:
4559 put_user(sizeof(*attr), &uattr->size);
4560 ret = -E2BIG;
4561 goto out;
4562}
4563
Li Zefan6fb29152009-10-15 11:21:42 +08004564static int perf_event_set_output(struct perf_event *event, int output_fd)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004565{
4566 struct perf_event *output_event = NULL;
4567 struct file *output_file = NULL;
4568 struct perf_event *old_output;
4569 int fput_needed = 0;
4570 int ret = -EINVAL;
4571
4572 if (!output_fd)
4573 goto set;
4574
4575 output_file = fget_light(output_fd, &fput_needed);
4576 if (!output_file)
4577 return -EBADF;
4578
4579 if (output_file->f_op != &perf_fops)
4580 goto out;
4581
4582 output_event = output_file->private_data;
4583
4584 /* Don't chain output fds */
4585 if (output_event->output)
4586 goto out;
4587
4588 /* Don't set an output fd when we already have an output channel */
4589 if (event->data)
4590 goto out;
4591
4592 atomic_long_inc(&output_file->f_count);
4593
4594set:
4595 mutex_lock(&event->mmap_mutex);
4596 old_output = event->output;
4597 rcu_assign_pointer(event->output, output_event);
4598 mutex_unlock(&event->mmap_mutex);
4599
4600 if (old_output) {
4601 /*
4602 * we need to make sure no existing perf_output_*()
4603 * is still referencing this event.
4604 */
4605 synchronize_rcu();
4606 fput(old_output->filp);
4607 }
4608
4609 ret = 0;
4610out:
4611 fput_light(output_file, fput_needed);
4612 return ret;
4613}
4614
4615/**
4616 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4617 *
4618 * @attr_uptr: event_id type attributes for monitoring/sampling
4619 * @pid: target pid
4620 * @cpu: target cpu
4621 * @group_fd: group leader event fd
4622 */
4623SYSCALL_DEFINE5(perf_event_open,
4624 struct perf_event_attr __user *, attr_uptr,
4625 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4626{
4627 struct perf_event *event, *group_leader;
4628 struct perf_event_attr attr;
4629 struct perf_event_context *ctx;
4630 struct file *event_file = NULL;
4631 struct file *group_file = NULL;
4632 int fput_needed = 0;
4633 int fput_needed2 = 0;
4634 int err;
4635
4636 /* for future expandability... */
4637 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4638 return -EINVAL;
4639
4640 err = perf_copy_attr(attr_uptr, &attr);
4641 if (err)
4642 return err;
4643
4644 if (!attr.exclude_kernel) {
4645 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4646 return -EACCES;
4647 }
4648
4649 if (attr.freq) {
4650 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4651 return -EINVAL;
4652 }
4653
4654 /*
4655 * Get the target context (task or percpu):
4656 */
4657 ctx = find_get_context(pid, cpu);
4658 if (IS_ERR(ctx))
4659 return PTR_ERR(ctx);
4660
4661 /*
4662 * Look up the group leader (we will attach this event to it):
4663 */
4664 group_leader = NULL;
4665 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4666 err = -EINVAL;
4667 group_file = fget_light(group_fd, &fput_needed);
4668 if (!group_file)
4669 goto err_put_context;
4670 if (group_file->f_op != &perf_fops)
4671 goto err_put_context;
4672
4673 group_leader = group_file->private_data;
4674 /*
4675 * Do not allow a recursive hierarchy (this new sibling
4676 * becoming part of another group-sibling):
4677 */
4678 if (group_leader->group_leader != group_leader)
4679 goto err_put_context;
4680 /*
4681 * Do not allow to attach to a group in a different
4682 * task or CPU context:
4683 */
4684 if (group_leader->ctx != ctx)
4685 goto err_put_context;
4686 /*
4687 * Only a group leader can be exclusive or pinned
4688 */
4689 if (attr.exclusive || attr.pinned)
4690 goto err_put_context;
4691 }
4692
4693 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004694 NULL, NULL, GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004695 err = PTR_ERR(event);
4696 if (IS_ERR(event))
4697 goto err_put_context;
4698
4699 err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0);
4700 if (err < 0)
4701 goto err_free_put_context;
4702
4703 event_file = fget_light(err, &fput_needed2);
4704 if (!event_file)
4705 goto err_free_put_context;
4706
4707 if (flags & PERF_FLAG_FD_OUTPUT) {
4708 err = perf_event_set_output(event, group_fd);
4709 if (err)
4710 goto err_fput_free_put_context;
4711 }
4712
4713 event->filp = event_file;
4714 WARN_ON_ONCE(ctx->parent_ctx);
4715 mutex_lock(&ctx->mutex);
4716 perf_install_in_context(ctx, event, cpu);
4717 ++ctx->generation;
4718 mutex_unlock(&ctx->mutex);
4719
4720 event->owner = current;
4721 get_task_struct(current);
4722 mutex_lock(&current->perf_event_mutex);
4723 list_add_tail(&event->owner_entry, &current->perf_event_list);
4724 mutex_unlock(&current->perf_event_mutex);
4725
4726err_fput_free_put_context:
4727 fput_light(event_file, fput_needed2);
4728
4729err_free_put_context:
4730 if (err < 0)
4731 kfree(event);
4732
4733err_put_context:
4734 if (err < 0)
4735 put_ctx(ctx);
4736
4737 fput_light(group_file, fput_needed);
4738
4739 return err;
4740}
4741
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004742/**
4743 * perf_event_create_kernel_counter
4744 *
4745 * @attr: attributes of the counter to create
4746 * @cpu: cpu in which the counter is bound
4747 * @pid: task to profile
4748 */
4749struct perf_event *
4750perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004751 pid_t pid, perf_callback_t callback)
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004752{
4753 struct perf_event *event;
4754 struct perf_event_context *ctx;
4755 int err;
4756
4757 /*
4758 * Get the target context (task or percpu):
4759 */
4760
4761 ctx = find_get_context(pid, cpu);
4762 if (IS_ERR(ctx))
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004763 return NULL;
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004764
4765 event = perf_event_alloc(attr, cpu, ctx, NULL,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004766 NULL, callback, GFP_KERNEL);
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004767 err = PTR_ERR(event);
4768 if (IS_ERR(event))
4769 goto err_put_context;
4770
4771 event->filp = NULL;
4772 WARN_ON_ONCE(ctx->parent_ctx);
4773 mutex_lock(&ctx->mutex);
4774 perf_install_in_context(ctx, event, cpu);
4775 ++ctx->generation;
4776 mutex_unlock(&ctx->mutex);
4777
4778 event->owner = current;
4779 get_task_struct(current);
4780 mutex_lock(&current->perf_event_mutex);
4781 list_add_tail(&event->owner_entry, &current->perf_event_list);
4782 mutex_unlock(&current->perf_event_mutex);
4783
4784 return event;
4785
4786err_put_context:
4787 if (err < 0)
4788 put_ctx(ctx);
4789
4790 return NULL;
4791}
4792EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
4793
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004794/*
4795 * inherit a event from parent task to child task:
4796 */
4797static struct perf_event *
4798inherit_event(struct perf_event *parent_event,
4799 struct task_struct *parent,
4800 struct perf_event_context *parent_ctx,
4801 struct task_struct *child,
4802 struct perf_event *group_leader,
4803 struct perf_event_context *child_ctx)
4804{
4805 struct perf_event *child_event;
4806
4807 /*
4808 * Instead of creating recursive hierarchies of events,
4809 * we link inherited events back to the original parent,
4810 * which has a filp for sure, which we use as the reference
4811 * count:
4812 */
4813 if (parent_event->parent)
4814 parent_event = parent_event->parent;
4815
4816 child_event = perf_event_alloc(&parent_event->attr,
4817 parent_event->cpu, child_ctx,
4818 group_leader, parent_event,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004819 NULL, GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004820 if (IS_ERR(child_event))
4821 return child_event;
4822 get_ctx(child_ctx);
4823
4824 /*
4825 * Make the child state follow the state of the parent event,
4826 * not its attr.disabled bit. We hold the parent's mutex,
4827 * so we won't race with perf_event_{en, dis}able_family.
4828 */
4829 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
4830 child_event->state = PERF_EVENT_STATE_INACTIVE;
4831 else
4832 child_event->state = PERF_EVENT_STATE_OFF;
4833
4834 if (parent_event->attr.freq)
4835 child_event->hw.sample_period = parent_event->hw.sample_period;
4836
Peter Zijlstra453f19e2009-11-20 22:19:43 +01004837 child_event->overflow_handler = parent_event->overflow_handler;
4838
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004839 /*
4840 * Link it up in the child's context:
4841 */
4842 add_event_to_ctx(child_event, child_ctx);
4843
4844 /*
4845 * Get a reference to the parent filp - we will fput it
4846 * when the child event exits. This is safe to do because
4847 * we are in the parent and we know that the filp still
4848 * exists and has a nonzero count:
4849 */
4850 atomic_long_inc(&parent_event->filp->f_count);
4851
4852 /*
4853 * Link this into the parent event's child list
4854 */
4855 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4856 mutex_lock(&parent_event->child_mutex);
4857 list_add_tail(&child_event->child_list, &parent_event->child_list);
4858 mutex_unlock(&parent_event->child_mutex);
4859
4860 return child_event;
4861}
4862
4863static int inherit_group(struct perf_event *parent_event,
4864 struct task_struct *parent,
4865 struct perf_event_context *parent_ctx,
4866 struct task_struct *child,
4867 struct perf_event_context *child_ctx)
4868{
4869 struct perf_event *leader;
4870 struct perf_event *sub;
4871 struct perf_event *child_ctr;
4872
4873 leader = inherit_event(parent_event, parent, parent_ctx,
4874 child, NULL, child_ctx);
4875 if (IS_ERR(leader))
4876 return PTR_ERR(leader);
4877 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
4878 child_ctr = inherit_event(sub, parent, parent_ctx,
4879 child, leader, child_ctx);
4880 if (IS_ERR(child_ctr))
4881 return PTR_ERR(child_ctr);
4882 }
4883 return 0;
4884}
4885
4886static void sync_child_event(struct perf_event *child_event,
4887 struct task_struct *child)
4888{
4889 struct perf_event *parent_event = child_event->parent;
4890 u64 child_val;
4891
4892 if (child_event->attr.inherit_stat)
4893 perf_event_read_event(child_event, child);
4894
4895 child_val = atomic64_read(&child_event->count);
4896
4897 /*
4898 * Add back the child's count to the parent's count:
4899 */
4900 atomic64_add(child_val, &parent_event->count);
4901 atomic64_add(child_event->total_time_enabled,
4902 &parent_event->child_total_time_enabled);
4903 atomic64_add(child_event->total_time_running,
4904 &parent_event->child_total_time_running);
4905
4906 /*
4907 * Remove this event from the parent's list
4908 */
4909 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4910 mutex_lock(&parent_event->child_mutex);
4911 list_del_init(&child_event->child_list);
4912 mutex_unlock(&parent_event->child_mutex);
4913
4914 /*
4915 * Release the parent event, if this was the last
4916 * reference to it.
4917 */
4918 fput(parent_event->filp);
4919}
4920
4921static void
4922__perf_event_exit_task(struct perf_event *child_event,
4923 struct perf_event_context *child_ctx,
4924 struct task_struct *child)
4925{
4926 struct perf_event *parent_event;
4927
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004928 perf_event_remove_from_context(child_event);
4929
4930 parent_event = child_event->parent;
4931 /*
4932 * It can happen that parent exits first, and has events
4933 * that are still around due to the child reference. These
4934 * events need to be zapped - but otherwise linger.
4935 */
4936 if (parent_event) {
4937 sync_child_event(child_event, child);
4938 free_event(child_event);
4939 }
4940}
4941
4942/*
4943 * When a child task exits, feed back event values to parent events.
4944 */
4945void perf_event_exit_task(struct task_struct *child)
4946{
4947 struct perf_event *child_event, *tmp;
4948 struct perf_event_context *child_ctx;
4949 unsigned long flags;
4950
4951 if (likely(!child->perf_event_ctxp)) {
4952 perf_event_task(child, NULL, 0);
4953 return;
4954 }
4955
4956 local_irq_save(flags);
4957 /*
4958 * We can't reschedule here because interrupts are disabled,
4959 * and either child is current or it is a task that can't be
4960 * scheduled, so we are now safe from rescheduling changing
4961 * our context.
4962 */
4963 child_ctx = child->perf_event_ctxp;
4964 __perf_event_task_sched_out(child_ctx);
4965
4966 /*
4967 * Take the context lock here so that if find_get_context is
4968 * reading child->perf_event_ctxp, we wait until it has
4969 * incremented the context's refcount before we do put_ctx below.
4970 */
4971 spin_lock(&child_ctx->lock);
4972 child->perf_event_ctxp = NULL;
4973 /*
4974 * If this context is a clone; unclone it so it can't get
4975 * swapped to another process while we're removing all
4976 * the events from it.
4977 */
4978 unclone_ctx(child_ctx);
Peter Zijlstra5e942bb2009-11-23 11:37:26 +01004979 update_context_time(child_ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004980 spin_unlock_irqrestore(&child_ctx->lock, flags);
4981
4982 /*
4983 * Report the task dead after unscheduling the events so that we
4984 * won't get any samples after PERF_RECORD_EXIT. We can however still
4985 * get a few PERF_RECORD_READ events.
4986 */
4987 perf_event_task(child, child_ctx, 0);
4988
4989 /*
4990 * We can recurse on the same lock type through:
4991 *
4992 * __perf_event_exit_task()
4993 * sync_child_event()
4994 * fput(parent_event->filp)
4995 * perf_release()
4996 * mutex_lock(&ctx->mutex)
4997 *
4998 * But since its the parent context it won't be the same instance.
4999 */
5000 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5001
5002again:
5003 list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list,
5004 group_entry)
5005 __perf_event_exit_task(child_event, child_ctx, child);
5006
5007 /*
5008 * If the last event was a group event, it will have appended all
5009 * its siblings to the list, but we obtained 'tmp' before that which
5010 * will still point to the list head terminating the iteration.
5011 */
5012 if (!list_empty(&child_ctx->group_list))
5013 goto again;
5014
5015 mutex_unlock(&child_ctx->mutex);
5016
5017 put_ctx(child_ctx);
5018}
5019
5020/*
5021 * free an unexposed, unused context as created by inheritance by
5022 * init_task below, used by fork() in case of fail.
5023 */
5024void perf_event_free_task(struct task_struct *task)
5025{
5026 struct perf_event_context *ctx = task->perf_event_ctxp;
5027 struct perf_event *event, *tmp;
5028
5029 if (!ctx)
5030 return;
5031
5032 mutex_lock(&ctx->mutex);
5033again:
5034 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) {
5035 struct perf_event *parent = event->parent;
5036
5037 if (WARN_ON_ONCE(!parent))
5038 continue;
5039
5040 mutex_lock(&parent->child_mutex);
5041 list_del_init(&event->child_list);
5042 mutex_unlock(&parent->child_mutex);
5043
5044 fput(parent->filp);
5045
5046 list_del_event(event, ctx);
5047 free_event(event);
5048 }
5049
5050 if (!list_empty(&ctx->group_list))
5051 goto again;
5052
5053 mutex_unlock(&ctx->mutex);
5054
5055 put_ctx(ctx);
5056}
5057
5058/*
5059 * Initialize the perf_event context in task_struct
5060 */
5061int perf_event_init_task(struct task_struct *child)
5062{
5063 struct perf_event_context *child_ctx, *parent_ctx;
5064 struct perf_event_context *cloned_ctx;
5065 struct perf_event *event;
5066 struct task_struct *parent = current;
5067 int inherited_all = 1;
5068 int ret = 0;
5069
5070 child->perf_event_ctxp = NULL;
5071
5072 mutex_init(&child->perf_event_mutex);
5073 INIT_LIST_HEAD(&child->perf_event_list);
5074
5075 if (likely(!parent->perf_event_ctxp))
5076 return 0;
5077
5078 /*
5079 * This is executed from the parent task context, so inherit
5080 * events that have been marked for cloning.
5081 * First allocate and initialize a context for the child.
5082 */
5083
5084 child_ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
5085 if (!child_ctx)
5086 return -ENOMEM;
5087
5088 __perf_event_init_context(child_ctx, child);
5089 child->perf_event_ctxp = child_ctx;
5090 get_task_struct(child);
5091
5092 /*
5093 * If the parent's context is a clone, pin it so it won't get
5094 * swapped under us.
5095 */
5096 parent_ctx = perf_pin_task_context(parent);
5097
5098 /*
5099 * No need to check if parent_ctx != NULL here; since we saw
5100 * it non-NULL earlier, the only reason for it to become NULL
5101 * is if we exit, and since we're currently in the middle of
5102 * a fork we can't be exiting at the same time.
5103 */
5104
5105 /*
5106 * Lock the parent list. No need to lock the child - not PID
5107 * hashed yet and not running, so nobody can access it.
5108 */
5109 mutex_lock(&parent_ctx->mutex);
5110
5111 /*
5112 * We dont have to disable NMIs - we are only looking at
5113 * the list, not manipulating it:
5114 */
Xiao Guangrong27f99942009-09-25 13:54:01 +08005115 list_for_each_entry(event, &parent_ctx->group_list, group_entry) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005116
5117 if (!event->attr.inherit) {
5118 inherited_all = 0;
5119 continue;
5120 }
5121
5122 ret = inherit_group(event, parent, parent_ctx,
5123 child, child_ctx);
5124 if (ret) {
5125 inherited_all = 0;
5126 break;
5127 }
5128 }
5129
5130 if (inherited_all) {
5131 /*
5132 * Mark the child context as a clone of the parent
5133 * context, or of whatever the parent is a clone of.
5134 * Note that if the parent is a clone, it could get
5135 * uncloned at any point, but that doesn't matter
5136 * because the list of events and the generation
5137 * count can't have changed since we took the mutex.
5138 */
5139 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5140 if (cloned_ctx) {
5141 child_ctx->parent_ctx = cloned_ctx;
5142 child_ctx->parent_gen = parent_ctx->parent_gen;
5143 } else {
5144 child_ctx->parent_ctx = parent_ctx;
5145 child_ctx->parent_gen = parent_ctx->generation;
5146 }
5147 get_ctx(child_ctx->parent_ctx);
5148 }
5149
5150 mutex_unlock(&parent_ctx->mutex);
5151
5152 perf_unpin_context(parent_ctx);
5153
5154 return ret;
5155}
5156
5157static void __cpuinit perf_event_init_cpu(int cpu)
5158{
5159 struct perf_cpu_context *cpuctx;
5160
5161 cpuctx = &per_cpu(perf_cpu_context, cpu);
5162 __perf_event_init_context(&cpuctx->ctx, NULL);
5163
5164 spin_lock(&perf_resource_lock);
5165 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5166 spin_unlock(&perf_resource_lock);
5167
5168 hw_perf_event_setup(cpu);
5169}
5170
5171#ifdef CONFIG_HOTPLUG_CPU
5172static void __perf_event_exit_cpu(void *info)
5173{
5174 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5175 struct perf_event_context *ctx = &cpuctx->ctx;
5176 struct perf_event *event, *tmp;
5177
5178 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry)
5179 __perf_event_remove_from_context(event);
5180}
5181static void perf_event_exit_cpu(int cpu)
5182{
5183 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5184 struct perf_event_context *ctx = &cpuctx->ctx;
5185
5186 mutex_lock(&ctx->mutex);
5187 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5188 mutex_unlock(&ctx->mutex);
5189}
5190#else
5191static inline void perf_event_exit_cpu(int cpu) { }
5192#endif
5193
5194static int __cpuinit
5195perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5196{
5197 unsigned int cpu = (long)hcpu;
5198
5199 switch (action) {
5200
5201 case CPU_UP_PREPARE:
5202 case CPU_UP_PREPARE_FROZEN:
5203 perf_event_init_cpu(cpu);
5204 break;
5205
5206 case CPU_ONLINE:
5207 case CPU_ONLINE_FROZEN:
5208 hw_perf_event_setup_online(cpu);
5209 break;
5210
5211 case CPU_DOWN_PREPARE:
5212 case CPU_DOWN_PREPARE_FROZEN:
5213 perf_event_exit_cpu(cpu);
5214 break;
5215
5216 default:
5217 break;
5218 }
5219
5220 return NOTIFY_OK;
5221}
5222
5223/*
5224 * This has to have a higher priority than migration_notifier in sched.c.
5225 */
5226static struct notifier_block __cpuinitdata perf_cpu_nb = {
5227 .notifier_call = perf_cpu_notify,
5228 .priority = 20,
5229};
5230
5231void __init perf_event_init(void)
5232{
5233 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5234 (void *)(long)smp_processor_id());
5235 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5236 (void *)(long)smp_processor_id());
5237 register_cpu_notifier(&perf_cpu_nb);
5238}
5239
5240static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
5241{
5242 return sprintf(buf, "%d\n", perf_reserved_percpu);
5243}
5244
5245static ssize_t
5246perf_set_reserve_percpu(struct sysdev_class *class,
5247 const char *buf,
5248 size_t count)
5249{
5250 struct perf_cpu_context *cpuctx;
5251 unsigned long val;
5252 int err, cpu, mpt;
5253
5254 err = strict_strtoul(buf, 10, &val);
5255 if (err)
5256 return err;
5257 if (val > perf_max_events)
5258 return -EINVAL;
5259
5260 spin_lock(&perf_resource_lock);
5261 perf_reserved_percpu = val;
5262 for_each_online_cpu(cpu) {
5263 cpuctx = &per_cpu(perf_cpu_context, cpu);
5264 spin_lock_irq(&cpuctx->ctx.lock);
5265 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5266 perf_max_events - perf_reserved_percpu);
5267 cpuctx->max_pertask = mpt;
5268 spin_unlock_irq(&cpuctx->ctx.lock);
5269 }
5270 spin_unlock(&perf_resource_lock);
5271
5272 return count;
5273}
5274
5275static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
5276{
5277 return sprintf(buf, "%d\n", perf_overcommit);
5278}
5279
5280static ssize_t
5281perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
5282{
5283 unsigned long val;
5284 int err;
5285
5286 err = strict_strtoul(buf, 10, &val);
5287 if (err)
5288 return err;
5289 if (val > 1)
5290 return -EINVAL;
5291
5292 spin_lock(&perf_resource_lock);
5293 perf_overcommit = val;
5294 spin_unlock(&perf_resource_lock);
5295
5296 return count;
5297}
5298
5299static SYSDEV_CLASS_ATTR(
5300 reserve_percpu,
5301 0644,
5302 perf_show_reserve_percpu,
5303 perf_set_reserve_percpu
5304 );
5305
5306static SYSDEV_CLASS_ATTR(
5307 overcommit,
5308 0644,
5309 perf_show_overcommit,
5310 perf_set_overcommit
5311 );
5312
5313static struct attribute *perfclass_attrs[] = {
5314 &attr_reserve_percpu.attr,
5315 &attr_overcommit.attr,
5316 NULL
5317};
5318
5319static struct attribute_group perfclass_attr_group = {
5320 .attrs = perfclass_attrs,
5321 .name = "perf_events",
5322};
5323
5324static int __init perf_event_sysfs_init(void)
5325{
5326 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5327 &perfclass_attr_group);
5328}
5329device_initcall(perf_event_sysfs_init);