| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 
 | 2 | MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP | 
 | 3 | M68000 Hi-Performance Microprocessor Division | 
 | 4 | M68060 Software Package | 
 | 5 | Production Release P1.00 -- October 10, 1994 | 
 | 6 |  | 
 | 7 | M68060 Software Package Copyright © 1993, 1994 Motorola Inc.  All rights reserved. | 
 | 8 |  | 
 | 9 | THE SOFTWARE is provided on an "AS IS" basis and without warranty. | 
 | 10 | To the maximum extent permitted by applicable law, | 
 | 11 | MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED, | 
 | 12 | INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE | 
 | 13 | and any warranty against infringement with regard to the SOFTWARE | 
 | 14 | (INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials. | 
 | 15 |  | 
 | 16 | To the maximum extent permitted by applicable law, | 
 | 17 | IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER | 
 | 18 | (INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, | 
 | 19 | BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) | 
 | 20 | ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE. | 
 | 21 | Motorola assumes no responsibility for the maintenance and support of the SOFTWARE. | 
 | 22 |  | 
 | 23 | You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE | 
 | 24 | so long as this entire notice is retained without alteration in any modified and/or | 
 | 25 | redistributed versions, and that such modified versions are clearly identified as such. | 
 | 26 | No licenses are granted by implication, estoppel or otherwise under any patents | 
 | 27 | or trademarks of Motorola, Inc. | 
 | 28 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 
 | 29 | # | 
 | 30 | # freal.s: | 
 | 31 | #	This file is appended to the top of the 060FPSP package | 
 | 32 | # and contains the entry points into the package. The user, in | 
 | 33 | # effect, branches to one of the branch table entries located | 
 | 34 | # after _060FPSP_TABLE. | 
 | 35 | #	Also, subroutine stubs exist in this file (_fpsp_done for | 
 | 36 | # example) that are referenced by the FPSP package itself in order | 
 | 37 | # to call a given routine. The stub routine actually performs the | 
 | 38 | # callout. The FPSP code does a "bsr" to the stub routine. This | 
 | 39 | # extra layer of hierarchy adds a slight performance penalty but | 
 | 40 | # it makes the FPSP code easier to read and more mainatinable. | 
 | 41 | # | 
 | 42 |  | 
 | 43 | set	_off_bsun,	0x00 | 
 | 44 | set	_off_snan,	0x04 | 
 | 45 | set	_off_operr,	0x08 | 
 | 46 | set	_off_ovfl,	0x0c | 
 | 47 | set	_off_unfl,	0x10 | 
 | 48 | set	_off_dz,	0x14 | 
 | 49 | set	_off_inex,	0x18 | 
 | 50 | set	_off_fline,	0x1c | 
 | 51 | set	_off_fpu_dis,	0x20 | 
 | 52 | set	_off_trap,	0x24 | 
 | 53 | set	_off_trace,	0x28 | 
 | 54 | set	_off_access,	0x2c | 
 | 55 | set	_off_done,	0x30 | 
 | 56 |  | 
 | 57 | set	_off_imr,	0x40 | 
 | 58 | set	_off_dmr,	0x44 | 
 | 59 | set	_off_dmw,	0x48 | 
 | 60 | set	_off_irw,	0x4c | 
 | 61 | set	_off_irl,	0x50 | 
 | 62 | set	_off_drb,	0x54 | 
 | 63 | set	_off_drw,	0x58 | 
 | 64 | set	_off_drl,	0x5c | 
 | 65 | set	_off_dwb,	0x60 | 
 | 66 | set	_off_dww,	0x64 | 
 | 67 | set	_off_dwl,	0x68 | 
 | 68 |  | 
 | 69 | _060FPSP_TABLE: | 
 | 70 |  | 
 | 71 | ############################################################### | 
 | 72 |  | 
 | 73 | # Here's the table of ENTRY POINTS for those linking the package. | 
 | 74 | 	bra.l		_fpsp_snan | 
 | 75 | 	short		0x0000 | 
 | 76 | 	bra.l		_fpsp_operr | 
 | 77 | 	short		0x0000 | 
 | 78 | 	bra.l		_fpsp_ovfl | 
 | 79 | 	short		0x0000 | 
 | 80 | 	bra.l		_fpsp_unfl | 
 | 81 | 	short		0x0000 | 
 | 82 | 	bra.l		_fpsp_dz | 
 | 83 | 	short		0x0000 | 
 | 84 | 	bra.l		_fpsp_inex | 
 | 85 | 	short		0x0000 | 
 | 86 | 	bra.l		_fpsp_fline | 
 | 87 | 	short		0x0000 | 
 | 88 | 	bra.l		_fpsp_unsupp | 
 | 89 | 	short		0x0000 | 
 | 90 | 	bra.l		_fpsp_effadd | 
 | 91 | 	short		0x0000 | 
 | 92 |  | 
 | 93 | 	space		56 | 
 | 94 |  | 
 | 95 | ############################################################### | 
 | 96 | 	global		_fpsp_done | 
 | 97 | _fpsp_done: | 
 | 98 | 	mov.l		%d0,-(%sp) | 
 | 99 | 	mov.l		(_060FPSP_TABLE-0x80+_off_done,%pc),%d0 | 
 | 100 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 101 | 	mov.l		0x4(%sp),%d0 | 
 | 102 | 	rtd		&0x4 | 
 | 103 |  | 
 | 104 | 	global		_real_ovfl | 
 | 105 | _real_ovfl: | 
 | 106 | 	mov.l		%d0,-(%sp) | 
 | 107 | 	mov.l		(_060FPSP_TABLE-0x80+_off_ovfl,%pc),%d0 | 
 | 108 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 109 | 	mov.l		0x4(%sp),%d0 | 
 | 110 | 	rtd		&0x4 | 
 | 111 |  | 
 | 112 | 	global		_real_unfl | 
 | 113 | _real_unfl: | 
 | 114 | 	mov.l		%d0,-(%sp) | 
 | 115 | 	mov.l		(_060FPSP_TABLE-0x80+_off_unfl,%pc),%d0 | 
 | 116 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 117 | 	mov.l		0x4(%sp),%d0 | 
 | 118 | 	rtd		&0x4 | 
 | 119 |  | 
 | 120 | 	global		_real_inex | 
 | 121 | _real_inex: | 
 | 122 | 	mov.l		%d0,-(%sp) | 
 | 123 | 	mov.l		(_060FPSP_TABLE-0x80+_off_inex,%pc),%d0 | 
 | 124 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 125 | 	mov.l		0x4(%sp),%d0 | 
 | 126 | 	rtd		&0x4 | 
 | 127 |  | 
 | 128 | 	global		_real_bsun | 
 | 129 | _real_bsun: | 
 | 130 | 	mov.l		%d0,-(%sp) | 
 | 131 | 	mov.l		(_060FPSP_TABLE-0x80+_off_bsun,%pc),%d0 | 
 | 132 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 133 | 	mov.l		0x4(%sp),%d0 | 
 | 134 | 	rtd		&0x4 | 
 | 135 |  | 
 | 136 | 	global		_real_operr | 
 | 137 | _real_operr: | 
 | 138 | 	mov.l		%d0,-(%sp) | 
 | 139 | 	mov.l		(_060FPSP_TABLE-0x80+_off_operr,%pc),%d0 | 
 | 140 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 141 | 	mov.l		0x4(%sp),%d0 | 
 | 142 | 	rtd		&0x4 | 
 | 143 |  | 
 | 144 | 	global		_real_snan | 
 | 145 | _real_snan: | 
 | 146 | 	mov.l		%d0,-(%sp) | 
 | 147 | 	mov.l		(_060FPSP_TABLE-0x80+_off_snan,%pc),%d0 | 
 | 148 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 149 | 	mov.l		0x4(%sp),%d0 | 
 | 150 | 	rtd		&0x4 | 
 | 151 |  | 
 | 152 | 	global		_real_dz | 
 | 153 | _real_dz: | 
 | 154 | 	mov.l		%d0,-(%sp) | 
 | 155 | 	mov.l		(_060FPSP_TABLE-0x80+_off_dz,%pc),%d0 | 
 | 156 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 157 | 	mov.l		0x4(%sp),%d0 | 
 | 158 | 	rtd		&0x4 | 
 | 159 |  | 
 | 160 | 	global		_real_fline | 
 | 161 | _real_fline: | 
 | 162 | 	mov.l		%d0,-(%sp) | 
 | 163 | 	mov.l		(_060FPSP_TABLE-0x80+_off_fline,%pc),%d0 | 
 | 164 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 165 | 	mov.l		0x4(%sp),%d0 | 
 | 166 | 	rtd		&0x4 | 
 | 167 |  | 
 | 168 | 	global		_real_fpu_disabled | 
 | 169 | _real_fpu_disabled: | 
 | 170 | 	mov.l		%d0,-(%sp) | 
 | 171 | 	mov.l		(_060FPSP_TABLE-0x80+_off_fpu_dis,%pc),%d0 | 
 | 172 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 173 | 	mov.l		0x4(%sp),%d0 | 
 | 174 | 	rtd		&0x4 | 
 | 175 |  | 
 | 176 | 	global		_real_trap | 
 | 177 | _real_trap: | 
 | 178 | 	mov.l		%d0,-(%sp) | 
 | 179 | 	mov.l		(_060FPSP_TABLE-0x80+_off_trap,%pc),%d0 | 
 | 180 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 181 | 	mov.l		0x4(%sp),%d0 | 
 | 182 | 	rtd		&0x4 | 
 | 183 |  | 
 | 184 | 	global		_real_trace | 
 | 185 | _real_trace: | 
 | 186 | 	mov.l		%d0,-(%sp) | 
 | 187 | 	mov.l		(_060FPSP_TABLE-0x80+_off_trace,%pc),%d0 | 
 | 188 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 189 | 	mov.l		0x4(%sp),%d0 | 
 | 190 | 	rtd		&0x4 | 
 | 191 |  | 
 | 192 | 	global		_real_access | 
 | 193 | _real_access: | 
 | 194 | 	mov.l		%d0,-(%sp) | 
 | 195 | 	mov.l		(_060FPSP_TABLE-0x80+_off_access,%pc),%d0 | 
 | 196 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 197 | 	mov.l		0x4(%sp),%d0 | 
 | 198 | 	rtd		&0x4 | 
 | 199 |  | 
 | 200 | ####################################### | 
 | 201 |  | 
 | 202 | 	global		_imem_read | 
 | 203 | _imem_read: | 
 | 204 | 	mov.l		%d0,-(%sp) | 
 | 205 | 	mov.l		(_060FPSP_TABLE-0x80+_off_imr,%pc),%d0 | 
 | 206 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 207 | 	mov.l		0x4(%sp),%d0 | 
 | 208 | 	rtd		&0x4 | 
 | 209 |  | 
 | 210 | 	global		_dmem_read | 
 | 211 | _dmem_read: | 
 | 212 | 	mov.l		%d0,-(%sp) | 
 | 213 | 	mov.l		(_060FPSP_TABLE-0x80+_off_dmr,%pc),%d0 | 
 | 214 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 215 | 	mov.l		0x4(%sp),%d0 | 
 | 216 | 	rtd		&0x4 | 
 | 217 |  | 
 | 218 | 	global		_dmem_write | 
 | 219 | _dmem_write: | 
 | 220 | 	mov.l		%d0,-(%sp) | 
 | 221 | 	mov.l		(_060FPSP_TABLE-0x80+_off_dmw,%pc),%d0 | 
 | 222 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 223 | 	mov.l		0x4(%sp),%d0 | 
 | 224 | 	rtd		&0x4 | 
 | 225 |  | 
 | 226 | 	global		_imem_read_word | 
 | 227 | _imem_read_word: | 
 | 228 | 	mov.l		%d0,-(%sp) | 
 | 229 | 	mov.l		(_060FPSP_TABLE-0x80+_off_irw,%pc),%d0 | 
 | 230 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 231 | 	mov.l		0x4(%sp),%d0 | 
 | 232 | 	rtd		&0x4 | 
 | 233 |  | 
 | 234 | 	global		_imem_read_long | 
 | 235 | _imem_read_long: | 
 | 236 | 	mov.l		%d0,-(%sp) | 
 | 237 | 	mov.l		(_060FPSP_TABLE-0x80+_off_irl,%pc),%d0 | 
 | 238 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 239 | 	mov.l		0x4(%sp),%d0 | 
 | 240 | 	rtd		&0x4 | 
 | 241 |  | 
 | 242 | 	global		_dmem_read_byte | 
 | 243 | _dmem_read_byte: | 
 | 244 | 	mov.l		%d0,-(%sp) | 
 | 245 | 	mov.l		(_060FPSP_TABLE-0x80+_off_drb,%pc),%d0 | 
 | 246 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 247 | 	mov.l		0x4(%sp),%d0 | 
 | 248 | 	rtd		&0x4 | 
 | 249 |  | 
 | 250 | 	global		_dmem_read_word | 
 | 251 | _dmem_read_word: | 
 | 252 | 	mov.l		%d0,-(%sp) | 
 | 253 | 	mov.l		(_060FPSP_TABLE-0x80+_off_drw,%pc),%d0 | 
 | 254 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 255 | 	mov.l		0x4(%sp),%d0 | 
 | 256 | 	rtd		&0x4 | 
 | 257 |  | 
 | 258 | 	global		_dmem_read_long | 
 | 259 | _dmem_read_long: | 
 | 260 | 	mov.l		%d0,-(%sp) | 
 | 261 | 	mov.l		(_060FPSP_TABLE-0x80+_off_drl,%pc),%d0 | 
 | 262 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 263 | 	mov.l		0x4(%sp),%d0 | 
 | 264 | 	rtd		&0x4 | 
 | 265 |  | 
 | 266 | 	global		_dmem_write_byte | 
 | 267 | _dmem_write_byte: | 
 | 268 | 	mov.l		%d0,-(%sp) | 
 | 269 | 	mov.l		(_060FPSP_TABLE-0x80+_off_dwb,%pc),%d0 | 
 | 270 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 271 | 	mov.l		0x4(%sp),%d0 | 
 | 272 | 	rtd		&0x4 | 
 | 273 |  | 
 | 274 | 	global		_dmem_write_word | 
 | 275 | _dmem_write_word: | 
 | 276 | 	mov.l		%d0,-(%sp) | 
 | 277 | 	mov.l		(_060FPSP_TABLE-0x80+_off_dww,%pc),%d0 | 
 | 278 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 279 | 	mov.l		0x4(%sp),%d0 | 
 | 280 | 	rtd		&0x4 | 
 | 281 |  | 
 | 282 | 	global		_dmem_write_long | 
 | 283 | _dmem_write_long: | 
 | 284 | 	mov.l		%d0,-(%sp) | 
 | 285 | 	mov.l		(_060FPSP_TABLE-0x80+_off_dwl,%pc),%d0 | 
 | 286 | 	pea.l		(_060FPSP_TABLE-0x80,%pc,%d0) | 
 | 287 | 	mov.l		0x4(%sp),%d0 | 
 | 288 | 	rtd		&0x4 | 
 | 289 |  | 
 | 290 | # | 
 | 291 | # This file contains a set of define statements for constants | 
 | 292 | # in order to promote readability within the corecode itself. | 
 | 293 | # | 
 | 294 |  | 
 | 295 | set LOCAL_SIZE,		192			# stack frame size(bytes) | 
 | 296 | set LV,			-LOCAL_SIZE		# stack offset | 
 | 297 |  | 
 | 298 | set EXC_SR,		0x4			# stack status register | 
 | 299 | set EXC_PC,		0x6			# stack pc | 
 | 300 | set EXC_VOFF,		0xa			# stacked vector offset | 
 | 301 | set EXC_EA,		0xc			# stacked <ea> | 
 | 302 |  | 
 | 303 | set EXC_FP,		0x0			# frame pointer | 
 | 304 |  | 
 | 305 | set EXC_AREGS,		-68			# offset of all address regs | 
 | 306 | set EXC_DREGS,		-100			# offset of all data regs | 
 | 307 | set EXC_FPREGS,		-36			# offset of all fp regs | 
 | 308 |  | 
 | 309 | set EXC_A7,		EXC_AREGS+(7*4)		# offset of saved a7 | 
 | 310 | set OLD_A7,		EXC_AREGS+(6*4)		# extra copy of saved a7 | 
 | 311 | set EXC_A6,		EXC_AREGS+(6*4)		# offset of saved a6 | 
 | 312 | set EXC_A5,		EXC_AREGS+(5*4) | 
 | 313 | set EXC_A4,		EXC_AREGS+(4*4) | 
 | 314 | set EXC_A3,		EXC_AREGS+(3*4) | 
 | 315 | set EXC_A2,		EXC_AREGS+(2*4) | 
 | 316 | set EXC_A1,		EXC_AREGS+(1*4) | 
 | 317 | set EXC_A0,		EXC_AREGS+(0*4) | 
 | 318 | set EXC_D7,		EXC_DREGS+(7*4) | 
 | 319 | set EXC_D6,		EXC_DREGS+(6*4) | 
 | 320 | set EXC_D5,		EXC_DREGS+(5*4) | 
 | 321 | set EXC_D4,		EXC_DREGS+(4*4) | 
 | 322 | set EXC_D3,		EXC_DREGS+(3*4) | 
 | 323 | set EXC_D2,		EXC_DREGS+(2*4) | 
 | 324 | set EXC_D1,		EXC_DREGS+(1*4) | 
 | 325 | set EXC_D0,		EXC_DREGS+(0*4) | 
 | 326 |  | 
 | 327 | set EXC_FP0,		EXC_FPREGS+(0*12)	# offset of saved fp0 | 
 | 328 | set EXC_FP1,		EXC_FPREGS+(1*12)	# offset of saved fp1 | 
 | 329 | set EXC_FP2,		EXC_FPREGS+(2*12)	# offset of saved fp2 (not used) | 
 | 330 |  | 
 | 331 | set FP_SCR1,		LV+80			# fp scratch 1 | 
 | 332 | set FP_SCR1_EX,		FP_SCR1+0 | 
 | 333 | set FP_SCR1_SGN,	FP_SCR1+2 | 
 | 334 | set FP_SCR1_HI,		FP_SCR1+4 | 
 | 335 | set FP_SCR1_LO,		FP_SCR1+8 | 
 | 336 |  | 
 | 337 | set FP_SCR0,		LV+68			# fp scratch 0 | 
 | 338 | set FP_SCR0_EX,		FP_SCR0+0 | 
 | 339 | set FP_SCR0_SGN,	FP_SCR0+2 | 
 | 340 | set FP_SCR0_HI,		FP_SCR0+4 | 
 | 341 | set FP_SCR0_LO,		FP_SCR0+8 | 
 | 342 |  | 
 | 343 | set FP_DST,		LV+56			# fp destination operand | 
 | 344 | set FP_DST_EX,		FP_DST+0 | 
 | 345 | set FP_DST_SGN,		FP_DST+2 | 
 | 346 | set FP_DST_HI,		FP_DST+4 | 
 | 347 | set FP_DST_LO,		FP_DST+8 | 
 | 348 |  | 
 | 349 | set FP_SRC,		LV+44			# fp source operand | 
 | 350 | set FP_SRC_EX,		FP_SRC+0 | 
 | 351 | set FP_SRC_SGN,		FP_SRC+2 | 
 | 352 | set FP_SRC_HI,		FP_SRC+4 | 
 | 353 | set FP_SRC_LO,		FP_SRC+8 | 
 | 354 |  | 
 | 355 | set USER_FPIAR,		LV+40			# FP instr address register | 
 | 356 |  | 
 | 357 | set USER_FPSR,		LV+36			# FP status register | 
 | 358 | set FPSR_CC,		USER_FPSR+0		# FPSR condition codes | 
 | 359 | set FPSR_QBYTE,		USER_FPSR+1		# FPSR qoutient byte | 
 | 360 | set FPSR_EXCEPT,	USER_FPSR+2		# FPSR exception status byte | 
 | 361 | set FPSR_AEXCEPT,	USER_FPSR+3		# FPSR accrued exception byte | 
 | 362 |  | 
 | 363 | set USER_FPCR,		LV+32			# FP control register | 
 | 364 | set FPCR_ENABLE,	USER_FPCR+2		# FPCR exception enable | 
 | 365 | set FPCR_MODE,		USER_FPCR+3		# FPCR rounding mode control | 
 | 366 |  | 
 | 367 | set L_SCR3,		LV+28			# integer scratch 3 | 
 | 368 | set L_SCR2,		LV+24			# integer scratch 2 | 
 | 369 | set L_SCR1,		LV+20			# integer scratch 1 | 
 | 370 |  | 
 | 371 | set STORE_FLG,		LV+19			# flag: operand store (ie. not fcmp/ftst) | 
 | 372 |  | 
 | 373 | set EXC_TEMP2,		LV+24			# temporary space | 
 | 374 | set EXC_TEMP,		LV+16			# temporary space | 
 | 375 |  | 
 | 376 | set DTAG,		LV+15			# destination operand type | 
 | 377 | set STAG,		LV+14			# source operand type | 
 | 378 |  | 
 | 379 | set SPCOND_FLG,		LV+10			# flag: special case (see below) | 
 | 380 |  | 
 | 381 | set EXC_CC,		LV+8			# saved condition codes | 
 | 382 | set EXC_EXTWPTR,	LV+4			# saved current PC (active) | 
 | 383 | set EXC_EXTWORD,	LV+2			# saved extension word | 
 | 384 | set EXC_CMDREG,		LV+2			# saved extension word | 
 | 385 | set EXC_OPWORD,		LV+0			# saved operation word | 
 | 386 |  | 
 | 387 | ################################ | 
 | 388 |  | 
 | 389 | # Helpful macros | 
 | 390 |  | 
 | 391 | set FTEMP,		0			# offsets within an | 
 | 392 | set FTEMP_EX,		0			# extended precision | 
 | 393 | set FTEMP_SGN,		2			# value saved in memory. | 
 | 394 | set FTEMP_HI,		4 | 
 | 395 | set FTEMP_LO,		8 | 
 | 396 | set FTEMP_GRS,		12 | 
 | 397 |  | 
 | 398 | set LOCAL,		0			# offsets within an | 
 | 399 | set LOCAL_EX,		0			# extended precision | 
 | 400 | set LOCAL_SGN,		2			# value saved in memory. | 
 | 401 | set LOCAL_HI,		4 | 
 | 402 | set LOCAL_LO,		8 | 
 | 403 | set LOCAL_GRS,		12 | 
 | 404 |  | 
 | 405 | set DST,		0			# offsets within an | 
 | 406 | set DST_EX,		0			# extended precision | 
 | 407 | set DST_HI,		4			# value saved in memory. | 
 | 408 | set DST_LO,		8 | 
 | 409 |  | 
 | 410 | set SRC,		0			# offsets within an | 
 | 411 | set SRC_EX,		0			# extended precision | 
 | 412 | set SRC_HI,		4			# value saved in memory. | 
 | 413 | set SRC_LO,		8 | 
 | 414 |  | 
 | 415 | set SGL_LO,		0x3f81			# min sgl prec exponent | 
 | 416 | set SGL_HI,		0x407e			# max sgl prec exponent | 
 | 417 | set DBL_LO,		0x3c01			# min dbl prec exponent | 
 | 418 | set DBL_HI,		0x43fe			# max dbl prec exponent | 
 | 419 | set EXT_LO,		0x0			# min ext prec exponent | 
 | 420 | set EXT_HI,		0x7ffe			# max ext prec exponent | 
 | 421 |  | 
 | 422 | set EXT_BIAS,		0x3fff			# extended precision bias | 
 | 423 | set SGL_BIAS,		0x007f			# single precision bias | 
 | 424 | set DBL_BIAS,		0x03ff			# double precision bias | 
 | 425 |  | 
 | 426 | set NORM,		0x00			# operand type for STAG/DTAG | 
 | 427 | set ZERO,		0x01			# operand type for STAG/DTAG | 
 | 428 | set INF,		0x02			# operand type for STAG/DTAG | 
 | 429 | set QNAN,		0x03			# operand type for STAG/DTAG | 
 | 430 | set DENORM,		0x04			# operand type for STAG/DTAG | 
 | 431 | set SNAN,		0x05			# operand type for STAG/DTAG | 
 | 432 | set UNNORM,		0x06			# operand type for STAG/DTAG | 
 | 433 |  | 
 | 434 | ################## | 
 | 435 | # FPSR/FPCR bits # | 
 | 436 | ################## | 
 | 437 | set neg_bit,		0x3			# negative result | 
 | 438 | set z_bit,		0x2			# zero result | 
 | 439 | set inf_bit,		0x1			# infinite result | 
 | 440 | set nan_bit,		0x0			# NAN result | 
 | 441 |  | 
 | 442 | set q_sn_bit,		0x7			# sign bit of quotient byte | 
 | 443 |  | 
 | 444 | set bsun_bit,		7			# branch on unordered | 
 | 445 | set snan_bit,		6			# signalling NAN | 
 | 446 | set operr_bit,		5			# operand error | 
 | 447 | set ovfl_bit,		4			# overflow | 
 | 448 | set unfl_bit,		3			# underflow | 
 | 449 | set dz_bit,		2			# divide by zero | 
 | 450 | set inex2_bit,		1			# inexact result 2 | 
 | 451 | set inex1_bit,		0			# inexact result 1 | 
 | 452 |  | 
 | 453 | set aiop_bit,		7			# accrued inexact operation bit | 
 | 454 | set aovfl_bit,		6			# accrued overflow bit | 
 | 455 | set aunfl_bit,		5			# accrued underflow bit | 
 | 456 | set adz_bit,		4			# accrued dz bit | 
 | 457 | set ainex_bit,		3			# accrued inexact bit | 
 | 458 |  | 
 | 459 | ############################# | 
 | 460 | # FPSR individual bit masks # | 
 | 461 | ############################# | 
 | 462 | set neg_mask,		0x08000000		# negative bit mask (lw) | 
 | 463 | set inf_mask,		0x02000000		# infinity bit mask (lw) | 
 | 464 | set z_mask,		0x04000000		# zero bit mask (lw) | 
 | 465 | set nan_mask,		0x01000000		# nan bit mask (lw) | 
 | 466 |  | 
 | 467 | set neg_bmask,		0x08			# negative bit mask (byte) | 
 | 468 | set inf_bmask,		0x02			# infinity bit mask (byte) | 
 | 469 | set z_bmask,		0x04			# zero bit mask (byte) | 
 | 470 | set nan_bmask,		0x01			# nan bit mask (byte) | 
 | 471 |  | 
 | 472 | set bsun_mask,		0x00008000		# bsun exception mask | 
 | 473 | set snan_mask,		0x00004000		# snan exception mask | 
 | 474 | set operr_mask,		0x00002000		# operr exception mask | 
 | 475 | set ovfl_mask,		0x00001000		# overflow exception mask | 
 | 476 | set unfl_mask,		0x00000800		# underflow exception mask | 
 | 477 | set dz_mask,		0x00000400		# dz exception mask | 
 | 478 | set inex2_mask,		0x00000200		# inex2 exception mask | 
 | 479 | set inex1_mask,		0x00000100		# inex1 exception mask | 
 | 480 |  | 
 | 481 | set aiop_mask,		0x00000080		# accrued illegal operation | 
 | 482 | set aovfl_mask,		0x00000040		# accrued overflow | 
 | 483 | set aunfl_mask,		0x00000020		# accrued underflow | 
 | 484 | set adz_mask,		0x00000010		# accrued divide by zero | 
 | 485 | set ainex_mask,		0x00000008		# accrued inexact | 
 | 486 |  | 
 | 487 | ###################################### | 
 | 488 | # FPSR combinations used in the FPSP # | 
 | 489 | ###################################### | 
 | 490 | set dzinf_mask,		inf_mask+dz_mask+adz_mask | 
 | 491 | set opnan_mask,		nan_mask+operr_mask+aiop_mask | 
 | 492 | set nzi_mask,		0x01ffffff		#clears N, Z, and I | 
 | 493 | set unfinx_mask,	unfl_mask+inex2_mask+aunfl_mask+ainex_mask | 
 | 494 | set unf2inx_mask,	unfl_mask+inex2_mask+ainex_mask | 
 | 495 | set ovfinx_mask,	ovfl_mask+inex2_mask+aovfl_mask+ainex_mask | 
 | 496 | set inx1a_mask,		inex1_mask+ainex_mask | 
 | 497 | set inx2a_mask,		inex2_mask+ainex_mask | 
 | 498 | set snaniop_mask,	nan_mask+snan_mask+aiop_mask | 
 | 499 | set snaniop2_mask,	snan_mask+aiop_mask | 
 | 500 | set naniop_mask,	nan_mask+aiop_mask | 
 | 501 | set neginf_mask,	neg_mask+inf_mask | 
 | 502 | set infaiop_mask,	inf_mask+aiop_mask | 
 | 503 | set negz_mask,		neg_mask+z_mask | 
 | 504 | set opaop_mask,		operr_mask+aiop_mask | 
 | 505 | set unfl_inx_mask,	unfl_mask+aunfl_mask+ainex_mask | 
 | 506 | set ovfl_inx_mask,	ovfl_mask+aovfl_mask+ainex_mask | 
 | 507 |  | 
 | 508 | ######### | 
 | 509 | # misc. # | 
 | 510 | ######### | 
 | 511 | set rnd_stky_bit,	29			# stky bit pos in longword | 
 | 512 |  | 
 | 513 | set sign_bit,		0x7			# sign bit | 
 | 514 | set signan_bit,		0x6			# signalling nan bit | 
 | 515 |  | 
 | 516 | set sgl_thresh,		0x3f81			# minimum sgl exponent | 
 | 517 | set dbl_thresh,		0x3c01			# minimum dbl exponent | 
 | 518 |  | 
 | 519 | set x_mode,		0x0			# extended precision | 
 | 520 | set s_mode,		0x4			# single precision | 
 | 521 | set d_mode,		0x8			# double precision | 
 | 522 |  | 
 | 523 | set rn_mode,		0x0			# round-to-nearest | 
 | 524 | set rz_mode,		0x1			# round-to-zero | 
 | 525 | set rm_mode,		0x2			# round-tp-minus-infinity | 
 | 526 | set rp_mode,		0x3			# round-to-plus-infinity | 
 | 527 |  | 
 | 528 | set mantissalen,	64			# length of mantissa in bits | 
 | 529 |  | 
 | 530 | set BYTE,		1			# len(byte) == 1 byte | 
 | 531 | set WORD,		2			# len(word) == 2 bytes | 
 | 532 | set LONG,		4			# len(longword) == 2 bytes | 
 | 533 |  | 
 | 534 | set BSUN_VEC,		0xc0			# bsun    vector offset | 
 | 535 | set INEX_VEC,		0xc4			# inexact vector offset | 
 | 536 | set DZ_VEC,		0xc8			# dz      vector offset | 
 | 537 | set UNFL_VEC,		0xcc			# unfl    vector offset | 
 | 538 | set OPERR_VEC,		0xd0			# operr   vector offset | 
 | 539 | set OVFL_VEC,		0xd4			# ovfl    vector offset | 
 | 540 | set SNAN_VEC,		0xd8			# snan    vector offset | 
 | 541 |  | 
 | 542 | ########################### | 
 | 543 | # SPecial CONDition FLaGs # | 
 | 544 | ########################### | 
 | 545 | set ftrapcc_flg,	0x01			# flag bit: ftrapcc exception | 
 | 546 | set fbsun_flg,		0x02			# flag bit: bsun exception | 
 | 547 | set mia7_flg,		0x04			# flag bit: (a7)+ <ea> | 
 | 548 | set mda7_flg,		0x08			# flag bit: -(a7) <ea> | 
 | 549 | set fmovm_flg,		0x40			# flag bit: fmovm instruction | 
 | 550 | set immed_flg,		0x80			# flag bit: &<data> <ea> | 
 | 551 |  | 
 | 552 | set ftrapcc_bit,	0x0 | 
 | 553 | set fbsun_bit,		0x1 | 
 | 554 | set mia7_bit,		0x2 | 
 | 555 | set mda7_bit,		0x3 | 
 | 556 | set immed_bit,		0x7 | 
 | 557 |  | 
 | 558 | ################################## | 
 | 559 | # TRANSCENDENTAL "LAST-OP" FLAGS # | 
 | 560 | ################################## | 
 | 561 | set FMUL_OP,		0x0			# fmul instr performed last | 
 | 562 | set FDIV_OP,		0x1			# fdiv performed last | 
 | 563 | set FADD_OP,		0x2			# fadd performed last | 
 | 564 | set FMOV_OP,		0x3			# fmov performed last | 
 | 565 |  | 
 | 566 | ############# | 
 | 567 | # CONSTANTS # | 
 | 568 | ############# | 
 | 569 | T1:	long		0x40C62D38,0xD3D64634	# 16381 LOG2 LEAD | 
 | 570 | T2:	long		0x3D6F90AE,0xB1E75CC7	# 16381 LOG2 TRAIL | 
 | 571 |  | 
 | 572 | PI:	long		0x40000000,0xC90FDAA2,0x2168C235,0x00000000 | 
 | 573 | PIBY2:	long		0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000 | 
 | 574 |  | 
 | 575 | TWOBYPI: | 
 | 576 | 	long		0x3FE45F30,0x6DC9C883 | 
 | 577 |  | 
 | 578 | ######################################################################### | 
 | 579 | # XDEF ****************************************************************	# | 
 | 580 | #	_fpsp_ovfl(): 060FPSP entry point for FP Overflow exception.	# | 
 | 581 | #									# | 
 | 582 | #	This handler should be the first code executed upon taking the	# | 
 | 583 | #	FP Overflow exception in an operating system.			# | 
 | 584 | #									# | 
 | 585 | # XREF ****************************************************************	# | 
 | 586 | #	_imem_read_long() - read instruction longword			# | 
 | 587 | #	fix_skewed_ops() - adjust src operand in fsave frame		# | 
 | 588 | #	set_tag_x() - determine optype of src/dst operands		# | 
 | 589 | #	store_fpreg() - store opclass 0 or 2 result to FP regfile	# | 
 | 590 | #	unnorm_fix() - change UNNORM operands to NORM or ZERO		# | 
 | 591 | #	load_fpn2() - load dst operand from FP regfile			# | 
 | 592 | #	fout() - emulate an opclass 3 instruction			# | 
 | 593 | #	tbl_unsupp - add of table of emulation routines for opclass 0,2	# | 
 | 594 | #	_fpsp_done() - "callout" for 060FPSP exit (all work done!)	# | 
 | 595 | #	_real_ovfl() - "callout" for Overflow exception enabled code	# | 
 | 596 | #	_real_inex() - "callout" for Inexact exception enabled code	# | 
 | 597 | #	_real_trace() - "callout" for Trace exception code		# | 
 | 598 | #									# | 
 | 599 | # INPUT ***************************************************************	# | 
 | 600 | #	- The system stack contains the FP Ovfl exception stack frame	# | 
 | 601 | #	- The fsave frame contains the source operand			# | 
 | 602 | #									# | 
 | 603 | # OUTPUT **************************************************************	# | 
 | 604 | #	Overflow Exception enabled:					# | 
 | 605 | #	- The system stack is unchanged					# | 
 | 606 | #	- The fsave frame contains the adjusted src op for opclass 0,2	# | 
 | 607 | #	Overflow Exception disabled:					# | 
 | 608 | #	- The system stack is unchanged					# | 
 | 609 | #	- The "exception present" flag in the fsave frame is cleared	# | 
 | 610 | #									# | 
 | 611 | # ALGORITHM ***********************************************************	# | 
 | 612 | #	On the 060, if an FP overflow is present as the result of any	# | 
 | 613 | # instruction, the 060 will take an overflow exception whether the	# | 
 | 614 | # exception is enabled or disabled in the FPCR. For the disabled case,	# | 
 | 615 | # This handler emulates the instruction to determine what the correct	# | 
 | 616 | # default result should be for the operation. This default result is	# | 
 | 617 | # then stored in either the FP regfile, data regfile, or memory.	# | 
 | 618 | # Finally, the handler exits through the "callout" _fpsp_done()		# | 
 | 619 | # denoting that no exceptional conditions exist within the machine.	# | 
 | 620 | #	If the exception is enabled, then this handler must create the	# | 
 | 621 | # exceptional operand and plave it in the fsave state frame, and store	# | 
 | 622 | # the default result (only if the instruction is opclass 3). For	# | 
 | 623 | # exceptions enabled, this handler must exit through the "callout"	# | 
 | 624 | # _real_ovfl() so that the operating system enabled overflow handler	# | 
 | 625 | # can handle this case.							# | 
 | 626 | #	Two other conditions exist. First, if overflow was disabled	# | 
 | 627 | # but the inexact exception was enabled, this handler must exit		# | 
 | 628 | # through the "callout" _real_inex() regardless of whether the result	# | 
 | 629 | # was inexact.								# | 
 | 630 | #	Also, in the case of an opclass three instruction where		# | 
 | 631 | # overflow was disabled and the trace exception was enabled, this	# | 
 | 632 | # handler must exit through the "callout" _real_trace().		# | 
 | 633 | #									# | 
 | 634 | ######################################################################### | 
 | 635 |  | 
 | 636 | 	global		_fpsp_ovfl | 
 | 637 | _fpsp_ovfl: | 
 | 638 |  | 
 | 639 | #$#	sub.l		&24,%sp			# make room for src/dst | 
 | 640 |  | 
 | 641 | 	link.w		%a6,&-LOCAL_SIZE	# init stack frame | 
 | 642 |  | 
 | 643 | 	fsave		FP_SRC(%a6)		# grab the "busy" frame | 
 | 644 |  | 
 | 645 | 	movm.l		&0x0303,EXC_DREGS(%a6)	# save d0-d1/a0-a1 | 
 | 646 | 	fmovm.l		%fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs | 
 | 647 | 	fmovm.x		&0xc0,EXC_FPREGS(%a6)	# save fp0-fp1 on stack | 
 | 648 |  | 
 | 649 | # the FPIAR holds the "current PC" of the faulting instruction | 
 | 650 | 	mov.l		USER_FPIAR(%a6),EXC_EXTWPTR(%a6) | 
 | 651 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 652 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 653 | 	bsr.l		_imem_read_long		# fetch the instruction words | 
 | 654 | 	mov.l		%d0,EXC_OPWORD(%a6) | 
 | 655 |  | 
 | 656 | ############################################################################## | 
 | 657 |  | 
 | 658 | 	btst		&0x5,EXC_CMDREG(%a6)	# is instr an fmove out? | 
 | 659 | 	bne.w		fovfl_out | 
 | 660 |  | 
 | 661 |  | 
 | 662 | 	lea		FP_SRC(%a6),%a0		# pass: ptr to src op | 
 | 663 | 	bsr.l		fix_skewed_ops		# fix src op | 
 | 664 |  | 
 | 665 | # since, I believe, only NORMs and DENORMs can come through here, | 
 | 666 | # maybe we can avoid the subroutine call. | 
 | 667 | 	lea		FP_SRC(%a6),%a0		# pass: ptr to src op | 
 | 668 | 	bsr.l		set_tag_x		# tag the operand type | 
 | 669 | 	mov.b		%d0,STAG(%a6)		# maybe NORM,DENORM | 
 | 670 |  | 
 | 671 | # bit five of the fp extension word separates the monadic and dyadic operations | 
 | 672 | # that can pass through fpsp_ovfl(). remember that fcmp, ftst, and fsincos | 
 | 673 | # will never take this exception. | 
 | 674 | 	btst		&0x5,1+EXC_CMDREG(%a6)	# is operation monadic or dyadic? | 
 | 675 | 	beq.b		fovfl_extract		# monadic | 
 | 676 |  | 
 | 677 | 	bfextu		EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg | 
 | 678 | 	bsr.l		load_fpn2		# load dst into FP_DST | 
 | 679 |  | 
 | 680 | 	lea		FP_DST(%a6),%a0		# pass: ptr to dst op | 
 | 681 | 	bsr.l		set_tag_x		# tag the operand type | 
 | 682 | 	cmpi.b		%d0,&UNNORM		# is operand an UNNORM? | 
 | 683 | 	bne.b		fovfl_op2_done		# no | 
 | 684 | 	bsr.l		unnorm_fix		# yes; convert to NORM,DENORM,or ZERO | 
 | 685 | fovfl_op2_done: | 
 | 686 | 	mov.b		%d0,DTAG(%a6)		# save dst optype tag | 
 | 687 |  | 
 | 688 | fovfl_extract: | 
 | 689 |  | 
 | 690 | #$#	mov.l		FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6) | 
 | 691 | #$#	mov.l		FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6) | 
 | 692 | #$#	mov.l		FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6) | 
 | 693 | #$#	mov.l		FP_DST_EX(%a6),TRAP_DSTOP_EX(%a6) | 
 | 694 | #$#	mov.l		FP_DST_HI(%a6),TRAP_DSTOP_HI(%a6) | 
 | 695 | #$#	mov.l		FP_DST_LO(%a6),TRAP_DSTOP_LO(%a6) | 
 | 696 |  | 
 | 697 | 	clr.l		%d0 | 
 | 698 | 	mov.b		FPCR_MODE(%a6),%d0	# pass rnd prec/mode | 
 | 699 |  | 
 | 700 | 	mov.b		1+EXC_CMDREG(%a6),%d1 | 
 | 701 | 	andi.w		&0x007f,%d1		# extract extension | 
 | 702 |  | 
 | 703 | 	andi.l		&0x00ff01ff,USER_FPSR(%a6) # zero all but accured field | 
 | 704 |  | 
 | 705 | 	fmov.l		&0x0,%fpcr		# zero current control regs | 
 | 706 | 	fmov.l		&0x0,%fpsr | 
 | 707 |  | 
 | 708 | 	lea		FP_SRC(%a6),%a0 | 
 | 709 | 	lea		FP_DST(%a6),%a1 | 
 | 710 |  | 
 | 711 | # maybe we can make these entry points ONLY the OVFL entry points of each routine. | 
 | 712 | 	mov.l		(tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr | 
 | 713 | 	jsr		(tbl_unsupp.l,%pc,%d1.l*1) | 
 | 714 |  | 
 | 715 | # the operation has been emulated. the result is in fp0. | 
 | 716 | # the EXOP, if an exception occurred, is in fp1. | 
 | 717 | # we must save the default result regardless of whether | 
 | 718 | # traps are enabled or disabled. | 
 | 719 | 	bfextu		EXC_CMDREG(%a6){&6:&3},%d0 | 
 | 720 | 	bsr.l		store_fpreg | 
 | 721 |  | 
 | 722 | # the exceptional possibilities we have left ourselves with are ONLY overflow | 
 | 723 | # and inexact. and, the inexact is such that overflow occurred and was disabled | 
 | 724 | # but inexact was enabled. | 
 | 725 | 	btst		&ovfl_bit,FPCR_ENABLE(%a6) | 
 | 726 | 	bne.b		fovfl_ovfl_on | 
 | 727 |  | 
 | 728 | 	btst		&inex2_bit,FPCR_ENABLE(%a6) | 
 | 729 | 	bne.b		fovfl_inex_on | 
 | 730 |  | 
 | 731 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 732 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 733 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 734 |  | 
 | 735 | 	unlk		%a6 | 
 | 736 | #$#	add.l		&24,%sp | 
 | 737 | 	bra.l		_fpsp_done | 
 | 738 |  | 
 | 739 | # overflow is enabled AND overflow, of course, occurred. so, we have the EXOP | 
 | 740 | # in fp1. now, simply jump to _real_ovfl()! | 
 | 741 | fovfl_ovfl_on: | 
 | 742 | 	fmovm.x		&0x40,FP_SRC(%a6)	# save EXOP (fp1) to stack | 
 | 743 |  | 
 | 744 | 	mov.w		&0xe005,2+FP_SRC(%a6)	# save exc status | 
 | 745 |  | 
 | 746 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 747 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 748 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 749 |  | 
 | 750 | 	frestore	FP_SRC(%a6)		# do this after fmovm,other f<op>s! | 
 | 751 |  | 
 | 752 | 	unlk		%a6 | 
 | 753 |  | 
 | 754 | 	bra.l		_real_ovfl | 
 | 755 |  | 
 | 756 | # overflow occurred but is disabled. meanwhile, inexact is enabled. therefore, | 
 | 757 | # we must jump to real_inex(). | 
 | 758 | fovfl_inex_on: | 
 | 759 |  | 
 | 760 | 	fmovm.x		&0x40,FP_SRC(%a6)	# save EXOP (fp1) to stack | 
 | 761 |  | 
 | 762 | 	mov.b		&0xc4,1+EXC_VOFF(%a6)	# vector offset = 0xc4 | 
 | 763 | 	mov.w		&0xe001,2+FP_SRC(%a6)	# save exc status | 
 | 764 |  | 
 | 765 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 766 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 767 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 768 |  | 
 | 769 | 	frestore	FP_SRC(%a6)		# do this after fmovm,other f<op>s! | 
 | 770 |  | 
 | 771 | 	unlk		%a6 | 
 | 772 |  | 
 | 773 | 	bra.l		_real_inex | 
 | 774 |  | 
 | 775 | ######################################################################## | 
 | 776 | fovfl_out: | 
 | 777 |  | 
 | 778 |  | 
 | 779 | #$#	mov.l		FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6) | 
 | 780 | #$#	mov.l		FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6) | 
 | 781 | #$#	mov.l		FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6) | 
 | 782 |  | 
 | 783 | # the src operand is definitely a NORM(!), so tag it as such | 
 | 784 | 	mov.b		&NORM,STAG(%a6)		# set src optype tag | 
 | 785 |  | 
 | 786 | 	clr.l		%d0 | 
 | 787 | 	mov.b		FPCR_MODE(%a6),%d0	# pass rnd prec/mode | 
 | 788 |  | 
 | 789 | 	and.l		&0xffff00ff,USER_FPSR(%a6) # zero all but accured field | 
 | 790 |  | 
 | 791 | 	fmov.l		&0x0,%fpcr		# zero current control regs | 
 | 792 | 	fmov.l		&0x0,%fpsr | 
 | 793 |  | 
 | 794 | 	lea		FP_SRC(%a6),%a0		# pass ptr to src operand | 
 | 795 |  | 
 | 796 | 	bsr.l		fout | 
 | 797 |  | 
 | 798 | 	btst		&ovfl_bit,FPCR_ENABLE(%a6) | 
 | 799 | 	bne.w		fovfl_ovfl_on | 
 | 800 |  | 
 | 801 | 	btst		&inex2_bit,FPCR_ENABLE(%a6) | 
 | 802 | 	bne.w		fovfl_inex_on | 
 | 803 |  | 
 | 804 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 805 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 806 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 807 |  | 
 | 808 | 	unlk		%a6 | 
 | 809 | #$#	add.l		&24,%sp | 
 | 810 |  | 
 | 811 | 	btst		&0x7,(%sp)		# is trace on? | 
 | 812 | 	beq.l		_fpsp_done		# no | 
 | 813 |  | 
 | 814 | 	fmov.l		%fpiar,0x8(%sp)		# "Current PC" is in FPIAR | 
 | 815 | 	mov.w		&0x2024,0x6(%sp)	# stk fmt = 0x2; voff = 0x024 | 
 | 816 | 	bra.l		_real_trace | 
 | 817 |  | 
 | 818 | ######################################################################### | 
 | 819 | # XDEF ****************************************************************	# | 
 | 820 | #	_fpsp_unfl(): 060FPSP entry point for FP Underflow exception.	# | 
 | 821 | #									# | 
 | 822 | #	This handler should be the first code executed upon taking the	# | 
 | 823 | #	FP Underflow exception in an operating system.			# | 
 | 824 | #									# | 
 | 825 | # XREF ****************************************************************	# | 
 | 826 | #	_imem_read_long() - read instruction longword			# | 
 | 827 | #	fix_skewed_ops() - adjust src operand in fsave frame		# | 
 | 828 | #	set_tag_x() - determine optype of src/dst operands		# | 
 | 829 | #	store_fpreg() - store opclass 0 or 2 result to FP regfile	# | 
 | 830 | #	unnorm_fix() - change UNNORM operands to NORM or ZERO		# | 
 | 831 | #	load_fpn2() - load dst operand from FP regfile			# | 
 | 832 | #	fout() - emulate an opclass 3 instruction			# | 
 | 833 | #	tbl_unsupp - add of table of emulation routines for opclass 0,2	# | 
 | 834 | #	_fpsp_done() - "callout" for 060FPSP exit (all work done!)	# | 
 | 835 | #	_real_ovfl() - "callout" for Overflow exception enabled code	# | 
 | 836 | #	_real_inex() - "callout" for Inexact exception enabled code	# | 
 | 837 | #	_real_trace() - "callout" for Trace exception code		# | 
 | 838 | #									# | 
 | 839 | # INPUT ***************************************************************	# | 
 | 840 | #	- The system stack contains the FP Unfl exception stack frame	# | 
 | 841 | #	- The fsave frame contains the source operand			# | 
 | 842 | #									# | 
 | 843 | # OUTPUT **************************************************************	# | 
 | 844 | #	Underflow Exception enabled:					# | 
 | 845 | #	- The system stack is unchanged					# | 
 | 846 | #	- The fsave frame contains the adjusted src op for opclass 0,2	# | 
 | 847 | #	Underflow Exception disabled:					# | 
 | 848 | #	- The system stack is unchanged					# | 
 | 849 | #	- The "exception present" flag in the fsave frame is cleared	# | 
 | 850 | #									# | 
 | 851 | # ALGORITHM ***********************************************************	# | 
 | 852 | #	On the 060, if an FP underflow is present as the result of any	# | 
 | 853 | # instruction, the 060 will take an underflow exception whether the	# | 
 | 854 | # exception is enabled or disabled in the FPCR. For the disabled case,	# | 
 | 855 | # This handler emulates the instruction to determine what the correct	# | 
 | 856 | # default result should be for the operation. This default result is	# | 
 | 857 | # then stored in either the FP regfile, data regfile, or memory.	# | 
 | 858 | # Finally, the handler exits through the "callout" _fpsp_done()		# | 
 | 859 | # denoting that no exceptional conditions exist within the machine.	# | 
 | 860 | #	If the exception is enabled, then this handler must create the	# | 
 | 861 | # exceptional operand and plave it in the fsave state frame, and store	# | 
 | 862 | # the default result (only if the instruction is opclass 3). For	# | 
 | 863 | # exceptions enabled, this handler must exit through the "callout"	# | 
 | 864 | # _real_unfl() so that the operating system enabled overflow handler	# | 
 | 865 | # can handle this case.							# | 
 | 866 | #	Two other conditions exist. First, if underflow was disabled	# | 
 | 867 | # but the inexact exception was enabled and the result was inexact,	# | 
 | 868 | # this handler must exit through the "callout" _real_inex().		# | 
 | 869 | # was inexact.								# | 
 | 870 | #	Also, in the case of an opclass three instruction where		# | 
 | 871 | # underflow was disabled and the trace exception was enabled, this	# | 
 | 872 | # handler must exit through the "callout" _real_trace().		# | 
 | 873 | #									# | 
 | 874 | ######################################################################### | 
 | 875 |  | 
 | 876 | 	global		_fpsp_unfl | 
 | 877 | _fpsp_unfl: | 
 | 878 |  | 
 | 879 | #$#	sub.l		&24,%sp			# make room for src/dst | 
 | 880 |  | 
 | 881 | 	link.w		%a6,&-LOCAL_SIZE	# init stack frame | 
 | 882 |  | 
 | 883 | 	fsave		FP_SRC(%a6)		# grab the "busy" frame | 
 | 884 |  | 
 | 885 | 	movm.l		&0x0303,EXC_DREGS(%a6)	# save d0-d1/a0-a1 | 
 | 886 | 	fmovm.l		%fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs | 
 | 887 | 	fmovm.x		&0xc0,EXC_FPREGS(%a6)	# save fp0-fp1 on stack | 
 | 888 |  | 
 | 889 | # the FPIAR holds the "current PC" of the faulting instruction | 
 | 890 | 	mov.l		USER_FPIAR(%a6),EXC_EXTWPTR(%a6) | 
 | 891 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 892 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 893 | 	bsr.l		_imem_read_long		# fetch the instruction words | 
 | 894 | 	mov.l		%d0,EXC_OPWORD(%a6) | 
 | 895 |  | 
 | 896 | ############################################################################## | 
 | 897 |  | 
 | 898 | 	btst		&0x5,EXC_CMDREG(%a6)	# is instr an fmove out? | 
 | 899 | 	bne.w		funfl_out | 
 | 900 |  | 
 | 901 |  | 
 | 902 | 	lea		FP_SRC(%a6),%a0		# pass: ptr to src op | 
 | 903 | 	bsr.l		fix_skewed_ops		# fix src op | 
 | 904 |  | 
 | 905 | 	lea		FP_SRC(%a6),%a0		# pass: ptr to src op | 
 | 906 | 	bsr.l		set_tag_x		# tag the operand type | 
 | 907 | 	mov.b		%d0,STAG(%a6)		# maybe NORM,DENORM | 
 | 908 |  | 
 | 909 | # bit five of the fp ext word separates the monadic and dyadic operations | 
 | 910 | # that can pass through fpsp_unfl(). remember that fcmp, and ftst | 
 | 911 | # will never take this exception. | 
 | 912 | 	btst		&0x5,1+EXC_CMDREG(%a6)	# is op monadic or dyadic? | 
 | 913 | 	beq.b		funfl_extract		# monadic | 
 | 914 |  | 
 | 915 | # now, what's left that's not dyadic is fsincos. we can distinguish it | 
 | 916 | # from all dyadics by the '0110xxx pattern | 
 | 917 | 	btst		&0x4,1+EXC_CMDREG(%a6)	# is op an fsincos? | 
 | 918 | 	bne.b		funfl_extract		# yes | 
 | 919 |  | 
 | 920 | 	bfextu		EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg | 
 | 921 | 	bsr.l		load_fpn2		# load dst into FP_DST | 
 | 922 |  | 
 | 923 | 	lea		FP_DST(%a6),%a0		# pass: ptr to dst op | 
 | 924 | 	bsr.l		set_tag_x		# tag the operand type | 
 | 925 | 	cmpi.b		%d0,&UNNORM		# is operand an UNNORM? | 
 | 926 | 	bne.b		funfl_op2_done		# no | 
 | 927 | 	bsr.l		unnorm_fix		# yes; convert to NORM,DENORM,or ZERO | 
 | 928 | funfl_op2_done: | 
 | 929 | 	mov.b		%d0,DTAG(%a6)		# save dst optype tag | 
 | 930 |  | 
 | 931 | funfl_extract: | 
 | 932 |  | 
 | 933 | #$#	mov.l		FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6) | 
 | 934 | #$#	mov.l		FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6) | 
 | 935 | #$#	mov.l		FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6) | 
 | 936 | #$#	mov.l		FP_DST_EX(%a6),TRAP_DSTOP_EX(%a6) | 
 | 937 | #$#	mov.l		FP_DST_HI(%a6),TRAP_DSTOP_HI(%a6) | 
 | 938 | #$#	mov.l		FP_DST_LO(%a6),TRAP_DSTOP_LO(%a6) | 
 | 939 |  | 
 | 940 | 	clr.l		%d0 | 
 | 941 | 	mov.b		FPCR_MODE(%a6),%d0	# pass rnd prec/mode | 
 | 942 |  | 
 | 943 | 	mov.b		1+EXC_CMDREG(%a6),%d1 | 
 | 944 | 	andi.w		&0x007f,%d1		# extract extension | 
 | 945 |  | 
 | 946 | 	andi.l		&0x00ff01ff,USER_FPSR(%a6) | 
 | 947 |  | 
 | 948 | 	fmov.l		&0x0,%fpcr		# zero current control regs | 
 | 949 | 	fmov.l		&0x0,%fpsr | 
 | 950 |  | 
 | 951 | 	lea		FP_SRC(%a6),%a0 | 
 | 952 | 	lea		FP_DST(%a6),%a1 | 
 | 953 |  | 
 | 954 | # maybe we can make these entry points ONLY the OVFL entry points of each routine. | 
 | 955 | 	mov.l		(tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr | 
 | 956 | 	jsr		(tbl_unsupp.l,%pc,%d1.l*1) | 
 | 957 |  | 
 | 958 | 	bfextu		EXC_CMDREG(%a6){&6:&3},%d0 | 
 | 959 | 	bsr.l		store_fpreg | 
 | 960 |  | 
 | 961 | # The `060 FPU multiplier hardware is such that if the result of a | 
 | 962 | # multiply operation is the smallest possible normalized number | 
 | 963 | # (0x00000000_80000000_00000000), then the machine will take an | 
 | 964 | # underflow exception. Since this is incorrect, we need to check | 
 | 965 | # if our emulation, after re-doing the operation, decided that | 
 | 966 | # no underflow was called for. We do these checks only in | 
 | 967 | # funfl_{unfl,inex}_on() because w/ both exceptions disabled, this | 
 | 968 | # special case will simply exit gracefully with the correct result. | 
 | 969 |  | 
 | 970 | # the exceptional possibilities we have left ourselves with are ONLY overflow | 
 | 971 | # and inexact. and, the inexact is such that overflow occurred and was disabled | 
 | 972 | # but inexact was enabled. | 
 | 973 | 	btst		&unfl_bit,FPCR_ENABLE(%a6) | 
 | 974 | 	bne.b		funfl_unfl_on | 
 | 975 |  | 
 | 976 | funfl_chkinex: | 
 | 977 | 	btst		&inex2_bit,FPCR_ENABLE(%a6) | 
 | 978 | 	bne.b		funfl_inex_on | 
 | 979 |  | 
 | 980 | funfl_exit: | 
 | 981 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 982 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 983 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 984 |  | 
 | 985 | 	unlk		%a6 | 
 | 986 | #$#	add.l		&24,%sp | 
 | 987 | 	bra.l		_fpsp_done | 
 | 988 |  | 
 | 989 | # overflow is enabled AND overflow, of course, occurred. so, we have the EXOP | 
 | 990 | # in fp1 (don't forget to save fp0). what to do now? | 
 | 991 | # well, we simply have to get to go to _real_unfl()! | 
 | 992 | funfl_unfl_on: | 
 | 993 |  | 
 | 994 | # The `060 FPU multiplier hardware is such that if the result of a | 
 | 995 | # multiply operation is the smallest possible normalized number | 
 | 996 | # (0x00000000_80000000_00000000), then the machine will take an | 
 | 997 | # underflow exception. Since this is incorrect, we check here to see | 
 | 998 | # if our emulation, after re-doing the operation, decided that | 
 | 999 | # no underflow was called for. | 
 | 1000 | 	btst		&unfl_bit,FPSR_EXCEPT(%a6) | 
 | 1001 | 	beq.w		funfl_chkinex | 
 | 1002 |  | 
 | 1003 | funfl_unfl_on2: | 
 | 1004 | 	fmovm.x		&0x40,FP_SRC(%a6)	# save EXOP (fp1) to stack | 
 | 1005 |  | 
 | 1006 | 	mov.w		&0xe003,2+FP_SRC(%a6)	# save exc status | 
 | 1007 |  | 
 | 1008 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 1009 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 1010 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 1011 |  | 
 | 1012 | 	frestore	FP_SRC(%a6)		# do this after fmovm,other f<op>s! | 
 | 1013 |  | 
 | 1014 | 	unlk		%a6 | 
 | 1015 |  | 
 | 1016 | 	bra.l		_real_unfl | 
 | 1017 |  | 
 | 1018 | # undeflow occurred but is disabled. meanwhile, inexact is enabled. therefore, | 
 | 1019 | # we must jump to real_inex(). | 
 | 1020 | funfl_inex_on: | 
 | 1021 |  | 
 | 1022 | # The `060 FPU multiplier hardware is such that if the result of a | 
 | 1023 | # multiply operation is the smallest possible normalized number | 
 | 1024 | # (0x00000000_80000000_00000000), then the machine will take an | 
 | 1025 | # underflow exception. | 
 | 1026 | # But, whether bogus or not, if inexact is enabled AND it occurred, | 
 | 1027 | # then we have to branch to real_inex. | 
 | 1028 |  | 
 | 1029 | 	btst		&inex2_bit,FPSR_EXCEPT(%a6) | 
 | 1030 | 	beq.w		funfl_exit | 
 | 1031 |  | 
 | 1032 | funfl_inex_on2: | 
 | 1033 |  | 
 | 1034 | 	fmovm.x		&0x40,FP_SRC(%a6)	# save EXOP to stack | 
 | 1035 |  | 
 | 1036 | 	mov.b		&0xc4,1+EXC_VOFF(%a6)	# vector offset = 0xc4 | 
 | 1037 | 	mov.w		&0xe001,2+FP_SRC(%a6)	# save exc status | 
 | 1038 |  | 
 | 1039 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 1040 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 1041 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 1042 |  | 
 | 1043 | 	frestore	FP_SRC(%a6)		# do this after fmovm,other f<op>s! | 
 | 1044 |  | 
 | 1045 | 	unlk		%a6 | 
 | 1046 |  | 
 | 1047 | 	bra.l		_real_inex | 
 | 1048 |  | 
 | 1049 | ####################################################################### | 
 | 1050 | funfl_out: | 
 | 1051 |  | 
 | 1052 |  | 
 | 1053 | #$#	mov.l		FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6) | 
 | 1054 | #$#	mov.l		FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6) | 
 | 1055 | #$#	mov.l		FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6) | 
 | 1056 |  | 
 | 1057 | # the src operand is definitely a NORM(!), so tag it as such | 
 | 1058 | 	mov.b		&NORM,STAG(%a6)		# set src optype tag | 
 | 1059 |  | 
 | 1060 | 	clr.l		%d0 | 
 | 1061 | 	mov.b		FPCR_MODE(%a6),%d0	# pass rnd prec/mode | 
 | 1062 |  | 
 | 1063 | 	and.l		&0xffff00ff,USER_FPSR(%a6) # zero all but accured field | 
 | 1064 |  | 
 | 1065 | 	fmov.l		&0x0,%fpcr		# zero current control regs | 
 | 1066 | 	fmov.l		&0x0,%fpsr | 
 | 1067 |  | 
 | 1068 | 	lea		FP_SRC(%a6),%a0		# pass ptr to src operand | 
 | 1069 |  | 
 | 1070 | 	bsr.l		fout | 
 | 1071 |  | 
 | 1072 | 	btst		&unfl_bit,FPCR_ENABLE(%a6) | 
 | 1073 | 	bne.w		funfl_unfl_on2 | 
 | 1074 |  | 
 | 1075 | 	btst		&inex2_bit,FPCR_ENABLE(%a6) | 
 | 1076 | 	bne.w		funfl_inex_on2 | 
 | 1077 |  | 
 | 1078 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 1079 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 1080 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 1081 |  | 
 | 1082 | 	unlk		%a6 | 
 | 1083 | #$#	add.l		&24,%sp | 
 | 1084 |  | 
 | 1085 | 	btst		&0x7,(%sp)		# is trace on? | 
 | 1086 | 	beq.l		_fpsp_done		# no | 
 | 1087 |  | 
 | 1088 | 	fmov.l		%fpiar,0x8(%sp)		# "Current PC" is in FPIAR | 
 | 1089 | 	mov.w		&0x2024,0x6(%sp)	# stk fmt = 0x2; voff = 0x024 | 
 | 1090 | 	bra.l		_real_trace | 
 | 1091 |  | 
 | 1092 | ######################################################################### | 
 | 1093 | # XDEF ****************************************************************	# | 
 | 1094 | #	_fpsp_unsupp(): 060FPSP entry point for FP "Unimplemented	# | 
 | 1095 | #		        Data Type" exception.				# | 
 | 1096 | #									# | 
 | 1097 | #	This handler should be the first code executed upon taking the	# | 
 | 1098 | #	FP Unimplemented Data Type exception in an operating system.	# | 
 | 1099 | #									# | 
 | 1100 | # XREF ****************************************************************	# | 
 | 1101 | #	_imem_read_{word,long}() - read instruction word/longword	# | 
 | 1102 | #	fix_skewed_ops() - adjust src operand in fsave frame		# | 
 | 1103 | #	set_tag_x() - determine optype of src/dst operands		# | 
 | 1104 | #	store_fpreg() - store opclass 0 or 2 result to FP regfile	# | 
 | 1105 | #	unnorm_fix() - change UNNORM operands to NORM or ZERO		# | 
 | 1106 | #	load_fpn2() - load dst operand from FP regfile			# | 
 | 1107 | #	load_fpn1() - load src operand from FP regfile			# | 
 | 1108 | #	fout() - emulate an opclass 3 instruction			# | 
 | 1109 | #	tbl_unsupp - add of table of emulation routines for opclass 0,2	# | 
 | 1110 | #	_real_inex() - "callout" to operating system inexact handler	# | 
 | 1111 | #	_fpsp_done() - "callout" for exit; work all done		# | 
 | 1112 | #	_real_trace() - "callout" for Trace enabled exception		# | 
 | 1113 | #	funimp_skew() - adjust fsave src ops to "incorrect" value	# | 
 | 1114 | #	_real_snan() - "callout" for SNAN exception			# | 
 | 1115 | #	_real_operr() - "callout" for OPERR exception			# | 
 | 1116 | #	_real_ovfl() - "callout" for OVFL exception			# | 
 | 1117 | #	_real_unfl() - "callout" for UNFL exception			# | 
 | 1118 | #	get_packed() - fetch packed operand from memory			# | 
 | 1119 | #									# | 
 | 1120 | # INPUT ***************************************************************	# | 
 | 1121 | #	- The system stack contains the "Unimp Data Type" stk frame	# | 
 | 1122 | #	- The fsave frame contains the ssrc op (for UNNORM/DENORM)	# | 
 | 1123 | #									# | 
 | 1124 | # OUTPUT **************************************************************	# | 
 | 1125 | #	If Inexact exception (opclass 3):				# | 
 | 1126 | #	- The system stack is changed to an Inexact exception stk frame	# | 
 | 1127 | #	If SNAN exception (opclass 3):					# | 
 | 1128 | #	- The system stack is changed to an SNAN exception stk frame	# | 
 | 1129 | #	If OPERR exception (opclass 3):					# | 
 | 1130 | #	- The system stack is changed to an OPERR exception stk frame	# | 
 | 1131 | #	If OVFL exception (opclass 3):					# | 
 | 1132 | #	- The system stack is changed to an OVFL exception stk frame	# | 
 | 1133 | #	If UNFL exception (opclass 3):					# | 
 | 1134 | #	- The system stack is changed to an UNFL exception stack frame	# | 
 | 1135 | #	If Trace exception enabled:					# | 
 | 1136 | #	- The system stack is changed to a Trace exception stack frame	# | 
 | 1137 | #	Else: (normal case)						# | 
 | 1138 | #	- Correct result has been stored as appropriate			# | 
 | 1139 | #									# | 
 | 1140 | # ALGORITHM ***********************************************************	# | 
 | 1141 | #	Two main instruction types can enter here: (1) DENORM or UNNORM	# | 
 | 1142 | # unimplemented data types. These can be either opclass 0,2 or 3	# | 
 | 1143 | # instructions, and (2) PACKED unimplemented data format instructions	# | 
 | 1144 | # also of opclasses 0,2, or 3.						# | 
 | 1145 | #	For UNNORM/DENORM opclass 0 and 2, the handler fetches the src	# | 
 | 1146 | # operand from the fsave state frame and the dst operand (if dyadic)	# | 
 | 1147 | # from the FP register file. The instruction is then emulated by	# | 
 | 1148 | # choosing an emulation routine from a table of routines indexed by	# | 
 | 1149 | # instruction type. Once the instruction has been emulated and result	# | 
 | 1150 | # saved, then we check to see if any enabled exceptions resulted from	# | 
 | 1151 | # instruction emulation. If none, then we exit through the "callout"	# | 
 | 1152 | # _fpsp_done(). If there is an enabled FP exception, then we insert	# | 
 | 1153 | # this exception into the FPU in the fsave state frame and then exit	# | 
 | 1154 | # through _fpsp_done().							# | 
 | 1155 | #	PACKED opclass 0 and 2 is similar in how the instruction is	# | 
 | 1156 | # emulated and exceptions handled. The differences occur in how the	# | 
 | 1157 | # handler loads the packed op (by calling get_packed() routine) and	# | 
 | 1158 | # by the fact that a Trace exception could be pending for PACKED ops.	# | 
 | 1159 | # If a Trace exception is pending, then the current exception stack	# | 
 | 1160 | # frame is changed to a Trace exception stack frame and an exit is	# | 
 | 1161 | # made through _real_trace().						# | 
 | 1162 | #	For UNNORM/DENORM opclass 3, the actual move out to memory is	# | 
 | 1163 | # performed by calling the routine fout(). If no exception should occur	# | 
 | 1164 | # as the result of emulation, then an exit either occurs through	# | 
 | 1165 | # _fpsp_done() or through _real_trace() if a Trace exception is pending	# | 
 | 1166 | # (a Trace stack frame must be created here, too). If an FP exception	# | 
 | 1167 | # should occur, then we must create an exception stack frame of that	# | 
 | 1168 | # type and jump to either _real_snan(), _real_operr(), _real_inex(),	# | 
 | 1169 | # _real_unfl(), or _real_ovfl() as appropriate. PACKED opclass 3	# | 
 | 1170 | # emulation is performed in a similar manner.				# | 
 | 1171 | #									# | 
 | 1172 | ######################################################################### | 
 | 1173 |  | 
 | 1174 | # | 
 | 1175 | # (1) DENORM and UNNORM (unimplemented) data types: | 
 | 1176 | # | 
 | 1177 | #				post-instruction | 
 | 1178 | #				***************** | 
 | 1179 | #				*      EA	* | 
 | 1180 | #	 pre-instruction	*		* | 
 | 1181 | #	*****************	***************** | 
 | 1182 | #	* 0x0 *  0x0dc  *	* 0x3 *  0x0dc  * | 
 | 1183 | #	*****************	***************** | 
 | 1184 | #	*     Next	*	*     Next	* | 
 | 1185 | #	*      PC	*	*      PC	* | 
 | 1186 | #	*****************	***************** | 
 | 1187 | #	*      SR	*	*      SR	* | 
 | 1188 | #	*****************	***************** | 
 | 1189 | # | 
 | 1190 | # (2) PACKED format (unsupported) opclasses two and three: | 
 | 1191 | #	***************** | 
 | 1192 | #	*      EA	* | 
 | 1193 | #	*		* | 
 | 1194 | #	***************** | 
 | 1195 | #	* 0x2 *  0x0dc	* | 
 | 1196 | #	***************** | 
 | 1197 | #	*     Next	* | 
 | 1198 | #	*      PC	* | 
 | 1199 | #	***************** | 
 | 1200 | #	*      SR	* | 
 | 1201 | #	***************** | 
 | 1202 | # | 
 | 1203 | 	global		_fpsp_unsupp | 
 | 1204 | _fpsp_unsupp: | 
 | 1205 |  | 
 | 1206 | 	link.w		%a6,&-LOCAL_SIZE	# init stack frame | 
 | 1207 |  | 
 | 1208 | 	fsave		FP_SRC(%a6)		# save fp state | 
 | 1209 |  | 
 | 1210 | 	movm.l		&0x0303,EXC_DREGS(%a6)	# save d0-d1/a0-a1 | 
 | 1211 | 	fmovm.l		%fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs | 
 | 1212 | 	fmovm.x		&0xc0,EXC_FPREGS(%a6)	# save fp0-fp1 on stack | 
 | 1213 |  | 
 | 1214 | 	btst		&0x5,EXC_SR(%a6)	# user or supervisor mode? | 
 | 1215 | 	bne.b		fu_s | 
 | 1216 | fu_u: | 
 | 1217 | 	mov.l		%usp,%a0		# fetch user stack pointer | 
 | 1218 | 	mov.l		%a0,EXC_A7(%a6)		# save on stack | 
 | 1219 | 	bra.b		fu_cont | 
 | 1220 | # if the exception is an opclass zero or two unimplemented data type | 
 | 1221 | # exception, then the a7' calculated here is wrong since it doesn't | 
 | 1222 | # stack an ea. however, we don't need an a7' for this case anyways. | 
 | 1223 | fu_s: | 
 | 1224 | 	lea		0x4+EXC_EA(%a6),%a0	# load old a7' | 
 | 1225 | 	mov.l		%a0,EXC_A7(%a6)		# save on stack | 
 | 1226 |  | 
 | 1227 | fu_cont: | 
 | 1228 |  | 
 | 1229 | # the FPIAR holds the "current PC" of the faulting instruction | 
 | 1230 | # the FPIAR should be set correctly for ALL exceptions passing through | 
 | 1231 | # this point. | 
 | 1232 | 	mov.l		USER_FPIAR(%a6),EXC_EXTWPTR(%a6) | 
 | 1233 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 1234 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 1235 | 	bsr.l		_imem_read_long		# fetch the instruction words | 
 | 1236 | 	mov.l		%d0,EXC_OPWORD(%a6)	# store OPWORD and EXTWORD | 
 | 1237 |  | 
 | 1238 | ############################ | 
 | 1239 |  | 
 | 1240 | 	clr.b		SPCOND_FLG(%a6)		# clear special condition flag | 
 | 1241 |  | 
 | 1242 | # Separate opclass three (fpn-to-mem) ops since they have a different | 
 | 1243 | # stack frame and protocol. | 
 | 1244 | 	btst		&0x5,EXC_CMDREG(%a6)	# is it an fmove out? | 
 | 1245 | 	bne.w		fu_out			# yes | 
 | 1246 |  | 
 | 1247 | # Separate packed opclass two instructions. | 
 | 1248 | 	bfextu		EXC_CMDREG(%a6){&0:&6},%d0 | 
 | 1249 | 	cmpi.b		%d0,&0x13 | 
 | 1250 | 	beq.w		fu_in_pack | 
 | 1251 |  | 
 | 1252 |  | 
 | 1253 | # I'm not sure at this point what FPSR bits are valid for this instruction. | 
 | 1254 | # so, since the emulation routines re-create them anyways, zero exception field | 
 | 1255 | 	andi.l		&0x00ff00ff,USER_FPSR(%a6) # zero exception field | 
 | 1256 |  | 
 | 1257 | 	fmov.l		&0x0,%fpcr		# zero current control regs | 
 | 1258 | 	fmov.l		&0x0,%fpsr | 
 | 1259 |  | 
 | 1260 | # Opclass two w/ memory-to-fpn operation will have an incorrect extended | 
 | 1261 | # precision format if the src format was single or double and the | 
 | 1262 | # source data type was an INF, NAN, DENORM, or UNNORM | 
 | 1263 | 	lea		FP_SRC(%a6),%a0		# pass ptr to input | 
 | 1264 | 	bsr.l		fix_skewed_ops | 
 | 1265 |  | 
 | 1266 | # we don't know whether the src operand or the dst operand (or both) is the | 
 | 1267 | # UNNORM or DENORM. call the function that tags the operand type. if the | 
 | 1268 | # input is an UNNORM, then convert it to a NORM, DENORM, or ZERO. | 
 | 1269 | 	lea		FP_SRC(%a6),%a0		# pass: ptr to src op | 
 | 1270 | 	bsr.l		set_tag_x		# tag the operand type | 
 | 1271 | 	cmpi.b		%d0,&UNNORM		# is operand an UNNORM? | 
 | 1272 | 	bne.b		fu_op2			# no | 
 | 1273 | 	bsr.l		unnorm_fix		# yes; convert to NORM,DENORM,or ZERO | 
 | 1274 |  | 
 | 1275 | fu_op2: | 
 | 1276 | 	mov.b		%d0,STAG(%a6)		# save src optype tag | 
 | 1277 |  | 
 | 1278 | 	bfextu		EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg | 
 | 1279 |  | 
 | 1280 | # bit five of the fp extension word separates the monadic and dyadic operations | 
 | 1281 | # at this point | 
 | 1282 | 	btst		&0x5,1+EXC_CMDREG(%a6)	# is operation monadic or dyadic? | 
 | 1283 | 	beq.b		fu_extract		# monadic | 
 | 1284 | 	cmpi.b		1+EXC_CMDREG(%a6),&0x3a	# is operation an ftst? | 
 | 1285 | 	beq.b		fu_extract		# yes, so it's monadic, too | 
 | 1286 |  | 
 | 1287 | 	bsr.l		load_fpn2		# load dst into FP_DST | 
 | 1288 |  | 
 | 1289 | 	lea		FP_DST(%a6),%a0		# pass: ptr to dst op | 
 | 1290 | 	bsr.l		set_tag_x		# tag the operand type | 
 | 1291 | 	cmpi.b		%d0,&UNNORM		# is operand an UNNORM? | 
 | 1292 | 	bne.b		fu_op2_done		# no | 
 | 1293 | 	bsr.l		unnorm_fix		# yes; convert to NORM,DENORM,or ZERO | 
 | 1294 | fu_op2_done: | 
 | 1295 | 	mov.b		%d0,DTAG(%a6)		# save dst optype tag | 
 | 1296 |  | 
 | 1297 | fu_extract: | 
 | 1298 | 	clr.l		%d0 | 
 | 1299 | 	mov.b		FPCR_MODE(%a6),%d0	# fetch rnd mode/prec | 
 | 1300 |  | 
 | 1301 | 	bfextu		1+EXC_CMDREG(%a6){&1:&7},%d1 # extract extension | 
 | 1302 |  | 
 | 1303 | 	lea		FP_SRC(%a6),%a0 | 
 | 1304 | 	lea		FP_DST(%a6),%a1 | 
 | 1305 |  | 
 | 1306 | 	mov.l		(tbl_unsupp.l,%pc,%d1.l*4),%d1 # fetch routine addr | 
 | 1307 | 	jsr		(tbl_unsupp.l,%pc,%d1.l*1) | 
 | 1308 |  | 
 | 1309 | # | 
 | 1310 | # Exceptions in order of precedence: | 
 | 1311 | #	BSUN	: none | 
 | 1312 | #	SNAN	: all dyadic ops | 
 | 1313 | #	OPERR	: fsqrt(-NORM) | 
 | 1314 | #	OVFL	: all except ftst,fcmp | 
 | 1315 | #	UNFL	: all except ftst,fcmp | 
 | 1316 | #	DZ	: fdiv | 
 | 1317 | #	INEX2	: all except ftst,fcmp | 
 | 1318 | #	INEX1	: none (packed doesn't go through here) | 
 | 1319 | # | 
 | 1320 |  | 
 | 1321 | # we determine the highest priority exception(if any) set by the | 
 | 1322 | # emulation routine that has also been enabled by the user. | 
 | 1323 | 	mov.b		FPCR_ENABLE(%a6),%d0	# fetch exceptions set | 
 | 1324 | 	bne.b		fu_in_ena		# some are enabled | 
 | 1325 |  | 
 | 1326 | fu_in_cont: | 
 | 1327 | # fcmp and ftst do not store any result. | 
 | 1328 | 	mov.b		1+EXC_CMDREG(%a6),%d0	# fetch extension | 
 | 1329 | 	andi.b		&0x38,%d0		# extract bits 3-5 | 
 | 1330 | 	cmpi.b		%d0,&0x38		# is instr fcmp or ftst? | 
 | 1331 | 	beq.b		fu_in_exit		# yes | 
 | 1332 |  | 
 | 1333 | 	bfextu		EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg | 
 | 1334 | 	bsr.l		store_fpreg		# store the result | 
 | 1335 |  | 
 | 1336 | fu_in_exit: | 
 | 1337 |  | 
 | 1338 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 1339 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 1340 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 1341 |  | 
 | 1342 | 	unlk		%a6 | 
 | 1343 |  | 
 | 1344 | 	bra.l		_fpsp_done | 
 | 1345 |  | 
 | 1346 | fu_in_ena: | 
 | 1347 | 	and.b		FPSR_EXCEPT(%a6),%d0	# keep only ones enabled | 
 | 1348 | 	bfffo		%d0{&24:&8},%d0		# find highest priority exception | 
 | 1349 | 	bne.b		fu_in_exc		# there is at least one set | 
 | 1350 |  | 
 | 1351 | # | 
 | 1352 | # No exceptions occurred that were also enabled. Now: | 
 | 1353 | # | 
 | 1354 | #	if (OVFL && ovfl_disabled && inexact_enabled) { | 
 | 1355 | #	    branch to _real_inex() (even if the result was exact!); | 
 | 1356 | #	} else { | 
 | 1357 | #	    save the result in the proper fp reg (unless the op is fcmp or ftst); | 
 | 1358 | #	    return; | 
 | 1359 | #	} | 
 | 1360 | # | 
 | 1361 | 	btst		&ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set? | 
 | 1362 | 	beq.b		fu_in_cont		# no | 
 | 1363 |  | 
 | 1364 | fu_in_ovflchk: | 
 | 1365 | 	btst		&inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled? | 
 | 1366 | 	beq.b		fu_in_cont		# no | 
 | 1367 | 	bra.w		fu_in_exc_ovfl		# go insert overflow frame | 
 | 1368 |  | 
 | 1369 | # | 
 | 1370 | # An exception occurred and that exception was enabled: | 
 | 1371 | # | 
 | 1372 | #	shift enabled exception field into lo byte of d0; | 
 | 1373 | #	if (((INEX2 || INEX1) && inex_enabled && OVFL && ovfl_disabled) || | 
 | 1374 | #	    ((INEX2 || INEX1) && inex_enabled && UNFL && unfl_disabled)) { | 
 | 1375 | #		/* | 
 | 1376 | #		 * this is the case where we must call _real_inex() now or else | 
 | 1377 | #		 * there will be no other way to pass it the exceptional operand | 
 | 1378 | #		 */ | 
 | 1379 | #		call _real_inex(); | 
 | 1380 | #	} else { | 
 | 1381 | #		restore exc state (SNAN||OPERR||OVFL||UNFL||DZ||INEX) into the FPU; | 
 | 1382 | #	} | 
 | 1383 | # | 
 | 1384 | fu_in_exc: | 
 | 1385 | 	subi.l		&24,%d0			# fix offset to be 0-8 | 
 | 1386 | 	cmpi.b		%d0,&0x6		# is exception INEX? (6) | 
 | 1387 | 	bne.b		fu_in_exc_exit		# no | 
 | 1388 |  | 
 | 1389 | # the enabled exception was inexact | 
 | 1390 | 	btst		&unfl_bit,FPSR_EXCEPT(%a6) # did disabled underflow occur? | 
 | 1391 | 	bne.w		fu_in_exc_unfl		# yes | 
 | 1392 | 	btst		&ovfl_bit,FPSR_EXCEPT(%a6) # did disabled overflow occur? | 
 | 1393 | 	bne.w		fu_in_exc_ovfl		# yes | 
 | 1394 |  | 
 | 1395 | # here, we insert the correct fsave status value into the fsave frame for the | 
 | 1396 | # corresponding exception. the operand in the fsave frame should be the original | 
 | 1397 | # src operand. | 
 | 1398 | fu_in_exc_exit: | 
 | 1399 | 	mov.l		%d0,-(%sp)		# save d0 | 
 | 1400 | 	bsr.l		funimp_skew		# skew sgl or dbl inputs | 
 | 1401 | 	mov.l		(%sp)+,%d0		# restore d0 | 
 | 1402 |  | 
 | 1403 | 	mov.w		(tbl_except.b,%pc,%d0.w*2),2+FP_SRC(%a6) # create exc status | 
 | 1404 |  | 
 | 1405 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 1406 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 1407 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 1408 |  | 
 | 1409 | 	frestore	FP_SRC(%a6)		# restore src op | 
 | 1410 |  | 
 | 1411 | 	unlk		%a6 | 
 | 1412 |  | 
 | 1413 | 	bra.l		_fpsp_done | 
 | 1414 |  | 
 | 1415 | tbl_except: | 
 | 1416 | 	short		0xe000,0xe006,0xe004,0xe005 | 
 | 1417 | 	short		0xe003,0xe002,0xe001,0xe001 | 
 | 1418 |  | 
 | 1419 | fu_in_exc_unfl: | 
 | 1420 | 	mov.w		&0x4,%d0 | 
 | 1421 | 	bra.b		fu_in_exc_exit | 
 | 1422 | fu_in_exc_ovfl: | 
 | 1423 | 	mov.w		&0x03,%d0 | 
 | 1424 | 	bra.b		fu_in_exc_exit | 
 | 1425 |  | 
 | 1426 | # If the input operand to this operation was opclass two and a single | 
 | 1427 | # or double precision denorm, inf, or nan, the operand needs to be | 
 | 1428 | # "corrected" in order to have the proper equivalent extended precision | 
 | 1429 | # number. | 
 | 1430 | 	global		fix_skewed_ops | 
 | 1431 | fix_skewed_ops: | 
 | 1432 | 	bfextu		EXC_CMDREG(%a6){&0:&6},%d0 # extract opclass,src fmt | 
 | 1433 | 	cmpi.b		%d0,&0x11		# is class = 2 & fmt = sgl? | 
 | 1434 | 	beq.b		fso_sgl			# yes | 
 | 1435 | 	cmpi.b		%d0,&0x15		# is class = 2 & fmt = dbl? | 
 | 1436 | 	beq.b		fso_dbl			# yes | 
 | 1437 | 	rts					# no | 
 | 1438 |  | 
 | 1439 | fso_sgl: | 
 | 1440 | 	mov.w		LOCAL_EX(%a0),%d0	# fetch src exponent | 
 | 1441 | 	andi.w		&0x7fff,%d0		# strip sign | 
 | 1442 | 	cmpi.w		%d0,&0x3f80		# is |exp| == $3f80? | 
 | 1443 | 	beq.b		fso_sgl_dnrm_zero	# yes | 
 | 1444 | 	cmpi.w		%d0,&0x407f		# no; is |exp| == $407f? | 
 | 1445 | 	beq.b		fso_infnan		# yes | 
 | 1446 | 	rts					# no | 
 | 1447 |  | 
 | 1448 | fso_sgl_dnrm_zero: | 
 | 1449 | 	andi.l		&0x7fffffff,LOCAL_HI(%a0) # clear j-bit | 
 | 1450 | 	beq.b		fso_zero		# it's a skewed zero | 
 | 1451 | fso_sgl_dnrm: | 
 | 1452 | # here, we count on norm not to alter a0... | 
 | 1453 | 	bsr.l		norm			# normalize mantissa | 
 | 1454 | 	neg.w		%d0			# -shft amt | 
 | 1455 | 	addi.w		&0x3f81,%d0		# adjust new exponent | 
 | 1456 | 	andi.w		&0x8000,LOCAL_EX(%a0)	# clear old exponent | 
 | 1457 | 	or.w		%d0,LOCAL_EX(%a0)	# insert new exponent | 
 | 1458 | 	rts | 
 | 1459 |  | 
 | 1460 | fso_zero: | 
 | 1461 | 	andi.w		&0x8000,LOCAL_EX(%a0)	# clear bogus exponent | 
 | 1462 | 	rts | 
 | 1463 |  | 
 | 1464 | fso_infnan: | 
 | 1465 | 	andi.b		&0x7f,LOCAL_HI(%a0)	# clear j-bit | 
 | 1466 | 	ori.w		&0x7fff,LOCAL_EX(%a0)	# make exponent = $7fff | 
 | 1467 | 	rts | 
 | 1468 |  | 
 | 1469 | fso_dbl: | 
 | 1470 | 	mov.w		LOCAL_EX(%a0),%d0	# fetch src exponent | 
 | 1471 | 	andi.w		&0x7fff,%d0		# strip sign | 
 | 1472 | 	cmpi.w		%d0,&0x3c00		# is |exp| == $3c00? | 
 | 1473 | 	beq.b		fso_dbl_dnrm_zero	# yes | 
 | 1474 | 	cmpi.w		%d0,&0x43ff		# no; is |exp| == $43ff? | 
 | 1475 | 	beq.b		fso_infnan		# yes | 
 | 1476 | 	rts					# no | 
 | 1477 |  | 
 | 1478 | fso_dbl_dnrm_zero: | 
 | 1479 | 	andi.l		&0x7fffffff,LOCAL_HI(%a0) # clear j-bit | 
 | 1480 | 	bne.b		fso_dbl_dnrm		# it's a skewed denorm | 
 | 1481 | 	tst.l		LOCAL_LO(%a0)		# is it a zero? | 
 | 1482 | 	beq.b		fso_zero		# yes | 
 | 1483 | fso_dbl_dnrm: | 
 | 1484 | # here, we count on norm not to alter a0... | 
 | 1485 | 	bsr.l		norm			# normalize mantissa | 
 | 1486 | 	neg.w		%d0			# -shft amt | 
 | 1487 | 	addi.w		&0x3c01,%d0		# adjust new exponent | 
 | 1488 | 	andi.w		&0x8000,LOCAL_EX(%a0)	# clear old exponent | 
 | 1489 | 	or.w		%d0,LOCAL_EX(%a0)	# insert new exponent | 
 | 1490 | 	rts | 
 | 1491 |  | 
 | 1492 | ################################################################# | 
 | 1493 |  | 
 | 1494 | # fmove out took an unimplemented data type exception. | 
 | 1495 | # the src operand is in FP_SRC. Call _fout() to write out the result and | 
 | 1496 | # to determine which exceptions, if any, to take. | 
 | 1497 | fu_out: | 
 | 1498 |  | 
 | 1499 | # Separate packed move outs from the UNNORM and DENORM move outs. | 
 | 1500 | 	bfextu		EXC_CMDREG(%a6){&3:&3},%d0 | 
 | 1501 | 	cmpi.b		%d0,&0x3 | 
 | 1502 | 	beq.w		fu_out_pack | 
 | 1503 | 	cmpi.b		%d0,&0x7 | 
 | 1504 | 	beq.w		fu_out_pack | 
 | 1505 |  | 
 | 1506 |  | 
 | 1507 | # I'm not sure at this point what FPSR bits are valid for this instruction. | 
 | 1508 | # so, since the emulation routines re-create them anyways, zero exception field. | 
 | 1509 | # fmove out doesn't affect ccodes. | 
 | 1510 | 	and.l		&0xffff00ff,USER_FPSR(%a6) # zero exception field | 
 | 1511 |  | 
 | 1512 | 	fmov.l		&0x0,%fpcr		# zero current control regs | 
 | 1513 | 	fmov.l		&0x0,%fpsr | 
 | 1514 |  | 
 | 1515 | # the src can ONLY be a DENORM or an UNNORM! so, don't make any big subroutine | 
 | 1516 | # call here. just figure out what it is... | 
 | 1517 | 	mov.w		FP_SRC_EX(%a6),%d0	# get exponent | 
 | 1518 | 	andi.w		&0x7fff,%d0		# strip sign | 
 | 1519 | 	beq.b		fu_out_denorm		# it's a DENORM | 
 | 1520 |  | 
 | 1521 | 	lea		FP_SRC(%a6),%a0 | 
 | 1522 | 	bsr.l		unnorm_fix		# yes; fix it | 
 | 1523 |  | 
 | 1524 | 	mov.b		%d0,STAG(%a6) | 
 | 1525 |  | 
 | 1526 | 	bra.b		fu_out_cont | 
 | 1527 | fu_out_denorm: | 
 | 1528 | 	mov.b		&DENORM,STAG(%a6) | 
 | 1529 | fu_out_cont: | 
 | 1530 |  | 
 | 1531 | 	clr.l		%d0 | 
 | 1532 | 	mov.b		FPCR_MODE(%a6),%d0	# fetch rnd mode/prec | 
 | 1533 |  | 
 | 1534 | 	lea		FP_SRC(%a6),%a0		# pass ptr to src operand | 
 | 1535 |  | 
 | 1536 | 	mov.l		(%a6),EXC_A6(%a6)	# in case a6 changes | 
 | 1537 | 	bsr.l		fout			# call fmove out routine | 
 | 1538 |  | 
 | 1539 | # Exceptions in order of precedence: | 
 | 1540 | #	BSUN	: none | 
 | 1541 | #	SNAN	: none | 
 | 1542 | #	OPERR	: fmove.{b,w,l} out of large UNNORM | 
 | 1543 | #	OVFL	: fmove.{s,d} | 
 | 1544 | #	UNFL	: fmove.{s,d,x} | 
 | 1545 | #	DZ	: none | 
 | 1546 | #	INEX2	: all | 
 | 1547 | #	INEX1	: none (packed doesn't travel through here) | 
 | 1548 |  | 
 | 1549 | # determine the highest priority exception(if any) set by the | 
 | 1550 | # emulation routine that has also been enabled by the user. | 
 | 1551 | 	mov.b		FPCR_ENABLE(%a6),%d0	# fetch exceptions enabled | 
 | 1552 | 	bne.w		fu_out_ena		# some are enabled | 
 | 1553 |  | 
 | 1554 | fu_out_done: | 
 | 1555 |  | 
 | 1556 | 	mov.l		EXC_A6(%a6),(%a6)	# in case a6 changed | 
 | 1557 |  | 
 | 1558 | # on extended precision opclass three instructions using pre-decrement or | 
 | 1559 | # post-increment addressing mode, the address register is not updated. is the | 
 | 1560 | # address register was the stack pointer used from user mode, then let's update | 
 | 1561 | # it here. if it was used from supervisor mode, then we have to handle this | 
 | 1562 | # as a special case. | 
 | 1563 | 	btst		&0x5,EXC_SR(%a6) | 
 | 1564 | 	bne.b		fu_out_done_s | 
 | 1565 |  | 
 | 1566 | 	mov.l		EXC_A7(%a6),%a0		# restore a7 | 
 | 1567 | 	mov.l		%a0,%usp | 
 | 1568 |  | 
 | 1569 | fu_out_done_cont: | 
 | 1570 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 1571 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 1572 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 1573 |  | 
 | 1574 | 	unlk		%a6 | 
 | 1575 |  | 
 | 1576 | 	btst		&0x7,(%sp)		# is trace on? | 
 | 1577 | 	bne.b		fu_out_trace		# yes | 
 | 1578 |  | 
 | 1579 | 	bra.l		_fpsp_done | 
 | 1580 |  | 
 | 1581 | # is the ea mode pre-decrement of the stack pointer from supervisor mode? | 
 | 1582 | # ("fmov.x fpm,-(a7)") if so, | 
 | 1583 | fu_out_done_s: | 
 | 1584 | 	cmpi.b		SPCOND_FLG(%a6),&mda7_flg | 
 | 1585 | 	bne.b		fu_out_done_cont | 
 | 1586 |  | 
 | 1587 | # the extended precision result is still in fp0. but, we need to save it | 
 | 1588 | # somewhere on the stack until we can copy it to its final resting place. | 
 | 1589 | # here, we're counting on the top of the stack to be the old place-holders | 
 | 1590 | # for fp0/fp1 which have already been restored. that way, we can write | 
 | 1591 | # over those destinations with the shifted stack frame. | 
 | 1592 | 	fmovm.x		&0x80,FP_SRC(%a6)	# put answer on stack | 
 | 1593 |  | 
 | 1594 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 1595 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 1596 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 1597 |  | 
 | 1598 | 	mov.l		(%a6),%a6		# restore frame pointer | 
 | 1599 |  | 
 | 1600 | 	mov.l		LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) | 
 | 1601 | 	mov.l		LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) | 
 | 1602 |  | 
 | 1603 | # now, copy the result to the proper place on the stack | 
 | 1604 | 	mov.l		LOCAL_SIZE+FP_SRC_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp) | 
 | 1605 | 	mov.l		LOCAL_SIZE+FP_SRC_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp) | 
 | 1606 | 	mov.l		LOCAL_SIZE+FP_SRC_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp) | 
 | 1607 |  | 
 | 1608 | 	add.l		&LOCAL_SIZE-0x8,%sp | 
 | 1609 |  | 
 | 1610 | 	btst		&0x7,(%sp) | 
 | 1611 | 	bne.b		fu_out_trace | 
 | 1612 |  | 
 | 1613 | 	bra.l		_fpsp_done | 
 | 1614 |  | 
 | 1615 | fu_out_ena: | 
 | 1616 | 	and.b		FPSR_EXCEPT(%a6),%d0	# keep only ones enabled | 
 | 1617 | 	bfffo		%d0{&24:&8},%d0		# find highest priority exception | 
 | 1618 | 	bne.b		fu_out_exc		# there is at least one set | 
 | 1619 |  | 
 | 1620 | # no exceptions were set. | 
 | 1621 | # if a disabled overflow occurred and inexact was enabled but the result | 
 | 1622 | # was exact, then a branch to _real_inex() is made. | 
 | 1623 | 	btst		&ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set? | 
 | 1624 | 	beq.w		fu_out_done		# no | 
 | 1625 |  | 
 | 1626 | fu_out_ovflchk: | 
 | 1627 | 	btst		&inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled? | 
 | 1628 | 	beq.w		fu_out_done		# no | 
 | 1629 | 	bra.w		fu_inex			# yes | 
 | 1630 |  | 
 | 1631 | # | 
 | 1632 | # The fp move out that took the "Unimplemented Data Type" exception was | 
 | 1633 | # being traced. Since the stack frames are similar, get the "current" PC | 
 | 1634 | # from FPIAR and put it in the trace stack frame then jump to _real_trace(). | 
 | 1635 | # | 
 | 1636 | #		  UNSUPP FRAME		   TRACE FRAME | 
 | 1637 | #		*****************	***************** | 
 | 1638 | #		*      EA	*	*    Current	* | 
 | 1639 | #		*		*	*      PC	* | 
 | 1640 | #		*****************	***************** | 
 | 1641 | #		* 0x3 *  0x0dc	*	* 0x2 *  0x024	* | 
 | 1642 | #		*****************	***************** | 
 | 1643 | #		*     Next	*	*     Next	* | 
 | 1644 | #		*      PC	*	*      PC	* | 
 | 1645 | #		*****************	***************** | 
 | 1646 | #		*      SR	*	*      SR	* | 
 | 1647 | #		*****************	***************** | 
 | 1648 | # | 
 | 1649 | fu_out_trace: | 
 | 1650 | 	mov.w		&0x2024,0x6(%sp) | 
 | 1651 | 	fmov.l		%fpiar,0x8(%sp) | 
 | 1652 | 	bra.l		_real_trace | 
 | 1653 |  | 
 | 1654 | # an exception occurred and that exception was enabled. | 
 | 1655 | fu_out_exc: | 
 | 1656 | 	subi.l		&24,%d0			# fix offset to be 0-8 | 
 | 1657 |  | 
 | 1658 | # we don't mess with the existing fsave frame. just re-insert it and | 
 | 1659 | # jump to the "_real_{}()" handler... | 
 | 1660 | 	mov.w		(tbl_fu_out.b,%pc,%d0.w*2),%d0 | 
 | 1661 | 	jmp		(tbl_fu_out.b,%pc,%d0.w*1) | 
 | 1662 |  | 
 | 1663 | 	swbeg		&0x8 | 
 | 1664 | tbl_fu_out: | 
 | 1665 | 	short		tbl_fu_out	- tbl_fu_out	# BSUN can't happen | 
 | 1666 | 	short		tbl_fu_out	- tbl_fu_out	# SNAN can't happen | 
 | 1667 | 	short		fu_operr	- tbl_fu_out	# OPERR | 
 | 1668 | 	short		fu_ovfl		- tbl_fu_out	# OVFL | 
 | 1669 | 	short		fu_unfl		- tbl_fu_out	# UNFL | 
 | 1670 | 	short		tbl_fu_out	- tbl_fu_out	# DZ can't happen | 
 | 1671 | 	short		fu_inex		- tbl_fu_out	# INEX2 | 
 | 1672 | 	short		tbl_fu_out	- tbl_fu_out	# INEX1 won't make it here | 
 | 1673 |  | 
 | 1674 | # for snan,operr,ovfl,unfl, src op is still in FP_SRC so just | 
 | 1675 | # frestore it. | 
 | 1676 | fu_snan: | 
 | 1677 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 1678 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 1679 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 1680 |  | 
 | 1681 | 	mov.w		&0x30d8,EXC_VOFF(%a6)	# vector offset = 0xd8 | 
 | 1682 | 	mov.w		&0xe006,2+FP_SRC(%a6) | 
 | 1683 |  | 
 | 1684 | 	frestore	FP_SRC(%a6) | 
 | 1685 |  | 
 | 1686 | 	unlk		%a6 | 
 | 1687 |  | 
 | 1688 |  | 
 | 1689 | 	bra.l		_real_snan | 
 | 1690 |  | 
 | 1691 | fu_operr: | 
 | 1692 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 1693 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 1694 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 1695 |  | 
 | 1696 | 	mov.w		&0x30d0,EXC_VOFF(%a6)	# vector offset = 0xd0 | 
 | 1697 | 	mov.w		&0xe004,2+FP_SRC(%a6) | 
 | 1698 |  | 
 | 1699 | 	frestore	FP_SRC(%a6) | 
 | 1700 |  | 
 | 1701 | 	unlk		%a6 | 
 | 1702 |  | 
 | 1703 |  | 
 | 1704 | 	bra.l		_real_operr | 
 | 1705 |  | 
 | 1706 | fu_ovfl: | 
 | 1707 | 	fmovm.x		&0x40,FP_SRC(%a6)	# save EXOP to the stack | 
 | 1708 |  | 
 | 1709 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 1710 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 1711 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 1712 |  | 
 | 1713 | 	mov.w		&0x30d4,EXC_VOFF(%a6)	# vector offset = 0xd4 | 
 | 1714 | 	mov.w		&0xe005,2+FP_SRC(%a6) | 
 | 1715 |  | 
 | 1716 | 	frestore	FP_SRC(%a6)		# restore EXOP | 
 | 1717 |  | 
 | 1718 | 	unlk		%a6 | 
 | 1719 |  | 
 | 1720 | 	bra.l		_real_ovfl | 
 | 1721 |  | 
 | 1722 | # underflow can happen for extended precision. extended precision opclass | 
 | 1723 | # three instruction exceptions don't update the stack pointer. so, if the | 
 | 1724 | # exception occurred from user mode, then simply update a7 and exit normally. | 
 | 1725 | # if the exception occurred from supervisor mode, check if | 
 | 1726 | fu_unfl: | 
 | 1727 | 	mov.l		EXC_A6(%a6),(%a6)	# restore a6 | 
 | 1728 |  | 
 | 1729 | 	btst		&0x5,EXC_SR(%a6) | 
 | 1730 | 	bne.w		fu_unfl_s | 
 | 1731 |  | 
 | 1732 | 	mov.l		EXC_A7(%a6),%a0		# restore a7 whether we need | 
 | 1733 | 	mov.l		%a0,%usp		# to or not... | 
 | 1734 |  | 
 | 1735 | fu_unfl_cont: | 
 | 1736 | 	fmovm.x		&0x40,FP_SRC(%a6)	# save EXOP to the stack | 
 | 1737 |  | 
 | 1738 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 1739 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 1740 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 1741 |  | 
 | 1742 | 	mov.w		&0x30cc,EXC_VOFF(%a6)	# vector offset = 0xcc | 
 | 1743 | 	mov.w		&0xe003,2+FP_SRC(%a6) | 
 | 1744 |  | 
 | 1745 | 	frestore	FP_SRC(%a6)		# restore EXOP | 
 | 1746 |  | 
 | 1747 | 	unlk		%a6 | 
 | 1748 |  | 
 | 1749 | 	bra.l		_real_unfl | 
 | 1750 |  | 
 | 1751 | fu_unfl_s: | 
 | 1752 | 	cmpi.b		SPCOND_FLG(%a6),&mda7_flg # was the <ea> mode -(sp)? | 
 | 1753 | 	bne.b		fu_unfl_cont | 
 | 1754 |  | 
 | 1755 | # the extended precision result is still in fp0. but, we need to save it | 
 | 1756 | # somewhere on the stack until we can copy it to its final resting place | 
 | 1757 | # (where the exc frame is currently). make sure it's not at the top of the | 
 | 1758 | # frame or it will get overwritten when the exc stack frame is shifted "down". | 
 | 1759 | 	fmovm.x		&0x80,FP_SRC(%a6)	# put answer on stack | 
 | 1760 | 	fmovm.x		&0x40,FP_DST(%a6)	# put EXOP on stack | 
 | 1761 |  | 
 | 1762 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 1763 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 1764 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 1765 |  | 
 | 1766 | 	mov.w		&0x30cc,EXC_VOFF(%a6)	# vector offset = 0xcc | 
 | 1767 | 	mov.w		&0xe003,2+FP_DST(%a6) | 
 | 1768 |  | 
 | 1769 | 	frestore	FP_DST(%a6)		# restore EXOP | 
 | 1770 |  | 
 | 1771 | 	mov.l		(%a6),%a6		# restore frame pointer | 
 | 1772 |  | 
 | 1773 | 	mov.l		LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) | 
 | 1774 | 	mov.l		LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) | 
 | 1775 | 	mov.l		LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) | 
 | 1776 |  | 
 | 1777 | # now, copy the result to the proper place on the stack | 
 | 1778 | 	mov.l		LOCAL_SIZE+FP_SRC_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp) | 
 | 1779 | 	mov.l		LOCAL_SIZE+FP_SRC_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp) | 
 | 1780 | 	mov.l		LOCAL_SIZE+FP_SRC_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp) | 
 | 1781 |  | 
 | 1782 | 	add.l		&LOCAL_SIZE-0x8,%sp | 
 | 1783 |  | 
 | 1784 | 	bra.l		_real_unfl | 
 | 1785 |  | 
 | 1786 | # fmove in and out enter here. | 
 | 1787 | fu_inex: | 
 | 1788 | 	fmovm.x		&0x40,FP_SRC(%a6)	# save EXOP to the stack | 
 | 1789 |  | 
 | 1790 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 1791 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 1792 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 1793 |  | 
 | 1794 | 	mov.w		&0x30c4,EXC_VOFF(%a6)	# vector offset = 0xc4 | 
 | 1795 | 	mov.w		&0xe001,2+FP_SRC(%a6) | 
 | 1796 |  | 
 | 1797 | 	frestore	FP_SRC(%a6)		# restore EXOP | 
 | 1798 |  | 
 | 1799 | 	unlk		%a6 | 
 | 1800 |  | 
 | 1801 |  | 
 | 1802 | 	bra.l		_real_inex | 
 | 1803 |  | 
 | 1804 | ######################################################################### | 
 | 1805 | ######################################################################### | 
 | 1806 | fu_in_pack: | 
 | 1807 |  | 
 | 1808 |  | 
 | 1809 | # I'm not sure at this point what FPSR bits are valid for this instruction. | 
 | 1810 | # so, since the emulation routines re-create them anyways, zero exception field | 
 | 1811 | 	andi.l		&0x0ff00ff,USER_FPSR(%a6) # zero exception field | 
 | 1812 |  | 
 | 1813 | 	fmov.l		&0x0,%fpcr		# zero current control regs | 
 | 1814 | 	fmov.l		&0x0,%fpsr | 
 | 1815 |  | 
 | 1816 | 	bsr.l		get_packed		# fetch packed src operand | 
 | 1817 |  | 
 | 1818 | 	lea		FP_SRC(%a6),%a0		# pass ptr to src | 
 | 1819 | 	bsr.l		set_tag_x		# set src optype tag | 
 | 1820 |  | 
 | 1821 | 	mov.b		%d0,STAG(%a6)		# save src optype tag | 
 | 1822 |  | 
 | 1823 | 	bfextu		EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg | 
 | 1824 |  | 
 | 1825 | # bit five of the fp extension word separates the monadic and dyadic operations | 
 | 1826 | # at this point | 
 | 1827 | 	btst		&0x5,1+EXC_CMDREG(%a6)	# is operation monadic or dyadic? | 
 | 1828 | 	beq.b		fu_extract_p		# monadic | 
 | 1829 | 	cmpi.b		1+EXC_CMDREG(%a6),&0x3a	# is operation an ftst? | 
 | 1830 | 	beq.b		fu_extract_p		# yes, so it's monadic, too | 
 | 1831 |  | 
 | 1832 | 	bsr.l		load_fpn2		# load dst into FP_DST | 
 | 1833 |  | 
 | 1834 | 	lea		FP_DST(%a6),%a0		# pass: ptr to dst op | 
 | 1835 | 	bsr.l		set_tag_x		# tag the operand type | 
 | 1836 | 	cmpi.b		%d0,&UNNORM		# is operand an UNNORM? | 
 | 1837 | 	bne.b		fu_op2_done_p		# no | 
 | 1838 | 	bsr.l		unnorm_fix		# yes; convert to NORM,DENORM,or ZERO | 
 | 1839 | fu_op2_done_p: | 
 | 1840 | 	mov.b		%d0,DTAG(%a6)		# save dst optype tag | 
 | 1841 |  | 
 | 1842 | fu_extract_p: | 
 | 1843 | 	clr.l		%d0 | 
 | 1844 | 	mov.b		FPCR_MODE(%a6),%d0	# fetch rnd mode/prec | 
 | 1845 |  | 
 | 1846 | 	bfextu		1+EXC_CMDREG(%a6){&1:&7},%d1 # extract extension | 
 | 1847 |  | 
 | 1848 | 	lea		FP_SRC(%a6),%a0 | 
 | 1849 | 	lea		FP_DST(%a6),%a1 | 
 | 1850 |  | 
 | 1851 | 	mov.l		(tbl_unsupp.l,%pc,%d1.l*4),%d1 # fetch routine addr | 
 | 1852 | 	jsr		(tbl_unsupp.l,%pc,%d1.l*1) | 
 | 1853 |  | 
 | 1854 | # | 
 | 1855 | # Exceptions in order of precedence: | 
 | 1856 | #	BSUN	: none | 
 | 1857 | #	SNAN	: all dyadic ops | 
 | 1858 | #	OPERR	: fsqrt(-NORM) | 
 | 1859 | #	OVFL	: all except ftst,fcmp | 
 | 1860 | #	UNFL	: all except ftst,fcmp | 
 | 1861 | #	DZ	: fdiv | 
 | 1862 | #	INEX2	: all except ftst,fcmp | 
 | 1863 | #	INEX1	: all | 
 | 1864 | # | 
 | 1865 |  | 
 | 1866 | # we determine the highest priority exception(if any) set by the | 
 | 1867 | # emulation routine that has also been enabled by the user. | 
 | 1868 | 	mov.b		FPCR_ENABLE(%a6),%d0	# fetch exceptions enabled | 
 | 1869 | 	bne.w		fu_in_ena_p		# some are enabled | 
 | 1870 |  | 
 | 1871 | fu_in_cont_p: | 
 | 1872 | # fcmp and ftst do not store any result. | 
 | 1873 | 	mov.b		1+EXC_CMDREG(%a6),%d0	# fetch extension | 
 | 1874 | 	andi.b		&0x38,%d0		# extract bits 3-5 | 
 | 1875 | 	cmpi.b		%d0,&0x38		# is instr fcmp or ftst? | 
 | 1876 | 	beq.b		fu_in_exit_p		# yes | 
 | 1877 |  | 
 | 1878 | 	bfextu		EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg | 
 | 1879 | 	bsr.l		store_fpreg		# store the result | 
 | 1880 |  | 
 | 1881 | fu_in_exit_p: | 
 | 1882 |  | 
 | 1883 | 	btst		&0x5,EXC_SR(%a6)	# user or supervisor? | 
 | 1884 | 	bne.w		fu_in_exit_s_p		# supervisor | 
 | 1885 |  | 
 | 1886 | 	mov.l		EXC_A7(%a6),%a0		# update user a7 | 
 | 1887 | 	mov.l		%a0,%usp | 
 | 1888 |  | 
 | 1889 | fu_in_exit_cont_p: | 
 | 1890 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 1891 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 1892 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 1893 |  | 
 | 1894 | 	unlk		%a6			# unravel stack frame | 
 | 1895 |  | 
 | 1896 | 	btst		&0x7,(%sp)		# is trace on? | 
 | 1897 | 	bne.w		fu_trace_p		# yes | 
 | 1898 |  | 
 | 1899 | 	bra.l		_fpsp_done		# exit to os | 
 | 1900 |  | 
 | 1901 | # the exception occurred in supervisor mode. check to see if the | 
 | 1902 | # addressing mode was (a7)+. if so, we'll need to shift the | 
 | 1903 | # stack frame "up". | 
 | 1904 | fu_in_exit_s_p: | 
 | 1905 | 	btst		&mia7_bit,SPCOND_FLG(%a6) # was ea mode (a7)+ | 
 | 1906 | 	beq.b		fu_in_exit_cont_p	# no | 
 | 1907 |  | 
 | 1908 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 1909 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 1910 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 1911 |  | 
 | 1912 | 	unlk		%a6			# unravel stack frame | 
 | 1913 |  | 
 | 1914 | # shift the stack frame "up". we don't really care about the <ea> field. | 
 | 1915 | 	mov.l		0x4(%sp),0x10(%sp) | 
 | 1916 | 	mov.l		0x0(%sp),0xc(%sp) | 
 | 1917 | 	add.l		&0xc,%sp | 
 | 1918 |  | 
 | 1919 | 	btst		&0x7,(%sp)		# is trace on? | 
 | 1920 | 	bne.w		fu_trace_p		# yes | 
 | 1921 |  | 
 | 1922 | 	bra.l		_fpsp_done		# exit to os | 
 | 1923 |  | 
 | 1924 | fu_in_ena_p: | 
 | 1925 | 	and.b		FPSR_EXCEPT(%a6),%d0	# keep only ones enabled & set | 
 | 1926 | 	bfffo		%d0{&24:&8},%d0		# find highest priority exception | 
 | 1927 | 	bne.b		fu_in_exc_p		# at least one was set | 
 | 1928 |  | 
 | 1929 | # | 
 | 1930 | # No exceptions occurred that were also enabled. Now: | 
 | 1931 | # | 
 | 1932 | #	if (OVFL && ovfl_disabled && inexact_enabled) { | 
 | 1933 | #	    branch to _real_inex() (even if the result was exact!); | 
 | 1934 | #	} else { | 
 | 1935 | #	    save the result in the proper fp reg (unless the op is fcmp or ftst); | 
 | 1936 | #	    return; | 
 | 1937 | #	} | 
 | 1938 | # | 
 | 1939 | 	btst		&ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set? | 
 | 1940 | 	beq.w		fu_in_cont_p		# no | 
 | 1941 |  | 
 | 1942 | fu_in_ovflchk_p: | 
 | 1943 | 	btst		&inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled? | 
 | 1944 | 	beq.w		fu_in_cont_p		# no | 
 | 1945 | 	bra.w		fu_in_exc_ovfl_p	# do _real_inex() now | 
 | 1946 |  | 
 | 1947 | # | 
 | 1948 | # An exception occurred and that exception was enabled: | 
 | 1949 | # | 
 | 1950 | #	shift enabled exception field into lo byte of d0; | 
 | 1951 | #	if (((INEX2 || INEX1) && inex_enabled && OVFL && ovfl_disabled) || | 
 | 1952 | #	    ((INEX2 || INEX1) && inex_enabled && UNFL && unfl_disabled)) { | 
 | 1953 | #		/* | 
 | 1954 | #		 * this is the case where we must call _real_inex() now or else | 
 | 1955 | #		 * there will be no other way to pass it the exceptional operand | 
 | 1956 | #		 */ | 
 | 1957 | #		call _real_inex(); | 
 | 1958 | #	} else { | 
 | 1959 | #		restore exc state (SNAN||OPERR||OVFL||UNFL||DZ||INEX) into the FPU; | 
 | 1960 | #	} | 
 | 1961 | # | 
 | 1962 | fu_in_exc_p: | 
 | 1963 | 	subi.l		&24,%d0			# fix offset to be 0-8 | 
 | 1964 | 	cmpi.b		%d0,&0x6		# is exception INEX? (6 or 7) | 
 | 1965 | 	blt.b		fu_in_exc_exit_p	# no | 
 | 1966 |  | 
 | 1967 | # the enabled exception was inexact | 
 | 1968 | 	btst		&unfl_bit,FPSR_EXCEPT(%a6) # did disabled underflow occur? | 
 | 1969 | 	bne.w		fu_in_exc_unfl_p	# yes | 
 | 1970 | 	btst		&ovfl_bit,FPSR_EXCEPT(%a6) # did disabled overflow occur? | 
 | 1971 | 	bne.w		fu_in_exc_ovfl_p	# yes | 
 | 1972 |  | 
 | 1973 | # here, we insert the correct fsave status value into the fsave frame for the | 
 | 1974 | # corresponding exception. the operand in the fsave frame should be the original | 
 | 1975 | # src operand. | 
 | 1976 | # as a reminder for future predicted pain and agony, we are passing in fsave the | 
 | 1977 | # "non-skewed" operand for cases of sgl and dbl src INFs,NANs, and DENORMs. | 
 | 1978 | # this is INCORRECT for enabled SNAN which would give to the user the skewed SNAN!!! | 
 | 1979 | fu_in_exc_exit_p: | 
 | 1980 | 	btst		&0x5,EXC_SR(%a6)	# user or supervisor? | 
 | 1981 | 	bne.w		fu_in_exc_exit_s_p	# supervisor | 
 | 1982 |  | 
 | 1983 | 	mov.l		EXC_A7(%a6),%a0		# update user a7 | 
 | 1984 | 	mov.l		%a0,%usp | 
 | 1985 |  | 
 | 1986 | fu_in_exc_exit_cont_p: | 
 | 1987 | 	mov.w		(tbl_except_p.b,%pc,%d0.w*2),2+FP_SRC(%a6) | 
 | 1988 |  | 
 | 1989 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 1990 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 1991 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 1992 |  | 
 | 1993 | 	frestore	FP_SRC(%a6)		# restore src op | 
 | 1994 |  | 
 | 1995 | 	unlk		%a6 | 
 | 1996 |  | 
 | 1997 | 	btst		&0x7,(%sp)		# is trace enabled? | 
 | 1998 | 	bne.w		fu_trace_p		# yes | 
 | 1999 |  | 
 | 2000 | 	bra.l		_fpsp_done | 
 | 2001 |  | 
 | 2002 | tbl_except_p: | 
 | 2003 | 	short		0xe000,0xe006,0xe004,0xe005 | 
 | 2004 | 	short		0xe003,0xe002,0xe001,0xe001 | 
 | 2005 |  | 
 | 2006 | fu_in_exc_ovfl_p: | 
 | 2007 | 	mov.w		&0x3,%d0 | 
 | 2008 | 	bra.w		fu_in_exc_exit_p | 
 | 2009 |  | 
 | 2010 | fu_in_exc_unfl_p: | 
 | 2011 | 	mov.w		&0x4,%d0 | 
 | 2012 | 	bra.w		fu_in_exc_exit_p | 
 | 2013 |  | 
 | 2014 | fu_in_exc_exit_s_p: | 
 | 2015 | 	btst		&mia7_bit,SPCOND_FLG(%a6) | 
 | 2016 | 	beq.b		fu_in_exc_exit_cont_p | 
 | 2017 |  | 
 | 2018 | 	mov.w		(tbl_except_p.b,%pc,%d0.w*2),2+FP_SRC(%a6) | 
 | 2019 |  | 
 | 2020 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 2021 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 2022 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 2023 |  | 
 | 2024 | 	frestore	FP_SRC(%a6)		# restore src op | 
 | 2025 |  | 
 | 2026 | 	unlk		%a6			# unravel stack frame | 
 | 2027 |  | 
 | 2028 | # shift stack frame "up". who cares about <ea> field. | 
 | 2029 | 	mov.l		0x4(%sp),0x10(%sp) | 
 | 2030 | 	mov.l		0x0(%sp),0xc(%sp) | 
 | 2031 | 	add.l		&0xc,%sp | 
 | 2032 |  | 
 | 2033 | 	btst		&0x7,(%sp)		# is trace on? | 
 | 2034 | 	bne.b		fu_trace_p		# yes | 
 | 2035 |  | 
 | 2036 | 	bra.l		_fpsp_done		# exit to os | 
 | 2037 |  | 
 | 2038 | # | 
 | 2039 | # The opclass two PACKED instruction that took an "Unimplemented Data Type" | 
 | 2040 | # exception was being traced. Make the "current" PC the FPIAR and put it in the | 
 | 2041 | # trace stack frame then jump to _real_trace(). | 
 | 2042 | # | 
 | 2043 | #		  UNSUPP FRAME		   TRACE FRAME | 
 | 2044 | #		*****************	***************** | 
 | 2045 | #		*      EA	*	*    Current	* | 
 | 2046 | #		*		*	*      PC	* | 
 | 2047 | #		*****************	***************** | 
 | 2048 | #		* 0x2 *	0x0dc	*	* 0x2 *  0x024	* | 
 | 2049 | #		*****************	***************** | 
 | 2050 | #		*     Next	*	*     Next	* | 
 | 2051 | #		*      PC	*	*      PC	* | 
 | 2052 | #		*****************	***************** | 
 | 2053 | #		*      SR	*	*      SR	* | 
 | 2054 | #		*****************	***************** | 
 | 2055 | fu_trace_p: | 
 | 2056 | 	mov.w		&0x2024,0x6(%sp) | 
 | 2057 | 	fmov.l		%fpiar,0x8(%sp) | 
 | 2058 |  | 
 | 2059 | 	bra.l		_real_trace | 
 | 2060 |  | 
 | 2061 | ######################################################### | 
 | 2062 | ######################################################### | 
 | 2063 | fu_out_pack: | 
 | 2064 |  | 
 | 2065 |  | 
 | 2066 | # I'm not sure at this point what FPSR bits are valid for this instruction. | 
 | 2067 | # so, since the emulation routines re-create them anyways, zero exception field. | 
 | 2068 | # fmove out doesn't affect ccodes. | 
 | 2069 | 	and.l		&0xffff00ff,USER_FPSR(%a6) # zero exception field | 
 | 2070 |  | 
 | 2071 | 	fmov.l		&0x0,%fpcr		# zero current control regs | 
 | 2072 | 	fmov.l		&0x0,%fpsr | 
 | 2073 |  | 
 | 2074 | 	bfextu		EXC_CMDREG(%a6){&6:&3},%d0 | 
 | 2075 | 	bsr.l		load_fpn1 | 
 | 2076 |  | 
 | 2077 | # unlike other opclass 3, unimplemented data type exceptions, packed must be | 
 | 2078 | # able to detect all operand types. | 
 | 2079 | 	lea		FP_SRC(%a6),%a0 | 
 | 2080 | 	bsr.l		set_tag_x		# tag the operand type | 
 | 2081 | 	cmpi.b		%d0,&UNNORM		# is operand an UNNORM? | 
 | 2082 | 	bne.b		fu_op2_p		# no | 
 | 2083 | 	bsr.l		unnorm_fix		# yes; convert to NORM,DENORM,or ZERO | 
 | 2084 |  | 
 | 2085 | fu_op2_p: | 
 | 2086 | 	mov.b		%d0,STAG(%a6)		# save src optype tag | 
 | 2087 |  | 
 | 2088 | 	clr.l		%d0 | 
 | 2089 | 	mov.b		FPCR_MODE(%a6),%d0	# fetch rnd mode/prec | 
 | 2090 |  | 
 | 2091 | 	lea		FP_SRC(%a6),%a0		# pass ptr to src operand | 
 | 2092 |  | 
 | 2093 | 	mov.l		(%a6),EXC_A6(%a6)	# in case a6 changes | 
 | 2094 | 	bsr.l		fout			# call fmove out routine | 
 | 2095 |  | 
 | 2096 | # Exceptions in order of precedence: | 
 | 2097 | #	BSUN	: no | 
 | 2098 | #	SNAN	: yes | 
 | 2099 | #	OPERR	: if ((k_factor > +17) || (dec. exp exceeds 3 digits)) | 
 | 2100 | #	OVFL	: no | 
 | 2101 | #	UNFL	: no | 
 | 2102 | #	DZ	: no | 
 | 2103 | #	INEX2	: yes | 
 | 2104 | #	INEX1	: no | 
 | 2105 |  | 
 | 2106 | # determine the highest priority exception(if any) set by the | 
 | 2107 | # emulation routine that has also been enabled by the user. | 
 | 2108 | 	mov.b		FPCR_ENABLE(%a6),%d0	# fetch exceptions enabled | 
 | 2109 | 	bne.w		fu_out_ena_p		# some are enabled | 
 | 2110 |  | 
 | 2111 | fu_out_exit_p: | 
 | 2112 | 	mov.l		EXC_A6(%a6),(%a6)	# restore a6 | 
 | 2113 |  | 
 | 2114 | 	btst		&0x5,EXC_SR(%a6)	# user or supervisor? | 
 | 2115 | 	bne.b		fu_out_exit_s_p		# supervisor | 
 | 2116 |  | 
 | 2117 | 	mov.l		EXC_A7(%a6),%a0		# update user a7 | 
 | 2118 | 	mov.l		%a0,%usp | 
 | 2119 |  | 
 | 2120 | fu_out_exit_cont_p: | 
 | 2121 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 2122 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 2123 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 2124 |  | 
 | 2125 | 	unlk		%a6			# unravel stack frame | 
 | 2126 |  | 
 | 2127 | 	btst		&0x7,(%sp)		# is trace on? | 
 | 2128 | 	bne.w		fu_trace_p		# yes | 
 | 2129 |  | 
 | 2130 | 	bra.l		_fpsp_done		# exit to os | 
 | 2131 |  | 
 | 2132 | # the exception occurred in supervisor mode. check to see if the | 
 | 2133 | # addressing mode was -(a7). if so, we'll need to shift the | 
 | 2134 | # stack frame "down". | 
 | 2135 | fu_out_exit_s_p: | 
 | 2136 | 	btst		&mda7_bit,SPCOND_FLG(%a6) # was ea mode -(a7) | 
 | 2137 | 	beq.b		fu_out_exit_cont_p	# no | 
 | 2138 |  | 
 | 2139 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 2140 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 2141 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 2142 |  | 
 | 2143 | 	mov.l		(%a6),%a6		# restore frame pointer | 
 | 2144 |  | 
 | 2145 | 	mov.l		LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) | 
 | 2146 | 	mov.l		LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) | 
 | 2147 |  | 
 | 2148 | # now, copy the result to the proper place on the stack | 
 | 2149 | 	mov.l		LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp) | 
 | 2150 | 	mov.l		LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp) | 
 | 2151 | 	mov.l		LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp) | 
 | 2152 |  | 
 | 2153 | 	add.l		&LOCAL_SIZE-0x8,%sp | 
 | 2154 |  | 
 | 2155 | 	btst		&0x7,(%sp) | 
 | 2156 | 	bne.w		fu_trace_p | 
 | 2157 |  | 
 | 2158 | 	bra.l		_fpsp_done | 
 | 2159 |  | 
 | 2160 | fu_out_ena_p: | 
 | 2161 | 	and.b		FPSR_EXCEPT(%a6),%d0	# keep only ones enabled | 
 | 2162 | 	bfffo		%d0{&24:&8},%d0		# find highest priority exception | 
 | 2163 | 	beq.w		fu_out_exit_p | 
 | 2164 |  | 
 | 2165 | 	mov.l		EXC_A6(%a6),(%a6)	# restore a6 | 
 | 2166 |  | 
 | 2167 | # an exception occurred and that exception was enabled. | 
 | 2168 | # the only exception possible on packed move out are INEX, OPERR, and SNAN. | 
 | 2169 | fu_out_exc_p: | 
 | 2170 | 	cmpi.b		%d0,&0x1a | 
 | 2171 | 	bgt.w		fu_inex_p2 | 
 | 2172 | 	beq.w		fu_operr_p | 
 | 2173 |  | 
 | 2174 | fu_snan_p: | 
 | 2175 | 	btst		&0x5,EXC_SR(%a6) | 
 | 2176 | 	bne.b		fu_snan_s_p | 
 | 2177 |  | 
 | 2178 | 	mov.l		EXC_A7(%a6),%a0 | 
 | 2179 | 	mov.l		%a0,%usp | 
 | 2180 | 	bra.w		fu_snan | 
 | 2181 |  | 
 | 2182 | fu_snan_s_p: | 
 | 2183 | 	cmpi.b		SPCOND_FLG(%a6),&mda7_flg | 
 | 2184 | 	bne.w		fu_snan | 
 | 2185 |  | 
 | 2186 | # the instruction was "fmove.p fpn,-(a7)" from supervisor mode. | 
 | 2187 | # the strategy is to move the exception frame "down" 12 bytes. then, we | 
 | 2188 | # can store the default result where the exception frame was. | 
 | 2189 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 2190 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 2191 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 2192 |  | 
 | 2193 | 	mov.w		&0x30d8,EXC_VOFF(%a6)	# vector offset = 0xd0 | 
 | 2194 | 	mov.w		&0xe006,2+FP_SRC(%a6)	# set fsave status | 
 | 2195 |  | 
 | 2196 | 	frestore	FP_SRC(%a6)		# restore src operand | 
 | 2197 |  | 
 | 2198 | 	mov.l		(%a6),%a6		# restore frame pointer | 
 | 2199 |  | 
 | 2200 | 	mov.l		LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) | 
 | 2201 | 	mov.l		LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) | 
 | 2202 | 	mov.l		LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) | 
 | 2203 |  | 
 | 2204 | # now, we copy the default result to its proper location | 
 | 2205 | 	mov.l		LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp) | 
 | 2206 | 	mov.l		LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp) | 
 | 2207 | 	mov.l		LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp) | 
 | 2208 |  | 
 | 2209 | 	add.l		&LOCAL_SIZE-0x8,%sp | 
 | 2210 |  | 
 | 2211 |  | 
 | 2212 | 	bra.l		_real_snan | 
 | 2213 |  | 
 | 2214 | fu_operr_p: | 
 | 2215 | 	btst		&0x5,EXC_SR(%a6) | 
 | 2216 | 	bne.w		fu_operr_p_s | 
 | 2217 |  | 
 | 2218 | 	mov.l		EXC_A7(%a6),%a0 | 
 | 2219 | 	mov.l		%a0,%usp | 
 | 2220 | 	bra.w		fu_operr | 
 | 2221 |  | 
 | 2222 | fu_operr_p_s: | 
 | 2223 | 	cmpi.b		SPCOND_FLG(%a6),&mda7_flg | 
 | 2224 | 	bne.w		fu_operr | 
 | 2225 |  | 
 | 2226 | # the instruction was "fmove.p fpn,-(a7)" from supervisor mode. | 
 | 2227 | # the strategy is to move the exception frame "down" 12 bytes. then, we | 
 | 2228 | # can store the default result where the exception frame was. | 
 | 2229 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 2230 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 2231 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 2232 |  | 
 | 2233 | 	mov.w		&0x30d0,EXC_VOFF(%a6)	# vector offset = 0xd0 | 
 | 2234 | 	mov.w		&0xe004,2+FP_SRC(%a6)	# set fsave status | 
 | 2235 |  | 
 | 2236 | 	frestore	FP_SRC(%a6)		# restore src operand | 
 | 2237 |  | 
 | 2238 | 	mov.l		(%a6),%a6		# restore frame pointer | 
 | 2239 |  | 
 | 2240 | 	mov.l		LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) | 
 | 2241 | 	mov.l		LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) | 
 | 2242 | 	mov.l		LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) | 
 | 2243 |  | 
 | 2244 | # now, we copy the default result to its proper location | 
 | 2245 | 	mov.l		LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp) | 
 | 2246 | 	mov.l		LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp) | 
 | 2247 | 	mov.l		LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp) | 
 | 2248 |  | 
 | 2249 | 	add.l		&LOCAL_SIZE-0x8,%sp | 
 | 2250 |  | 
 | 2251 |  | 
 | 2252 | 	bra.l		_real_operr | 
 | 2253 |  | 
 | 2254 | fu_inex_p2: | 
 | 2255 | 	btst		&0x5,EXC_SR(%a6) | 
 | 2256 | 	bne.w		fu_inex_s_p2 | 
 | 2257 |  | 
 | 2258 | 	mov.l		EXC_A7(%a6),%a0 | 
 | 2259 | 	mov.l		%a0,%usp | 
 | 2260 | 	bra.w		fu_inex | 
 | 2261 |  | 
 | 2262 | fu_inex_s_p2: | 
 | 2263 | 	cmpi.b		SPCOND_FLG(%a6),&mda7_flg | 
 | 2264 | 	bne.w		fu_inex | 
 | 2265 |  | 
 | 2266 | # the instruction was "fmove.p fpn,-(a7)" from supervisor mode. | 
 | 2267 | # the strategy is to move the exception frame "down" 12 bytes. then, we | 
 | 2268 | # can store the default result where the exception frame was. | 
 | 2269 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0/fp1 | 
 | 2270 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 2271 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 2272 |  | 
 | 2273 | 	mov.w		&0x30c4,EXC_VOFF(%a6)	# vector offset = 0xc4 | 
 | 2274 | 	mov.w		&0xe001,2+FP_SRC(%a6)	# set fsave status | 
 | 2275 |  | 
 | 2276 | 	frestore	FP_SRC(%a6)		# restore src operand | 
 | 2277 |  | 
 | 2278 | 	mov.l		(%a6),%a6		# restore frame pointer | 
 | 2279 |  | 
 | 2280 | 	mov.l		LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) | 
 | 2281 | 	mov.l		LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp) | 
 | 2282 | 	mov.l		LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) | 
 | 2283 |  | 
 | 2284 | # now, we copy the default result to its proper location | 
 | 2285 | 	mov.l		LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp) | 
 | 2286 | 	mov.l		LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp) | 
 | 2287 | 	mov.l		LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp) | 
 | 2288 |  | 
 | 2289 | 	add.l		&LOCAL_SIZE-0x8,%sp | 
 | 2290 |  | 
 | 2291 |  | 
 | 2292 | 	bra.l		_real_inex | 
 | 2293 |  | 
 | 2294 | ######################################################################### | 
 | 2295 |  | 
 | 2296 | # | 
 | 2297 | # if we're stuffing a source operand back into an fsave frame then we | 
 | 2298 | # have to make sure that for single or double source operands that the | 
 | 2299 | # format stuffed is as weird as the hardware usually makes it. | 
 | 2300 | # | 
 | 2301 | 	global		funimp_skew | 
 | 2302 | funimp_skew: | 
 | 2303 | 	bfextu		EXC_EXTWORD(%a6){&3:&3},%d0 # extract src specifier | 
 | 2304 | 	cmpi.b		%d0,&0x1		# was src sgl? | 
 | 2305 | 	beq.b		funimp_skew_sgl		# yes | 
 | 2306 | 	cmpi.b		%d0,&0x5		# was src dbl? | 
 | 2307 | 	beq.b		funimp_skew_dbl		# yes | 
 | 2308 | 	rts | 
 | 2309 |  | 
 | 2310 | funimp_skew_sgl: | 
 | 2311 | 	mov.w		FP_SRC_EX(%a6),%d0	# fetch DENORM exponent | 
 | 2312 | 	andi.w		&0x7fff,%d0		# strip sign | 
 | 2313 | 	beq.b		funimp_skew_sgl_not | 
 | 2314 | 	cmpi.w		%d0,&0x3f80 | 
 | 2315 | 	bgt.b		funimp_skew_sgl_not | 
 | 2316 | 	neg.w		%d0			# make exponent negative | 
 | 2317 | 	addi.w		&0x3f81,%d0		# find amt to shift | 
 | 2318 | 	mov.l		FP_SRC_HI(%a6),%d1	# fetch DENORM hi(man) | 
 | 2319 | 	lsr.l		%d0,%d1			# shift it | 
 | 2320 | 	bset		&31,%d1			# set j-bit | 
 | 2321 | 	mov.l		%d1,FP_SRC_HI(%a6)	# insert new hi(man) | 
 | 2322 | 	andi.w		&0x8000,FP_SRC_EX(%a6)	# clear old exponent | 
 | 2323 | 	ori.w		&0x3f80,FP_SRC_EX(%a6)	# insert new "skewed" exponent | 
 | 2324 | funimp_skew_sgl_not: | 
 | 2325 | 	rts | 
 | 2326 |  | 
 | 2327 | funimp_skew_dbl: | 
 | 2328 | 	mov.w		FP_SRC_EX(%a6),%d0	# fetch DENORM exponent | 
 | 2329 | 	andi.w		&0x7fff,%d0		# strip sign | 
 | 2330 | 	beq.b		funimp_skew_dbl_not | 
 | 2331 | 	cmpi.w		%d0,&0x3c00 | 
 | 2332 | 	bgt.b		funimp_skew_dbl_not | 
 | 2333 |  | 
 | 2334 | 	tst.b		FP_SRC_EX(%a6)		# make "internal format" | 
 | 2335 | 	smi.b		0x2+FP_SRC(%a6) | 
 | 2336 | 	mov.w		%d0,FP_SRC_EX(%a6)	# insert exponent with cleared sign | 
 | 2337 | 	clr.l		%d0			# clear g,r,s | 
 | 2338 | 	lea		FP_SRC(%a6),%a0		# pass ptr to src op | 
 | 2339 | 	mov.w		&0x3c01,%d1		# pass denorm threshold | 
 | 2340 | 	bsr.l		dnrm_lp			# denorm it | 
 | 2341 | 	mov.w		&0x3c00,%d0		# new exponent | 
 | 2342 | 	tst.b		0x2+FP_SRC(%a6)		# is sign set? | 
 | 2343 | 	beq.b		fss_dbl_denorm_done	# no | 
 | 2344 | 	bset		&15,%d0			# set sign | 
 | 2345 | fss_dbl_denorm_done: | 
 | 2346 | 	bset		&0x7,FP_SRC_HI(%a6)	# set j-bit | 
 | 2347 | 	mov.w		%d0,FP_SRC_EX(%a6)	# insert new exponent | 
 | 2348 | funimp_skew_dbl_not: | 
 | 2349 | 	rts | 
 | 2350 |  | 
 | 2351 | ######################################################################### | 
 | 2352 | 	global		_mem_write2 | 
 | 2353 | _mem_write2: | 
 | 2354 | 	btst		&0x5,EXC_SR(%a6) | 
 | 2355 | 	beq.l		_dmem_write | 
 | 2356 | 	mov.l		0x0(%a0),FP_DST_EX(%a6) | 
 | 2357 | 	mov.l		0x4(%a0),FP_DST_HI(%a6) | 
 | 2358 | 	mov.l		0x8(%a0),FP_DST_LO(%a6) | 
 | 2359 | 	clr.l		%d1 | 
 | 2360 | 	rts | 
 | 2361 |  | 
 | 2362 | ######################################################################### | 
 | 2363 | # XDEF ****************************************************************	# | 
 | 2364 | #	_fpsp_effadd(): 060FPSP entry point for FP "Unimplemented	# | 
 | 2365 | #			effective address" exception.			# | 
 | 2366 | #									# | 
 | 2367 | #	This handler should be the first code executed upon taking the	# | 
 | 2368 | #	FP Unimplemented Effective Address exception in an operating	# | 
 | 2369 | #	system.								# | 
 | 2370 | #									# | 
 | 2371 | # XREF ****************************************************************	# | 
 | 2372 | #	_imem_read_long() - read instruction longword			# | 
 | 2373 | #	fix_skewed_ops() - adjust src operand in fsave frame		# | 
 | 2374 | #	set_tag_x() - determine optype of src/dst operands		# | 
 | 2375 | #	store_fpreg() - store opclass 0 or 2 result to FP regfile	# | 
 | 2376 | #	unnorm_fix() - change UNNORM operands to NORM or ZERO		# | 
 | 2377 | #	load_fpn2() - load dst operand from FP regfile			# | 
 | 2378 | #	tbl_unsupp - add of table of emulation routines for opclass 0,2	# | 
 | 2379 | #	decbin() - convert packed data to FP binary data		# | 
 | 2380 | #	_real_fpu_disabled() - "callout" for "FPU disabled" exception	# | 
 | 2381 | #	_real_access() - "callout" for access error exception		# | 
 | 2382 | #	_mem_read() - read extended immediate operand from memory	# | 
 | 2383 | #	_fpsp_done() - "callout" for exit; work all done		# | 
 | 2384 | #	_real_trace() - "callout" for Trace enabled exception		# | 
 | 2385 | #	fmovm_dynamic() - emulate dynamic fmovm instruction		# | 
 | 2386 | #	fmovm_ctrl() - emulate fmovm control instruction		# | 
 | 2387 | #									# | 
 | 2388 | # INPUT ***************************************************************	# | 
 | 2389 | #	- The system stack contains the "Unimplemented <ea>" stk frame	# | 
 | 2390 | #									# | 
 | 2391 | # OUTPUT **************************************************************	# | 
 | 2392 | #	If access error:						# | 
 | 2393 | #	- The system stack is changed to an access error stack frame	# | 
 | 2394 | #	If FPU disabled:						# | 
 | 2395 | #	- The system stack is changed to an FPU disabled stack frame	# | 
 | 2396 | #	If Trace exception enabled:					# | 
 | 2397 | #	- The system stack is changed to a Trace exception stack frame	# | 
 | 2398 | #	Else: (normal case)						# | 
 | 2399 | #	- None (correct result has been stored as appropriate)		# | 
 | 2400 | #									# | 
 | 2401 | # ALGORITHM ***********************************************************	# | 
 | 2402 | #	This exception handles 3 types of operations:			# | 
 | 2403 | # (1) FP Instructions using extended precision or packed immediate	# | 
 | 2404 | #     addressing mode.							# | 
 | 2405 | # (2) The "fmovm.x" instruction w/ dynamic register specification.	# | 
 | 2406 | # (3) The "fmovm.l" instruction w/ 2 or 3 control registers.		# | 
 | 2407 | #									# | 
 | 2408 | #	For immediate data operations, the data is read in w/ a		# | 
 | 2409 | # _mem_read() "callout", converted to FP binary (if packed), and used	# | 
 | 2410 | # as the source operand to the instruction specified by the instruction	# | 
 | 2411 | # word. If no FP exception should be reported ads a result of the	# | 
 | 2412 | # emulation, then the result is stored to the destination register and	# | 
 | 2413 | # the handler exits through _fpsp_done(). If an enabled exc has been	# | 
 | 2414 | # signalled as a result of emulation, then an fsave state frame		# | 
 | 2415 | # corresponding to the FP exception type must be entered into the 060	# | 
 | 2416 | # FPU before exiting. In either the enabled or disabled cases, we	# | 
 | 2417 | # must also check if a Trace exception is pending, in which case, we	# | 
 | 2418 | # must create a Trace exception stack frame from the current exception	# | 
 | 2419 | # stack frame. If no Trace is pending, we simply exit through		# | 
 | 2420 | # _fpsp_done().								# | 
 | 2421 | #	For "fmovm.x", call the routine fmovm_dynamic() which will	# | 
 | 2422 | # decode and emulate the instruction. No FP exceptions can be pending	# | 
 | 2423 | # as a result of this operation emulation. A Trace exception can be	# | 
 | 2424 | # pending, though, which means the current stack frame must be changed	# | 
 | 2425 | # to a Trace stack frame and an exit made through _real_trace().	# | 
 | 2426 | # For the case of "fmovm.x Dn,-(a7)", where the offending instruction	# | 
 | 2427 | # was executed from supervisor mode, this handler must store the FP	# | 
 | 2428 | # register file values to the system stack by itself since		# | 
 | 2429 | # fmovm_dynamic() can't handle this. A normal exit is made through	# | 
 | 2430 | # fpsp_done().								# | 
 | 2431 | #	For "fmovm.l", fmovm_ctrl() is used to emulate the instruction.	# | 
 | 2432 | # Again, a Trace exception may be pending and an exit made through	# | 
 | 2433 | # _real_trace(). Else, a normal exit is made through _fpsp_done().	# | 
 | 2434 | #									# | 
 | 2435 | #	Before any of the above is attempted, it must be checked to	# | 
 | 2436 | # see if the FPU is disabled. Since the "Unimp <ea>" exception is taken	# | 
 | 2437 | # before the "FPU disabled" exception, but the "FPU disabled" exception	# | 
 | 2438 | # has higher priority, we check the disabled bit in the PCR. If set,	# | 
 | 2439 | # then we must create an 8 word "FPU disabled" exception stack frame	# | 
 | 2440 | # from the current 4 word exception stack frame. This includes		# | 
 | 2441 | # reproducing the effective address of the instruction to put on the	# | 
 | 2442 | # new stack frame.							# | 
 | 2443 | #									# | 
 | 2444 | #	In the process of all emulation work, if a _mem_read()		# | 
 | 2445 | # "callout" returns a failing result indicating an access error, then	# | 
 | 2446 | # we must create an access error stack frame from the current stack	# | 
 | 2447 | # frame. This information includes a faulting address and a fault-	# | 
 | 2448 | # status-longword. These are created within this handler.		# | 
 | 2449 | #									# | 
 | 2450 | ######################################################################### | 
 | 2451 |  | 
 | 2452 | 	global		_fpsp_effadd | 
 | 2453 | _fpsp_effadd: | 
 | 2454 |  | 
 | 2455 | # This exception type takes priority over the "Line F Emulator" | 
 | 2456 | # exception. Therefore, the FPU could be disabled when entering here. | 
 | 2457 | # So, we must check to see if it's disabled and handle that case separately. | 
 | 2458 | 	mov.l		%d0,-(%sp)		# save d0 | 
 | 2459 | 	movc		%pcr,%d0		# load proc cr | 
 | 2460 | 	btst		&0x1,%d0		# is FPU disabled? | 
 | 2461 | 	bne.w		iea_disabled		# yes | 
 | 2462 | 	mov.l		(%sp)+,%d0		# restore d0 | 
 | 2463 |  | 
 | 2464 | 	link		%a6,&-LOCAL_SIZE	# init stack frame | 
 | 2465 |  | 
 | 2466 | 	movm.l		&0x0303,EXC_DREGS(%a6)	# save d0-d1/a0-a1 | 
 | 2467 | 	fmovm.l		%fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs | 
 | 2468 | 	fmovm.x		&0xc0,EXC_FPREGS(%a6)	# save fp0-fp1 on stack | 
 | 2469 |  | 
 | 2470 | # PC of instruction that took the exception is the PC in the frame | 
 | 2471 | 	mov.l		EXC_PC(%a6),EXC_EXTWPTR(%a6) | 
 | 2472 |  | 
 | 2473 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 2474 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 2475 | 	bsr.l		_imem_read_long		# fetch the instruction words | 
 | 2476 | 	mov.l		%d0,EXC_OPWORD(%a6)	# store OPWORD and EXTWORD | 
 | 2477 |  | 
 | 2478 | ######################################################################### | 
 | 2479 |  | 
 | 2480 | 	tst.w		%d0			# is operation fmovem? | 
 | 2481 | 	bmi.w		iea_fmovm		# yes | 
 | 2482 |  | 
 | 2483 | # | 
 | 2484 | # here, we will have: | 
 | 2485 | #	fabs	fdabs	fsabs		facos		fmod | 
 | 2486 | #	fadd	fdadd	fsadd		fasin		frem | 
 | 2487 | #	fcmp				fatan		fscale | 
 | 2488 | #	fdiv	fddiv	fsdiv		fatanh		fsin | 
 | 2489 | #	fint				fcos		fsincos | 
 | 2490 | #	fintrz				fcosh		fsinh | 
 | 2491 | #	fmove	fdmove	fsmove		fetox		ftan | 
 | 2492 | #	fmul	fdmul	fsmul		fetoxm1		ftanh | 
 | 2493 | #	fneg	fdneg	fsneg		fgetexp		ftentox | 
 | 2494 | #	fsgldiv				fgetman		ftwotox | 
 | 2495 | #	fsglmul				flog10 | 
 | 2496 | #	fsqrt				flog2 | 
 | 2497 | #	fsub	fdsub	fssub		flogn | 
 | 2498 | #	ftst				flognp1 | 
 | 2499 | # which can all use f<op>.{x,p} | 
 | 2500 | # so, now it's immediate data extended precision AND PACKED FORMAT! | 
 | 2501 | # | 
 | 2502 | iea_op: | 
 | 2503 | 	andi.l		&0x00ff00ff,USER_FPSR(%a6) | 
 | 2504 |  | 
 | 2505 | 	btst		&0xa,%d0		# is src fmt x or p? | 
 | 2506 | 	bne.b		iea_op_pack		# packed | 
 | 2507 |  | 
 | 2508 |  | 
 | 2509 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# pass: ptr to #<data> | 
 | 2510 | 	lea		FP_SRC(%a6),%a1		# pass: ptr to super addr | 
 | 2511 | 	mov.l		&0xc,%d0		# pass: 12 bytes | 
 | 2512 | 	bsr.l		_imem_read		# read extended immediate | 
 | 2513 |  | 
 | 2514 | 	tst.l		%d1			# did ifetch fail? | 
 | 2515 | 	bne.w		iea_iacc		# yes | 
 | 2516 |  | 
 | 2517 | 	bra.b		iea_op_setsrc | 
 | 2518 |  | 
 | 2519 | iea_op_pack: | 
 | 2520 |  | 
 | 2521 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# pass: ptr to #<data> | 
 | 2522 | 	lea		FP_SRC(%a6),%a1		# pass: ptr to super dst | 
 | 2523 | 	mov.l		&0xc,%d0		# pass: 12 bytes | 
 | 2524 | 	bsr.l		_imem_read		# read packed operand | 
 | 2525 |  | 
 | 2526 | 	tst.l		%d1			# did ifetch fail? | 
 | 2527 | 	bne.w		iea_iacc		# yes | 
 | 2528 |  | 
 | 2529 | # The packed operand is an INF or a NAN if the exponent field is all ones. | 
 | 2530 | 	bfextu		FP_SRC(%a6){&1:&15},%d0	# get exp | 
 | 2531 | 	cmpi.w		%d0,&0x7fff		# INF or NAN? | 
 | 2532 | 	beq.b		iea_op_setsrc		# operand is an INF or NAN | 
 | 2533 |  | 
 | 2534 | # The packed operand is a zero if the mantissa is all zero, else it's | 
 | 2535 | # a normal packed op. | 
 | 2536 | 	mov.b		3+FP_SRC(%a6),%d0	# get byte 4 | 
 | 2537 | 	andi.b		&0x0f,%d0		# clear all but last nybble | 
 | 2538 | 	bne.b		iea_op_gp_not_spec	# not a zero | 
 | 2539 | 	tst.l		FP_SRC_HI(%a6)		# is lw 2 zero? | 
 | 2540 | 	bne.b		iea_op_gp_not_spec	# not a zero | 
 | 2541 | 	tst.l		FP_SRC_LO(%a6)		# is lw 3 zero? | 
 | 2542 | 	beq.b		iea_op_setsrc		# operand is a ZERO | 
 | 2543 | iea_op_gp_not_spec: | 
 | 2544 | 	lea		FP_SRC(%a6),%a0		# pass: ptr to packed op | 
 | 2545 | 	bsr.l		decbin			# convert to extended | 
 | 2546 | 	fmovm.x		&0x80,FP_SRC(%a6)	# make this the srcop | 
 | 2547 |  | 
 | 2548 | iea_op_setsrc: | 
 | 2549 | 	addi.l		&0xc,EXC_EXTWPTR(%a6)	# update extension word pointer | 
 | 2550 |  | 
 | 2551 | # FP_SRC now holds the src operand. | 
 | 2552 | 	lea		FP_SRC(%a6),%a0		# pass: ptr to src op | 
 | 2553 | 	bsr.l		set_tag_x		# tag the operand type | 
 | 2554 | 	mov.b		%d0,STAG(%a6)		# could be ANYTHING!!! | 
 | 2555 | 	cmpi.b		%d0,&UNNORM		# is operand an UNNORM? | 
 | 2556 | 	bne.b		iea_op_getdst		# no | 
 | 2557 | 	bsr.l		unnorm_fix		# yes; convert to NORM/DENORM/ZERO | 
 | 2558 | 	mov.b		%d0,STAG(%a6)		# set new optype tag | 
 | 2559 | iea_op_getdst: | 
 | 2560 | 	clr.b		STORE_FLG(%a6)		# clear "store result" boolean | 
 | 2561 |  | 
 | 2562 | 	btst		&0x5,1+EXC_CMDREG(%a6)	# is operation monadic or dyadic? | 
 | 2563 | 	beq.b		iea_op_extract		# monadic | 
 | 2564 | 	btst		&0x4,1+EXC_CMDREG(%a6)	# is operation fsincos,ftst,fcmp? | 
 | 2565 | 	bne.b		iea_op_spec		# yes | 
 | 2566 |  | 
 | 2567 | iea_op_loaddst: | 
 | 2568 | 	bfextu		EXC_CMDREG(%a6){&6:&3},%d0 # fetch dst regno | 
 | 2569 | 	bsr.l		load_fpn2		# load dst operand | 
 | 2570 |  | 
 | 2571 | 	lea		FP_DST(%a6),%a0		# pass: ptr to dst op | 
 | 2572 | 	bsr.l		set_tag_x		# tag the operand type | 
 | 2573 | 	mov.b		%d0,DTAG(%a6)		# could be ANYTHING!!! | 
 | 2574 | 	cmpi.b		%d0,&UNNORM		# is operand an UNNORM? | 
 | 2575 | 	bne.b		iea_op_extract		# no | 
 | 2576 | 	bsr.l		unnorm_fix		# yes; convert to NORM/DENORM/ZERO | 
 | 2577 | 	mov.b		%d0,DTAG(%a6)		# set new optype tag | 
 | 2578 | 	bra.b		iea_op_extract | 
 | 2579 |  | 
 | 2580 | # the operation is fsincos, ftst, or fcmp. only fcmp is dyadic | 
 | 2581 | iea_op_spec: | 
 | 2582 | 	btst		&0x3,1+EXC_CMDREG(%a6)	# is operation fsincos? | 
 | 2583 | 	beq.b		iea_op_extract		# yes | 
 | 2584 | # now, we're left with ftst and fcmp. so, first let's tag them so that they don't | 
 | 2585 | # store a result. then, only fcmp will branch back and pick up a dst operand. | 
 | 2586 | 	st		STORE_FLG(%a6)		# don't store a final result | 
 | 2587 | 	btst		&0x1,1+EXC_CMDREG(%a6)	# is operation fcmp? | 
 | 2588 | 	beq.b		iea_op_loaddst		# yes | 
 | 2589 |  | 
 | 2590 | iea_op_extract: | 
 | 2591 | 	clr.l		%d0 | 
 | 2592 | 	mov.b		FPCR_MODE(%a6),%d0	# pass: rnd mode,prec | 
 | 2593 |  | 
 | 2594 | 	mov.b		1+EXC_CMDREG(%a6),%d1 | 
 | 2595 | 	andi.w		&0x007f,%d1		# extract extension | 
 | 2596 |  | 
 | 2597 | 	fmov.l		&0x0,%fpcr | 
 | 2598 | 	fmov.l		&0x0,%fpsr | 
 | 2599 |  | 
 | 2600 | 	lea		FP_SRC(%a6),%a0 | 
 | 2601 | 	lea		FP_DST(%a6),%a1 | 
 | 2602 |  | 
 | 2603 | 	mov.l		(tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr | 
 | 2604 | 	jsr		(tbl_unsupp.l,%pc,%d1.l*1) | 
 | 2605 |  | 
 | 2606 | # | 
 | 2607 | # Exceptions in order of precedence: | 
 | 2608 | #	BSUN	: none | 
 | 2609 | #	SNAN	: all operations | 
 | 2610 | #	OPERR	: all reg-reg or mem-reg operations that can normally operr | 
 | 2611 | #	OVFL	: same as OPERR | 
 | 2612 | #	UNFL	: same as OPERR | 
 | 2613 | #	DZ	: same as OPERR | 
 | 2614 | #	INEX2	: same as OPERR | 
 | 2615 | #	INEX1	: all packed immediate operations | 
 | 2616 | # | 
 | 2617 |  | 
 | 2618 | # we determine the highest priority exception(if any) set by the | 
 | 2619 | # emulation routine that has also been enabled by the user. | 
 | 2620 | 	mov.b		FPCR_ENABLE(%a6),%d0	# fetch exceptions enabled | 
 | 2621 | 	bne.b		iea_op_ena		# some are enabled | 
 | 2622 |  | 
 | 2623 | # now, we save the result, unless, of course, the operation was ftst or fcmp. | 
 | 2624 | # these don't save results. | 
 | 2625 | iea_op_save: | 
 | 2626 | 	tst.b		STORE_FLG(%a6)		# does this op store a result? | 
 | 2627 | 	bne.b		iea_op_exit1		# exit with no frestore | 
 | 2628 |  | 
 | 2629 | iea_op_store: | 
 | 2630 | 	bfextu		EXC_CMDREG(%a6){&6:&3},%d0 # fetch dst regno | 
 | 2631 | 	bsr.l		store_fpreg		# store the result | 
 | 2632 |  | 
 | 2633 | iea_op_exit1: | 
 | 2634 | 	mov.l		EXC_PC(%a6),USER_FPIAR(%a6) # set FPIAR to "Current PC" | 
 | 2635 | 	mov.l		EXC_EXTWPTR(%a6),EXC_PC(%a6) # set "Next PC" in exc frame | 
 | 2636 |  | 
 | 2637 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 2638 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 2639 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 2640 |  | 
 | 2641 | 	unlk		%a6			# unravel the frame | 
 | 2642 |  | 
 | 2643 | 	btst		&0x7,(%sp)		# is trace on? | 
 | 2644 | 	bne.w		iea_op_trace		# yes | 
 | 2645 |  | 
 | 2646 | 	bra.l		_fpsp_done		# exit to os | 
 | 2647 |  | 
 | 2648 | iea_op_ena: | 
 | 2649 | 	and.b		FPSR_EXCEPT(%a6),%d0	# keep only ones enable and set | 
 | 2650 | 	bfffo		%d0{&24:&8},%d0		# find highest priority exception | 
 | 2651 | 	bne.b		iea_op_exc		# at least one was set | 
 | 2652 |  | 
 | 2653 | # no exception occurred. now, did a disabled, exact overflow occur with inexact | 
 | 2654 | # enabled? if so, then we have to stuff an overflow frame into the FPU. | 
 | 2655 | 	btst		&ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur? | 
 | 2656 | 	beq.b		iea_op_save | 
 | 2657 |  | 
 | 2658 | iea_op_ovfl: | 
 | 2659 | 	btst		&inex2_bit,FPCR_ENABLE(%a6) # is inexact enabled? | 
 | 2660 | 	beq.b		iea_op_store		# no | 
 | 2661 | 	bra.b		iea_op_exc_ovfl		# yes | 
 | 2662 |  | 
 | 2663 | # an enabled exception occurred. we have to insert the exception type back into | 
 | 2664 | # the machine. | 
 | 2665 | iea_op_exc: | 
 | 2666 | 	subi.l		&24,%d0			# fix offset to be 0-8 | 
 | 2667 | 	cmpi.b		%d0,&0x6		# is exception INEX? | 
 | 2668 | 	bne.b		iea_op_exc_force	# no | 
 | 2669 |  | 
 | 2670 | # the enabled exception was inexact. so, if it occurs with an overflow | 
 | 2671 | # or underflow that was disabled, then we have to force an overflow or | 
 | 2672 | # underflow frame. | 
 | 2673 | 	btst		&ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur? | 
 | 2674 | 	bne.b		iea_op_exc_ovfl		# yes | 
 | 2675 | 	btst		&unfl_bit,FPSR_EXCEPT(%a6) # did underflow occur? | 
 | 2676 | 	bne.b		iea_op_exc_unfl		# yes | 
 | 2677 |  | 
 | 2678 | iea_op_exc_force: | 
 | 2679 | 	mov.w		(tbl_iea_except.b,%pc,%d0.w*2),2+FP_SRC(%a6) | 
 | 2680 | 	bra.b		iea_op_exit2		# exit with frestore | 
 | 2681 |  | 
 | 2682 | tbl_iea_except: | 
 | 2683 | 	short		0xe002, 0xe006, 0xe004, 0xe005 | 
 | 2684 | 	short		0xe003, 0xe002, 0xe001, 0xe001 | 
 | 2685 |  | 
 | 2686 | iea_op_exc_ovfl: | 
 | 2687 | 	mov.w		&0xe005,2+FP_SRC(%a6) | 
 | 2688 | 	bra.b		iea_op_exit2 | 
 | 2689 |  | 
 | 2690 | iea_op_exc_unfl: | 
 | 2691 | 	mov.w		&0xe003,2+FP_SRC(%a6) | 
 | 2692 |  | 
 | 2693 | iea_op_exit2: | 
 | 2694 | 	mov.l		EXC_PC(%a6),USER_FPIAR(%a6) # set FPIAR to "Current PC" | 
 | 2695 | 	mov.l		EXC_EXTWPTR(%a6),EXC_PC(%a6) # set "Next PC" in exc frame | 
 | 2696 |  | 
 | 2697 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 2698 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 2699 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 2700 |  | 
 | 2701 | 	frestore	FP_SRC(%a6)		# restore exceptional state | 
 | 2702 |  | 
 | 2703 | 	unlk		%a6			# unravel the frame | 
 | 2704 |  | 
 | 2705 | 	btst		&0x7,(%sp)		# is trace on? | 
 | 2706 | 	bne.b		iea_op_trace		# yes | 
 | 2707 |  | 
 | 2708 | 	bra.l		_fpsp_done		# exit to os | 
 | 2709 |  | 
 | 2710 | # | 
 | 2711 | # The opclass two instruction that took an "Unimplemented Effective Address" | 
 | 2712 | # exception was being traced. Make the "current" PC the FPIAR and put it in | 
 | 2713 | # the trace stack frame then jump to _real_trace(). | 
 | 2714 | # | 
 | 2715 | #		 UNIMP EA FRAME		   TRACE FRAME | 
 | 2716 | #		*****************	***************** | 
 | 2717 | #		* 0x0 *  0x0f0	*	*    Current	* | 
 | 2718 | #		*****************	*      PC	* | 
 | 2719 | #		*    Current	*	***************** | 
 | 2720 | #		*      PC	*	* 0x2 *  0x024	* | 
 | 2721 | #		*****************	***************** | 
 | 2722 | #		*      SR	*	*     Next	* | 
 | 2723 | #		*****************	*      PC	* | 
 | 2724 | #					***************** | 
 | 2725 | #					*      SR	* | 
 | 2726 | #					***************** | 
 | 2727 | iea_op_trace: | 
 | 2728 | 	mov.l		(%sp),-(%sp)		# shift stack frame "down" | 
 | 2729 | 	mov.w		0x8(%sp),0x4(%sp) | 
 | 2730 | 	mov.w		&0x2024,0x6(%sp)	# stk fmt = 0x2; voff = 0x024 | 
 | 2731 | 	fmov.l		%fpiar,0x8(%sp)		# "Current PC" is in FPIAR | 
 | 2732 |  | 
 | 2733 | 	bra.l		_real_trace | 
 | 2734 |  | 
 | 2735 | ######################################################################### | 
 | 2736 | iea_fmovm: | 
 | 2737 | 	btst		&14,%d0			# ctrl or data reg | 
 | 2738 | 	beq.w		iea_fmovm_ctrl | 
 | 2739 |  | 
 | 2740 | iea_fmovm_data: | 
 | 2741 |  | 
 | 2742 | 	btst		&0x5,EXC_SR(%a6)	# user or supervisor mode | 
 | 2743 | 	bne.b		iea_fmovm_data_s | 
 | 2744 |  | 
 | 2745 | iea_fmovm_data_u: | 
 | 2746 | 	mov.l		%usp,%a0 | 
 | 2747 | 	mov.l		%a0,EXC_A7(%a6)		# store current a7 | 
 | 2748 | 	bsr.l		fmovm_dynamic		# do dynamic fmovm | 
 | 2749 | 	mov.l		EXC_A7(%a6),%a0		# load possibly new a7 | 
 | 2750 | 	mov.l		%a0,%usp		# update usp | 
 | 2751 | 	bra.w		iea_fmovm_exit | 
 | 2752 |  | 
 | 2753 | iea_fmovm_data_s: | 
 | 2754 | 	clr.b		SPCOND_FLG(%a6) | 
 | 2755 | 	lea		0x2+EXC_VOFF(%a6),%a0 | 
 | 2756 | 	mov.l		%a0,EXC_A7(%a6) | 
 | 2757 | 	bsr.l		fmovm_dynamic		# do dynamic fmovm | 
 | 2758 |  | 
 | 2759 | 	cmpi.b		SPCOND_FLG(%a6),&mda7_flg | 
 | 2760 | 	beq.w		iea_fmovm_data_predec | 
 | 2761 | 	cmpi.b		SPCOND_FLG(%a6),&mia7_flg | 
 | 2762 | 	bne.w		iea_fmovm_exit | 
 | 2763 |  | 
 | 2764 | # right now, d0 = the size. | 
 | 2765 | # the data has been fetched from the supervisor stack, but we have not | 
 | 2766 | # incremented the stack pointer by the appropriate number of bytes. | 
 | 2767 | # do it here. | 
 | 2768 | iea_fmovm_data_postinc: | 
 | 2769 | 	btst		&0x7,EXC_SR(%a6) | 
 | 2770 | 	bne.b		iea_fmovm_data_pi_trace | 
 | 2771 |  | 
 | 2772 | 	mov.w		EXC_SR(%a6),(EXC_SR,%a6,%d0) | 
 | 2773 | 	mov.l		EXC_EXTWPTR(%a6),(EXC_PC,%a6,%d0) | 
 | 2774 | 	mov.w		&0x00f0,(EXC_VOFF,%a6,%d0) | 
 | 2775 |  | 
 | 2776 | 	lea		(EXC_SR,%a6,%d0),%a0 | 
 | 2777 | 	mov.l		%a0,EXC_SR(%a6) | 
 | 2778 |  | 
 | 2779 | 	fmovm.x		EXC_FP0(%a6),&0xc0	# restore fp0-fp1 | 
 | 2780 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 2781 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 2782 |  | 
 | 2783 | 	unlk		%a6 | 
 | 2784 | 	mov.l		(%sp)+,%sp | 
 | 2785 | 	bra.l		_fpsp_done | 
 | 2786 |  | 
 | 2787 | iea_fmovm_data_pi_trace: | 
 | 2788 | 	mov.w		EXC_SR(%a6),(EXC_SR-0x4,%a6,%d0) | 
 | 2789 | 	mov.l		EXC_EXTWPTR(%a6),(EXC_PC-0x4,%a6,%d0) | 
 | 2790 | 	mov.w		&0x2024,(EXC_VOFF-0x4,%a6,%d0) | 
 | 2791 | 	mov.l		EXC_PC(%a6),(EXC_VOFF+0x2-0x4,%a6,%d0) | 
 | 2792 |  | 
 | 2793 | 	lea		(EXC_SR-0x4,%a6,%d0),%a0 | 
 | 2794 | 	mov.l		%a0,EXC_SR(%a6) | 
 | 2795 |  | 
 | 2796 | 	fmovm.x		EXC_FP0(%a6),&0xc0	# restore fp0-fp1 | 
 | 2797 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 2798 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 2799 |  | 
 | 2800 | 	unlk		%a6 | 
 | 2801 | 	mov.l		(%sp)+,%sp | 
 | 2802 | 	bra.l		_real_trace | 
 | 2803 |  | 
 | 2804 | # right now, d1 = size and d0 = the strg. | 
 | 2805 | iea_fmovm_data_predec: | 
 | 2806 | 	mov.b		%d1,EXC_VOFF(%a6)	# store strg | 
 | 2807 | 	mov.b		%d0,0x1+EXC_VOFF(%a6)	# store size | 
 | 2808 |  | 
 | 2809 | 	fmovm.x		EXC_FP0(%a6),&0xc0	# restore fp0-fp1 | 
 | 2810 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 2811 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 2812 |  | 
 | 2813 | 	mov.l		(%a6),-(%sp)		# make a copy of a6 | 
 | 2814 | 	mov.l		%d0,-(%sp)		# save d0 | 
 | 2815 | 	mov.l		%d1,-(%sp)		# save d1 | 
 | 2816 | 	mov.l		EXC_EXTWPTR(%a6),-(%sp)	# make a copy of Next PC | 
 | 2817 |  | 
 | 2818 | 	clr.l		%d0 | 
 | 2819 | 	mov.b		0x1+EXC_VOFF(%a6),%d0	# fetch size | 
 | 2820 | 	neg.l		%d0			# get negative of size | 
 | 2821 |  | 
 | 2822 | 	btst		&0x7,EXC_SR(%a6)	# is trace enabled? | 
 | 2823 | 	beq.b		iea_fmovm_data_p2 | 
 | 2824 |  | 
 | 2825 | 	mov.w		EXC_SR(%a6),(EXC_SR-0x4,%a6,%d0) | 
 | 2826 | 	mov.l		EXC_PC(%a6),(EXC_VOFF-0x2,%a6,%d0) | 
 | 2827 | 	mov.l		(%sp)+,(EXC_PC-0x4,%a6,%d0) | 
 | 2828 | 	mov.w		&0x2024,(EXC_VOFF-0x4,%a6,%d0) | 
 | 2829 |  | 
 | 2830 | 	pea		(%a6,%d0)		# create final sp | 
 | 2831 | 	bra.b		iea_fmovm_data_p3 | 
 | 2832 |  | 
 | 2833 | iea_fmovm_data_p2: | 
 | 2834 | 	mov.w		EXC_SR(%a6),(EXC_SR,%a6,%d0) | 
 | 2835 | 	mov.l		(%sp)+,(EXC_PC,%a6,%d0) | 
 | 2836 | 	mov.w		&0x00f0,(EXC_VOFF,%a6,%d0) | 
 | 2837 |  | 
 | 2838 | 	pea		(0x4,%a6,%d0)		# create final sp | 
 | 2839 |  | 
 | 2840 | iea_fmovm_data_p3: | 
 | 2841 | 	clr.l		%d1 | 
 | 2842 | 	mov.b		EXC_VOFF(%a6),%d1	# fetch strg | 
 | 2843 |  | 
 | 2844 | 	tst.b		%d1 | 
 | 2845 | 	bpl.b		fm_1 | 
 | 2846 | 	fmovm.x		&0x80,(0x4+0x8,%a6,%d0) | 
 | 2847 | 	addi.l		&0xc,%d0 | 
 | 2848 | fm_1: | 
 | 2849 | 	lsl.b		&0x1,%d1 | 
 | 2850 | 	bpl.b		fm_2 | 
 | 2851 | 	fmovm.x		&0x40,(0x4+0x8,%a6,%d0) | 
 | 2852 | 	addi.l		&0xc,%d0 | 
 | 2853 | fm_2: | 
 | 2854 | 	lsl.b		&0x1,%d1 | 
 | 2855 | 	bpl.b		fm_3 | 
 | 2856 | 	fmovm.x		&0x20,(0x4+0x8,%a6,%d0) | 
 | 2857 | 	addi.l		&0xc,%d0 | 
 | 2858 | fm_3: | 
 | 2859 | 	lsl.b		&0x1,%d1 | 
 | 2860 | 	bpl.b		fm_4 | 
 | 2861 | 	fmovm.x		&0x10,(0x4+0x8,%a6,%d0) | 
 | 2862 | 	addi.l		&0xc,%d0 | 
 | 2863 | fm_4: | 
 | 2864 | 	lsl.b		&0x1,%d1 | 
 | 2865 | 	bpl.b		fm_5 | 
 | 2866 | 	fmovm.x		&0x08,(0x4+0x8,%a6,%d0) | 
 | 2867 | 	addi.l		&0xc,%d0 | 
 | 2868 | fm_5: | 
 | 2869 | 	lsl.b		&0x1,%d1 | 
 | 2870 | 	bpl.b		fm_6 | 
 | 2871 | 	fmovm.x		&0x04,(0x4+0x8,%a6,%d0) | 
 | 2872 | 	addi.l		&0xc,%d0 | 
 | 2873 | fm_6: | 
 | 2874 | 	lsl.b		&0x1,%d1 | 
 | 2875 | 	bpl.b		fm_7 | 
 | 2876 | 	fmovm.x		&0x02,(0x4+0x8,%a6,%d0) | 
 | 2877 | 	addi.l		&0xc,%d0 | 
 | 2878 | fm_7: | 
 | 2879 | 	lsl.b		&0x1,%d1 | 
 | 2880 | 	bpl.b		fm_end | 
 | 2881 | 	fmovm.x		&0x01,(0x4+0x8,%a6,%d0) | 
 | 2882 | fm_end: | 
 | 2883 | 	mov.l		0x4(%sp),%d1 | 
 | 2884 | 	mov.l		0x8(%sp),%d0 | 
 | 2885 | 	mov.l		0xc(%sp),%a6 | 
 | 2886 | 	mov.l		(%sp)+,%sp | 
 | 2887 |  | 
 | 2888 | 	btst		&0x7,(%sp)		# is trace enabled? | 
 | 2889 | 	beq.l		_fpsp_done | 
 | 2890 | 	bra.l		_real_trace | 
 | 2891 |  | 
 | 2892 | ######################################################################### | 
 | 2893 | iea_fmovm_ctrl: | 
 | 2894 |  | 
 | 2895 | 	bsr.l		fmovm_ctrl		# load ctrl regs | 
 | 2896 |  | 
 | 2897 | iea_fmovm_exit: | 
 | 2898 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 2899 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 2900 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 2901 |  | 
 | 2902 | 	btst		&0x7,EXC_SR(%a6)	# is trace on? | 
 | 2903 | 	bne.b		iea_fmovm_trace		# yes | 
 | 2904 |  | 
 | 2905 | 	mov.l		EXC_EXTWPTR(%a6),EXC_PC(%a6) # set Next PC | 
 | 2906 |  | 
 | 2907 | 	unlk		%a6			# unravel the frame | 
 | 2908 |  | 
 | 2909 | 	bra.l		_fpsp_done		# exit to os | 
 | 2910 |  | 
 | 2911 | # | 
 | 2912 | # The control reg instruction that took an "Unimplemented Effective Address" | 
 | 2913 | # exception was being traced. The "Current PC" for the trace frame is the | 
 | 2914 | # PC stacked for Unimp EA. The "Next PC" is in EXC_EXTWPTR. | 
 | 2915 | # After fixing the stack frame, jump to _real_trace(). | 
 | 2916 | # | 
 | 2917 | #		 UNIMP EA FRAME		   TRACE FRAME | 
 | 2918 | #		*****************	***************** | 
 | 2919 | #		* 0x0 *  0x0f0	*	*    Current	* | 
 | 2920 | #		*****************	*      PC	* | 
 | 2921 | #		*    Current	*	***************** | 
 | 2922 | #		*      PC	*	* 0x2 *  0x024	* | 
 | 2923 | #		*****************	***************** | 
 | 2924 | #		*      SR	*	*     Next	* | 
 | 2925 | #		*****************	*      PC	* | 
 | 2926 | #					***************** | 
 | 2927 | #					*      SR	* | 
 | 2928 | #					***************** | 
 | 2929 | # this ain't a pretty solution, but it works: | 
 | 2930 | # -restore a6 (not with unlk) | 
 | 2931 | # -shift stack frame down over where old a6 used to be | 
 | 2932 | # -add LOCAL_SIZE to stack pointer | 
 | 2933 | iea_fmovm_trace: | 
 | 2934 | 	mov.l		(%a6),%a6		# restore frame pointer | 
 | 2935 | 	mov.w		EXC_SR+LOCAL_SIZE(%sp),0x0+LOCAL_SIZE(%sp) | 
 | 2936 | 	mov.l		EXC_PC+LOCAL_SIZE(%sp),0x8+LOCAL_SIZE(%sp) | 
 | 2937 | 	mov.l		EXC_EXTWPTR+LOCAL_SIZE(%sp),0x2+LOCAL_SIZE(%sp) | 
 | 2938 | 	mov.w		&0x2024,0x6+LOCAL_SIZE(%sp) # stk fmt = 0x2; voff = 0x024 | 
 | 2939 | 	add.l		&LOCAL_SIZE,%sp		# clear stack frame | 
 | 2940 |  | 
 | 2941 | 	bra.l		_real_trace | 
 | 2942 |  | 
 | 2943 | ######################################################################### | 
 | 2944 | # The FPU is disabled and so we should really have taken the "Line | 
 | 2945 | # F Emulator" exception. So, here we create an 8-word stack frame | 
 | 2946 | # from our 4-word stack frame. This means we must calculate the length | 
 | 2947 | # the faulting instruction to get the "next PC". This is trivial for | 
 | 2948 | # immediate operands but requires some extra work for fmovm dynamic | 
 | 2949 | # which can use most addressing modes. | 
 | 2950 | iea_disabled: | 
 | 2951 | 	mov.l		(%sp)+,%d0		# restore d0 | 
 | 2952 |  | 
 | 2953 | 	link		%a6,&-LOCAL_SIZE	# init stack frame | 
 | 2954 |  | 
 | 2955 | 	movm.l		&0x0303,EXC_DREGS(%a6)	# save d0-d1/a0-a1 | 
 | 2956 |  | 
 | 2957 | # PC of instruction that took the exception is the PC in the frame | 
 | 2958 | 	mov.l		EXC_PC(%a6),EXC_EXTWPTR(%a6) | 
 | 2959 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 2960 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 2961 | 	bsr.l		_imem_read_long		# fetch the instruction words | 
 | 2962 | 	mov.l		%d0,EXC_OPWORD(%a6)	# store OPWORD and EXTWORD | 
 | 2963 |  | 
 | 2964 | 	tst.w		%d0			# is instr fmovm? | 
 | 2965 | 	bmi.b		iea_dis_fmovm		# yes | 
 | 2966 | # instruction is using an extended precision immediate operand. therefore, | 
 | 2967 | # the total instruction length is 16 bytes. | 
 | 2968 | iea_dis_immed: | 
 | 2969 | 	mov.l		&0x10,%d0		# 16 bytes of instruction | 
 | 2970 | 	bra.b		iea_dis_cont | 
 | 2971 | iea_dis_fmovm: | 
 | 2972 | 	btst		&0xe,%d0		# is instr fmovm ctrl | 
 | 2973 | 	bne.b		iea_dis_fmovm_data	# no | 
 | 2974 | # the instruction is a fmovm.l with 2 or 3 registers. | 
 | 2975 | 	bfextu		%d0{&19:&3},%d1 | 
 | 2976 | 	mov.l		&0xc,%d0 | 
 | 2977 | 	cmpi.b		%d1,&0x7		# move all regs? | 
 | 2978 | 	bne.b		iea_dis_cont | 
 | 2979 | 	addq.l		&0x4,%d0 | 
 | 2980 | 	bra.b		iea_dis_cont | 
 | 2981 | # the instruction is an fmovm.x dynamic which can use many addressing | 
 | 2982 | # modes and thus can have several different total instruction lengths. | 
 | 2983 | # call fmovm_calc_ea which will go through the ea calc process and, | 
 | 2984 | # as a by-product, will tell us how long the instruction is. | 
 | 2985 | iea_dis_fmovm_data: | 
 | 2986 | 	clr.l		%d0 | 
 | 2987 | 	bsr.l		fmovm_calc_ea | 
 | 2988 | 	mov.l		EXC_EXTWPTR(%a6),%d0 | 
 | 2989 | 	sub.l		EXC_PC(%a6),%d0 | 
 | 2990 | iea_dis_cont: | 
 | 2991 | 	mov.w		%d0,EXC_VOFF(%a6)	# store stack shift value | 
 | 2992 |  | 
 | 2993 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 2994 |  | 
 | 2995 | 	unlk		%a6 | 
 | 2996 |  | 
 | 2997 | # here, we actually create the 8-word frame from the 4-word frame, | 
 | 2998 | # with the "next PC" as additional info. | 
 | 2999 | # the <ea> field is let as undefined. | 
 | 3000 | 	subq.l		&0x8,%sp		# make room for new stack | 
 | 3001 | 	mov.l		%d0,-(%sp)		# save d0 | 
 | 3002 | 	mov.w		0xc(%sp),0x4(%sp)	# move SR | 
 | 3003 | 	mov.l		0xe(%sp),0x6(%sp)	# move Current PC | 
 | 3004 | 	clr.l		%d0 | 
 | 3005 | 	mov.w		0x12(%sp),%d0 | 
 | 3006 | 	mov.l		0x6(%sp),0x10(%sp)	# move Current PC | 
 | 3007 | 	add.l		%d0,0x6(%sp)		# make Next PC | 
 | 3008 | 	mov.w		&0x402c,0xa(%sp)	# insert offset,frame format | 
 | 3009 | 	mov.l		(%sp)+,%d0		# restore d0 | 
 | 3010 |  | 
 | 3011 | 	bra.l		_real_fpu_disabled | 
 | 3012 |  | 
 | 3013 | ########## | 
 | 3014 |  | 
 | 3015 | iea_iacc: | 
 | 3016 | 	movc		%pcr,%d0 | 
 | 3017 | 	btst		&0x1,%d0 | 
 | 3018 | 	bne.b		iea_iacc_cont | 
 | 3019 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 3020 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 on stack | 
 | 3021 | iea_iacc_cont: | 
 | 3022 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 3023 |  | 
 | 3024 | 	unlk		%a6 | 
 | 3025 |  | 
 | 3026 | 	subq.w		&0x8,%sp		# make stack frame bigger | 
 | 3027 | 	mov.l		0x8(%sp),(%sp)		# store SR,hi(PC) | 
 | 3028 | 	mov.w		0xc(%sp),0x4(%sp)	# store lo(PC) | 
 | 3029 | 	mov.w		&0x4008,0x6(%sp)	# store voff | 
 | 3030 | 	mov.l		0x2(%sp),0x8(%sp)	# store ea | 
 | 3031 | 	mov.l		&0x09428001,0xc(%sp)	# store fslw | 
 | 3032 |  | 
 | 3033 | iea_acc_done: | 
 | 3034 | 	btst		&0x5,(%sp)		# user or supervisor mode? | 
 | 3035 | 	beq.b		iea_acc_done2		# user | 
 | 3036 | 	bset		&0x2,0xd(%sp)		# set supervisor TM bit | 
 | 3037 |  | 
 | 3038 | iea_acc_done2: | 
 | 3039 | 	bra.l		_real_access | 
 | 3040 |  | 
 | 3041 | iea_dacc: | 
 | 3042 | 	lea		-LOCAL_SIZE(%a6),%sp | 
 | 3043 |  | 
 | 3044 | 	movc		%pcr,%d1 | 
 | 3045 | 	btst		&0x1,%d1 | 
 | 3046 | 	bne.b		iea_dacc_cont | 
 | 3047 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 on stack | 
 | 3048 | 	fmovm.l		LOCAL_SIZE+USER_FPCR(%sp),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 3049 | iea_dacc_cont: | 
 | 3050 | 	mov.l		(%a6),%a6 | 
 | 3051 |  | 
 | 3052 | 	mov.l		0x4+LOCAL_SIZE(%sp),-0x8+0x4+LOCAL_SIZE(%sp) | 
 | 3053 | 	mov.w		0x8+LOCAL_SIZE(%sp),-0x8+0x8+LOCAL_SIZE(%sp) | 
 | 3054 | 	mov.w		&0x4008,-0x8+0xa+LOCAL_SIZE(%sp) | 
 | 3055 | 	mov.l		%a0,-0x8+0xc+LOCAL_SIZE(%sp) | 
 | 3056 | 	mov.w		%d0,-0x8+0x10+LOCAL_SIZE(%sp) | 
 | 3057 | 	mov.w		&0x0001,-0x8+0x12+LOCAL_SIZE(%sp) | 
 | 3058 |  | 
 | 3059 | 	movm.l		LOCAL_SIZE+EXC_DREGS(%sp),&0x0303 # restore d0-d1/a0-a1 | 
 | 3060 | 	add.w		&LOCAL_SIZE-0x4,%sp | 
 | 3061 |  | 
 | 3062 | 	bra.b		iea_acc_done | 
 | 3063 |  | 
 | 3064 | ######################################################################### | 
 | 3065 | # XDEF ****************************************************************	# | 
 | 3066 | #	_fpsp_operr(): 060FPSP entry point for FP Operr exception.	# | 
 | 3067 | #									# | 
 | 3068 | #	This handler should be the first code executed upon taking the	# | 
 | 3069 | #	FP Operand Error exception in an operating system.		# | 
 | 3070 | #									# | 
 | 3071 | # XREF ****************************************************************	# | 
 | 3072 | #	_imem_read_long() - read instruction longword			# | 
 | 3073 | #	fix_skewed_ops() - adjust src operand in fsave frame		# | 
 | 3074 | #	_real_operr() - "callout" to operating system operr handler	# | 
 | 3075 | #	_dmem_write_{byte,word,long}() - store data to mem (opclass 3)	# | 
 | 3076 | #	store_dreg_{b,w,l}() - store data to data regfile (opclass 3)	# | 
 | 3077 | #	facc_out_{b,w,l}() - store to memory took access error (opcl 3)	# | 
 | 3078 | #									# | 
 | 3079 | # INPUT ***************************************************************	# | 
 | 3080 | #	- The system stack contains the FP Operr exception frame	# | 
 | 3081 | #	- The fsave frame contains the source operand			# | 
 | 3082 | #									# | 
 | 3083 | # OUTPUT **************************************************************	# | 
 | 3084 | #	No access error:						# | 
 | 3085 | #	- The system stack is unchanged					# | 
 | 3086 | #	- The fsave frame contains the adjusted src op for opclass 0,2	# | 
 | 3087 | #									# | 
 | 3088 | # ALGORITHM ***********************************************************	# | 
 | 3089 | #	In a system where the FP Operr exception is enabled, the goal	# | 
 | 3090 | # is to get to the handler specified at _real_operr(). But, on the 060,	# | 
 | 3091 | # for opclass zero and two instruction taking this exception, the	# | 
 | 3092 | # input operand in the fsave frame may be incorrect for some cases	# | 
 | 3093 | # and needs to be corrected. This handler calls fix_skewed_ops() to	# | 
 | 3094 | # do just this and then exits through _real_operr().			# | 
 | 3095 | #	For opclass 3 instructions, the 060 doesn't store the default	# | 
 | 3096 | # operr result out to memory or data register file as it should.	# | 
 | 3097 | # This code must emulate the move out before finally exiting through	# | 
 | 3098 | # _real_inex(). The move out, if to memory, is performed using		# | 
 | 3099 | # _mem_write() "callout" routines that may return a failing result.	# | 
 | 3100 | # In this special case, the handler must exit through facc_out()	# | 
 | 3101 | # which creates an access error stack frame from the current operr	# | 
 | 3102 | # stack frame.								# | 
 | 3103 | #									# | 
 | 3104 | ######################################################################### | 
 | 3105 |  | 
 | 3106 | 	global		_fpsp_operr | 
 | 3107 | _fpsp_operr: | 
 | 3108 |  | 
 | 3109 | 	link.w		%a6,&-LOCAL_SIZE	# init stack frame | 
 | 3110 |  | 
 | 3111 | 	fsave		FP_SRC(%a6)		# grab the "busy" frame | 
 | 3112 |  | 
 | 3113 | 	movm.l		&0x0303,EXC_DREGS(%a6)	# save d0-d1/a0-a1 | 
 | 3114 | 	fmovm.l		%fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs | 
 | 3115 | 	fmovm.x		&0xc0,EXC_FPREGS(%a6)	# save fp0-fp1 on stack | 
 | 3116 |  | 
 | 3117 | # the FPIAR holds the "current PC" of the faulting instruction | 
 | 3118 | 	mov.l		USER_FPIAR(%a6),EXC_EXTWPTR(%a6) | 
 | 3119 |  | 
 | 3120 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 3121 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 3122 | 	bsr.l		_imem_read_long		# fetch the instruction words | 
 | 3123 | 	mov.l		%d0,EXC_OPWORD(%a6) | 
 | 3124 |  | 
 | 3125 | ############################################################################## | 
 | 3126 |  | 
 | 3127 | 	btst		&13,%d0			# is instr an fmove out? | 
 | 3128 | 	bne.b		foperr_out		# fmove out | 
 | 3129 |  | 
 | 3130 |  | 
 | 3131 | # here, we simply see if the operand in the fsave frame needs to be "unskewed". | 
 | 3132 | # this would be the case for opclass two operations with a source infinity or | 
 | 3133 | # denorm operand in the sgl or dbl format. NANs also become skewed, but can't | 
 | 3134 | # cause an operr so we don't need to check for them here. | 
 | 3135 | 	lea		FP_SRC(%a6),%a0		# pass: ptr to src op | 
 | 3136 | 	bsr.l		fix_skewed_ops		# fix src op | 
 | 3137 |  | 
 | 3138 | foperr_exit: | 
 | 3139 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 3140 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 3141 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 3142 |  | 
 | 3143 | 	frestore	FP_SRC(%a6) | 
 | 3144 |  | 
 | 3145 | 	unlk		%a6 | 
 | 3146 | 	bra.l		_real_operr | 
 | 3147 |  | 
 | 3148 | ######################################################################## | 
 | 3149 |  | 
 | 3150 | # | 
 | 3151 | # the hardware does not save the default result to memory on enabled | 
 | 3152 | # operand error exceptions. we do this here before passing control to | 
 | 3153 | # the user operand error handler. | 
 | 3154 | # | 
 | 3155 | # byte, word, and long destination format operations can pass | 
 | 3156 | # through here. we simply need to test the sign of the src | 
 | 3157 | # operand and save the appropriate minimum or maximum integer value | 
 | 3158 | # to the effective address as pointed to by the stacked effective address. | 
 | 3159 | # | 
 | 3160 | # although packed opclass three operations can take operand error | 
 | 3161 | # exceptions, they won't pass through here since they are caught | 
 | 3162 | # first by the unsupported data format exception handler. that handler | 
 | 3163 | # sends them directly to _real_operr() if necessary. | 
 | 3164 | # | 
 | 3165 | foperr_out: | 
 | 3166 |  | 
 | 3167 | 	mov.w		FP_SRC_EX(%a6),%d1	# fetch exponent | 
 | 3168 | 	andi.w		&0x7fff,%d1 | 
 | 3169 | 	cmpi.w		%d1,&0x7fff | 
 | 3170 | 	bne.b		foperr_out_not_qnan | 
 | 3171 | # the operand is either an infinity or a QNAN. | 
 | 3172 | 	tst.l		FP_SRC_LO(%a6) | 
 | 3173 | 	bne.b		foperr_out_qnan | 
 | 3174 | 	mov.l		FP_SRC_HI(%a6),%d1 | 
 | 3175 | 	andi.l		&0x7fffffff,%d1 | 
 | 3176 | 	beq.b		foperr_out_not_qnan | 
 | 3177 | foperr_out_qnan: | 
 | 3178 | 	mov.l		FP_SRC_HI(%a6),L_SCR1(%a6) | 
 | 3179 | 	bra.b		foperr_out_jmp | 
 | 3180 |  | 
 | 3181 | foperr_out_not_qnan: | 
 | 3182 | 	mov.l		&0x7fffffff,%d1 | 
 | 3183 | 	tst.b		FP_SRC_EX(%a6) | 
 | 3184 | 	bpl.b		foperr_out_not_qnan2 | 
 | 3185 | 	addq.l		&0x1,%d1 | 
 | 3186 | foperr_out_not_qnan2: | 
 | 3187 | 	mov.l		%d1,L_SCR1(%a6) | 
 | 3188 |  | 
 | 3189 | foperr_out_jmp: | 
 | 3190 | 	bfextu		%d0{&19:&3},%d0		# extract dst format field | 
 | 3191 | 	mov.b		1+EXC_OPWORD(%a6),%d1	# extract <ea> mode,reg | 
 | 3192 | 	mov.w		(tbl_operr.b,%pc,%d0.w*2),%a0 | 
 | 3193 | 	jmp		(tbl_operr.b,%pc,%a0) | 
 | 3194 |  | 
 | 3195 | tbl_operr: | 
 | 3196 | 	short		foperr_out_l - tbl_operr # long word integer | 
 | 3197 | 	short		tbl_operr    - tbl_operr # sgl prec shouldn't happen | 
 | 3198 | 	short		tbl_operr    - tbl_operr # ext prec shouldn't happen | 
 | 3199 | 	short		foperr_exit  - tbl_operr # packed won't enter here | 
 | 3200 | 	short		foperr_out_w - tbl_operr # word integer | 
 | 3201 | 	short		tbl_operr    - tbl_operr # dbl prec shouldn't happen | 
 | 3202 | 	short		foperr_out_b - tbl_operr # byte integer | 
 | 3203 | 	short		tbl_operr    - tbl_operr # packed won't enter here | 
 | 3204 |  | 
 | 3205 | foperr_out_b: | 
 | 3206 | 	mov.b		L_SCR1(%a6),%d0		# load positive default result | 
 | 3207 | 	cmpi.b		%d1,&0x7		# is <ea> mode a data reg? | 
 | 3208 | 	ble.b		foperr_out_b_save_dn	# yes | 
 | 3209 | 	mov.l		EXC_EA(%a6),%a0		# pass: <ea> of default result | 
 | 3210 | 	bsr.l		_dmem_write_byte	# write the default result | 
 | 3211 |  | 
 | 3212 | 	tst.l		%d1			# did dstore fail? | 
 | 3213 | 	bne.l		facc_out_b		# yes | 
 | 3214 |  | 
 | 3215 | 	bra.w		foperr_exit | 
 | 3216 | foperr_out_b_save_dn: | 
 | 3217 | 	andi.w		&0x0007,%d1 | 
 | 3218 | 	bsr.l		store_dreg_b		# store result to regfile | 
 | 3219 | 	bra.w		foperr_exit | 
 | 3220 |  | 
 | 3221 | foperr_out_w: | 
 | 3222 | 	mov.w		L_SCR1(%a6),%d0		# load positive default result | 
 | 3223 | 	cmpi.b		%d1,&0x7		# is <ea> mode a data reg? | 
 | 3224 | 	ble.b		foperr_out_w_save_dn	# yes | 
 | 3225 | 	mov.l		EXC_EA(%a6),%a0		# pass: <ea> of default result | 
 | 3226 | 	bsr.l		_dmem_write_word	# write the default result | 
 | 3227 |  | 
 | 3228 | 	tst.l		%d1			# did dstore fail? | 
 | 3229 | 	bne.l		facc_out_w		# yes | 
 | 3230 |  | 
 | 3231 | 	bra.w		foperr_exit | 
 | 3232 | foperr_out_w_save_dn: | 
 | 3233 | 	andi.w		&0x0007,%d1 | 
 | 3234 | 	bsr.l		store_dreg_w		# store result to regfile | 
 | 3235 | 	bra.w		foperr_exit | 
 | 3236 |  | 
 | 3237 | foperr_out_l: | 
 | 3238 | 	mov.l		L_SCR1(%a6),%d0		# load positive default result | 
 | 3239 | 	cmpi.b		%d1,&0x7		# is <ea> mode a data reg? | 
 | 3240 | 	ble.b		foperr_out_l_save_dn	# yes | 
 | 3241 | 	mov.l		EXC_EA(%a6),%a0		# pass: <ea> of default result | 
 | 3242 | 	bsr.l		_dmem_write_long	# write the default result | 
 | 3243 |  | 
 | 3244 | 	tst.l		%d1			# did dstore fail? | 
 | 3245 | 	bne.l		facc_out_l		# yes | 
 | 3246 |  | 
 | 3247 | 	bra.w		foperr_exit | 
 | 3248 | foperr_out_l_save_dn: | 
 | 3249 | 	andi.w		&0x0007,%d1 | 
 | 3250 | 	bsr.l		store_dreg_l		# store result to regfile | 
 | 3251 | 	bra.w		foperr_exit | 
 | 3252 |  | 
 | 3253 | ######################################################################### | 
 | 3254 | # XDEF ****************************************************************	# | 
 | 3255 | #	_fpsp_snan(): 060FPSP entry point for FP SNAN exception.	# | 
 | 3256 | #									# | 
 | 3257 | #	This handler should be the first code executed upon taking the	# | 
 | 3258 | #	FP Signalling NAN exception in an operating system.		# | 
 | 3259 | #									# | 
 | 3260 | # XREF ****************************************************************	# | 
 | 3261 | #	_imem_read_long() - read instruction longword			# | 
 | 3262 | #	fix_skewed_ops() - adjust src operand in fsave frame		# | 
 | 3263 | #	_real_snan() - "callout" to operating system SNAN handler	# | 
 | 3264 | #	_dmem_write_{byte,word,long}() - store data to mem (opclass 3)	# | 
 | 3265 | #	store_dreg_{b,w,l}() - store data to data regfile (opclass 3)	# | 
 | 3266 | #	facc_out_{b,w,l,d,x}() - store to mem took acc error (opcl 3)	# | 
 | 3267 | #	_calc_ea_fout() - fix An if <ea> is -() or ()+; also get <ea>	# | 
 | 3268 | #									# | 
 | 3269 | # INPUT ***************************************************************	# | 
 | 3270 | #	- The system stack contains the FP SNAN exception frame		# | 
 | 3271 | #	- The fsave frame contains the source operand			# | 
 | 3272 | #									# | 
 | 3273 | # OUTPUT **************************************************************	# | 
 | 3274 | #	No access error:						# | 
 | 3275 | #	- The system stack is unchanged					# | 
 | 3276 | #	- The fsave frame contains the adjusted src op for opclass 0,2	# | 
 | 3277 | #									# | 
 | 3278 | # ALGORITHM ***********************************************************	# | 
 | 3279 | #	In a system where the FP SNAN exception is enabled, the goal	# | 
 | 3280 | # is to get to the handler specified at _real_snan(). But, on the 060,	# | 
 | 3281 | # for opclass zero and two instructions taking this exception, the	# | 
 | 3282 | # input operand in the fsave frame may be incorrect for some cases	# | 
 | 3283 | # and needs to be corrected. This handler calls fix_skewed_ops() to	# | 
 | 3284 | # do just this and then exits through _real_snan().			# | 
 | 3285 | #	For opclass 3 instructions, the 060 doesn't store the default	# | 
 | 3286 | # SNAN result out to memory or data register file as it should.		# | 
 | 3287 | # This code must emulate the move out before finally exiting through	# | 
 | 3288 | # _real_snan(). The move out, if to memory, is performed using		# | 
 | 3289 | # _mem_write() "callout" routines that may return a failing result.	# | 
 | 3290 | # In this special case, the handler must exit through facc_out()	# | 
 | 3291 | # which creates an access error stack frame from the current SNAN	# | 
 | 3292 | # stack frame.								# | 
 | 3293 | #	For the case of an extended precision opclass 3 instruction,	# | 
 | 3294 | # if the effective addressing mode was -() or ()+, then the address	# | 
 | 3295 | # register must get updated by calling _calc_ea_fout(). If the <ea>	# | 
 | 3296 | # was -(a7) from supervisor mode, then the exception frame currently	# | 
 | 3297 | # on the system stack must be carefully moved "down" to make room	# | 
 | 3298 | # for the operand being moved.						# | 
 | 3299 | #									# | 
 | 3300 | ######################################################################### | 
 | 3301 |  | 
 | 3302 | 	global		_fpsp_snan | 
 | 3303 | _fpsp_snan: | 
 | 3304 |  | 
 | 3305 | 	link.w		%a6,&-LOCAL_SIZE	# init stack frame | 
 | 3306 |  | 
 | 3307 | 	fsave		FP_SRC(%a6)		# grab the "busy" frame | 
 | 3308 |  | 
 | 3309 | 	movm.l		&0x0303,EXC_DREGS(%a6)	# save d0-d1/a0-a1 | 
 | 3310 | 	fmovm.l		%fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs | 
 | 3311 | 	fmovm.x		&0xc0,EXC_FPREGS(%a6)	# save fp0-fp1 on stack | 
 | 3312 |  | 
 | 3313 | # the FPIAR holds the "current PC" of the faulting instruction | 
 | 3314 | 	mov.l		USER_FPIAR(%a6),EXC_EXTWPTR(%a6) | 
 | 3315 |  | 
 | 3316 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 3317 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 3318 | 	bsr.l		_imem_read_long		# fetch the instruction words | 
 | 3319 | 	mov.l		%d0,EXC_OPWORD(%a6) | 
 | 3320 |  | 
 | 3321 | ############################################################################## | 
 | 3322 |  | 
 | 3323 | 	btst		&13,%d0			# is instr an fmove out? | 
 | 3324 | 	bne.w		fsnan_out		# fmove out | 
 | 3325 |  | 
 | 3326 |  | 
 | 3327 | # here, we simply see if the operand in the fsave frame needs to be "unskewed". | 
 | 3328 | # this would be the case for opclass two operations with a source infinity or | 
 | 3329 | # denorm operand in the sgl or dbl format. NANs also become skewed and must be | 
 | 3330 | # fixed here. | 
 | 3331 | 	lea		FP_SRC(%a6),%a0		# pass: ptr to src op | 
 | 3332 | 	bsr.l		fix_skewed_ops		# fix src op | 
 | 3333 |  | 
 | 3334 | fsnan_exit: | 
 | 3335 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 3336 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 3337 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 3338 |  | 
 | 3339 | 	frestore	FP_SRC(%a6) | 
 | 3340 |  | 
 | 3341 | 	unlk		%a6 | 
 | 3342 | 	bra.l		_real_snan | 
 | 3343 |  | 
 | 3344 | ######################################################################## | 
 | 3345 |  | 
 | 3346 | # | 
 | 3347 | # the hardware does not save the default result to memory on enabled | 
 | 3348 | # snan exceptions. we do this here before passing control to | 
 | 3349 | # the user snan handler. | 
 | 3350 | # | 
 | 3351 | # byte, word, long, and packed destination format operations can pass | 
 | 3352 | # through here. since packed format operations already were handled by | 
 | 3353 | # fpsp_unsupp(), then we need to do nothing else for them here. | 
 | 3354 | # for byte, word, and long, we simply need to test the sign of the src | 
 | 3355 | # operand and save the appropriate minimum or maximum integer value | 
 | 3356 | # to the effective address as pointed to by the stacked effective address. | 
 | 3357 | # | 
 | 3358 | fsnan_out: | 
 | 3359 |  | 
 | 3360 | 	bfextu		%d0{&19:&3},%d0		# extract dst format field | 
 | 3361 | 	mov.b		1+EXC_OPWORD(%a6),%d1	# extract <ea> mode,reg | 
 | 3362 | 	mov.w		(tbl_snan.b,%pc,%d0.w*2),%a0 | 
 | 3363 | 	jmp		(tbl_snan.b,%pc,%a0) | 
 | 3364 |  | 
 | 3365 | tbl_snan: | 
 | 3366 | 	short		fsnan_out_l - tbl_snan # long word integer | 
 | 3367 | 	short		fsnan_out_s - tbl_snan # sgl prec shouldn't happen | 
 | 3368 | 	short		fsnan_out_x - tbl_snan # ext prec shouldn't happen | 
 | 3369 | 	short		tbl_snan    - tbl_snan # packed needs no help | 
 | 3370 | 	short		fsnan_out_w - tbl_snan # word integer | 
 | 3371 | 	short		fsnan_out_d - tbl_snan # dbl prec shouldn't happen | 
 | 3372 | 	short		fsnan_out_b - tbl_snan # byte integer | 
 | 3373 | 	short		tbl_snan    - tbl_snan # packed needs no help | 
 | 3374 |  | 
 | 3375 | fsnan_out_b: | 
 | 3376 | 	mov.b		FP_SRC_HI(%a6),%d0	# load upper byte of SNAN | 
 | 3377 | 	bset		&6,%d0			# set SNAN bit | 
 | 3378 | 	cmpi.b		%d1,&0x7		# is <ea> mode a data reg? | 
 | 3379 | 	ble.b		fsnan_out_b_dn		# yes | 
 | 3380 | 	mov.l		EXC_EA(%a6),%a0		# pass: <ea> of default result | 
 | 3381 | 	bsr.l		_dmem_write_byte	# write the default result | 
 | 3382 |  | 
 | 3383 | 	tst.l		%d1			# did dstore fail? | 
 | 3384 | 	bne.l		facc_out_b		# yes | 
 | 3385 |  | 
 | 3386 | 	bra.w		fsnan_exit | 
 | 3387 | fsnan_out_b_dn: | 
 | 3388 | 	andi.w		&0x0007,%d1 | 
 | 3389 | 	bsr.l		store_dreg_b		# store result to regfile | 
 | 3390 | 	bra.w		fsnan_exit | 
 | 3391 |  | 
 | 3392 | fsnan_out_w: | 
 | 3393 | 	mov.w		FP_SRC_HI(%a6),%d0	# load upper word of SNAN | 
 | 3394 | 	bset		&14,%d0			# set SNAN bit | 
 | 3395 | 	cmpi.b		%d1,&0x7		# is <ea> mode a data reg? | 
 | 3396 | 	ble.b		fsnan_out_w_dn		# yes | 
 | 3397 | 	mov.l		EXC_EA(%a6),%a0		# pass: <ea> of default result | 
 | 3398 | 	bsr.l		_dmem_write_word	# write the default result | 
 | 3399 |  | 
 | 3400 | 	tst.l		%d1			# did dstore fail? | 
 | 3401 | 	bne.l		facc_out_w		# yes | 
 | 3402 |  | 
 | 3403 | 	bra.w		fsnan_exit | 
 | 3404 | fsnan_out_w_dn: | 
 | 3405 | 	andi.w		&0x0007,%d1 | 
 | 3406 | 	bsr.l		store_dreg_w		# store result to regfile | 
 | 3407 | 	bra.w		fsnan_exit | 
 | 3408 |  | 
 | 3409 | fsnan_out_l: | 
 | 3410 | 	mov.l		FP_SRC_HI(%a6),%d0	# load upper longword of SNAN | 
 | 3411 | 	bset		&30,%d0			# set SNAN bit | 
 | 3412 | 	cmpi.b		%d1,&0x7		# is <ea> mode a data reg? | 
 | 3413 | 	ble.b		fsnan_out_l_dn		# yes | 
 | 3414 | 	mov.l		EXC_EA(%a6),%a0		# pass: <ea> of default result | 
 | 3415 | 	bsr.l		_dmem_write_long	# write the default result | 
 | 3416 |  | 
 | 3417 | 	tst.l		%d1			# did dstore fail? | 
 | 3418 | 	bne.l		facc_out_l		# yes | 
 | 3419 |  | 
 | 3420 | 	bra.w		fsnan_exit | 
 | 3421 | fsnan_out_l_dn: | 
 | 3422 | 	andi.w		&0x0007,%d1 | 
 | 3423 | 	bsr.l		store_dreg_l		# store result to regfile | 
 | 3424 | 	bra.w		fsnan_exit | 
 | 3425 |  | 
 | 3426 | fsnan_out_s: | 
 | 3427 | 	cmpi.b		%d1,&0x7		# is <ea> mode a data reg? | 
 | 3428 | 	ble.b		fsnan_out_d_dn		# yes | 
 | 3429 | 	mov.l		FP_SRC_EX(%a6),%d0	# fetch SNAN sign | 
 | 3430 | 	andi.l		&0x80000000,%d0		# keep sign | 
 | 3431 | 	ori.l		&0x7fc00000,%d0		# insert new exponent,SNAN bit | 
 | 3432 | 	mov.l		FP_SRC_HI(%a6),%d1	# load mantissa | 
 | 3433 | 	lsr.l		&0x8,%d1		# shift mantissa for sgl | 
 | 3434 | 	or.l		%d1,%d0			# create sgl SNAN | 
 | 3435 | 	mov.l		EXC_EA(%a6),%a0		# pass: <ea> of default result | 
 | 3436 | 	bsr.l		_dmem_write_long	# write the default result | 
 | 3437 |  | 
 | 3438 | 	tst.l		%d1			# did dstore fail? | 
 | 3439 | 	bne.l		facc_out_l		# yes | 
 | 3440 |  | 
 | 3441 | 	bra.w		fsnan_exit | 
 | 3442 | fsnan_out_d_dn: | 
 | 3443 | 	mov.l		FP_SRC_EX(%a6),%d0	# fetch SNAN sign | 
 | 3444 | 	andi.l		&0x80000000,%d0		# keep sign | 
 | 3445 | 	ori.l		&0x7fc00000,%d0		# insert new exponent,SNAN bit | 
 | 3446 | 	mov.l		%d1,-(%sp) | 
 | 3447 | 	mov.l		FP_SRC_HI(%a6),%d1	# load mantissa | 
 | 3448 | 	lsr.l		&0x8,%d1		# shift mantissa for sgl | 
 | 3449 | 	or.l		%d1,%d0			# create sgl SNAN | 
 | 3450 | 	mov.l		(%sp)+,%d1 | 
 | 3451 | 	andi.w		&0x0007,%d1 | 
 | 3452 | 	bsr.l		store_dreg_l		# store result to regfile | 
 | 3453 | 	bra.w		fsnan_exit | 
 | 3454 |  | 
 | 3455 | fsnan_out_d: | 
 | 3456 | 	mov.l		FP_SRC_EX(%a6),%d0	# fetch SNAN sign | 
 | 3457 | 	andi.l		&0x80000000,%d0		# keep sign | 
 | 3458 | 	ori.l		&0x7ff80000,%d0		# insert new exponent,SNAN bit | 
 | 3459 | 	mov.l		FP_SRC_HI(%a6),%d1	# load hi mantissa | 
 | 3460 | 	mov.l		%d0,FP_SCR0_EX(%a6)	# store to temp space | 
 | 3461 | 	mov.l		&11,%d0			# load shift amt | 
 | 3462 | 	lsr.l		%d0,%d1 | 
 | 3463 | 	or.l		%d1,FP_SCR0_EX(%a6)	# create dbl hi | 
 | 3464 | 	mov.l		FP_SRC_HI(%a6),%d1	# load hi mantissa | 
 | 3465 | 	andi.l		&0x000007ff,%d1 | 
 | 3466 | 	ror.l		%d0,%d1 | 
 | 3467 | 	mov.l		%d1,FP_SCR0_HI(%a6)	# store to temp space | 
 | 3468 | 	mov.l		FP_SRC_LO(%a6),%d1	# load lo mantissa | 
 | 3469 | 	lsr.l		%d0,%d1 | 
 | 3470 | 	or.l		%d1,FP_SCR0_HI(%a6)	# create dbl lo | 
 | 3471 | 	lea		FP_SCR0(%a6),%a0	# pass: ptr to operand | 
 | 3472 | 	mov.l		EXC_EA(%a6),%a1		# pass: dst addr | 
 | 3473 | 	movq.l		&0x8,%d0		# pass: size of 8 bytes | 
 | 3474 | 	bsr.l		_dmem_write		# write the default result | 
 | 3475 |  | 
 | 3476 | 	tst.l		%d1			# did dstore fail? | 
 | 3477 | 	bne.l		facc_out_d		# yes | 
 | 3478 |  | 
 | 3479 | 	bra.w		fsnan_exit | 
 | 3480 |  | 
 | 3481 | # for extended precision, if the addressing mode is pre-decrement or | 
 | 3482 | # post-increment, then the address register did not get updated. | 
 | 3483 | # in addition, for pre-decrement, the stacked <ea> is incorrect. | 
 | 3484 | fsnan_out_x: | 
 | 3485 | 	clr.b		SPCOND_FLG(%a6)		# clear special case flag | 
 | 3486 |  | 
 | 3487 | 	mov.w		FP_SRC_EX(%a6),FP_SCR0_EX(%a6) | 
 | 3488 | 	clr.w		2+FP_SCR0(%a6) | 
 | 3489 | 	mov.l		FP_SRC_HI(%a6),%d0 | 
 | 3490 | 	bset		&30,%d0 | 
 | 3491 | 	mov.l		%d0,FP_SCR0_HI(%a6) | 
 | 3492 | 	mov.l		FP_SRC_LO(%a6),FP_SCR0_LO(%a6) | 
 | 3493 |  | 
 | 3494 | 	btst		&0x5,EXC_SR(%a6)	# supervisor mode exception? | 
 | 3495 | 	bne.b		fsnan_out_x_s		# yes | 
 | 3496 |  | 
 | 3497 | 	mov.l		%usp,%a0		# fetch user stack pointer | 
 | 3498 | 	mov.l		%a0,EXC_A7(%a6)		# save on stack for calc_ea() | 
 | 3499 | 	mov.l		(%a6),EXC_A6(%a6) | 
 | 3500 |  | 
 | 3501 | 	bsr.l		_calc_ea_fout		# find the correct ea,update An | 
 | 3502 | 	mov.l		%a0,%a1 | 
 | 3503 | 	mov.l		%a0,EXC_EA(%a6)		# stack correct <ea> | 
 | 3504 |  | 
 | 3505 | 	mov.l		EXC_A7(%a6),%a0 | 
 | 3506 | 	mov.l		%a0,%usp		# restore user stack pointer | 
 | 3507 | 	mov.l		EXC_A6(%a6),(%a6) | 
 | 3508 |  | 
 | 3509 | fsnan_out_x_save: | 
 | 3510 | 	lea		FP_SCR0(%a6),%a0	# pass: ptr to operand | 
 | 3511 | 	movq.l		&0xc,%d0		# pass: size of extended | 
 | 3512 | 	bsr.l		_dmem_write		# write the default result | 
 | 3513 |  | 
 | 3514 | 	tst.l		%d1			# did dstore fail? | 
 | 3515 | 	bne.l		facc_out_x		# yes | 
 | 3516 |  | 
 | 3517 | 	bra.w		fsnan_exit | 
 | 3518 |  | 
 | 3519 | fsnan_out_x_s: | 
 | 3520 | 	mov.l		(%a6),EXC_A6(%a6) | 
 | 3521 |  | 
 | 3522 | 	bsr.l		_calc_ea_fout		# find the correct ea,update An | 
 | 3523 | 	mov.l		%a0,%a1 | 
 | 3524 | 	mov.l		%a0,EXC_EA(%a6)		# stack correct <ea> | 
 | 3525 |  | 
 | 3526 | 	mov.l		EXC_A6(%a6),(%a6) | 
 | 3527 |  | 
 | 3528 | 	cmpi.b		SPCOND_FLG(%a6),&mda7_flg # is <ea> mode -(a7)? | 
 | 3529 | 	bne.b		fsnan_out_x_save	# no | 
 | 3530 |  | 
 | 3531 | # the operation was "fmove.x SNAN,-(a7)" from supervisor mode. | 
 | 3532 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 3533 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 3534 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 3535 |  | 
 | 3536 | 	frestore	FP_SRC(%a6) | 
 | 3537 |  | 
 | 3538 | 	mov.l		EXC_A6(%a6),%a6		# restore frame pointer | 
 | 3539 |  | 
 | 3540 | 	mov.l		LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp) | 
 | 3541 | 	mov.l		LOCAL_SIZE+EXC_PC+0x2(%sp),LOCAL_SIZE+EXC_PC+0x2-0xc(%sp) | 
 | 3542 | 	mov.l		LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp) | 
 | 3543 |  | 
 | 3544 | 	mov.l		LOCAL_SIZE+FP_SCR0_EX(%sp),LOCAL_SIZE+EXC_SR(%sp) | 
 | 3545 | 	mov.l		LOCAL_SIZE+FP_SCR0_HI(%sp),LOCAL_SIZE+EXC_PC+0x2(%sp) | 
 | 3546 | 	mov.l		LOCAL_SIZE+FP_SCR0_LO(%sp),LOCAL_SIZE+EXC_EA(%sp) | 
 | 3547 |  | 
 | 3548 | 	add.l		&LOCAL_SIZE-0x8,%sp | 
 | 3549 |  | 
 | 3550 | 	bra.l		_real_snan | 
 | 3551 |  | 
 | 3552 | ######################################################################### | 
 | 3553 | # XDEF ****************************************************************	# | 
 | 3554 | #	_fpsp_inex(): 060FPSP entry point for FP Inexact exception.	# | 
 | 3555 | #									# | 
 | 3556 | #	This handler should be the first code executed upon taking the	# | 
 | 3557 | #	FP Inexact exception in an operating system.			# | 
 | 3558 | #									# | 
 | 3559 | # XREF ****************************************************************	# | 
 | 3560 | #	_imem_read_long() - read instruction longword			# | 
 | 3561 | #	fix_skewed_ops() - adjust src operand in fsave frame		# | 
 | 3562 | #	set_tag_x() - determine optype of src/dst operands		# | 
 | 3563 | #	store_fpreg() - store opclass 0 or 2 result to FP regfile	# | 
 | 3564 | #	unnorm_fix() - change UNNORM operands to NORM or ZERO		# | 
 | 3565 | #	load_fpn2() - load dst operand from FP regfile			# | 
 | 3566 | #	smovcr() - emulate an "fmovcr" instruction			# | 
 | 3567 | #	fout() - emulate an opclass 3 instruction			# | 
 | 3568 | #	tbl_unsupp - add of table of emulation routines for opclass 0,2	# | 
 | 3569 | #	_real_inex() - "callout" to operating system inexact handler	# | 
 | 3570 | #									# | 
 | 3571 | # INPUT ***************************************************************	# | 
 | 3572 | #	- The system stack contains the FP Inexact exception frame	# | 
 | 3573 | #	- The fsave frame contains the source operand			# | 
 | 3574 | #									# | 
 | 3575 | # OUTPUT **************************************************************	# | 
 | 3576 | #	- The system stack is unchanged					# | 
 | 3577 | #	- The fsave frame contains the adjusted src op for opclass 0,2	# | 
 | 3578 | #									# | 
 | 3579 | # ALGORITHM ***********************************************************	# | 
 | 3580 | #	In a system where the FP Inexact exception is enabled, the goal	# | 
 | 3581 | # is to get to the handler specified at _real_inex(). But, on the 060,	# | 
 | 3582 | # for opclass zero and two instruction taking this exception, the	# | 
 | 3583 | # hardware doesn't store the correct result to the destination FP	# | 
 | 3584 | # register as did the '040 and '881/2. This handler must emulate the	# | 
 | 3585 | # instruction in order to get this value and then store it to the	# | 
 | 3586 | # correct register before calling _real_inex().				# | 
 | 3587 | #	For opclass 3 instructions, the 060 doesn't store the default	# | 
 | 3588 | # inexact result out to memory or data register file as it should.	# | 
 | 3589 | # This code must emulate the move out by calling fout() before finally	# | 
 | 3590 | # exiting through _real_inex().						# | 
 | 3591 | #									# | 
 | 3592 | ######################################################################### | 
 | 3593 |  | 
 | 3594 | 	global		_fpsp_inex | 
 | 3595 | _fpsp_inex: | 
 | 3596 |  | 
 | 3597 | 	link.w		%a6,&-LOCAL_SIZE	# init stack frame | 
 | 3598 |  | 
 | 3599 | 	fsave		FP_SRC(%a6)		# grab the "busy" frame | 
 | 3600 |  | 
 | 3601 | 	movm.l		&0x0303,EXC_DREGS(%a6)	# save d0-d1/a0-a1 | 
 | 3602 | 	fmovm.l		%fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs | 
 | 3603 | 	fmovm.x		&0xc0,EXC_FPREGS(%a6)	# save fp0-fp1 on stack | 
 | 3604 |  | 
 | 3605 | # the FPIAR holds the "current PC" of the faulting instruction | 
 | 3606 | 	mov.l		USER_FPIAR(%a6),EXC_EXTWPTR(%a6) | 
 | 3607 |  | 
 | 3608 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 3609 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 3610 | 	bsr.l		_imem_read_long		# fetch the instruction words | 
 | 3611 | 	mov.l		%d0,EXC_OPWORD(%a6) | 
 | 3612 |  | 
 | 3613 | ############################################################################## | 
 | 3614 |  | 
 | 3615 | 	btst		&13,%d0			# is instr an fmove out? | 
 | 3616 | 	bne.w		finex_out		# fmove out | 
 | 3617 |  | 
 | 3618 |  | 
 | 3619 | # the hardware, for "fabs" and "fneg" w/ a long source format, puts the | 
 | 3620 | # longword integer directly into the upper longword of the mantissa along | 
 | 3621 | # w/ an exponent value of 0x401e. we convert this to extended precision here. | 
 | 3622 | 	bfextu		%d0{&19:&3},%d0		# fetch instr size | 
 | 3623 | 	bne.b		finex_cont		# instr size is not long | 
 | 3624 | 	cmpi.w		FP_SRC_EX(%a6),&0x401e	# is exponent 0x401e? | 
 | 3625 | 	bne.b		finex_cont		# no | 
 | 3626 | 	fmov.l		&0x0,%fpcr | 
 | 3627 | 	fmov.l		FP_SRC_HI(%a6),%fp0	# load integer src | 
 | 3628 | 	fmov.x		%fp0,FP_SRC(%a6)	# store integer as extended precision | 
 | 3629 | 	mov.w		&0xe001,0x2+FP_SRC(%a6) | 
 | 3630 |  | 
 | 3631 | finex_cont: | 
 | 3632 | 	lea		FP_SRC(%a6),%a0		# pass: ptr to src op | 
 | 3633 | 	bsr.l		fix_skewed_ops		# fix src op | 
 | 3634 |  | 
 | 3635 | # Here, we zero the ccode and exception byte field since we're going to | 
 | 3636 | # emulate the whole instruction. Notice, though, that we don't kill the | 
 | 3637 | # INEX1 bit. This is because a packed op has long since been converted | 
 | 3638 | # to extended before arriving here. Therefore, we need to retain the | 
 | 3639 | # INEX1 bit from when the operand was first converted. | 
 | 3640 | 	andi.l		&0x00ff01ff,USER_FPSR(%a6) # zero all but accured field | 
 | 3641 |  | 
 | 3642 | 	fmov.l		&0x0,%fpcr		# zero current control regs | 
 | 3643 | 	fmov.l		&0x0,%fpsr | 
 | 3644 |  | 
 | 3645 | 	bfextu		EXC_EXTWORD(%a6){&0:&6},%d1 # extract upper 6 of cmdreg | 
 | 3646 | 	cmpi.b		%d1,&0x17		# is op an fmovecr? | 
 | 3647 | 	beq.w		finex_fmovcr		# yes | 
 | 3648 |  | 
 | 3649 | 	lea		FP_SRC(%a6),%a0		# pass: ptr to src op | 
 | 3650 | 	bsr.l		set_tag_x		# tag the operand type | 
 | 3651 | 	mov.b		%d0,STAG(%a6)		# maybe NORM,DENORM | 
 | 3652 |  | 
 | 3653 | # bits four and five of the fp extension word separate the monadic and dyadic | 
 | 3654 | # operations that can pass through fpsp_inex(). remember that fcmp and ftst | 
 | 3655 | # will never take this exception, but fsincos will. | 
 | 3656 | 	btst		&0x5,1+EXC_CMDREG(%a6)	# is operation monadic or dyadic? | 
 | 3657 | 	beq.b		finex_extract		# monadic | 
 | 3658 |  | 
 | 3659 | 	btst		&0x4,1+EXC_CMDREG(%a6)	# is operation an fsincos? | 
 | 3660 | 	bne.b		finex_extract		# yes | 
 | 3661 |  | 
 | 3662 | 	bfextu		EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg | 
 | 3663 | 	bsr.l		load_fpn2		# load dst into FP_DST | 
 | 3664 |  | 
 | 3665 | 	lea		FP_DST(%a6),%a0		# pass: ptr to dst op | 
 | 3666 | 	bsr.l		set_tag_x		# tag the operand type | 
 | 3667 | 	cmpi.b		%d0,&UNNORM		# is operand an UNNORM? | 
 | 3668 | 	bne.b		finex_op2_done		# no | 
 | 3669 | 	bsr.l		unnorm_fix		# yes; convert to NORM,DENORM,or ZERO | 
 | 3670 | finex_op2_done: | 
 | 3671 | 	mov.b		%d0,DTAG(%a6)		# save dst optype tag | 
 | 3672 |  | 
 | 3673 | finex_extract: | 
 | 3674 | 	clr.l		%d0 | 
 | 3675 | 	mov.b		FPCR_MODE(%a6),%d0	# pass rnd prec/mode | 
 | 3676 |  | 
 | 3677 | 	mov.b		1+EXC_CMDREG(%a6),%d1 | 
 | 3678 | 	andi.w		&0x007f,%d1		# extract extension | 
 | 3679 |  | 
 | 3680 | 	lea		FP_SRC(%a6),%a0 | 
 | 3681 | 	lea		FP_DST(%a6),%a1 | 
 | 3682 |  | 
 | 3683 | 	mov.l		(tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr | 
 | 3684 | 	jsr		(tbl_unsupp.l,%pc,%d1.l*1) | 
 | 3685 |  | 
 | 3686 | # the operation has been emulated. the result is in fp0. | 
 | 3687 | finex_save: | 
 | 3688 | 	bfextu		EXC_CMDREG(%a6){&6:&3},%d0 | 
 | 3689 | 	bsr.l		store_fpreg | 
 | 3690 |  | 
 | 3691 | finex_exit: | 
 | 3692 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 3693 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 3694 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 3695 |  | 
 | 3696 | 	frestore	FP_SRC(%a6) | 
 | 3697 |  | 
 | 3698 | 	unlk		%a6 | 
 | 3699 | 	bra.l		_real_inex | 
 | 3700 |  | 
 | 3701 | finex_fmovcr: | 
 | 3702 | 	clr.l		%d0 | 
 | 3703 | 	mov.b		FPCR_MODE(%a6),%d0	# pass rnd prec,mode | 
 | 3704 | 	mov.b		1+EXC_CMDREG(%a6),%d1 | 
 | 3705 | 	andi.l		&0x0000007f,%d1		# pass rom offset | 
 | 3706 | 	bsr.l		smovcr | 
 | 3707 | 	bra.b		finex_save | 
 | 3708 |  | 
 | 3709 | ######################################################################## | 
 | 3710 |  | 
 | 3711 | # | 
 | 3712 | # the hardware does not save the default result to memory on enabled | 
 | 3713 | # inexact exceptions. we do this here before passing control to | 
 | 3714 | # the user inexact handler. | 
 | 3715 | # | 
 | 3716 | # byte, word, and long destination format operations can pass | 
 | 3717 | # through here. so can double and single precision. | 
 | 3718 | # although packed opclass three operations can take inexact | 
 | 3719 | # exceptions, they won't pass through here since they are caught | 
 | 3720 | # first by the unsupported data format exception handler. that handler | 
 | 3721 | # sends them directly to _real_inex() if necessary. | 
 | 3722 | # | 
 | 3723 | finex_out: | 
 | 3724 |  | 
 | 3725 | 	mov.b		&NORM,STAG(%a6)		# src is a NORM | 
 | 3726 |  | 
 | 3727 | 	clr.l		%d0 | 
 | 3728 | 	mov.b		FPCR_MODE(%a6),%d0	# pass rnd prec,mode | 
 | 3729 |  | 
 | 3730 | 	andi.l		&0xffff00ff,USER_FPSR(%a6) # zero exception field | 
 | 3731 |  | 
 | 3732 | 	lea		FP_SRC(%a6),%a0		# pass ptr to src operand | 
 | 3733 |  | 
 | 3734 | 	bsr.l		fout			# store the default result | 
 | 3735 |  | 
 | 3736 | 	bra.b		finex_exit | 
 | 3737 |  | 
 | 3738 | ######################################################################### | 
 | 3739 | # XDEF ****************************************************************	# | 
 | 3740 | #	_fpsp_dz(): 060FPSP entry point for FP DZ exception.		# | 
 | 3741 | #									# | 
 | 3742 | #	This handler should be the first code executed upon taking	# | 
 | 3743 | #	the FP DZ exception in an operating system.			# | 
 | 3744 | #									# | 
 | 3745 | # XREF ****************************************************************	# | 
 | 3746 | #	_imem_read_long() - read instruction longword from memory	# | 
 | 3747 | #	fix_skewed_ops() - adjust fsave operand				# | 
 | 3748 | #	_real_dz() - "callout" exit point from FP DZ handler		# | 
 | 3749 | #									# | 
 | 3750 | # INPUT ***************************************************************	# | 
 | 3751 | #	- The system stack contains the FP DZ exception stack.		# | 
 | 3752 | #	- The fsave frame contains the source operand.			# | 
 | 3753 | #									# | 
 | 3754 | # OUTPUT **************************************************************	# | 
 | 3755 | #	- The system stack contains the FP DZ exception stack.		# | 
 | 3756 | #	- The fsave frame contains the adjusted source operand.		# | 
 | 3757 | #									# | 
 | 3758 | # ALGORITHM ***********************************************************	# | 
 | 3759 | #	In a system where the DZ exception is enabled, the goal is to	# | 
 | 3760 | # get to the handler specified at _real_dz(). But, on the 060, when the	# | 
 | 3761 | # exception is taken, the input operand in the fsave state frame may	# | 
 | 3762 | # be incorrect for some cases and need to be adjusted. So, this package	# | 
 | 3763 | # adjusts the operand using fix_skewed_ops() and then branches to	# | 
 | 3764 | # _real_dz().								# | 
 | 3765 | #									# | 
 | 3766 | ######################################################################### | 
 | 3767 |  | 
 | 3768 | 	global		_fpsp_dz | 
 | 3769 | _fpsp_dz: | 
 | 3770 |  | 
 | 3771 | 	link.w		%a6,&-LOCAL_SIZE	# init stack frame | 
 | 3772 |  | 
 | 3773 | 	fsave		FP_SRC(%a6)		# grab the "busy" frame | 
 | 3774 |  | 
 | 3775 | 	movm.l		&0x0303,EXC_DREGS(%a6)	# save d0-d1/a0-a1 | 
 | 3776 | 	fmovm.l		%fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs | 
 | 3777 | 	fmovm.x		&0xc0,EXC_FPREGS(%a6)	# save fp0-fp1 on stack | 
 | 3778 |  | 
 | 3779 | # the FPIAR holds the "current PC" of the faulting instruction | 
 | 3780 | 	mov.l		USER_FPIAR(%a6),EXC_EXTWPTR(%a6) | 
 | 3781 |  | 
 | 3782 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 3783 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 3784 | 	bsr.l		_imem_read_long		# fetch the instruction words | 
 | 3785 | 	mov.l		%d0,EXC_OPWORD(%a6) | 
 | 3786 |  | 
 | 3787 | ############################################################################## | 
 | 3788 |  | 
 | 3789 |  | 
 | 3790 | # here, we simply see if the operand in the fsave frame needs to be "unskewed". | 
 | 3791 | # this would be the case for opclass two operations with a source zero | 
 | 3792 | # in the sgl or dbl format. | 
 | 3793 | 	lea		FP_SRC(%a6),%a0		# pass: ptr to src op | 
 | 3794 | 	bsr.l		fix_skewed_ops		# fix src op | 
 | 3795 |  | 
 | 3796 | fdz_exit: | 
 | 3797 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 3798 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 3799 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 3800 |  | 
 | 3801 | 	frestore	FP_SRC(%a6) | 
 | 3802 |  | 
 | 3803 | 	unlk		%a6 | 
 | 3804 | 	bra.l		_real_dz | 
 | 3805 |  | 
 | 3806 | ######################################################################### | 
 | 3807 | # XDEF ****************************************************************	# | 
 | 3808 | #	_fpsp_fline(): 060FPSP entry point for "Line F emulator" exc.	# | 
 | 3809 | #									# | 
 | 3810 | #	This handler should be the first code executed upon taking the	# | 
 | 3811 | #	"Line F Emulator" exception in an operating system.		# | 
 | 3812 | #									# | 
 | 3813 | # XREF ****************************************************************	# | 
 | 3814 | #	_fpsp_unimp() - handle "FP Unimplemented" exceptions		# | 
 | 3815 | #	_real_fpu_disabled() - handle "FPU disabled" exceptions		# | 
 | 3816 | #	_real_fline() - handle "FLINE" exceptions			# | 
 | 3817 | #	_imem_read_long() - read instruction longword			# | 
 | 3818 | #									# | 
 | 3819 | # INPUT ***************************************************************	# | 
 | 3820 | #	- The system stack contains a "Line F Emulator" exception	# | 
 | 3821 | #	  stack frame.							# | 
 | 3822 | #									# | 
 | 3823 | # OUTPUT **************************************************************	# | 
 | 3824 | #	- The system stack is unchanged					# | 
 | 3825 | #									# | 
 | 3826 | # ALGORITHM ***********************************************************	# | 
 | 3827 | #	When a "Line F Emulator" exception occurs, there are 3 possible	# | 
 | 3828 | # exception types, denoted by the exception stack frame format number:	# | 
 | 3829 | #	(1) FPU unimplemented instruction (6 word stack frame)		# | 
 | 3830 | #	(2) FPU disabled (8 word stack frame)				# | 
 | 3831 | #	(3) Line F (4 word stack frame)					# | 
 | 3832 | #									# | 
 | 3833 | #	This module determines which and forks the flow off to the	# | 
 | 3834 | # appropriate "callout" (for "disabled" and "Line F") or to the		# | 
 | 3835 | # correct emulation code (for "FPU unimplemented").			# | 
 | 3836 | #	This code also must check for "fmovecr" instructions w/ a	# | 
 | 3837 | # non-zero <ea> field. These may get flagged as "Line F" but should	# | 
 | 3838 | # really be flagged as "FPU Unimplemented". (This is a "feature" on	# | 
 | 3839 | # the '060.								# | 
 | 3840 | #									# | 
 | 3841 | ######################################################################### | 
 | 3842 |  | 
 | 3843 | 	global		_fpsp_fline | 
 | 3844 | _fpsp_fline: | 
 | 3845 |  | 
 | 3846 | # check to see if this exception is a "FP Unimplemented Instruction" | 
 | 3847 | # exception. if so, branch directly to that handler's entry point. | 
 | 3848 | 	cmpi.w		0x6(%sp),&0x202c | 
 | 3849 | 	beq.l		_fpsp_unimp | 
 | 3850 |  | 
 | 3851 | # check to see if the FPU is disabled. if so, jump to the OS entry | 
 | 3852 | # point for that condition. | 
 | 3853 | 	cmpi.w		0x6(%sp),&0x402c | 
 | 3854 | 	beq.l		_real_fpu_disabled | 
 | 3855 |  | 
 | 3856 | # the exception was an "F-Line Illegal" exception. we check to see | 
 | 3857 | # if the F-Line instruction is an "fmovecr" w/ a non-zero <ea>. if | 
 | 3858 | # so, convert the F-Line exception stack frame to an FP Unimplemented | 
 | 3859 | # Instruction exception stack frame else branch to the OS entry | 
 | 3860 | # point for the F-Line exception handler. | 
 | 3861 | 	link.w		%a6,&-LOCAL_SIZE	# init stack frame | 
 | 3862 |  | 
 | 3863 | 	movm.l		&0x0303,EXC_DREGS(%a6)	# save d0-d1/a0-a1 | 
 | 3864 |  | 
 | 3865 | 	mov.l		EXC_PC(%a6),EXC_EXTWPTR(%a6) | 
 | 3866 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 3867 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 3868 | 	bsr.l		_imem_read_long		# fetch instruction words | 
 | 3869 |  | 
 | 3870 | 	bfextu		%d0{&0:&10},%d1		# is it an fmovecr? | 
 | 3871 | 	cmpi.w		%d1,&0x03c8 | 
 | 3872 | 	bne.b		fline_fline		# no | 
 | 3873 |  | 
 | 3874 | 	bfextu		%d0{&16:&6},%d1		# is it an fmovecr? | 
 | 3875 | 	cmpi.b		%d1,&0x17 | 
 | 3876 | 	bne.b		fline_fline		# no | 
 | 3877 |  | 
 | 3878 | # it's an fmovecr w/ a non-zero <ea> that has entered through | 
 | 3879 | # the F-Line Illegal exception. | 
 | 3880 | # so, we need to convert the F-Line exception stack frame into an | 
 | 3881 | # FP Unimplemented Instruction stack frame and jump to that entry | 
 | 3882 | # point. | 
 | 3883 | # | 
 | 3884 | # but, if the FPU is disabled, then we need to jump to the FPU diabled | 
 | 3885 | # entry point. | 
 | 3886 | 	movc		%pcr,%d0 | 
 | 3887 | 	btst		&0x1,%d0 | 
 | 3888 | 	beq.b		fline_fmovcr | 
 | 3889 |  | 
 | 3890 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 3891 |  | 
 | 3892 | 	unlk		%a6 | 
 | 3893 |  | 
 | 3894 | 	sub.l		&0x8,%sp		# make room for "Next PC", <ea> | 
 | 3895 | 	mov.w		0x8(%sp),(%sp) | 
 | 3896 | 	mov.l		0xa(%sp),0x2(%sp)	# move "Current PC" | 
 | 3897 | 	mov.w		&0x402c,0x6(%sp) | 
 | 3898 | 	mov.l		0x2(%sp),0xc(%sp) | 
 | 3899 | 	addq.l		&0x4,0x2(%sp)		# set "Next PC" | 
 | 3900 |  | 
 | 3901 | 	bra.l		_real_fpu_disabled | 
 | 3902 |  | 
 | 3903 | fline_fmovcr: | 
 | 3904 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 3905 |  | 
 | 3906 | 	unlk		%a6 | 
 | 3907 |  | 
 | 3908 | 	fmov.l		0x2(%sp),%fpiar		# set current PC | 
 | 3909 | 	addq.l		&0x4,0x2(%sp)		# set Next PC | 
 | 3910 |  | 
 | 3911 | 	mov.l		(%sp),-(%sp) | 
 | 3912 | 	mov.l		0x8(%sp),0x4(%sp) | 
 | 3913 | 	mov.b		&0x20,0x6(%sp) | 
 | 3914 |  | 
 | 3915 | 	bra.l		_fpsp_unimp | 
 | 3916 |  | 
 | 3917 | fline_fline: | 
 | 3918 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 3919 |  | 
 | 3920 | 	unlk		%a6 | 
 | 3921 |  | 
 | 3922 | 	bra.l		_real_fline | 
 | 3923 |  | 
 | 3924 | ######################################################################### | 
 | 3925 | # XDEF ****************************************************************	# | 
 | 3926 | #	_fpsp_unimp(): 060FPSP entry point for FP "Unimplemented	# | 
 | 3927 | #		       Instruction" exception.				# | 
 | 3928 | #									# | 
 | 3929 | #	This handler should be the first code executed upon taking the	# | 
 | 3930 | #	FP Unimplemented Instruction exception in an operating system.	# | 
 | 3931 | #									# | 
 | 3932 | # XREF ****************************************************************	# | 
 | 3933 | #	_imem_read_{word,long}() - read instruction word/longword	# | 
 | 3934 | #	load_fop() - load src/dst ops from memory and/or FP regfile	# | 
 | 3935 | #	store_fpreg() - store opclass 0 or 2 result to FP regfile	# | 
 | 3936 | #	tbl_trans - addr of table of emulation routines for trnscndls	# | 
 | 3937 | #	_real_access() - "callout" for access error exception		# | 
 | 3938 | #	_fpsp_done() - "callout" for exit; work all done		# | 
 | 3939 | #	_real_trace() - "callout" for Trace enabled exception		# | 
 | 3940 | #	smovcr() - emulate "fmovecr" instruction			# | 
 | 3941 | #	funimp_skew() - adjust fsave src ops to "incorrect" value	# | 
 | 3942 | #	_ftrapcc() - emulate an "ftrapcc" instruction			# | 
 | 3943 | #	_fdbcc() - emulate an "fdbcc" instruction			# | 
 | 3944 | #	_fscc() - emulate an "fscc" instruction				# | 
 | 3945 | #	_real_trap() - "callout" for Trap exception			# | 
 | 3946 | #	_real_bsun() - "callout" for enabled Bsun exception		# | 
 | 3947 | #									# | 
 | 3948 | # INPUT ***************************************************************	# | 
 | 3949 | #	- The system stack contains the "Unimplemented Instr" stk frame	# | 
 | 3950 | #									# | 
 | 3951 | # OUTPUT **************************************************************	# | 
 | 3952 | #	If access error:						# | 
 | 3953 | #	- The system stack is changed to an access error stack frame	# | 
 | 3954 | #	If Trace exception enabled:					# | 
 | 3955 | #	- The system stack is changed to a Trace exception stack frame	# | 
 | 3956 | #	Else: (normal case)						# | 
 | 3957 | #	- Correct result has been stored as appropriate			# | 
 | 3958 | #									# | 
 | 3959 | # ALGORITHM ***********************************************************	# | 
 | 3960 | #	There are two main cases of instructions that may enter here to	# | 
 | 3961 | # be emulated: (1) the FPgen instructions, most of which were also	# | 
 | 3962 | # unimplemented on the 040, and (2) "ftrapcc", "fscc", and "fdbcc".	# | 
 | 3963 | #	For the first set, this handler calls the routine load_fop()	# | 
 | 3964 | # to load the source and destination (for dyadic) operands to be used	# | 
 | 3965 | # for instruction emulation. The correct emulation routine is then	# | 
 | 3966 | # chosen by decoding the instruction type and indexing into an		# | 
 | 3967 | # emulation subroutine index table. After emulation returns, this	# | 
 | 3968 | # handler checks to see if an exception should occur as a result of the # | 
 | 3969 | # FP instruction emulation. If so, then an FP exception of the correct	# | 
 | 3970 | # type is inserted into the FPU state frame using the "frestore"	# | 
 | 3971 | # instruction before exiting through _fpsp_done(). In either the	# | 
 | 3972 | # exceptional or non-exceptional cases, we must check to see if the	# | 
 | 3973 | # Trace exception is enabled. If so, then we must create a Trace	# | 
 | 3974 | # exception frame from the current exception frame and exit through	# | 
 | 3975 | # _real_trace().							# | 
 | 3976 | #	For "fdbcc", "ftrapcc", and "fscc", the emulation subroutines	# | 
 | 3977 | # _fdbcc(), _ftrapcc(), and _fscc() respectively are used. All three	# | 
 | 3978 | # may flag that a BSUN exception should be taken. If so, then the	# | 
 | 3979 | # current exception stack frame is converted into a BSUN exception	# | 
 | 3980 | # stack frame and an exit is made through _real_bsun(). If the		# | 
 | 3981 | # instruction was "ftrapcc" and a Trap exception should result, a Trap	# | 
 | 3982 | # exception stack frame is created from the current frame and an exit	# | 
 | 3983 | # is made through _real_trap(). If a Trace exception is pending, then	# | 
 | 3984 | # a Trace exception frame is created from the current frame and a jump	# | 
 | 3985 | # is made to _real_trace(). Finally, if none of these conditions exist,	# | 
 | 3986 | # then the handler exits though the callout _fpsp_done().		# | 
 | 3987 | #									# | 
 | 3988 | #	In any of the above scenarios, if a _mem_read() or _mem_write()	# | 
 | 3989 | # "callout" returns a failing value, then an access error stack frame	# | 
 | 3990 | # is created from the current stack frame and an exit is made through	# | 
 | 3991 | # _real_access().							# | 
 | 3992 | #									# | 
 | 3993 | ######################################################################### | 
 | 3994 |  | 
 | 3995 | # | 
 | 3996 | # FP UNIMPLEMENTED INSTRUCTION STACK FRAME: | 
 | 3997 | # | 
 | 3998 | #	***************** | 
 | 3999 | #	*		* => <ea> of fp unimp instr. | 
 | 4000 | #	-      EA	- | 
 | 4001 | #	*		* | 
 | 4002 | #	***************** | 
 | 4003 | #	* 0x2 *  0x02c	* => frame format and vector offset(vector #11) | 
 | 4004 | #	***************** | 
 | 4005 | #	*		* | 
 | 4006 | #	-    Next PC	- => PC of instr to execute after exc handling | 
 | 4007 | #	*		* | 
 | 4008 | #	***************** | 
 | 4009 | #	*      SR	* => SR at the time the exception was taken | 
 | 4010 | #	***************** | 
 | 4011 | # | 
 | 4012 | # Note: the !NULL bit does not get set in the fsave frame when the | 
 | 4013 | # machine encounters an fp unimp exception. Therefore, it must be set | 
 | 4014 | # before leaving this handler. | 
 | 4015 | # | 
 | 4016 | 	global		_fpsp_unimp | 
 | 4017 | _fpsp_unimp: | 
 | 4018 |  | 
 | 4019 | 	link.w		%a6,&-LOCAL_SIZE	# init stack frame | 
 | 4020 |  | 
 | 4021 | 	movm.l		&0x0303,EXC_DREGS(%a6)	# save d0-d1/a0-a1 | 
 | 4022 | 	fmovm.l		%fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs | 
 | 4023 | 	fmovm.x		&0xc0,EXC_FPREGS(%a6)	# save fp0-fp1 | 
 | 4024 |  | 
 | 4025 | 	btst		&0x5,EXC_SR(%a6)	# user mode exception? | 
 | 4026 | 	bne.b		funimp_s		# no; supervisor mode | 
 | 4027 |  | 
 | 4028 | # save the value of the user stack pointer onto the stack frame | 
 | 4029 | funimp_u: | 
 | 4030 | 	mov.l		%usp,%a0		# fetch user stack pointer | 
 | 4031 | 	mov.l		%a0,EXC_A7(%a6)		# store in stack frame | 
 | 4032 | 	bra.b		funimp_cont | 
 | 4033 |  | 
 | 4034 | # store the value of the supervisor stack pointer BEFORE the exc occurred. | 
 | 4035 | # old_sp is address just above stacked effective address. | 
 | 4036 | funimp_s: | 
 | 4037 | 	lea		4+EXC_EA(%a6),%a0	# load old a7' | 
 | 4038 | 	mov.l		%a0,EXC_A7(%a6)		# store a7' | 
 | 4039 | 	mov.l		%a0,OLD_A7(%a6)		# make a copy | 
 | 4040 |  | 
 | 4041 | funimp_cont: | 
 | 4042 |  | 
 | 4043 | # the FPIAR holds the "current PC" of the faulting instruction. | 
 | 4044 | 	mov.l		USER_FPIAR(%a6),EXC_EXTWPTR(%a6) | 
 | 4045 |  | 
 | 4046 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 4047 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 4048 | 	bsr.l		_imem_read_long		# fetch the instruction words | 
 | 4049 | 	mov.l		%d0,EXC_OPWORD(%a6) | 
 | 4050 |  | 
 | 4051 | ############################################################################ | 
 | 4052 |  | 
 | 4053 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 4054 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 4055 |  | 
 | 4056 | 	clr.b		SPCOND_FLG(%a6)		# clear "special case" flag | 
 | 4057 |  | 
 | 4058 | # Divide the fp instructions into 8 types based on the TYPE field in | 
 | 4059 | # bits 6-8 of the opword(classes 6,7 are undefined). | 
 | 4060 | # (for the '060, only two types  can take this exception) | 
 | 4061 | #	bftst		%d0{&7:&3}		# test TYPE | 
 | 4062 | 	btst		&22,%d0			# type 0 or 1 ? | 
 | 4063 | 	bne.w		funimp_misc		# type 1 | 
 | 4064 |  | 
 | 4065 | ######################################### | 
 | 4066 | # TYPE == 0: General instructions	# | 
 | 4067 | ######################################### | 
 | 4068 | funimp_gen: | 
 | 4069 |  | 
 | 4070 | 	clr.b		STORE_FLG(%a6)		# clear "store result" flag | 
 | 4071 |  | 
 | 4072 | # clear the ccode byte and exception status byte | 
 | 4073 | 	andi.l		&0x00ff00ff,USER_FPSR(%a6) | 
 | 4074 |  | 
 | 4075 | 	bfextu		%d0{&16:&6},%d1		# extract upper 6 of cmdreg | 
 | 4076 | 	cmpi.b		%d1,&0x17		# is op an fmovecr? | 
 | 4077 | 	beq.w		funimp_fmovcr		# yes | 
 | 4078 |  | 
 | 4079 | funimp_gen_op: | 
 | 4080 | 	bsr.l		_load_fop		# load | 
 | 4081 |  | 
 | 4082 | 	clr.l		%d0 | 
 | 4083 | 	mov.b		FPCR_MODE(%a6),%d0	# fetch rnd mode | 
 | 4084 |  | 
 | 4085 | 	mov.b		1+EXC_CMDREG(%a6),%d1 | 
 | 4086 | 	andi.w		&0x003f,%d1		# extract extension bits | 
 | 4087 | 	lsl.w		&0x3,%d1		# shift right 3 bits | 
 | 4088 | 	or.b		STAG(%a6),%d1		# insert src optag bits | 
 | 4089 |  | 
 | 4090 | 	lea		FP_DST(%a6),%a1		# pass dst ptr in a1 | 
 | 4091 | 	lea		FP_SRC(%a6),%a0		# pass src ptr in a0 | 
 | 4092 |  | 
 | 4093 | 	mov.w		(tbl_trans.w,%pc,%d1.w*2),%d1 | 
 | 4094 | 	jsr		(tbl_trans.w,%pc,%d1.w*1) # emulate | 
 | 4095 |  | 
 | 4096 | funimp_fsave: | 
 | 4097 | 	mov.b		FPCR_ENABLE(%a6),%d0	# fetch exceptions enabled | 
 | 4098 | 	bne.w		funimp_ena		# some are enabled | 
 | 4099 |  | 
 | 4100 | funimp_store: | 
 | 4101 | 	bfextu		EXC_CMDREG(%a6){&6:&3},%d0 # fetch Dn | 
 | 4102 | 	bsr.l		store_fpreg		# store result to fp regfile | 
 | 4103 |  | 
 | 4104 | funimp_gen_exit: | 
 | 4105 | 	fmovm.x		EXC_FP0(%a6),&0xc0	# restore fp0-fp1 | 
 | 4106 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 4107 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 4108 |  | 
 | 4109 | funimp_gen_exit_cmp: | 
 | 4110 | 	cmpi.b		SPCOND_FLG(%a6),&mia7_flg # was the ea mode (sp)+ ? | 
 | 4111 | 	beq.b		funimp_gen_exit_a7	# yes | 
 | 4112 |  | 
 | 4113 | 	cmpi.b		SPCOND_FLG(%a6),&mda7_flg # was the ea mode -(sp) ? | 
 | 4114 | 	beq.b		funimp_gen_exit_a7	# yes | 
 | 4115 |  | 
 | 4116 | funimp_gen_exit_cont: | 
 | 4117 | 	unlk		%a6 | 
 | 4118 |  | 
 | 4119 | funimp_gen_exit_cont2: | 
 | 4120 | 	btst		&0x7,(%sp)		# is trace on? | 
 | 4121 | 	beq.l		_fpsp_done		# no | 
 | 4122 |  | 
 | 4123 | # this catches a problem with the case where an exception will be re-inserted | 
 | 4124 | # into the machine. the frestore has already been executed...so, the fmov.l | 
 | 4125 | # alone of the control register would trigger an unwanted exception. | 
 | 4126 | # until I feel like fixing this, we'll sidestep the exception. | 
 | 4127 | 	fsave		-(%sp) | 
 | 4128 | 	fmov.l		%fpiar,0x14(%sp)	# "Current PC" is in FPIAR | 
 | 4129 | 	frestore	(%sp)+ | 
 | 4130 | 	mov.w		&0x2024,0x6(%sp)	# stk fmt = 0x2; voff = 0x24 | 
 | 4131 | 	bra.l		_real_trace | 
 | 4132 |  | 
 | 4133 | funimp_gen_exit_a7: | 
 | 4134 | 	btst		&0x5,EXC_SR(%a6)	# supervisor or user mode? | 
 | 4135 | 	bne.b		funimp_gen_exit_a7_s	# supervisor | 
 | 4136 |  | 
 | 4137 | 	mov.l		%a0,-(%sp) | 
 | 4138 | 	mov.l		EXC_A7(%a6),%a0 | 
 | 4139 | 	mov.l		%a0,%usp | 
 | 4140 | 	mov.l		(%sp)+,%a0 | 
 | 4141 | 	bra.b		funimp_gen_exit_cont | 
 | 4142 |  | 
 | 4143 | # if the instruction was executed from supervisor mode and the addressing | 
 | 4144 | # mode was (a7)+, then the stack frame for the rte must be shifted "up" | 
 | 4145 | # "n" bytes where "n" is the size of the src operand type. | 
 | 4146 | # f<op>.{b,w,l,s,d,x,p} | 
 | 4147 | funimp_gen_exit_a7_s: | 
 | 4148 | 	mov.l		%d0,-(%sp)		# save d0 | 
 | 4149 | 	mov.l		EXC_A7(%a6),%d0		# load new a7' | 
 | 4150 | 	sub.l		OLD_A7(%a6),%d0		# subtract old a7' | 
 | 4151 | 	mov.l		0x2+EXC_PC(%a6),(0x2+EXC_PC,%a6,%d0) # shift stack frame | 
 | 4152 | 	mov.l		EXC_SR(%a6),(EXC_SR,%a6,%d0) # shift stack frame | 
 | 4153 | 	mov.w		%d0,EXC_SR(%a6)		# store incr number | 
 | 4154 | 	mov.l		(%sp)+,%d0		# restore d0 | 
 | 4155 |  | 
 | 4156 | 	unlk		%a6 | 
 | 4157 |  | 
 | 4158 | 	add.w		(%sp),%sp		# stack frame shifted | 
 | 4159 | 	bra.b		funimp_gen_exit_cont2 | 
 | 4160 |  | 
 | 4161 | ###################### | 
 | 4162 | # fmovecr.x #ccc,fpn # | 
 | 4163 | ###################### | 
 | 4164 | funimp_fmovcr: | 
 | 4165 | 	clr.l		%d0 | 
 | 4166 | 	mov.b		FPCR_MODE(%a6),%d0 | 
 | 4167 | 	mov.b		1+EXC_CMDREG(%a6),%d1 | 
 | 4168 | 	andi.l		&0x0000007f,%d1		# pass rom offset in d1 | 
 | 4169 | 	bsr.l		smovcr | 
 | 4170 | 	bra.w		funimp_fsave | 
 | 4171 |  | 
 | 4172 | ######################################################################### | 
 | 4173 |  | 
 | 4174 | # | 
 | 4175 | # the user has enabled some exceptions. we figure not to see this too | 
 | 4176 | # often so that's why it gets lower priority. | 
 | 4177 | # | 
 | 4178 | funimp_ena: | 
 | 4179 |  | 
 | 4180 | # was an exception set that was also enabled? | 
 | 4181 | 	and.b		FPSR_EXCEPT(%a6),%d0	# keep only ones enabled and set | 
 | 4182 | 	bfffo		%d0{&24:&8},%d0		# find highest priority exception | 
 | 4183 | 	bne.b		funimp_exc		# at least one was set | 
 | 4184 |  | 
 | 4185 | # no exception that was enabled was set BUT if we got an exact overflow | 
 | 4186 | # and overflow wasn't enabled but inexact was (yech!) then this is | 
 | 4187 | # an inexact exception; otherwise, return to normal non-exception flow. | 
 | 4188 | 	btst		&ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur? | 
 | 4189 | 	beq.w		funimp_store		# no; return to normal flow | 
 | 4190 |  | 
 | 4191 | # the overflow w/ exact result happened but was inexact set in the FPCR? | 
 | 4192 | funimp_ovfl: | 
 | 4193 | 	btst		&inex2_bit,FPCR_ENABLE(%a6) # is inexact enabled? | 
 | 4194 | 	beq.w		funimp_store		# no; return to normal flow | 
 | 4195 | 	bra.b		funimp_exc_ovfl		# yes | 
 | 4196 |  | 
 | 4197 | # some exception happened that was actually enabled. | 
 | 4198 | # we'll insert this new exception into the FPU and then return. | 
 | 4199 | funimp_exc: | 
 | 4200 | 	subi.l		&24,%d0			# fix offset to be 0-8 | 
 | 4201 | 	cmpi.b		%d0,&0x6		# is exception INEX? | 
 | 4202 | 	bne.b		funimp_exc_force	# no | 
 | 4203 |  | 
 | 4204 | # the enabled exception was inexact. so, if it occurs with an overflow | 
 | 4205 | # or underflow that was disabled, then we have to force an overflow or | 
 | 4206 | # underflow frame. the eventual overflow or underflow handler will see that | 
 | 4207 | # it's actually an inexact and act appropriately. this is the only easy | 
 | 4208 | # way to have the EXOP available for the enabled inexact handler when | 
 | 4209 | # a disabled overflow or underflow has also happened. | 
 | 4210 | 	btst		&ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur? | 
 | 4211 | 	bne.b		funimp_exc_ovfl		# yes | 
 | 4212 | 	btst		&unfl_bit,FPSR_EXCEPT(%a6) # did underflow occur? | 
 | 4213 | 	bne.b		funimp_exc_unfl		# yes | 
 | 4214 |  | 
 | 4215 | # force the fsave exception status bits to signal an exception of the | 
 | 4216 | # appropriate type. don't forget to "skew" the source operand in case we | 
 | 4217 | # "unskewed" the one the hardware initially gave us. | 
 | 4218 | funimp_exc_force: | 
 | 4219 | 	mov.l		%d0,-(%sp)		# save d0 | 
 | 4220 | 	bsr.l		funimp_skew		# check for special case | 
 | 4221 | 	mov.l		(%sp)+,%d0		# restore d0 | 
 | 4222 | 	mov.w		(tbl_funimp_except.b,%pc,%d0.w*2),2+FP_SRC(%a6) | 
 | 4223 | 	bra.b		funimp_gen_exit2	# exit with frestore | 
 | 4224 |  | 
 | 4225 | tbl_funimp_except: | 
 | 4226 | 	short		0xe002, 0xe006, 0xe004, 0xe005 | 
 | 4227 | 	short		0xe003, 0xe002, 0xe001, 0xe001 | 
 | 4228 |  | 
 | 4229 | # insert an overflow frame | 
 | 4230 | funimp_exc_ovfl: | 
 | 4231 | 	bsr.l		funimp_skew		# check for special case | 
 | 4232 | 	mov.w		&0xe005,2+FP_SRC(%a6) | 
 | 4233 | 	bra.b		funimp_gen_exit2 | 
 | 4234 |  | 
 | 4235 | # insert an underflow frame | 
 | 4236 | funimp_exc_unfl: | 
 | 4237 | 	bsr.l		funimp_skew		# check for special case | 
 | 4238 | 	mov.w		&0xe003,2+FP_SRC(%a6) | 
 | 4239 |  | 
 | 4240 | # this is the general exit point for an enabled exception that will be | 
 | 4241 | # restored into the machine for the instruction just emulated. | 
 | 4242 | funimp_gen_exit2: | 
 | 4243 | 	fmovm.x		EXC_FP0(%a6),&0xc0	# restore fp0-fp1 | 
 | 4244 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 4245 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 4246 |  | 
 | 4247 | 	frestore	FP_SRC(%a6)		# insert exceptional status | 
 | 4248 |  | 
 | 4249 | 	bra.w		funimp_gen_exit_cmp | 
 | 4250 |  | 
 | 4251 | ############################################################################ | 
 | 4252 |  | 
 | 4253 | # | 
 | 4254 | # TYPE == 1: FDB<cc>, FS<cc>, FTRAP<cc> | 
 | 4255 | # | 
 | 4256 | # These instructions were implemented on the '881/2 and '040 in hardware but | 
 | 4257 | # are emulated in software on the '060. | 
 | 4258 | # | 
 | 4259 | funimp_misc: | 
 | 4260 | 	bfextu		%d0{&10:&3},%d1		# extract mode field | 
 | 4261 | 	cmpi.b		%d1,&0x1		# is it an fdb<cc>? | 
 | 4262 | 	beq.w		funimp_fdbcc		# yes | 
 | 4263 | 	cmpi.b		%d1,&0x7		# is it an fs<cc>? | 
 | 4264 | 	bne.w		funimp_fscc		# yes | 
 | 4265 | 	bfextu		%d0{&13:&3},%d1 | 
 | 4266 | 	cmpi.b		%d1,&0x2		# is it an fs<cc>? | 
 | 4267 | 	blt.w		funimp_fscc		# yes | 
 | 4268 |  | 
 | 4269 | ######################### | 
 | 4270 | # ftrap<cc>		# | 
 | 4271 | # ftrap<cc>.w #<data>	# | 
 | 4272 | # ftrap<cc>.l #<data>	# | 
 | 4273 | ######################### | 
 | 4274 | funimp_ftrapcc: | 
 | 4275 |  | 
 | 4276 | 	bsr.l		_ftrapcc		# FTRAP<cc>() | 
 | 4277 |  | 
 | 4278 | 	cmpi.b		SPCOND_FLG(%a6),&fbsun_flg # is enabled bsun occurring? | 
 | 4279 | 	beq.w		funimp_bsun		# yes | 
 | 4280 |  | 
 | 4281 | 	cmpi.b		SPCOND_FLG(%a6),&ftrapcc_flg # should a trap occur? | 
 | 4282 | 	bne.w		funimp_done		# no | 
 | 4283 |  | 
 | 4284 | #	 FP UNIMP FRAME		   TRAP  FRAME | 
 | 4285 | #	*****************	***************** | 
 | 4286 | #	**    <EA>     **	**  Current PC ** | 
 | 4287 | #	*****************	***************** | 
 | 4288 | #	* 0x2 *  0x02c	*	* 0x2 *  0x01c  * | 
 | 4289 | #	*****************	***************** | 
 | 4290 | #	**   Next PC   **	**   Next PC   ** | 
 | 4291 | #	*****************	***************** | 
 | 4292 | #	*      SR	*	*      SR	* | 
 | 4293 | #	*****************	***************** | 
 | 4294 | #	    (6 words)		    (6 words) | 
 | 4295 | # | 
 | 4296 | # the ftrapcc instruction should take a trap. so, here we must create a | 
 | 4297 | # trap stack frame from an unimplemented fp instruction stack frame and | 
 | 4298 | # jump to the user supplied entry point for the trap exception | 
 | 4299 | funimp_ftrapcc_tp: | 
 | 4300 | 	mov.l		USER_FPIAR(%a6),EXC_EA(%a6) # Address = Current PC | 
 | 4301 | 	mov.w		&0x201c,EXC_VOFF(%a6)	# Vector Offset = 0x01c | 
 | 4302 |  | 
 | 4303 | 	fmovm.x		EXC_FP0(%a6),&0xc0	# restore fp0-fp1 | 
 | 4304 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 4305 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 4306 |  | 
 | 4307 | 	unlk		%a6 | 
 | 4308 | 	bra.l		_real_trap | 
 | 4309 |  | 
 | 4310 | ######################### | 
 | 4311 | # fdb<cc> Dn,<label>	# | 
 | 4312 | ######################### | 
 | 4313 | funimp_fdbcc: | 
 | 4314 |  | 
 | 4315 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 4316 | 	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 4317 | 	bsr.l		_imem_read_word		# read displacement | 
 | 4318 |  | 
 | 4319 | 	tst.l		%d1			# did ifetch fail? | 
 | 4320 | 	bne.w		funimp_iacc		# yes | 
 | 4321 |  | 
 | 4322 | 	ext.l		%d0			# sign extend displacement | 
 | 4323 |  | 
 | 4324 | 	bsr.l		_fdbcc			# FDB<cc>() | 
 | 4325 |  | 
 | 4326 | 	cmpi.b		SPCOND_FLG(%a6),&fbsun_flg # is enabled bsun occurring? | 
 | 4327 | 	beq.w		funimp_bsun | 
 | 4328 |  | 
 | 4329 | 	bra.w		funimp_done		# branch to finish | 
 | 4330 |  | 
 | 4331 | ################# | 
 | 4332 | # fs<cc>.b <ea>	# | 
 | 4333 | ################# | 
 | 4334 | funimp_fscc: | 
 | 4335 |  | 
 | 4336 | 	bsr.l		_fscc			# FS<cc>() | 
 | 4337 |  | 
 | 4338 | # I am assuming here that an "fs<cc>.b -(An)" or "fs<cc>.b (An)+" instruction | 
 | 4339 | # does not need to update "An" before taking a bsun exception. | 
 | 4340 | 	cmpi.b		SPCOND_FLG(%a6),&fbsun_flg # is enabled bsun occurring? | 
 | 4341 | 	beq.w		funimp_bsun | 
 | 4342 |  | 
 | 4343 | 	btst		&0x5,EXC_SR(%a6)	# yes; is it a user mode exception? | 
 | 4344 | 	bne.b		funimp_fscc_s		# no | 
 | 4345 |  | 
 | 4346 | funimp_fscc_u: | 
 | 4347 | 	mov.l		EXC_A7(%a6),%a0		# yes; set new USP | 
 | 4348 | 	mov.l		%a0,%usp | 
 | 4349 | 	bra.w		funimp_done		# branch to finish | 
 | 4350 |  | 
 | 4351 | # remember, I'm assuming that post-increment is bogus...(it IS!!!) | 
 | 4352 | # so, the least significant WORD of the stacked effective address got | 
 | 4353 | # overwritten by the "fs<cc> -(An)". We must shift the stack frame "down" | 
 | 4354 | # so that the rte will work correctly without destroying the result. | 
 | 4355 | # even though the operation size is byte, the stack ptr is decr by 2. | 
 | 4356 | # | 
 | 4357 | # remember, also, this instruction may be traced. | 
 | 4358 | funimp_fscc_s: | 
 | 4359 | 	cmpi.b		SPCOND_FLG(%a6),&mda7_flg # was a7 modified? | 
 | 4360 | 	bne.w		funimp_done		# no | 
 | 4361 |  | 
 | 4362 | 	fmovm.x		EXC_FP0(%a6),&0xc0	# restore fp0-fp1 | 
 | 4363 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 4364 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 4365 |  | 
 | 4366 | 	unlk		%a6 | 
 | 4367 |  | 
 | 4368 | 	btst		&0x7,(%sp)		# is trace enabled? | 
 | 4369 | 	bne.b		funimp_fscc_s_trace	# yes | 
 | 4370 |  | 
 | 4371 | 	subq.l		&0x2,%sp | 
 | 4372 | 	mov.l		0x2(%sp),(%sp)		# shift SR,hi(PC) "down" | 
 | 4373 | 	mov.l		0x6(%sp),0x4(%sp)	# shift lo(PC),voff "down" | 
 | 4374 | 	bra.l		_fpsp_done | 
 | 4375 |  | 
 | 4376 | funimp_fscc_s_trace: | 
 | 4377 | 	subq.l		&0x2,%sp | 
 | 4378 | 	mov.l		0x2(%sp),(%sp)		# shift SR,hi(PC) "down" | 
 | 4379 | 	mov.w		0x6(%sp),0x4(%sp)	# shift lo(PC) | 
 | 4380 | 	mov.w		&0x2024,0x6(%sp)	# fmt/voff = $2024 | 
 | 4381 | 	fmov.l		%fpiar,0x8(%sp)		# insert "current PC" | 
 | 4382 |  | 
 | 4383 | 	bra.l		_real_trace | 
 | 4384 |  | 
 | 4385 | # | 
 | 4386 | # The ftrap<cc>, fs<cc>, or fdb<cc> is to take an enabled bsun. we must convert | 
 | 4387 | # the fp unimplemented instruction exception stack frame into a bsun stack frame, | 
 | 4388 | # restore a bsun exception into the machine, and branch to the user | 
 | 4389 | # supplied bsun hook. | 
 | 4390 | # | 
 | 4391 | #	 FP UNIMP FRAME		   BSUN FRAME | 
 | 4392 | #	*****************	***************** | 
 | 4393 | #	**    <EA>     **	* 0x0 * 0x0c0	* | 
 | 4394 | #	*****************	***************** | 
 | 4395 | #	* 0x2 *  0x02c  *	** Current PC  ** | 
 | 4396 | #	*****************	***************** | 
 | 4397 | #	**   Next PC   **	*      SR	* | 
 | 4398 | #	*****************	***************** | 
 | 4399 | #	*      SR	*	    (4 words) | 
 | 4400 | #	***************** | 
 | 4401 | #	    (6 words) | 
 | 4402 | # | 
 | 4403 | funimp_bsun: | 
 | 4404 | 	mov.w		&0x00c0,2+EXC_EA(%a6)	# Fmt = 0x0; Vector Offset = 0x0c0 | 
 | 4405 | 	mov.l		USER_FPIAR(%a6),EXC_VOFF(%a6) # PC = Current PC | 
 | 4406 | 	mov.w		EXC_SR(%a6),2+EXC_PC(%a6) # shift SR "up" | 
 | 4407 |  | 
 | 4408 | 	mov.w		&0xe000,2+FP_SRC(%a6)	# bsun exception enabled | 
 | 4409 |  | 
 | 4410 | 	fmovm.x		EXC_FP0(%a6),&0xc0	# restore fp0-fp1 | 
 | 4411 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 4412 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 4413 |  | 
 | 4414 | 	frestore	FP_SRC(%a6)		# restore bsun exception | 
 | 4415 |  | 
 | 4416 | 	unlk		%a6 | 
 | 4417 |  | 
 | 4418 | 	addq.l		&0x4,%sp		# erase sludge | 
 | 4419 |  | 
 | 4420 | 	bra.l		_real_bsun		# branch to user bsun hook | 
 | 4421 |  | 
 | 4422 | # | 
 | 4423 | # all ftrapcc/fscc/fdbcc processing has been completed. unwind the stack frame | 
 | 4424 | # and return. | 
 | 4425 | # | 
 | 4426 | # as usual, we have to check for trace mode being on here. since instructions | 
 | 4427 | # modifying the supervisor stack frame don't pass through here, this is a | 
 | 4428 | # relatively easy task. | 
 | 4429 | # | 
 | 4430 | funimp_done: | 
 | 4431 | 	fmovm.x		EXC_FP0(%a6),&0xc0	# restore fp0-fp1 | 
 | 4432 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 4433 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 4434 |  | 
 | 4435 | 	unlk		%a6 | 
 | 4436 |  | 
 | 4437 | 	btst		&0x7,(%sp)		# is trace enabled? | 
 | 4438 | 	bne.b		funimp_trace		# yes | 
 | 4439 |  | 
 | 4440 | 	bra.l		_fpsp_done | 
 | 4441 |  | 
 | 4442 | #	 FP UNIMP FRAME		  TRACE  FRAME | 
 | 4443 | #	*****************	***************** | 
 | 4444 | #	**    <EA>     **	**  Current PC ** | 
 | 4445 | #	*****************	***************** | 
 | 4446 | #	* 0x2 *  0x02c	*	* 0x2 *  0x024  * | 
 | 4447 | #	*****************	***************** | 
 | 4448 | #	**   Next PC   **	**   Next PC   ** | 
 | 4449 | #	*****************	***************** | 
 | 4450 | #	*      SR	*	*      SR	* | 
 | 4451 | #	*****************	***************** | 
 | 4452 | #	    (6 words)		    (6 words) | 
 | 4453 | # | 
 | 4454 | # the fscc instruction should take a trace trap. so, here we must create a | 
 | 4455 | # trace stack frame from an unimplemented fp instruction stack frame and | 
 | 4456 | # jump to the user supplied entry point for the trace exception | 
 | 4457 | funimp_trace: | 
 | 4458 | 	fmov.l		%fpiar,0x8(%sp)		# current PC is in fpiar | 
 | 4459 | 	mov.b		&0x24,0x7(%sp)		# vector offset = 0x024 | 
 | 4460 |  | 
 | 4461 | 	bra.l		_real_trace | 
 | 4462 |  | 
 | 4463 | ################################################################ | 
 | 4464 |  | 
 | 4465 | 	global		tbl_trans | 
 | 4466 | 	swbeg		&0x1c0 | 
 | 4467 | tbl_trans: | 
 | 4468 | 	short		tbl_trans - tbl_trans	# $00-0 fmovecr all | 
 | 4469 | 	short		tbl_trans - tbl_trans	# $00-1 fmovecr all | 
 | 4470 | 	short		tbl_trans - tbl_trans	# $00-2 fmovecr all | 
 | 4471 | 	short		tbl_trans - tbl_trans	# $00-3 fmovecr all | 
 | 4472 | 	short		tbl_trans - tbl_trans	# $00-4 fmovecr all | 
 | 4473 | 	short		tbl_trans - tbl_trans	# $00-5 fmovecr all | 
 | 4474 | 	short		tbl_trans - tbl_trans	# $00-6 fmovecr all | 
 | 4475 | 	short		tbl_trans - tbl_trans	# $00-7 fmovecr all | 
 | 4476 |  | 
 | 4477 | 	short		tbl_trans - tbl_trans	# $01-0 fint norm | 
 | 4478 | 	short		tbl_trans - tbl_trans	# $01-1 fint zero | 
 | 4479 | 	short		tbl_trans - tbl_trans	# $01-2 fint inf | 
 | 4480 | 	short		tbl_trans - tbl_trans	# $01-3 fint qnan | 
 | 4481 | 	short		tbl_trans - tbl_trans	# $01-5 fint denorm | 
 | 4482 | 	short		tbl_trans - tbl_trans	# $01-4 fint snan | 
 | 4483 | 	short		tbl_trans - tbl_trans	# $01-6 fint unnorm | 
 | 4484 | 	short		tbl_trans - tbl_trans	# $01-7 ERROR | 
 | 4485 |  | 
 | 4486 | 	short		ssinh	 - tbl_trans	# $02-0 fsinh norm | 
 | 4487 | 	short		src_zero - tbl_trans	# $02-1 fsinh zero | 
 | 4488 | 	short		src_inf	 - tbl_trans	# $02-2 fsinh inf | 
 | 4489 | 	short		src_qnan - tbl_trans	# $02-3 fsinh qnan | 
 | 4490 | 	short		ssinhd	 - tbl_trans	# $02-5 fsinh denorm | 
 | 4491 | 	short		src_snan - tbl_trans	# $02-4 fsinh snan | 
 | 4492 | 	short		tbl_trans - tbl_trans	# $02-6 fsinh unnorm | 
 | 4493 | 	short		tbl_trans - tbl_trans	# $02-7 ERROR | 
 | 4494 |  | 
 | 4495 | 	short		tbl_trans - tbl_trans	# $03-0 fintrz norm | 
 | 4496 | 	short		tbl_trans - tbl_trans	# $03-1 fintrz zero | 
 | 4497 | 	short		tbl_trans - tbl_trans	# $03-2 fintrz inf | 
 | 4498 | 	short		tbl_trans - tbl_trans	# $03-3 fintrz qnan | 
 | 4499 | 	short		tbl_trans - tbl_trans	# $03-5 fintrz denorm | 
 | 4500 | 	short		tbl_trans - tbl_trans	# $03-4 fintrz snan | 
 | 4501 | 	short		tbl_trans - tbl_trans	# $03-6 fintrz unnorm | 
 | 4502 | 	short		tbl_trans - tbl_trans	# $03-7 ERROR | 
 | 4503 |  | 
 | 4504 | 	short		tbl_trans - tbl_trans	# $04-0 fsqrt norm | 
 | 4505 | 	short		tbl_trans - tbl_trans	# $04-1 fsqrt zero | 
 | 4506 | 	short		tbl_trans - tbl_trans	# $04-2 fsqrt inf | 
 | 4507 | 	short		tbl_trans - tbl_trans	# $04-3 fsqrt qnan | 
 | 4508 | 	short		tbl_trans - tbl_trans	# $04-5 fsqrt denorm | 
 | 4509 | 	short		tbl_trans - tbl_trans	# $04-4 fsqrt snan | 
 | 4510 | 	short		tbl_trans - tbl_trans	# $04-6 fsqrt unnorm | 
 | 4511 | 	short		tbl_trans - tbl_trans	# $04-7 ERROR | 
 | 4512 |  | 
 | 4513 | 	short		tbl_trans - tbl_trans	# $05-0 ERROR | 
 | 4514 | 	short		tbl_trans - tbl_trans	# $05-1 ERROR | 
 | 4515 | 	short		tbl_trans - tbl_trans	# $05-2 ERROR | 
 | 4516 | 	short		tbl_trans - tbl_trans	# $05-3 ERROR | 
 | 4517 | 	short		tbl_trans - tbl_trans	# $05-4 ERROR | 
 | 4518 | 	short		tbl_trans - tbl_trans	# $05-5 ERROR | 
 | 4519 | 	short		tbl_trans - tbl_trans	# $05-6 ERROR | 
 | 4520 | 	short		tbl_trans - tbl_trans	# $05-7 ERROR | 
 | 4521 |  | 
 | 4522 | 	short		slognp1	 - tbl_trans	# $06-0 flognp1 norm | 
 | 4523 | 	short		src_zero - tbl_trans	# $06-1 flognp1 zero | 
 | 4524 | 	short		sopr_inf - tbl_trans	# $06-2 flognp1 inf | 
 | 4525 | 	short		src_qnan - tbl_trans	# $06-3 flognp1 qnan | 
 | 4526 | 	short		slognp1d - tbl_trans	# $06-5 flognp1 denorm | 
 | 4527 | 	short		src_snan - tbl_trans	# $06-4 flognp1 snan | 
 | 4528 | 	short		tbl_trans - tbl_trans	# $06-6 flognp1 unnorm | 
 | 4529 | 	short		tbl_trans - tbl_trans	# $06-7 ERROR | 
 | 4530 |  | 
 | 4531 | 	short		tbl_trans - tbl_trans	# $07-0 ERROR | 
 | 4532 | 	short		tbl_trans - tbl_trans	# $07-1 ERROR | 
 | 4533 | 	short		tbl_trans - tbl_trans	# $07-2 ERROR | 
 | 4534 | 	short		tbl_trans - tbl_trans	# $07-3 ERROR | 
 | 4535 | 	short		tbl_trans - tbl_trans	# $07-4 ERROR | 
 | 4536 | 	short		tbl_trans - tbl_trans	# $07-5 ERROR | 
 | 4537 | 	short		tbl_trans - tbl_trans	# $07-6 ERROR | 
 | 4538 | 	short		tbl_trans - tbl_trans	# $07-7 ERROR | 
 | 4539 |  | 
 | 4540 | 	short		setoxm1	 - tbl_trans	# $08-0 fetoxm1 norm | 
 | 4541 | 	short		src_zero - tbl_trans	# $08-1 fetoxm1 zero | 
 | 4542 | 	short		setoxm1i - tbl_trans	# $08-2 fetoxm1 inf | 
 | 4543 | 	short		src_qnan - tbl_trans	# $08-3 fetoxm1 qnan | 
 | 4544 | 	short		setoxm1d - tbl_trans	# $08-5 fetoxm1 denorm | 
 | 4545 | 	short		src_snan - tbl_trans	# $08-4 fetoxm1 snan | 
 | 4546 | 	short		tbl_trans - tbl_trans	# $08-6 fetoxm1 unnorm | 
 | 4547 | 	short		tbl_trans - tbl_trans	# $08-7 ERROR | 
 | 4548 |  | 
 | 4549 | 	short		stanh	 - tbl_trans	# $09-0 ftanh norm | 
 | 4550 | 	short		src_zero - tbl_trans	# $09-1 ftanh zero | 
 | 4551 | 	short		src_one	 - tbl_trans	# $09-2 ftanh inf | 
 | 4552 | 	short		src_qnan - tbl_trans	# $09-3 ftanh qnan | 
 | 4553 | 	short		stanhd	 - tbl_trans	# $09-5 ftanh denorm | 
 | 4554 | 	short		src_snan - tbl_trans	# $09-4 ftanh snan | 
 | 4555 | 	short		tbl_trans - tbl_trans	# $09-6 ftanh unnorm | 
 | 4556 | 	short		tbl_trans - tbl_trans	# $09-7 ERROR | 
 | 4557 |  | 
 | 4558 | 	short		satan	 - tbl_trans	# $0a-0 fatan norm | 
 | 4559 | 	short		src_zero - tbl_trans	# $0a-1 fatan zero | 
 | 4560 | 	short		spi_2	 - tbl_trans	# $0a-2 fatan inf | 
 | 4561 | 	short		src_qnan - tbl_trans	# $0a-3 fatan qnan | 
 | 4562 | 	short		satand	 - tbl_trans	# $0a-5 fatan denorm | 
 | 4563 | 	short		src_snan - tbl_trans	# $0a-4 fatan snan | 
 | 4564 | 	short		tbl_trans - tbl_trans	# $0a-6 fatan unnorm | 
 | 4565 | 	short		tbl_trans - tbl_trans	# $0a-7 ERROR | 
 | 4566 |  | 
 | 4567 | 	short		tbl_trans - tbl_trans	# $0b-0 ERROR | 
 | 4568 | 	short		tbl_trans - tbl_trans	# $0b-1 ERROR | 
 | 4569 | 	short		tbl_trans - tbl_trans	# $0b-2 ERROR | 
 | 4570 | 	short		tbl_trans - tbl_trans	# $0b-3 ERROR | 
 | 4571 | 	short		tbl_trans - tbl_trans	# $0b-4 ERROR | 
 | 4572 | 	short		tbl_trans - tbl_trans	# $0b-5 ERROR | 
 | 4573 | 	short		tbl_trans - tbl_trans	# $0b-6 ERROR | 
 | 4574 | 	short		tbl_trans - tbl_trans	# $0b-7 ERROR | 
 | 4575 |  | 
 | 4576 | 	short		sasin	 - tbl_trans	# $0c-0 fasin norm | 
 | 4577 | 	short		src_zero - tbl_trans	# $0c-1 fasin zero | 
 | 4578 | 	short		t_operr	 - tbl_trans	# $0c-2 fasin inf | 
 | 4579 | 	short		src_qnan - tbl_trans	# $0c-3 fasin qnan | 
 | 4580 | 	short		sasind	 - tbl_trans	# $0c-5 fasin denorm | 
 | 4581 | 	short		src_snan - tbl_trans	# $0c-4 fasin snan | 
 | 4582 | 	short		tbl_trans - tbl_trans	# $0c-6 fasin unnorm | 
 | 4583 | 	short		tbl_trans - tbl_trans	# $0c-7 ERROR | 
 | 4584 |  | 
 | 4585 | 	short		satanh	 - tbl_trans	# $0d-0 fatanh norm | 
 | 4586 | 	short		src_zero - tbl_trans	# $0d-1 fatanh zero | 
 | 4587 | 	short		t_operr	 - tbl_trans	# $0d-2 fatanh inf | 
 | 4588 | 	short		src_qnan - tbl_trans	# $0d-3 fatanh qnan | 
 | 4589 | 	short		satanhd	 - tbl_trans	# $0d-5 fatanh denorm | 
 | 4590 | 	short		src_snan - tbl_trans	# $0d-4 fatanh snan | 
 | 4591 | 	short		tbl_trans - tbl_trans	# $0d-6 fatanh unnorm | 
 | 4592 | 	short		tbl_trans - tbl_trans	# $0d-7 ERROR | 
 | 4593 |  | 
 | 4594 | 	short		ssin	 - tbl_trans	# $0e-0 fsin norm | 
 | 4595 | 	short		src_zero - tbl_trans	# $0e-1 fsin zero | 
 | 4596 | 	short		t_operr	 - tbl_trans	# $0e-2 fsin inf | 
 | 4597 | 	short		src_qnan - tbl_trans	# $0e-3 fsin qnan | 
 | 4598 | 	short		ssind	 - tbl_trans	# $0e-5 fsin denorm | 
 | 4599 | 	short		src_snan - tbl_trans	# $0e-4 fsin snan | 
 | 4600 | 	short		tbl_trans - tbl_trans	# $0e-6 fsin unnorm | 
 | 4601 | 	short		tbl_trans - tbl_trans	# $0e-7 ERROR | 
 | 4602 |  | 
 | 4603 | 	short		stan	 - tbl_trans	# $0f-0 ftan norm | 
 | 4604 | 	short		src_zero - tbl_trans	# $0f-1 ftan zero | 
 | 4605 | 	short		t_operr	 - tbl_trans	# $0f-2 ftan inf | 
 | 4606 | 	short		src_qnan - tbl_trans	# $0f-3 ftan qnan | 
 | 4607 | 	short		stand	 - tbl_trans	# $0f-5 ftan denorm | 
 | 4608 | 	short		src_snan - tbl_trans	# $0f-4 ftan snan | 
 | 4609 | 	short		tbl_trans - tbl_trans	# $0f-6 ftan unnorm | 
 | 4610 | 	short		tbl_trans - tbl_trans	# $0f-7 ERROR | 
 | 4611 |  | 
 | 4612 | 	short		setox	 - tbl_trans	# $10-0 fetox norm | 
 | 4613 | 	short		ld_pone	 - tbl_trans	# $10-1 fetox zero | 
 | 4614 | 	short		szr_inf	 - tbl_trans	# $10-2 fetox inf | 
 | 4615 | 	short		src_qnan - tbl_trans	# $10-3 fetox qnan | 
 | 4616 | 	short		setoxd	 - tbl_trans	# $10-5 fetox denorm | 
 | 4617 | 	short		src_snan - tbl_trans	# $10-4 fetox snan | 
 | 4618 | 	short		tbl_trans - tbl_trans	# $10-6 fetox unnorm | 
 | 4619 | 	short		tbl_trans - tbl_trans	# $10-7 ERROR | 
 | 4620 |  | 
 | 4621 | 	short		stwotox	 - tbl_trans	# $11-0 ftwotox norm | 
 | 4622 | 	short		ld_pone	 - tbl_trans	# $11-1 ftwotox zero | 
 | 4623 | 	short		szr_inf	 - tbl_trans	# $11-2 ftwotox inf | 
 | 4624 | 	short		src_qnan - tbl_trans	# $11-3 ftwotox qnan | 
 | 4625 | 	short		stwotoxd - tbl_trans	# $11-5 ftwotox denorm | 
 | 4626 | 	short		src_snan - tbl_trans	# $11-4 ftwotox snan | 
 | 4627 | 	short		tbl_trans - tbl_trans	# $11-6 ftwotox unnorm | 
 | 4628 | 	short		tbl_trans - tbl_trans	# $11-7 ERROR | 
 | 4629 |  | 
 | 4630 | 	short		stentox	 - tbl_trans	# $12-0 ftentox norm | 
 | 4631 | 	short		ld_pone	 - tbl_trans	# $12-1 ftentox zero | 
 | 4632 | 	short		szr_inf	 - tbl_trans	# $12-2 ftentox inf | 
 | 4633 | 	short		src_qnan - tbl_trans	# $12-3 ftentox qnan | 
 | 4634 | 	short		stentoxd - tbl_trans	# $12-5 ftentox denorm | 
 | 4635 | 	short		src_snan - tbl_trans	# $12-4 ftentox snan | 
 | 4636 | 	short		tbl_trans - tbl_trans	# $12-6 ftentox unnorm | 
 | 4637 | 	short		tbl_trans - tbl_trans	# $12-7 ERROR | 
 | 4638 |  | 
 | 4639 | 	short		tbl_trans - tbl_trans	# $13-0 ERROR | 
 | 4640 | 	short		tbl_trans - tbl_trans	# $13-1 ERROR | 
 | 4641 | 	short		tbl_trans - tbl_trans	# $13-2 ERROR | 
 | 4642 | 	short		tbl_trans - tbl_trans	# $13-3 ERROR | 
 | 4643 | 	short		tbl_trans - tbl_trans	# $13-4 ERROR | 
 | 4644 | 	short		tbl_trans - tbl_trans	# $13-5 ERROR | 
 | 4645 | 	short		tbl_trans - tbl_trans	# $13-6 ERROR | 
 | 4646 | 	short		tbl_trans - tbl_trans	# $13-7 ERROR | 
 | 4647 |  | 
 | 4648 | 	short		slogn	 - tbl_trans	# $14-0 flogn norm | 
 | 4649 | 	short		t_dz2	 - tbl_trans	# $14-1 flogn zero | 
 | 4650 | 	short		sopr_inf - tbl_trans	# $14-2 flogn inf | 
 | 4651 | 	short		src_qnan - tbl_trans	# $14-3 flogn qnan | 
 | 4652 | 	short		slognd	 - tbl_trans	# $14-5 flogn denorm | 
 | 4653 | 	short		src_snan - tbl_trans	# $14-4 flogn snan | 
 | 4654 | 	short		tbl_trans - tbl_trans	# $14-6 flogn unnorm | 
 | 4655 | 	short		tbl_trans - tbl_trans	# $14-7 ERROR | 
 | 4656 |  | 
 | 4657 | 	short		slog10	 - tbl_trans	# $15-0 flog10 norm | 
 | 4658 | 	short		t_dz2	 - tbl_trans	# $15-1 flog10 zero | 
 | 4659 | 	short		sopr_inf - tbl_trans	# $15-2 flog10 inf | 
 | 4660 | 	short		src_qnan - tbl_trans	# $15-3 flog10 qnan | 
 | 4661 | 	short		slog10d	 - tbl_trans	# $15-5 flog10 denorm | 
 | 4662 | 	short		src_snan - tbl_trans	# $15-4 flog10 snan | 
 | 4663 | 	short		tbl_trans - tbl_trans	# $15-6 flog10 unnorm | 
 | 4664 | 	short		tbl_trans - tbl_trans	# $15-7 ERROR | 
 | 4665 |  | 
 | 4666 | 	short		slog2	 - tbl_trans	# $16-0 flog2 norm | 
 | 4667 | 	short		t_dz2	 - tbl_trans	# $16-1 flog2 zero | 
 | 4668 | 	short		sopr_inf - tbl_trans	# $16-2 flog2 inf | 
 | 4669 | 	short		src_qnan - tbl_trans	# $16-3 flog2 qnan | 
 | 4670 | 	short		slog2d	 - tbl_trans	# $16-5 flog2 denorm | 
 | 4671 | 	short		src_snan - tbl_trans	# $16-4 flog2 snan | 
 | 4672 | 	short		tbl_trans - tbl_trans	# $16-6 flog2 unnorm | 
 | 4673 | 	short		tbl_trans - tbl_trans	# $16-7 ERROR | 
 | 4674 |  | 
 | 4675 | 	short		tbl_trans - tbl_trans	# $17-0 ERROR | 
 | 4676 | 	short		tbl_trans - tbl_trans	# $17-1 ERROR | 
 | 4677 | 	short		tbl_trans - tbl_trans	# $17-2 ERROR | 
 | 4678 | 	short		tbl_trans - tbl_trans	# $17-3 ERROR | 
 | 4679 | 	short		tbl_trans - tbl_trans	# $17-4 ERROR | 
 | 4680 | 	short		tbl_trans - tbl_trans	# $17-5 ERROR | 
 | 4681 | 	short		tbl_trans - tbl_trans	# $17-6 ERROR | 
 | 4682 | 	short		tbl_trans - tbl_trans	# $17-7 ERROR | 
 | 4683 |  | 
 | 4684 | 	short		tbl_trans - tbl_trans	# $18-0 fabs norm | 
 | 4685 | 	short		tbl_trans - tbl_trans	# $18-1 fabs zero | 
 | 4686 | 	short		tbl_trans - tbl_trans	# $18-2 fabs inf | 
 | 4687 | 	short		tbl_trans - tbl_trans	# $18-3 fabs qnan | 
 | 4688 | 	short		tbl_trans - tbl_trans	# $18-5 fabs denorm | 
 | 4689 | 	short		tbl_trans - tbl_trans	# $18-4 fabs snan | 
 | 4690 | 	short		tbl_trans - tbl_trans	# $18-6 fabs unnorm | 
 | 4691 | 	short		tbl_trans - tbl_trans	# $18-7 ERROR | 
 | 4692 |  | 
 | 4693 | 	short		scosh	 - tbl_trans	# $19-0 fcosh norm | 
 | 4694 | 	short		ld_pone	 - tbl_trans	# $19-1 fcosh zero | 
 | 4695 | 	short		ld_pinf	 - tbl_trans	# $19-2 fcosh inf | 
 | 4696 | 	short		src_qnan - tbl_trans	# $19-3 fcosh qnan | 
 | 4697 | 	short		scoshd	 - tbl_trans	# $19-5 fcosh denorm | 
 | 4698 | 	short		src_snan - tbl_trans	# $19-4 fcosh snan | 
 | 4699 | 	short		tbl_trans - tbl_trans	# $19-6 fcosh unnorm | 
 | 4700 | 	short		tbl_trans - tbl_trans	# $19-7 ERROR | 
 | 4701 |  | 
 | 4702 | 	short		tbl_trans - tbl_trans	# $1a-0 fneg norm | 
 | 4703 | 	short		tbl_trans - tbl_trans	# $1a-1 fneg zero | 
 | 4704 | 	short		tbl_trans - tbl_trans	# $1a-2 fneg inf | 
 | 4705 | 	short		tbl_trans - tbl_trans	# $1a-3 fneg qnan | 
 | 4706 | 	short		tbl_trans - tbl_trans	# $1a-5 fneg denorm | 
 | 4707 | 	short		tbl_trans - tbl_trans	# $1a-4 fneg snan | 
 | 4708 | 	short		tbl_trans - tbl_trans	# $1a-6 fneg unnorm | 
 | 4709 | 	short		tbl_trans - tbl_trans	# $1a-7 ERROR | 
 | 4710 |  | 
 | 4711 | 	short		tbl_trans - tbl_trans	# $1b-0 ERROR | 
 | 4712 | 	short		tbl_trans - tbl_trans	# $1b-1 ERROR | 
 | 4713 | 	short		tbl_trans - tbl_trans	# $1b-2 ERROR | 
 | 4714 | 	short		tbl_trans - tbl_trans	# $1b-3 ERROR | 
 | 4715 | 	short		tbl_trans - tbl_trans	# $1b-4 ERROR | 
 | 4716 | 	short		tbl_trans - tbl_trans	# $1b-5 ERROR | 
 | 4717 | 	short		tbl_trans - tbl_trans	# $1b-6 ERROR | 
 | 4718 | 	short		tbl_trans - tbl_trans	# $1b-7 ERROR | 
 | 4719 |  | 
 | 4720 | 	short		sacos	 - tbl_trans	# $1c-0 facos norm | 
 | 4721 | 	short		ld_ppi2	 - tbl_trans	# $1c-1 facos zero | 
 | 4722 | 	short		t_operr	 - tbl_trans	# $1c-2 facos inf | 
 | 4723 | 	short		src_qnan - tbl_trans	# $1c-3 facos qnan | 
 | 4724 | 	short		sacosd	 - tbl_trans	# $1c-5 facos denorm | 
 | 4725 | 	short		src_snan - tbl_trans	# $1c-4 facos snan | 
 | 4726 | 	short		tbl_trans - tbl_trans	# $1c-6 facos unnorm | 
 | 4727 | 	short		tbl_trans - tbl_trans	# $1c-7 ERROR | 
 | 4728 |  | 
 | 4729 | 	short		scos	 - tbl_trans	# $1d-0 fcos norm | 
 | 4730 | 	short		ld_pone	 - tbl_trans	# $1d-1 fcos zero | 
 | 4731 | 	short		t_operr	 - tbl_trans	# $1d-2 fcos inf | 
 | 4732 | 	short		src_qnan - tbl_trans	# $1d-3 fcos qnan | 
 | 4733 | 	short		scosd	 - tbl_trans	# $1d-5 fcos denorm | 
 | 4734 | 	short		src_snan - tbl_trans	# $1d-4 fcos snan | 
 | 4735 | 	short		tbl_trans - tbl_trans	# $1d-6 fcos unnorm | 
 | 4736 | 	short		tbl_trans - tbl_trans	# $1d-7 ERROR | 
 | 4737 |  | 
 | 4738 | 	short		sgetexp	 - tbl_trans	# $1e-0 fgetexp norm | 
 | 4739 | 	short		src_zero - tbl_trans	# $1e-1 fgetexp zero | 
 | 4740 | 	short		t_operr	 - tbl_trans	# $1e-2 fgetexp inf | 
 | 4741 | 	short		src_qnan - tbl_trans	# $1e-3 fgetexp qnan | 
 | 4742 | 	short		sgetexpd - tbl_trans	# $1e-5 fgetexp denorm | 
 | 4743 | 	short		src_snan - tbl_trans	# $1e-4 fgetexp snan | 
 | 4744 | 	short		tbl_trans - tbl_trans	# $1e-6 fgetexp unnorm | 
 | 4745 | 	short		tbl_trans - tbl_trans	# $1e-7 ERROR | 
 | 4746 |  | 
 | 4747 | 	short		sgetman	 - tbl_trans	# $1f-0 fgetman norm | 
 | 4748 | 	short		src_zero - tbl_trans	# $1f-1 fgetman zero | 
 | 4749 | 	short		t_operr	 - tbl_trans	# $1f-2 fgetman inf | 
 | 4750 | 	short		src_qnan - tbl_trans	# $1f-3 fgetman qnan | 
 | 4751 | 	short		sgetmand - tbl_trans	# $1f-5 fgetman denorm | 
 | 4752 | 	short		src_snan - tbl_trans	# $1f-4 fgetman snan | 
 | 4753 | 	short		tbl_trans - tbl_trans	# $1f-6 fgetman unnorm | 
 | 4754 | 	short		tbl_trans - tbl_trans	# $1f-7 ERROR | 
 | 4755 |  | 
 | 4756 | 	short		tbl_trans - tbl_trans	# $20-0 fdiv norm | 
 | 4757 | 	short		tbl_trans - tbl_trans	# $20-1 fdiv zero | 
 | 4758 | 	short		tbl_trans - tbl_trans	# $20-2 fdiv inf | 
 | 4759 | 	short		tbl_trans - tbl_trans	# $20-3 fdiv qnan | 
 | 4760 | 	short		tbl_trans - tbl_trans	# $20-5 fdiv denorm | 
 | 4761 | 	short		tbl_trans - tbl_trans	# $20-4 fdiv snan | 
 | 4762 | 	short		tbl_trans - tbl_trans	# $20-6 fdiv unnorm | 
 | 4763 | 	short		tbl_trans - tbl_trans	# $20-7 ERROR | 
 | 4764 |  | 
 | 4765 | 	short		smod_snorm - tbl_trans	# $21-0 fmod norm | 
 | 4766 | 	short		smod_szero - tbl_trans	# $21-1 fmod zero | 
 | 4767 | 	short		smod_sinf - tbl_trans	# $21-2 fmod inf | 
 | 4768 | 	short		sop_sqnan - tbl_trans	# $21-3 fmod qnan | 
 | 4769 | 	short		smod_sdnrm - tbl_trans	# $21-5 fmod denorm | 
 | 4770 | 	short		sop_ssnan - tbl_trans	# $21-4 fmod snan | 
 | 4771 | 	short		tbl_trans - tbl_trans	# $21-6 fmod unnorm | 
 | 4772 | 	short		tbl_trans - tbl_trans	# $21-7 ERROR | 
 | 4773 |  | 
 | 4774 | 	short		tbl_trans - tbl_trans	# $22-0 fadd norm | 
 | 4775 | 	short		tbl_trans - tbl_trans	# $22-1 fadd zero | 
 | 4776 | 	short		tbl_trans - tbl_trans	# $22-2 fadd inf | 
 | 4777 | 	short		tbl_trans - tbl_trans	# $22-3 fadd qnan | 
 | 4778 | 	short		tbl_trans - tbl_trans	# $22-5 fadd denorm | 
 | 4779 | 	short		tbl_trans - tbl_trans	# $22-4 fadd snan | 
 | 4780 | 	short		tbl_trans - tbl_trans	# $22-6 fadd unnorm | 
 | 4781 | 	short		tbl_trans - tbl_trans	# $22-7 ERROR | 
 | 4782 |  | 
 | 4783 | 	short		tbl_trans - tbl_trans	# $23-0 fmul norm | 
 | 4784 | 	short		tbl_trans - tbl_trans	# $23-1 fmul zero | 
 | 4785 | 	short		tbl_trans - tbl_trans	# $23-2 fmul inf | 
 | 4786 | 	short		tbl_trans - tbl_trans	# $23-3 fmul qnan | 
 | 4787 | 	short		tbl_trans - tbl_trans	# $23-5 fmul denorm | 
 | 4788 | 	short		tbl_trans - tbl_trans	# $23-4 fmul snan | 
 | 4789 | 	short		tbl_trans - tbl_trans	# $23-6 fmul unnorm | 
 | 4790 | 	short		tbl_trans - tbl_trans	# $23-7 ERROR | 
 | 4791 |  | 
 | 4792 | 	short		tbl_trans - tbl_trans	# $24-0 fsgldiv norm | 
 | 4793 | 	short		tbl_trans - tbl_trans	# $24-1 fsgldiv zero | 
 | 4794 | 	short		tbl_trans - tbl_trans	# $24-2 fsgldiv inf | 
 | 4795 | 	short		tbl_trans - tbl_trans	# $24-3 fsgldiv qnan | 
 | 4796 | 	short		tbl_trans - tbl_trans	# $24-5 fsgldiv denorm | 
 | 4797 | 	short		tbl_trans - tbl_trans	# $24-4 fsgldiv snan | 
 | 4798 | 	short		tbl_trans - tbl_trans	# $24-6 fsgldiv unnorm | 
 | 4799 | 	short		tbl_trans - tbl_trans	# $24-7 ERROR | 
 | 4800 |  | 
 | 4801 | 	short		srem_snorm - tbl_trans	# $25-0 frem norm | 
 | 4802 | 	short		srem_szero - tbl_trans	# $25-1 frem zero | 
 | 4803 | 	short		srem_sinf - tbl_trans	# $25-2 frem inf | 
 | 4804 | 	short		sop_sqnan - tbl_trans	# $25-3 frem qnan | 
 | 4805 | 	short		srem_sdnrm - tbl_trans	# $25-5 frem denorm | 
 | 4806 | 	short		sop_ssnan - tbl_trans	# $25-4 frem snan | 
 | 4807 | 	short		tbl_trans - tbl_trans	# $25-6 frem unnorm | 
 | 4808 | 	short		tbl_trans - tbl_trans	# $25-7 ERROR | 
 | 4809 |  | 
 | 4810 | 	short		sscale_snorm - tbl_trans # $26-0 fscale norm | 
 | 4811 | 	short		sscale_szero - tbl_trans # $26-1 fscale zero | 
 | 4812 | 	short		sscale_sinf - tbl_trans	# $26-2 fscale inf | 
 | 4813 | 	short		sop_sqnan - tbl_trans	# $26-3 fscale qnan | 
 | 4814 | 	short		sscale_sdnrm - tbl_trans # $26-5 fscale denorm | 
 | 4815 | 	short		sop_ssnan - tbl_trans	# $26-4 fscale snan | 
 | 4816 | 	short		tbl_trans - tbl_trans	# $26-6 fscale unnorm | 
 | 4817 | 	short		tbl_trans - tbl_trans	# $26-7 ERROR | 
 | 4818 |  | 
 | 4819 | 	short		tbl_trans - tbl_trans	# $27-0 fsglmul norm | 
 | 4820 | 	short		tbl_trans - tbl_trans	# $27-1 fsglmul zero | 
 | 4821 | 	short		tbl_trans - tbl_trans	# $27-2 fsglmul inf | 
 | 4822 | 	short		tbl_trans - tbl_trans	# $27-3 fsglmul qnan | 
 | 4823 | 	short		tbl_trans - tbl_trans	# $27-5 fsglmul denorm | 
 | 4824 | 	short		tbl_trans - tbl_trans	# $27-4 fsglmul snan | 
 | 4825 | 	short		tbl_trans - tbl_trans	# $27-6 fsglmul unnorm | 
 | 4826 | 	short		tbl_trans - tbl_trans	# $27-7 ERROR | 
 | 4827 |  | 
 | 4828 | 	short		tbl_trans - tbl_trans	# $28-0 fsub norm | 
 | 4829 | 	short		tbl_trans - tbl_trans	# $28-1 fsub zero | 
 | 4830 | 	short		tbl_trans - tbl_trans	# $28-2 fsub inf | 
 | 4831 | 	short		tbl_trans - tbl_trans	# $28-3 fsub qnan | 
 | 4832 | 	short		tbl_trans - tbl_trans	# $28-5 fsub denorm | 
 | 4833 | 	short		tbl_trans - tbl_trans	# $28-4 fsub snan | 
 | 4834 | 	short		tbl_trans - tbl_trans	# $28-6 fsub unnorm | 
 | 4835 | 	short		tbl_trans - tbl_trans	# $28-7 ERROR | 
 | 4836 |  | 
 | 4837 | 	short		tbl_trans - tbl_trans	# $29-0 ERROR | 
 | 4838 | 	short		tbl_trans - tbl_trans	# $29-1 ERROR | 
 | 4839 | 	short		tbl_trans - tbl_trans	# $29-2 ERROR | 
 | 4840 | 	short		tbl_trans - tbl_trans	# $29-3 ERROR | 
 | 4841 | 	short		tbl_trans - tbl_trans	# $29-4 ERROR | 
 | 4842 | 	short		tbl_trans - tbl_trans	# $29-5 ERROR | 
 | 4843 | 	short		tbl_trans - tbl_trans	# $29-6 ERROR | 
 | 4844 | 	short		tbl_trans - tbl_trans	# $29-7 ERROR | 
 | 4845 |  | 
 | 4846 | 	short		tbl_trans - tbl_trans	# $2a-0 ERROR | 
 | 4847 | 	short		tbl_trans - tbl_trans	# $2a-1 ERROR | 
 | 4848 | 	short		tbl_trans - tbl_trans	# $2a-2 ERROR | 
 | 4849 | 	short		tbl_trans - tbl_trans	# $2a-3 ERROR | 
 | 4850 | 	short		tbl_trans - tbl_trans	# $2a-4 ERROR | 
 | 4851 | 	short		tbl_trans - tbl_trans	# $2a-5 ERROR | 
 | 4852 | 	short		tbl_trans - tbl_trans	# $2a-6 ERROR | 
 | 4853 | 	short		tbl_trans - tbl_trans	# $2a-7 ERROR | 
 | 4854 |  | 
 | 4855 | 	short		tbl_trans - tbl_trans	# $2b-0 ERROR | 
 | 4856 | 	short		tbl_trans - tbl_trans	# $2b-1 ERROR | 
 | 4857 | 	short		tbl_trans - tbl_trans	# $2b-2 ERROR | 
 | 4858 | 	short		tbl_trans - tbl_trans	# $2b-3 ERROR | 
 | 4859 | 	short		tbl_trans - tbl_trans	# $2b-4 ERROR | 
 | 4860 | 	short		tbl_trans - tbl_trans	# $2b-5 ERROR | 
 | 4861 | 	short		tbl_trans - tbl_trans	# $2b-6 ERROR | 
 | 4862 | 	short		tbl_trans - tbl_trans	# $2b-7 ERROR | 
 | 4863 |  | 
 | 4864 | 	short		tbl_trans - tbl_trans	# $2c-0 ERROR | 
 | 4865 | 	short		tbl_trans - tbl_trans	# $2c-1 ERROR | 
 | 4866 | 	short		tbl_trans - tbl_trans	# $2c-2 ERROR | 
 | 4867 | 	short		tbl_trans - tbl_trans	# $2c-3 ERROR | 
 | 4868 | 	short		tbl_trans - tbl_trans	# $2c-4 ERROR | 
 | 4869 | 	short		tbl_trans - tbl_trans	# $2c-5 ERROR | 
 | 4870 | 	short		tbl_trans - tbl_trans	# $2c-6 ERROR | 
 | 4871 | 	short		tbl_trans - tbl_trans	# $2c-7 ERROR | 
 | 4872 |  | 
 | 4873 | 	short		tbl_trans - tbl_trans	# $2d-0 ERROR | 
 | 4874 | 	short		tbl_trans - tbl_trans	# $2d-1 ERROR | 
 | 4875 | 	short		tbl_trans - tbl_trans	# $2d-2 ERROR | 
 | 4876 | 	short		tbl_trans - tbl_trans	# $2d-3 ERROR | 
 | 4877 | 	short		tbl_trans - tbl_trans	# $2d-4 ERROR | 
 | 4878 | 	short		tbl_trans - tbl_trans	# $2d-5 ERROR | 
 | 4879 | 	short		tbl_trans - tbl_trans	# $2d-6 ERROR | 
 | 4880 | 	short		tbl_trans - tbl_trans	# $2d-7 ERROR | 
 | 4881 |  | 
 | 4882 | 	short		tbl_trans - tbl_trans	# $2e-0 ERROR | 
 | 4883 | 	short		tbl_trans - tbl_trans	# $2e-1 ERROR | 
 | 4884 | 	short		tbl_trans - tbl_trans	# $2e-2 ERROR | 
 | 4885 | 	short		tbl_trans - tbl_trans	# $2e-3 ERROR | 
 | 4886 | 	short		tbl_trans - tbl_trans	# $2e-4 ERROR | 
 | 4887 | 	short		tbl_trans - tbl_trans	# $2e-5 ERROR | 
 | 4888 | 	short		tbl_trans - tbl_trans	# $2e-6 ERROR | 
 | 4889 | 	short		tbl_trans - tbl_trans	# $2e-7 ERROR | 
 | 4890 |  | 
 | 4891 | 	short		tbl_trans - tbl_trans	# $2f-0 ERROR | 
 | 4892 | 	short		tbl_trans - tbl_trans	# $2f-1 ERROR | 
 | 4893 | 	short		tbl_trans - tbl_trans	# $2f-2 ERROR | 
 | 4894 | 	short		tbl_trans - tbl_trans	# $2f-3 ERROR | 
 | 4895 | 	short		tbl_trans - tbl_trans	# $2f-4 ERROR | 
 | 4896 | 	short		tbl_trans - tbl_trans	# $2f-5 ERROR | 
 | 4897 | 	short		tbl_trans - tbl_trans	# $2f-6 ERROR | 
 | 4898 | 	short		tbl_trans - tbl_trans	# $2f-7 ERROR | 
 | 4899 |  | 
 | 4900 | 	short		ssincos	 - tbl_trans	# $30-0 fsincos norm | 
 | 4901 | 	short		ssincosz - tbl_trans	# $30-1 fsincos zero | 
 | 4902 | 	short		ssincosi - tbl_trans	# $30-2 fsincos inf | 
 | 4903 | 	short		ssincosqnan - tbl_trans	# $30-3 fsincos qnan | 
 | 4904 | 	short		ssincosd - tbl_trans	# $30-5 fsincos denorm | 
 | 4905 | 	short		ssincossnan - tbl_trans	# $30-4 fsincos snan | 
 | 4906 | 	short		tbl_trans - tbl_trans	# $30-6 fsincos unnorm | 
 | 4907 | 	short		tbl_trans - tbl_trans	# $30-7 ERROR | 
 | 4908 |  | 
 | 4909 | 	short		ssincos	 - tbl_trans	# $31-0 fsincos norm | 
 | 4910 | 	short		ssincosz - tbl_trans	# $31-1 fsincos zero | 
 | 4911 | 	short		ssincosi - tbl_trans	# $31-2 fsincos inf | 
 | 4912 | 	short		ssincosqnan - tbl_trans	# $31-3 fsincos qnan | 
 | 4913 | 	short		ssincosd - tbl_trans	# $31-5 fsincos denorm | 
 | 4914 | 	short		ssincossnan - tbl_trans	# $31-4 fsincos snan | 
 | 4915 | 	short		tbl_trans - tbl_trans	# $31-6 fsincos unnorm | 
 | 4916 | 	short		tbl_trans - tbl_trans	# $31-7 ERROR | 
 | 4917 |  | 
 | 4918 | 	short		ssincos	 - tbl_trans	# $32-0 fsincos norm | 
 | 4919 | 	short		ssincosz - tbl_trans	# $32-1 fsincos zero | 
 | 4920 | 	short		ssincosi - tbl_trans	# $32-2 fsincos inf | 
 | 4921 | 	short		ssincosqnan - tbl_trans	# $32-3 fsincos qnan | 
 | 4922 | 	short		ssincosd - tbl_trans	# $32-5 fsincos denorm | 
 | 4923 | 	short		ssincossnan - tbl_trans	# $32-4 fsincos snan | 
 | 4924 | 	short		tbl_trans - tbl_trans	# $32-6 fsincos unnorm | 
 | 4925 | 	short		tbl_trans - tbl_trans	# $32-7 ERROR | 
 | 4926 |  | 
 | 4927 | 	short		ssincos	 - tbl_trans	# $33-0 fsincos norm | 
 | 4928 | 	short		ssincosz - tbl_trans	# $33-1 fsincos zero | 
 | 4929 | 	short		ssincosi - tbl_trans	# $33-2 fsincos inf | 
 | 4930 | 	short		ssincosqnan - tbl_trans	# $33-3 fsincos qnan | 
 | 4931 | 	short		ssincosd - tbl_trans	# $33-5 fsincos denorm | 
 | 4932 | 	short		ssincossnan - tbl_trans	# $33-4 fsincos snan | 
 | 4933 | 	short		tbl_trans - tbl_trans	# $33-6 fsincos unnorm | 
 | 4934 | 	short		tbl_trans - tbl_trans	# $33-7 ERROR | 
 | 4935 |  | 
 | 4936 | 	short		ssincos	 - tbl_trans	# $34-0 fsincos norm | 
 | 4937 | 	short		ssincosz - tbl_trans	# $34-1 fsincos zero | 
 | 4938 | 	short		ssincosi - tbl_trans	# $34-2 fsincos inf | 
 | 4939 | 	short		ssincosqnan - tbl_trans	# $34-3 fsincos qnan | 
 | 4940 | 	short		ssincosd - tbl_trans	# $34-5 fsincos denorm | 
 | 4941 | 	short		ssincossnan - tbl_trans	# $34-4 fsincos snan | 
 | 4942 | 	short		tbl_trans - tbl_trans	# $34-6 fsincos unnorm | 
 | 4943 | 	short		tbl_trans - tbl_trans	# $34-7 ERROR | 
 | 4944 |  | 
 | 4945 | 	short		ssincos	 - tbl_trans	# $35-0 fsincos norm | 
 | 4946 | 	short		ssincosz - tbl_trans	# $35-1 fsincos zero | 
 | 4947 | 	short		ssincosi - tbl_trans	# $35-2 fsincos inf | 
 | 4948 | 	short		ssincosqnan - tbl_trans	# $35-3 fsincos qnan | 
 | 4949 | 	short		ssincosd - tbl_trans	# $35-5 fsincos denorm | 
 | 4950 | 	short		ssincossnan - tbl_trans	# $35-4 fsincos snan | 
 | 4951 | 	short		tbl_trans - tbl_trans	# $35-6 fsincos unnorm | 
 | 4952 | 	short		tbl_trans - tbl_trans	# $35-7 ERROR | 
 | 4953 |  | 
 | 4954 | 	short		ssincos	 - tbl_trans	# $36-0 fsincos norm | 
 | 4955 | 	short		ssincosz - tbl_trans	# $36-1 fsincos zero | 
 | 4956 | 	short		ssincosi - tbl_trans	# $36-2 fsincos inf | 
 | 4957 | 	short		ssincosqnan - tbl_trans	# $36-3 fsincos qnan | 
 | 4958 | 	short		ssincosd - tbl_trans	# $36-5 fsincos denorm | 
 | 4959 | 	short		ssincossnan - tbl_trans	# $36-4 fsincos snan | 
 | 4960 | 	short		tbl_trans - tbl_trans	# $36-6 fsincos unnorm | 
 | 4961 | 	short		tbl_trans - tbl_trans	# $36-7 ERROR | 
 | 4962 |  | 
 | 4963 | 	short		ssincos	 - tbl_trans	# $37-0 fsincos norm | 
 | 4964 | 	short		ssincosz - tbl_trans	# $37-1 fsincos zero | 
 | 4965 | 	short		ssincosi - tbl_trans	# $37-2 fsincos inf | 
 | 4966 | 	short		ssincosqnan - tbl_trans	# $37-3 fsincos qnan | 
 | 4967 | 	short		ssincosd - tbl_trans	# $37-5 fsincos denorm | 
 | 4968 | 	short		ssincossnan - tbl_trans	# $37-4 fsincos snan | 
 | 4969 | 	short		tbl_trans - tbl_trans	# $37-6 fsincos unnorm | 
 | 4970 | 	short		tbl_trans - tbl_trans	# $37-7 ERROR | 
 | 4971 |  | 
 | 4972 | ########## | 
 | 4973 |  | 
 | 4974 | # the instruction fetch access for the displacement word for the | 
 | 4975 | # fdbcc emulation failed. here, we create an access error frame | 
 | 4976 | # from the current frame and branch to _real_access(). | 
 | 4977 | funimp_iacc: | 
 | 4978 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 4979 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 4980 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 4981 |  | 
 | 4982 | 	mov.l		USER_FPIAR(%a6),EXC_PC(%a6) # store current PC | 
 | 4983 |  | 
 | 4984 | 	unlk		%a6 | 
 | 4985 |  | 
 | 4986 | 	mov.l		(%sp),-(%sp)		# store SR,hi(PC) | 
 | 4987 | 	mov.w		0x8(%sp),0x4(%sp)	# store lo(PC) | 
 | 4988 | 	mov.w		&0x4008,0x6(%sp)	# store voff | 
 | 4989 | 	mov.l		0x2(%sp),0x8(%sp)	# store EA | 
 | 4990 | 	mov.l		&0x09428001,0xc(%sp)	# store FSLW | 
 | 4991 |  | 
 | 4992 | 	btst		&0x5,(%sp)		# user or supervisor mode? | 
 | 4993 | 	beq.b		funimp_iacc_end		# user | 
 | 4994 | 	bset		&0x2,0xd(%sp)		# set supervisor TM bit | 
 | 4995 |  | 
 | 4996 | funimp_iacc_end: | 
 | 4997 | 	bra.l		_real_access | 
 | 4998 |  | 
 | 4999 | ######################################################################### | 
 | 5000 | # ssin():     computes the sine of a normalized input			# | 
 | 5001 | # ssind():    computes the sine of a denormalized input			# | 
 | 5002 | # scos():     computes the cosine of a normalized input			# | 
 | 5003 | # scosd():    computes the cosine of a denormalized input		# | 
 | 5004 | # ssincos():  computes the sine and cosine of a normalized input	# | 
 | 5005 | # ssincosd(): computes the sine and cosine of a denormalized input	# | 
 | 5006 | #									# | 
 | 5007 | # INPUT *************************************************************** # | 
 | 5008 | #	a0 = pointer to extended precision input			# | 
 | 5009 | #	d0 = round precision,mode					# | 
 | 5010 | #									# | 
 | 5011 | # OUTPUT ************************************************************** # | 
 | 5012 | #	fp0 = sin(X) or cos(X)						# | 
 | 5013 | #									# | 
 | 5014 | #    For ssincos(X):							# | 
 | 5015 | #	fp0 = sin(X)							# | 
 | 5016 | #	fp1 = cos(X)							# | 
 | 5017 | #									# | 
 | 5018 | # ACCURACY and MONOTONICITY ******************************************* # | 
 | 5019 | #	The returned result is within 1 ulp in 64 significant bit, i.e.	# | 
 | 5020 | #	within 0.5001 ulp to 53 bits if the result is subsequently	# | 
 | 5021 | #	rounded to double precision. The result is provably monotonic	# | 
 | 5022 | #	in double precision.						# | 
 | 5023 | #									# | 
 | 5024 | # ALGORITHM ***********************************************************	# | 
 | 5025 | #									# | 
 | 5026 | #	SIN and COS:							# | 
 | 5027 | #	1. If SIN is invoked, set AdjN := 0; otherwise, set AdjN := 1.	# | 
 | 5028 | #									# | 
 | 5029 | #	2. If |X| >= 15Pi or |X| < 2**(-40), go to 7.			# | 
 | 5030 | #									# | 
 | 5031 | #	3. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let	# | 
 | 5032 | #		k = N mod 4, so in particular, k = 0,1,2,or 3.		# | 
 | 5033 | #		Overwrite k by k := k + AdjN.				# | 
 | 5034 | #									# | 
 | 5035 | #	4. If k is even, go to 6.					# | 
 | 5036 | #									# | 
 | 5037 | #	5. (k is odd) Set j := (k-1)/2, sgn := (-1)**j.			# | 
 | 5038 | #		Return sgn*cos(r) where cos(r) is approximated by an	# | 
 | 5039 | #		even polynomial in r, 1 + r*r*(B1+s*(B2+ ... + s*B8)),	# | 
 | 5040 | #		s = r*r.						# | 
 | 5041 | #		Exit.							# | 
 | 5042 | #									# | 
 | 5043 | #	6. (k is even) Set j := k/2, sgn := (-1)**j. Return sgn*sin(r)	# | 
 | 5044 | #		where sin(r) is approximated by an odd polynomial in r	# | 
 | 5045 | #		r + r*s*(A1+s*(A2+ ... + s*A7)),	s = r*r.	# | 
 | 5046 | #		Exit.							# | 
 | 5047 | #									# | 
 | 5048 | #	7. If |X| > 1, go to 9.						# | 
 | 5049 | #									# | 
 | 5050 | #	8. (|X|<2**(-40)) If SIN is invoked, return X;			# | 
 | 5051 | #		otherwise return 1.					# | 
 | 5052 | #									# | 
 | 5053 | #	9. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi,		# | 
 | 5054 | #		go back to 3.						# | 
 | 5055 | #									# | 
 | 5056 | #	SINCOS:								# | 
 | 5057 | #	1. If |X| >= 15Pi or |X| < 2**(-40), go to 6.			# | 
 | 5058 | #									# | 
 | 5059 | #	2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let	# | 
 | 5060 | #		k = N mod 4, so in particular, k = 0,1,2,or 3.		# | 
 | 5061 | #									# | 
 | 5062 | #	3. If k is even, go to 5.					# | 
 | 5063 | #									# | 
 | 5064 | #	4. (k is odd) Set j1 := (k-1)/2, j2 := j1 (EOR) (k mod 2), ie.	# | 
 | 5065 | #		j1 exclusive or with the l.s.b. of k.			# | 
 | 5066 | #		sgn1 := (-1)**j1, sgn2 := (-1)**j2.			# | 
 | 5067 | #		SIN(X) = sgn1 * cos(r) and COS(X) = sgn2*sin(r) where	# | 
 | 5068 | #		sin(r) and cos(r) are computed as odd and even		# | 
 | 5069 | #		polynomials in r, respectively. Exit			# | 
 | 5070 | #									# | 
 | 5071 | #	5. (k is even) Set j1 := k/2, sgn1 := (-1)**j1.			# | 
 | 5072 | #		SIN(X) = sgn1 * sin(r) and COS(X) = sgn1*cos(r) where	# | 
 | 5073 | #		sin(r) and cos(r) are computed as odd and even		# | 
 | 5074 | #		polynomials in r, respectively. Exit			# | 
 | 5075 | #									# | 
 | 5076 | #	6. If |X| > 1, go to 8.						# | 
 | 5077 | #									# | 
 | 5078 | #	7. (|X|<2**(-40)) SIN(X) = X and COS(X) = 1. Exit.		# | 
 | 5079 | #									# | 
 | 5080 | #	8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi,		# | 
 | 5081 | #		go back to 2.						# | 
 | 5082 | #									# | 
 | 5083 | ######################################################################### | 
 | 5084 |  | 
 | 5085 | SINA7:	long		0xBD6AAA77,0xCCC994F5 | 
 | 5086 | SINA6:	long		0x3DE61209,0x7AAE8DA1 | 
 | 5087 | SINA5:	long		0xBE5AE645,0x2A118AE4 | 
 | 5088 | SINA4:	long		0x3EC71DE3,0xA5341531 | 
 | 5089 | SINA3:	long		0xBF2A01A0,0x1A018B59,0x00000000,0x00000000 | 
 | 5090 | SINA2:	long		0x3FF80000,0x88888888,0x888859AF,0x00000000 | 
 | 5091 | SINA1:	long		0xBFFC0000,0xAAAAAAAA,0xAAAAAA99,0x00000000 | 
 | 5092 |  | 
 | 5093 | COSB8:	long		0x3D2AC4D0,0xD6011EE3 | 
 | 5094 | COSB7:	long		0xBDA9396F,0x9F45AC19 | 
 | 5095 | COSB6:	long		0x3E21EED9,0x0612C972 | 
 | 5096 | COSB5:	long		0xBE927E4F,0xB79D9FCF | 
 | 5097 | COSB4:	long		0x3EFA01A0,0x1A01D423,0x00000000,0x00000000 | 
 | 5098 | COSB3:	long		0xBFF50000,0xB60B60B6,0x0B61D438,0x00000000 | 
 | 5099 | COSB2:	long		0x3FFA0000,0xAAAAAAAA,0xAAAAAB5E | 
 | 5100 | COSB1:	long		0xBF000000 | 
 | 5101 |  | 
 | 5102 | 	set		INARG,FP_SCR0 | 
 | 5103 |  | 
 | 5104 | 	set		X,FP_SCR0 | 
 | 5105 | #	set		XDCARE,X+2 | 
 | 5106 | 	set		XFRAC,X+4 | 
 | 5107 |  | 
 | 5108 | 	set		RPRIME,FP_SCR0 | 
 | 5109 | 	set		SPRIME,FP_SCR1 | 
 | 5110 |  | 
 | 5111 | 	set		POSNEG1,L_SCR1 | 
 | 5112 | 	set		TWOTO63,L_SCR1 | 
 | 5113 |  | 
 | 5114 | 	set		ENDFLAG,L_SCR2 | 
 | 5115 | 	set		INT,L_SCR2 | 
 | 5116 |  | 
 | 5117 | 	set		ADJN,L_SCR3 | 
 | 5118 |  | 
 | 5119 | ############################################ | 
 | 5120 | 	global		ssin | 
 | 5121 | ssin: | 
 | 5122 | 	mov.l		&0,ADJN(%a6)		# yes; SET ADJN TO 0 | 
 | 5123 | 	bra.b		SINBGN | 
 | 5124 |  | 
 | 5125 | ############################################ | 
 | 5126 | 	global		scos | 
 | 5127 | scos: | 
 | 5128 | 	mov.l		&1,ADJN(%a6)		# yes; SET ADJN TO 1 | 
 | 5129 |  | 
 | 5130 | ############################################ | 
 | 5131 | SINBGN: | 
 | 5132 | #--SAVE FPCR, FP1. CHECK IF |X| IS TOO SMALL OR LARGE | 
 | 5133 |  | 
 | 5134 | 	fmov.x		(%a0),%fp0		# LOAD INPUT | 
 | 5135 | 	fmov.x		%fp0,X(%a6)		# save input at X | 
 | 5136 |  | 
 | 5137 | # "COMPACTIFY" X | 
 | 5138 | 	mov.l		(%a0),%d1		# put exp in hi word | 
 | 5139 | 	mov.w		4(%a0),%d1		# fetch hi(man) | 
 | 5140 | 	and.l		&0x7FFFFFFF,%d1		# strip sign | 
 | 5141 |  | 
 | 5142 | 	cmpi.l		%d1,&0x3FD78000		# is |X| >= 2**(-40)? | 
 | 5143 | 	bge.b		SOK1			# no | 
 | 5144 | 	bra.w		SINSM			# yes; input is very small | 
 | 5145 |  | 
 | 5146 | SOK1: | 
 | 5147 | 	cmp.l		%d1,&0x4004BC7E		# is |X| < 15 PI? | 
 | 5148 | 	blt.b		SINMAIN			# no | 
 | 5149 | 	bra.w		SREDUCEX		# yes; input is very large | 
 | 5150 |  | 
 | 5151 | #--THIS IS THE USUAL CASE, |X| <= 15 PI. | 
 | 5152 | #--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP. | 
 | 5153 | SINMAIN: | 
 | 5154 | 	fmov.x		%fp0,%fp1 | 
 | 5155 | 	fmul.d		TWOBYPI(%pc),%fp1	# X*2/PI | 
 | 5156 |  | 
 | 5157 | 	lea		PITBL+0x200(%pc),%a1	# TABLE OF N*PI/2, N = -32,...,32 | 
 | 5158 |  | 
 | 5159 | 	fmov.l		%fp1,INT(%a6)		# CONVERT TO INTEGER | 
 | 5160 |  | 
 | 5161 | 	mov.l		INT(%a6),%d1		# make a copy of N | 
 | 5162 | 	asl.l		&4,%d1			# N *= 16 | 
 | 5163 | 	add.l		%d1,%a1			# tbl_addr = a1 + (N*16) | 
 | 5164 |  | 
 | 5165 | # A1 IS THE ADDRESS OF N*PIBY2 | 
 | 5166 | # ...WHICH IS IN TWO PIECES Y1 & Y2 | 
 | 5167 | 	fsub.x		(%a1)+,%fp0		# X-Y1 | 
 | 5168 | 	fsub.s		(%a1),%fp0		# fp0 = R = (X-Y1)-Y2 | 
 | 5169 |  | 
 | 5170 | SINCONT: | 
 | 5171 | #--continuation from REDUCEX | 
 | 5172 |  | 
 | 5173 | #--GET N+ADJN AND SEE IF SIN(R) OR COS(R) IS NEEDED | 
 | 5174 | 	mov.l		INT(%a6),%d1 | 
 | 5175 | 	add.l		ADJN(%a6),%d1		# SEE IF D0 IS ODD OR EVEN | 
 | 5176 | 	ror.l		&1,%d1			# D0 WAS ODD IFF D0 IS NEGATIVE | 
 | 5177 | 	cmp.l		%d1,&0 | 
 | 5178 | 	blt.w		COSPOLY | 
 | 5179 |  | 
 | 5180 | #--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J. | 
 | 5181 | #--THEN WE RETURN	SGN*SIN(R). SGN*SIN(R) IS COMPUTED BY | 
 | 5182 | #--R' + R'*S*(A1 + S(A2 + S(A3 + S(A4 + ... + SA7)))), WHERE | 
 | 5183 | #--R' = SGN*R, S=R*R. THIS CAN BE REWRITTEN AS | 
 | 5184 | #--R' + R'*S*( [A1+T(A3+T(A5+TA7))] + [S(A2+T(A4+TA6))]) | 
 | 5185 | #--WHERE T=S*S. | 
 | 5186 | #--NOTE THAT A3 THROUGH A7 ARE STORED IN DOUBLE PRECISION | 
 | 5187 | #--WHILE A1 AND A2 ARE IN DOUBLE-EXTENDED FORMAT. | 
 | 5188 | SINPOLY: | 
 | 5189 | 	fmovm.x		&0x0c,-(%sp)		# save fp2/fp3 | 
 | 5190 |  | 
 | 5191 | 	fmov.x		%fp0,X(%a6)		# X IS R | 
 | 5192 | 	fmul.x		%fp0,%fp0		# FP0 IS S | 
 | 5193 |  | 
 | 5194 | 	fmov.d		SINA7(%pc),%fp3 | 
 | 5195 | 	fmov.d		SINA6(%pc),%fp2 | 
 | 5196 |  | 
 | 5197 | 	fmov.x		%fp0,%fp1 | 
 | 5198 | 	fmul.x		%fp1,%fp1		# FP1 IS T | 
 | 5199 |  | 
 | 5200 | 	ror.l		&1,%d1 | 
 | 5201 | 	and.l		&0x80000000,%d1 | 
 | 5202 | # ...LEAST SIG. BIT OF D0 IN SIGN POSITION | 
 | 5203 | 	eor.l		%d1,X(%a6)		# X IS NOW R'= SGN*R | 
 | 5204 |  | 
 | 5205 | 	fmul.x		%fp1,%fp3		# TA7 | 
 | 5206 | 	fmul.x		%fp1,%fp2		# TA6 | 
 | 5207 |  | 
 | 5208 | 	fadd.d		SINA5(%pc),%fp3		# A5+TA7 | 
 | 5209 | 	fadd.d		SINA4(%pc),%fp2		# A4+TA6 | 
 | 5210 |  | 
 | 5211 | 	fmul.x		%fp1,%fp3		# T(A5+TA7) | 
 | 5212 | 	fmul.x		%fp1,%fp2		# T(A4+TA6) | 
 | 5213 |  | 
 | 5214 | 	fadd.d		SINA3(%pc),%fp3		# A3+T(A5+TA7) | 
 | 5215 | 	fadd.x		SINA2(%pc),%fp2		# A2+T(A4+TA6) | 
 | 5216 |  | 
 | 5217 | 	fmul.x		%fp3,%fp1		# T(A3+T(A5+TA7)) | 
 | 5218 |  | 
 | 5219 | 	fmul.x		%fp0,%fp2		# S(A2+T(A4+TA6)) | 
 | 5220 | 	fadd.x		SINA1(%pc),%fp1		# A1+T(A3+T(A5+TA7)) | 
 | 5221 | 	fmul.x		X(%a6),%fp0		# R'*S | 
 | 5222 |  | 
 | 5223 | 	fadd.x		%fp2,%fp1		# [A1+T(A3+T(A5+TA7))]+[S(A2+T(A4+TA6))] | 
 | 5224 |  | 
 | 5225 | 	fmul.x		%fp1,%fp0		# SIN(R')-R' | 
 | 5226 |  | 
 | 5227 | 	fmovm.x		(%sp)+,&0x30		# restore fp2/fp3 | 
 | 5228 |  | 
 | 5229 | 	fmov.l		%d0,%fpcr		# restore users round mode,prec | 
 | 5230 | 	fadd.x		X(%a6),%fp0		# last inst - possible exception set | 
 | 5231 | 	bra		t_inx2 | 
 | 5232 |  | 
 | 5233 | #--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J. | 
 | 5234 | #--THEN WE RETURN	SGN*COS(R). SGN*COS(R) IS COMPUTED BY | 
 | 5235 | #--SGN + S'*(B1 + S(B2 + S(B3 + S(B4 + ... + SB8)))), WHERE | 
 | 5236 | #--S=R*R AND S'=SGN*S. THIS CAN BE REWRITTEN AS | 
 | 5237 | #--SGN + S'*([B1+T(B3+T(B5+TB7))] + [S(B2+T(B4+T(B6+TB8)))]) | 
 | 5238 | #--WHERE T=S*S. | 
 | 5239 | #--NOTE THAT B4 THROUGH B8 ARE STORED IN DOUBLE PRECISION | 
 | 5240 | #--WHILE B2 AND B3 ARE IN DOUBLE-EXTENDED FORMAT, B1 IS -1/2 | 
 | 5241 | #--AND IS THEREFORE STORED AS SINGLE PRECISION. | 
 | 5242 | COSPOLY: | 
 | 5243 | 	fmovm.x		&0x0c,-(%sp)		# save fp2/fp3 | 
 | 5244 |  | 
 | 5245 | 	fmul.x		%fp0,%fp0		# FP0 IS S | 
 | 5246 |  | 
 | 5247 | 	fmov.d		COSB8(%pc),%fp2 | 
 | 5248 | 	fmov.d		COSB7(%pc),%fp3 | 
 | 5249 |  | 
 | 5250 | 	fmov.x		%fp0,%fp1 | 
 | 5251 | 	fmul.x		%fp1,%fp1		# FP1 IS T | 
 | 5252 |  | 
 | 5253 | 	fmov.x		%fp0,X(%a6)		# X IS S | 
 | 5254 | 	ror.l		&1,%d1 | 
 | 5255 | 	and.l		&0x80000000,%d1 | 
 | 5256 | # ...LEAST SIG. BIT OF D0 IN SIGN POSITION | 
 | 5257 |  | 
 | 5258 | 	fmul.x		%fp1,%fp2		# TB8 | 
 | 5259 |  | 
 | 5260 | 	eor.l		%d1,X(%a6)		# X IS NOW S'= SGN*S | 
 | 5261 | 	and.l		&0x80000000,%d1 | 
 | 5262 |  | 
 | 5263 | 	fmul.x		%fp1,%fp3		# TB7 | 
 | 5264 |  | 
 | 5265 | 	or.l		&0x3F800000,%d1		# D0 IS SGN IN SINGLE | 
 | 5266 | 	mov.l		%d1,POSNEG1(%a6) | 
 | 5267 |  | 
 | 5268 | 	fadd.d		COSB6(%pc),%fp2		# B6+TB8 | 
 | 5269 | 	fadd.d		COSB5(%pc),%fp3		# B5+TB7 | 
 | 5270 |  | 
 | 5271 | 	fmul.x		%fp1,%fp2		# T(B6+TB8) | 
 | 5272 | 	fmul.x		%fp1,%fp3		# T(B5+TB7) | 
 | 5273 |  | 
 | 5274 | 	fadd.d		COSB4(%pc),%fp2		# B4+T(B6+TB8) | 
 | 5275 | 	fadd.x		COSB3(%pc),%fp3		# B3+T(B5+TB7) | 
 | 5276 |  | 
 | 5277 | 	fmul.x		%fp1,%fp2		# T(B4+T(B6+TB8)) | 
 | 5278 | 	fmul.x		%fp3,%fp1		# T(B3+T(B5+TB7)) | 
 | 5279 |  | 
 | 5280 | 	fadd.x		COSB2(%pc),%fp2		# B2+T(B4+T(B6+TB8)) | 
 | 5281 | 	fadd.s		COSB1(%pc),%fp1		# B1+T(B3+T(B5+TB7)) | 
 | 5282 |  | 
 | 5283 | 	fmul.x		%fp2,%fp0		# S(B2+T(B4+T(B6+TB8))) | 
 | 5284 |  | 
 | 5285 | 	fadd.x		%fp1,%fp0 | 
 | 5286 |  | 
 | 5287 | 	fmul.x		X(%a6),%fp0 | 
 | 5288 |  | 
 | 5289 | 	fmovm.x		(%sp)+,&0x30		# restore fp2/fp3 | 
 | 5290 |  | 
 | 5291 | 	fmov.l		%d0,%fpcr		# restore users round mode,prec | 
 | 5292 | 	fadd.s		POSNEG1(%a6),%fp0	# last inst - possible exception set | 
 | 5293 | 	bra		t_inx2 | 
 | 5294 |  | 
 | 5295 | ############################################## | 
 | 5296 |  | 
 | 5297 | # SINe: Big OR Small? | 
 | 5298 | #--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION. | 
 | 5299 | #--IF |X| < 2**(-40), RETURN X OR 1. | 
 | 5300 | SINBORS: | 
 | 5301 | 	cmp.l		%d1,&0x3FFF8000 | 
 | 5302 | 	bgt.l		SREDUCEX | 
 | 5303 |  | 
 | 5304 | SINSM: | 
 | 5305 | 	mov.l		ADJN(%a6),%d1 | 
 | 5306 | 	cmp.l		%d1,&0 | 
 | 5307 | 	bgt.b		COSTINY | 
 | 5308 |  | 
 | 5309 | # here, the operation may underflow iff the precision is sgl or dbl. | 
 | 5310 | # extended denorms are handled through another entry point. | 
 | 5311 | SINTINY: | 
 | 5312 | #	mov.w		&0x0000,XDCARE(%a6)	# JUST IN CASE | 
 | 5313 |  | 
 | 5314 | 	fmov.l		%d0,%fpcr		# restore users round mode,prec | 
 | 5315 | 	mov.b		&FMOV_OP,%d1		# last inst is MOVE | 
 | 5316 | 	fmov.x		X(%a6),%fp0		# last inst - possible exception set | 
 | 5317 | 	bra		t_catch | 
 | 5318 |  | 
 | 5319 | COSTINY: | 
 | 5320 | 	fmov.s		&0x3F800000,%fp0	# fp0 = 1.0 | 
 | 5321 | 	fmov.l		%d0,%fpcr		# restore users round mode,prec | 
 | 5322 | 	fadd.s		&0x80800000,%fp0	# last inst - possible exception set | 
 | 5323 | 	bra		t_pinx2 | 
 | 5324 |  | 
 | 5325 | ################################################ | 
 | 5326 | 	global		ssind | 
 | 5327 | #--SIN(X) = X FOR DENORMALIZED X | 
 | 5328 | ssind: | 
 | 5329 | 	bra		t_extdnrm | 
 | 5330 |  | 
 | 5331 | ############################################ | 
 | 5332 | 	global		scosd | 
 | 5333 | #--COS(X) = 1 FOR DENORMALIZED X | 
 | 5334 | scosd: | 
 | 5335 | 	fmov.s		&0x3F800000,%fp0	# fp0 = 1.0 | 
 | 5336 | 	bra		t_pinx2 | 
 | 5337 |  | 
 | 5338 | ################################################## | 
 | 5339 |  | 
 | 5340 | 	global		ssincos | 
 | 5341 | ssincos: | 
 | 5342 | #--SET ADJN TO 4 | 
 | 5343 | 	mov.l		&4,ADJN(%a6) | 
 | 5344 |  | 
 | 5345 | 	fmov.x		(%a0),%fp0		# LOAD INPUT | 
 | 5346 | 	fmov.x		%fp0,X(%a6) | 
 | 5347 |  | 
 | 5348 | 	mov.l		(%a0),%d1 | 
 | 5349 | 	mov.w		4(%a0),%d1 | 
 | 5350 | 	and.l		&0x7FFFFFFF,%d1		# COMPACTIFY X | 
 | 5351 |  | 
 | 5352 | 	cmp.l		%d1,&0x3FD78000		# |X| >= 2**(-40)? | 
 | 5353 | 	bge.b		SCOK1 | 
 | 5354 | 	bra.w		SCSM | 
 | 5355 |  | 
 | 5356 | SCOK1: | 
 | 5357 | 	cmp.l		%d1,&0x4004BC7E		# |X| < 15 PI? | 
 | 5358 | 	blt.b		SCMAIN | 
 | 5359 | 	bra.w		SREDUCEX | 
 | 5360 |  | 
 | 5361 |  | 
 | 5362 | #--THIS IS THE USUAL CASE, |X| <= 15 PI. | 
 | 5363 | #--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP. | 
 | 5364 | SCMAIN: | 
 | 5365 | 	fmov.x		%fp0,%fp1 | 
 | 5366 |  | 
 | 5367 | 	fmul.d		TWOBYPI(%pc),%fp1	# X*2/PI | 
 | 5368 |  | 
 | 5369 | 	lea		PITBL+0x200(%pc),%a1	# TABLE OF N*PI/2, N = -32,...,32 | 
 | 5370 |  | 
 | 5371 | 	fmov.l		%fp1,INT(%a6)		# CONVERT TO INTEGER | 
 | 5372 |  | 
 | 5373 | 	mov.l		INT(%a6),%d1 | 
 | 5374 | 	asl.l		&4,%d1 | 
 | 5375 | 	add.l		%d1,%a1			# ADDRESS OF N*PIBY2, IN Y1, Y2 | 
 | 5376 |  | 
 | 5377 | 	fsub.x		(%a1)+,%fp0		# X-Y1 | 
 | 5378 | 	fsub.s		(%a1),%fp0		# FP0 IS R = (X-Y1)-Y2 | 
 | 5379 |  | 
 | 5380 | SCCONT: | 
 | 5381 | #--continuation point from REDUCEX | 
 | 5382 |  | 
 | 5383 | 	mov.l		INT(%a6),%d1 | 
 | 5384 | 	ror.l		&1,%d1 | 
 | 5385 | 	cmp.l		%d1,&0			# D0 < 0 IFF N IS ODD | 
 | 5386 | 	bge.w		NEVEN | 
 | 5387 |  | 
 | 5388 | SNODD: | 
 | 5389 | #--REGISTERS SAVED SO FAR: D0, A0, FP2. | 
 | 5390 | 	fmovm.x		&0x04,-(%sp)		# save fp2 | 
 | 5391 |  | 
 | 5392 | 	fmov.x		%fp0,RPRIME(%a6) | 
 | 5393 | 	fmul.x		%fp0,%fp0		# FP0 IS S = R*R | 
 | 5394 | 	fmov.d		SINA7(%pc),%fp1		# A7 | 
 | 5395 | 	fmov.d		COSB8(%pc),%fp2		# B8 | 
 | 5396 | 	fmul.x		%fp0,%fp1		# SA7 | 
 | 5397 | 	fmul.x		%fp0,%fp2		# SB8 | 
 | 5398 |  | 
 | 5399 | 	mov.l		%d2,-(%sp) | 
 | 5400 | 	mov.l		%d1,%d2 | 
 | 5401 | 	ror.l		&1,%d2 | 
 | 5402 | 	and.l		&0x80000000,%d2 | 
 | 5403 | 	eor.l		%d1,%d2 | 
 | 5404 | 	and.l		&0x80000000,%d2 | 
 | 5405 |  | 
 | 5406 | 	fadd.d		SINA6(%pc),%fp1		# A6+SA7 | 
 | 5407 | 	fadd.d		COSB7(%pc),%fp2		# B7+SB8 | 
 | 5408 |  | 
 | 5409 | 	fmul.x		%fp0,%fp1		# S(A6+SA7) | 
 | 5410 | 	eor.l		%d2,RPRIME(%a6) | 
 | 5411 | 	mov.l		(%sp)+,%d2 | 
 | 5412 | 	fmul.x		%fp0,%fp2		# S(B7+SB8) | 
 | 5413 | 	ror.l		&1,%d1 | 
 | 5414 | 	and.l		&0x80000000,%d1 | 
 | 5415 | 	mov.l		&0x3F800000,POSNEG1(%a6) | 
 | 5416 | 	eor.l		%d1,POSNEG1(%a6) | 
 | 5417 |  | 
 | 5418 | 	fadd.d		SINA5(%pc),%fp1		# A5+S(A6+SA7) | 
 | 5419 | 	fadd.d		COSB6(%pc),%fp2		# B6+S(B7+SB8) | 
 | 5420 |  | 
 | 5421 | 	fmul.x		%fp0,%fp1		# S(A5+S(A6+SA7)) | 
 | 5422 | 	fmul.x		%fp0,%fp2		# S(B6+S(B7+SB8)) | 
 | 5423 | 	fmov.x		%fp0,SPRIME(%a6) | 
 | 5424 |  | 
 | 5425 | 	fadd.d		SINA4(%pc),%fp1		# A4+S(A5+S(A6+SA7)) | 
 | 5426 | 	eor.l		%d1,SPRIME(%a6) | 
 | 5427 | 	fadd.d		COSB5(%pc),%fp2		# B5+S(B6+S(B7+SB8)) | 
 | 5428 |  | 
 | 5429 | 	fmul.x		%fp0,%fp1		# S(A4+...) | 
 | 5430 | 	fmul.x		%fp0,%fp2		# S(B5+...) | 
 | 5431 |  | 
 | 5432 | 	fadd.d		SINA3(%pc),%fp1		# A3+S(A4+...) | 
 | 5433 | 	fadd.d		COSB4(%pc),%fp2		# B4+S(B5+...) | 
 | 5434 |  | 
 | 5435 | 	fmul.x		%fp0,%fp1		# S(A3+...) | 
 | 5436 | 	fmul.x		%fp0,%fp2		# S(B4+...) | 
 | 5437 |  | 
 | 5438 | 	fadd.x		SINA2(%pc),%fp1		# A2+S(A3+...) | 
 | 5439 | 	fadd.x		COSB3(%pc),%fp2		# B3+S(B4+...) | 
 | 5440 |  | 
 | 5441 | 	fmul.x		%fp0,%fp1		# S(A2+...) | 
 | 5442 | 	fmul.x		%fp0,%fp2		# S(B3+...) | 
 | 5443 |  | 
 | 5444 | 	fadd.x		SINA1(%pc),%fp1		# A1+S(A2+...) | 
 | 5445 | 	fadd.x		COSB2(%pc),%fp2		# B2+S(B3+...) | 
 | 5446 |  | 
 | 5447 | 	fmul.x		%fp0,%fp1		# S(A1+...) | 
 | 5448 | 	fmul.x		%fp2,%fp0		# S(B2+...) | 
 | 5449 |  | 
 | 5450 | 	fmul.x		RPRIME(%a6),%fp1	# R'S(A1+...) | 
 | 5451 | 	fadd.s		COSB1(%pc),%fp0		# B1+S(B2...) | 
 | 5452 | 	fmul.x		SPRIME(%a6),%fp0	# S'(B1+S(B2+...)) | 
 | 5453 |  | 
 | 5454 | 	fmovm.x		(%sp)+,&0x20		# restore fp2 | 
 | 5455 |  | 
 | 5456 | 	fmov.l		%d0,%fpcr | 
 | 5457 | 	fadd.x		RPRIME(%a6),%fp1	# COS(X) | 
 | 5458 | 	bsr		sto_cos			# store cosine result | 
 | 5459 | 	fadd.s		POSNEG1(%a6),%fp0	# SIN(X) | 
 | 5460 | 	bra		t_inx2 | 
 | 5461 |  | 
 | 5462 | NEVEN: | 
 | 5463 | #--REGISTERS SAVED SO FAR: FP2. | 
 | 5464 | 	fmovm.x		&0x04,-(%sp)		# save fp2 | 
 | 5465 |  | 
 | 5466 | 	fmov.x		%fp0,RPRIME(%a6) | 
 | 5467 | 	fmul.x		%fp0,%fp0		# FP0 IS S = R*R | 
 | 5468 |  | 
 | 5469 | 	fmov.d		COSB8(%pc),%fp1		# B8 | 
 | 5470 | 	fmov.d		SINA7(%pc),%fp2		# A7 | 
 | 5471 |  | 
 | 5472 | 	fmul.x		%fp0,%fp1		# SB8 | 
 | 5473 | 	fmov.x		%fp0,SPRIME(%a6) | 
 | 5474 | 	fmul.x		%fp0,%fp2		# SA7 | 
 | 5475 |  | 
 | 5476 | 	ror.l		&1,%d1 | 
 | 5477 | 	and.l		&0x80000000,%d1 | 
 | 5478 |  | 
 | 5479 | 	fadd.d		COSB7(%pc),%fp1		# B7+SB8 | 
 | 5480 | 	fadd.d		SINA6(%pc),%fp2		# A6+SA7 | 
 | 5481 |  | 
 | 5482 | 	eor.l		%d1,RPRIME(%a6) | 
 | 5483 | 	eor.l		%d1,SPRIME(%a6) | 
 | 5484 |  | 
 | 5485 | 	fmul.x		%fp0,%fp1		# S(B7+SB8) | 
 | 5486 |  | 
 | 5487 | 	or.l		&0x3F800000,%d1 | 
 | 5488 | 	mov.l		%d1,POSNEG1(%a6) | 
 | 5489 |  | 
 | 5490 | 	fmul.x		%fp0,%fp2		# S(A6+SA7) | 
 | 5491 |  | 
 | 5492 | 	fadd.d		COSB6(%pc),%fp1		# B6+S(B7+SB8) | 
 | 5493 | 	fadd.d		SINA5(%pc),%fp2		# A5+S(A6+SA7) | 
 | 5494 |  | 
 | 5495 | 	fmul.x		%fp0,%fp1		# S(B6+S(B7+SB8)) | 
 | 5496 | 	fmul.x		%fp0,%fp2		# S(A5+S(A6+SA7)) | 
 | 5497 |  | 
 | 5498 | 	fadd.d		COSB5(%pc),%fp1		# B5+S(B6+S(B7+SB8)) | 
 | 5499 | 	fadd.d		SINA4(%pc),%fp2		# A4+S(A5+S(A6+SA7)) | 
 | 5500 |  | 
 | 5501 | 	fmul.x		%fp0,%fp1		# S(B5+...) | 
 | 5502 | 	fmul.x		%fp0,%fp2		# S(A4+...) | 
 | 5503 |  | 
 | 5504 | 	fadd.d		COSB4(%pc),%fp1		# B4+S(B5+...) | 
 | 5505 | 	fadd.d		SINA3(%pc),%fp2		# A3+S(A4+...) | 
 | 5506 |  | 
 | 5507 | 	fmul.x		%fp0,%fp1		# S(B4+...) | 
 | 5508 | 	fmul.x		%fp0,%fp2		# S(A3+...) | 
 | 5509 |  | 
 | 5510 | 	fadd.x		COSB3(%pc),%fp1		# B3+S(B4+...) | 
 | 5511 | 	fadd.x		SINA2(%pc),%fp2		# A2+S(A3+...) | 
 | 5512 |  | 
 | 5513 | 	fmul.x		%fp0,%fp1		# S(B3+...) | 
 | 5514 | 	fmul.x		%fp0,%fp2		# S(A2+...) | 
 | 5515 |  | 
 | 5516 | 	fadd.x		COSB2(%pc),%fp1		# B2+S(B3+...) | 
 | 5517 | 	fadd.x		SINA1(%pc),%fp2		# A1+S(A2+...) | 
 | 5518 |  | 
 | 5519 | 	fmul.x		%fp0,%fp1		# S(B2+...) | 
 | 5520 | 	fmul.x		%fp2,%fp0		# s(a1+...) | 
 | 5521 |  | 
 | 5522 |  | 
 | 5523 | 	fadd.s		COSB1(%pc),%fp1		# B1+S(B2...) | 
 | 5524 | 	fmul.x		RPRIME(%a6),%fp0	# R'S(A1+...) | 
 | 5525 | 	fmul.x		SPRIME(%a6),%fp1	# S'(B1+S(B2+...)) | 
 | 5526 |  | 
 | 5527 | 	fmovm.x		(%sp)+,&0x20		# restore fp2 | 
 | 5528 |  | 
 | 5529 | 	fmov.l		%d0,%fpcr | 
 | 5530 | 	fadd.s		POSNEG1(%a6),%fp1	# COS(X) | 
 | 5531 | 	bsr		sto_cos			# store cosine result | 
 | 5532 | 	fadd.x		RPRIME(%a6),%fp0	# SIN(X) | 
 | 5533 | 	bra		t_inx2 | 
 | 5534 |  | 
 | 5535 | ################################################ | 
 | 5536 |  | 
 | 5537 | SCBORS: | 
 | 5538 | 	cmp.l		%d1,&0x3FFF8000 | 
 | 5539 | 	bgt.w		SREDUCEX | 
 | 5540 |  | 
 | 5541 | ################################################ | 
 | 5542 |  | 
 | 5543 | SCSM: | 
 | 5544 | #	mov.w		&0x0000,XDCARE(%a6) | 
 | 5545 | 	fmov.s		&0x3F800000,%fp1 | 
 | 5546 |  | 
 | 5547 | 	fmov.l		%d0,%fpcr | 
 | 5548 | 	fsub.s		&0x00800000,%fp1 | 
 | 5549 | 	bsr		sto_cos			# store cosine result | 
 | 5550 | 	fmov.l		%fpcr,%d0		# d0 must have fpcr,too | 
 | 5551 | 	mov.b		&FMOV_OP,%d1		# last inst is MOVE | 
 | 5552 | 	fmov.x		X(%a6),%fp0 | 
 | 5553 | 	bra		t_catch | 
 | 5554 |  | 
 | 5555 | ############################################## | 
 | 5556 |  | 
 | 5557 | 	global		ssincosd | 
 | 5558 | #--SIN AND COS OF X FOR DENORMALIZED X | 
 | 5559 | ssincosd: | 
 | 5560 | 	mov.l		%d0,-(%sp)		# save d0 | 
 | 5561 | 	fmov.s		&0x3F800000,%fp1 | 
 | 5562 | 	bsr		sto_cos			# store cosine result | 
 | 5563 | 	mov.l		(%sp)+,%d0		# restore d0 | 
 | 5564 | 	bra		t_extdnrm | 
 | 5565 |  | 
 | 5566 | ############################################ | 
 | 5567 |  | 
 | 5568 | #--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW. | 
 | 5569 | #--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING | 
 | 5570 | #--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE. | 
 | 5571 | SREDUCEX: | 
 | 5572 | 	fmovm.x		&0x3c,-(%sp)		# save {fp2-fp5} | 
 | 5573 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 5574 | 	fmov.s		&0x00000000,%fp1	# fp1 = 0 | 
 | 5575 |  | 
 | 5576 | #--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that | 
 | 5577 | #--there is a danger of unwanted overflow in first LOOP iteration.  In this | 
 | 5578 | #--case, reduce argument by one remainder step to make subsequent reduction | 
 | 5579 | #--safe. | 
 | 5580 | 	cmp.l		%d1,&0x7ffeffff		# is arg dangerously large? | 
 | 5581 | 	bne.b		SLOOP			# no | 
 | 5582 |  | 
 | 5583 | # yes; create 2**16383*PI/2 | 
 | 5584 | 	mov.w		&0x7ffe,FP_SCR0_EX(%a6) | 
 | 5585 | 	mov.l		&0xc90fdaa2,FP_SCR0_HI(%a6) | 
 | 5586 | 	clr.l		FP_SCR0_LO(%a6) | 
 | 5587 |  | 
 | 5588 | # create low half of 2**16383*PI/2 at FP_SCR1 | 
 | 5589 | 	mov.w		&0x7fdc,FP_SCR1_EX(%a6) | 
 | 5590 | 	mov.l		&0x85a308d3,FP_SCR1_HI(%a6) | 
 | 5591 | 	clr.l		FP_SCR1_LO(%a6) | 
 | 5592 |  | 
 | 5593 | 	ftest.x		%fp0			# test sign of argument | 
 | 5594 | 	fblt.w		sred_neg | 
 | 5595 |  | 
 | 5596 | 	or.b		&0x80,FP_SCR0_EX(%a6)	# positive arg | 
 | 5597 | 	or.b		&0x80,FP_SCR1_EX(%a6) | 
 | 5598 | sred_neg: | 
 | 5599 | 	fadd.x		FP_SCR0(%a6),%fp0	# high part of reduction is exact | 
 | 5600 | 	fmov.x		%fp0,%fp1		# save high result in fp1 | 
 | 5601 | 	fadd.x		FP_SCR1(%a6),%fp0	# low part of reduction | 
 | 5602 | 	fsub.x		%fp0,%fp1		# determine low component of result | 
 | 5603 | 	fadd.x		FP_SCR1(%a6),%fp1	# fp0/fp1 are reduced argument. | 
 | 5604 |  | 
 | 5605 | #--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4. | 
 | 5606 | #--integer quotient will be stored in N | 
 | 5607 | #--Intermeditate remainder is 66-bit long; (R,r) in (FP0,FP1) | 
 | 5608 | SLOOP: | 
 | 5609 | 	fmov.x		%fp0,INARG(%a6)		# +-2**K * F, 1 <= F < 2 | 
 | 5610 | 	mov.w		INARG(%a6),%d1 | 
 | 5611 | 	mov.l		%d1,%a1			# save a copy of D0 | 
 | 5612 | 	and.l		&0x00007FFF,%d1 | 
 | 5613 | 	sub.l		&0x00003FFF,%d1		# d0 = K | 
 | 5614 | 	cmp.l		%d1,&28 | 
 | 5615 | 	ble.b		SLASTLOOP | 
 | 5616 | SCONTLOOP: | 
 | 5617 | 	sub.l		&27,%d1			# d0 = L := K-27 | 
 | 5618 | 	mov.b		&0,ENDFLAG(%a6) | 
 | 5619 | 	bra.b		SWORK | 
 | 5620 | SLASTLOOP: | 
 | 5621 | 	clr.l		%d1			# d0 = L := 0 | 
 | 5622 | 	mov.b		&1,ENDFLAG(%a6) | 
 | 5623 |  | 
 | 5624 | SWORK: | 
 | 5625 | #--FIND THE REMAINDER OF (R,r) W.R.T.	2**L * (PI/2). L IS SO CHOSEN | 
 | 5626 | #--THAT	INT( X * (2/PI) / 2**(L) ) < 2**29. | 
 | 5627 |  | 
 | 5628 | #--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63), | 
 | 5629 | #--2**L * (PIby2_1), 2**L * (PIby2_2) | 
 | 5630 |  | 
 | 5631 | 	mov.l		&0x00003FFE,%d2		# BIASED EXP OF 2/PI | 
 | 5632 | 	sub.l		%d1,%d2			# BIASED EXP OF 2**(-L)*(2/PI) | 
 | 5633 |  | 
 | 5634 | 	mov.l		&0xA2F9836E,FP_SCR0_HI(%a6) | 
 | 5635 | 	mov.l		&0x4E44152A,FP_SCR0_LO(%a6) | 
 | 5636 | 	mov.w		%d2,FP_SCR0_EX(%a6)	# FP_SCR0 = 2**(-L)*(2/PI) | 
 | 5637 |  | 
 | 5638 | 	fmov.x		%fp0,%fp2 | 
 | 5639 | 	fmul.x		FP_SCR0(%a6),%fp2	# fp2 = X * 2**(-L)*(2/PI) | 
 | 5640 |  | 
 | 5641 | #--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN | 
 | 5642 | #--FLOATING POINT FORMAT, THE TWO FMOVE'S	FMOVE.L FP <--> N | 
 | 5643 | #--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT | 
 | 5644 | #--(SIGN(INARG)*2**63	+	FP2) - SIGN(INARG)*2**63 WILL GIVE | 
 | 5645 | #--US THE DESIRED VALUE IN FLOATING POINT. | 
 | 5646 | 	mov.l		%a1,%d2 | 
 | 5647 | 	swap		%d2 | 
 | 5648 | 	and.l		&0x80000000,%d2 | 
 | 5649 | 	or.l		&0x5F000000,%d2		# d2 = SIGN(INARG)*2**63 IN SGL | 
 | 5650 | 	mov.l		%d2,TWOTO63(%a6) | 
 | 5651 | 	fadd.s		TWOTO63(%a6),%fp2	# THE FRACTIONAL PART OF FP1 IS ROUNDED | 
 | 5652 | 	fsub.s		TWOTO63(%a6),%fp2	# fp2 = N | 
 | 5653 | #	fint.x		%fp2 | 
 | 5654 |  | 
 | 5655 | #--CREATING 2**(L)*Piby2_1 and 2**(L)*Piby2_2 | 
 | 5656 | 	mov.l		%d1,%d2			# d2 = L | 
 | 5657 |  | 
 | 5658 | 	add.l		&0x00003FFF,%d2		# BIASED EXP OF 2**L * (PI/2) | 
 | 5659 | 	mov.w		%d2,FP_SCR0_EX(%a6) | 
 | 5660 | 	mov.l		&0xC90FDAA2,FP_SCR0_HI(%a6) | 
 | 5661 | 	clr.l		FP_SCR0_LO(%a6)		# FP_SCR0 = 2**(L) * Piby2_1 | 
 | 5662 |  | 
 | 5663 | 	add.l		&0x00003FDD,%d1 | 
 | 5664 | 	mov.w		%d1,FP_SCR1_EX(%a6) | 
 | 5665 | 	mov.l		&0x85A308D3,FP_SCR1_HI(%a6) | 
 | 5666 | 	clr.l		FP_SCR1_LO(%a6)		# FP_SCR1 = 2**(L) * Piby2_2 | 
 | 5667 |  | 
 | 5668 | 	mov.b		ENDFLAG(%a6),%d1 | 
 | 5669 |  | 
 | 5670 | #--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and | 
 | 5671 | #--P2 = 2**(L) * Piby2_2 | 
 | 5672 | 	fmov.x		%fp2,%fp4		# fp4 = N | 
 | 5673 | 	fmul.x		FP_SCR0(%a6),%fp4	# fp4 = W = N*P1 | 
 | 5674 | 	fmov.x		%fp2,%fp5		# fp5 = N | 
 | 5675 | 	fmul.x		FP_SCR1(%a6),%fp5	# fp5 = w = N*P2 | 
 | 5676 | 	fmov.x		%fp4,%fp3		# fp3 = W = N*P1 | 
 | 5677 |  | 
 | 5678 | #--we want P+p = W+w  but  |p| <= half ulp of P | 
 | 5679 | #--Then, we need to compute  A := R-P   and  a := r-p | 
 | 5680 | 	fadd.x		%fp5,%fp3		# fp3 = P | 
 | 5681 | 	fsub.x		%fp3,%fp4		# fp4 = W-P | 
 | 5682 |  | 
 | 5683 | 	fsub.x		%fp3,%fp0		# fp0 = A := R - P | 
 | 5684 | 	fadd.x		%fp5,%fp4		# fp4 = p = (W-P)+w | 
 | 5685 |  | 
 | 5686 | 	fmov.x		%fp0,%fp3		# fp3 = A | 
 | 5687 | 	fsub.x		%fp4,%fp1		# fp1 = a := r - p | 
 | 5688 |  | 
 | 5689 | #--Now we need to normalize (A,a) to  "new (R,r)" where R+r = A+a but | 
 | 5690 | #--|r| <= half ulp of R. | 
 | 5691 | 	fadd.x		%fp1,%fp0		# fp0 = R := A+a | 
 | 5692 | #--No need to calculate r if this is the last loop | 
 | 5693 | 	cmp.b		%d1,&0 | 
 | 5694 | 	bgt.w		SRESTORE | 
 | 5695 |  | 
 | 5696 | #--Need to calculate r | 
 | 5697 | 	fsub.x		%fp0,%fp3		# fp3 = A-R | 
 | 5698 | 	fadd.x		%fp3,%fp1		# fp1 = r := (A-R)+a | 
 | 5699 | 	bra.w		SLOOP | 
 | 5700 |  | 
 | 5701 | SRESTORE: | 
 | 5702 | 	fmov.l		%fp2,INT(%a6) | 
 | 5703 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 5704 | 	fmovm.x		(%sp)+,&0x3c		# restore {fp2-fp5} | 
 | 5705 |  | 
 | 5706 | 	mov.l		ADJN(%a6),%d1 | 
 | 5707 | 	cmp.l		%d1,&4 | 
 | 5708 |  | 
 | 5709 | 	blt.w		SINCONT | 
 | 5710 | 	bra.w		SCCONT | 
 | 5711 |  | 
 | 5712 | ######################################################################### | 
 | 5713 | # stan():  computes the tangent of a normalized input			# | 
 | 5714 | # stand(): computes the tangent of a denormalized input			# | 
 | 5715 | #									# | 
 | 5716 | # INPUT *************************************************************** # | 
 | 5717 | #	a0 = pointer to extended precision input			# | 
 | 5718 | #	d0 = round precision,mode					# | 
 | 5719 | #									# | 
 | 5720 | # OUTPUT ************************************************************** # | 
 | 5721 | #	fp0 = tan(X)							# | 
 | 5722 | #									# | 
 | 5723 | # ACCURACY and MONOTONICITY ******************************************* # | 
 | 5724 | #	The returned result is within 3 ulp in 64 significant bit, i.e. # | 
 | 5725 | #	within 0.5001 ulp to 53 bits if the result is subsequently	# | 
 | 5726 | #	rounded to double precision. The result is provably monotonic	# | 
 | 5727 | #	in double precision.						# | 
 | 5728 | #									# | 
 | 5729 | # ALGORITHM *********************************************************** # | 
 | 5730 | #									# | 
 | 5731 | #	1. If |X| >= 15Pi or |X| < 2**(-40), go to 6.			# | 
 | 5732 | #									# | 
 | 5733 | #	2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let	# | 
 | 5734 | #		k = N mod 2, so in particular, k = 0 or 1.		# | 
 | 5735 | #									# | 
 | 5736 | #	3. If k is odd, go to 5.					# | 
 | 5737 | #									# | 
 | 5738 | #	4. (k is even) Tan(X) = tan(r) and tan(r) is approximated by a	# | 
 | 5739 | #		rational function U/V where				# | 
 | 5740 | #		U = r + r*s*(P1 + s*(P2 + s*P3)), and			# | 
 | 5741 | #		V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))),  s = r*r.	# | 
 | 5742 | #		Exit.							# | 
 | 5743 | #									# | 
 | 5744 | #	4. (k is odd) Tan(X) = -cot(r). Since tan(r) is approximated by # | 
 | 5745 | #		a rational function U/V where				# | 
 | 5746 | #		U = r + r*s*(P1 + s*(P2 + s*P3)), and			# | 
 | 5747 | #		V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r,	# | 
 | 5748 | #		-Cot(r) = -V/U. Exit.					# | 
 | 5749 | #									# | 
 | 5750 | #	6. If |X| > 1, go to 8.						# | 
 | 5751 | #									# | 
 | 5752 | #	7. (|X|<2**(-40)) Tan(X) = X. Exit.				# | 
 | 5753 | #									# | 
 | 5754 | #	8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back	# | 
 | 5755 | #		to 2.							# | 
 | 5756 | #									# | 
 | 5757 | ######################################################################### | 
 | 5758 |  | 
 | 5759 | TANQ4: | 
 | 5760 | 	long		0x3EA0B759,0xF50F8688 | 
 | 5761 | TANP3: | 
 | 5762 | 	long		0xBEF2BAA5,0xA8924F04 | 
 | 5763 |  | 
 | 5764 | TANQ3: | 
 | 5765 | 	long		0xBF346F59,0xB39BA65F,0x00000000,0x00000000 | 
 | 5766 |  | 
 | 5767 | TANP2: | 
 | 5768 | 	long		0x3FF60000,0xE073D3FC,0x199C4A00,0x00000000 | 
 | 5769 |  | 
 | 5770 | TANQ2: | 
 | 5771 | 	long		0x3FF90000,0xD23CD684,0x15D95FA1,0x00000000 | 
 | 5772 |  | 
 | 5773 | TANP1: | 
 | 5774 | 	long		0xBFFC0000,0x8895A6C5,0xFB423BCA,0x00000000 | 
 | 5775 |  | 
 | 5776 | TANQ1: | 
 | 5777 | 	long		0xBFFD0000,0xEEF57E0D,0xA84BC8CE,0x00000000 | 
 | 5778 |  | 
 | 5779 | INVTWOPI: | 
 | 5780 | 	long		0x3FFC0000,0xA2F9836E,0x4E44152A,0x00000000 | 
 | 5781 |  | 
 | 5782 | TWOPI1: | 
 | 5783 | 	long		0x40010000,0xC90FDAA2,0x00000000,0x00000000 | 
 | 5784 | TWOPI2: | 
 | 5785 | 	long		0x3FDF0000,0x85A308D4,0x00000000,0x00000000 | 
 | 5786 |  | 
 | 5787 | #--N*PI/2, -32 <= N <= 32, IN A LEADING TERM IN EXT. AND TRAILING | 
 | 5788 | #--TERM IN SGL. NOTE THAT PI IS 64-BIT LONG, THUS N*PI/2 IS AT | 
 | 5789 | #--MOST 69 BITS LONG. | 
 | 5790 | #	global		PITBL | 
 | 5791 | PITBL: | 
 | 5792 | 	long		0xC0040000,0xC90FDAA2,0x2168C235,0x21800000 | 
 | 5793 | 	long		0xC0040000,0xC2C75BCD,0x105D7C23,0xA0D00000 | 
 | 5794 | 	long		0xC0040000,0xBC7EDCF7,0xFF523611,0xA1E80000 | 
 | 5795 | 	long		0xC0040000,0xB6365E22,0xEE46F000,0x21480000 | 
 | 5796 | 	long		0xC0040000,0xAFEDDF4D,0xDD3BA9EE,0xA1200000 | 
 | 5797 | 	long		0xC0040000,0xA9A56078,0xCC3063DD,0x21FC0000 | 
 | 5798 | 	long		0xC0040000,0xA35CE1A3,0xBB251DCB,0x21100000 | 
 | 5799 | 	long		0xC0040000,0x9D1462CE,0xAA19D7B9,0xA1580000 | 
 | 5800 | 	long		0xC0040000,0x96CBE3F9,0x990E91A8,0x21E00000 | 
 | 5801 | 	long		0xC0040000,0x90836524,0x88034B96,0x20B00000 | 
 | 5802 | 	long		0xC0040000,0x8A3AE64F,0x76F80584,0xA1880000 | 
 | 5803 | 	long		0xC0040000,0x83F2677A,0x65ECBF73,0x21C40000 | 
 | 5804 | 	long		0xC0030000,0xFB53D14A,0xA9C2F2C2,0x20000000 | 
 | 5805 | 	long		0xC0030000,0xEEC2D3A0,0x87AC669F,0x21380000 | 
 | 5806 | 	long		0xC0030000,0xE231D5F6,0x6595DA7B,0xA1300000 | 
 | 5807 | 	long		0xC0030000,0xD5A0D84C,0x437F4E58,0x9FC00000 | 
 | 5808 | 	long		0xC0030000,0xC90FDAA2,0x2168C235,0x21000000 | 
 | 5809 | 	long		0xC0030000,0xBC7EDCF7,0xFF523611,0xA1680000 | 
 | 5810 | 	long		0xC0030000,0xAFEDDF4D,0xDD3BA9EE,0xA0A00000 | 
 | 5811 | 	long		0xC0030000,0xA35CE1A3,0xBB251DCB,0x20900000 | 
 | 5812 | 	long		0xC0030000,0x96CBE3F9,0x990E91A8,0x21600000 | 
 | 5813 | 	long		0xC0030000,0x8A3AE64F,0x76F80584,0xA1080000 | 
 | 5814 | 	long		0xC0020000,0xFB53D14A,0xA9C2F2C2,0x1F800000 | 
 | 5815 | 	long		0xC0020000,0xE231D5F6,0x6595DA7B,0xA0B00000 | 
 | 5816 | 	long		0xC0020000,0xC90FDAA2,0x2168C235,0x20800000 | 
 | 5817 | 	long		0xC0020000,0xAFEDDF4D,0xDD3BA9EE,0xA0200000 | 
 | 5818 | 	long		0xC0020000,0x96CBE3F9,0x990E91A8,0x20E00000 | 
 | 5819 | 	long		0xC0010000,0xFB53D14A,0xA9C2F2C2,0x1F000000 | 
 | 5820 | 	long		0xC0010000,0xC90FDAA2,0x2168C235,0x20000000 | 
 | 5821 | 	long		0xC0010000,0x96CBE3F9,0x990E91A8,0x20600000 | 
 | 5822 | 	long		0xC0000000,0xC90FDAA2,0x2168C235,0x1F800000 | 
 | 5823 | 	long		0xBFFF0000,0xC90FDAA2,0x2168C235,0x1F000000 | 
 | 5824 | 	long		0x00000000,0x00000000,0x00000000,0x00000000 | 
 | 5825 | 	long		0x3FFF0000,0xC90FDAA2,0x2168C235,0x9F000000 | 
 | 5826 | 	long		0x40000000,0xC90FDAA2,0x2168C235,0x9F800000 | 
 | 5827 | 	long		0x40010000,0x96CBE3F9,0x990E91A8,0xA0600000 | 
 | 5828 | 	long		0x40010000,0xC90FDAA2,0x2168C235,0xA0000000 | 
 | 5829 | 	long		0x40010000,0xFB53D14A,0xA9C2F2C2,0x9F000000 | 
 | 5830 | 	long		0x40020000,0x96CBE3F9,0x990E91A8,0xA0E00000 | 
 | 5831 | 	long		0x40020000,0xAFEDDF4D,0xDD3BA9EE,0x20200000 | 
 | 5832 | 	long		0x40020000,0xC90FDAA2,0x2168C235,0xA0800000 | 
 | 5833 | 	long		0x40020000,0xE231D5F6,0x6595DA7B,0x20B00000 | 
 | 5834 | 	long		0x40020000,0xFB53D14A,0xA9C2F2C2,0x9F800000 | 
 | 5835 | 	long		0x40030000,0x8A3AE64F,0x76F80584,0x21080000 | 
 | 5836 | 	long		0x40030000,0x96CBE3F9,0x990E91A8,0xA1600000 | 
 | 5837 | 	long		0x40030000,0xA35CE1A3,0xBB251DCB,0xA0900000 | 
 | 5838 | 	long		0x40030000,0xAFEDDF4D,0xDD3BA9EE,0x20A00000 | 
 | 5839 | 	long		0x40030000,0xBC7EDCF7,0xFF523611,0x21680000 | 
 | 5840 | 	long		0x40030000,0xC90FDAA2,0x2168C235,0xA1000000 | 
 | 5841 | 	long		0x40030000,0xD5A0D84C,0x437F4E58,0x1FC00000 | 
 | 5842 | 	long		0x40030000,0xE231D5F6,0x6595DA7B,0x21300000 | 
 | 5843 | 	long		0x40030000,0xEEC2D3A0,0x87AC669F,0xA1380000 | 
 | 5844 | 	long		0x40030000,0xFB53D14A,0xA9C2F2C2,0xA0000000 | 
 | 5845 | 	long		0x40040000,0x83F2677A,0x65ECBF73,0xA1C40000 | 
 | 5846 | 	long		0x40040000,0x8A3AE64F,0x76F80584,0x21880000 | 
 | 5847 | 	long		0x40040000,0x90836524,0x88034B96,0xA0B00000 | 
 | 5848 | 	long		0x40040000,0x96CBE3F9,0x990E91A8,0xA1E00000 | 
 | 5849 | 	long		0x40040000,0x9D1462CE,0xAA19D7B9,0x21580000 | 
 | 5850 | 	long		0x40040000,0xA35CE1A3,0xBB251DCB,0xA1100000 | 
 | 5851 | 	long		0x40040000,0xA9A56078,0xCC3063DD,0xA1FC0000 | 
 | 5852 | 	long		0x40040000,0xAFEDDF4D,0xDD3BA9EE,0x21200000 | 
 | 5853 | 	long		0x40040000,0xB6365E22,0xEE46F000,0xA1480000 | 
 | 5854 | 	long		0x40040000,0xBC7EDCF7,0xFF523611,0x21E80000 | 
 | 5855 | 	long		0x40040000,0xC2C75BCD,0x105D7C23,0x20D00000 | 
 | 5856 | 	long		0x40040000,0xC90FDAA2,0x2168C235,0xA1800000 | 
 | 5857 |  | 
 | 5858 | 	set		INARG,FP_SCR0 | 
 | 5859 |  | 
 | 5860 | 	set		TWOTO63,L_SCR1 | 
 | 5861 | 	set		INT,L_SCR1 | 
 | 5862 | 	set		ENDFLAG,L_SCR2 | 
 | 5863 |  | 
 | 5864 | 	global		stan | 
 | 5865 | stan: | 
 | 5866 | 	fmov.x		(%a0),%fp0		# LOAD INPUT | 
 | 5867 |  | 
 | 5868 | 	mov.l		(%a0),%d1 | 
 | 5869 | 	mov.w		4(%a0),%d1 | 
 | 5870 | 	and.l		&0x7FFFFFFF,%d1 | 
 | 5871 |  | 
 | 5872 | 	cmp.l		%d1,&0x3FD78000		# |X| >= 2**(-40)? | 
 | 5873 | 	bge.b		TANOK1 | 
 | 5874 | 	bra.w		TANSM | 
 | 5875 | TANOK1: | 
 | 5876 | 	cmp.l		%d1,&0x4004BC7E		# |X| < 15 PI? | 
 | 5877 | 	blt.b		TANMAIN | 
 | 5878 | 	bra.w		REDUCEX | 
 | 5879 |  | 
 | 5880 | TANMAIN: | 
 | 5881 | #--THIS IS THE USUAL CASE, |X| <= 15 PI. | 
 | 5882 | #--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP. | 
 | 5883 | 	fmov.x		%fp0,%fp1 | 
 | 5884 | 	fmul.d		TWOBYPI(%pc),%fp1	# X*2/PI | 
 | 5885 |  | 
 | 5886 | 	lea.l		PITBL+0x200(%pc),%a1	# TABLE OF N*PI/2, N = -32,...,32 | 
 | 5887 |  | 
 | 5888 | 	fmov.l		%fp1,%d1		# CONVERT TO INTEGER | 
 | 5889 |  | 
 | 5890 | 	asl.l		&4,%d1 | 
 | 5891 | 	add.l		%d1,%a1			# ADDRESS N*PIBY2 IN Y1, Y2 | 
 | 5892 |  | 
 | 5893 | 	fsub.x		(%a1)+,%fp0		# X-Y1 | 
 | 5894 |  | 
 | 5895 | 	fsub.s		(%a1),%fp0		# FP0 IS R = (X-Y1)-Y2 | 
 | 5896 |  | 
 | 5897 | 	ror.l		&5,%d1 | 
 | 5898 | 	and.l		&0x80000000,%d1		# D0 WAS ODD IFF D0 < 0 | 
 | 5899 |  | 
 | 5900 | TANCONT: | 
 | 5901 | 	fmovm.x		&0x0c,-(%sp)		# save fp2,fp3 | 
 | 5902 |  | 
 | 5903 | 	cmp.l		%d1,&0 | 
 | 5904 | 	blt.w		NODD | 
 | 5905 |  | 
 | 5906 | 	fmov.x		%fp0,%fp1 | 
 | 5907 | 	fmul.x		%fp1,%fp1		# S = R*R | 
 | 5908 |  | 
 | 5909 | 	fmov.d		TANQ4(%pc),%fp3 | 
 | 5910 | 	fmov.d		TANP3(%pc),%fp2 | 
 | 5911 |  | 
 | 5912 | 	fmul.x		%fp1,%fp3		# SQ4 | 
 | 5913 | 	fmul.x		%fp1,%fp2		# SP3 | 
 | 5914 |  | 
 | 5915 | 	fadd.d		TANQ3(%pc),%fp3		# Q3+SQ4 | 
 | 5916 | 	fadd.x		TANP2(%pc),%fp2		# P2+SP3 | 
 | 5917 |  | 
 | 5918 | 	fmul.x		%fp1,%fp3		# S(Q3+SQ4) | 
 | 5919 | 	fmul.x		%fp1,%fp2		# S(P2+SP3) | 
 | 5920 |  | 
 | 5921 | 	fadd.x		TANQ2(%pc),%fp3		# Q2+S(Q3+SQ4) | 
 | 5922 | 	fadd.x		TANP1(%pc),%fp2		# P1+S(P2+SP3) | 
 | 5923 |  | 
 | 5924 | 	fmul.x		%fp1,%fp3		# S(Q2+S(Q3+SQ4)) | 
 | 5925 | 	fmul.x		%fp1,%fp2		# S(P1+S(P2+SP3)) | 
 | 5926 |  | 
 | 5927 | 	fadd.x		TANQ1(%pc),%fp3		# Q1+S(Q2+S(Q3+SQ4)) | 
 | 5928 | 	fmul.x		%fp0,%fp2		# RS(P1+S(P2+SP3)) | 
 | 5929 |  | 
 | 5930 | 	fmul.x		%fp3,%fp1		# S(Q1+S(Q2+S(Q3+SQ4))) | 
 | 5931 |  | 
 | 5932 | 	fadd.x		%fp2,%fp0		# R+RS(P1+S(P2+SP3)) | 
 | 5933 |  | 
 | 5934 | 	fadd.s		&0x3F800000,%fp1	# 1+S(Q1+...) | 
 | 5935 |  | 
 | 5936 | 	fmovm.x		(%sp)+,&0x30		# restore fp2,fp3 | 
 | 5937 |  | 
 | 5938 | 	fmov.l		%d0,%fpcr		# restore users round mode,prec | 
 | 5939 | 	fdiv.x		%fp1,%fp0		# last inst - possible exception set | 
 | 5940 | 	bra		t_inx2 | 
 | 5941 |  | 
 | 5942 | NODD: | 
 | 5943 | 	fmov.x		%fp0,%fp1 | 
 | 5944 | 	fmul.x		%fp0,%fp0		# S = R*R | 
 | 5945 |  | 
 | 5946 | 	fmov.d		TANQ4(%pc),%fp3 | 
 | 5947 | 	fmov.d		TANP3(%pc),%fp2 | 
 | 5948 |  | 
 | 5949 | 	fmul.x		%fp0,%fp3		# SQ4 | 
 | 5950 | 	fmul.x		%fp0,%fp2		# SP3 | 
 | 5951 |  | 
 | 5952 | 	fadd.d		TANQ3(%pc),%fp3		# Q3+SQ4 | 
 | 5953 | 	fadd.x		TANP2(%pc),%fp2		# P2+SP3 | 
 | 5954 |  | 
 | 5955 | 	fmul.x		%fp0,%fp3		# S(Q3+SQ4) | 
 | 5956 | 	fmul.x		%fp0,%fp2		# S(P2+SP3) | 
 | 5957 |  | 
 | 5958 | 	fadd.x		TANQ2(%pc),%fp3		# Q2+S(Q3+SQ4) | 
 | 5959 | 	fadd.x		TANP1(%pc),%fp2		# P1+S(P2+SP3) | 
 | 5960 |  | 
 | 5961 | 	fmul.x		%fp0,%fp3		# S(Q2+S(Q3+SQ4)) | 
 | 5962 | 	fmul.x		%fp0,%fp2		# S(P1+S(P2+SP3)) | 
 | 5963 |  | 
 | 5964 | 	fadd.x		TANQ1(%pc),%fp3		# Q1+S(Q2+S(Q3+SQ4)) | 
 | 5965 | 	fmul.x		%fp1,%fp2		# RS(P1+S(P2+SP3)) | 
 | 5966 |  | 
 | 5967 | 	fmul.x		%fp3,%fp0		# S(Q1+S(Q2+S(Q3+SQ4))) | 
 | 5968 |  | 
 | 5969 | 	fadd.x		%fp2,%fp1		# R+RS(P1+S(P2+SP3)) | 
 | 5970 | 	fadd.s		&0x3F800000,%fp0	# 1+S(Q1+...) | 
 | 5971 |  | 
 | 5972 | 	fmovm.x		(%sp)+,&0x30		# restore fp2,fp3 | 
 | 5973 |  | 
 | 5974 | 	fmov.x		%fp1,-(%sp) | 
 | 5975 | 	eor.l		&0x80000000,(%sp) | 
 | 5976 |  | 
 | 5977 | 	fmov.l		%d0,%fpcr		# restore users round mode,prec | 
 | 5978 | 	fdiv.x		(%sp)+,%fp0		# last inst - possible exception set | 
 | 5979 | 	bra		t_inx2 | 
 | 5980 |  | 
 | 5981 | TANBORS: | 
 | 5982 | #--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION. | 
 | 5983 | #--IF |X| < 2**(-40), RETURN X OR 1. | 
 | 5984 | 	cmp.l		%d1,&0x3FFF8000 | 
 | 5985 | 	bgt.b		REDUCEX | 
 | 5986 |  | 
 | 5987 | TANSM: | 
 | 5988 | 	fmov.x		%fp0,-(%sp) | 
 | 5989 | 	fmov.l		%d0,%fpcr		# restore users round mode,prec | 
 | 5990 | 	mov.b		&FMOV_OP,%d1		# last inst is MOVE | 
 | 5991 | 	fmov.x		(%sp)+,%fp0		# last inst - posibble exception set | 
 | 5992 | 	bra		t_catch | 
 | 5993 |  | 
 | 5994 | 	global		stand | 
 | 5995 | #--TAN(X) = X FOR DENORMALIZED X | 
 | 5996 | stand: | 
 | 5997 | 	bra		t_extdnrm | 
 | 5998 |  | 
 | 5999 | #--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW. | 
 | 6000 | #--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING | 
 | 6001 | #--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE. | 
 | 6002 | REDUCEX: | 
 | 6003 | 	fmovm.x		&0x3c,-(%sp)		# save {fp2-fp5} | 
 | 6004 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 6005 | 	fmov.s		&0x00000000,%fp1	# fp1 = 0 | 
 | 6006 |  | 
 | 6007 | #--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that | 
 | 6008 | #--there is a danger of unwanted overflow in first LOOP iteration.  In this | 
 | 6009 | #--case, reduce argument by one remainder step to make subsequent reduction | 
 | 6010 | #--safe. | 
 | 6011 | 	cmp.l		%d1,&0x7ffeffff		# is arg dangerously large? | 
 | 6012 | 	bne.b		LOOP			# no | 
 | 6013 |  | 
 | 6014 | # yes; create 2**16383*PI/2 | 
 | 6015 | 	mov.w		&0x7ffe,FP_SCR0_EX(%a6) | 
 | 6016 | 	mov.l		&0xc90fdaa2,FP_SCR0_HI(%a6) | 
 | 6017 | 	clr.l		FP_SCR0_LO(%a6) | 
 | 6018 |  | 
 | 6019 | # create low half of 2**16383*PI/2 at FP_SCR1 | 
 | 6020 | 	mov.w		&0x7fdc,FP_SCR1_EX(%a6) | 
 | 6021 | 	mov.l		&0x85a308d3,FP_SCR1_HI(%a6) | 
 | 6022 | 	clr.l		FP_SCR1_LO(%a6) | 
 | 6023 |  | 
 | 6024 | 	ftest.x		%fp0			# test sign of argument | 
 | 6025 | 	fblt.w		red_neg | 
 | 6026 |  | 
 | 6027 | 	or.b		&0x80,FP_SCR0_EX(%a6)	# positive arg | 
 | 6028 | 	or.b		&0x80,FP_SCR1_EX(%a6) | 
 | 6029 | red_neg: | 
 | 6030 | 	fadd.x		FP_SCR0(%a6),%fp0	# high part of reduction is exact | 
 | 6031 | 	fmov.x		%fp0,%fp1		# save high result in fp1 | 
 | 6032 | 	fadd.x		FP_SCR1(%a6),%fp0	# low part of reduction | 
 | 6033 | 	fsub.x		%fp0,%fp1		# determine low component of result | 
 | 6034 | 	fadd.x		FP_SCR1(%a6),%fp1	# fp0/fp1 are reduced argument. | 
 | 6035 |  | 
 | 6036 | #--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4. | 
 | 6037 | #--integer quotient will be stored in N | 
 | 6038 | #--Intermeditate remainder is 66-bit long; (R,r) in (FP0,FP1) | 
 | 6039 | LOOP: | 
 | 6040 | 	fmov.x		%fp0,INARG(%a6)		# +-2**K * F, 1 <= F < 2 | 
 | 6041 | 	mov.w		INARG(%a6),%d1 | 
 | 6042 | 	mov.l		%d1,%a1			# save a copy of D0 | 
 | 6043 | 	and.l		&0x00007FFF,%d1 | 
 | 6044 | 	sub.l		&0x00003FFF,%d1		# d0 = K | 
 | 6045 | 	cmp.l		%d1,&28 | 
 | 6046 | 	ble.b		LASTLOOP | 
 | 6047 | CONTLOOP: | 
 | 6048 | 	sub.l		&27,%d1			# d0 = L := K-27 | 
 | 6049 | 	mov.b		&0,ENDFLAG(%a6) | 
 | 6050 | 	bra.b		WORK | 
 | 6051 | LASTLOOP: | 
 | 6052 | 	clr.l		%d1			# d0 = L := 0 | 
 | 6053 | 	mov.b		&1,ENDFLAG(%a6) | 
 | 6054 |  | 
 | 6055 | WORK: | 
 | 6056 | #--FIND THE REMAINDER OF (R,r) W.R.T.	2**L * (PI/2). L IS SO CHOSEN | 
 | 6057 | #--THAT	INT( X * (2/PI) / 2**(L) ) < 2**29. | 
 | 6058 |  | 
 | 6059 | #--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63), | 
 | 6060 | #--2**L * (PIby2_1), 2**L * (PIby2_2) | 
 | 6061 |  | 
 | 6062 | 	mov.l		&0x00003FFE,%d2		# BIASED EXP OF 2/PI | 
 | 6063 | 	sub.l		%d1,%d2			# BIASED EXP OF 2**(-L)*(2/PI) | 
 | 6064 |  | 
 | 6065 | 	mov.l		&0xA2F9836E,FP_SCR0_HI(%a6) | 
 | 6066 | 	mov.l		&0x4E44152A,FP_SCR0_LO(%a6) | 
 | 6067 | 	mov.w		%d2,FP_SCR0_EX(%a6)	# FP_SCR0 = 2**(-L)*(2/PI) | 
 | 6068 |  | 
 | 6069 | 	fmov.x		%fp0,%fp2 | 
 | 6070 | 	fmul.x		FP_SCR0(%a6),%fp2	# fp2 = X * 2**(-L)*(2/PI) | 
 | 6071 |  | 
 | 6072 | #--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN | 
 | 6073 | #--FLOATING POINT FORMAT, THE TWO FMOVE'S	FMOVE.L FP <--> N | 
 | 6074 | #--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT | 
 | 6075 | #--(SIGN(INARG)*2**63	+	FP2) - SIGN(INARG)*2**63 WILL GIVE | 
 | 6076 | #--US THE DESIRED VALUE IN FLOATING POINT. | 
 | 6077 | 	mov.l		%a1,%d2 | 
 | 6078 | 	swap		%d2 | 
 | 6079 | 	and.l		&0x80000000,%d2 | 
 | 6080 | 	or.l		&0x5F000000,%d2		# d2 = SIGN(INARG)*2**63 IN SGL | 
 | 6081 | 	mov.l		%d2,TWOTO63(%a6) | 
 | 6082 | 	fadd.s		TWOTO63(%a6),%fp2	# THE FRACTIONAL PART OF FP1 IS ROUNDED | 
 | 6083 | 	fsub.s		TWOTO63(%a6),%fp2	# fp2 = N | 
 | 6084 | #	fintrz.x	%fp2,%fp2 | 
 | 6085 |  | 
 | 6086 | #--CREATING 2**(L)*Piby2_1 and 2**(L)*Piby2_2 | 
 | 6087 | 	mov.l		%d1,%d2			# d2 = L | 
 | 6088 |  | 
 | 6089 | 	add.l		&0x00003FFF,%d2		# BIASED EXP OF 2**L * (PI/2) | 
 | 6090 | 	mov.w		%d2,FP_SCR0_EX(%a6) | 
 | 6091 | 	mov.l		&0xC90FDAA2,FP_SCR0_HI(%a6) | 
 | 6092 | 	clr.l		FP_SCR0_LO(%a6)		# FP_SCR0 = 2**(L) * Piby2_1 | 
 | 6093 |  | 
 | 6094 | 	add.l		&0x00003FDD,%d1 | 
 | 6095 | 	mov.w		%d1,FP_SCR1_EX(%a6) | 
 | 6096 | 	mov.l		&0x85A308D3,FP_SCR1_HI(%a6) | 
 | 6097 | 	clr.l		FP_SCR1_LO(%a6)		# FP_SCR1 = 2**(L) * Piby2_2 | 
 | 6098 |  | 
 | 6099 | 	mov.b		ENDFLAG(%a6),%d1 | 
 | 6100 |  | 
 | 6101 | #--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and | 
 | 6102 | #--P2 = 2**(L) * Piby2_2 | 
 | 6103 | 	fmov.x		%fp2,%fp4		# fp4 = N | 
 | 6104 | 	fmul.x		FP_SCR0(%a6),%fp4	# fp4 = W = N*P1 | 
 | 6105 | 	fmov.x		%fp2,%fp5		# fp5 = N | 
 | 6106 | 	fmul.x		FP_SCR1(%a6),%fp5	# fp5 = w = N*P2 | 
 | 6107 | 	fmov.x		%fp4,%fp3		# fp3 = W = N*P1 | 
 | 6108 |  | 
 | 6109 | #--we want P+p = W+w  but  |p| <= half ulp of P | 
 | 6110 | #--Then, we need to compute  A := R-P   and  a := r-p | 
 | 6111 | 	fadd.x		%fp5,%fp3		# fp3 = P | 
 | 6112 | 	fsub.x		%fp3,%fp4		# fp4 = W-P | 
 | 6113 |  | 
 | 6114 | 	fsub.x		%fp3,%fp0		# fp0 = A := R - P | 
 | 6115 | 	fadd.x		%fp5,%fp4		# fp4 = p = (W-P)+w | 
 | 6116 |  | 
 | 6117 | 	fmov.x		%fp0,%fp3		# fp3 = A | 
 | 6118 | 	fsub.x		%fp4,%fp1		# fp1 = a := r - p | 
 | 6119 |  | 
 | 6120 | #--Now we need to normalize (A,a) to  "new (R,r)" where R+r = A+a but | 
 | 6121 | #--|r| <= half ulp of R. | 
 | 6122 | 	fadd.x		%fp1,%fp0		# fp0 = R := A+a | 
 | 6123 | #--No need to calculate r if this is the last loop | 
 | 6124 | 	cmp.b		%d1,&0 | 
 | 6125 | 	bgt.w		RESTORE | 
 | 6126 |  | 
 | 6127 | #--Need to calculate r | 
 | 6128 | 	fsub.x		%fp0,%fp3		# fp3 = A-R | 
 | 6129 | 	fadd.x		%fp3,%fp1		# fp1 = r := (A-R)+a | 
 | 6130 | 	bra.w		LOOP | 
 | 6131 |  | 
 | 6132 | RESTORE: | 
 | 6133 | 	fmov.l		%fp2,INT(%a6) | 
 | 6134 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 6135 | 	fmovm.x		(%sp)+,&0x3c		# restore {fp2-fp5} | 
 | 6136 |  | 
 | 6137 | 	mov.l		INT(%a6),%d1 | 
 | 6138 | 	ror.l		&1,%d1 | 
 | 6139 |  | 
 | 6140 | 	bra.w		TANCONT | 
 | 6141 |  | 
 | 6142 | ######################################################################### | 
 | 6143 | # satan():  computes the arctangent of a normalized number		# | 
 | 6144 | # satand(): computes the arctangent of a denormalized number		# | 
 | 6145 | #									# | 
 | 6146 | # INPUT	*************************************************************** # | 
 | 6147 | #	a0 = pointer to extended precision input			# | 
 | 6148 | #	d0 = round precision,mode					# | 
 | 6149 | #									# | 
 | 6150 | # OUTPUT ************************************************************** # | 
 | 6151 | #	fp0 = arctan(X)							# | 
 | 6152 | #									# | 
 | 6153 | # ACCURACY and MONOTONICITY ******************************************* # | 
 | 6154 | #	The returned result is within 2 ulps in	64 significant bit,	# | 
 | 6155 | #	i.e. within 0.5001 ulp to 53 bits if the result is subsequently	# | 
 | 6156 | #	rounded to double precision. The result is provably monotonic	# | 
 | 6157 | #	in double precision.						# | 
 | 6158 | #									# | 
 | 6159 | # ALGORITHM *********************************************************** # | 
 | 6160 | #	Step 1. If |X| >= 16 or |X| < 1/16, go to Step 5.		# | 
 | 6161 | #									# | 
 | 6162 | #	Step 2. Let X = sgn * 2**k * 1.xxxxxxxx...x.			# | 
 | 6163 | #		Note that k = -4, -3,..., or 3.				# | 
 | 6164 | #		Define F = sgn * 2**k * 1.xxxx1, i.e. the first 5	# | 
 | 6165 | #		significant bits of X with a bit-1 attached at the 6-th	# | 
 | 6166 | #		bit position. Define u to be u = (X-F) / (1 + X*F).	# | 
 | 6167 | #									# | 
 | 6168 | #	Step 3. Approximate arctan(u) by a polynomial poly.		# | 
 | 6169 | #									# | 
 | 6170 | #	Step 4. Return arctan(F) + poly, arctan(F) is fetched from a	# | 
 | 6171 | #		table of values calculated beforehand. Exit.		# | 
 | 6172 | #									# | 
 | 6173 | #	Step 5. If |X| >= 16, go to Step 7.				# | 
 | 6174 | #									# | 
 | 6175 | #	Step 6. Approximate arctan(X) by an odd polynomial in X. Exit.	# | 
 | 6176 | #									# | 
 | 6177 | #	Step 7. Define X' = -1/X. Approximate arctan(X') by an odd	# | 
 | 6178 | #		polynomial in X'.					# | 
 | 6179 | #		Arctan(X) = sign(X)*Pi/2 + arctan(X'). Exit.		# | 
 | 6180 | #									# | 
 | 6181 | ######################################################################### | 
 | 6182 |  | 
 | 6183 | ATANA3:	long		0xBFF6687E,0x314987D8 | 
 | 6184 | ATANA2:	long		0x4002AC69,0x34A26DB3 | 
 | 6185 | ATANA1:	long		0xBFC2476F,0x4E1DA28E | 
 | 6186 |  | 
 | 6187 | ATANB6:	long		0x3FB34444,0x7F876989 | 
 | 6188 | ATANB5:	long		0xBFB744EE,0x7FAF45DB | 
 | 6189 | ATANB4:	long		0x3FBC71C6,0x46940220 | 
 | 6190 | ATANB3:	long		0xBFC24924,0x921872F9 | 
 | 6191 | ATANB2:	long		0x3FC99999,0x99998FA9 | 
 | 6192 | ATANB1:	long		0xBFD55555,0x55555555 | 
 | 6193 |  | 
 | 6194 | ATANC5:	long		0xBFB70BF3,0x98539E6A | 
 | 6195 | ATANC4:	long		0x3FBC7187,0x962D1D7D | 
 | 6196 | ATANC3:	long		0xBFC24924,0x827107B8 | 
 | 6197 | ATANC2:	long		0x3FC99999,0x9996263E | 
 | 6198 | ATANC1:	long		0xBFD55555,0x55555536 | 
 | 6199 |  | 
 | 6200 | PPIBY2:	long		0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000 | 
 | 6201 | NPIBY2:	long		0xBFFF0000,0xC90FDAA2,0x2168C235,0x00000000 | 
 | 6202 |  | 
 | 6203 | PTINY:	long		0x00010000,0x80000000,0x00000000,0x00000000 | 
 | 6204 | NTINY:	long		0x80010000,0x80000000,0x00000000,0x00000000 | 
 | 6205 |  | 
 | 6206 | ATANTBL: | 
 | 6207 | 	long		0x3FFB0000,0x83D152C5,0x060B7A51,0x00000000 | 
 | 6208 | 	long		0x3FFB0000,0x8BC85445,0x65498B8B,0x00000000 | 
 | 6209 | 	long		0x3FFB0000,0x93BE4060,0x17626B0D,0x00000000 | 
 | 6210 | 	long		0x3FFB0000,0x9BB3078D,0x35AEC202,0x00000000 | 
 | 6211 | 	long		0x3FFB0000,0xA3A69A52,0x5DDCE7DE,0x00000000 | 
 | 6212 | 	long		0x3FFB0000,0xAB98E943,0x62765619,0x00000000 | 
 | 6213 | 	long		0x3FFB0000,0xB389E502,0xF9C59862,0x00000000 | 
 | 6214 | 	long		0x3FFB0000,0xBB797E43,0x6B09E6FB,0x00000000 | 
 | 6215 | 	long		0x3FFB0000,0xC367A5C7,0x39E5F446,0x00000000 | 
 | 6216 | 	long		0x3FFB0000,0xCB544C61,0xCFF7D5C6,0x00000000 | 
 | 6217 | 	long		0x3FFB0000,0xD33F62F8,0x2488533E,0x00000000 | 
 | 6218 | 	long		0x3FFB0000,0xDB28DA81,0x62404C77,0x00000000 | 
 | 6219 | 	long		0x3FFB0000,0xE310A407,0x8AD34F18,0x00000000 | 
 | 6220 | 	long		0x3FFB0000,0xEAF6B0A8,0x188EE1EB,0x00000000 | 
 | 6221 | 	long		0x3FFB0000,0xF2DAF194,0x9DBE79D5,0x00000000 | 
 | 6222 | 	long		0x3FFB0000,0xFABD5813,0x61D47E3E,0x00000000 | 
 | 6223 | 	long		0x3FFC0000,0x8346AC21,0x0959ECC4,0x00000000 | 
 | 6224 | 	long		0x3FFC0000,0x8B232A08,0x304282D8,0x00000000 | 
 | 6225 | 	long		0x3FFC0000,0x92FB70B8,0xD29AE2F9,0x00000000 | 
 | 6226 | 	long		0x3FFC0000,0x9ACF476F,0x5CCD1CB4,0x00000000 | 
 | 6227 | 	long		0x3FFC0000,0xA29E7630,0x4954F23F,0x00000000 | 
 | 6228 | 	long		0x3FFC0000,0xAA68C5D0,0x8AB85230,0x00000000 | 
 | 6229 | 	long		0x3FFC0000,0xB22DFFFD,0x9D539F83,0x00000000 | 
 | 6230 | 	long		0x3FFC0000,0xB9EDEF45,0x3E900EA5,0x00000000 | 
 | 6231 | 	long		0x3FFC0000,0xC1A85F1C,0xC75E3EA5,0x00000000 | 
 | 6232 | 	long		0x3FFC0000,0xC95D1BE8,0x28138DE6,0x00000000 | 
 | 6233 | 	long		0x3FFC0000,0xD10BF300,0x840D2DE4,0x00000000 | 
 | 6234 | 	long		0x3FFC0000,0xD8B4B2BA,0x6BC05E7A,0x00000000 | 
 | 6235 | 	long		0x3FFC0000,0xE0572A6B,0xB42335F6,0x00000000 | 
 | 6236 | 	long		0x3FFC0000,0xE7F32A70,0xEA9CAA8F,0x00000000 | 
 | 6237 | 	long		0x3FFC0000,0xEF888432,0x64ECEFAA,0x00000000 | 
 | 6238 | 	long		0x3FFC0000,0xF7170A28,0xECC06666,0x00000000 | 
 | 6239 | 	long		0x3FFD0000,0x812FD288,0x332DAD32,0x00000000 | 
 | 6240 | 	long		0x3FFD0000,0x88A8D1B1,0x218E4D64,0x00000000 | 
 | 6241 | 	long		0x3FFD0000,0x9012AB3F,0x23E4AEE8,0x00000000 | 
 | 6242 | 	long		0x3FFD0000,0x976CC3D4,0x11E7F1B9,0x00000000 | 
 | 6243 | 	long		0x3FFD0000,0x9EB68949,0x3889A227,0x00000000 | 
 | 6244 | 	long		0x3FFD0000,0xA5EF72C3,0x4487361B,0x00000000 | 
 | 6245 | 	long		0x3FFD0000,0xAD1700BA,0xF07A7227,0x00000000 | 
 | 6246 | 	long		0x3FFD0000,0xB42CBCFA,0xFD37EFB7,0x00000000 | 
 | 6247 | 	long		0x3FFD0000,0xBB303A94,0x0BA80F89,0x00000000 | 
 | 6248 | 	long		0x3FFD0000,0xC22115C6,0xFCAEBBAF,0x00000000 | 
 | 6249 | 	long		0x3FFD0000,0xC8FEF3E6,0x86331221,0x00000000 | 
 | 6250 | 	long		0x3FFD0000,0xCFC98330,0xB4000C70,0x00000000 | 
 | 6251 | 	long		0x3FFD0000,0xD6807AA1,0x102C5BF9,0x00000000 | 
 | 6252 | 	long		0x3FFD0000,0xDD2399BC,0x31252AA3,0x00000000 | 
 | 6253 | 	long		0x3FFD0000,0xE3B2A855,0x6B8FC517,0x00000000 | 
 | 6254 | 	long		0x3FFD0000,0xEA2D764F,0x64315989,0x00000000 | 
 | 6255 | 	long		0x3FFD0000,0xF3BF5BF8,0xBAD1A21D,0x00000000 | 
 | 6256 | 	long		0x3FFE0000,0x801CE39E,0x0D205C9A,0x00000000 | 
 | 6257 | 	long		0x3FFE0000,0x8630A2DA,0xDA1ED066,0x00000000 | 
 | 6258 | 	long		0x3FFE0000,0x8C1AD445,0xF3E09B8C,0x00000000 | 
 | 6259 | 	long		0x3FFE0000,0x91DB8F16,0x64F350E2,0x00000000 | 
 | 6260 | 	long		0x3FFE0000,0x97731420,0x365E538C,0x00000000 | 
 | 6261 | 	long		0x3FFE0000,0x9CE1C8E6,0xA0B8CDBA,0x00000000 | 
 | 6262 | 	long		0x3FFE0000,0xA22832DB,0xCADAAE09,0x00000000 | 
 | 6263 | 	long		0x3FFE0000,0xA746F2DD,0xB7602294,0x00000000 | 
 | 6264 | 	long		0x3FFE0000,0xAC3EC0FB,0x997DD6A2,0x00000000 | 
 | 6265 | 	long		0x3FFE0000,0xB110688A,0xEBDC6F6A,0x00000000 | 
 | 6266 | 	long		0x3FFE0000,0xB5BCC490,0x59ECC4B0,0x00000000 | 
 | 6267 | 	long		0x3FFE0000,0xBA44BC7D,0xD470782F,0x00000000 | 
 | 6268 | 	long		0x3FFE0000,0xBEA94144,0xFD049AAC,0x00000000 | 
 | 6269 | 	long		0x3FFE0000,0xC2EB4ABB,0x661628B6,0x00000000 | 
 | 6270 | 	long		0x3FFE0000,0xC70BD54C,0xE602EE14,0x00000000 | 
 | 6271 | 	long		0x3FFE0000,0xCD000549,0xADEC7159,0x00000000 | 
 | 6272 | 	long		0x3FFE0000,0xD48457D2,0xD8EA4EA3,0x00000000 | 
 | 6273 | 	long		0x3FFE0000,0xDB948DA7,0x12DECE3B,0x00000000 | 
 | 6274 | 	long		0x3FFE0000,0xE23855F9,0x69E8096A,0x00000000 | 
 | 6275 | 	long		0x3FFE0000,0xE8771129,0xC4353259,0x00000000 | 
 | 6276 | 	long		0x3FFE0000,0xEE57C16E,0x0D379C0D,0x00000000 | 
 | 6277 | 	long		0x3FFE0000,0xF3E10211,0xA87C3779,0x00000000 | 
 | 6278 | 	long		0x3FFE0000,0xF919039D,0x758B8D41,0x00000000 | 
 | 6279 | 	long		0x3FFE0000,0xFE058B8F,0x64935FB3,0x00000000 | 
 | 6280 | 	long		0x3FFF0000,0x8155FB49,0x7B685D04,0x00000000 | 
 | 6281 | 	long		0x3FFF0000,0x83889E35,0x49D108E1,0x00000000 | 
 | 6282 | 	long		0x3FFF0000,0x859CFA76,0x511D724B,0x00000000 | 
 | 6283 | 	long		0x3FFF0000,0x87952ECF,0xFF8131E7,0x00000000 | 
 | 6284 | 	long		0x3FFF0000,0x89732FD1,0x9557641B,0x00000000 | 
 | 6285 | 	long		0x3FFF0000,0x8B38CAD1,0x01932A35,0x00000000 | 
 | 6286 | 	long		0x3FFF0000,0x8CE7A8D8,0x301EE6B5,0x00000000 | 
 | 6287 | 	long		0x3FFF0000,0x8F46A39E,0x2EAE5281,0x00000000 | 
 | 6288 | 	long		0x3FFF0000,0x922DA7D7,0x91888487,0x00000000 | 
 | 6289 | 	long		0x3FFF0000,0x94D19FCB,0xDEDF5241,0x00000000 | 
 | 6290 | 	long		0x3FFF0000,0x973AB944,0x19D2A08B,0x00000000 | 
 | 6291 | 	long		0x3FFF0000,0x996FF00E,0x08E10B96,0x00000000 | 
 | 6292 | 	long		0x3FFF0000,0x9B773F95,0x12321DA7,0x00000000 | 
 | 6293 | 	long		0x3FFF0000,0x9D55CC32,0x0F935624,0x00000000 | 
 | 6294 | 	long		0x3FFF0000,0x9F100575,0x006CC571,0x00000000 | 
 | 6295 | 	long		0x3FFF0000,0xA0A9C290,0xD97CC06C,0x00000000 | 
 | 6296 | 	long		0x3FFF0000,0xA22659EB,0xEBC0630A,0x00000000 | 
 | 6297 | 	long		0x3FFF0000,0xA388B4AF,0xF6EF0EC9,0x00000000 | 
 | 6298 | 	long		0x3FFF0000,0xA4D35F10,0x61D292C4,0x00000000 | 
 | 6299 | 	long		0x3FFF0000,0xA60895DC,0xFBE3187E,0x00000000 | 
 | 6300 | 	long		0x3FFF0000,0xA72A51DC,0x7367BEAC,0x00000000 | 
 | 6301 | 	long		0x3FFF0000,0xA83A5153,0x0956168F,0x00000000 | 
 | 6302 | 	long		0x3FFF0000,0xA93A2007,0x7539546E,0x00000000 | 
 | 6303 | 	long		0x3FFF0000,0xAA9E7245,0x023B2605,0x00000000 | 
 | 6304 | 	long		0x3FFF0000,0xAC4C84BA,0x6FE4D58F,0x00000000 | 
 | 6305 | 	long		0x3FFF0000,0xADCE4A4A,0x606B9712,0x00000000 | 
 | 6306 | 	long		0x3FFF0000,0xAF2A2DCD,0x8D263C9C,0x00000000 | 
 | 6307 | 	long		0x3FFF0000,0xB0656F81,0xF22265C7,0x00000000 | 
 | 6308 | 	long		0x3FFF0000,0xB1846515,0x0F71496A,0x00000000 | 
 | 6309 | 	long		0x3FFF0000,0xB28AAA15,0x6F9ADA35,0x00000000 | 
 | 6310 | 	long		0x3FFF0000,0xB37B44FF,0x3766B895,0x00000000 | 
 | 6311 | 	long		0x3FFF0000,0xB458C3DC,0xE9630433,0x00000000 | 
 | 6312 | 	long		0x3FFF0000,0xB525529D,0x562246BD,0x00000000 | 
 | 6313 | 	long		0x3FFF0000,0xB5E2CCA9,0x5F9D88CC,0x00000000 | 
 | 6314 | 	long		0x3FFF0000,0xB692CADA,0x7ACA1ADA,0x00000000 | 
 | 6315 | 	long		0x3FFF0000,0xB736AEA7,0xA6925838,0x00000000 | 
 | 6316 | 	long		0x3FFF0000,0xB7CFAB28,0x7E9F7B36,0x00000000 | 
 | 6317 | 	long		0x3FFF0000,0xB85ECC66,0xCB219835,0x00000000 | 
 | 6318 | 	long		0x3FFF0000,0xB8E4FD5A,0x20A593DA,0x00000000 | 
 | 6319 | 	long		0x3FFF0000,0xB99F41F6,0x4AFF9BB5,0x00000000 | 
 | 6320 | 	long		0x3FFF0000,0xBA7F1E17,0x842BBE7B,0x00000000 | 
 | 6321 | 	long		0x3FFF0000,0xBB471285,0x7637E17D,0x00000000 | 
 | 6322 | 	long		0x3FFF0000,0xBBFABE8A,0x4788DF6F,0x00000000 | 
 | 6323 | 	long		0x3FFF0000,0xBC9D0FAD,0x2B689D79,0x00000000 | 
 | 6324 | 	long		0x3FFF0000,0xBD306A39,0x471ECD86,0x00000000 | 
 | 6325 | 	long		0x3FFF0000,0xBDB6C731,0x856AF18A,0x00000000 | 
 | 6326 | 	long		0x3FFF0000,0xBE31CAC5,0x02E80D70,0x00000000 | 
 | 6327 | 	long		0x3FFF0000,0xBEA2D55C,0xE33194E2,0x00000000 | 
 | 6328 | 	long		0x3FFF0000,0xBF0B10B7,0xC03128F0,0x00000000 | 
 | 6329 | 	long		0x3FFF0000,0xBF6B7A18,0xDACB778D,0x00000000 | 
 | 6330 | 	long		0x3FFF0000,0xBFC4EA46,0x63FA18F6,0x00000000 | 
 | 6331 | 	long		0x3FFF0000,0xC0181BDE,0x8B89A454,0x00000000 | 
 | 6332 | 	long		0x3FFF0000,0xC065B066,0xCFBF6439,0x00000000 | 
 | 6333 | 	long		0x3FFF0000,0xC0AE345F,0x56340AE6,0x00000000 | 
 | 6334 | 	long		0x3FFF0000,0xC0F22291,0x9CB9E6A7,0x00000000 | 
 | 6335 |  | 
 | 6336 | 	set		X,FP_SCR0 | 
 | 6337 | 	set		XDCARE,X+2 | 
 | 6338 | 	set		XFRAC,X+4 | 
 | 6339 | 	set		XFRACLO,X+8 | 
 | 6340 |  | 
 | 6341 | 	set		ATANF,FP_SCR1 | 
 | 6342 | 	set		ATANFHI,ATANF+4 | 
 | 6343 | 	set		ATANFLO,ATANF+8 | 
 | 6344 |  | 
 | 6345 | 	global		satan | 
 | 6346 | #--ENTRY POINT FOR ATAN(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S | 
 | 6347 | satan: | 
 | 6348 | 	fmov.x		(%a0),%fp0		# LOAD INPUT | 
 | 6349 |  | 
 | 6350 | 	mov.l		(%a0),%d1 | 
 | 6351 | 	mov.w		4(%a0),%d1 | 
 | 6352 | 	fmov.x		%fp0,X(%a6) | 
 | 6353 | 	and.l		&0x7FFFFFFF,%d1 | 
 | 6354 |  | 
 | 6355 | 	cmp.l		%d1,&0x3FFB8000		# |X| >= 1/16? | 
 | 6356 | 	bge.b		ATANOK1 | 
 | 6357 | 	bra.w		ATANSM | 
 | 6358 |  | 
 | 6359 | ATANOK1: | 
 | 6360 | 	cmp.l		%d1,&0x4002FFFF		# |X| < 16 ? | 
 | 6361 | 	ble.b		ATANMAIN | 
 | 6362 | 	bra.w		ATANBIG | 
 | 6363 |  | 
 | 6364 | #--THE MOST LIKELY CASE, |X| IN [1/16, 16). WE USE TABLE TECHNIQUE | 
 | 6365 | #--THE IDEA IS ATAN(X) = ATAN(F) + ATAN( [X-F] / [1+XF] ). | 
 | 6366 | #--SO IF F IS CHOSEN TO BE CLOSE TO X AND ATAN(F) IS STORED IN | 
 | 6367 | #--A TABLE, ALL WE NEED IS TO APPROXIMATE ATAN(U) WHERE | 
 | 6368 | #--U = (X-F)/(1+XF) IS SMALL (REMEMBER F IS CLOSE TO X). IT IS | 
 | 6369 | #--TRUE THAT A DIVIDE IS NOW NEEDED, BUT THE APPROXIMATION FOR | 
 | 6370 | #--ATAN(U) IS A VERY SHORT POLYNOMIAL AND THE INDEXING TO | 
 | 6371 | #--FETCH F AND SAVING OF REGISTERS CAN BE ALL HIDED UNDER THE | 
 | 6372 | #--DIVIDE. IN THE END THIS METHOD IS MUCH FASTER THAN A TRADITIONAL | 
 | 6373 | #--ONE. NOTE ALSO THAT THE TRADITIONAL SCHEME THAT APPROXIMATE | 
 | 6374 | #--ATAN(X) DIRECTLY WILL NEED TO USE A RATIONAL APPROXIMATION | 
 | 6375 | #--(DIVISION NEEDED) ANYWAY BECAUSE A POLYNOMIAL APPROXIMATION | 
 | 6376 | #--WILL INVOLVE A VERY LONG POLYNOMIAL. | 
 | 6377 |  | 
 | 6378 | #--NOW WE SEE X AS +-2^K * 1.BBBBBBB....B <- 1. + 63 BITS | 
 | 6379 | #--WE CHOSE F TO BE +-2^K * 1.BBBB1 | 
 | 6380 | #--THAT IS IT MATCHES THE EXPONENT AND FIRST 5 BITS OF X, THE | 
 | 6381 | #--SIXTH BITS IS SET TO BE 1. SINCE K = -4, -3, ..., 3, THERE | 
 | 6382 | #--ARE ONLY 8 TIMES 16 = 2^7 = 128 |F|'S. SINCE ATAN(-|F|) IS | 
 | 6383 | #-- -ATAN(|F|), WE NEED TO STORE ONLY ATAN(|F|). | 
 | 6384 |  | 
 | 6385 | ATANMAIN: | 
 | 6386 |  | 
 | 6387 | 	and.l		&0xF8000000,XFRAC(%a6)	# FIRST 5 BITS | 
 | 6388 | 	or.l		&0x04000000,XFRAC(%a6)	# SET 6-TH BIT TO 1 | 
 | 6389 | 	mov.l		&0x00000000,XFRACLO(%a6) # LOCATION OF X IS NOW F | 
 | 6390 |  | 
 | 6391 | 	fmov.x		%fp0,%fp1		# FP1 IS X | 
 | 6392 | 	fmul.x		X(%a6),%fp1		# FP1 IS X*F, NOTE THAT X*F > 0 | 
 | 6393 | 	fsub.x		X(%a6),%fp0		# FP0 IS X-F | 
 | 6394 | 	fadd.s		&0x3F800000,%fp1	# FP1 IS 1 + X*F | 
 | 6395 | 	fdiv.x		%fp1,%fp0		# FP0 IS U = (X-F)/(1+X*F) | 
 | 6396 |  | 
 | 6397 | #--WHILE THE DIVISION IS TAKING ITS TIME, WE FETCH ATAN(|F|) | 
 | 6398 | #--CREATE ATAN(F) AND STORE IT IN ATANF, AND | 
 | 6399 | #--SAVE REGISTERS FP2. | 
 | 6400 |  | 
 | 6401 | 	mov.l		%d2,-(%sp)		# SAVE d2 TEMPORARILY | 
 | 6402 | 	mov.l		%d1,%d2			# THE EXP AND 16 BITS OF X | 
 | 6403 | 	and.l		&0x00007800,%d1		# 4 VARYING BITS OF F'S FRACTION | 
 | 6404 | 	and.l		&0x7FFF0000,%d2		# EXPONENT OF F | 
 | 6405 | 	sub.l		&0x3FFB0000,%d2		# K+4 | 
 | 6406 | 	asr.l		&1,%d2 | 
 | 6407 | 	add.l		%d2,%d1			# THE 7 BITS IDENTIFYING F | 
 | 6408 | 	asr.l		&7,%d1			# INDEX INTO TBL OF ATAN(|F|) | 
 | 6409 | 	lea		ATANTBL(%pc),%a1 | 
 | 6410 | 	add.l		%d1,%a1			# ADDRESS OF ATAN(|F|) | 
 | 6411 | 	mov.l		(%a1)+,ATANF(%a6) | 
 | 6412 | 	mov.l		(%a1)+,ATANFHI(%a6) | 
 | 6413 | 	mov.l		(%a1)+,ATANFLO(%a6)	# ATANF IS NOW ATAN(|F|) | 
 | 6414 | 	mov.l		X(%a6),%d1		# LOAD SIGN AND EXPO. AGAIN | 
 | 6415 | 	and.l		&0x80000000,%d1		# SIGN(F) | 
 | 6416 | 	or.l		%d1,ATANF(%a6)		# ATANF IS NOW SIGN(F)*ATAN(|F|) | 
 | 6417 | 	mov.l		(%sp)+,%d2		# RESTORE d2 | 
 | 6418 |  | 
 | 6419 | #--THAT'S ALL I HAVE TO DO FOR NOW, | 
 | 6420 | #--BUT ALAS, THE DIVIDE IS STILL CRANKING! | 
 | 6421 |  | 
 | 6422 | #--U IN FP0, WE ARE NOW READY TO COMPUTE ATAN(U) AS | 
 | 6423 | #--U + A1*U*V*(A2 + V*(A3 + V)), V = U*U | 
 | 6424 | #--THE POLYNOMIAL MAY LOOK STRANGE, BUT IS NEVERTHELESS CORRECT. | 
 | 6425 | #--THE NATURAL FORM IS U + U*V*(A1 + V*(A2 + V*A3)) | 
 | 6426 | #--WHAT WE HAVE HERE IS MERELY	A1 = A3, A2 = A1/A3, A3 = A2/A3. | 
 | 6427 | #--THE REASON FOR THIS REARRANGEMENT IS TO MAKE THE INDEPENDENT | 
 | 6428 | #--PARTS A1*U*V AND (A2 + ... STUFF) MORE LOAD-BALANCED | 
 | 6429 |  | 
 | 6430 | 	fmovm.x		&0x04,-(%sp)		# save fp2 | 
 | 6431 |  | 
 | 6432 | 	fmov.x		%fp0,%fp1 | 
 | 6433 | 	fmul.x		%fp1,%fp1 | 
 | 6434 | 	fmov.d		ATANA3(%pc),%fp2 | 
 | 6435 | 	fadd.x		%fp1,%fp2		# A3+V | 
 | 6436 | 	fmul.x		%fp1,%fp2		# V*(A3+V) | 
 | 6437 | 	fmul.x		%fp0,%fp1		# U*V | 
 | 6438 | 	fadd.d		ATANA2(%pc),%fp2	# A2+V*(A3+V) | 
 | 6439 | 	fmul.d		ATANA1(%pc),%fp1	# A1*U*V | 
 | 6440 | 	fmul.x		%fp2,%fp1		# A1*U*V*(A2+V*(A3+V)) | 
 | 6441 | 	fadd.x		%fp1,%fp0		# ATAN(U), FP1 RELEASED | 
 | 6442 |  | 
 | 6443 | 	fmovm.x		(%sp)+,&0x20		# restore fp2 | 
 | 6444 |  | 
 | 6445 | 	fmov.l		%d0,%fpcr		# restore users rnd mode,prec | 
 | 6446 | 	fadd.x		ATANF(%a6),%fp0		# ATAN(X) | 
 | 6447 | 	bra		t_inx2 | 
 | 6448 |  | 
 | 6449 | ATANBORS: | 
 | 6450 | #--|X| IS IN d0 IN COMPACT FORM. FP1, d0 SAVED. | 
 | 6451 | #--FP0 IS X AND |X| <= 1/16 OR |X| >= 16. | 
 | 6452 | 	cmp.l		%d1,&0x3FFF8000 | 
 | 6453 | 	bgt.w		ATANBIG			# I.E. |X| >= 16 | 
 | 6454 |  | 
 | 6455 | ATANSM: | 
 | 6456 | #--|X| <= 1/16 | 
 | 6457 | #--IF |X| < 2^(-40), RETURN X AS ANSWER. OTHERWISE, APPROXIMATE | 
 | 6458 | #--ATAN(X) BY X + X*Y*(B1+Y*(B2+Y*(B3+Y*(B4+Y*(B5+Y*B6))))) | 
 | 6459 | #--WHICH IS X + X*Y*( [B1+Z*(B3+Z*B5)] + [Y*(B2+Z*(B4+Z*B6)] ) | 
 | 6460 | #--WHERE Y = X*X, AND Z = Y*Y. | 
 | 6461 |  | 
 | 6462 | 	cmp.l		%d1,&0x3FD78000 | 
 | 6463 | 	blt.w		ATANTINY | 
 | 6464 |  | 
 | 6465 | #--COMPUTE POLYNOMIAL | 
 | 6466 | 	fmovm.x		&0x0c,-(%sp)		# save fp2/fp3 | 
 | 6467 |  | 
 | 6468 | 	fmul.x		%fp0,%fp0		# FPO IS Y = X*X | 
 | 6469 |  | 
 | 6470 | 	fmov.x		%fp0,%fp1 | 
 | 6471 | 	fmul.x		%fp1,%fp1		# FP1 IS Z = Y*Y | 
 | 6472 |  | 
 | 6473 | 	fmov.d		ATANB6(%pc),%fp2 | 
 | 6474 | 	fmov.d		ATANB5(%pc),%fp3 | 
 | 6475 |  | 
 | 6476 | 	fmul.x		%fp1,%fp2		# Z*B6 | 
 | 6477 | 	fmul.x		%fp1,%fp3		# Z*B5 | 
 | 6478 |  | 
 | 6479 | 	fadd.d		ATANB4(%pc),%fp2	# B4+Z*B6 | 
 | 6480 | 	fadd.d		ATANB3(%pc),%fp3	# B3+Z*B5 | 
 | 6481 |  | 
 | 6482 | 	fmul.x		%fp1,%fp2		# Z*(B4+Z*B6) | 
 | 6483 | 	fmul.x		%fp3,%fp1		# Z*(B3+Z*B5) | 
 | 6484 |  | 
 | 6485 | 	fadd.d		ATANB2(%pc),%fp2	# B2+Z*(B4+Z*B6) | 
 | 6486 | 	fadd.d		ATANB1(%pc),%fp1	# B1+Z*(B3+Z*B5) | 
 | 6487 |  | 
 | 6488 | 	fmul.x		%fp0,%fp2		# Y*(B2+Z*(B4+Z*B6)) | 
 | 6489 | 	fmul.x		X(%a6),%fp0		# X*Y | 
 | 6490 |  | 
 | 6491 | 	fadd.x		%fp2,%fp1		# [B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))] | 
 | 6492 |  | 
 | 6493 | 	fmul.x		%fp1,%fp0		# X*Y*([B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))]) | 
 | 6494 |  | 
 | 6495 | 	fmovm.x		(%sp)+,&0x30		# restore fp2/fp3 | 
 | 6496 |  | 
 | 6497 | 	fmov.l		%d0,%fpcr		# restore users rnd mode,prec | 
 | 6498 | 	fadd.x		X(%a6),%fp0 | 
 | 6499 | 	bra		t_inx2 | 
 | 6500 |  | 
 | 6501 | ATANTINY: | 
 | 6502 | #--|X| < 2^(-40), ATAN(X) = X | 
 | 6503 |  | 
 | 6504 | 	fmov.l		%d0,%fpcr		# restore users rnd mode,prec | 
 | 6505 | 	mov.b		&FMOV_OP,%d1		# last inst is MOVE | 
 | 6506 | 	fmov.x		X(%a6),%fp0		# last inst - possible exception set | 
 | 6507 |  | 
 | 6508 | 	bra		t_catch | 
 | 6509 |  | 
 | 6510 | ATANBIG: | 
 | 6511 | #--IF |X| > 2^(100), RETURN	SIGN(X)*(PI/2 - TINY). OTHERWISE, | 
 | 6512 | #--RETURN SIGN(X)*PI/2 + ATAN(-1/X). | 
 | 6513 | 	cmp.l		%d1,&0x40638000 | 
 | 6514 | 	bgt.w		ATANHUGE | 
 | 6515 |  | 
 | 6516 | #--APPROXIMATE ATAN(-1/X) BY | 
 | 6517 | #--X'+X'*Y*(C1+Y*(C2+Y*(C3+Y*(C4+Y*C5)))), X' = -1/X, Y = X'*X' | 
 | 6518 | #--THIS CAN BE RE-WRITTEN AS | 
 | 6519 | #--X'+X'*Y*( [C1+Z*(C3+Z*C5)] + [Y*(C2+Z*C4)] ), Z = Y*Y. | 
 | 6520 |  | 
 | 6521 | 	fmovm.x		&0x0c,-(%sp)		# save fp2/fp3 | 
 | 6522 |  | 
 | 6523 | 	fmov.s		&0xBF800000,%fp1	# LOAD -1 | 
 | 6524 | 	fdiv.x		%fp0,%fp1		# FP1 IS -1/X | 
 | 6525 |  | 
 | 6526 | #--DIVIDE IS STILL CRANKING | 
 | 6527 |  | 
 | 6528 | 	fmov.x		%fp1,%fp0		# FP0 IS X' | 
 | 6529 | 	fmul.x		%fp0,%fp0		# FP0 IS Y = X'*X' | 
 | 6530 | 	fmov.x		%fp1,X(%a6)		# X IS REALLY X' | 
 | 6531 |  | 
 | 6532 | 	fmov.x		%fp0,%fp1 | 
 | 6533 | 	fmul.x		%fp1,%fp1		# FP1 IS Z = Y*Y | 
 | 6534 |  | 
 | 6535 | 	fmov.d		ATANC5(%pc),%fp3 | 
 | 6536 | 	fmov.d		ATANC4(%pc),%fp2 | 
 | 6537 |  | 
 | 6538 | 	fmul.x		%fp1,%fp3		# Z*C5 | 
 | 6539 | 	fmul.x		%fp1,%fp2		# Z*B4 | 
 | 6540 |  | 
 | 6541 | 	fadd.d		ATANC3(%pc),%fp3	# C3+Z*C5 | 
 | 6542 | 	fadd.d		ATANC2(%pc),%fp2	# C2+Z*C4 | 
 | 6543 |  | 
 | 6544 | 	fmul.x		%fp3,%fp1		# Z*(C3+Z*C5), FP3 RELEASED | 
 | 6545 | 	fmul.x		%fp0,%fp2		# Y*(C2+Z*C4) | 
 | 6546 |  | 
 | 6547 | 	fadd.d		ATANC1(%pc),%fp1	# C1+Z*(C3+Z*C5) | 
 | 6548 | 	fmul.x		X(%a6),%fp0		# X'*Y | 
 | 6549 |  | 
 | 6550 | 	fadd.x		%fp2,%fp1		# [Y*(C2+Z*C4)]+[C1+Z*(C3+Z*C5)] | 
 | 6551 |  | 
 | 6552 | 	fmul.x		%fp1,%fp0		# X'*Y*([B1+Z*(B3+Z*B5)] | 
 | 6553 | #					...	+[Y*(B2+Z*(B4+Z*B6))]) | 
 | 6554 | 	fadd.x		X(%a6),%fp0 | 
 | 6555 |  | 
 | 6556 | 	fmovm.x		(%sp)+,&0x30		# restore fp2/fp3 | 
 | 6557 |  | 
 | 6558 | 	fmov.l		%d0,%fpcr		# restore users rnd mode,prec | 
 | 6559 | 	tst.b		(%a0) | 
 | 6560 | 	bpl.b		pos_big | 
 | 6561 |  | 
 | 6562 | neg_big: | 
 | 6563 | 	fadd.x		NPIBY2(%pc),%fp0 | 
 | 6564 | 	bra		t_minx2 | 
 | 6565 |  | 
 | 6566 | pos_big: | 
 | 6567 | 	fadd.x		PPIBY2(%pc),%fp0 | 
 | 6568 | 	bra		t_pinx2 | 
 | 6569 |  | 
 | 6570 | ATANHUGE: | 
 | 6571 | #--RETURN SIGN(X)*(PIBY2 - TINY) = SIGN(X)*PIBY2 - SIGN(X)*TINY | 
 | 6572 | 	tst.b		(%a0) | 
 | 6573 | 	bpl.b		pos_huge | 
 | 6574 |  | 
 | 6575 | neg_huge: | 
 | 6576 | 	fmov.x		NPIBY2(%pc),%fp0 | 
 | 6577 | 	fmov.l		%d0,%fpcr | 
 | 6578 | 	fadd.x		PTINY(%pc),%fp0 | 
 | 6579 | 	bra		t_minx2 | 
 | 6580 |  | 
 | 6581 | pos_huge: | 
 | 6582 | 	fmov.x		PPIBY2(%pc),%fp0 | 
 | 6583 | 	fmov.l		%d0,%fpcr | 
 | 6584 | 	fadd.x		NTINY(%pc),%fp0 | 
 | 6585 | 	bra		t_pinx2 | 
 | 6586 |  | 
 | 6587 | 	global		satand | 
 | 6588 | #--ENTRY POINT FOR ATAN(X) FOR DENORMALIZED ARGUMENT | 
 | 6589 | satand: | 
 | 6590 | 	bra		t_extdnrm | 
 | 6591 |  | 
 | 6592 | ######################################################################### | 
 | 6593 | # sasin():  computes the inverse sine of a normalized input		# | 
 | 6594 | # sasind(): computes the inverse sine of a denormalized input		# | 
 | 6595 | #									# | 
 | 6596 | # INPUT ***************************************************************	# | 
 | 6597 | #	a0 = pointer to extended precision input			# | 
 | 6598 | #	d0 = round precision,mode					# | 
 | 6599 | #									# | 
 | 6600 | # OUTPUT **************************************************************	# | 
 | 6601 | #	fp0 = arcsin(X)							# | 
 | 6602 | #									# | 
 | 6603 | # ACCURACY and MONOTONICITY *******************************************	# | 
 | 6604 | #	The returned result is within 3 ulps in	64 significant bit,	# | 
 | 6605 | #	i.e. within 0.5001 ulp to 53 bits if the result is subsequently	# | 
 | 6606 | #	rounded to double precision. The result is provably monotonic	# | 
 | 6607 | #	in double precision.						# | 
 | 6608 | #									# | 
 | 6609 | # ALGORITHM ***********************************************************	# | 
 | 6610 | #									# | 
 | 6611 | #	ASIN								# | 
 | 6612 | #	1. If |X| >= 1, go to 3.					# | 
 | 6613 | #									# | 
 | 6614 | #	2. (|X| < 1) Calculate asin(X) by				# | 
 | 6615 | #		z := sqrt( [1-X][1+X] )					# | 
 | 6616 | #		asin(X) = atan( x / z ).				# | 
 | 6617 | #		Exit.							# | 
 | 6618 | #									# | 
 | 6619 | #	3. If |X| > 1, go to 5.						# | 
 | 6620 | #									# | 
 | 6621 | #	4. (|X| = 1) sgn := sign(X), return asin(X) := sgn * Pi/2. Exit.# | 
 | 6622 | #									# | 
 | 6623 | #	5. (|X| > 1) Generate an invalid operation by 0 * infinity.	# | 
 | 6624 | #		Exit.							# | 
 | 6625 | #									# | 
 | 6626 | ######################################################################### | 
 | 6627 |  | 
 | 6628 | 	global		sasin | 
 | 6629 | sasin: | 
 | 6630 | 	fmov.x		(%a0),%fp0		# LOAD INPUT | 
 | 6631 |  | 
 | 6632 | 	mov.l		(%a0),%d1 | 
 | 6633 | 	mov.w		4(%a0),%d1 | 
 | 6634 | 	and.l		&0x7FFFFFFF,%d1 | 
 | 6635 | 	cmp.l		%d1,&0x3FFF8000 | 
 | 6636 | 	bge.b		ASINBIG | 
 | 6637 |  | 
 | 6638 | # This catch is added here for the '060 QSP. Originally, the call to | 
 | 6639 | # satan() would handle this case by causing the exception which would | 
 | 6640 | # not be caught until gen_except(). Now, with the exceptions being | 
 | 6641 | # detected inside of satan(), the exception would have been handled there | 
 | 6642 | # instead of inside sasin() as expected. | 
 | 6643 | 	cmp.l		%d1,&0x3FD78000 | 
 | 6644 | 	blt.w		ASINTINY | 
 | 6645 |  | 
 | 6646 | #--THIS IS THE USUAL CASE, |X| < 1 | 
 | 6647 | #--ASIN(X) = ATAN( X / SQRT( (1-X)(1+X) ) ) | 
 | 6648 |  | 
 | 6649 | ASINMAIN: | 
 | 6650 | 	fmov.s		&0x3F800000,%fp1 | 
 | 6651 | 	fsub.x		%fp0,%fp1		# 1-X | 
 | 6652 | 	fmovm.x		&0x4,-(%sp)		#  {fp2} | 
 | 6653 | 	fmov.s		&0x3F800000,%fp2 | 
 | 6654 | 	fadd.x		%fp0,%fp2		# 1+X | 
 | 6655 | 	fmul.x		%fp2,%fp1		# (1+X)(1-X) | 
 | 6656 | 	fmovm.x		(%sp)+,&0x20		#  {fp2} | 
 | 6657 | 	fsqrt.x		%fp1			# SQRT([1-X][1+X]) | 
 | 6658 | 	fdiv.x		%fp1,%fp0		# X/SQRT([1-X][1+X]) | 
 | 6659 | 	fmovm.x		&0x01,-(%sp)		# save X/SQRT(...) | 
 | 6660 | 	lea		(%sp),%a0		# pass ptr to X/SQRT(...) | 
 | 6661 | 	bsr		satan | 
 | 6662 | 	add.l		&0xc,%sp		# clear X/SQRT(...) from stack | 
 | 6663 | 	bra		t_inx2 | 
 | 6664 |  | 
 | 6665 | ASINBIG: | 
 | 6666 | 	fabs.x		%fp0			# |X| | 
 | 6667 | 	fcmp.s		%fp0,&0x3F800000 | 
 | 6668 | 	fbgt		t_operr			# cause an operr exception | 
 | 6669 |  | 
 | 6670 | #--|X| = 1, ASIN(X) = +- PI/2. | 
 | 6671 | ASINONE: | 
 | 6672 | 	fmov.x		PIBY2(%pc),%fp0 | 
 | 6673 | 	mov.l		(%a0),%d1 | 
 | 6674 | 	and.l		&0x80000000,%d1		# SIGN BIT OF X | 
 | 6675 | 	or.l		&0x3F800000,%d1		# +-1 IN SGL FORMAT | 
 | 6676 | 	mov.l		%d1,-(%sp)		# push SIGN(X) IN SGL-FMT | 
 | 6677 | 	fmov.l		%d0,%fpcr | 
 | 6678 | 	fmul.s		(%sp)+,%fp0 | 
 | 6679 | 	bra		t_inx2 | 
 | 6680 |  | 
 | 6681 | #--|X| < 2^(-40), ATAN(X) = X | 
 | 6682 | ASINTINY: | 
 | 6683 | 	fmov.l		%d0,%fpcr		# restore users rnd mode,prec | 
 | 6684 | 	mov.b		&FMOV_OP,%d1		# last inst is MOVE | 
 | 6685 | 	fmov.x		(%a0),%fp0		# last inst - possible exception | 
 | 6686 | 	bra		t_catch | 
 | 6687 |  | 
 | 6688 | 	global		sasind | 
 | 6689 | #--ASIN(X) = X FOR DENORMALIZED X | 
 | 6690 | sasind: | 
 | 6691 | 	bra		t_extdnrm | 
 | 6692 |  | 
 | 6693 | ######################################################################### | 
 | 6694 | # sacos():  computes the inverse cosine of a normalized input		# | 
 | 6695 | # sacosd(): computes the inverse cosine of a denormalized input		# | 
 | 6696 | #									# | 
 | 6697 | # INPUT ***************************************************************	# | 
 | 6698 | #	a0 = pointer to extended precision input			# | 
 | 6699 | #	d0 = round precision,mode					# | 
 | 6700 | #									# | 
 | 6701 | # OUTPUT ************************************************************** # | 
 | 6702 | #	fp0 = arccos(X)							# | 
 | 6703 | #									# | 
 | 6704 | # ACCURACY and MONOTONICITY *******************************************	# | 
 | 6705 | #	The returned result is within 3 ulps in	64 significant bit,	# | 
 | 6706 | #	i.e. within 0.5001 ulp to 53 bits if the result is subsequently	# | 
 | 6707 | #	rounded to double precision. The result is provably monotonic	# | 
 | 6708 | #	in double precision.						# | 
 | 6709 | #									# | 
 | 6710 | # ALGORITHM *********************************************************** # | 
 | 6711 | #									# | 
 | 6712 | #	ACOS								# | 
 | 6713 | #	1. If |X| >= 1, go to 3.					# | 
 | 6714 | #									# | 
 | 6715 | #	2. (|X| < 1) Calculate acos(X) by				# | 
 | 6716 | #		z := (1-X) / (1+X)					# | 
 | 6717 | #		acos(X) = 2 * atan( sqrt(z) ).				# | 
 | 6718 | #		Exit.							# | 
 | 6719 | #									# | 
 | 6720 | #	3. If |X| > 1, go to 5.						# | 
 | 6721 | #									# | 
 | 6722 | #	4. (|X| = 1) If X > 0, return 0. Otherwise, return Pi. Exit.	# | 
 | 6723 | #									# | 
 | 6724 | #	5. (|X| > 1) Generate an invalid operation by 0 * infinity.	# | 
 | 6725 | #		Exit.							# | 
 | 6726 | #									# | 
 | 6727 | ######################################################################### | 
 | 6728 |  | 
 | 6729 | 	global		sacos | 
 | 6730 | sacos: | 
 | 6731 | 	fmov.x		(%a0),%fp0		# LOAD INPUT | 
 | 6732 |  | 
 | 6733 | 	mov.l		(%a0),%d1		# pack exp w/ upper 16 fraction | 
 | 6734 | 	mov.w		4(%a0),%d1 | 
 | 6735 | 	and.l		&0x7FFFFFFF,%d1 | 
 | 6736 | 	cmp.l		%d1,&0x3FFF8000 | 
 | 6737 | 	bge.b		ACOSBIG | 
 | 6738 |  | 
 | 6739 | #--THIS IS THE USUAL CASE, |X| < 1 | 
 | 6740 | #--ACOS(X) = 2 * ATAN(	SQRT( (1-X)/(1+X) ) ) | 
 | 6741 |  | 
 | 6742 | ACOSMAIN: | 
 | 6743 | 	fmov.s		&0x3F800000,%fp1 | 
 | 6744 | 	fadd.x		%fp0,%fp1		# 1+X | 
 | 6745 | 	fneg.x		%fp0			# -X | 
 | 6746 | 	fadd.s		&0x3F800000,%fp0	# 1-X | 
 | 6747 | 	fdiv.x		%fp1,%fp0		# (1-X)/(1+X) | 
 | 6748 | 	fsqrt.x		%fp0			# SQRT((1-X)/(1+X)) | 
 | 6749 | 	mov.l		%d0,-(%sp)		# save original users fpcr | 
 | 6750 | 	clr.l		%d0 | 
 | 6751 | 	fmovm.x		&0x01,-(%sp)		# save SQRT(...) to stack | 
 | 6752 | 	lea		(%sp),%a0		# pass ptr to sqrt | 
 | 6753 | 	bsr		satan			# ATAN(SQRT([1-X]/[1+X])) | 
 | 6754 | 	add.l		&0xc,%sp		# clear SQRT(...) from stack | 
 | 6755 |  | 
 | 6756 | 	fmov.l		(%sp)+,%fpcr		# restore users round prec,mode | 
 | 6757 | 	fadd.x		%fp0,%fp0		# 2 * ATAN( STUFF ) | 
 | 6758 | 	bra		t_pinx2 | 
 | 6759 |  | 
 | 6760 | ACOSBIG: | 
 | 6761 | 	fabs.x		%fp0 | 
 | 6762 | 	fcmp.s		%fp0,&0x3F800000 | 
 | 6763 | 	fbgt		t_operr			# cause an operr exception | 
 | 6764 |  | 
 | 6765 | #--|X| = 1, ACOS(X) = 0 OR PI | 
 | 6766 | 	tst.b		(%a0)			# is X positive or negative? | 
 | 6767 | 	bpl.b		ACOSP1 | 
 | 6768 |  | 
 | 6769 | #--X = -1 | 
 | 6770 | #Returns PI and inexact exception | 
 | 6771 | ACOSM1: | 
 | 6772 | 	fmov.x		PI(%pc),%fp0		# load PI | 
 | 6773 | 	fmov.l		%d0,%fpcr		# load round mode,prec | 
 | 6774 | 	fadd.s		&0x00800000,%fp0	# add a small value | 
 | 6775 | 	bra		t_pinx2 | 
 | 6776 |  | 
 | 6777 | ACOSP1: | 
 | 6778 | 	bra		ld_pzero		# answer is positive zero | 
 | 6779 |  | 
 | 6780 | 	global		sacosd | 
 | 6781 | #--ACOS(X) = PI/2 FOR DENORMALIZED X | 
 | 6782 | sacosd: | 
 | 6783 | 	fmov.l		%d0,%fpcr		# load user's rnd mode/prec | 
 | 6784 | 	fmov.x		PIBY2(%pc),%fp0 | 
 | 6785 | 	bra		t_pinx2 | 
 | 6786 |  | 
 | 6787 | ######################################################################### | 
 | 6788 | # setox():    computes the exponential for a normalized input		# | 
 | 6789 | # setoxd():   computes the exponential for a denormalized input		# | 
 | 6790 | # setoxm1():  computes the exponential minus 1 for a normalized input	# | 
 | 6791 | # setoxm1d(): computes the exponential minus 1 for a denormalized input	# | 
 | 6792 | #									# | 
 | 6793 | # INPUT	*************************************************************** # | 
 | 6794 | #	a0 = pointer to extended precision input			# | 
 | 6795 | #	d0 = round precision,mode					# | 
 | 6796 | #									# | 
 | 6797 | # OUTPUT ************************************************************** # | 
 | 6798 | #	fp0 = exp(X) or exp(X)-1					# | 
 | 6799 | #									# | 
 | 6800 | # ACCURACY and MONOTONICITY ******************************************* # | 
 | 6801 | #	The returned result is within 0.85 ulps in 64 significant bit,	# | 
 | 6802 | #	i.e. within 0.5001 ulp to 53 bits if the result is subsequently # | 
 | 6803 | #	rounded to double precision. The result is provably monotonic	# | 
 | 6804 | #	in double precision.						# | 
 | 6805 | #									# | 
 | 6806 | # ALGORITHM and IMPLEMENTATION **************************************** # | 
 | 6807 | #									# | 
 | 6808 | #	setoxd								# | 
 | 6809 | #	------								# | 
 | 6810 | #	Step 1.	Set ans := 1.0						# | 
 | 6811 | #									# | 
 | 6812 | #	Step 2.	Return	ans := ans + sign(X)*2^(-126). Exit.		# | 
 | 6813 | #	Notes:	This will always generate one exception -- inexact.	# | 
 | 6814 | #									# | 
 | 6815 | #									# | 
 | 6816 | #	setox								# | 
 | 6817 | #	-----								# | 
 | 6818 | #									# | 
 | 6819 | #	Step 1.	Filter out extreme cases of input argument.		# | 
 | 6820 | #		1.1	If |X| >= 2^(-65), go to Step 1.3.		# | 
 | 6821 | #		1.2	Go to Step 7.					# | 
 | 6822 | #		1.3	If |X| < 16380 log(2), go to Step 2.		# | 
 | 6823 | #		1.4	Go to Step 8.					# | 
 | 6824 | #	Notes:	The usual case should take the branches 1.1 -> 1.3 -> 2.# | 
 | 6825 | #		To avoid the use of floating-point comparisons, a	# | 
 | 6826 | #		compact representation of |X| is used. This format is a	# | 
 | 6827 | #		32-bit integer, the upper (more significant) 16 bits	# | 
 | 6828 | #		are the sign and biased exponent field of |X|; the	# | 
 | 6829 | #		lower 16 bits are the 16 most significant fraction	# | 
 | 6830 | #		(including the explicit bit) bits of |X|. Consequently,	# | 
 | 6831 | #		the comparisons in Steps 1.1 and 1.3 can be performed	# | 
 | 6832 | #		by integer comparison. Note also that the constant	# | 
 | 6833 | #		16380 log(2) used in Step 1.3 is also in the compact	# | 
 | 6834 | #		form. Thus taking the branch to Step 2 guarantees	# | 
 | 6835 | #		|X| < 16380 log(2). There is no harm to have a small	# | 
 | 6836 | #		number of cases where |X| is less than,	but close to,	# | 
 | 6837 | #		16380 log(2) and the branch to Step 9 is taken.		# | 
 | 6838 | #									# | 
 | 6839 | #	Step 2.	Calculate N = round-to-nearest-int( X * 64/log2 ).	# | 
 | 6840 | #		2.1	Set AdjFlag := 0 (indicates the branch 1.3 -> 2 # | 
 | 6841 | #			was taken)					# | 
 | 6842 | #		2.2	N := round-to-nearest-integer( X * 64/log2 ).	# | 
 | 6843 | #		2.3	Calculate	J = N mod 64; so J = 0,1,2,..., # | 
 | 6844 | #			or 63.						# | 
 | 6845 | #		2.4	Calculate	M = (N - J)/64; so N = 64M + J.	# | 
 | 6846 | #		2.5	Calculate the address of the stored value of	# | 
 | 6847 | #			2^(J/64).					# | 
 | 6848 | #		2.6	Create the value Scale = 2^M.			# | 
 | 6849 | #	Notes:	The calculation in 2.2 is really performed by		# | 
 | 6850 | #			Z := X * constant				# | 
 | 6851 | #			N := round-to-nearest-integer(Z)		# | 
 | 6852 | #		where							# | 
 | 6853 | #			constant := single-precision( 64/log 2 ).	# | 
 | 6854 | #									# | 
 | 6855 | #		Using a single-precision constant avoids memory		# | 
 | 6856 | #		access. Another effect of using a single-precision	# | 
 | 6857 | #		"constant" is that the calculated value Z is		# | 
 | 6858 | #									# | 
 | 6859 | #			Z = X*(64/log2)*(1+eps), |eps| <= 2^(-24).	# | 
 | 6860 | #									# | 
 | 6861 | #		This error has to be considered later in Steps 3 and 4.	# | 
 | 6862 | #									# | 
 | 6863 | #	Step 3.	Calculate X - N*log2/64.				# | 
 | 6864 | #		3.1	R := X + N*L1,					# | 
 | 6865 | #				where L1 := single-precision(-log2/64).	# | 
 | 6866 | #		3.2	R := R + N*L2,					# | 
 | 6867 | #				L2 := extended-precision(-log2/64 - L1).# | 
 | 6868 | #	Notes:	a) The way L1 and L2 are chosen ensures L1+L2		# | 
 | 6869 | #		approximate the value -log2/64 to 88 bits of accuracy.	# | 
 | 6870 | #		b) N*L1 is exact because N is no longer than 22 bits	# | 
 | 6871 | #		and L1 is no longer than 24 bits.			# | 
 | 6872 | #		c) The calculation X+N*L1 is also exact due to		# | 
 | 6873 | #		cancellation. Thus, R is practically X+N(L1+L2) to full	# | 
 | 6874 | #		64 bits.						# | 
 | 6875 | #		d) It is important to estimate how large can |R| be	# | 
 | 6876 | #		after Step 3.2.						# | 
 | 6877 | #									# | 
 | 6878 | #		N = rnd-to-int( X*64/log2 (1+eps) ), |eps|<=2^(-24)	# | 
 | 6879 | #		X*64/log2 (1+eps)	=	N + f,	|f| <= 0.5	# | 
 | 6880 | #		X*64/log2 - N	=	f - eps*X 64/log2		# | 
 | 6881 | #		X - N*log2/64	=	f*log2/64 - eps*X		# | 
 | 6882 | #									# | 
 | 6883 | #									# | 
 | 6884 | #		Now |X| <= 16446 log2, thus				# | 
 | 6885 | #									# | 
 | 6886 | #			|X - N*log2/64| <= (0.5 + 16446/2^(18))*log2/64	# | 
 | 6887 | #					<= 0.57 log2/64.		# | 
 | 6888 | #		 This bound will be used in Step 4.			# | 
 | 6889 | #									# | 
 | 6890 | #	Step 4.	Approximate exp(R)-1 by a polynomial			# | 
 | 6891 | #		p = R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5))))	# | 
 | 6892 | #	Notes:	a) In order to reduce memory access, the coefficients	# | 
 | 6893 | #		are made as "short" as possible: A1 (which is 1/2), A4	# | 
 | 6894 | #		and A5 are single precision; A2 and A3 are double	# | 
 | 6895 | #		precision.						# | 
 | 6896 | #		b) Even with the restrictions above,			# | 
 | 6897 | #		   |p - (exp(R)-1)| < 2^(-68.8) for all |R| <= 0.0062.	# | 
 | 6898 | #		Note that 0.0062 is slightly bigger than 0.57 log2/64.	# | 
 | 6899 | #		c) To fully utilize the pipeline, p is separated into	# | 
 | 6900 | #		two independent pieces of roughly equal complexities	# | 
 | 6901 | #			p = [ R + R*S*(A2 + S*A4) ]	+		# | 
 | 6902 | #				[ S*(A1 + S*(A3 + S*A5)) ]		# | 
 | 6903 | #		where S = R*R.						# | 
 | 6904 | #									# | 
 | 6905 | #	Step 5.	Compute 2^(J/64)*exp(R) = 2^(J/64)*(1+p) by		# | 
 | 6906 | #				ans := T + ( T*p + t)			# | 
 | 6907 | #		where T and t are the stored values for 2^(J/64).	# | 
 | 6908 | #	Notes:	2^(J/64) is stored as T and t where T+t approximates	# | 
 | 6909 | #		2^(J/64) to roughly 85 bits; T is in extended precision	# | 
 | 6910 | #		and t is in single precision. Note also that T is	# | 
 | 6911 | #		rounded to 62 bits so that the last two bits of T are	# | 
 | 6912 | #		zero. The reason for such a special form is that T-1,	# | 
 | 6913 | #		T-2, and T-8 will all be exact --- a property that will	# | 
 | 6914 | #		give much more accurate computation of the function	# | 
 | 6915 | #		EXPM1.							# | 
 | 6916 | #									# | 
 | 6917 | #	Step 6.	Reconstruction of exp(X)				# | 
 | 6918 | #			exp(X) = 2^M * 2^(J/64) * exp(R).		# | 
 | 6919 | #		6.1	If AdjFlag = 0, go to 6.3			# | 
 | 6920 | #		6.2	ans := ans * AdjScale				# | 
 | 6921 | #		6.3	Restore the user FPCR				# | 
 | 6922 | #		6.4	Return ans := ans * Scale. Exit.		# | 
 | 6923 | #	Notes:	If AdjFlag = 0, we have X = Mlog2 + Jlog2/64 + R,	# | 
 | 6924 | #		|M| <= 16380, and Scale = 2^M. Moreover, exp(X) will	# | 
 | 6925 | #		neither overflow nor underflow. If AdjFlag = 1, that	# | 
 | 6926 | #		means that						# | 
 | 6927 | #			X = (M1+M)log2 + Jlog2/64 + R, |M1+M| >= 16380.	# | 
 | 6928 | #		Hence, exp(X) may overflow or underflow or neither.	# | 
 | 6929 | #		When that is the case, AdjScale = 2^(M1) where M1 is	# | 
 | 6930 | #		approximately M. Thus 6.2 will never cause		# | 
 | 6931 | #		over/underflow. Possible exception in 6.4 is overflow	# | 
 | 6932 | #		or underflow. The inexact exception is not generated in	# | 
 | 6933 | #		6.4. Although one can argue that the inexact flag	# | 
 | 6934 | #		should always be raised, to simulate that exception	# | 
 | 6935 | #		cost to much than the flag is worth in practical uses.	# | 
 | 6936 | #									# | 
 | 6937 | #	Step 7.	Return 1 + X.						# | 
 | 6938 | #		7.1	ans := X					# | 
 | 6939 | #		7.2	Restore user FPCR.				# | 
 | 6940 | #		7.3	Return ans := 1 + ans. Exit			# | 
 | 6941 | #	Notes:	For non-zero X, the inexact exception will always be	# | 
 | 6942 | #		raised by 7.3. That is the only exception raised by 7.3.# | 
 | 6943 | #		Note also that we use the FMOVEM instruction to move X	# | 
 | 6944 | #		in Step 7.1 to avoid unnecessary trapping. (Although	# | 
 | 6945 | #		the FMOVEM may not seem relevant since X is normalized,	# | 
 | 6946 | #		the precaution will be useful in the library version of	# | 
 | 6947 | #		this code where the separate entry for denormalized	# | 
 | 6948 | #		inputs will be done away with.)				# | 
 | 6949 | #									# | 
 | 6950 | #	Step 8.	Handle exp(X) where |X| >= 16380log2.			# | 
 | 6951 | #		8.1	If |X| > 16480 log2, go to Step 9.		# | 
 | 6952 | #		(mimic 2.2 - 2.6)					# | 
 | 6953 | #		8.2	N := round-to-integer( X * 64/log2 )		# | 
 | 6954 | #		8.3	Calculate J = N mod 64, J = 0,1,...,63		# | 
 | 6955 | #		8.4	K := (N-J)/64, M1 := truncate(K/2), M = K-M1,	# | 
 | 6956 | #			AdjFlag := 1.					# | 
 | 6957 | #		8.5	Calculate the address of the stored value	# | 
 | 6958 | #			2^(J/64).					# | 
 | 6959 | #		8.6	Create the values Scale = 2^M, AdjScale = 2^M1.	# | 
 | 6960 | #		8.7	Go to Step 3.					# | 
 | 6961 | #	Notes:	Refer to notes for 2.2 - 2.6.				# | 
 | 6962 | #									# | 
 | 6963 | #	Step 9.	Handle exp(X), |X| > 16480 log2.			# | 
 | 6964 | #		9.1	If X < 0, go to 9.3				# | 
 | 6965 | #		9.2	ans := Huge, go to 9.4				# | 
 | 6966 | #		9.3	ans := Tiny.					# | 
 | 6967 | #		9.4	Restore user FPCR.				# | 
 | 6968 | #		9.5	Return ans := ans * ans. Exit.			# | 
 | 6969 | #	Notes:	Exp(X) will surely overflow or underflow, depending on	# | 
 | 6970 | #		X's sign. "Huge" and "Tiny" are respectively large/tiny	# | 
 | 6971 | #		extended-precision numbers whose square over/underflow	# | 
 | 6972 | #		with an inexact result. Thus, 9.5 always raises the	# | 
 | 6973 | #		inexact together with either overflow or underflow.	# | 
 | 6974 | #									# | 
 | 6975 | #	setoxm1d							# | 
 | 6976 | #	--------							# | 
 | 6977 | #									# | 
 | 6978 | #	Step 1.	Set ans := 0						# | 
 | 6979 | #									# | 
 | 6980 | #	Step 2.	Return	ans := X + ans. Exit.				# | 
 | 6981 | #	Notes:	This will return X with the appropriate rounding	# | 
 | 6982 | #		 precision prescribed by the user FPCR.			# | 
 | 6983 | #									# | 
 | 6984 | #	setoxm1								# | 
 | 6985 | #	-------								# | 
 | 6986 | #									# | 
 | 6987 | #	Step 1.	Check |X|						# | 
 | 6988 | #		1.1	If |X| >= 1/4, go to Step 1.3.			# | 
 | 6989 | #		1.2	Go to Step 7.					# | 
 | 6990 | #		1.3	If |X| < 70 log(2), go to Step 2.		# | 
 | 6991 | #		1.4	Go to Step 10.					# | 
 | 6992 | #	Notes:	The usual case should take the branches 1.1 -> 1.3 -> 2.# | 
 | 6993 | #		However, it is conceivable |X| can be small very often	# | 
 | 6994 | #		because EXPM1 is intended to evaluate exp(X)-1		# | 
 | 6995 | #		accurately when |X| is small. For further details on	# | 
 | 6996 | #		the comparisons, see the notes on Step 1 of setox.	# | 
 | 6997 | #									# | 
 | 6998 | #	Step 2.	Calculate N = round-to-nearest-int( X * 64/log2 ).	# | 
 | 6999 | #		2.1	N := round-to-nearest-integer( X * 64/log2 ).	# | 
 | 7000 | #		2.2	Calculate	J = N mod 64; so J = 0,1,2,..., # | 
 | 7001 | #			or 63.						# | 
 | 7002 | #		2.3	Calculate	M = (N - J)/64; so N = 64M + J.	# | 
 | 7003 | #		2.4	Calculate the address of the stored value of	# | 
 | 7004 | #			2^(J/64).					# | 
 | 7005 | #		2.5	Create the values Sc = 2^M and			# | 
 | 7006 | #			OnebySc := -2^(-M).				# | 
 | 7007 | #	Notes:	See the notes on Step 2 of setox.			# | 
 | 7008 | #									# | 
 | 7009 | #	Step 3.	Calculate X - N*log2/64.				# | 
 | 7010 | #		3.1	R := X + N*L1,					# | 
 | 7011 | #				where L1 := single-precision(-log2/64).	# | 
 | 7012 | #		3.2	R := R + N*L2,					# | 
 | 7013 | #				L2 := extended-precision(-log2/64 - L1).# | 
 | 7014 | #	Notes:	Applying the analysis of Step 3 of setox in this case	# | 
 | 7015 | #		shows that |R| <= 0.0055 (note that |X| <= 70 log2 in	# | 
 | 7016 | #		this case).						# | 
 | 7017 | #									# | 
 | 7018 | #	Step 4.	Approximate exp(R)-1 by a polynomial			# | 
 | 7019 | #			p = R+R*R*(A1+R*(A2+R*(A3+R*(A4+R*(A5+R*A6)))))	# | 
 | 7020 | #	Notes:	a) In order to reduce memory access, the coefficients	# | 
 | 7021 | #		are made as "short" as possible: A1 (which is 1/2), A5	# | 
 | 7022 | #		and A6 are single precision; A2, A3 and A4 are double	# | 
 | 7023 | #		precision.						# | 
 | 7024 | #		b) Even with the restriction above,			# | 
 | 7025 | #			|p - (exp(R)-1)| <	|R| * 2^(-72.7)		# | 
 | 7026 | #		for all |R| <= 0.0055.					# | 
 | 7027 | #		c) To fully utilize the pipeline, p is separated into	# | 
 | 7028 | #		two independent pieces of roughly equal complexity	# | 
 | 7029 | #			p = [ R*S*(A2 + S*(A4 + S*A6)) ]	+	# | 
 | 7030 | #				[ R + S*(A1 + S*(A3 + S*A5)) ]		# | 
 | 7031 | #		where S = R*R.						# | 
 | 7032 | #									# | 
 | 7033 | #	Step 5.	Compute 2^(J/64)*p by					# | 
 | 7034 | #				p := T*p				# | 
 | 7035 | #		where T and t are the stored values for 2^(J/64).	# | 
 | 7036 | #	Notes:	2^(J/64) is stored as T and t where T+t approximates	# | 
 | 7037 | #		2^(J/64) to roughly 85 bits; T is in extended precision	# | 
 | 7038 | #		and t is in single precision. Note also that T is	# | 
 | 7039 | #		rounded to 62 bits so that the last two bits of T are	# | 
 | 7040 | #		zero. The reason for such a special form is that T-1,	# | 
 | 7041 | #		T-2, and T-8 will all be exact --- a property that will	# | 
 | 7042 | #		be exploited in Step 6 below. The total relative error	# | 
 | 7043 | #		in p is no bigger than 2^(-67.7) compared to the final	# | 
 | 7044 | #		result.							# | 
 | 7045 | #									# | 
 | 7046 | #	Step 6.	Reconstruction of exp(X)-1				# | 
 | 7047 | #			exp(X)-1 = 2^M * ( 2^(J/64) + p - 2^(-M) ).	# | 
 | 7048 | #		6.1	If M <= 63, go to Step 6.3.			# | 
 | 7049 | #		6.2	ans := T + (p + (t + OnebySc)). Go to 6.6	# | 
 | 7050 | #		6.3	If M >= -3, go to 6.5.				# | 
 | 7051 | #		6.4	ans := (T + (p + t)) + OnebySc. Go to 6.6	# | 
 | 7052 | #		6.5	ans := (T + OnebySc) + (p + t).			# | 
 | 7053 | #		6.6	Restore user FPCR.				# | 
 | 7054 | #		6.7	Return ans := Sc * ans. Exit.			# | 
 | 7055 | #	Notes:	The various arrangements of the expressions give	# | 
 | 7056 | #		accurate evaluations.					# | 
 | 7057 | #									# | 
 | 7058 | #	Step 7.	exp(X)-1 for |X| < 1/4.					# | 
 | 7059 | #		7.1	If |X| >= 2^(-65), go to Step 9.		# | 
 | 7060 | #		7.2	Go to Step 8.					# | 
 | 7061 | #									# | 
 | 7062 | #	Step 8.	Calculate exp(X)-1, |X| < 2^(-65).			# | 
 | 7063 | #		8.1	If |X| < 2^(-16312), goto 8.3			# | 
 | 7064 | #		8.2	Restore FPCR; return ans := X - 2^(-16382).	# | 
 | 7065 | #			Exit.						# | 
 | 7066 | #		8.3	X := X * 2^(140).				# | 
 | 7067 | #		8.4	Restore FPCR; ans := ans - 2^(-16382).		# | 
 | 7068 | #		 Return ans := ans*2^(140). Exit			# | 
 | 7069 | #	Notes:	The idea is to return "X - tiny" under the user		# | 
 | 7070 | #		precision and rounding modes. To avoid unnecessary	# | 
 | 7071 | #		inefficiency, we stay away from denormalized numbers	# | 
 | 7072 | #		the best we can. For |X| >= 2^(-16312), the		# | 
 | 7073 | #		straightforward 8.2 generates the inexact exception as	# | 
 | 7074 | #		the case warrants.					# | 
 | 7075 | #									# | 
 | 7076 | #	Step 9.	Calculate exp(X)-1, |X| < 1/4, by a polynomial		# | 
 | 7077 | #			p = X + X*X*(B1 + X*(B2 + ... + X*B12))		# | 
 | 7078 | #	Notes:	a) In order to reduce memory access, the coefficients	# | 
 | 7079 | #		are made as "short" as possible: B1 (which is 1/2), B9	# | 
 | 7080 | #		to B12 are single precision; B3 to B8 are double	# | 
 | 7081 | #		precision; and B2 is double extended.			# | 
 | 7082 | #		b) Even with the restriction above,			# | 
 | 7083 | #			|p - (exp(X)-1)| < |X| 2^(-70.6)		# | 
 | 7084 | #		for all |X| <= 0.251.					# | 
 | 7085 | #		Note that 0.251 is slightly bigger than 1/4.		# | 
 | 7086 | #		c) To fully preserve accuracy, the polynomial is	# | 
 | 7087 | #		computed as						# | 
 | 7088 | #			X + ( S*B1 +	Q ) where S = X*X and		# | 
 | 7089 | #			Q	=	X*S*(B2 + X*(B3 + ... + X*B12))	# | 
 | 7090 | #		d) To fully utilize the pipeline, Q is separated into	# | 
 | 7091 | #		two independent pieces of roughly equal complexity	# | 
 | 7092 | #			Q = [ X*S*(B2 + S*(B4 + ... + S*B12)) ] +	# | 
 | 7093 | #				[ S*S*(B3 + S*(B5 + ... + S*B11)) ]	# | 
 | 7094 | #									# | 
 | 7095 | #	Step 10. Calculate exp(X)-1 for |X| >= 70 log 2.		# | 
 | 7096 | #		10.1 If X >= 70log2 , exp(X) - 1 = exp(X) for all	# | 
 | 7097 | #		practical purposes. Therefore, go to Step 1 of setox.	# | 
 | 7098 | #		10.2 If X <= -70log2, exp(X) - 1 = -1 for all practical	# | 
 | 7099 | #		purposes.						# | 
 | 7100 | #		ans := -1						# | 
 | 7101 | #		Restore user FPCR					# | 
 | 7102 | #		Return ans := ans + 2^(-126). Exit.			# | 
 | 7103 | #	Notes:	10.2 will always create an inexact and return -1 + tiny	# | 
 | 7104 | #		in the user rounding precision and mode.		# | 
 | 7105 | #									# | 
 | 7106 | ######################################################################### | 
 | 7107 |  | 
 | 7108 | L2:	long		0x3FDC0000,0x82E30865,0x4361C4C6,0x00000000 | 
 | 7109 |  | 
 | 7110 | EEXPA3:	long		0x3FA55555,0x55554CC1 | 
 | 7111 | EEXPA2:	long		0x3FC55555,0x55554A54 | 
 | 7112 |  | 
 | 7113 | EM1A4:	long		0x3F811111,0x11174385 | 
 | 7114 | EM1A3:	long		0x3FA55555,0x55554F5A | 
 | 7115 |  | 
 | 7116 | EM1A2:	long		0x3FC55555,0x55555555,0x00000000,0x00000000 | 
 | 7117 |  | 
 | 7118 | EM1B8:	long		0x3EC71DE3,0xA5774682 | 
 | 7119 | EM1B7:	long		0x3EFA01A0,0x19D7CB68 | 
 | 7120 |  | 
 | 7121 | EM1B6:	long		0x3F2A01A0,0x1A019DF3 | 
 | 7122 | EM1B5:	long		0x3F56C16C,0x16C170E2 | 
 | 7123 |  | 
 | 7124 | EM1B4:	long		0x3F811111,0x11111111 | 
 | 7125 | EM1B3:	long		0x3FA55555,0x55555555 | 
 | 7126 |  | 
 | 7127 | EM1B2:	long		0x3FFC0000,0xAAAAAAAA,0xAAAAAAAB | 
 | 7128 | 	long		0x00000000 | 
 | 7129 |  | 
 | 7130 | TWO140:	long		0x48B00000,0x00000000 | 
 | 7131 | TWON140: | 
 | 7132 | 	long		0x37300000,0x00000000 | 
 | 7133 |  | 
 | 7134 | EEXPTBL: | 
 | 7135 | 	long		0x3FFF0000,0x80000000,0x00000000,0x00000000 | 
 | 7136 | 	long		0x3FFF0000,0x8164D1F3,0xBC030774,0x9F841A9B | 
 | 7137 | 	long		0x3FFF0000,0x82CD8698,0xAC2BA1D8,0x9FC1D5B9 | 
 | 7138 | 	long		0x3FFF0000,0x843A28C3,0xACDE4048,0xA0728369 | 
 | 7139 | 	long		0x3FFF0000,0x85AAC367,0xCC487B14,0x1FC5C95C | 
 | 7140 | 	long		0x3FFF0000,0x871F6196,0x9E8D1010,0x1EE85C9F | 
 | 7141 | 	long		0x3FFF0000,0x88980E80,0x92DA8528,0x9FA20729 | 
 | 7142 | 	long		0x3FFF0000,0x8A14D575,0x496EFD9C,0xA07BF9AF | 
 | 7143 | 	long		0x3FFF0000,0x8B95C1E3,0xEA8BD6E8,0xA0020DCF | 
 | 7144 | 	long		0x3FFF0000,0x8D1ADF5B,0x7E5BA9E4,0x205A63DA | 
 | 7145 | 	long		0x3FFF0000,0x8EA4398B,0x45CD53C0,0x1EB70051 | 
 | 7146 | 	long		0x3FFF0000,0x9031DC43,0x1466B1DC,0x1F6EB029 | 
 | 7147 | 	long		0x3FFF0000,0x91C3D373,0xAB11C338,0xA0781494 | 
 | 7148 | 	long		0x3FFF0000,0x935A2B2F,0x13E6E92C,0x9EB319B0 | 
 | 7149 | 	long		0x3FFF0000,0x94F4EFA8,0xFEF70960,0x2017457D | 
 | 7150 | 	long		0x3FFF0000,0x96942D37,0x20185A00,0x1F11D537 | 
 | 7151 | 	long		0x3FFF0000,0x9837F051,0x8DB8A970,0x9FB952DD | 
 | 7152 | 	long		0x3FFF0000,0x99E04593,0x20B7FA64,0x1FE43087 | 
 | 7153 | 	long		0x3FFF0000,0x9B8D39B9,0xD54E5538,0x1FA2A818 | 
 | 7154 | 	long		0x3FFF0000,0x9D3ED9A7,0x2CFFB750,0x1FDE494D | 
 | 7155 | 	long		0x3FFF0000,0x9EF53260,0x91A111AC,0x20504890 | 
 | 7156 | 	long		0x3FFF0000,0xA0B0510F,0xB9714FC4,0xA073691C | 
 | 7157 | 	long		0x3FFF0000,0xA2704303,0x0C496818,0x1F9B7A05 | 
 | 7158 | 	long		0x3FFF0000,0xA43515AE,0x09E680A0,0xA0797126 | 
 | 7159 | 	long		0x3FFF0000,0xA5FED6A9,0xB15138EC,0xA071A140 | 
 | 7160 | 	long		0x3FFF0000,0xA7CD93B4,0xE9653568,0x204F62DA | 
 | 7161 | 	long		0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x1F283C4A | 
 | 7162 | 	long		0x3FFF0000,0xAB7A39B5,0xA93ED338,0x9F9A7FDC | 
 | 7163 | 	long		0x3FFF0000,0xAD583EEA,0x42A14AC8,0xA05B3FAC | 
 | 7164 | 	long		0x3FFF0000,0xAF3B78AD,0x690A4374,0x1FDF2610 | 
 | 7165 | 	long		0x3FFF0000,0xB123F581,0xD2AC2590,0x9F705F90 | 
 | 7166 | 	long		0x3FFF0000,0xB311C412,0xA9112488,0x201F678A | 
 | 7167 | 	long		0x3FFF0000,0xB504F333,0xF9DE6484,0x1F32FB13 | 
 | 7168 | 	long		0x3FFF0000,0xB6FD91E3,0x28D17790,0x20038B30 | 
 | 7169 | 	long		0x3FFF0000,0xB8FBAF47,0x62FB9EE8,0x200DC3CC | 
 | 7170 | 	long		0x3FFF0000,0xBAFF5AB2,0x133E45FC,0x9F8B2AE6 | 
 | 7171 | 	long		0x3FFF0000,0xBD08A39F,0x580C36C0,0xA02BBF70 | 
 | 7172 | 	long		0x3FFF0000,0xBF1799B6,0x7A731084,0xA00BF518 | 
 | 7173 | 	long		0x3FFF0000,0xC12C4CCA,0x66709458,0xA041DD41 | 
 | 7174 | 	long		0x3FFF0000,0xC346CCDA,0x24976408,0x9FDF137B | 
 | 7175 | 	long		0x3FFF0000,0xC5672A11,0x5506DADC,0x201F1568 | 
 | 7176 | 	long		0x3FFF0000,0xC78D74C8,0xABB9B15C,0x1FC13A2E | 
 | 7177 | 	long		0x3FFF0000,0xC9B9BD86,0x6E2F27A4,0xA03F8F03 | 
 | 7178 | 	long		0x3FFF0000,0xCBEC14FE,0xF2727C5C,0x1FF4907D | 
 | 7179 | 	long		0x3FFF0000,0xCE248C15,0x1F8480E4,0x9E6E53E4 | 
 | 7180 | 	long		0x3FFF0000,0xD06333DA,0xEF2B2594,0x1FD6D45C | 
 | 7181 | 	long		0x3FFF0000,0xD2A81D91,0xF12AE45C,0xA076EDB9 | 
 | 7182 | 	long		0x3FFF0000,0xD4F35AAB,0xCFEDFA20,0x9FA6DE21 | 
 | 7183 | 	long		0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x1EE69A2F | 
 | 7184 | 	long		0x3FFF0000,0xD99D15C2,0x78AFD7B4,0x207F439F | 
 | 7185 | 	long		0x3FFF0000,0xDBFBB797,0xDAF23754,0x201EC207 | 
 | 7186 | 	long		0x3FFF0000,0xDE60F482,0x5E0E9124,0x9E8BE175 | 
 | 7187 | 	long		0x3FFF0000,0xE0CCDEEC,0x2A94E110,0x20032C4B | 
 | 7188 | 	long		0x3FFF0000,0xE33F8972,0xBE8A5A50,0x2004DFF5 | 
 | 7189 | 	long		0x3FFF0000,0xE5B906E7,0x7C8348A8,0x1E72F47A | 
 | 7190 | 	long		0x3FFF0000,0xE8396A50,0x3C4BDC68,0x1F722F22 | 
 | 7191 | 	long		0x3FFF0000,0xEAC0C6E7,0xDD243930,0xA017E945 | 
 | 7192 | 	long		0x3FFF0000,0xED4F301E,0xD9942B84,0x1F401A5B | 
 | 7193 | 	long		0x3FFF0000,0xEFE4B99B,0xDCDAF5CC,0x9FB9A9E3 | 
 | 7194 | 	long		0x3FFF0000,0xF281773C,0x59FFB138,0x20744C05 | 
 | 7195 | 	long		0x3FFF0000,0xF5257D15,0x2486CC2C,0x1F773A19 | 
 | 7196 | 	long		0x3FFF0000,0xF7D0DF73,0x0AD13BB8,0x1FFE90D5 | 
 | 7197 | 	long		0x3FFF0000,0xFA83B2DB,0x722A033C,0xA041ED22 | 
 | 7198 | 	long		0x3FFF0000,0xFD3E0C0C,0xF486C174,0x1F853F3A | 
 | 7199 |  | 
 | 7200 | 	set		ADJFLAG,L_SCR2 | 
 | 7201 | 	set		SCALE,FP_SCR0 | 
 | 7202 | 	set		ADJSCALE,FP_SCR1 | 
 | 7203 | 	set		SC,FP_SCR0 | 
 | 7204 | 	set		ONEBYSC,FP_SCR1 | 
 | 7205 |  | 
 | 7206 | 	global		setox | 
 | 7207 | setox: | 
 | 7208 | #--entry point for EXP(X), here X is finite, non-zero, and not NaN's | 
 | 7209 |  | 
 | 7210 | #--Step 1. | 
 | 7211 | 	mov.l		(%a0),%d1		# load part of input X | 
 | 7212 | 	and.l		&0x7FFF0000,%d1		# biased expo. of X | 
 | 7213 | 	cmp.l		%d1,&0x3FBE0000		# 2^(-65) | 
 | 7214 | 	bge.b		EXPC1			# normal case | 
 | 7215 | 	bra		EXPSM | 
 | 7216 |  | 
 | 7217 | EXPC1: | 
 | 7218 | #--The case |X| >= 2^(-65) | 
 | 7219 | 	mov.w		4(%a0),%d1		# expo. and partial sig. of |X| | 
 | 7220 | 	cmp.l		%d1,&0x400CB167		# 16380 log2 trunc. 16 bits | 
 | 7221 | 	blt.b		EXPMAIN			# normal case | 
 | 7222 | 	bra		EEXPBIG | 
 | 7223 |  | 
 | 7224 | EXPMAIN: | 
 | 7225 | #--Step 2. | 
 | 7226 | #--This is the normal branch:	2^(-65) <= |X| < 16380 log2. | 
 | 7227 | 	fmov.x		(%a0),%fp0		# load input from (a0) | 
 | 7228 |  | 
 | 7229 | 	fmov.x		%fp0,%fp1 | 
 | 7230 | 	fmul.s		&0x42B8AA3B,%fp0	# 64/log2 * X | 
 | 7231 | 	fmovm.x		&0xc,-(%sp)		# save fp2 {%fp2/%fp3} | 
 | 7232 | 	mov.l		&0,ADJFLAG(%a6) | 
 | 7233 | 	fmov.l		%fp0,%d1		# N = int( X * 64/log2 ) | 
 | 7234 | 	lea		EEXPTBL(%pc),%a1 | 
 | 7235 | 	fmov.l		%d1,%fp0		# convert to floating-format | 
 | 7236 |  | 
 | 7237 | 	mov.l		%d1,L_SCR1(%a6)		# save N temporarily | 
 | 7238 | 	and.l		&0x3F,%d1		# D0 is J = N mod 64 | 
 | 7239 | 	lsl.l		&4,%d1 | 
 | 7240 | 	add.l		%d1,%a1			# address of 2^(J/64) | 
 | 7241 | 	mov.l		L_SCR1(%a6),%d1 | 
 | 7242 | 	asr.l		&6,%d1			# D0 is M | 
 | 7243 | 	add.w		&0x3FFF,%d1		# biased expo. of 2^(M) | 
 | 7244 | 	mov.w		L2(%pc),L_SCR1(%a6)	# prefetch L2, no need in CB | 
 | 7245 |  | 
 | 7246 | EXPCONT1: | 
 | 7247 | #--Step 3. | 
 | 7248 | #--fp1,fp2 saved on the stack. fp0 is N, fp1 is X, | 
 | 7249 | #--a0 points to 2^(J/64), D0 is biased expo. of 2^(M) | 
 | 7250 | 	fmov.x		%fp0,%fp2 | 
 | 7251 | 	fmul.s		&0xBC317218,%fp0	# N * L1, L1 = lead(-log2/64) | 
 | 7252 | 	fmul.x		L2(%pc),%fp2		# N * L2, L1+L2 = -log2/64 | 
 | 7253 | 	fadd.x		%fp1,%fp0		# X + N*L1 | 
 | 7254 | 	fadd.x		%fp2,%fp0		# fp0 is R, reduced arg. | 
 | 7255 |  | 
 | 7256 | #--Step 4. | 
 | 7257 | #--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL | 
 | 7258 | #-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5)))) | 
 | 7259 | #--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R | 
 | 7260 | #--[R+R*S*(A2+S*A4)] + [S*(A1+S*(A3+S*A5))] | 
 | 7261 |  | 
 | 7262 | 	fmov.x		%fp0,%fp1 | 
 | 7263 | 	fmul.x		%fp1,%fp1		# fp1 IS S = R*R | 
 | 7264 |  | 
 | 7265 | 	fmov.s		&0x3AB60B70,%fp2	# fp2 IS A5 | 
 | 7266 |  | 
 | 7267 | 	fmul.x		%fp1,%fp2		# fp2 IS S*A5 | 
 | 7268 | 	fmov.x		%fp1,%fp3 | 
 | 7269 | 	fmul.s		&0x3C088895,%fp3	# fp3 IS S*A4 | 
 | 7270 |  | 
 | 7271 | 	fadd.d		EEXPA3(%pc),%fp2	# fp2 IS A3+S*A5 | 
 | 7272 | 	fadd.d		EEXPA2(%pc),%fp3	# fp3 IS A2+S*A4 | 
 | 7273 |  | 
 | 7274 | 	fmul.x		%fp1,%fp2		# fp2 IS S*(A3+S*A5) | 
 | 7275 | 	mov.w		%d1,SCALE(%a6)		# SCALE is 2^(M) in extended | 
 | 7276 | 	mov.l		&0x80000000,SCALE+4(%a6) | 
 | 7277 | 	clr.l		SCALE+8(%a6) | 
 | 7278 |  | 
 | 7279 | 	fmul.x		%fp1,%fp3		# fp3 IS S*(A2+S*A4) | 
 | 7280 |  | 
 | 7281 | 	fadd.s		&0x3F000000,%fp2	# fp2 IS A1+S*(A3+S*A5) | 
 | 7282 | 	fmul.x		%fp0,%fp3		# fp3 IS R*S*(A2+S*A4) | 
 | 7283 |  | 
 | 7284 | 	fmul.x		%fp1,%fp2		# fp2 IS S*(A1+S*(A3+S*A5)) | 
 | 7285 | 	fadd.x		%fp3,%fp0		# fp0 IS R+R*S*(A2+S*A4), | 
 | 7286 |  | 
 | 7287 | 	fmov.x		(%a1)+,%fp1		# fp1 is lead. pt. of 2^(J/64) | 
 | 7288 | 	fadd.x		%fp2,%fp0		# fp0 is EXP(R) - 1 | 
 | 7289 |  | 
 | 7290 | #--Step 5 | 
 | 7291 | #--final reconstruction process | 
 | 7292 | #--EXP(X) = 2^M * ( 2^(J/64) + 2^(J/64)*(EXP(R)-1) ) | 
 | 7293 |  | 
 | 7294 | 	fmul.x		%fp1,%fp0		# 2^(J/64)*(Exp(R)-1) | 
 | 7295 | 	fmovm.x		(%sp)+,&0x30		# fp2 restored {%fp2/%fp3} | 
 | 7296 | 	fadd.s		(%a1),%fp0		# accurate 2^(J/64) | 
 | 7297 |  | 
 | 7298 | 	fadd.x		%fp1,%fp0		# 2^(J/64) + 2^(J/64)*... | 
 | 7299 | 	mov.l		ADJFLAG(%a6),%d1 | 
 | 7300 |  | 
 | 7301 | #--Step 6 | 
 | 7302 | 	tst.l		%d1 | 
 | 7303 | 	beq.b		NORMAL | 
 | 7304 | ADJUST: | 
 | 7305 | 	fmul.x		ADJSCALE(%a6),%fp0 | 
 | 7306 | NORMAL: | 
 | 7307 | 	fmov.l		%d0,%fpcr		# restore user FPCR | 
 | 7308 | 	mov.b		&FMUL_OP,%d1		# last inst is MUL | 
 | 7309 | 	fmul.x		SCALE(%a6),%fp0		# multiply 2^(M) | 
 | 7310 | 	bra		t_catch | 
 | 7311 |  | 
 | 7312 | EXPSM: | 
 | 7313 | #--Step 7 | 
 | 7314 | 	fmovm.x		(%a0),&0x80		# load X | 
 | 7315 | 	fmov.l		%d0,%fpcr | 
 | 7316 | 	fadd.s		&0x3F800000,%fp0	# 1+X in user mode | 
 | 7317 | 	bra		t_pinx2 | 
 | 7318 |  | 
 | 7319 | EEXPBIG: | 
 | 7320 | #--Step 8 | 
 | 7321 | 	cmp.l		%d1,&0x400CB27C		# 16480 log2 | 
 | 7322 | 	bgt.b		EXP2BIG | 
 | 7323 | #--Steps 8.2 -- 8.6 | 
 | 7324 | 	fmov.x		(%a0),%fp0		# load input from (a0) | 
 | 7325 |  | 
 | 7326 | 	fmov.x		%fp0,%fp1 | 
 | 7327 | 	fmul.s		&0x42B8AA3B,%fp0	# 64/log2 * X | 
 | 7328 | 	fmovm.x		&0xc,-(%sp)		# save fp2 {%fp2/%fp3} | 
 | 7329 | 	mov.l		&1,ADJFLAG(%a6) | 
 | 7330 | 	fmov.l		%fp0,%d1		# N = int( X * 64/log2 ) | 
 | 7331 | 	lea		EEXPTBL(%pc),%a1 | 
 | 7332 | 	fmov.l		%d1,%fp0		# convert to floating-format | 
 | 7333 | 	mov.l		%d1,L_SCR1(%a6)		# save N temporarily | 
 | 7334 | 	and.l		&0x3F,%d1		# D0 is J = N mod 64 | 
 | 7335 | 	lsl.l		&4,%d1 | 
 | 7336 | 	add.l		%d1,%a1			# address of 2^(J/64) | 
 | 7337 | 	mov.l		L_SCR1(%a6),%d1 | 
 | 7338 | 	asr.l		&6,%d1			# D0 is K | 
 | 7339 | 	mov.l		%d1,L_SCR1(%a6)		# save K temporarily | 
 | 7340 | 	asr.l		&1,%d1			# D0 is M1 | 
 | 7341 | 	sub.l		%d1,L_SCR1(%a6)		# a1 is M | 
 | 7342 | 	add.w		&0x3FFF,%d1		# biased expo. of 2^(M1) | 
 | 7343 | 	mov.w		%d1,ADJSCALE(%a6)	# ADJSCALE := 2^(M1) | 
 | 7344 | 	mov.l		&0x80000000,ADJSCALE+4(%a6) | 
 | 7345 | 	clr.l		ADJSCALE+8(%a6) | 
 | 7346 | 	mov.l		L_SCR1(%a6),%d1		# D0 is M | 
 | 7347 | 	add.w		&0x3FFF,%d1		# biased expo. of 2^(M) | 
 | 7348 | 	bra.w		EXPCONT1		# go back to Step 3 | 
 | 7349 |  | 
 | 7350 | EXP2BIG: | 
 | 7351 | #--Step 9 | 
 | 7352 | 	tst.b		(%a0)			# is X positive or negative? | 
 | 7353 | 	bmi		t_unfl2 | 
 | 7354 | 	bra		t_ovfl2 | 
 | 7355 |  | 
 | 7356 | 	global		setoxd | 
 | 7357 | setoxd: | 
 | 7358 | #--entry point for EXP(X), X is denormalized | 
 | 7359 | 	mov.l		(%a0),-(%sp) | 
 | 7360 | 	andi.l		&0x80000000,(%sp) | 
 | 7361 | 	ori.l		&0x00800000,(%sp)	# sign(X)*2^(-126) | 
 | 7362 |  | 
 | 7363 | 	fmov.s		&0x3F800000,%fp0 | 
 | 7364 |  | 
 | 7365 | 	fmov.l		%d0,%fpcr | 
 | 7366 | 	fadd.s		(%sp)+,%fp0 | 
 | 7367 | 	bra		t_pinx2 | 
 | 7368 |  | 
 | 7369 | 	global		setoxm1 | 
 | 7370 | setoxm1: | 
 | 7371 | #--entry point for EXPM1(X), here X is finite, non-zero, non-NaN | 
 | 7372 |  | 
 | 7373 | #--Step 1. | 
 | 7374 | #--Step 1.1 | 
 | 7375 | 	mov.l		(%a0),%d1		# load part of input X | 
 | 7376 | 	and.l		&0x7FFF0000,%d1		# biased expo. of X | 
 | 7377 | 	cmp.l		%d1,&0x3FFD0000		# 1/4 | 
 | 7378 | 	bge.b		EM1CON1			# |X| >= 1/4 | 
 | 7379 | 	bra		EM1SM | 
 | 7380 |  | 
 | 7381 | EM1CON1: | 
 | 7382 | #--Step 1.3 | 
 | 7383 | #--The case |X| >= 1/4 | 
 | 7384 | 	mov.w		4(%a0),%d1		# expo. and partial sig. of |X| | 
 | 7385 | 	cmp.l		%d1,&0x4004C215		# 70log2 rounded up to 16 bits | 
 | 7386 | 	ble.b		EM1MAIN			# 1/4 <= |X| <= 70log2 | 
 | 7387 | 	bra		EM1BIG | 
 | 7388 |  | 
 | 7389 | EM1MAIN: | 
 | 7390 | #--Step 2. | 
 | 7391 | #--This is the case:	1/4 <= |X| <= 70 log2. | 
 | 7392 | 	fmov.x		(%a0),%fp0		# load input from (a0) | 
 | 7393 |  | 
 | 7394 | 	fmov.x		%fp0,%fp1 | 
 | 7395 | 	fmul.s		&0x42B8AA3B,%fp0	# 64/log2 * X | 
 | 7396 | 	fmovm.x		&0xc,-(%sp)		# save fp2 {%fp2/%fp3} | 
 | 7397 | 	fmov.l		%fp0,%d1		# N = int( X * 64/log2 ) | 
 | 7398 | 	lea		EEXPTBL(%pc),%a1 | 
 | 7399 | 	fmov.l		%d1,%fp0		# convert to floating-format | 
 | 7400 |  | 
 | 7401 | 	mov.l		%d1,L_SCR1(%a6)		# save N temporarily | 
 | 7402 | 	and.l		&0x3F,%d1		# D0 is J = N mod 64 | 
 | 7403 | 	lsl.l		&4,%d1 | 
 | 7404 | 	add.l		%d1,%a1			# address of 2^(J/64) | 
 | 7405 | 	mov.l		L_SCR1(%a6),%d1 | 
 | 7406 | 	asr.l		&6,%d1			# D0 is M | 
 | 7407 | 	mov.l		%d1,L_SCR1(%a6)		# save a copy of M | 
 | 7408 |  | 
 | 7409 | #--Step 3. | 
 | 7410 | #--fp1,fp2 saved on the stack. fp0 is N, fp1 is X, | 
 | 7411 | #--a0 points to 2^(J/64), D0 and a1 both contain M | 
 | 7412 | 	fmov.x		%fp0,%fp2 | 
 | 7413 | 	fmul.s		&0xBC317218,%fp0	# N * L1, L1 = lead(-log2/64) | 
 | 7414 | 	fmul.x		L2(%pc),%fp2		# N * L2, L1+L2 = -log2/64 | 
 | 7415 | 	fadd.x		%fp1,%fp0		# X + N*L1 | 
 | 7416 | 	fadd.x		%fp2,%fp0		# fp0 is R, reduced arg. | 
 | 7417 | 	add.w		&0x3FFF,%d1		# D0 is biased expo. of 2^M | 
 | 7418 |  | 
 | 7419 | #--Step 4. | 
 | 7420 | #--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL | 
 | 7421 | #-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*(A5 + R*A6))))) | 
 | 7422 | #--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R | 
 | 7423 | #--[R*S*(A2+S*(A4+S*A6))] + [R+S*(A1+S*(A3+S*A5))] | 
 | 7424 |  | 
 | 7425 | 	fmov.x		%fp0,%fp1 | 
 | 7426 | 	fmul.x		%fp1,%fp1		# fp1 IS S = R*R | 
 | 7427 |  | 
 | 7428 | 	fmov.s		&0x3950097B,%fp2	# fp2 IS a6 | 
 | 7429 |  | 
 | 7430 | 	fmul.x		%fp1,%fp2		# fp2 IS S*A6 | 
 | 7431 | 	fmov.x		%fp1,%fp3 | 
 | 7432 | 	fmul.s		&0x3AB60B6A,%fp3	# fp3 IS S*A5 | 
 | 7433 |  | 
 | 7434 | 	fadd.d		EM1A4(%pc),%fp2		# fp2 IS A4+S*A6 | 
 | 7435 | 	fadd.d		EM1A3(%pc),%fp3		# fp3 IS A3+S*A5 | 
 | 7436 | 	mov.w		%d1,SC(%a6)		# SC is 2^(M) in extended | 
 | 7437 | 	mov.l		&0x80000000,SC+4(%a6) | 
 | 7438 | 	clr.l		SC+8(%a6) | 
 | 7439 |  | 
 | 7440 | 	fmul.x		%fp1,%fp2		# fp2 IS S*(A4+S*A6) | 
 | 7441 | 	mov.l		L_SCR1(%a6),%d1		# D0 is	M | 
 | 7442 | 	neg.w		%d1			# D0 is -M | 
 | 7443 | 	fmul.x		%fp1,%fp3		# fp3 IS S*(A3+S*A5) | 
 | 7444 | 	add.w		&0x3FFF,%d1		# biased expo. of 2^(-M) | 
 | 7445 | 	fadd.d		EM1A2(%pc),%fp2		# fp2 IS A2+S*(A4+S*A6) | 
 | 7446 | 	fadd.s		&0x3F000000,%fp3	# fp3 IS A1+S*(A3+S*A5) | 
 | 7447 |  | 
 | 7448 | 	fmul.x		%fp1,%fp2		# fp2 IS S*(A2+S*(A4+S*A6)) | 
 | 7449 | 	or.w		&0x8000,%d1		# signed/expo. of -2^(-M) | 
 | 7450 | 	mov.w		%d1,ONEBYSC(%a6)	# OnebySc is -2^(-M) | 
 | 7451 | 	mov.l		&0x80000000,ONEBYSC+4(%a6) | 
 | 7452 | 	clr.l		ONEBYSC+8(%a6) | 
 | 7453 | 	fmul.x		%fp3,%fp1		# fp1 IS S*(A1+S*(A3+S*A5)) | 
 | 7454 |  | 
 | 7455 | 	fmul.x		%fp0,%fp2		# fp2 IS R*S*(A2+S*(A4+S*A6)) | 
 | 7456 | 	fadd.x		%fp1,%fp0		# fp0 IS R+S*(A1+S*(A3+S*A5)) | 
 | 7457 |  | 
 | 7458 | 	fadd.x		%fp2,%fp0		# fp0 IS EXP(R)-1 | 
 | 7459 |  | 
 | 7460 | 	fmovm.x		(%sp)+,&0x30		# fp2 restored {%fp2/%fp3} | 
 | 7461 |  | 
 | 7462 | #--Step 5 | 
 | 7463 | #--Compute 2^(J/64)*p | 
 | 7464 |  | 
 | 7465 | 	fmul.x		(%a1),%fp0		# 2^(J/64)*(Exp(R)-1) | 
 | 7466 |  | 
 | 7467 | #--Step 6 | 
 | 7468 | #--Step 6.1 | 
 | 7469 | 	mov.l		L_SCR1(%a6),%d1		# retrieve M | 
 | 7470 | 	cmp.l		%d1,&63 | 
 | 7471 | 	ble.b		MLE63 | 
 | 7472 | #--Step 6.2	M >= 64 | 
 | 7473 | 	fmov.s		12(%a1),%fp1		# fp1 is t | 
 | 7474 | 	fadd.x		ONEBYSC(%a6),%fp1	# fp1 is t+OnebySc | 
 | 7475 | 	fadd.x		%fp1,%fp0		# p+(t+OnebySc), fp1 released | 
 | 7476 | 	fadd.x		(%a1),%fp0		# T+(p+(t+OnebySc)) | 
 | 7477 | 	bra		EM1SCALE | 
 | 7478 | MLE63: | 
 | 7479 | #--Step 6.3	M <= 63 | 
 | 7480 | 	cmp.l		%d1,&-3 | 
 | 7481 | 	bge.b		MGEN3 | 
 | 7482 | MLTN3: | 
 | 7483 | #--Step 6.4	M <= -4 | 
 | 7484 | 	fadd.s		12(%a1),%fp0		# p+t | 
 | 7485 | 	fadd.x		(%a1),%fp0		# T+(p+t) | 
 | 7486 | 	fadd.x		ONEBYSC(%a6),%fp0	# OnebySc + (T+(p+t)) | 
 | 7487 | 	bra		EM1SCALE | 
 | 7488 | MGEN3: | 
 | 7489 | #--Step 6.5	-3 <= M <= 63 | 
 | 7490 | 	fmov.x		(%a1)+,%fp1		# fp1 is T | 
 | 7491 | 	fadd.s		(%a1),%fp0		# fp0 is p+t | 
 | 7492 | 	fadd.x		ONEBYSC(%a6),%fp1	# fp1 is T+OnebySc | 
 | 7493 | 	fadd.x		%fp1,%fp0		# (T+OnebySc)+(p+t) | 
 | 7494 |  | 
 | 7495 | EM1SCALE: | 
 | 7496 | #--Step 6.6 | 
 | 7497 | 	fmov.l		%d0,%fpcr | 
 | 7498 | 	fmul.x		SC(%a6),%fp0 | 
 | 7499 | 	bra		t_inx2 | 
 | 7500 |  | 
 | 7501 | EM1SM: | 
 | 7502 | #--Step 7	|X| < 1/4. | 
 | 7503 | 	cmp.l		%d1,&0x3FBE0000		# 2^(-65) | 
 | 7504 | 	bge.b		EM1POLY | 
 | 7505 |  | 
 | 7506 | EM1TINY: | 
 | 7507 | #--Step 8	|X| < 2^(-65) | 
 | 7508 | 	cmp.l		%d1,&0x00330000		# 2^(-16312) | 
 | 7509 | 	blt.b		EM12TINY | 
 | 7510 | #--Step 8.2 | 
 | 7511 | 	mov.l		&0x80010000,SC(%a6)	# SC is -2^(-16382) | 
 | 7512 | 	mov.l		&0x80000000,SC+4(%a6) | 
 | 7513 | 	clr.l		SC+8(%a6) | 
 | 7514 | 	fmov.x		(%a0),%fp0 | 
 | 7515 | 	fmov.l		%d0,%fpcr | 
 | 7516 | 	mov.b		&FADD_OP,%d1		# last inst is ADD | 
 | 7517 | 	fadd.x		SC(%a6),%fp0 | 
 | 7518 | 	bra		t_catch | 
 | 7519 |  | 
 | 7520 | EM12TINY: | 
 | 7521 | #--Step 8.3 | 
 | 7522 | 	fmov.x		(%a0),%fp0 | 
 | 7523 | 	fmul.d		TWO140(%pc),%fp0 | 
 | 7524 | 	mov.l		&0x80010000,SC(%a6) | 
 | 7525 | 	mov.l		&0x80000000,SC+4(%a6) | 
 | 7526 | 	clr.l		SC+8(%a6) | 
 | 7527 | 	fadd.x		SC(%a6),%fp0 | 
 | 7528 | 	fmov.l		%d0,%fpcr | 
 | 7529 | 	mov.b		&FMUL_OP,%d1		# last inst is MUL | 
 | 7530 | 	fmul.d		TWON140(%pc),%fp0 | 
 | 7531 | 	bra		t_catch | 
 | 7532 |  | 
 | 7533 | EM1POLY: | 
 | 7534 | #--Step 9	exp(X)-1 by a simple polynomial | 
 | 7535 | 	fmov.x		(%a0),%fp0		# fp0 is X | 
 | 7536 | 	fmul.x		%fp0,%fp0		# fp0 is S := X*X | 
 | 7537 | 	fmovm.x		&0xc,-(%sp)		# save fp2 {%fp2/%fp3} | 
 | 7538 | 	fmov.s		&0x2F30CAA8,%fp1	# fp1 is B12 | 
 | 7539 | 	fmul.x		%fp0,%fp1		# fp1 is S*B12 | 
 | 7540 | 	fmov.s		&0x310F8290,%fp2	# fp2 is B11 | 
 | 7541 | 	fadd.s		&0x32D73220,%fp1	# fp1 is B10+S*B12 | 
 | 7542 |  | 
 | 7543 | 	fmul.x		%fp0,%fp2		# fp2 is S*B11 | 
 | 7544 | 	fmul.x		%fp0,%fp1		# fp1 is S*(B10 + ... | 
 | 7545 |  | 
 | 7546 | 	fadd.s		&0x3493F281,%fp2	# fp2 is B9+S*... | 
 | 7547 | 	fadd.d		EM1B8(%pc),%fp1		# fp1 is B8+S*... | 
 | 7548 |  | 
 | 7549 | 	fmul.x		%fp0,%fp2		# fp2 is S*(B9+... | 
 | 7550 | 	fmul.x		%fp0,%fp1		# fp1 is S*(B8+... | 
 | 7551 |  | 
 | 7552 | 	fadd.d		EM1B7(%pc),%fp2		# fp2 is B7+S*... | 
 | 7553 | 	fadd.d		EM1B6(%pc),%fp1		# fp1 is B6+S*... | 
 | 7554 |  | 
 | 7555 | 	fmul.x		%fp0,%fp2		# fp2 is S*(B7+... | 
 | 7556 | 	fmul.x		%fp0,%fp1		# fp1 is S*(B6+... | 
 | 7557 |  | 
 | 7558 | 	fadd.d		EM1B5(%pc),%fp2		# fp2 is B5+S*... | 
 | 7559 | 	fadd.d		EM1B4(%pc),%fp1		# fp1 is B4+S*... | 
 | 7560 |  | 
 | 7561 | 	fmul.x		%fp0,%fp2		# fp2 is S*(B5+... | 
 | 7562 | 	fmul.x		%fp0,%fp1		# fp1 is S*(B4+... | 
 | 7563 |  | 
 | 7564 | 	fadd.d		EM1B3(%pc),%fp2		# fp2 is B3+S*... | 
 | 7565 | 	fadd.x		EM1B2(%pc),%fp1		# fp1 is B2+S*... | 
 | 7566 |  | 
 | 7567 | 	fmul.x		%fp0,%fp2		# fp2 is S*(B3+... | 
 | 7568 | 	fmul.x		%fp0,%fp1		# fp1 is S*(B2+... | 
 | 7569 |  | 
 | 7570 | 	fmul.x		%fp0,%fp2		# fp2 is S*S*(B3+...) | 
 | 7571 | 	fmul.x		(%a0),%fp1		# fp1 is X*S*(B2... | 
 | 7572 |  | 
 | 7573 | 	fmul.s		&0x3F000000,%fp0	# fp0 is S*B1 | 
 | 7574 | 	fadd.x		%fp2,%fp1		# fp1 is Q | 
 | 7575 |  | 
 | 7576 | 	fmovm.x		(%sp)+,&0x30		# fp2 restored {%fp2/%fp3} | 
 | 7577 |  | 
 | 7578 | 	fadd.x		%fp1,%fp0		# fp0 is S*B1+Q | 
 | 7579 |  | 
 | 7580 | 	fmov.l		%d0,%fpcr | 
 | 7581 | 	fadd.x		(%a0),%fp0 | 
 | 7582 | 	bra		t_inx2 | 
 | 7583 |  | 
 | 7584 | EM1BIG: | 
 | 7585 | #--Step 10	|X| > 70 log2 | 
 | 7586 | 	mov.l		(%a0),%d1 | 
 | 7587 | 	cmp.l		%d1,&0 | 
 | 7588 | 	bgt.w		EXPC1 | 
 | 7589 | #--Step 10.2 | 
 | 7590 | 	fmov.s		&0xBF800000,%fp0	# fp0 is -1 | 
 | 7591 | 	fmov.l		%d0,%fpcr | 
 | 7592 | 	fadd.s		&0x00800000,%fp0	# -1 + 2^(-126) | 
 | 7593 | 	bra		t_minx2 | 
 | 7594 |  | 
 | 7595 | 	global		setoxm1d | 
 | 7596 | setoxm1d: | 
 | 7597 | #--entry point for EXPM1(X), here X is denormalized | 
 | 7598 | #--Step 0. | 
 | 7599 | 	bra		t_extdnrm | 
 | 7600 |  | 
 | 7601 | ######################################################################### | 
 | 7602 | # sgetexp():  returns the exponent portion of the input argument.	# | 
 | 7603 | #	      The exponent bias is removed and the exponent value is	# | 
 | 7604 | #	      returned as an extended precision number in fp0.		# | 
 | 7605 | # sgetexpd(): handles denormalized numbers.				# | 
 | 7606 | #									# | 
 | 7607 | # sgetman():  extracts the mantissa of the input argument. The		# | 
 | 7608 | #	      mantissa is converted to an extended precision number w/	# | 
 | 7609 | #	      an exponent of $3fff and is returned in fp0. The range of # | 
 | 7610 | #	      the result is [1.0 - 2.0).				# | 
 | 7611 | # sgetmand(): handles denormalized numbers.				# | 
 | 7612 | #									# | 
 | 7613 | # INPUT *************************************************************** # | 
 | 7614 | #	a0  = pointer to extended precision input			# | 
 | 7615 | #									# | 
 | 7616 | # OUTPUT ************************************************************** # | 
 | 7617 | #	fp0 = exponent(X) or mantissa(X)				# | 
 | 7618 | #									# | 
 | 7619 | ######################################################################### | 
 | 7620 |  | 
 | 7621 | 	global		sgetexp | 
 | 7622 | sgetexp: | 
 | 7623 | 	mov.w		SRC_EX(%a0),%d0		# get the exponent | 
 | 7624 | 	bclr		&0xf,%d0		# clear the sign bit | 
 | 7625 | 	subi.w		&0x3fff,%d0		# subtract off the bias | 
 | 7626 | 	fmov.w		%d0,%fp0		# return exp in fp0 | 
 | 7627 | 	blt.b		sgetexpn		# it's negative | 
 | 7628 | 	rts | 
 | 7629 |  | 
 | 7630 | sgetexpn: | 
 | 7631 | 	mov.b		&neg_bmask,FPSR_CC(%a6)	# set 'N' ccode bit | 
 | 7632 | 	rts | 
 | 7633 |  | 
 | 7634 | 	global		sgetexpd | 
 | 7635 | sgetexpd: | 
 | 7636 | 	bsr.l		norm			# normalize | 
 | 7637 | 	neg.w		%d0			# new exp = -(shft amt) | 
 | 7638 | 	subi.w		&0x3fff,%d0		# subtract off the bias | 
 | 7639 | 	fmov.w		%d0,%fp0		# return exp in fp0 | 
 | 7640 | 	mov.b		&neg_bmask,FPSR_CC(%a6)	# set 'N' ccode bit | 
 | 7641 | 	rts | 
 | 7642 |  | 
 | 7643 | 	global		sgetman | 
 | 7644 | sgetman: | 
 | 7645 | 	mov.w		SRC_EX(%a0),%d0		# get the exp | 
 | 7646 | 	ori.w		&0x7fff,%d0		# clear old exp | 
 | 7647 | 	bclr		&0xe,%d0		# make it the new exp +-3fff | 
 | 7648 |  | 
 | 7649 | # here, we build the result in a tmp location so as not to disturb the input | 
 | 7650 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) # copy to tmp loc | 
 | 7651 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) # copy to tmp loc | 
 | 7652 | 	mov.w		%d0,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 7653 | 	fmov.x		FP_SCR0(%a6),%fp0	# put new value back in fp0 | 
 | 7654 | 	bmi.b		sgetmann		# it's negative | 
 | 7655 | 	rts | 
 | 7656 |  | 
 | 7657 | sgetmann: | 
 | 7658 | 	mov.b		&neg_bmask,FPSR_CC(%a6)	# set 'N' ccode bit | 
 | 7659 | 	rts | 
 | 7660 |  | 
 | 7661 | # | 
 | 7662 | # For denormalized numbers, shift the mantissa until the j-bit = 1, | 
 | 7663 | # then load the exponent with +/1 $3fff. | 
 | 7664 | # | 
 | 7665 | 	global		sgetmand | 
 | 7666 | sgetmand: | 
 | 7667 | 	bsr.l		norm			# normalize exponent | 
 | 7668 | 	bra.b		sgetman | 
 | 7669 |  | 
 | 7670 | ######################################################################### | 
 | 7671 | # scosh():  computes the hyperbolic cosine of a normalized input	# | 
 | 7672 | # scoshd(): computes the hyperbolic cosine of a denormalized input	# | 
 | 7673 | #									# | 
 | 7674 | # INPUT ***************************************************************	# | 
 | 7675 | #	a0 = pointer to extended precision input			# | 
 | 7676 | #	d0 = round precision,mode					# | 
 | 7677 | #									# | 
 | 7678 | # OUTPUT **************************************************************	# | 
 | 7679 | #	fp0 = cosh(X)							# | 
 | 7680 | #									# | 
 | 7681 | # ACCURACY and MONOTONICITY *******************************************	# | 
 | 7682 | #	The returned result is within 3 ulps in 64 significant bit,	# | 
 | 7683 | #	i.e. within 0.5001 ulp to 53 bits if the result is subsequently	# | 
 | 7684 | #	rounded to double precision. The result is provably monotonic	# | 
 | 7685 | #	in double precision.						# | 
 | 7686 | #									# | 
 | 7687 | # ALGORITHM ***********************************************************	# | 
 | 7688 | #									# | 
 | 7689 | #	COSH								# | 
 | 7690 | #	1. If |X| > 16380 log2, go to 3.				# | 
 | 7691 | #									# | 
 | 7692 | #	2. (|X| <= 16380 log2) Cosh(X) is obtained by the formulae	# | 
 | 7693 | #		y = |X|, z = exp(Y), and				# | 
 | 7694 | #		cosh(X) = (1/2)*( z + 1/z ).				# | 
 | 7695 | #		Exit.							# | 
 | 7696 | #									# | 
 | 7697 | #	3. (|X| > 16380 log2). If |X| > 16480 log2, go to 5.		# | 
 | 7698 | #									# | 
 | 7699 | #	4. (16380 log2 < |X| <= 16480 log2)				# | 
 | 7700 | #		cosh(X) = sign(X) * exp(|X|)/2.				# | 
 | 7701 | #		However, invoking exp(|X|) may cause premature		# | 
 | 7702 | #		overflow. Thus, we calculate sinh(X) as follows:	# | 
 | 7703 | #		Y	:= |X|						# | 
 | 7704 | #		Fact	:=	2**(16380)				# | 
 | 7705 | #		Y'	:= Y - 16381 log2				# | 
 | 7706 | #		cosh(X) := Fact * exp(Y').				# | 
 | 7707 | #		Exit.							# | 
 | 7708 | #									# | 
 | 7709 | #	5. (|X| > 16480 log2) sinh(X) must overflow. Return		# | 
 | 7710 | #		Huge*Huge to generate overflow and an infinity with	# | 
 | 7711 | #		the appropriate sign. Huge is the largest finite number	# | 
 | 7712 | #		in extended format. Exit.				# | 
 | 7713 | #									# | 
 | 7714 | ######################################################################### | 
 | 7715 |  | 
 | 7716 | TWO16380: | 
 | 7717 | 	long		0x7FFB0000,0x80000000,0x00000000,0x00000000 | 
 | 7718 |  | 
 | 7719 | 	global		scosh | 
 | 7720 | scosh: | 
 | 7721 | 	fmov.x		(%a0),%fp0		# LOAD INPUT | 
 | 7722 |  | 
 | 7723 | 	mov.l		(%a0),%d1 | 
 | 7724 | 	mov.w		4(%a0),%d1 | 
 | 7725 | 	and.l		&0x7FFFFFFF,%d1 | 
 | 7726 | 	cmp.l		%d1,&0x400CB167 | 
 | 7727 | 	bgt.b		COSHBIG | 
 | 7728 |  | 
 | 7729 | #--THIS IS THE USUAL CASE, |X| < 16380 LOG2 | 
 | 7730 | #--COSH(X) = (1/2) * ( EXP(X) + 1/EXP(X) ) | 
 | 7731 |  | 
 | 7732 | 	fabs.x		%fp0			# |X| | 
 | 7733 |  | 
 | 7734 | 	mov.l		%d0,-(%sp) | 
 | 7735 | 	clr.l		%d0 | 
 | 7736 | 	fmovm.x		&0x01,-(%sp)		# save |X| to stack | 
 | 7737 | 	lea		(%sp),%a0		# pass ptr to |X| | 
 | 7738 | 	bsr		setox			# FP0 IS EXP(|X|) | 
 | 7739 | 	add.l		&0xc,%sp		# erase |X| from stack | 
 | 7740 | 	fmul.s		&0x3F000000,%fp0	# (1/2)EXP(|X|) | 
 | 7741 | 	mov.l		(%sp)+,%d0 | 
 | 7742 |  | 
 | 7743 | 	fmov.s		&0x3E800000,%fp1	# (1/4) | 
 | 7744 | 	fdiv.x		%fp0,%fp1		# 1/(2 EXP(|X|)) | 
 | 7745 |  | 
 | 7746 | 	fmov.l		%d0,%fpcr | 
 | 7747 | 	mov.b		&FADD_OP,%d1		# last inst is ADD | 
 | 7748 | 	fadd.x		%fp1,%fp0 | 
 | 7749 | 	bra		t_catch | 
 | 7750 |  | 
 | 7751 | COSHBIG: | 
 | 7752 | 	cmp.l		%d1,&0x400CB2B3 | 
 | 7753 | 	bgt.b		COSHHUGE | 
 | 7754 |  | 
 | 7755 | 	fabs.x		%fp0 | 
 | 7756 | 	fsub.d		T1(%pc),%fp0		# (|X|-16381LOG2_LEAD) | 
 | 7757 | 	fsub.d		T2(%pc),%fp0		# |X| - 16381 LOG2, ACCURATE | 
 | 7758 |  | 
 | 7759 | 	mov.l		%d0,-(%sp) | 
 | 7760 | 	clr.l		%d0 | 
 | 7761 | 	fmovm.x		&0x01,-(%sp)		# save fp0 to stack | 
 | 7762 | 	lea		(%sp),%a0		# pass ptr to fp0 | 
 | 7763 | 	bsr		setox | 
 | 7764 | 	add.l		&0xc,%sp		# clear fp0 from stack | 
 | 7765 | 	mov.l		(%sp)+,%d0 | 
 | 7766 |  | 
 | 7767 | 	fmov.l		%d0,%fpcr | 
 | 7768 | 	mov.b		&FMUL_OP,%d1		# last inst is MUL | 
 | 7769 | 	fmul.x		TWO16380(%pc),%fp0 | 
 | 7770 | 	bra		t_catch | 
 | 7771 |  | 
 | 7772 | COSHHUGE: | 
 | 7773 | 	bra		t_ovfl2 | 
 | 7774 |  | 
 | 7775 | 	global		scoshd | 
 | 7776 | #--COSH(X) = 1 FOR DENORMALIZED X | 
 | 7777 | scoshd: | 
 | 7778 | 	fmov.s		&0x3F800000,%fp0 | 
 | 7779 |  | 
 | 7780 | 	fmov.l		%d0,%fpcr | 
 | 7781 | 	fadd.s		&0x00800000,%fp0 | 
 | 7782 | 	bra		t_pinx2 | 
 | 7783 |  | 
 | 7784 | ######################################################################### | 
 | 7785 | # ssinh():  computes the hyperbolic sine of a normalized input		# | 
 | 7786 | # ssinhd(): computes the hyperbolic sine of a denormalized input	# | 
 | 7787 | #									# | 
 | 7788 | # INPUT *************************************************************** # | 
 | 7789 | #	a0 = pointer to extended precision input			# | 
 | 7790 | #	d0 = round precision,mode					# | 
 | 7791 | #									# | 
 | 7792 | # OUTPUT ************************************************************** # | 
 | 7793 | #	fp0 = sinh(X)							# | 
 | 7794 | #									# | 
 | 7795 | # ACCURACY and MONOTONICITY *******************************************	# | 
 | 7796 | #	The returned result is within 3 ulps in 64 significant bit,	# | 
 | 7797 | #	i.e. within 0.5001 ulp to 53 bits if the result is subsequently # | 
 | 7798 | #	rounded to double precision. The result is provably monotonic	# | 
 | 7799 | #	in double precision.						# | 
 | 7800 | #									# | 
 | 7801 | # ALGORITHM *********************************************************** # | 
 | 7802 | #									# | 
 | 7803 | #       SINH								# | 
 | 7804 | #       1. If |X| > 16380 log2, go to 3.				# | 
 | 7805 | #									# | 
 | 7806 | #       2. (|X| <= 16380 log2) Sinh(X) is obtained by the formula	# | 
 | 7807 | #               y = |X|, sgn = sign(X), and z = expm1(Y),		# | 
 | 7808 | #               sinh(X) = sgn*(1/2)*( z + z/(1+z) ).			# | 
 | 7809 | #          Exit.							# | 
 | 7810 | #									# | 
 | 7811 | #       3. If |X| > 16480 log2, go to 5.				# | 
 | 7812 | #									# | 
 | 7813 | #       4. (16380 log2 < |X| <= 16480 log2)				# | 
 | 7814 | #               sinh(X) = sign(X) * exp(|X|)/2.				# | 
 | 7815 | #          However, invoking exp(|X|) may cause premature overflow.	# | 
 | 7816 | #          Thus, we calculate sinh(X) as follows:			# | 
 | 7817 | #             Y       := |X|						# | 
 | 7818 | #             sgn     := sign(X)					# | 
 | 7819 | #             sgnFact := sgn * 2**(16380)				# | 
 | 7820 | #             Y'      := Y - 16381 log2					# | 
 | 7821 | #             sinh(X) := sgnFact * exp(Y').				# | 
 | 7822 | #          Exit.							# | 
 | 7823 | #									# | 
 | 7824 | #       5. (|X| > 16480 log2) sinh(X) must overflow. Return		# | 
 | 7825 | #          sign(X)*Huge*Huge to generate overflow and an infinity with	# | 
 | 7826 | #          the appropriate sign. Huge is the largest finite number in	# | 
 | 7827 | #          extended format. Exit.					# | 
 | 7828 | #									# | 
 | 7829 | ######################################################################### | 
 | 7830 |  | 
 | 7831 | 	global		ssinh | 
 | 7832 | ssinh: | 
 | 7833 | 	fmov.x		(%a0),%fp0		# LOAD INPUT | 
 | 7834 |  | 
 | 7835 | 	mov.l		(%a0),%d1 | 
 | 7836 | 	mov.w		4(%a0),%d1 | 
 | 7837 | 	mov.l		%d1,%a1			# save (compacted) operand | 
 | 7838 | 	and.l		&0x7FFFFFFF,%d1 | 
 | 7839 | 	cmp.l		%d1,&0x400CB167 | 
 | 7840 | 	bgt.b		SINHBIG | 
 | 7841 |  | 
 | 7842 | #--THIS IS THE USUAL CASE, |X| < 16380 LOG2 | 
 | 7843 | #--Y = |X|, Z = EXPM1(Y), SINH(X) = SIGN(X)*(1/2)*( Z + Z/(1+Z) ) | 
 | 7844 |  | 
 | 7845 | 	fabs.x		%fp0			# Y = |X| | 
 | 7846 |  | 
 | 7847 | 	movm.l		&0x8040,-(%sp)		# {a1/d0} | 
 | 7848 | 	fmovm.x		&0x01,-(%sp)		# save Y on stack | 
 | 7849 | 	lea		(%sp),%a0		# pass ptr to Y | 
 | 7850 | 	clr.l		%d0 | 
 | 7851 | 	bsr		setoxm1			# FP0 IS Z = EXPM1(Y) | 
 | 7852 | 	add.l		&0xc,%sp		# clear Y from stack | 
 | 7853 | 	fmov.l		&0,%fpcr | 
 | 7854 | 	movm.l		(%sp)+,&0x0201		# {a1/d0} | 
 | 7855 |  | 
 | 7856 | 	fmov.x		%fp0,%fp1 | 
 | 7857 | 	fadd.s		&0x3F800000,%fp1	# 1+Z | 
 | 7858 | 	fmov.x		%fp0,-(%sp) | 
 | 7859 | 	fdiv.x		%fp1,%fp0		# Z/(1+Z) | 
 | 7860 | 	mov.l		%a1,%d1 | 
 | 7861 | 	and.l		&0x80000000,%d1 | 
 | 7862 | 	or.l		&0x3F000000,%d1 | 
 | 7863 | 	fadd.x		(%sp)+,%fp0 | 
 | 7864 | 	mov.l		%d1,-(%sp) | 
 | 7865 |  | 
 | 7866 | 	fmov.l		%d0,%fpcr | 
 | 7867 | 	mov.b		&FMUL_OP,%d1		# last inst is MUL | 
 | 7868 | 	fmul.s		(%sp)+,%fp0		# last fp inst - possible exceptions set | 
 | 7869 | 	bra		t_catch | 
 | 7870 |  | 
 | 7871 | SINHBIG: | 
 | 7872 | 	cmp.l		%d1,&0x400CB2B3 | 
 | 7873 | 	bgt		t_ovfl | 
 | 7874 | 	fabs.x		%fp0 | 
 | 7875 | 	fsub.d		T1(%pc),%fp0		# (|X|-16381LOG2_LEAD) | 
 | 7876 | 	mov.l		&0,-(%sp) | 
 | 7877 | 	mov.l		&0x80000000,-(%sp) | 
 | 7878 | 	mov.l		%a1,%d1 | 
 | 7879 | 	and.l		&0x80000000,%d1 | 
 | 7880 | 	or.l		&0x7FFB0000,%d1 | 
 | 7881 | 	mov.l		%d1,-(%sp)		# EXTENDED FMT | 
 | 7882 | 	fsub.d		T2(%pc),%fp0		# |X| - 16381 LOG2, ACCURATE | 
 | 7883 |  | 
 | 7884 | 	mov.l		%d0,-(%sp) | 
 | 7885 | 	clr.l		%d0 | 
 | 7886 | 	fmovm.x		&0x01,-(%sp)		# save fp0 on stack | 
 | 7887 | 	lea		(%sp),%a0		# pass ptr to fp0 | 
 | 7888 | 	bsr		setox | 
 | 7889 | 	add.l		&0xc,%sp		# clear fp0 from stack | 
 | 7890 |  | 
 | 7891 | 	mov.l		(%sp)+,%d0 | 
 | 7892 | 	fmov.l		%d0,%fpcr | 
 | 7893 | 	mov.b		&FMUL_OP,%d1		# last inst is MUL | 
 | 7894 | 	fmul.x		(%sp)+,%fp0		# possible exception | 
 | 7895 | 	bra		t_catch | 
 | 7896 |  | 
 | 7897 | 	global		ssinhd | 
 | 7898 | #--SINH(X) = X FOR DENORMALIZED X | 
 | 7899 | ssinhd: | 
 | 7900 | 	bra		t_extdnrm | 
 | 7901 |  | 
 | 7902 | ######################################################################### | 
 | 7903 | # stanh():  computes the hyperbolic tangent of a normalized input	# | 
 | 7904 | # stanhd(): computes the hyperbolic tangent of a denormalized input	# | 
 | 7905 | #									# | 
 | 7906 | # INPUT ***************************************************************	# | 
 | 7907 | #	a0 = pointer to extended precision input			# | 
 | 7908 | #	d0 = round precision,mode					# | 
 | 7909 | #									# | 
 | 7910 | # OUTPUT **************************************************************	# | 
 | 7911 | #	fp0 = tanh(X)							# | 
 | 7912 | #									# | 
 | 7913 | # ACCURACY and MONOTONICITY *******************************************	# | 
 | 7914 | #	The returned result is within 3 ulps in 64 significant bit,	# | 
 | 7915 | #	i.e. within 0.5001 ulp to 53 bits if the result is subsequently # | 
 | 7916 | #	rounded to double precision. The result is provably monotonic	# | 
 | 7917 | #	in double precision.						# | 
 | 7918 | #									# | 
 | 7919 | # ALGORITHM ***********************************************************	# | 
 | 7920 | #									# | 
 | 7921 | #	TANH								# | 
 | 7922 | #	1. If |X| >= (5/2) log2 or |X| <= 2**(-40), go to 3.		# | 
 | 7923 | #									# | 
 | 7924 | #	2. (2**(-40) < |X| < (5/2) log2) Calculate tanh(X) by		# | 
 | 7925 | #		sgn := sign(X), y := 2|X|, z := expm1(Y), and		# | 
 | 7926 | #		tanh(X) = sgn*( z/(2+z) ).				# | 
 | 7927 | #		Exit.							# | 
 | 7928 | #									# | 
 | 7929 | #	3. (|X| <= 2**(-40) or |X| >= (5/2) log2). If |X| < 1,		# | 
 | 7930 | #		go to 7.						# | 
 | 7931 | #									# | 
 | 7932 | #	4. (|X| >= (5/2) log2) If |X| >= 50 log2, go to 6.		# | 
 | 7933 | #									# | 
 | 7934 | #	5. ((5/2) log2 <= |X| < 50 log2) Calculate tanh(X) by		# | 
 | 7935 | #		sgn := sign(X), y := 2|X|, z := exp(Y),			# | 
 | 7936 | #		tanh(X) = sgn - [ sgn*2/(1+z) ].			# | 
 | 7937 | #		Exit.							# | 
 | 7938 | #									# | 
 | 7939 | #	6. (|X| >= 50 log2) Tanh(X) = +-1 (round to nearest). Thus, we	# | 
 | 7940 | #		calculate Tanh(X) by					# | 
 | 7941 | #		sgn := sign(X), Tiny := 2**(-126),			# | 
 | 7942 | #		tanh(X) := sgn - sgn*Tiny.				# | 
 | 7943 | #		Exit.							# | 
 | 7944 | #									# | 
 | 7945 | #	7. (|X| < 2**(-40)). Tanh(X) = X.	Exit.			# | 
 | 7946 | #									# | 
 | 7947 | ######################################################################### | 
 | 7948 |  | 
 | 7949 | 	set		X,FP_SCR0 | 
 | 7950 | 	set		XFRAC,X+4 | 
 | 7951 |  | 
 | 7952 | 	set		SGN,L_SCR3 | 
 | 7953 |  | 
 | 7954 | 	set		V,FP_SCR0 | 
 | 7955 |  | 
 | 7956 | 	global		stanh | 
 | 7957 | stanh: | 
 | 7958 | 	fmov.x		(%a0),%fp0		# LOAD INPUT | 
 | 7959 |  | 
 | 7960 | 	fmov.x		%fp0,X(%a6) | 
 | 7961 | 	mov.l		(%a0),%d1 | 
 | 7962 | 	mov.w		4(%a0),%d1 | 
 | 7963 | 	mov.l		%d1,X(%a6) | 
 | 7964 | 	and.l		&0x7FFFFFFF,%d1 | 
 | 7965 | 	cmp.l		%d1, &0x3fd78000	# is |X| < 2^(-40)? | 
 | 7966 | 	blt.w		TANHBORS		# yes | 
 | 7967 | 	cmp.l		%d1, &0x3fffddce	# is |X| > (5/2)LOG2? | 
 | 7968 | 	bgt.w		TANHBORS		# yes | 
 | 7969 |  | 
 | 7970 | #--THIS IS THE USUAL CASE | 
 | 7971 | #--Y = 2|X|, Z = EXPM1(Y), TANH(X) = SIGN(X) * Z / (Z+2). | 
 | 7972 |  | 
 | 7973 | 	mov.l		X(%a6),%d1 | 
 | 7974 | 	mov.l		%d1,SGN(%a6) | 
 | 7975 | 	and.l		&0x7FFF0000,%d1 | 
 | 7976 | 	add.l		&0x00010000,%d1		# EXPONENT OF 2|X| | 
 | 7977 | 	mov.l		%d1,X(%a6) | 
 | 7978 | 	and.l		&0x80000000,SGN(%a6) | 
 | 7979 | 	fmov.x		X(%a6),%fp0		# FP0 IS Y = 2|X| | 
 | 7980 |  | 
 | 7981 | 	mov.l		%d0,-(%sp) | 
 | 7982 | 	clr.l		%d0 | 
 | 7983 | 	fmovm.x		&0x1,-(%sp)		# save Y on stack | 
 | 7984 | 	lea		(%sp),%a0		# pass ptr to Y | 
 | 7985 | 	bsr		setoxm1			# FP0 IS Z = EXPM1(Y) | 
 | 7986 | 	add.l		&0xc,%sp		# clear Y from stack | 
 | 7987 | 	mov.l		(%sp)+,%d0 | 
 | 7988 |  | 
 | 7989 | 	fmov.x		%fp0,%fp1 | 
 | 7990 | 	fadd.s		&0x40000000,%fp1	# Z+2 | 
 | 7991 | 	mov.l		SGN(%a6),%d1 | 
 | 7992 | 	fmov.x		%fp1,V(%a6) | 
 | 7993 | 	eor.l		%d1,V(%a6) | 
 | 7994 |  | 
 | 7995 | 	fmov.l		%d0,%fpcr		# restore users round prec,mode | 
 | 7996 | 	fdiv.x		V(%a6),%fp0 | 
 | 7997 | 	bra		t_inx2 | 
 | 7998 |  | 
 | 7999 | TANHBORS: | 
 | 8000 | 	cmp.l		%d1,&0x3FFF8000 | 
 | 8001 | 	blt.w		TANHSM | 
 | 8002 |  | 
 | 8003 | 	cmp.l		%d1,&0x40048AA1 | 
 | 8004 | 	bgt.w		TANHHUGE | 
 | 8005 |  | 
 | 8006 | #-- (5/2) LOG2 < |X| < 50 LOG2, | 
 | 8007 | #--TANH(X) = 1 - (2/[EXP(2X)+1]). LET Y = 2|X|, SGN = SIGN(X), | 
 | 8008 | #--TANH(X) = SGN -	SGN*2/[EXP(Y)+1]. | 
 | 8009 |  | 
 | 8010 | 	mov.l		X(%a6),%d1 | 
 | 8011 | 	mov.l		%d1,SGN(%a6) | 
 | 8012 | 	and.l		&0x7FFF0000,%d1 | 
 | 8013 | 	add.l		&0x00010000,%d1		# EXPO OF 2|X| | 
 | 8014 | 	mov.l		%d1,X(%a6)		# Y = 2|X| | 
 | 8015 | 	and.l		&0x80000000,SGN(%a6) | 
 | 8016 | 	mov.l		SGN(%a6),%d1 | 
 | 8017 | 	fmov.x		X(%a6),%fp0		# Y = 2|X| | 
 | 8018 |  | 
 | 8019 | 	mov.l		%d0,-(%sp) | 
 | 8020 | 	clr.l		%d0 | 
 | 8021 | 	fmovm.x		&0x01,-(%sp)		# save Y on stack | 
 | 8022 | 	lea		(%sp),%a0		# pass ptr to Y | 
 | 8023 | 	bsr		setox			# FP0 IS EXP(Y) | 
 | 8024 | 	add.l		&0xc,%sp		# clear Y from stack | 
 | 8025 | 	mov.l		(%sp)+,%d0 | 
 | 8026 | 	mov.l		SGN(%a6),%d1 | 
 | 8027 | 	fadd.s		&0x3F800000,%fp0	# EXP(Y)+1 | 
 | 8028 |  | 
 | 8029 | 	eor.l		&0xC0000000,%d1		# -SIGN(X)*2 | 
 | 8030 | 	fmov.s		%d1,%fp1		# -SIGN(X)*2 IN SGL FMT | 
 | 8031 | 	fdiv.x		%fp0,%fp1		# -SIGN(X)2 / [EXP(Y)+1 ] | 
 | 8032 |  | 
 | 8033 | 	mov.l		SGN(%a6),%d1 | 
 | 8034 | 	or.l		&0x3F800000,%d1		# SGN | 
 | 8035 | 	fmov.s		%d1,%fp0		# SGN IN SGL FMT | 
 | 8036 |  | 
 | 8037 | 	fmov.l		%d0,%fpcr		# restore users round prec,mode | 
 | 8038 | 	mov.b		&FADD_OP,%d1		# last inst is ADD | 
 | 8039 | 	fadd.x		%fp1,%fp0 | 
 | 8040 | 	bra		t_inx2 | 
 | 8041 |  | 
 | 8042 | TANHSM: | 
 | 8043 | 	fmov.l		%d0,%fpcr		# restore users round prec,mode | 
 | 8044 | 	mov.b		&FMOV_OP,%d1		# last inst is MOVE | 
 | 8045 | 	fmov.x		X(%a6),%fp0		# last inst - possible exception set | 
 | 8046 | 	bra		t_catch | 
 | 8047 |  | 
 | 8048 | #---RETURN SGN(X) - SGN(X)EPS | 
 | 8049 | TANHHUGE: | 
 | 8050 | 	mov.l		X(%a6),%d1 | 
 | 8051 | 	and.l		&0x80000000,%d1 | 
 | 8052 | 	or.l		&0x3F800000,%d1 | 
 | 8053 | 	fmov.s		%d1,%fp0 | 
 | 8054 | 	and.l		&0x80000000,%d1 | 
 | 8055 | 	eor.l		&0x80800000,%d1		# -SIGN(X)*EPS | 
 | 8056 |  | 
 | 8057 | 	fmov.l		%d0,%fpcr		# restore users round prec,mode | 
 | 8058 | 	fadd.s		%d1,%fp0 | 
 | 8059 | 	bra		t_inx2 | 
 | 8060 |  | 
 | 8061 | 	global		stanhd | 
 | 8062 | #--TANH(X) = X FOR DENORMALIZED X | 
 | 8063 | stanhd: | 
 | 8064 | 	bra		t_extdnrm | 
 | 8065 |  | 
 | 8066 | ######################################################################### | 
 | 8067 | # slogn():    computes the natural logarithm of a normalized input	# | 
 | 8068 | # slognd():   computes the natural logarithm of a denormalized input	# | 
 | 8069 | # slognp1():  computes the log(1+X) of a normalized input		# | 
 | 8070 | # slognp1d(): computes the log(1+X) of a denormalized input		# | 
 | 8071 | #									# | 
 | 8072 | # INPUT ***************************************************************	# | 
 | 8073 | #	a0 = pointer to extended precision input			# | 
 | 8074 | #	d0 = round precision,mode					# | 
 | 8075 | #									# | 
 | 8076 | # OUTPUT **************************************************************	# | 
 | 8077 | #	fp0 = log(X) or log(1+X)					# | 
 | 8078 | #									# | 
 | 8079 | # ACCURACY and MONOTONICITY *******************************************	# | 
 | 8080 | #	The returned result is within 2 ulps in 64 significant bit,	# | 
 | 8081 | #	i.e. within 0.5001 ulp to 53 bits if the result is subsequently	# | 
 | 8082 | #	rounded to double precision. The result is provably monotonic	# | 
 | 8083 | #	in double precision.						# | 
 | 8084 | #									# | 
 | 8085 | # ALGORITHM ***********************************************************	# | 
 | 8086 | #	LOGN:								# | 
 | 8087 | #	Step 1. If |X-1| < 1/16, approximate log(X) by an odd		# | 
 | 8088 | #		polynomial in u, where u = 2(X-1)/(X+1). Otherwise,	# | 
 | 8089 | #		move on to Step 2.					# | 
 | 8090 | #									# | 
 | 8091 | #	Step 2. X = 2**k * Y where 1 <= Y < 2. Define F to be the first	# | 
 | 8092 | #		seven significant bits of Y plus 2**(-7), i.e.		# | 
 | 8093 | #		F = 1.xxxxxx1 in base 2 where the six "x" match those	# | 
 | 8094 | #		of Y. Note that |Y-F| <= 2**(-7).			# | 
 | 8095 | #									# | 
 | 8096 | #	Step 3. Define u = (Y-F)/F. Approximate log(1+u) by a		# | 
 | 8097 | #		polynomial in u, log(1+u) = poly.			# | 
 | 8098 | #									# | 
 | 8099 | #	Step 4. Reconstruct						# | 
 | 8100 | #		log(X) = log( 2**k * Y ) = k*log(2) + log(F) + log(1+u)	# | 
 | 8101 | #		by k*log(2) + (log(F) + poly). The values of log(F) are	# | 
 | 8102 | #		calculated beforehand and stored in the program.	# | 
 | 8103 | #									# | 
 | 8104 | #	lognp1:								# | 
 | 8105 | #	Step 1: If |X| < 1/16, approximate log(1+X) by an odd		# | 
 | 8106 | #		polynomial in u where u = 2X/(2+X). Otherwise, move on	# | 
 | 8107 | #		to Step 2.						# | 
 | 8108 | #									# | 
 | 8109 | #	Step 2: Let 1+X = 2**k * Y, where 1 <= Y < 2. Define F as done	# | 
 | 8110 | #		in Step 2 of the algorithm for LOGN and compute		# | 
 | 8111 | #		log(1+X) as k*log(2) + log(F) + poly where poly		# | 
 | 8112 | #		approximates log(1+u), u = (Y-F)/F.			# | 
 | 8113 | #									# | 
 | 8114 | #	Implementation Notes:						# | 
 | 8115 | #	Note 1. There are 64 different possible values for F, thus 64	# | 
 | 8116 | #		log(F)'s need to be tabulated. Moreover, the values of	# | 
 | 8117 | #		1/F are also tabulated so that the division in (Y-F)/F	# | 
 | 8118 | #		can be performed by a multiplication.			# | 
 | 8119 | #									# | 
 | 8120 | #	Note 2. In Step 2 of lognp1, in order to preserved accuracy,	# | 
 | 8121 | #		the value Y-F has to be calculated carefully when	# | 
 | 8122 | #		1/2 <= X < 3/2.						# | 
 | 8123 | #									# | 
 | 8124 | #	Note 3. To fully exploit the pipeline, polynomials are usually	# | 
 | 8125 | #		separated into two parts evaluated independently before	# | 
 | 8126 | #		being added up.						# | 
 | 8127 | #									# | 
 | 8128 | ######################################################################### | 
 | 8129 | LOGOF2: | 
 | 8130 | 	long		0x3FFE0000,0xB17217F7,0xD1CF79AC,0x00000000 | 
 | 8131 |  | 
 | 8132 | one: | 
 | 8133 | 	long		0x3F800000 | 
 | 8134 | zero: | 
 | 8135 | 	long		0x00000000 | 
 | 8136 | infty: | 
 | 8137 | 	long		0x7F800000 | 
 | 8138 | negone: | 
 | 8139 | 	long		0xBF800000 | 
 | 8140 |  | 
 | 8141 | LOGA6: | 
 | 8142 | 	long		0x3FC2499A,0xB5E4040B | 
 | 8143 | LOGA5: | 
 | 8144 | 	long		0xBFC555B5,0x848CB7DB | 
 | 8145 |  | 
 | 8146 | LOGA4: | 
 | 8147 | 	long		0x3FC99999,0x987D8730 | 
 | 8148 | LOGA3: | 
 | 8149 | 	long		0xBFCFFFFF,0xFF6F7E97 | 
 | 8150 |  | 
 | 8151 | LOGA2: | 
 | 8152 | 	long		0x3FD55555,0x555555A4 | 
 | 8153 | LOGA1: | 
 | 8154 | 	long		0xBFE00000,0x00000008 | 
 | 8155 |  | 
 | 8156 | LOGB5: | 
 | 8157 | 	long		0x3F175496,0xADD7DAD6 | 
 | 8158 | LOGB4: | 
 | 8159 | 	long		0x3F3C71C2,0xFE80C7E0 | 
 | 8160 |  | 
 | 8161 | LOGB3: | 
 | 8162 | 	long		0x3F624924,0x928BCCFF | 
 | 8163 | LOGB2: | 
 | 8164 | 	long		0x3F899999,0x999995EC | 
 | 8165 |  | 
 | 8166 | LOGB1: | 
 | 8167 | 	long		0x3FB55555,0x55555555 | 
 | 8168 | TWO: | 
 | 8169 | 	long		0x40000000,0x00000000 | 
 | 8170 |  | 
 | 8171 | LTHOLD: | 
 | 8172 | 	long		0x3f990000,0x80000000,0x00000000,0x00000000 | 
 | 8173 |  | 
 | 8174 | LOGTBL: | 
 | 8175 | 	long		0x3FFE0000,0xFE03F80F,0xE03F80FE,0x00000000 | 
 | 8176 | 	long		0x3FF70000,0xFF015358,0x833C47E2,0x00000000 | 
 | 8177 | 	long		0x3FFE0000,0xFA232CF2,0x52138AC0,0x00000000 | 
 | 8178 | 	long		0x3FF90000,0xBDC8D83E,0xAD88D549,0x00000000 | 
 | 8179 | 	long		0x3FFE0000,0xF6603D98,0x0F6603DA,0x00000000 | 
 | 8180 | 	long		0x3FFA0000,0x9CF43DCF,0xF5EAFD48,0x00000000 | 
 | 8181 | 	long		0x3FFE0000,0xF2B9D648,0x0F2B9D65,0x00000000 | 
 | 8182 | 	long		0x3FFA0000,0xDA16EB88,0xCB8DF614,0x00000000 | 
 | 8183 | 	long		0x3FFE0000,0xEF2EB71F,0xC4345238,0x00000000 | 
 | 8184 | 	long		0x3FFB0000,0x8B29B775,0x1BD70743,0x00000000 | 
 | 8185 | 	long		0x3FFE0000,0xEBBDB2A5,0xC1619C8C,0x00000000 | 
 | 8186 | 	long		0x3FFB0000,0xA8D839F8,0x30C1FB49,0x00000000 | 
 | 8187 | 	long		0x3FFE0000,0xE865AC7B,0x7603A197,0x00000000 | 
 | 8188 | 	long		0x3FFB0000,0xC61A2EB1,0x8CD907AD,0x00000000 | 
 | 8189 | 	long		0x3FFE0000,0xE525982A,0xF70C880E,0x00000000 | 
 | 8190 | 	long		0x3FFB0000,0xE2F2A47A,0xDE3A18AF,0x00000000 | 
 | 8191 | 	long		0x3FFE0000,0xE1FC780E,0x1FC780E2,0x00000000 | 
 | 8192 | 	long		0x3FFB0000,0xFF64898E,0xDF55D551,0x00000000 | 
 | 8193 | 	long		0x3FFE0000,0xDEE95C4C,0xA037BA57,0x00000000 | 
 | 8194 | 	long		0x3FFC0000,0x8DB956A9,0x7B3D0148,0x00000000 | 
 | 8195 | 	long		0x3FFE0000,0xDBEB61EE,0xD19C5958,0x00000000 | 
 | 8196 | 	long		0x3FFC0000,0x9B8FE100,0xF47BA1DE,0x00000000 | 
 | 8197 | 	long		0x3FFE0000,0xD901B203,0x6406C80E,0x00000000 | 
 | 8198 | 	long		0x3FFC0000,0xA9372F1D,0x0DA1BD17,0x00000000 | 
 | 8199 | 	long		0x3FFE0000,0xD62B80D6,0x2B80D62C,0x00000000 | 
 | 8200 | 	long		0x3FFC0000,0xB6B07F38,0xCE90E46B,0x00000000 | 
 | 8201 | 	long		0x3FFE0000,0xD3680D36,0x80D3680D,0x00000000 | 
 | 8202 | 	long		0x3FFC0000,0xC3FD0329,0x06488481,0x00000000 | 
 | 8203 | 	long		0x3FFE0000,0xD0B69FCB,0xD2580D0B,0x00000000 | 
 | 8204 | 	long		0x3FFC0000,0xD11DE0FF,0x15AB18CA,0x00000000 | 
 | 8205 | 	long		0x3FFE0000,0xCE168A77,0x25080CE1,0x00000000 | 
 | 8206 | 	long		0x3FFC0000,0xDE1433A1,0x6C66B150,0x00000000 | 
 | 8207 | 	long		0x3FFE0000,0xCB8727C0,0x65C393E0,0x00000000 | 
 | 8208 | 	long		0x3FFC0000,0xEAE10B5A,0x7DDC8ADD,0x00000000 | 
 | 8209 | 	long		0x3FFE0000,0xC907DA4E,0x871146AD,0x00000000 | 
 | 8210 | 	long		0x3FFC0000,0xF7856E5E,0xE2C9B291,0x00000000 | 
 | 8211 | 	long		0x3FFE0000,0xC6980C69,0x80C6980C,0x00000000 | 
 | 8212 | 	long		0x3FFD0000,0x82012CA5,0xA68206D7,0x00000000 | 
 | 8213 | 	long		0x3FFE0000,0xC4372F85,0x5D824CA6,0x00000000 | 
 | 8214 | 	long		0x3FFD0000,0x882C5FCD,0x7256A8C5,0x00000000 | 
 | 8215 | 	long		0x3FFE0000,0xC1E4BBD5,0x95F6E947,0x00000000 | 
 | 8216 | 	long		0x3FFD0000,0x8E44C60B,0x4CCFD7DE,0x00000000 | 
 | 8217 | 	long		0x3FFE0000,0xBFA02FE8,0x0BFA02FF,0x00000000 | 
 | 8218 | 	long		0x3FFD0000,0x944AD09E,0xF4351AF6,0x00000000 | 
 | 8219 | 	long		0x3FFE0000,0xBD691047,0x07661AA3,0x00000000 | 
 | 8220 | 	long		0x3FFD0000,0x9A3EECD4,0xC3EAA6B2,0x00000000 | 
 | 8221 | 	long		0x3FFE0000,0xBB3EE721,0xA54D880C,0x00000000 | 
 | 8222 | 	long		0x3FFD0000,0xA0218434,0x353F1DE8,0x00000000 | 
 | 8223 | 	long		0x3FFE0000,0xB92143FA,0x36F5E02E,0x00000000 | 
 | 8224 | 	long		0x3FFD0000,0xA5F2FCAB,0xBBC506DA,0x00000000 | 
 | 8225 | 	long		0x3FFE0000,0xB70FBB5A,0x19BE3659,0x00000000 | 
 | 8226 | 	long		0x3FFD0000,0xABB3B8BA,0x2AD362A5,0x00000000 | 
 | 8227 | 	long		0x3FFE0000,0xB509E68A,0x9B94821F,0x00000000 | 
 | 8228 | 	long		0x3FFD0000,0xB1641795,0xCE3CA97B,0x00000000 | 
 | 8229 | 	long		0x3FFE0000,0xB30F6352,0x8917C80B,0x00000000 | 
 | 8230 | 	long		0x3FFD0000,0xB7047551,0x5D0F1C61,0x00000000 | 
 | 8231 | 	long		0x3FFE0000,0xB11FD3B8,0x0B11FD3C,0x00000000 | 
 | 8232 | 	long		0x3FFD0000,0xBC952AFE,0xEA3D13E1,0x00000000 | 
 | 8233 | 	long		0x3FFE0000,0xAF3ADDC6,0x80AF3ADE,0x00000000 | 
 | 8234 | 	long		0x3FFD0000,0xC2168ED0,0xF458BA4A,0x00000000 | 
 | 8235 | 	long		0x3FFE0000,0xAD602B58,0x0AD602B6,0x00000000 | 
 | 8236 | 	long		0x3FFD0000,0xC788F439,0xB3163BF1,0x00000000 | 
 | 8237 | 	long		0x3FFE0000,0xAB8F69E2,0x8359CD11,0x00000000 | 
 | 8238 | 	long		0x3FFD0000,0xCCECAC08,0xBF04565D,0x00000000 | 
 | 8239 | 	long		0x3FFE0000,0xA9C84A47,0xA07F5638,0x00000000 | 
 | 8240 | 	long		0x3FFD0000,0xD2420487,0x2DD85160,0x00000000 | 
 | 8241 | 	long		0x3FFE0000,0xA80A80A8,0x0A80A80B,0x00000000 | 
 | 8242 | 	long		0x3FFD0000,0xD7894992,0x3BC3588A,0x00000000 | 
 | 8243 | 	long		0x3FFE0000,0xA655C439,0x2D7B73A8,0x00000000 | 
 | 8244 | 	long		0x3FFD0000,0xDCC2C4B4,0x9887DACC,0x00000000 | 
 | 8245 | 	long		0x3FFE0000,0xA4A9CF1D,0x96833751,0x00000000 | 
 | 8246 | 	long		0x3FFD0000,0xE1EEBD3E,0x6D6A6B9E,0x00000000 | 
 | 8247 | 	long		0x3FFE0000,0xA3065E3F,0xAE7CD0E0,0x00000000 | 
 | 8248 | 	long		0x3FFD0000,0xE70D785C,0x2F9F5BDC,0x00000000 | 
 | 8249 | 	long		0x3FFE0000,0xA16B312E,0xA8FC377D,0x00000000 | 
 | 8250 | 	long		0x3FFD0000,0xEC1F392C,0x5179F283,0x00000000 | 
 | 8251 | 	long		0x3FFE0000,0x9FD809FD,0x809FD80A,0x00000000 | 
 | 8252 | 	long		0x3FFD0000,0xF12440D3,0xE36130E6,0x00000000 | 
 | 8253 | 	long		0x3FFE0000,0x9E4CAD23,0xDD5F3A20,0x00000000 | 
 | 8254 | 	long		0x3FFD0000,0xF61CCE92,0x346600BB,0x00000000 | 
 | 8255 | 	long		0x3FFE0000,0x9CC8E160,0xC3FB19B9,0x00000000 | 
 | 8256 | 	long		0x3FFD0000,0xFB091FD3,0x8145630A,0x00000000 | 
 | 8257 | 	long		0x3FFE0000,0x9B4C6F9E,0xF03A3CAA,0x00000000 | 
 | 8258 | 	long		0x3FFD0000,0xFFE97042,0xBFA4C2AD,0x00000000 | 
 | 8259 | 	long		0x3FFE0000,0x99D722DA,0xBDE58F06,0x00000000 | 
 | 8260 | 	long		0x3FFE0000,0x825EFCED,0x49369330,0x00000000 | 
 | 8261 | 	long		0x3FFE0000,0x9868C809,0x868C8098,0x00000000 | 
 | 8262 | 	long		0x3FFE0000,0x84C37A7A,0xB9A905C9,0x00000000 | 
 | 8263 | 	long		0x3FFE0000,0x97012E02,0x5C04B809,0x00000000 | 
 | 8264 | 	long		0x3FFE0000,0x87224C2E,0x8E645FB7,0x00000000 | 
 | 8265 | 	long		0x3FFE0000,0x95A02568,0x095A0257,0x00000000 | 
 | 8266 | 	long		0x3FFE0000,0x897B8CAC,0x9F7DE298,0x00000000 | 
 | 8267 | 	long		0x3FFE0000,0x94458094,0x45809446,0x00000000 | 
 | 8268 | 	long		0x3FFE0000,0x8BCF55DE,0xC4CD05FE,0x00000000 | 
 | 8269 | 	long		0x3FFE0000,0x92F11384,0x0497889C,0x00000000 | 
 | 8270 | 	long		0x3FFE0000,0x8E1DC0FB,0x89E125E5,0x00000000 | 
 | 8271 | 	long		0x3FFE0000,0x91A2B3C4,0xD5E6F809,0x00000000 | 
 | 8272 | 	long		0x3FFE0000,0x9066E68C,0x955B6C9B,0x00000000 | 
 | 8273 | 	long		0x3FFE0000,0x905A3863,0x3E06C43B,0x00000000 | 
 | 8274 | 	long		0x3FFE0000,0x92AADE74,0xC7BE59E0,0x00000000 | 
 | 8275 | 	long		0x3FFE0000,0x8F1779D9,0xFDC3A219,0x00000000 | 
 | 8276 | 	long		0x3FFE0000,0x94E9BFF6,0x15845643,0x00000000 | 
 | 8277 | 	long		0x3FFE0000,0x8DDA5202,0x37694809,0x00000000 | 
 | 8278 | 	long		0x3FFE0000,0x9723A1B7,0x20134203,0x00000000 | 
 | 8279 | 	long		0x3FFE0000,0x8CA29C04,0x6514E023,0x00000000 | 
 | 8280 | 	long		0x3FFE0000,0x995899C8,0x90EB8990,0x00000000 | 
 | 8281 | 	long		0x3FFE0000,0x8B70344A,0x139BC75A,0x00000000 | 
 | 8282 | 	long		0x3FFE0000,0x9B88BDAA,0x3A3DAE2F,0x00000000 | 
 | 8283 | 	long		0x3FFE0000,0x8A42F870,0x5669DB46,0x00000000 | 
 | 8284 | 	long		0x3FFE0000,0x9DB4224F,0xFFE1157C,0x00000000 | 
 | 8285 | 	long		0x3FFE0000,0x891AC73A,0xE9819B50,0x00000000 | 
 | 8286 | 	long		0x3FFE0000,0x9FDADC26,0x8B7A12DA,0x00000000 | 
 | 8287 | 	long		0x3FFE0000,0x87F78087,0xF78087F8,0x00000000 | 
 | 8288 | 	long		0x3FFE0000,0xA1FCFF17,0xCE733BD4,0x00000000 | 
 | 8289 | 	long		0x3FFE0000,0x86D90544,0x7A34ACC6,0x00000000 | 
 | 8290 | 	long		0x3FFE0000,0xA41A9E8F,0x5446FB9F,0x00000000 | 
 | 8291 | 	long		0x3FFE0000,0x85BF3761,0x2CEE3C9B,0x00000000 | 
 | 8292 | 	long		0x3FFE0000,0xA633CD7E,0x6771CD8B,0x00000000 | 
 | 8293 | 	long		0x3FFE0000,0x84A9F9C8,0x084A9F9D,0x00000000 | 
 | 8294 | 	long		0x3FFE0000,0xA8489E60,0x0B435A5E,0x00000000 | 
 | 8295 | 	long		0x3FFE0000,0x83993052,0x3FBE3368,0x00000000 | 
 | 8296 | 	long		0x3FFE0000,0xAA59233C,0xCCA4BD49,0x00000000 | 
 | 8297 | 	long		0x3FFE0000,0x828CBFBE,0xB9A020A3,0x00000000 | 
 | 8298 | 	long		0x3FFE0000,0xAC656DAE,0x6BCC4985,0x00000000 | 
 | 8299 | 	long		0x3FFE0000,0x81848DA8,0xFAF0D277,0x00000000 | 
 | 8300 | 	long		0x3FFE0000,0xAE6D8EE3,0x60BB2468,0x00000000 | 
 | 8301 | 	long		0x3FFE0000,0x80808080,0x80808081,0x00000000 | 
 | 8302 | 	long		0x3FFE0000,0xB07197A2,0x3C46C654,0x00000000 | 
 | 8303 |  | 
 | 8304 | 	set		ADJK,L_SCR1 | 
 | 8305 |  | 
 | 8306 | 	set		X,FP_SCR0 | 
 | 8307 | 	set		XDCARE,X+2 | 
 | 8308 | 	set		XFRAC,X+4 | 
 | 8309 |  | 
 | 8310 | 	set		F,FP_SCR1 | 
 | 8311 | 	set		FFRAC,F+4 | 
 | 8312 |  | 
 | 8313 | 	set		KLOG2,FP_SCR0 | 
 | 8314 |  | 
 | 8315 | 	set		SAVEU,FP_SCR0 | 
 | 8316 |  | 
 | 8317 | 	global		slogn | 
 | 8318 | #--ENTRY POINT FOR LOG(X) FOR X FINITE, NON-ZERO, NOT NAN'S | 
 | 8319 | slogn: | 
 | 8320 | 	fmov.x		(%a0),%fp0		# LOAD INPUT | 
 | 8321 | 	mov.l		&0x00000000,ADJK(%a6) | 
 | 8322 |  | 
 | 8323 | LOGBGN: | 
 | 8324 | #--FPCR SAVED AND CLEARED, INPUT IS 2^(ADJK)*FP0, FP0 CONTAINS | 
 | 8325 | #--A FINITE, NON-ZERO, NORMALIZED NUMBER. | 
 | 8326 |  | 
 | 8327 | 	mov.l		(%a0),%d1 | 
 | 8328 | 	mov.w		4(%a0),%d1 | 
 | 8329 |  | 
 | 8330 | 	mov.l		(%a0),X(%a6) | 
 | 8331 | 	mov.l		4(%a0),X+4(%a6) | 
 | 8332 | 	mov.l		8(%a0),X+8(%a6) | 
 | 8333 |  | 
 | 8334 | 	cmp.l		%d1,&0			# CHECK IF X IS NEGATIVE | 
 | 8335 | 	blt.w		LOGNEG			# LOG OF NEGATIVE ARGUMENT IS INVALID | 
 | 8336 | # X IS POSITIVE, CHECK IF X IS NEAR 1 | 
 | 8337 | 	cmp.l		%d1,&0x3ffef07d		# IS X < 15/16? | 
 | 8338 | 	blt.b		LOGMAIN			# YES | 
 | 8339 | 	cmp.l		%d1,&0x3fff8841		# IS X > 17/16? | 
 | 8340 | 	ble.w		LOGNEAR1		# NO | 
 | 8341 |  | 
 | 8342 | LOGMAIN: | 
 | 8343 | #--THIS SHOULD BE THE USUAL CASE, X NOT VERY CLOSE TO 1 | 
 | 8344 |  | 
 | 8345 | #--X = 2^(K) * Y, 1 <= Y < 2. THUS, Y = 1.XXXXXXXX....XX IN BINARY. | 
 | 8346 | #--WE DEFINE F = 1.XXXXXX1, I.E. FIRST 7 BITS OF Y AND ATTACH A 1. | 
 | 8347 | #--THE IDEA IS THAT LOG(X) = K*LOG2 + LOG(Y) | 
 | 8348 | #--			 = K*LOG2 + LOG(F) + LOG(1 + (Y-F)/F). | 
 | 8349 | #--NOTE THAT U = (Y-F)/F IS VERY SMALL AND THUS APPROXIMATING | 
 | 8350 | #--LOG(1+U) CAN BE VERY EFFICIENT. | 
 | 8351 | #--ALSO NOTE THAT THE VALUE 1/F IS STORED IN A TABLE SO THAT NO | 
 | 8352 | #--DIVISION IS NEEDED TO CALCULATE (Y-F)/F. | 
 | 8353 |  | 
 | 8354 | #--GET K, Y, F, AND ADDRESS OF 1/F. | 
 | 8355 | 	asr.l		&8,%d1 | 
 | 8356 | 	asr.l		&8,%d1			# SHIFTED 16 BITS, BIASED EXPO. OF X | 
 | 8357 | 	sub.l		&0x3FFF,%d1		# THIS IS K | 
 | 8358 | 	add.l		ADJK(%a6),%d1		# ADJUST K, ORIGINAL INPUT MAY BE  DENORM. | 
 | 8359 | 	lea		LOGTBL(%pc),%a0		# BASE ADDRESS OF 1/F AND LOG(F) | 
 | 8360 | 	fmov.l		%d1,%fp1		# CONVERT K TO FLOATING-POINT FORMAT | 
 | 8361 |  | 
 | 8362 | #--WHILE THE CONVERSION IS GOING ON, WE GET F AND ADDRESS OF 1/F | 
 | 8363 | 	mov.l		&0x3FFF0000,X(%a6)	# X IS NOW Y, I.E. 2^(-K)*X | 
 | 8364 | 	mov.l		XFRAC(%a6),FFRAC(%a6) | 
 | 8365 | 	and.l		&0xFE000000,FFRAC(%a6)	# FIRST 7 BITS OF Y | 
 | 8366 | 	or.l		&0x01000000,FFRAC(%a6)	# GET F: ATTACH A 1 AT THE EIGHTH BIT | 
 | 8367 | 	mov.l		FFRAC(%a6),%d1	# READY TO GET ADDRESS OF 1/F | 
 | 8368 | 	and.l		&0x7E000000,%d1 | 
 | 8369 | 	asr.l		&8,%d1 | 
 | 8370 | 	asr.l		&8,%d1 | 
 | 8371 | 	asr.l		&4,%d1			# SHIFTED 20, D0 IS THE DISPLACEMENT | 
 | 8372 | 	add.l		%d1,%a0			# A0 IS THE ADDRESS FOR 1/F | 
 | 8373 |  | 
 | 8374 | 	fmov.x		X(%a6),%fp0 | 
 | 8375 | 	mov.l		&0x3fff0000,F(%a6) | 
 | 8376 | 	clr.l		F+8(%a6) | 
 | 8377 | 	fsub.x		F(%a6),%fp0		# Y-F | 
 | 8378 | 	fmovm.x		&0xc,-(%sp)		# SAVE FP2-3 WHILE FP0 IS NOT READY | 
 | 8379 | #--SUMMARY: FP0 IS Y-F, A0 IS ADDRESS OF 1/F, FP1 IS K | 
 | 8380 | #--REGISTERS SAVED: FPCR, FP1, FP2 | 
 | 8381 |  | 
 | 8382 | LP1CONT1: | 
 | 8383 | #--AN RE-ENTRY POINT FOR LOGNP1 | 
 | 8384 | 	fmul.x		(%a0),%fp0		# FP0 IS U = (Y-F)/F | 
 | 8385 | 	fmul.x		LOGOF2(%pc),%fp1	# GET K*LOG2 WHILE FP0 IS NOT READY | 
 | 8386 | 	fmov.x		%fp0,%fp2 | 
 | 8387 | 	fmul.x		%fp2,%fp2		# FP2 IS V=U*U | 
 | 8388 | 	fmov.x		%fp1,KLOG2(%a6)		# PUT K*LOG2 IN MEMEORY, FREE FP1 | 
 | 8389 |  | 
 | 8390 | #--LOG(1+U) IS APPROXIMATED BY | 
 | 8391 | #--U + V*(A1+U*(A2+U*(A3+U*(A4+U*(A5+U*A6))))) WHICH IS | 
 | 8392 | #--[U + V*(A1+V*(A3+V*A5))]  +  [U*V*(A2+V*(A4+V*A6))] | 
 | 8393 |  | 
 | 8394 | 	fmov.x		%fp2,%fp3 | 
 | 8395 | 	fmov.x		%fp2,%fp1 | 
 | 8396 |  | 
 | 8397 | 	fmul.d		LOGA6(%pc),%fp1		# V*A6 | 
 | 8398 | 	fmul.d		LOGA5(%pc),%fp2		# V*A5 | 
 | 8399 |  | 
 | 8400 | 	fadd.d		LOGA4(%pc),%fp1		# A4+V*A6 | 
 | 8401 | 	fadd.d		LOGA3(%pc),%fp2		# A3+V*A5 | 
 | 8402 |  | 
 | 8403 | 	fmul.x		%fp3,%fp1		# V*(A4+V*A6) | 
 | 8404 | 	fmul.x		%fp3,%fp2		# V*(A3+V*A5) | 
 | 8405 |  | 
 | 8406 | 	fadd.d		LOGA2(%pc),%fp1		# A2+V*(A4+V*A6) | 
 | 8407 | 	fadd.d		LOGA1(%pc),%fp2		# A1+V*(A3+V*A5) | 
 | 8408 |  | 
 | 8409 | 	fmul.x		%fp3,%fp1		# V*(A2+V*(A4+V*A6)) | 
 | 8410 | 	add.l		&16,%a0			# ADDRESS OF LOG(F) | 
 | 8411 | 	fmul.x		%fp3,%fp2		# V*(A1+V*(A3+V*A5)) | 
 | 8412 |  | 
 | 8413 | 	fmul.x		%fp0,%fp1		# U*V*(A2+V*(A4+V*A6)) | 
 | 8414 | 	fadd.x		%fp2,%fp0		# U+V*(A1+V*(A3+V*A5)) | 
 | 8415 |  | 
 | 8416 | 	fadd.x		(%a0),%fp1		# LOG(F)+U*V*(A2+V*(A4+V*A6)) | 
 | 8417 | 	fmovm.x		(%sp)+,&0x30		# RESTORE FP2-3 | 
 | 8418 | 	fadd.x		%fp1,%fp0		# FP0 IS LOG(F) + LOG(1+U) | 
 | 8419 |  | 
 | 8420 | 	fmov.l		%d0,%fpcr | 
 | 8421 | 	fadd.x		KLOG2(%a6),%fp0		# FINAL ADD | 
 | 8422 | 	bra		t_inx2 | 
 | 8423 |  | 
 | 8424 |  | 
 | 8425 | LOGNEAR1: | 
 | 8426 |  | 
 | 8427 | # if the input is exactly equal to one, then exit through ld_pzero. | 
 | 8428 | # if these 2 lines weren't here, the correct answer would be returned | 
 | 8429 | # but the INEX2 bit would be set. | 
 | 8430 | 	fcmp.b		%fp0,&0x1		# is it equal to one? | 
 | 8431 | 	fbeq.l		ld_pzero		# yes | 
 | 8432 |  | 
 | 8433 | #--REGISTERS SAVED: FPCR, FP1. FP0 CONTAINS THE INPUT. | 
 | 8434 | 	fmov.x		%fp0,%fp1 | 
 | 8435 | 	fsub.s		one(%pc),%fp1		# FP1 IS X-1 | 
 | 8436 | 	fadd.s		one(%pc),%fp0		# FP0 IS X+1 | 
 | 8437 | 	fadd.x		%fp1,%fp1		# FP1 IS 2(X-1) | 
 | 8438 | #--LOG(X) = LOG(1+U/2)-LOG(1-U/2) WHICH IS AN ODD POLYNOMIAL | 
 | 8439 | #--IN U, U = 2(X-1)/(X+1) = FP1/FP0 | 
 | 8440 |  | 
 | 8441 | LP1CONT2: | 
 | 8442 | #--THIS IS AN RE-ENTRY POINT FOR LOGNP1 | 
 | 8443 | 	fdiv.x		%fp0,%fp1		# FP1 IS U | 
 | 8444 | 	fmovm.x		&0xc,-(%sp)		# SAVE FP2-3 | 
 | 8445 | #--REGISTERS SAVED ARE NOW FPCR,FP1,FP2,FP3 | 
 | 8446 | #--LET V=U*U, W=V*V, CALCULATE | 
 | 8447 | #--U + U*V*(B1 + V*(B2 + V*(B3 + V*(B4 + V*B5)))) BY | 
 | 8448 | #--U + U*V*(  [B1 + W*(B3 + W*B5)]  +  [V*(B2 + W*B4)]  ) | 
 | 8449 | 	fmov.x		%fp1,%fp0 | 
 | 8450 | 	fmul.x		%fp0,%fp0		# FP0 IS V | 
 | 8451 | 	fmov.x		%fp1,SAVEU(%a6)		# STORE U IN MEMORY, FREE FP1 | 
 | 8452 | 	fmov.x		%fp0,%fp1 | 
 | 8453 | 	fmul.x		%fp1,%fp1		# FP1 IS W | 
 | 8454 |  | 
 | 8455 | 	fmov.d		LOGB5(%pc),%fp3 | 
 | 8456 | 	fmov.d		LOGB4(%pc),%fp2 | 
 | 8457 |  | 
 | 8458 | 	fmul.x		%fp1,%fp3		# W*B5 | 
 | 8459 | 	fmul.x		%fp1,%fp2		# W*B4 | 
 | 8460 |  | 
 | 8461 | 	fadd.d		LOGB3(%pc),%fp3		# B3+W*B5 | 
 | 8462 | 	fadd.d		LOGB2(%pc),%fp2		# B2+W*B4 | 
 | 8463 |  | 
 | 8464 | 	fmul.x		%fp3,%fp1		# W*(B3+W*B5), FP3 RELEASED | 
 | 8465 |  | 
 | 8466 | 	fmul.x		%fp0,%fp2		# V*(B2+W*B4) | 
 | 8467 |  | 
 | 8468 | 	fadd.d		LOGB1(%pc),%fp1		# B1+W*(B3+W*B5) | 
 | 8469 | 	fmul.x		SAVEU(%a6),%fp0		# FP0 IS U*V | 
 | 8470 |  | 
 | 8471 | 	fadd.x		%fp2,%fp1		# B1+W*(B3+W*B5) + V*(B2+W*B4), FP2 RELEASED | 
 | 8472 | 	fmovm.x		(%sp)+,&0x30		# FP2-3 RESTORED | 
 | 8473 |  | 
 | 8474 | 	fmul.x		%fp1,%fp0		# U*V*( [B1+W*(B3+W*B5)] + [V*(B2+W*B4)] ) | 
 | 8475 |  | 
 | 8476 | 	fmov.l		%d0,%fpcr | 
 | 8477 | 	fadd.x		SAVEU(%a6),%fp0 | 
 | 8478 | 	bra		t_inx2 | 
 | 8479 |  | 
 | 8480 | #--REGISTERS SAVED FPCR. LOG(-VE) IS INVALID | 
 | 8481 | LOGNEG: | 
 | 8482 | 	bra		t_operr | 
 | 8483 |  | 
 | 8484 | 	global		slognd | 
 | 8485 | slognd: | 
 | 8486 | #--ENTRY POINT FOR LOG(X) FOR DENORMALIZED INPUT | 
 | 8487 |  | 
 | 8488 | 	mov.l		&-100,ADJK(%a6)		# INPUT = 2^(ADJK) * FP0 | 
 | 8489 |  | 
 | 8490 | #----normalize the input value by left shifting k bits (k to be determined | 
 | 8491 | #----below), adjusting exponent and storing -k to  ADJK | 
 | 8492 | #----the value TWOTO100 is no longer needed. | 
 | 8493 | #----Note that this code assumes the denormalized input is NON-ZERO. | 
 | 8494 |  | 
 | 8495 | 	movm.l		&0x3f00,-(%sp)		# save some registers  {d2-d7} | 
 | 8496 | 	mov.l		(%a0),%d3		# D3 is exponent of smallest norm. # | 
 | 8497 | 	mov.l		4(%a0),%d4 | 
 | 8498 | 	mov.l		8(%a0),%d5		# (D4,D5) is (Hi_X,Lo_X) | 
 | 8499 | 	clr.l		%d2			# D2 used for holding K | 
 | 8500 |  | 
 | 8501 | 	tst.l		%d4 | 
 | 8502 | 	bne.b		Hi_not0 | 
 | 8503 |  | 
 | 8504 | Hi_0: | 
 | 8505 | 	mov.l		%d5,%d4 | 
 | 8506 | 	clr.l		%d5 | 
 | 8507 | 	mov.l		&32,%d2 | 
 | 8508 | 	clr.l		%d6 | 
 | 8509 | 	bfffo		%d4{&0:&32},%d6 | 
 | 8510 | 	lsl.l		%d6,%d4 | 
 | 8511 | 	add.l		%d6,%d2			# (D3,D4,D5) is normalized | 
 | 8512 |  | 
 | 8513 | 	mov.l		%d3,X(%a6) | 
 | 8514 | 	mov.l		%d4,XFRAC(%a6) | 
 | 8515 | 	mov.l		%d5,XFRAC+4(%a6) | 
 | 8516 | 	neg.l		%d2 | 
 | 8517 | 	mov.l		%d2,ADJK(%a6) | 
 | 8518 | 	fmov.x		X(%a6),%fp0 | 
 | 8519 | 	movm.l		(%sp)+,&0xfc		# restore registers {d2-d7} | 
 | 8520 | 	lea		X(%a6),%a0 | 
 | 8521 | 	bra.w		LOGBGN			# begin regular log(X) | 
 | 8522 |  | 
 | 8523 | Hi_not0: | 
 | 8524 | 	clr.l		%d6 | 
 | 8525 | 	bfffo		%d4{&0:&32},%d6		# find first 1 | 
 | 8526 | 	mov.l		%d6,%d2			# get k | 
 | 8527 | 	lsl.l		%d6,%d4 | 
 | 8528 | 	mov.l		%d5,%d7			# a copy of D5 | 
 | 8529 | 	lsl.l		%d6,%d5 | 
 | 8530 | 	neg.l		%d6 | 
 | 8531 | 	add.l		&32,%d6 | 
 | 8532 | 	lsr.l		%d6,%d7 | 
 | 8533 | 	or.l		%d7,%d4			# (D3,D4,D5) normalized | 
 | 8534 |  | 
 | 8535 | 	mov.l		%d3,X(%a6) | 
 | 8536 | 	mov.l		%d4,XFRAC(%a6) | 
 | 8537 | 	mov.l		%d5,XFRAC+4(%a6) | 
 | 8538 | 	neg.l		%d2 | 
 | 8539 | 	mov.l		%d2,ADJK(%a6) | 
 | 8540 | 	fmov.x		X(%a6),%fp0 | 
 | 8541 | 	movm.l		(%sp)+,&0xfc		# restore registers {d2-d7} | 
 | 8542 | 	lea		X(%a6),%a0 | 
 | 8543 | 	bra.w		LOGBGN			# begin regular log(X) | 
 | 8544 |  | 
 | 8545 | 	global		slognp1 | 
 | 8546 | #--ENTRY POINT FOR LOG(1+X) FOR X FINITE, NON-ZERO, NOT NAN'S | 
 | 8547 | slognp1: | 
 | 8548 | 	fmov.x		(%a0),%fp0		# LOAD INPUT | 
 | 8549 | 	fabs.x		%fp0			# test magnitude | 
 | 8550 | 	fcmp.x		%fp0,LTHOLD(%pc)	# compare with min threshold | 
 | 8551 | 	fbgt.w		LP1REAL			# if greater, continue | 
 | 8552 | 	fmov.l		%d0,%fpcr | 
 | 8553 | 	mov.b		&FMOV_OP,%d1		# last inst is MOVE | 
 | 8554 | 	fmov.x		(%a0),%fp0		# return signed argument | 
 | 8555 | 	bra		t_catch | 
 | 8556 |  | 
 | 8557 | LP1REAL: | 
 | 8558 | 	fmov.x		(%a0),%fp0		# LOAD INPUT | 
 | 8559 | 	mov.l		&0x00000000,ADJK(%a6) | 
 | 8560 | 	fmov.x		%fp0,%fp1		# FP1 IS INPUT Z | 
 | 8561 | 	fadd.s		one(%pc),%fp0		# X := ROUND(1+Z) | 
 | 8562 | 	fmov.x		%fp0,X(%a6) | 
 | 8563 | 	mov.w		XFRAC(%a6),XDCARE(%a6) | 
 | 8564 | 	mov.l		X(%a6),%d1 | 
 | 8565 | 	cmp.l		%d1,&0 | 
 | 8566 | 	ble.w		LP1NEG0			# LOG OF ZERO OR -VE | 
 | 8567 | 	cmp.l		%d1,&0x3ffe8000		# IS BOUNDS [1/2,3/2]? | 
 | 8568 | 	blt.w		LOGMAIN | 
 | 8569 | 	cmp.l		%d1,&0x3fffc000 | 
 | 8570 | 	bgt.w		LOGMAIN | 
 | 8571 | #--IF 1+Z > 3/2 OR 1+Z < 1/2, THEN X, WHICH IS ROUNDING 1+Z, | 
 | 8572 | #--CONTAINS AT LEAST 63 BITS OF INFORMATION OF Z. IN THAT CASE, | 
 | 8573 | #--SIMPLY INVOKE LOG(X) FOR LOG(1+Z). | 
 | 8574 |  | 
 | 8575 | LP1NEAR1: | 
 | 8576 | #--NEXT SEE IF EXP(-1/16) < X < EXP(1/16) | 
 | 8577 | 	cmp.l		%d1,&0x3ffef07d | 
 | 8578 | 	blt.w		LP1CARE | 
 | 8579 | 	cmp.l		%d1,&0x3fff8841 | 
 | 8580 | 	bgt.w		LP1CARE | 
 | 8581 |  | 
 | 8582 | LP1ONE16: | 
 | 8583 | #--EXP(-1/16) < X < EXP(1/16). LOG(1+Z) = LOG(1+U/2) - LOG(1-U/2) | 
 | 8584 | #--WHERE U = 2Z/(2+Z) = 2Z/(1+X). | 
 | 8585 | 	fadd.x		%fp1,%fp1		# FP1 IS 2Z | 
 | 8586 | 	fadd.s		one(%pc),%fp0		# FP0 IS 1+X | 
 | 8587 | #--U = FP1/FP0 | 
 | 8588 | 	bra.w		LP1CONT2 | 
 | 8589 |  | 
 | 8590 | LP1CARE: | 
 | 8591 | #--HERE WE USE THE USUAL TABLE DRIVEN APPROACH. CARE HAS TO BE | 
 | 8592 | #--TAKEN BECAUSE 1+Z CAN HAVE 67 BITS OF INFORMATION AND WE MUST | 
 | 8593 | #--PRESERVE ALL THE INFORMATION. BECAUSE 1+Z IS IN [1/2,3/2], | 
 | 8594 | #--THERE ARE ONLY TWO CASES. | 
 | 8595 | #--CASE 1: 1+Z < 1, THEN K = -1 AND Y-F = (2-F) + 2Z | 
 | 8596 | #--CASE 2: 1+Z > 1, THEN K = 0  AND Y-F = (1-F) + Z | 
 | 8597 | #--ON RETURNING TO LP1CONT1, WE MUST HAVE K IN FP1, ADDRESS OF | 
 | 8598 | #--(1/F) IN A0, Y-F IN FP0, AND FP2 SAVED. | 
 | 8599 |  | 
 | 8600 | 	mov.l		XFRAC(%a6),FFRAC(%a6) | 
 | 8601 | 	and.l		&0xFE000000,FFRAC(%a6) | 
 | 8602 | 	or.l		&0x01000000,FFRAC(%a6)	# F OBTAINED | 
 | 8603 | 	cmp.l		%d1,&0x3FFF8000		# SEE IF 1+Z > 1 | 
 | 8604 | 	bge.b		KISZERO | 
 | 8605 |  | 
 | 8606 | KISNEG1: | 
 | 8607 | 	fmov.s		TWO(%pc),%fp0 | 
 | 8608 | 	mov.l		&0x3fff0000,F(%a6) | 
 | 8609 | 	clr.l		F+8(%a6) | 
 | 8610 | 	fsub.x		F(%a6),%fp0		# 2-F | 
 | 8611 | 	mov.l		FFRAC(%a6),%d1 | 
 | 8612 | 	and.l		&0x7E000000,%d1 | 
 | 8613 | 	asr.l		&8,%d1 | 
 | 8614 | 	asr.l		&8,%d1 | 
 | 8615 | 	asr.l		&4,%d1			# D0 CONTAINS DISPLACEMENT FOR 1/F | 
 | 8616 | 	fadd.x		%fp1,%fp1		# GET 2Z | 
 | 8617 | 	fmovm.x		&0xc,-(%sp)		# SAVE FP2  {%fp2/%fp3} | 
 | 8618 | 	fadd.x		%fp1,%fp0		# FP0 IS Y-F = (2-F)+2Z | 
 | 8619 | 	lea		LOGTBL(%pc),%a0		# A0 IS ADDRESS OF 1/F | 
 | 8620 | 	add.l		%d1,%a0 | 
 | 8621 | 	fmov.s		negone(%pc),%fp1	# FP1 IS K = -1 | 
 | 8622 | 	bra.w		LP1CONT1 | 
 | 8623 |  | 
 | 8624 | KISZERO: | 
 | 8625 | 	fmov.s		one(%pc),%fp0 | 
 | 8626 | 	mov.l		&0x3fff0000,F(%a6) | 
 | 8627 | 	clr.l		F+8(%a6) | 
 | 8628 | 	fsub.x		F(%a6),%fp0		# 1-F | 
 | 8629 | 	mov.l		FFRAC(%a6),%d1 | 
 | 8630 | 	and.l		&0x7E000000,%d1 | 
 | 8631 | 	asr.l		&8,%d1 | 
 | 8632 | 	asr.l		&8,%d1 | 
 | 8633 | 	asr.l		&4,%d1 | 
 | 8634 | 	fadd.x		%fp1,%fp0		# FP0 IS Y-F | 
 | 8635 | 	fmovm.x		&0xc,-(%sp)		# FP2 SAVED {%fp2/%fp3} | 
 | 8636 | 	lea		LOGTBL(%pc),%a0 | 
 | 8637 | 	add.l		%d1,%a0			# A0 IS ADDRESS OF 1/F | 
 | 8638 | 	fmov.s		zero(%pc),%fp1		# FP1 IS K = 0 | 
 | 8639 | 	bra.w		LP1CONT1 | 
 | 8640 |  | 
 | 8641 | LP1NEG0: | 
 | 8642 | #--FPCR SAVED. D0 IS X IN COMPACT FORM. | 
 | 8643 | 	cmp.l		%d1,&0 | 
 | 8644 | 	blt.b		LP1NEG | 
 | 8645 | LP1ZERO: | 
 | 8646 | 	fmov.s		negone(%pc),%fp0 | 
 | 8647 |  | 
 | 8648 | 	fmov.l		%d0,%fpcr | 
 | 8649 | 	bra		t_dz | 
 | 8650 |  | 
 | 8651 | LP1NEG: | 
 | 8652 | 	fmov.s		zero(%pc),%fp0 | 
 | 8653 |  | 
 | 8654 | 	fmov.l		%d0,%fpcr | 
 | 8655 | 	bra		t_operr | 
 | 8656 |  | 
 | 8657 | 	global		slognp1d | 
 | 8658 | #--ENTRY POINT FOR LOG(1+Z) FOR DENORMALIZED INPUT | 
 | 8659 | # Simply return the denorm | 
 | 8660 | slognp1d: | 
 | 8661 | 	bra		t_extdnrm | 
 | 8662 |  | 
 | 8663 | ######################################################################### | 
 | 8664 | # satanh():  computes the inverse hyperbolic tangent of a norm input	# | 
 | 8665 | # satanhd(): computes the inverse hyperbolic tangent of a denorm input	# | 
 | 8666 | #									# | 
 | 8667 | # INPUT ***************************************************************	# | 
 | 8668 | #	a0 = pointer to extended precision input			# | 
 | 8669 | #	d0 = round precision,mode					# | 
 | 8670 | #									# | 
 | 8671 | # OUTPUT **************************************************************	# | 
 | 8672 | #	fp0 = arctanh(X)						# | 
 | 8673 | #									# | 
 | 8674 | # ACCURACY and MONOTONICITY *******************************************	# | 
 | 8675 | #	The returned result is within 3 ulps in	64 significant bit,	# | 
 | 8676 | #	i.e. within 0.5001 ulp to 53 bits if the result is subsequently	# | 
 | 8677 | #	rounded to double precision. The result is provably monotonic	# | 
 | 8678 | #	in double precision.						# | 
 | 8679 | #									# | 
 | 8680 | # ALGORITHM ***********************************************************	# | 
 | 8681 | #									# | 
 | 8682 | #	ATANH								# | 
 | 8683 | #	1. If |X| >= 1, go to 3.					# | 
 | 8684 | #									# | 
 | 8685 | #	2. (|X| < 1) Calculate atanh(X) by				# | 
 | 8686 | #		sgn := sign(X)						# | 
 | 8687 | #		y := |X|						# | 
 | 8688 | #		z := 2y/(1-y)						# | 
 | 8689 | #		atanh(X) := sgn * (1/2) * logp1(z)			# | 
 | 8690 | #		Exit.							# | 
 | 8691 | #									# | 
 | 8692 | #	3. If |X| > 1, go to 5.						# | 
 | 8693 | #									# | 
 | 8694 | #	4. (|X| = 1) Generate infinity with an appropriate sign and	# | 
 | 8695 | #		divide-by-zero by					# | 
 | 8696 | #		sgn := sign(X)						# | 
 | 8697 | #		atan(X) := sgn / (+0).					# | 
 | 8698 | #		Exit.							# | 
 | 8699 | #									# | 
 | 8700 | #	5. (|X| > 1) Generate an invalid operation by 0 * infinity.	# | 
 | 8701 | #		Exit.							# | 
 | 8702 | #									# | 
 | 8703 | ######################################################################### | 
 | 8704 |  | 
 | 8705 | 	global		satanh | 
 | 8706 | satanh: | 
 | 8707 | 	mov.l		(%a0),%d1 | 
 | 8708 | 	mov.w		4(%a0),%d1 | 
 | 8709 | 	and.l		&0x7FFFFFFF,%d1 | 
 | 8710 | 	cmp.l		%d1,&0x3FFF8000 | 
 | 8711 | 	bge.b		ATANHBIG | 
 | 8712 |  | 
 | 8713 | #--THIS IS THE USUAL CASE, |X| < 1 | 
 | 8714 | #--Y = |X|, Z = 2Y/(1-Y), ATANH(X) = SIGN(X) * (1/2) * LOG1P(Z). | 
 | 8715 |  | 
 | 8716 | 	fabs.x		(%a0),%fp0		# Y = |X| | 
 | 8717 | 	fmov.x		%fp0,%fp1 | 
 | 8718 | 	fneg.x		%fp1			# -Y | 
 | 8719 | 	fadd.x		%fp0,%fp0		# 2Y | 
 | 8720 | 	fadd.s		&0x3F800000,%fp1	# 1-Y | 
 | 8721 | 	fdiv.x		%fp1,%fp0		# 2Y/(1-Y) | 
 | 8722 | 	mov.l		(%a0),%d1 | 
 | 8723 | 	and.l		&0x80000000,%d1 | 
 | 8724 | 	or.l		&0x3F000000,%d1		# SIGN(X)*HALF | 
 | 8725 | 	mov.l		%d1,-(%sp) | 
 | 8726 |  | 
 | 8727 | 	mov.l		%d0,-(%sp)		# save rnd prec,mode | 
 | 8728 | 	clr.l		%d0			# pass ext prec,RN | 
 | 8729 | 	fmovm.x		&0x01,-(%sp)		# save Z on stack | 
 | 8730 | 	lea		(%sp),%a0		# pass ptr to Z | 
 | 8731 | 	bsr		slognp1			# LOG1P(Z) | 
 | 8732 | 	add.l		&0xc,%sp		# clear Z from stack | 
 | 8733 |  | 
 | 8734 | 	mov.l		(%sp)+,%d0		# fetch old prec,mode | 
 | 8735 | 	fmov.l		%d0,%fpcr		# load it | 
 | 8736 | 	mov.b		&FMUL_OP,%d1		# last inst is MUL | 
 | 8737 | 	fmul.s		(%sp)+,%fp0 | 
 | 8738 | 	bra		t_catch | 
 | 8739 |  | 
 | 8740 | ATANHBIG: | 
 | 8741 | 	fabs.x		(%a0),%fp0		# |X| | 
 | 8742 | 	fcmp.s		%fp0,&0x3F800000 | 
 | 8743 | 	fbgt		t_operr | 
 | 8744 | 	bra		t_dz | 
 | 8745 |  | 
 | 8746 | 	global		satanhd | 
 | 8747 | #--ATANH(X) = X FOR DENORMALIZED X | 
 | 8748 | satanhd: | 
 | 8749 | 	bra		t_extdnrm | 
 | 8750 |  | 
 | 8751 | ######################################################################### | 
 | 8752 | # slog10():  computes the base-10 logarithm of a normalized input	# | 
 | 8753 | # slog10d(): computes the base-10 logarithm of a denormalized input	# | 
 | 8754 | # slog2():   computes the base-2 logarithm of a normalized input	# | 
 | 8755 | # slog2d():  computes the base-2 logarithm of a denormalized input	# | 
 | 8756 | #									# | 
 | 8757 | # INPUT *************************************************************** # | 
 | 8758 | #	a0 = pointer to extended precision input			# | 
 | 8759 | #	d0 = round precision,mode					# | 
 | 8760 | #									# | 
 | 8761 | # OUTPUT **************************************************************	# | 
 | 8762 | #	fp0 = log_10(X) or log_2(X)					# | 
 | 8763 | #									# | 
 | 8764 | # ACCURACY and MONOTONICITY *******************************************	# | 
 | 8765 | #	The returned result is within 1.7 ulps in 64 significant bit,	# | 
 | 8766 | #	i.e. within 0.5003 ulp to 53 bits if the result is subsequently	# | 
 | 8767 | #	rounded to double precision. The result is provably monotonic	# | 
 | 8768 | #	in double precision.						# | 
 | 8769 | #									# | 
 | 8770 | # ALGORITHM ***********************************************************	# | 
 | 8771 | #									# | 
 | 8772 | #       slog10d:							# | 
 | 8773 | #									# | 
 | 8774 | #       Step 0.	If X < 0, create a NaN and raise the invalid operation	# | 
 | 8775 | #               flag. Otherwise, save FPCR in D1; set FpCR to default.	# | 
 | 8776 | #       Notes:  Default means round-to-nearest mode, no floating-point	# | 
 | 8777 | #               traps, and precision control = double extended.		# | 
 | 8778 | #									# | 
 | 8779 | #       Step 1. Call slognd to obtain Y = log(X), the natural log of X.	# | 
 | 8780 | #       Notes:  Even if X is denormalized, log(X) is always normalized.	# | 
 | 8781 | #									# | 
 | 8782 | #       Step 2.  Compute log_10(X) = log(X) * (1/log(10)).		# | 
 | 8783 | #            2.1 Restore the user FPCR					# | 
 | 8784 | #            2.2 Return ans := Y * INV_L10.				# | 
 | 8785 | #									# | 
 | 8786 | #       slog10:								# | 
 | 8787 | #									# | 
 | 8788 | #       Step 0. If X < 0, create a NaN and raise the invalid operation	# | 
 | 8789 | #               flag. Otherwise, save FPCR in D1; set FpCR to default.	# | 
 | 8790 | #       Notes:  Default means round-to-nearest mode, no floating-point	# | 
 | 8791 | #               traps, and precision control = double extended.		# | 
 | 8792 | #									# | 
 | 8793 | #       Step 1. Call sLogN to obtain Y = log(X), the natural log of X.	# | 
 | 8794 | #									# | 
 | 8795 | #       Step 2.   Compute log_10(X) = log(X) * (1/log(10)).		# | 
 | 8796 | #            2.1  Restore the user FPCR					# | 
 | 8797 | #            2.2  Return ans := Y * INV_L10.				# | 
 | 8798 | #									# | 
 | 8799 | #       sLog2d:								# | 
 | 8800 | #									# | 
 | 8801 | #       Step 0. If X < 0, create a NaN and raise the invalid operation	# | 
 | 8802 | #               flag. Otherwise, save FPCR in D1; set FpCR to default.	# | 
 | 8803 | #       Notes:  Default means round-to-nearest mode, no floating-point	# | 
 | 8804 | #               traps, and precision control = double extended.		# | 
 | 8805 | #									# | 
 | 8806 | #       Step 1. Call slognd to obtain Y = log(X), the natural log of X.	# | 
 | 8807 | #       Notes:  Even if X is denormalized, log(X) is always normalized.	# | 
 | 8808 | #									# | 
 | 8809 | #       Step 2.   Compute log_10(X) = log(X) * (1/log(2)).		# | 
 | 8810 | #            2.1  Restore the user FPCR					# | 
 | 8811 | #            2.2  Return ans := Y * INV_L2.				# | 
 | 8812 | #									# | 
 | 8813 | #       sLog2:								# | 
 | 8814 | #									# | 
 | 8815 | #       Step 0. If X < 0, create a NaN and raise the invalid operation	# | 
 | 8816 | #               flag. Otherwise, save FPCR in D1; set FpCR to default.	# | 
 | 8817 | #       Notes:  Default means round-to-nearest mode, no floating-point	# | 
 | 8818 | #               traps, and precision control = double extended.		# | 
 | 8819 | #									# | 
 | 8820 | #       Step 1. If X is not an integer power of two, i.e., X != 2^k,	# | 
 | 8821 | #               go to Step 3.						# | 
 | 8822 | #									# | 
 | 8823 | #       Step 2.   Return k.						# | 
 | 8824 | #            2.1  Get integer k, X = 2^k.				# | 
 | 8825 | #            2.2  Restore the user FPCR.				# | 
 | 8826 | #            2.3  Return ans := convert-to-double-extended(k).		# | 
 | 8827 | #									# | 
 | 8828 | #       Step 3. Call sLogN to obtain Y = log(X), the natural log of X.	# | 
 | 8829 | #									# | 
 | 8830 | #       Step 4.   Compute log_2(X) = log(X) * (1/log(2)).		# | 
 | 8831 | #            4.1  Restore the user FPCR					# | 
 | 8832 | #            4.2  Return ans := Y * INV_L2.				# | 
 | 8833 | #									# | 
 | 8834 | ######################################################################### | 
 | 8835 |  | 
 | 8836 | INV_L10: | 
 | 8837 | 	long		0x3FFD0000,0xDE5BD8A9,0x37287195,0x00000000 | 
 | 8838 |  | 
 | 8839 | INV_L2: | 
 | 8840 | 	long		0x3FFF0000,0xB8AA3B29,0x5C17F0BC,0x00000000 | 
 | 8841 |  | 
 | 8842 | 	global		slog10 | 
 | 8843 | #--entry point for Log10(X), X is normalized | 
 | 8844 | slog10: | 
 | 8845 | 	fmov.b		&0x1,%fp0 | 
 | 8846 | 	fcmp.x		%fp0,(%a0)		# if operand == 1, | 
 | 8847 | 	fbeq.l		ld_pzero		# return an EXACT zero | 
 | 8848 |  | 
 | 8849 | 	mov.l		(%a0),%d1 | 
 | 8850 | 	blt.w		invalid | 
 | 8851 | 	mov.l		%d0,-(%sp) | 
 | 8852 | 	clr.l		%d0 | 
 | 8853 | 	bsr		slogn			# log(X), X normal. | 
 | 8854 | 	fmov.l		(%sp)+,%fpcr | 
 | 8855 | 	fmul.x		INV_L10(%pc),%fp0 | 
 | 8856 | 	bra		t_inx2 | 
 | 8857 |  | 
 | 8858 | 	global		slog10d | 
 | 8859 | #--entry point for Log10(X), X is denormalized | 
 | 8860 | slog10d: | 
 | 8861 | 	mov.l		(%a0),%d1 | 
 | 8862 | 	blt.w		invalid | 
 | 8863 | 	mov.l		%d0,-(%sp) | 
 | 8864 | 	clr.l		%d0 | 
 | 8865 | 	bsr		slognd			# log(X), X denorm. | 
 | 8866 | 	fmov.l		(%sp)+,%fpcr | 
 | 8867 | 	fmul.x		INV_L10(%pc),%fp0 | 
 | 8868 | 	bra		t_minx2 | 
 | 8869 |  | 
 | 8870 | 	global		slog2 | 
 | 8871 | #--entry point for Log2(X), X is normalized | 
 | 8872 | slog2: | 
 | 8873 | 	mov.l		(%a0),%d1 | 
 | 8874 | 	blt.w		invalid | 
 | 8875 |  | 
 | 8876 | 	mov.l		8(%a0),%d1 | 
 | 8877 | 	bne.b		continue		# X is not 2^k | 
 | 8878 |  | 
 | 8879 | 	mov.l		4(%a0),%d1 | 
 | 8880 | 	and.l		&0x7FFFFFFF,%d1 | 
 | 8881 | 	bne.b		continue | 
 | 8882 |  | 
 | 8883 | #--X = 2^k. | 
 | 8884 | 	mov.w		(%a0),%d1 | 
 | 8885 | 	and.l		&0x00007FFF,%d1 | 
 | 8886 | 	sub.l		&0x3FFF,%d1 | 
 | 8887 | 	beq.l		ld_pzero | 
 | 8888 | 	fmov.l		%d0,%fpcr | 
 | 8889 | 	fmov.l		%d1,%fp0 | 
 | 8890 | 	bra		t_inx2 | 
 | 8891 |  | 
 | 8892 | continue: | 
 | 8893 | 	mov.l		%d0,-(%sp) | 
 | 8894 | 	clr.l		%d0 | 
 | 8895 | 	bsr		slogn			# log(X), X normal. | 
 | 8896 | 	fmov.l		(%sp)+,%fpcr | 
 | 8897 | 	fmul.x		INV_L2(%pc),%fp0 | 
 | 8898 | 	bra		t_inx2 | 
 | 8899 |  | 
 | 8900 | invalid: | 
 | 8901 | 	bra		t_operr | 
 | 8902 |  | 
 | 8903 | 	global		slog2d | 
 | 8904 | #--entry point for Log2(X), X is denormalized | 
 | 8905 | slog2d: | 
 | 8906 | 	mov.l		(%a0),%d1 | 
 | 8907 | 	blt.w		invalid | 
 | 8908 | 	mov.l		%d0,-(%sp) | 
 | 8909 | 	clr.l		%d0 | 
 | 8910 | 	bsr		slognd			# log(X), X denorm. | 
 | 8911 | 	fmov.l		(%sp)+,%fpcr | 
 | 8912 | 	fmul.x		INV_L2(%pc),%fp0 | 
 | 8913 | 	bra		t_minx2 | 
 | 8914 |  | 
 | 8915 | ######################################################################### | 
 | 8916 | # stwotox():  computes 2**X for a normalized input			# | 
 | 8917 | # stwotoxd(): computes 2**X for a denormalized input			# | 
 | 8918 | # stentox():  computes 10**X for a normalized input			# | 
 | 8919 | # stentoxd(): computes 10**X for a denormalized input			# | 
 | 8920 | #									# | 
 | 8921 | # INPUT ***************************************************************	# | 
 | 8922 | #	a0 = pointer to extended precision input			# | 
 | 8923 | #	d0 = round precision,mode					# | 
 | 8924 | #									# | 
 | 8925 | # OUTPUT **************************************************************	# | 
 | 8926 | #	fp0 = 2**X or 10**X						# | 
 | 8927 | #									# | 
 | 8928 | # ACCURACY and MONOTONICITY *******************************************	# | 
 | 8929 | #	The returned result is within 2 ulps in 64 significant bit,	# | 
 | 8930 | #	i.e. within 0.5001 ulp to 53 bits if the result is subsequently	# | 
 | 8931 | #	rounded to double precision. The result is provably monotonic	# | 
 | 8932 | #	in double precision.						# | 
 | 8933 | #									# | 
 | 8934 | # ALGORITHM ***********************************************************	# | 
 | 8935 | #									# | 
 | 8936 | #	twotox								# | 
 | 8937 | #	1. If |X| > 16480, go to ExpBig.				# | 
 | 8938 | #									# | 
 | 8939 | #	2. If |X| < 2**(-70), go to ExpSm.				# | 
 | 8940 | #									# | 
 | 8941 | #	3. Decompose X as X = N/64 + r where |r| <= 1/128. Furthermore	# | 
 | 8942 | #		decompose N as						# | 
 | 8943 | #		 N = 64(M + M') + j,  j = 0,1,2,...,63.			# | 
 | 8944 | #									# | 
 | 8945 | #	4. Overwrite r := r * log2. Then				# | 
 | 8946 | #		2**X = 2**(M') * 2**(M) * 2**(j/64) * exp(r).		# | 
 | 8947 | #		Go to expr to compute that expression.			# | 
 | 8948 | #									# | 
 | 8949 | #	tentox								# | 
 | 8950 | #	1. If |X| > 16480*log_10(2) (base 10 log of 2), go to ExpBig.	# | 
 | 8951 | #									# | 
 | 8952 | #	2. If |X| < 2**(-70), go to ExpSm.				# | 
 | 8953 | #									# | 
 | 8954 | #	3. Set y := X*log_2(10)*64 (base 2 log of 10). Set		# | 
 | 8955 | #		N := round-to-int(y). Decompose N as			# | 
 | 8956 | #		 N = 64(M + M') + j,  j = 0,1,2,...,63.			# | 
 | 8957 | #									# | 
 | 8958 | #	4. Define r as							# | 
 | 8959 | #		r := ((X - N*L1)-N*L2) * L10				# | 
 | 8960 | #		where L1, L2 are the leading and trailing parts of	# | 
 | 8961 | #		log_10(2)/64 and L10 is the natural log of 10. Then	# | 
 | 8962 | #		10**X = 2**(M') * 2**(M) * 2**(j/64) * exp(r).		# | 
 | 8963 | #		Go to expr to compute that expression.			# | 
 | 8964 | #									# | 
 | 8965 | #	expr								# | 
 | 8966 | #	1. Fetch 2**(j/64) from table as Fact1 and Fact2.		# | 
 | 8967 | #									# | 
 | 8968 | #	2. Overwrite Fact1 and Fact2 by					# | 
 | 8969 | #		Fact1 := 2**(M) * Fact1					# | 
 | 8970 | #		Fact2 := 2**(M) * Fact2					# | 
 | 8971 | #		Thus Fact1 + Fact2 = 2**(M) * 2**(j/64).		# | 
 | 8972 | #									# | 
 | 8973 | #	3. Calculate P where 1 + P approximates exp(r):			# | 
 | 8974 | #		P = r + r*r*(A1+r*(A2+...+r*A5)).			# | 
 | 8975 | #									# | 
 | 8976 | #	4. Let AdjFact := 2**(M'). Return				# | 
 | 8977 | #		AdjFact * ( Fact1 + ((Fact1*P) + Fact2) ).		# | 
 | 8978 | #		Exit.							# | 
 | 8979 | #									# | 
 | 8980 | #	ExpBig								# | 
 | 8981 | #	1. Generate overflow by Huge * Huge if X > 0; otherwise,	# | 
 | 8982 | #	        generate underflow by Tiny * Tiny.			# | 
 | 8983 | #									# | 
 | 8984 | #	ExpSm								# | 
 | 8985 | #	1. Return 1 + X.						# | 
 | 8986 | #									# | 
 | 8987 | ######################################################################### | 
 | 8988 |  | 
 | 8989 | L2TEN64: | 
 | 8990 | 	long		0x406A934F,0x0979A371	# 64LOG10/LOG2 | 
 | 8991 | L10TWO1: | 
 | 8992 | 	long		0x3F734413,0x509F8000	# LOG2/64LOG10 | 
 | 8993 |  | 
 | 8994 | L10TWO2: | 
 | 8995 | 	long		0xBFCD0000,0xC0219DC1,0xDA994FD2,0x00000000 | 
 | 8996 |  | 
 | 8997 | LOG10:	long		0x40000000,0x935D8DDD,0xAAA8AC17,0x00000000 | 
 | 8998 |  | 
 | 8999 | LOG2:	long		0x3FFE0000,0xB17217F7,0xD1CF79AC,0x00000000 | 
 | 9000 |  | 
 | 9001 | EXPA5:	long		0x3F56C16D,0x6F7BD0B2 | 
 | 9002 | EXPA4:	long		0x3F811112,0x302C712C | 
 | 9003 | EXPA3:	long		0x3FA55555,0x55554CC1 | 
 | 9004 | EXPA2:	long		0x3FC55555,0x55554A54 | 
 | 9005 | EXPA1:	long		0x3FE00000,0x00000000,0x00000000,0x00000000 | 
 | 9006 |  | 
 | 9007 | TEXPTBL: | 
 | 9008 | 	long		0x3FFF0000,0x80000000,0x00000000,0x3F738000 | 
 | 9009 | 	long		0x3FFF0000,0x8164D1F3,0xBC030773,0x3FBEF7CA | 
 | 9010 | 	long		0x3FFF0000,0x82CD8698,0xAC2BA1D7,0x3FBDF8A9 | 
 | 9011 | 	long		0x3FFF0000,0x843A28C3,0xACDE4046,0x3FBCD7C9 | 
 | 9012 | 	long		0x3FFF0000,0x85AAC367,0xCC487B15,0xBFBDE8DA | 
 | 9013 | 	long		0x3FFF0000,0x871F6196,0x9E8D1010,0x3FBDE85C | 
 | 9014 | 	long		0x3FFF0000,0x88980E80,0x92DA8527,0x3FBEBBF1 | 
 | 9015 | 	long		0x3FFF0000,0x8A14D575,0x496EFD9A,0x3FBB80CA | 
 | 9016 | 	long		0x3FFF0000,0x8B95C1E3,0xEA8BD6E7,0xBFBA8373 | 
 | 9017 | 	long		0x3FFF0000,0x8D1ADF5B,0x7E5BA9E6,0xBFBE9670 | 
 | 9018 | 	long		0x3FFF0000,0x8EA4398B,0x45CD53C0,0x3FBDB700 | 
 | 9019 | 	long		0x3FFF0000,0x9031DC43,0x1466B1DC,0x3FBEEEB0 | 
 | 9020 | 	long		0x3FFF0000,0x91C3D373,0xAB11C336,0x3FBBFD6D | 
 | 9021 | 	long		0x3FFF0000,0x935A2B2F,0x13E6E92C,0xBFBDB319 | 
 | 9022 | 	long		0x3FFF0000,0x94F4EFA8,0xFEF70961,0x3FBDBA2B | 
 | 9023 | 	long		0x3FFF0000,0x96942D37,0x20185A00,0x3FBE91D5 | 
 | 9024 | 	long		0x3FFF0000,0x9837F051,0x8DB8A96F,0x3FBE8D5A | 
 | 9025 | 	long		0x3FFF0000,0x99E04593,0x20B7FA65,0xBFBCDE7B | 
 | 9026 | 	long		0x3FFF0000,0x9B8D39B9,0xD54E5539,0xBFBEBAAF | 
 | 9027 | 	long		0x3FFF0000,0x9D3ED9A7,0x2CFFB751,0xBFBD86DA | 
 | 9028 | 	long		0x3FFF0000,0x9EF53260,0x91A111AE,0xBFBEBEDD | 
 | 9029 | 	long		0x3FFF0000,0xA0B0510F,0xB9714FC2,0x3FBCC96E | 
 | 9030 | 	long		0x3FFF0000,0xA2704303,0x0C496819,0xBFBEC90B | 
 | 9031 | 	long		0x3FFF0000,0xA43515AE,0x09E6809E,0x3FBBD1DB | 
 | 9032 | 	long		0x3FFF0000,0xA5FED6A9,0xB15138EA,0x3FBCE5EB | 
 | 9033 | 	long		0x3FFF0000,0xA7CD93B4,0xE965356A,0xBFBEC274 | 
 | 9034 | 	long		0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x3FBEA83C | 
 | 9035 | 	long		0x3FFF0000,0xAB7A39B5,0xA93ED337,0x3FBECB00 | 
 | 9036 | 	long		0x3FFF0000,0xAD583EEA,0x42A14AC6,0x3FBE9301 | 
 | 9037 | 	long		0x3FFF0000,0xAF3B78AD,0x690A4375,0xBFBD8367 | 
 | 9038 | 	long		0x3FFF0000,0xB123F581,0xD2AC2590,0xBFBEF05F | 
 | 9039 | 	long		0x3FFF0000,0xB311C412,0xA9112489,0x3FBDFB3C | 
 | 9040 | 	long		0x3FFF0000,0xB504F333,0xF9DE6484,0x3FBEB2FB | 
 | 9041 | 	long		0x3FFF0000,0xB6FD91E3,0x28D17791,0x3FBAE2CB | 
 | 9042 | 	long		0x3FFF0000,0xB8FBAF47,0x62FB9EE9,0x3FBCDC3C | 
 | 9043 | 	long		0x3FFF0000,0xBAFF5AB2,0x133E45FB,0x3FBEE9AA | 
 | 9044 | 	long		0x3FFF0000,0xBD08A39F,0x580C36BF,0xBFBEAEFD | 
 | 9045 | 	long		0x3FFF0000,0xBF1799B6,0x7A731083,0xBFBCBF51 | 
 | 9046 | 	long		0x3FFF0000,0xC12C4CCA,0x66709456,0x3FBEF88A | 
 | 9047 | 	long		0x3FFF0000,0xC346CCDA,0x24976407,0x3FBD83B2 | 
 | 9048 | 	long		0x3FFF0000,0xC5672A11,0x5506DADD,0x3FBDF8AB | 
 | 9049 | 	long		0x3FFF0000,0xC78D74C8,0xABB9B15D,0xBFBDFB17 | 
 | 9050 | 	long		0x3FFF0000,0xC9B9BD86,0x6E2F27A3,0xBFBEFE3C | 
 | 9051 | 	long		0x3FFF0000,0xCBEC14FE,0xF2727C5D,0xBFBBB6F8 | 
 | 9052 | 	long		0x3FFF0000,0xCE248C15,0x1F8480E4,0xBFBCEE53 | 
 | 9053 | 	long		0x3FFF0000,0xD06333DA,0xEF2B2595,0xBFBDA4AE | 
 | 9054 | 	long		0x3FFF0000,0xD2A81D91,0xF12AE45A,0x3FBC9124 | 
 | 9055 | 	long		0x3FFF0000,0xD4F35AAB,0xCFEDFA1F,0x3FBEB243 | 
 | 9056 | 	long		0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x3FBDE69A | 
 | 9057 | 	long		0x3FFF0000,0xD99D15C2,0x78AFD7B6,0xBFB8BC61 | 
 | 9058 | 	long		0x3FFF0000,0xDBFBB797,0xDAF23755,0x3FBDF610 | 
 | 9059 | 	long		0x3FFF0000,0xDE60F482,0x5E0E9124,0xBFBD8BE1 | 
 | 9060 | 	long		0x3FFF0000,0xE0CCDEEC,0x2A94E111,0x3FBACB12 | 
 | 9061 | 	long		0x3FFF0000,0xE33F8972,0xBE8A5A51,0x3FBB9BFE | 
 | 9062 | 	long		0x3FFF0000,0xE5B906E7,0x7C8348A8,0x3FBCF2F4 | 
 | 9063 | 	long		0x3FFF0000,0xE8396A50,0x3C4BDC68,0x3FBEF22F | 
 | 9064 | 	long		0x3FFF0000,0xEAC0C6E7,0xDD24392F,0xBFBDBF4A | 
 | 9065 | 	long		0x3FFF0000,0xED4F301E,0xD9942B84,0x3FBEC01A | 
 | 9066 | 	long		0x3FFF0000,0xEFE4B99B,0xDCDAF5CB,0x3FBE8CAC | 
 | 9067 | 	long		0x3FFF0000,0xF281773C,0x59FFB13A,0xBFBCBB3F | 
 | 9068 | 	long		0x3FFF0000,0xF5257D15,0x2486CC2C,0x3FBEF73A | 
 | 9069 | 	long		0x3FFF0000,0xF7D0DF73,0x0AD13BB9,0xBFB8B795 | 
 | 9070 | 	long		0x3FFF0000,0xFA83B2DB,0x722A033A,0x3FBEF84B | 
 | 9071 | 	long		0x3FFF0000,0xFD3E0C0C,0xF486C175,0xBFBEF581 | 
 | 9072 |  | 
 | 9073 | 	set		INT,L_SCR1 | 
 | 9074 |  | 
 | 9075 | 	set		X,FP_SCR0 | 
 | 9076 | 	set		XDCARE,X+2 | 
 | 9077 | 	set		XFRAC,X+4 | 
 | 9078 |  | 
 | 9079 | 	set		ADJFACT,FP_SCR0 | 
 | 9080 |  | 
 | 9081 | 	set		FACT1,FP_SCR0 | 
 | 9082 | 	set		FACT1HI,FACT1+4 | 
 | 9083 | 	set		FACT1LOW,FACT1+8 | 
 | 9084 |  | 
 | 9085 | 	set		FACT2,FP_SCR1 | 
 | 9086 | 	set		FACT2HI,FACT2+4 | 
 | 9087 | 	set		FACT2LOW,FACT2+8 | 
 | 9088 |  | 
 | 9089 | 	global		stwotox | 
 | 9090 | #--ENTRY POINT FOR 2**(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S | 
 | 9091 | stwotox: | 
 | 9092 | 	fmovm.x		(%a0),&0x80		# LOAD INPUT | 
 | 9093 |  | 
 | 9094 | 	mov.l		(%a0),%d1 | 
 | 9095 | 	mov.w		4(%a0),%d1 | 
 | 9096 | 	fmov.x		%fp0,X(%a6) | 
 | 9097 | 	and.l		&0x7FFFFFFF,%d1 | 
 | 9098 |  | 
 | 9099 | 	cmp.l		%d1,&0x3FB98000		# |X| >= 2**(-70)? | 
 | 9100 | 	bge.b		TWOOK1 | 
 | 9101 | 	bra.w		EXPBORS | 
 | 9102 |  | 
 | 9103 | TWOOK1: | 
 | 9104 | 	cmp.l		%d1,&0x400D80C0		# |X| > 16480? | 
 | 9105 | 	ble.b		TWOMAIN | 
 | 9106 | 	bra.w		EXPBORS | 
 | 9107 |  | 
 | 9108 | TWOMAIN: | 
 | 9109 | #--USUAL CASE, 2^(-70) <= |X| <= 16480 | 
 | 9110 |  | 
 | 9111 | 	fmov.x		%fp0,%fp1 | 
 | 9112 | 	fmul.s		&0x42800000,%fp1	# 64 * X | 
 | 9113 | 	fmov.l		%fp1,INT(%a6)		# N = ROUND-TO-INT(64 X) | 
 | 9114 | 	mov.l		%d2,-(%sp) | 
 | 9115 | 	lea		TEXPTBL(%pc),%a1	# LOAD ADDRESS OF TABLE OF 2^(J/64) | 
 | 9116 | 	fmov.l		INT(%a6),%fp1		# N --> FLOATING FMT | 
 | 9117 | 	mov.l		INT(%a6),%d1 | 
 | 9118 | 	mov.l		%d1,%d2 | 
 | 9119 | 	and.l		&0x3F,%d1		# D0 IS J | 
 | 9120 | 	asl.l		&4,%d1			# DISPLACEMENT FOR 2^(J/64) | 
 | 9121 | 	add.l		%d1,%a1			# ADDRESS FOR 2^(J/64) | 
 | 9122 | 	asr.l		&6,%d2			# d2 IS L, N = 64L + J | 
 | 9123 | 	mov.l		%d2,%d1 | 
 | 9124 | 	asr.l		&1,%d1			# D0 IS M | 
 | 9125 | 	sub.l		%d1,%d2			# d2 IS M', N = 64(M+M') + J | 
 | 9126 | 	add.l		&0x3FFF,%d2 | 
 | 9127 |  | 
 | 9128 | #--SUMMARY: a1 IS ADDRESS FOR THE LEADING PORTION OF 2^(J/64), | 
 | 9129 | #--D0 IS M WHERE N = 64(M+M') + J. NOTE THAT |M| <= 16140 BY DESIGN. | 
 | 9130 | #--ADJFACT = 2^(M'). | 
 | 9131 | #--REGISTERS SAVED SO FAR ARE (IN ORDER) FPCR, D0, FP1, a1, AND FP2. | 
 | 9132 |  | 
 | 9133 | 	fmovm.x		&0x0c,-(%sp)		# save fp2/fp3 | 
 | 9134 |  | 
 | 9135 | 	fmul.s		&0x3C800000,%fp1	# (1/64)*N | 
 | 9136 | 	mov.l		(%a1)+,FACT1(%a6) | 
 | 9137 | 	mov.l		(%a1)+,FACT1HI(%a6) | 
 | 9138 | 	mov.l		(%a1)+,FACT1LOW(%a6) | 
 | 9139 | 	mov.w		(%a1)+,FACT2(%a6) | 
 | 9140 |  | 
 | 9141 | 	fsub.x		%fp1,%fp0		# X - (1/64)*INT(64 X) | 
 | 9142 |  | 
 | 9143 | 	mov.w		(%a1)+,FACT2HI(%a6) | 
 | 9144 | 	clr.w		FACT2HI+2(%a6) | 
 | 9145 | 	clr.l		FACT2LOW(%a6) | 
 | 9146 | 	add.w		%d1,FACT1(%a6) | 
 | 9147 | 	fmul.x		LOG2(%pc),%fp0		# FP0 IS R | 
 | 9148 | 	add.w		%d1,FACT2(%a6) | 
 | 9149 |  | 
 | 9150 | 	bra.w		expr | 
 | 9151 |  | 
 | 9152 | EXPBORS: | 
 | 9153 | #--FPCR, D0 SAVED | 
 | 9154 | 	cmp.l		%d1,&0x3FFF8000 | 
 | 9155 | 	bgt.b		TEXPBIG | 
 | 9156 |  | 
 | 9157 | #--|X| IS SMALL, RETURN 1 + X | 
 | 9158 |  | 
 | 9159 | 	fmov.l		%d0,%fpcr		# restore users round prec,mode | 
 | 9160 | 	fadd.s		&0x3F800000,%fp0	# RETURN 1 + X | 
 | 9161 | 	bra		t_pinx2 | 
 | 9162 |  | 
 | 9163 | TEXPBIG: | 
 | 9164 | #--|X| IS LARGE, GENERATE OVERFLOW IF X > 0; ELSE GENERATE UNDERFLOW | 
 | 9165 | #--REGISTERS SAVE SO FAR ARE FPCR AND  D0 | 
 | 9166 | 	mov.l		X(%a6),%d1 | 
 | 9167 | 	cmp.l		%d1,&0 | 
 | 9168 | 	blt.b		EXPNEG | 
 | 9169 |  | 
 | 9170 | 	bra		t_ovfl2			# t_ovfl expects positive value | 
 | 9171 |  | 
 | 9172 | EXPNEG: | 
 | 9173 | 	bra		t_unfl2			# t_unfl expects positive value | 
 | 9174 |  | 
 | 9175 | 	global		stwotoxd | 
 | 9176 | stwotoxd: | 
 | 9177 | #--ENTRY POINT FOR 2**(X) FOR DENORMALIZED ARGUMENT | 
 | 9178 |  | 
 | 9179 | 	fmov.l		%d0,%fpcr		# set user's rounding mode/precision | 
 | 9180 | 	fmov.s		&0x3F800000,%fp0	# RETURN 1 + X | 
 | 9181 | 	mov.l		(%a0),%d1 | 
 | 9182 | 	or.l		&0x00800001,%d1 | 
 | 9183 | 	fadd.s		%d1,%fp0 | 
 | 9184 | 	bra		t_pinx2 | 
 | 9185 |  | 
 | 9186 | 	global		stentox | 
 | 9187 | #--ENTRY POINT FOR 10**(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S | 
 | 9188 | stentox: | 
 | 9189 | 	fmovm.x		(%a0),&0x80		# LOAD INPUT | 
 | 9190 |  | 
 | 9191 | 	mov.l		(%a0),%d1 | 
 | 9192 | 	mov.w		4(%a0),%d1 | 
 | 9193 | 	fmov.x		%fp0,X(%a6) | 
 | 9194 | 	and.l		&0x7FFFFFFF,%d1 | 
 | 9195 |  | 
 | 9196 | 	cmp.l		%d1,&0x3FB98000		# |X| >= 2**(-70)? | 
 | 9197 | 	bge.b		TENOK1 | 
 | 9198 | 	bra.w		EXPBORS | 
 | 9199 |  | 
 | 9200 | TENOK1: | 
 | 9201 | 	cmp.l		%d1,&0x400B9B07		# |X| <= 16480*log2/log10 ? | 
 | 9202 | 	ble.b		TENMAIN | 
 | 9203 | 	bra.w		EXPBORS | 
 | 9204 |  | 
 | 9205 | TENMAIN: | 
 | 9206 | #--USUAL CASE, 2^(-70) <= |X| <= 16480 LOG 2 / LOG 10 | 
 | 9207 |  | 
 | 9208 | 	fmov.x		%fp0,%fp1 | 
 | 9209 | 	fmul.d		L2TEN64(%pc),%fp1	# X*64*LOG10/LOG2 | 
 | 9210 | 	fmov.l		%fp1,INT(%a6)		# N=INT(X*64*LOG10/LOG2) | 
 | 9211 | 	mov.l		%d2,-(%sp) | 
 | 9212 | 	lea		TEXPTBL(%pc),%a1	# LOAD ADDRESS OF TABLE OF 2^(J/64) | 
 | 9213 | 	fmov.l		INT(%a6),%fp1		# N --> FLOATING FMT | 
 | 9214 | 	mov.l		INT(%a6),%d1 | 
 | 9215 | 	mov.l		%d1,%d2 | 
 | 9216 | 	and.l		&0x3F,%d1		# D0 IS J | 
 | 9217 | 	asl.l		&4,%d1			# DISPLACEMENT FOR 2^(J/64) | 
 | 9218 | 	add.l		%d1,%a1			# ADDRESS FOR 2^(J/64) | 
 | 9219 | 	asr.l		&6,%d2			# d2 IS L, N = 64L + J | 
 | 9220 | 	mov.l		%d2,%d1 | 
 | 9221 | 	asr.l		&1,%d1			# D0 IS M | 
 | 9222 | 	sub.l		%d1,%d2			# d2 IS M', N = 64(M+M') + J | 
 | 9223 | 	add.l		&0x3FFF,%d2 | 
 | 9224 |  | 
 | 9225 | #--SUMMARY: a1 IS ADDRESS FOR THE LEADING PORTION OF 2^(J/64), | 
 | 9226 | #--D0 IS M WHERE N = 64(M+M') + J. NOTE THAT |M| <= 16140 BY DESIGN. | 
 | 9227 | #--ADJFACT = 2^(M'). | 
 | 9228 | #--REGISTERS SAVED SO FAR ARE (IN ORDER) FPCR, D0, FP1, a1, AND FP2. | 
 | 9229 | 	fmovm.x		&0x0c,-(%sp)		# save fp2/fp3 | 
 | 9230 |  | 
 | 9231 | 	fmov.x		%fp1,%fp2 | 
 | 9232 |  | 
 | 9233 | 	fmul.d		L10TWO1(%pc),%fp1	# N*(LOG2/64LOG10)_LEAD | 
 | 9234 | 	mov.l		(%a1)+,FACT1(%a6) | 
 | 9235 |  | 
 | 9236 | 	fmul.x		L10TWO2(%pc),%fp2	# N*(LOG2/64LOG10)_TRAIL | 
 | 9237 |  | 
 | 9238 | 	mov.l		(%a1)+,FACT1HI(%a6) | 
 | 9239 | 	mov.l		(%a1)+,FACT1LOW(%a6) | 
 | 9240 | 	fsub.x		%fp1,%fp0		# X - N L_LEAD | 
 | 9241 | 	mov.w		(%a1)+,FACT2(%a6) | 
 | 9242 |  | 
 | 9243 | 	fsub.x		%fp2,%fp0		# X - N L_TRAIL | 
 | 9244 |  | 
 | 9245 | 	mov.w		(%a1)+,FACT2HI(%a6) | 
 | 9246 | 	clr.w		FACT2HI+2(%a6) | 
 | 9247 | 	clr.l		FACT2LOW(%a6) | 
 | 9248 |  | 
 | 9249 | 	fmul.x		LOG10(%pc),%fp0		# FP0 IS R | 
 | 9250 | 	add.w		%d1,FACT1(%a6) | 
 | 9251 | 	add.w		%d1,FACT2(%a6) | 
 | 9252 |  | 
 | 9253 | expr: | 
 | 9254 | #--FPCR, FP2, FP3 ARE SAVED IN ORDER AS SHOWN. | 
 | 9255 | #--ADJFACT CONTAINS 2**(M'), FACT1 + FACT2 = 2**(M) * 2**(J/64). | 
 | 9256 | #--FP0 IS R. THE FOLLOWING CODE COMPUTES | 
 | 9257 | #--	2**(M'+M) * 2**(J/64) * EXP(R) | 
 | 9258 |  | 
 | 9259 | 	fmov.x		%fp0,%fp1 | 
 | 9260 | 	fmul.x		%fp1,%fp1		# FP1 IS S = R*R | 
 | 9261 |  | 
 | 9262 | 	fmov.d		EXPA5(%pc),%fp2		# FP2 IS A5 | 
 | 9263 | 	fmov.d		EXPA4(%pc),%fp3		# FP3 IS A4 | 
 | 9264 |  | 
 | 9265 | 	fmul.x		%fp1,%fp2		# FP2 IS S*A5 | 
 | 9266 | 	fmul.x		%fp1,%fp3		# FP3 IS S*A4 | 
 | 9267 |  | 
 | 9268 | 	fadd.d		EXPA3(%pc),%fp2		# FP2 IS A3+S*A5 | 
 | 9269 | 	fadd.d		EXPA2(%pc),%fp3		# FP3 IS A2+S*A4 | 
 | 9270 |  | 
 | 9271 | 	fmul.x		%fp1,%fp2		# FP2 IS S*(A3+S*A5) | 
 | 9272 | 	fmul.x		%fp1,%fp3		# FP3 IS S*(A2+S*A4) | 
 | 9273 |  | 
 | 9274 | 	fadd.d		EXPA1(%pc),%fp2		# FP2 IS A1+S*(A3+S*A5) | 
 | 9275 | 	fmul.x		%fp0,%fp3		# FP3 IS R*S*(A2+S*A4) | 
 | 9276 |  | 
 | 9277 | 	fmul.x		%fp1,%fp2		# FP2 IS S*(A1+S*(A3+S*A5)) | 
 | 9278 | 	fadd.x		%fp3,%fp0		# FP0 IS R+R*S*(A2+S*A4) | 
 | 9279 | 	fadd.x		%fp2,%fp0		# FP0 IS EXP(R) - 1 | 
 | 9280 |  | 
 | 9281 | 	fmovm.x		(%sp)+,&0x30		# restore fp2/fp3 | 
 | 9282 |  | 
 | 9283 | #--FINAL RECONSTRUCTION PROCESS | 
 | 9284 | #--EXP(X) = 2^M*2^(J/64) + 2^M*2^(J/64)*(EXP(R)-1)  -  (1 OR 0) | 
 | 9285 |  | 
 | 9286 | 	fmul.x		FACT1(%a6),%fp0 | 
 | 9287 | 	fadd.x		FACT2(%a6),%fp0 | 
 | 9288 | 	fadd.x		FACT1(%a6),%fp0 | 
 | 9289 |  | 
 | 9290 | 	fmov.l		%d0,%fpcr		# restore users round prec,mode | 
 | 9291 | 	mov.w		%d2,ADJFACT(%a6)	# INSERT EXPONENT | 
 | 9292 | 	mov.l		(%sp)+,%d2 | 
 | 9293 | 	mov.l		&0x80000000,ADJFACT+4(%a6) | 
 | 9294 | 	clr.l		ADJFACT+8(%a6) | 
 | 9295 | 	mov.b		&FMUL_OP,%d1		# last inst is MUL | 
 | 9296 | 	fmul.x		ADJFACT(%a6),%fp0	# FINAL ADJUSTMENT | 
 | 9297 | 	bra		t_catch | 
 | 9298 |  | 
 | 9299 | 	global		stentoxd | 
 | 9300 | stentoxd: | 
 | 9301 | #--ENTRY POINT FOR 10**(X) FOR DENORMALIZED ARGUMENT | 
 | 9302 |  | 
 | 9303 | 	fmov.l		%d0,%fpcr		# set user's rounding mode/precision | 
 | 9304 | 	fmov.s		&0x3F800000,%fp0	# RETURN 1 + X | 
 | 9305 | 	mov.l		(%a0),%d1 | 
 | 9306 | 	or.l		&0x00800001,%d1 | 
 | 9307 | 	fadd.s		%d1,%fp0 | 
 | 9308 | 	bra		t_pinx2 | 
 | 9309 |  | 
 | 9310 | ######################################################################### | 
 | 9311 | # smovcr(): returns the ROM constant at the offset specified in d1	# | 
 | 9312 | #	    rounded to the mode and precision specified in d0.		# | 
 | 9313 | #									# | 
 | 9314 | # INPUT	***************************************************************	# | 
 | 9315 | #	d0 = rnd prec,mode						# | 
 | 9316 | #	d1 = ROM offset							# | 
 | 9317 | #									# | 
 | 9318 | # OUTPUT **************************************************************	# | 
 | 9319 | #	fp0 = the ROM constant rounded to the user's rounding mode,prec	# | 
 | 9320 | #									# | 
 | 9321 | ######################################################################### | 
 | 9322 |  | 
 | 9323 | 	global		smovcr | 
 | 9324 | smovcr: | 
 | 9325 | 	mov.l		%d1,-(%sp)		# save rom offset for a sec | 
 | 9326 |  | 
 | 9327 | 	lsr.b		&0x4,%d0		# shift ctrl bits to lo | 
 | 9328 | 	mov.l		%d0,%d1			# make a copy | 
 | 9329 | 	andi.w		&0x3,%d1		# extract rnd mode | 
 | 9330 | 	andi.w		&0xc,%d0		# extract rnd prec | 
 | 9331 | 	swap		%d0			# put rnd prec in hi | 
 | 9332 | 	mov.w		%d1,%d0			# put rnd mode in lo | 
 | 9333 |  | 
 | 9334 | 	mov.l		(%sp)+,%d1		# get rom offset | 
 | 9335 |  | 
 | 9336 | # | 
 | 9337 | # check range of offset | 
 | 9338 | # | 
 | 9339 | 	tst.b		%d1			# if zero, offset is to pi | 
 | 9340 | 	beq.b		pi_tbl			# it is pi | 
 | 9341 | 	cmpi.b		%d1,&0x0a		# check range $01 - $0a | 
 | 9342 | 	ble.b		z_val			# if in this range, return zero | 
 | 9343 | 	cmpi.b		%d1,&0x0e		# check range $0b - $0e | 
 | 9344 | 	ble.b		sm_tbl			# valid constants in this range | 
 | 9345 | 	cmpi.b		%d1,&0x2f		# check range $10 - $2f | 
 | 9346 | 	ble.b		z_val			# if in this range, return zero | 
 | 9347 | 	cmpi.b		%d1,&0x3f		# check range $30 - $3f | 
 | 9348 | 	ble.b		bg_tbl			# valid constants in this range | 
 | 9349 |  | 
 | 9350 | z_val: | 
 | 9351 | 	bra.l		ld_pzero		# return a zero | 
 | 9352 |  | 
 | 9353 | # | 
 | 9354 | # the answer is PI rounded to the proper precision. | 
 | 9355 | # | 
 | 9356 | # fetch a pointer to the answer table relating to the proper rounding | 
 | 9357 | # precision. | 
 | 9358 | # | 
 | 9359 | pi_tbl: | 
 | 9360 | 	tst.b		%d0			# is rmode RN? | 
 | 9361 | 	bne.b		pi_not_rn		# no | 
 | 9362 | pi_rn: | 
 | 9363 | 	lea.l		PIRN(%pc),%a0		# yes; load PI RN table addr | 
 | 9364 | 	bra.w		set_finx | 
 | 9365 | pi_not_rn: | 
 | 9366 | 	cmpi.b		%d0,&rp_mode		# is rmode RP? | 
 | 9367 | 	beq.b		pi_rp			# yes | 
 | 9368 | pi_rzrm: | 
 | 9369 | 	lea.l		PIRZRM(%pc),%a0		# no; load PI RZ,RM table addr | 
 | 9370 | 	bra.b		set_finx | 
 | 9371 | pi_rp: | 
 | 9372 | 	lea.l		PIRP(%pc),%a0		# load PI RP table addr | 
 | 9373 | 	bra.b		set_finx | 
 | 9374 |  | 
 | 9375 | # | 
 | 9376 | # the answer is one of: | 
 | 9377 | #	$0B	log10(2)	(inexact) | 
 | 9378 | #	$0C	e		(inexact) | 
 | 9379 | #	$0D	log2(e)		(inexact) | 
 | 9380 | #	$0E	log10(e)	(exact) | 
 | 9381 | # | 
 | 9382 | # fetch a pointer to the answer table relating to the proper rounding | 
 | 9383 | # precision. | 
 | 9384 | # | 
 | 9385 | sm_tbl: | 
 | 9386 | 	subi.b		&0xb,%d1		# make offset in 0-4 range | 
 | 9387 | 	tst.b		%d0			# is rmode RN? | 
 | 9388 | 	bne.b		sm_not_rn		# no | 
 | 9389 | sm_rn: | 
 | 9390 | 	lea.l		SMALRN(%pc),%a0		# yes; load RN table addr | 
 | 9391 | sm_tbl_cont: | 
 | 9392 | 	cmpi.b		%d1,&0x2		# is result log10(e)? | 
 | 9393 | 	ble.b		set_finx		# no; answer is inexact | 
 | 9394 | 	bra.b		no_finx			# yes; answer is exact | 
 | 9395 | sm_not_rn: | 
 | 9396 | 	cmpi.b		%d0,&rp_mode		# is rmode RP? | 
 | 9397 | 	beq.b		sm_rp			# yes | 
 | 9398 | sm_rzrm: | 
 | 9399 | 	lea.l		SMALRZRM(%pc),%a0	# no; load RZ,RM table addr | 
 | 9400 | 	bra.b		sm_tbl_cont | 
 | 9401 | sm_rp: | 
 | 9402 | 	lea.l		SMALRP(%pc),%a0		# load RP table addr | 
 | 9403 | 	bra.b		sm_tbl_cont | 
 | 9404 |  | 
 | 9405 | # | 
 | 9406 | # the answer is one of: | 
 | 9407 | #	$30	ln(2)		(inexact) | 
 | 9408 | #	$31	ln(10)		(inexact) | 
 | 9409 | #	$32	10^0		(exact) | 
 | 9410 | #	$33	10^1		(exact) | 
 | 9411 | #	$34	10^2		(exact) | 
 | 9412 | #	$35	10^4		(exact) | 
 | 9413 | #	$36	10^8		(exact) | 
 | 9414 | #	$37	10^16		(exact) | 
 | 9415 | #	$38	10^32		(inexact) | 
 | 9416 | #	$39	10^64		(inexact) | 
 | 9417 | #	$3A	10^128		(inexact) | 
 | 9418 | #	$3B	10^256		(inexact) | 
 | 9419 | #	$3C	10^512		(inexact) | 
 | 9420 | #	$3D	10^1024		(inexact) | 
 | 9421 | #	$3E	10^2048		(inexact) | 
 | 9422 | #	$3F	10^4096		(inexact) | 
 | 9423 | # | 
 | 9424 | # fetch a pointer to the answer table relating to the proper rounding | 
 | 9425 | # precision. | 
 | 9426 | # | 
 | 9427 | bg_tbl: | 
 | 9428 | 	subi.b		&0x30,%d1		# make offset in 0-f range | 
 | 9429 | 	tst.b		%d0			# is rmode RN? | 
 | 9430 | 	bne.b		bg_not_rn		# no | 
 | 9431 | bg_rn: | 
 | 9432 | 	lea.l		BIGRN(%pc),%a0		# yes; load RN table addr | 
 | 9433 | bg_tbl_cont: | 
 | 9434 | 	cmpi.b		%d1,&0x1		# is offset <= $31? | 
 | 9435 | 	ble.b		set_finx		# yes; answer is inexact | 
 | 9436 | 	cmpi.b		%d1,&0x7		# is $32 <= offset <= $37? | 
 | 9437 | 	ble.b		no_finx			# yes; answer is exact | 
 | 9438 | 	bra.b		set_finx		# no; answer is inexact | 
 | 9439 | bg_not_rn: | 
 | 9440 | 	cmpi.b		%d0,&rp_mode		# is rmode RP? | 
 | 9441 | 	beq.b		bg_rp			# yes | 
 | 9442 | bg_rzrm: | 
 | 9443 | 	lea.l		BIGRZRM(%pc),%a0	# no; load RZ,RM table addr | 
 | 9444 | 	bra.b		bg_tbl_cont | 
 | 9445 | bg_rp: | 
 | 9446 | 	lea.l		BIGRP(%pc),%a0		# load RP table addr | 
 | 9447 | 	bra.b		bg_tbl_cont | 
 | 9448 |  | 
 | 9449 | # answer is inexact, so set INEX2 and AINEX in the user's FPSR. | 
 | 9450 | set_finx: | 
 | 9451 | 	ori.l		&inx2a_mask,USER_FPSR(%a6) # set INEX2/AINEX | 
 | 9452 | no_finx: | 
 | 9453 | 	mulu.w		&0xc,%d1		# offset points into tables | 
 | 9454 | 	swap		%d0			# put rnd prec in lo word | 
 | 9455 | 	tst.b		%d0			# is precision extended? | 
 | 9456 |  | 
 | 9457 | 	bne.b		not_ext			# if xprec, do not call round | 
 | 9458 |  | 
 | 9459 | # Precision is extended | 
 | 9460 | 	fmovm.x		(%a0,%d1.w),&0x80	# return result in fp0 | 
 | 9461 | 	rts | 
 | 9462 |  | 
 | 9463 | # Precision is single or double | 
 | 9464 | not_ext: | 
 | 9465 | 	swap		%d0			# rnd prec in upper word | 
 | 9466 |  | 
 | 9467 | # call round() to round the answer to the proper precision. | 
 | 9468 | # exponents out of range for single or double DO NOT cause underflow | 
 | 9469 | # or overflow. | 
 | 9470 | 	mov.w		0x0(%a0,%d1.w),FP_SCR1_EX(%a6) # load first word | 
 | 9471 | 	mov.l		0x4(%a0,%d1.w),FP_SCR1_HI(%a6) # load second word | 
 | 9472 | 	mov.l		0x8(%a0,%d1.w),FP_SCR1_LO(%a6) # load third word | 
 | 9473 | 	mov.l		%d0,%d1 | 
 | 9474 | 	clr.l		%d0			# clear g,r,s | 
 | 9475 | 	lea		FP_SCR1(%a6),%a0	# pass ptr to answer | 
 | 9476 | 	clr.w		LOCAL_SGN(%a0)		# sign always positive | 
 | 9477 | 	bsr.l		_round			# round the mantissa | 
 | 9478 |  | 
 | 9479 | 	fmovm.x		(%a0),&0x80		# return rounded result in fp0 | 
 | 9480 | 	rts | 
 | 9481 |  | 
 | 9482 | 	align		0x4 | 
 | 9483 |  | 
 | 9484 | PIRN:	long		0x40000000,0xc90fdaa2,0x2168c235	# pi | 
 | 9485 | PIRZRM:	long		0x40000000,0xc90fdaa2,0x2168c234	# pi | 
 | 9486 | PIRP:	long		0x40000000,0xc90fdaa2,0x2168c235	# pi | 
 | 9487 |  | 
 | 9488 | SMALRN:	long		0x3ffd0000,0x9a209a84,0xfbcff798	# log10(2) | 
 | 9489 | 	long		0x40000000,0xadf85458,0xa2bb4a9a	# e | 
 | 9490 | 	long		0x3fff0000,0xb8aa3b29,0x5c17f0bc	# log2(e) | 
 | 9491 | 	long		0x3ffd0000,0xde5bd8a9,0x37287195	# log10(e) | 
 | 9492 | 	long		0x00000000,0x00000000,0x00000000	# 0.0 | 
 | 9493 |  | 
 | 9494 | SMALRZRM: | 
 | 9495 | 	long		0x3ffd0000,0x9a209a84,0xfbcff798	# log10(2) | 
 | 9496 | 	long		0x40000000,0xadf85458,0xa2bb4a9a	# e | 
 | 9497 | 	long		0x3fff0000,0xb8aa3b29,0x5c17f0bb	# log2(e) | 
 | 9498 | 	long		0x3ffd0000,0xde5bd8a9,0x37287195	# log10(e) | 
 | 9499 | 	long		0x00000000,0x00000000,0x00000000	# 0.0 | 
 | 9500 |  | 
 | 9501 | SMALRP:	long		0x3ffd0000,0x9a209a84,0xfbcff799	# log10(2) | 
 | 9502 | 	long		0x40000000,0xadf85458,0xa2bb4a9b	# e | 
 | 9503 | 	long		0x3fff0000,0xb8aa3b29,0x5c17f0bc	# log2(e) | 
 | 9504 | 	long		0x3ffd0000,0xde5bd8a9,0x37287195	# log10(e) | 
 | 9505 | 	long		0x00000000,0x00000000,0x00000000	# 0.0 | 
 | 9506 |  | 
 | 9507 | BIGRN:	long		0x3ffe0000,0xb17217f7,0xd1cf79ac	# ln(2) | 
 | 9508 | 	long		0x40000000,0x935d8ddd,0xaaa8ac17	# ln(10) | 
 | 9509 |  | 
 | 9510 | 	long		0x3fff0000,0x80000000,0x00000000	# 10 ^ 0 | 
 | 9511 | 	long		0x40020000,0xA0000000,0x00000000	# 10 ^ 1 | 
 | 9512 | 	long		0x40050000,0xC8000000,0x00000000	# 10 ^ 2 | 
 | 9513 | 	long		0x400C0000,0x9C400000,0x00000000	# 10 ^ 4 | 
 | 9514 | 	long		0x40190000,0xBEBC2000,0x00000000	# 10 ^ 8 | 
 | 9515 | 	long		0x40340000,0x8E1BC9BF,0x04000000	# 10 ^ 16 | 
 | 9516 | 	long		0x40690000,0x9DC5ADA8,0x2B70B59E	# 10 ^ 32 | 
 | 9517 | 	long		0x40D30000,0xC2781F49,0xFFCFA6D5	# 10 ^ 64 | 
 | 9518 | 	long		0x41A80000,0x93BA47C9,0x80E98CE0	# 10 ^ 128 | 
 | 9519 | 	long		0x43510000,0xAA7EEBFB,0x9DF9DE8E	# 10 ^ 256 | 
 | 9520 | 	long		0x46A30000,0xE319A0AE,0xA60E91C7	# 10 ^ 512 | 
 | 9521 | 	long		0x4D480000,0xC9767586,0x81750C17	# 10 ^ 1024 | 
 | 9522 | 	long		0x5A920000,0x9E8B3B5D,0xC53D5DE5	# 10 ^ 2048 | 
 | 9523 | 	long		0x75250000,0xC4605202,0x8A20979B	# 10 ^ 4096 | 
 | 9524 |  | 
 | 9525 | BIGRZRM: | 
 | 9526 | 	long		0x3ffe0000,0xb17217f7,0xd1cf79ab	# ln(2) | 
 | 9527 | 	long		0x40000000,0x935d8ddd,0xaaa8ac16	# ln(10) | 
 | 9528 |  | 
 | 9529 | 	long		0x3fff0000,0x80000000,0x00000000	# 10 ^ 0 | 
 | 9530 | 	long		0x40020000,0xA0000000,0x00000000	# 10 ^ 1 | 
 | 9531 | 	long		0x40050000,0xC8000000,0x00000000	# 10 ^ 2 | 
 | 9532 | 	long		0x400C0000,0x9C400000,0x00000000	# 10 ^ 4 | 
 | 9533 | 	long		0x40190000,0xBEBC2000,0x00000000	# 10 ^ 8 | 
 | 9534 | 	long		0x40340000,0x8E1BC9BF,0x04000000	# 10 ^ 16 | 
 | 9535 | 	long		0x40690000,0x9DC5ADA8,0x2B70B59D	# 10 ^ 32 | 
 | 9536 | 	long		0x40D30000,0xC2781F49,0xFFCFA6D5	# 10 ^ 64 | 
 | 9537 | 	long		0x41A80000,0x93BA47C9,0x80E98CDF	# 10 ^ 128 | 
 | 9538 | 	long		0x43510000,0xAA7EEBFB,0x9DF9DE8D	# 10 ^ 256 | 
 | 9539 | 	long		0x46A30000,0xE319A0AE,0xA60E91C6	# 10 ^ 512 | 
 | 9540 | 	long		0x4D480000,0xC9767586,0x81750C17	# 10 ^ 1024 | 
 | 9541 | 	long		0x5A920000,0x9E8B3B5D,0xC53D5DE4	# 10 ^ 2048 | 
 | 9542 | 	long		0x75250000,0xC4605202,0x8A20979A	# 10 ^ 4096 | 
 | 9543 |  | 
 | 9544 | BIGRP: | 
 | 9545 | 	long		0x3ffe0000,0xb17217f7,0xd1cf79ac	# ln(2) | 
 | 9546 | 	long		0x40000000,0x935d8ddd,0xaaa8ac17	# ln(10) | 
 | 9547 |  | 
 | 9548 | 	long		0x3fff0000,0x80000000,0x00000000	# 10 ^ 0 | 
 | 9549 | 	long		0x40020000,0xA0000000,0x00000000	# 10 ^ 1 | 
 | 9550 | 	long		0x40050000,0xC8000000,0x00000000	# 10 ^ 2 | 
 | 9551 | 	long		0x400C0000,0x9C400000,0x00000000	# 10 ^ 4 | 
 | 9552 | 	long		0x40190000,0xBEBC2000,0x00000000	# 10 ^ 8 | 
 | 9553 | 	long		0x40340000,0x8E1BC9BF,0x04000000	# 10 ^ 16 | 
 | 9554 | 	long		0x40690000,0x9DC5ADA8,0x2B70B59E	# 10 ^ 32 | 
 | 9555 | 	long		0x40D30000,0xC2781F49,0xFFCFA6D6	# 10 ^ 64 | 
 | 9556 | 	long		0x41A80000,0x93BA47C9,0x80E98CE0	# 10 ^ 128 | 
 | 9557 | 	long		0x43510000,0xAA7EEBFB,0x9DF9DE8E	# 10 ^ 256 | 
 | 9558 | 	long		0x46A30000,0xE319A0AE,0xA60E91C7	# 10 ^ 512 | 
 | 9559 | 	long		0x4D480000,0xC9767586,0x81750C18	# 10 ^ 1024 | 
 | 9560 | 	long		0x5A920000,0x9E8B3B5D,0xC53D5DE5	# 10 ^ 2048 | 
 | 9561 | 	long		0x75250000,0xC4605202,0x8A20979B	# 10 ^ 4096 | 
 | 9562 |  | 
 | 9563 | ######################################################################### | 
 | 9564 | # sscale(): computes the destination operand scaled by the source	# | 
 | 9565 | #	    operand. If the absoulute value of the source operand is	# | 
 | 9566 | #	    >= 2^14, an overflow or underflow is returned.		# | 
 | 9567 | #									# | 
 | 9568 | # INPUT *************************************************************** # | 
 | 9569 | #	a0  = pointer to double-extended source operand X		# | 
 | 9570 | #	a1  = pointer to double-extended destination operand Y		# | 
 | 9571 | #									# | 
 | 9572 | # OUTPUT ************************************************************** # | 
 | 9573 | #	fp0 =  scale(X,Y)						# | 
 | 9574 | #									# | 
 | 9575 | ######################################################################### | 
 | 9576 |  | 
 | 9577 | set	SIGN,		L_SCR1 | 
 | 9578 |  | 
 | 9579 | 	global		sscale | 
 | 9580 | sscale: | 
 | 9581 | 	mov.l		%d0,-(%sp)		# store off ctrl bits for now | 
 | 9582 |  | 
 | 9583 | 	mov.w		DST_EX(%a1),%d1		# get dst exponent | 
 | 9584 | 	smi.b		SIGN(%a6)		# use SIGN to hold dst sign | 
 | 9585 | 	andi.l		&0x00007fff,%d1		# strip sign from dst exp | 
 | 9586 |  | 
 | 9587 | 	mov.w		SRC_EX(%a0),%d0		# check src bounds | 
 | 9588 | 	andi.w		&0x7fff,%d0		# clr src sign bit | 
 | 9589 | 	cmpi.w		%d0,&0x3fff		# is src ~ ZERO? | 
 | 9590 | 	blt.w		src_small		# yes | 
 | 9591 | 	cmpi.w		%d0,&0x400c		# no; is src too big? | 
 | 9592 | 	bgt.w		src_out			# yes | 
 | 9593 |  | 
 | 9594 | # | 
 | 9595 | # Source is within 2^14 range. | 
 | 9596 | # | 
 | 9597 | src_ok: | 
 | 9598 | 	fintrz.x	SRC(%a0),%fp0		# calc int of src | 
 | 9599 | 	fmov.l		%fp0,%d0		# int src to d0 | 
 | 9600 | # don't want any accrued bits from the fintrz showing up later since | 
 | 9601 | # we may need to read the fpsr for the last fp op in t_catch2(). | 
 | 9602 | 	fmov.l		&0x0,%fpsr | 
 | 9603 |  | 
 | 9604 | 	tst.b		DST_HI(%a1)		# is dst denormalized? | 
 | 9605 | 	bmi.b		sok_norm | 
 | 9606 |  | 
 | 9607 | # the dst is a DENORM. normalize the DENORM and add the adjustment to | 
 | 9608 | # the src value. then, jump to the norm part of the routine. | 
 | 9609 | sok_dnrm: | 
 | 9610 | 	mov.l		%d0,-(%sp)		# save src for now | 
 | 9611 |  | 
 | 9612 | 	mov.w		DST_EX(%a1),FP_SCR0_EX(%a6) # make a copy | 
 | 9613 | 	mov.l		DST_HI(%a1),FP_SCR0_HI(%a6) | 
 | 9614 | 	mov.l		DST_LO(%a1),FP_SCR0_LO(%a6) | 
 | 9615 |  | 
 | 9616 | 	lea		FP_SCR0(%a6),%a0	# pass ptr to DENORM | 
 | 9617 | 	bsr.l		norm			# normalize the DENORM | 
 | 9618 | 	neg.l		%d0 | 
 | 9619 | 	add.l		(%sp)+,%d0		# add adjustment to src | 
 | 9620 |  | 
 | 9621 | 	fmovm.x		FP_SCR0(%a6),&0x80	# load normalized DENORM | 
 | 9622 |  | 
 | 9623 | 	cmpi.w		%d0,&-0x3fff		# is the shft amt really low? | 
 | 9624 | 	bge.b		sok_norm2		# thank goodness no | 
 | 9625 |  | 
 | 9626 | # the multiply factor that we're trying to create should be a denorm | 
 | 9627 | # for the multiply to work. therefore, we're going to actually do a | 
 | 9628 | # multiply with a denorm which will cause an unimplemented data type | 
 | 9629 | # exception to be put into the machine which will be caught and corrected | 
 | 9630 | # later. we don't do this with the DENORMs above because this method | 
 | 9631 | # is slower. but, don't fret, I don't see it being used much either. | 
 | 9632 | 	fmov.l		(%sp)+,%fpcr		# restore user fpcr | 
 | 9633 | 	mov.l		&0x80000000,%d1		# load normalized mantissa | 
 | 9634 | 	subi.l		&-0x3fff,%d0		# how many should we shift? | 
 | 9635 | 	neg.l		%d0			# make it positive | 
 | 9636 | 	cmpi.b		%d0,&0x20		# is it > 32? | 
 | 9637 | 	bge.b		sok_dnrm_32		# yes | 
 | 9638 | 	lsr.l		%d0,%d1			# no; bit stays in upper lw | 
 | 9639 | 	clr.l		-(%sp)			# insert zero low mantissa | 
 | 9640 | 	mov.l		%d1,-(%sp)		# insert new high mantissa | 
 | 9641 | 	clr.l		-(%sp)			# make zero exponent | 
 | 9642 | 	bra.b		sok_norm_cont | 
 | 9643 | sok_dnrm_32: | 
 | 9644 | 	subi.b		&0x20,%d0		# get shift count | 
 | 9645 | 	lsr.l		%d0,%d1			# make low mantissa longword | 
 | 9646 | 	mov.l		%d1,-(%sp)		# insert new low mantissa | 
 | 9647 | 	clr.l		-(%sp)			# insert zero high mantissa | 
 | 9648 | 	clr.l		-(%sp)			# make zero exponent | 
 | 9649 | 	bra.b		sok_norm_cont | 
 | 9650 |  | 
 | 9651 | # the src will force the dst to a DENORM value or worse. so, let's | 
 | 9652 | # create an fp multiply that will create the result. | 
 | 9653 | sok_norm: | 
 | 9654 | 	fmovm.x		DST(%a1),&0x80		# load fp0 with normalized src | 
 | 9655 | sok_norm2: | 
 | 9656 | 	fmov.l		(%sp)+,%fpcr		# restore user fpcr | 
 | 9657 |  | 
 | 9658 | 	addi.w		&0x3fff,%d0		# turn src amt into exp value | 
 | 9659 | 	swap		%d0			# put exponent in high word | 
 | 9660 | 	clr.l		-(%sp)			# insert new exponent | 
 | 9661 | 	mov.l		&0x80000000,-(%sp)	# insert new high mantissa | 
 | 9662 | 	mov.l		%d0,-(%sp)		# insert new lo mantissa | 
 | 9663 |  | 
 | 9664 | sok_norm_cont: | 
 | 9665 | 	fmov.l		%fpcr,%d0		# d0 needs fpcr for t_catch2 | 
 | 9666 | 	mov.b		&FMUL_OP,%d1		# last inst is MUL | 
 | 9667 | 	fmul.x		(%sp)+,%fp0		# do the multiply | 
 | 9668 | 	bra		t_catch2		# catch any exceptions | 
 | 9669 |  | 
 | 9670 | # | 
 | 9671 | # Source is outside of 2^14 range.  Test the sign and branch | 
 | 9672 | # to the appropriate exception handler. | 
 | 9673 | # | 
 | 9674 | src_out: | 
 | 9675 | 	mov.l		(%sp)+,%d0		# restore ctrl bits | 
 | 9676 | 	exg		%a0,%a1			# swap src,dst ptrs | 
 | 9677 | 	tst.b		SRC_EX(%a1)		# is src negative? | 
 | 9678 | 	bmi		t_unfl			# yes; underflow | 
 | 9679 | 	bra		t_ovfl_sc		# no; overflow | 
 | 9680 |  | 
 | 9681 | # | 
 | 9682 | # The source input is below 1, so we check for denormalized numbers | 
 | 9683 | # and set unfl. | 
 | 9684 | # | 
 | 9685 | src_small: | 
 | 9686 | 	tst.b		DST_HI(%a1)		# is dst denormalized? | 
 | 9687 | 	bpl.b		ssmall_done		# yes | 
 | 9688 |  | 
 | 9689 | 	mov.l		(%sp)+,%d0 | 
 | 9690 | 	fmov.l		%d0,%fpcr		# no; load control bits | 
 | 9691 | 	mov.b		&FMOV_OP,%d1		# last inst is MOVE | 
 | 9692 | 	fmov.x		DST(%a1),%fp0		# simply return dest | 
 | 9693 | 	bra		t_catch2 | 
 | 9694 | ssmall_done: | 
 | 9695 | 	mov.l		(%sp)+,%d0		# load control bits into d1 | 
 | 9696 | 	mov.l		%a1,%a0			# pass ptr to dst | 
 | 9697 | 	bra		t_resdnrm | 
 | 9698 |  | 
 | 9699 | ######################################################################### | 
 | 9700 | # smod(): computes the fp MOD of the input values X,Y.			# | 
 | 9701 | # srem(): computes the fp (IEEE) REM of the input values X,Y.		# | 
 | 9702 | #									# | 
 | 9703 | # INPUT *************************************************************** # | 
 | 9704 | #	a0 = pointer to extended precision input X			# | 
 | 9705 | #	a1 = pointer to extended precision input Y			# | 
 | 9706 | #	d0 = round precision,mode					# | 
 | 9707 | #									# | 
 | 9708 | #	The input operands X and Y can be either normalized or		# | 
 | 9709 | #	denormalized.							# | 
 | 9710 | #									# | 
 | 9711 | # OUTPUT ************************************************************** # | 
 | 9712 | #      fp0 = FREM(X,Y) or FMOD(X,Y)					# | 
 | 9713 | #									# | 
 | 9714 | # ALGORITHM *********************************************************** # | 
 | 9715 | #									# | 
 | 9716 | #       Step 1.  Save and strip signs of X and Y: signX := sign(X),	# | 
 | 9717 | #                signY := sign(Y), X := |X|, Y := |Y|,			# | 
 | 9718 | #                signQ := signX EOR signY. Record whether MOD or REM	# | 
 | 9719 | #                is requested.						# | 
 | 9720 | #									# | 
 | 9721 | #       Step 2.  Set L := expo(X)-expo(Y), k := 0, Q := 0.		# | 
 | 9722 | #                If (L < 0) then					# | 
 | 9723 | #                   R := X, go to Step 4.				# | 
 | 9724 | #                else							# | 
 | 9725 | #                   R := 2^(-L)X, j := L.				# | 
 | 9726 | #                endif							# | 
 | 9727 | #									# | 
 | 9728 | #       Step 3.  Perform MOD(X,Y)					# | 
 | 9729 | #            3.1 If R = Y, go to Step 9.				# | 
 | 9730 | #            3.2 If R > Y, then { R := R - Y, Q := Q + 1}		# | 
 | 9731 | #            3.3 If j = 0, go to Step 4.				# | 
 | 9732 | #            3.4 k := k + 1, j := j - 1, Q := 2Q, R := 2R. Go to	# | 
 | 9733 | #                Step 3.1.						# | 
 | 9734 | #									# | 
 | 9735 | #       Step 4.  At this point, R = X - QY = MOD(X,Y). Set		# | 
 | 9736 | #                Last_Subtract := false (used in Step 7 below). If	# | 
 | 9737 | #                MOD is requested, go to Step 6.			# | 
 | 9738 | #									# | 
 | 9739 | #       Step 5.  R = MOD(X,Y), but REM(X,Y) is requested.		# | 
 | 9740 | #            5.1 If R < Y/2, then R = MOD(X,Y) = REM(X,Y). Go to	# | 
 | 9741 | #                Step 6.						# | 
 | 9742 | #            5.2 If R > Y/2, then { set Last_Subtract := true,		# | 
 | 9743 | #                Q := Q + 1, Y := signY*Y }. Go to Step 6.		# | 
 | 9744 | #            5.3 This is the tricky case of R = Y/2. If Q is odd,	# | 
 | 9745 | #                then { Q := Q + 1, signX := -signX }.			# | 
 | 9746 | #									# | 
 | 9747 | #       Step 6.  R := signX*R.						# | 
 | 9748 | #									# | 
 | 9749 | #       Step 7.  If Last_Subtract = true, R := R - Y.			# | 
 | 9750 | #									# | 
 | 9751 | #       Step 8.  Return signQ, last 7 bits of Q, and R as required.	# | 
 | 9752 | #									# | 
 | 9753 | #       Step 9.  At this point, R = 2^(-j)*X - Q Y = Y. Thus,		# | 
 | 9754 | #                X = 2^(j)*(Q+1)Y. set Q := 2^(j)*(Q+1),		# | 
 | 9755 | #                R := 0. Return signQ, last 7 bits of Q, and R.		# | 
 | 9756 | #									# | 
 | 9757 | ######################################################################### | 
 | 9758 |  | 
 | 9759 | 	set		Mod_Flag,L_SCR3 | 
 | 9760 | 	set		Sc_Flag,L_SCR3+1 | 
 | 9761 |  | 
 | 9762 | 	set		SignY,L_SCR2 | 
 | 9763 | 	set		SignX,L_SCR2+2 | 
 | 9764 | 	set		SignQ,L_SCR3+2 | 
 | 9765 |  | 
 | 9766 | 	set		Y,FP_SCR0 | 
 | 9767 | 	set		Y_Hi,Y+4 | 
 | 9768 | 	set		Y_Lo,Y+8 | 
 | 9769 |  | 
 | 9770 | 	set		R,FP_SCR1 | 
 | 9771 | 	set		R_Hi,R+4 | 
 | 9772 | 	set		R_Lo,R+8 | 
 | 9773 |  | 
 | 9774 | Scale: | 
 | 9775 | 	long		0x00010000,0x80000000,0x00000000,0x00000000 | 
 | 9776 |  | 
 | 9777 | 	global		smod | 
 | 9778 | smod: | 
 | 9779 | 	clr.b		FPSR_QBYTE(%a6) | 
 | 9780 | 	mov.l		%d0,-(%sp)		# save ctrl bits | 
 | 9781 | 	clr.b		Mod_Flag(%a6) | 
 | 9782 | 	bra.b		Mod_Rem | 
 | 9783 |  | 
 | 9784 | 	global		srem | 
 | 9785 | srem: | 
 | 9786 | 	clr.b		FPSR_QBYTE(%a6) | 
 | 9787 | 	mov.l		%d0,-(%sp)		# save ctrl bits | 
 | 9788 | 	mov.b		&0x1,Mod_Flag(%a6) | 
 | 9789 |  | 
 | 9790 | Mod_Rem: | 
 | 9791 | #..Save sign of X and Y | 
 | 9792 | 	movm.l		&0x3f00,-(%sp)		# save data registers | 
 | 9793 | 	mov.w		SRC_EX(%a0),%d3 | 
 | 9794 | 	mov.w		%d3,SignY(%a6) | 
 | 9795 | 	and.l		&0x00007FFF,%d3		# Y := |Y| | 
 | 9796 |  | 
 | 9797 | # | 
 | 9798 | 	mov.l		SRC_HI(%a0),%d4 | 
 | 9799 | 	mov.l		SRC_LO(%a0),%d5		# (D3,D4,D5) is |Y| | 
 | 9800 |  | 
 | 9801 | 	tst.l		%d3 | 
 | 9802 | 	bne.b		Y_Normal | 
 | 9803 |  | 
 | 9804 | 	mov.l		&0x00003FFE,%d3		# $3FFD + 1 | 
 | 9805 | 	tst.l		%d4 | 
 | 9806 | 	bne.b		HiY_not0 | 
 | 9807 |  | 
 | 9808 | HiY_0: | 
 | 9809 | 	mov.l		%d5,%d4 | 
 | 9810 | 	clr.l		%d5 | 
 | 9811 | 	sub.l		&32,%d3 | 
 | 9812 | 	clr.l		%d6 | 
 | 9813 | 	bfffo		%d4{&0:&32},%d6 | 
 | 9814 | 	lsl.l		%d6,%d4 | 
 | 9815 | 	sub.l		%d6,%d3			# (D3,D4,D5) is normalized | 
 | 9816 | #	                                        ...with bias $7FFD | 
 | 9817 | 	bra.b		Chk_X | 
 | 9818 |  | 
 | 9819 | HiY_not0: | 
 | 9820 | 	clr.l		%d6 | 
 | 9821 | 	bfffo		%d4{&0:&32},%d6 | 
 | 9822 | 	sub.l		%d6,%d3 | 
 | 9823 | 	lsl.l		%d6,%d4 | 
 | 9824 | 	mov.l		%d5,%d7			# a copy of D5 | 
 | 9825 | 	lsl.l		%d6,%d5 | 
 | 9826 | 	neg.l		%d6 | 
 | 9827 | 	add.l		&32,%d6 | 
 | 9828 | 	lsr.l		%d6,%d7 | 
 | 9829 | 	or.l		%d7,%d4			# (D3,D4,D5) normalized | 
 | 9830 | #                                       ...with bias $7FFD | 
 | 9831 | 	bra.b		Chk_X | 
 | 9832 |  | 
 | 9833 | Y_Normal: | 
 | 9834 | 	add.l		&0x00003FFE,%d3		# (D3,D4,D5) normalized | 
 | 9835 | #                                       ...with bias $7FFD | 
 | 9836 |  | 
 | 9837 | Chk_X: | 
 | 9838 | 	mov.w		DST_EX(%a1),%d0 | 
 | 9839 | 	mov.w		%d0,SignX(%a6) | 
 | 9840 | 	mov.w		SignY(%a6),%d1 | 
 | 9841 | 	eor.l		%d0,%d1 | 
 | 9842 | 	and.l		&0x00008000,%d1 | 
 | 9843 | 	mov.w		%d1,SignQ(%a6)		# sign(Q) obtained | 
 | 9844 | 	and.l		&0x00007FFF,%d0 | 
 | 9845 | 	mov.l		DST_HI(%a1),%d1 | 
 | 9846 | 	mov.l		DST_LO(%a1),%d2		# (D0,D1,D2) is |X| | 
 | 9847 | 	tst.l		%d0 | 
 | 9848 | 	bne.b		X_Normal | 
 | 9849 | 	mov.l		&0x00003FFE,%d0 | 
 | 9850 | 	tst.l		%d1 | 
 | 9851 | 	bne.b		HiX_not0 | 
 | 9852 |  | 
 | 9853 | HiX_0: | 
 | 9854 | 	mov.l		%d2,%d1 | 
 | 9855 | 	clr.l		%d2 | 
 | 9856 | 	sub.l		&32,%d0 | 
 | 9857 | 	clr.l		%d6 | 
 | 9858 | 	bfffo		%d1{&0:&32},%d6 | 
 | 9859 | 	lsl.l		%d6,%d1 | 
 | 9860 | 	sub.l		%d6,%d0			# (D0,D1,D2) is normalized | 
 | 9861 | #                                       ...with bias $7FFD | 
 | 9862 | 	bra.b		Init | 
 | 9863 |  | 
 | 9864 | HiX_not0: | 
 | 9865 | 	clr.l		%d6 | 
 | 9866 | 	bfffo		%d1{&0:&32},%d6 | 
 | 9867 | 	sub.l		%d6,%d0 | 
 | 9868 | 	lsl.l		%d6,%d1 | 
 | 9869 | 	mov.l		%d2,%d7			# a copy of D2 | 
 | 9870 | 	lsl.l		%d6,%d2 | 
 | 9871 | 	neg.l		%d6 | 
 | 9872 | 	add.l		&32,%d6 | 
 | 9873 | 	lsr.l		%d6,%d7 | 
 | 9874 | 	or.l		%d7,%d1			# (D0,D1,D2) normalized | 
 | 9875 | #                                       ...with bias $7FFD | 
 | 9876 | 	bra.b		Init | 
 | 9877 |  | 
 | 9878 | X_Normal: | 
 | 9879 | 	add.l		&0x00003FFE,%d0		# (D0,D1,D2) normalized | 
 | 9880 | #                                       ...with bias $7FFD | 
 | 9881 |  | 
 | 9882 | Init: | 
 | 9883 | # | 
 | 9884 | 	mov.l		%d3,L_SCR1(%a6)		# save biased exp(Y) | 
 | 9885 | 	mov.l		%d0,-(%sp)		# save biased exp(X) | 
 | 9886 | 	sub.l		%d3,%d0			# L := expo(X)-expo(Y) | 
 | 9887 |  | 
 | 9888 | 	clr.l		%d6			# D6 := carry <- 0 | 
 | 9889 | 	clr.l		%d3			# D3 is Q | 
 | 9890 | 	mov.l		&0,%a1			# A1 is k; j+k=L, Q=0 | 
 | 9891 |  | 
 | 9892 | #..(Carry,D1,D2) is R | 
 | 9893 | 	tst.l		%d0 | 
 | 9894 | 	bge.b		Mod_Loop_pre | 
 | 9895 |  | 
 | 9896 | #..expo(X) < expo(Y). Thus X = mod(X,Y) | 
 | 9897 | # | 
 | 9898 | 	mov.l		(%sp)+,%d0		# restore d0 | 
 | 9899 | 	bra.w		Get_Mod | 
 | 9900 |  | 
 | 9901 | Mod_Loop_pre: | 
 | 9902 | 	addq.l		&0x4,%sp		# erase exp(X) | 
 | 9903 | #..At this point  R = 2^(-L)X; Q = 0; k = 0; and  k+j = L | 
 | 9904 | Mod_Loop: | 
 | 9905 | 	tst.l		%d6			# test carry bit | 
 | 9906 | 	bgt.b		R_GT_Y | 
 | 9907 |  | 
 | 9908 | #..At this point carry = 0, R = (D1,D2), Y = (D4,D5) | 
 | 9909 | 	cmp.l		%d1,%d4			# compare hi(R) and hi(Y) | 
 | 9910 | 	bne.b		R_NE_Y | 
 | 9911 | 	cmp.l		%d2,%d5			# compare lo(R) and lo(Y) | 
 | 9912 | 	bne.b		R_NE_Y | 
 | 9913 |  | 
 | 9914 | #..At this point, R = Y | 
 | 9915 | 	bra.w		Rem_is_0 | 
 | 9916 |  | 
 | 9917 | R_NE_Y: | 
 | 9918 | #..use the borrow of the previous compare | 
 | 9919 | 	bcs.b		R_LT_Y			# borrow is set iff R < Y | 
 | 9920 |  | 
 | 9921 | R_GT_Y: | 
 | 9922 | #..If Carry is set, then Y < (Carry,D1,D2) < 2Y. Otherwise, Carry = 0 | 
 | 9923 | #..and Y < (D1,D2) < 2Y. Either way, perform R - Y | 
 | 9924 | 	sub.l		%d5,%d2			# lo(R) - lo(Y) | 
 | 9925 | 	subx.l		%d4,%d1			# hi(R) - hi(Y) | 
 | 9926 | 	clr.l		%d6			# clear carry | 
 | 9927 | 	addq.l		&1,%d3			# Q := Q + 1 | 
 | 9928 |  | 
 | 9929 | R_LT_Y: | 
 | 9930 | #..At this point, Carry=0, R < Y. R = 2^(k-L)X - QY; k+j = L; j >= 0. | 
 | 9931 | 	tst.l		%d0			# see if j = 0. | 
 | 9932 | 	beq.b		PostLoop | 
 | 9933 |  | 
 | 9934 | 	add.l		%d3,%d3			# Q := 2Q | 
 | 9935 | 	add.l		%d2,%d2			# lo(R) = 2lo(R) | 
 | 9936 | 	roxl.l		&1,%d1			# hi(R) = 2hi(R) + carry | 
 | 9937 | 	scs		%d6			# set Carry if 2(R) overflows | 
 | 9938 | 	addq.l		&1,%a1			# k := k+1 | 
 | 9939 | 	subq.l		&1,%d0			# j := j - 1 | 
 | 9940 | #..At this point, R=(Carry,D1,D2) = 2^(k-L)X - QY, j+k=L, j >= 0, R < 2Y. | 
 | 9941 |  | 
 | 9942 | 	bra.b		Mod_Loop | 
 | 9943 |  | 
 | 9944 | PostLoop: | 
 | 9945 | #..k = L, j = 0, Carry = 0, R = (D1,D2) = X - QY, R < Y. | 
 | 9946 |  | 
 | 9947 | #..normalize R. | 
 | 9948 | 	mov.l		L_SCR1(%a6),%d0		# new biased expo of R | 
 | 9949 | 	tst.l		%d1 | 
 | 9950 | 	bne.b		HiR_not0 | 
 | 9951 |  | 
 | 9952 | HiR_0: | 
 | 9953 | 	mov.l		%d2,%d1 | 
 | 9954 | 	clr.l		%d2 | 
 | 9955 | 	sub.l		&32,%d0 | 
 | 9956 | 	clr.l		%d6 | 
 | 9957 | 	bfffo		%d1{&0:&32},%d6 | 
 | 9958 | 	lsl.l		%d6,%d1 | 
 | 9959 | 	sub.l		%d6,%d0			# (D0,D1,D2) is normalized | 
 | 9960 | #                                       ...with bias $7FFD | 
 | 9961 | 	bra.b		Get_Mod | 
 | 9962 |  | 
 | 9963 | HiR_not0: | 
 | 9964 | 	clr.l		%d6 | 
 | 9965 | 	bfffo		%d1{&0:&32},%d6 | 
 | 9966 | 	bmi.b		Get_Mod			# already normalized | 
 | 9967 | 	sub.l		%d6,%d0 | 
 | 9968 | 	lsl.l		%d6,%d1 | 
 | 9969 | 	mov.l		%d2,%d7			# a copy of D2 | 
 | 9970 | 	lsl.l		%d6,%d2 | 
 | 9971 | 	neg.l		%d6 | 
 | 9972 | 	add.l		&32,%d6 | 
 | 9973 | 	lsr.l		%d6,%d7 | 
 | 9974 | 	or.l		%d7,%d1			# (D0,D1,D2) normalized | 
 | 9975 |  | 
 | 9976 | # | 
 | 9977 | Get_Mod: | 
 | 9978 | 	cmp.l		%d0,&0x000041FE | 
 | 9979 | 	bge.b		No_Scale | 
 | 9980 | Do_Scale: | 
 | 9981 | 	mov.w		%d0,R(%a6) | 
 | 9982 | 	mov.l		%d1,R_Hi(%a6) | 
 | 9983 | 	mov.l		%d2,R_Lo(%a6) | 
 | 9984 | 	mov.l		L_SCR1(%a6),%d6 | 
 | 9985 | 	mov.w		%d6,Y(%a6) | 
 | 9986 | 	mov.l		%d4,Y_Hi(%a6) | 
 | 9987 | 	mov.l		%d5,Y_Lo(%a6) | 
 | 9988 | 	fmov.x		R(%a6),%fp0		# no exception | 
 | 9989 | 	mov.b		&1,Sc_Flag(%a6) | 
 | 9990 | 	bra.b		ModOrRem | 
 | 9991 | No_Scale: | 
 | 9992 | 	mov.l		%d1,R_Hi(%a6) | 
 | 9993 | 	mov.l		%d2,R_Lo(%a6) | 
 | 9994 | 	sub.l		&0x3FFE,%d0 | 
 | 9995 | 	mov.w		%d0,R(%a6) | 
 | 9996 | 	mov.l		L_SCR1(%a6),%d6 | 
 | 9997 | 	sub.l		&0x3FFE,%d6 | 
 | 9998 | 	mov.l		%d6,L_SCR1(%a6) | 
 | 9999 | 	fmov.x		R(%a6),%fp0 | 
 | 10000 | 	mov.w		%d6,Y(%a6) | 
 | 10001 | 	mov.l		%d4,Y_Hi(%a6) | 
 | 10002 | 	mov.l		%d5,Y_Lo(%a6) | 
 | 10003 | 	clr.b		Sc_Flag(%a6) | 
 | 10004 |  | 
 | 10005 | # | 
 | 10006 | ModOrRem: | 
 | 10007 | 	tst.b		Mod_Flag(%a6) | 
 | 10008 | 	beq.b		Fix_Sign | 
 | 10009 |  | 
 | 10010 | 	mov.l		L_SCR1(%a6),%d6		# new biased expo(Y) | 
 | 10011 | 	subq.l		&1,%d6			# biased expo(Y/2) | 
 | 10012 | 	cmp.l		%d0,%d6 | 
 | 10013 | 	blt.b		Fix_Sign | 
 | 10014 | 	bgt.b		Last_Sub | 
 | 10015 |  | 
 | 10016 | 	cmp.l		%d1,%d4 | 
 | 10017 | 	bne.b		Not_EQ | 
 | 10018 | 	cmp.l		%d2,%d5 | 
 | 10019 | 	bne.b		Not_EQ | 
 | 10020 | 	bra.w		Tie_Case | 
 | 10021 |  | 
 | 10022 | Not_EQ: | 
 | 10023 | 	bcs.b		Fix_Sign | 
 | 10024 |  | 
 | 10025 | Last_Sub: | 
 | 10026 | # | 
 | 10027 | 	fsub.x		Y(%a6),%fp0		# no exceptions | 
 | 10028 | 	addq.l		&1,%d3			# Q := Q + 1 | 
 | 10029 |  | 
 | 10030 | # | 
 | 10031 | Fix_Sign: | 
 | 10032 | #..Get sign of X | 
 | 10033 | 	mov.w		SignX(%a6),%d6 | 
 | 10034 | 	bge.b		Get_Q | 
 | 10035 | 	fneg.x		%fp0 | 
 | 10036 |  | 
 | 10037 | #..Get Q | 
 | 10038 | # | 
 | 10039 | Get_Q: | 
 | 10040 | 	clr.l		%d6 | 
 | 10041 | 	mov.w		SignQ(%a6),%d6		# D6 is sign(Q) | 
 | 10042 | 	mov.l		&8,%d7 | 
 | 10043 | 	lsr.l		%d7,%d6 | 
 | 10044 | 	and.l		&0x0000007F,%d3		# 7 bits of Q | 
 | 10045 | 	or.l		%d6,%d3			# sign and bits of Q | 
 | 10046 | #	swap		%d3 | 
 | 10047 | #	fmov.l		%fpsr,%d6 | 
 | 10048 | #	and.l		&0xFF00FFFF,%d6 | 
 | 10049 | #	or.l		%d3,%d6 | 
 | 10050 | #	fmov.l		%d6,%fpsr		# put Q in fpsr | 
 | 10051 | 	mov.b		%d3,FPSR_QBYTE(%a6)	# put Q in fpsr | 
 | 10052 |  | 
 | 10053 | # | 
 | 10054 | Restore: | 
 | 10055 | 	movm.l		(%sp)+,&0xfc		#  {%d2-%d7} | 
 | 10056 | 	mov.l		(%sp)+,%d0 | 
 | 10057 | 	fmov.l		%d0,%fpcr | 
 | 10058 | 	tst.b		Sc_Flag(%a6) | 
 | 10059 | 	beq.b		Finish | 
 | 10060 | 	mov.b		&FMUL_OP,%d1		# last inst is MUL | 
 | 10061 | 	fmul.x		Scale(%pc),%fp0		# may cause underflow | 
 | 10062 | 	bra		t_catch2 | 
 | 10063 | # the '040 package did this apparently to see if the dst operand for the | 
 | 10064 | # preceding fmul was a denorm. but, it better not have been since the | 
 | 10065 | # algorithm just got done playing with fp0 and expected no exceptions | 
 | 10066 | # as a result. trust me... | 
 | 10067 | #	bra		t_avoid_unsupp		# check for denorm as a | 
 | 10068 | #						;result of the scaling | 
 | 10069 |  | 
 | 10070 | Finish: | 
 | 10071 | 	mov.b		&FMOV_OP,%d1		# last inst is MOVE | 
 | 10072 | 	fmov.x		%fp0,%fp0		# capture exceptions & round | 
 | 10073 | 	bra		t_catch2 | 
 | 10074 |  | 
 | 10075 | Rem_is_0: | 
 | 10076 | #..R = 2^(-j)X - Q Y = Y, thus R = 0 and quotient = 2^j (Q+1) | 
 | 10077 | 	addq.l		&1,%d3 | 
 | 10078 | 	cmp.l		%d0,&8			# D0 is j | 
 | 10079 | 	bge.b		Q_Big | 
 | 10080 |  | 
 | 10081 | 	lsl.l		%d0,%d3 | 
 | 10082 | 	bra.b		Set_R_0 | 
 | 10083 |  | 
 | 10084 | Q_Big: | 
 | 10085 | 	clr.l		%d3 | 
 | 10086 |  | 
 | 10087 | Set_R_0: | 
 | 10088 | 	fmov.s		&0x00000000,%fp0 | 
 | 10089 | 	clr.b		Sc_Flag(%a6) | 
 | 10090 | 	bra.w		Fix_Sign | 
 | 10091 |  | 
 | 10092 | Tie_Case: | 
 | 10093 | #..Check parity of Q | 
 | 10094 | 	mov.l		%d3,%d6 | 
 | 10095 | 	and.l		&0x00000001,%d6 | 
 | 10096 | 	tst.l		%d6 | 
 | 10097 | 	beq.w		Fix_Sign		# Q is even | 
 | 10098 |  | 
 | 10099 | #..Q is odd, Q := Q + 1, signX := -signX | 
 | 10100 | 	addq.l		&1,%d3 | 
 | 10101 | 	mov.w		SignX(%a6),%d6 | 
 | 10102 | 	eor.l		&0x00008000,%d6 | 
 | 10103 | 	mov.w		%d6,SignX(%a6) | 
 | 10104 | 	bra.w		Fix_Sign | 
 | 10105 |  | 
 | 10106 | qnan:	long		0x7fff0000, 0xffffffff, 0xffffffff | 
 | 10107 |  | 
 | 10108 | ######################################################################### | 
 | 10109 | # XDEF ****************************************************************	# | 
 | 10110 | #	t_dz(): Handle DZ exception during transcendental emulation.	# | 
 | 10111 | #	        Sets N bit according to sign of source operand.		# | 
 | 10112 | #	t_dz2(): Handle DZ exception during transcendental emulation.	# | 
 | 10113 | #		 Sets N bit always.					# | 
 | 10114 | #									# | 
 | 10115 | # XREF ****************************************************************	# | 
 | 10116 | #	None								# | 
 | 10117 | #									# | 
 | 10118 | # INPUT ***************************************************************	# | 
 | 10119 | #	a0 = pointer to source operand					# | 
 | 10120 | #									# | 
 | 10121 | # OUTPUT **************************************************************	# | 
 | 10122 | #	fp0 = default result						# | 
 | 10123 | #									# | 
 | 10124 | # ALGORITHM ***********************************************************	# | 
 | 10125 | #	- Store properly signed INF into fp0.				# | 
 | 10126 | #	- Set FPSR exception status dz bit, ccode inf bit, and		# | 
 | 10127 | #	  accrued dz bit.						# | 
 | 10128 | #									# | 
 | 10129 | ######################################################################### | 
 | 10130 |  | 
 | 10131 | 	global		t_dz | 
 | 10132 | t_dz: | 
 | 10133 | 	tst.b		SRC_EX(%a0)		# no; is src negative? | 
 | 10134 | 	bmi.b		t_dz2			# yes | 
 | 10135 |  | 
 | 10136 | dz_pinf: | 
 | 10137 | 	fmov.s		&0x7f800000,%fp0	# return +INF in fp0 | 
 | 10138 | 	ori.l		&dzinf_mask,USER_FPSR(%a6) # set I/DZ/ADZ | 
 | 10139 | 	rts | 
 | 10140 |  | 
 | 10141 | 	global		t_dz2 | 
 | 10142 | t_dz2: | 
 | 10143 | 	fmov.s		&0xff800000,%fp0	# return -INF in fp0 | 
 | 10144 | 	ori.l		&dzinf_mask+neg_mask,USER_FPSR(%a6) # set N/I/DZ/ADZ | 
 | 10145 | 	rts | 
 | 10146 |  | 
 | 10147 | ################################################################# | 
 | 10148 | # OPERR exception:						# | 
 | 10149 | #	- set FPSR exception status operr bit, condition code	# | 
 | 10150 | #	  nan bit; Store default NAN into fp0			# | 
 | 10151 | ################################################################# | 
 | 10152 | 	global		t_operr | 
 | 10153 | t_operr: | 
 | 10154 | 	ori.l		&opnan_mask,USER_FPSR(%a6) # set NaN/OPERR/AIOP | 
 | 10155 | 	fmovm.x		qnan(%pc),&0x80		# return default NAN in fp0 | 
 | 10156 | 	rts | 
 | 10157 |  | 
 | 10158 | ################################################################# | 
 | 10159 | # Extended DENORM:						# | 
 | 10160 | #	- For all functions that have a denormalized input and	# | 
 | 10161 | #	  that f(x)=x, this is the entry point.			# | 
 | 10162 | #	- we only return the EXOP here if either underflow or	# | 
 | 10163 | #	  inexact is enabled.					# | 
 | 10164 | ################################################################# | 
 | 10165 |  | 
 | 10166 | # Entry point for scale w/ extended denorm. The function does | 
 | 10167 | # NOT set INEX2/AUNFL/AINEX. | 
 | 10168 | 	global		t_resdnrm | 
 | 10169 | t_resdnrm: | 
 | 10170 | 	ori.l		&unfl_mask,USER_FPSR(%a6) # set UNFL | 
 | 10171 | 	bra.b		xdnrm_con | 
 | 10172 |  | 
 | 10173 | 	global		t_extdnrm | 
 | 10174 | t_extdnrm: | 
 | 10175 | 	ori.l		&unfinx_mask,USER_FPSR(%a6) # set UNFL/INEX2/AUNFL/AINEX | 
 | 10176 |  | 
 | 10177 | xdnrm_con: | 
 | 10178 | 	mov.l		%a0,%a1			# make copy of src ptr | 
 | 10179 | 	mov.l		%d0,%d1			# make copy of rnd prec,mode | 
 | 10180 | 	andi.b		&0xc0,%d1		# extended precision? | 
 | 10181 | 	bne.b		xdnrm_sd		# no | 
 | 10182 |  | 
 | 10183 | # result precision is extended. | 
 | 10184 | 	tst.b		LOCAL_EX(%a0)		# is denorm negative? | 
 | 10185 | 	bpl.b		xdnrm_exit		# no | 
 | 10186 |  | 
 | 10187 | 	bset		&neg_bit,FPSR_CC(%a6)	# yes; set 'N' ccode bit | 
 | 10188 | 	bra.b		xdnrm_exit | 
 | 10189 |  | 
 | 10190 | # result precision is single or double | 
 | 10191 | xdnrm_sd: | 
 | 10192 | 	mov.l		%a1,-(%sp) | 
 | 10193 | 	tst.b		LOCAL_EX(%a0)		# is denorm pos or neg? | 
 | 10194 | 	smi.b		%d1			# set d0 accodingly | 
 | 10195 | 	bsr.l		unf_sub | 
 | 10196 | 	mov.l		(%sp)+,%a1 | 
 | 10197 | xdnrm_exit: | 
 | 10198 | 	fmovm.x		(%a0),&0x80		# return default result in fp0 | 
 | 10199 |  | 
 | 10200 | 	mov.b		FPCR_ENABLE(%a6),%d0 | 
 | 10201 | 	andi.b		&0x0a,%d0		# is UNFL or INEX enabled? | 
 | 10202 | 	bne.b		xdnrm_ena		# yes | 
 | 10203 | 	rts | 
 | 10204 |  | 
 | 10205 | ################ | 
 | 10206 | # unfl enabled # | 
 | 10207 | ################ | 
 | 10208 | # we have a DENORM that needs to be converted into an EXOP. | 
 | 10209 | # so, normalize the mantissa, add 0x6000 to the new exponent, | 
 | 10210 | # and return the result in fp1. | 
 | 10211 | xdnrm_ena: | 
 | 10212 | 	mov.w		LOCAL_EX(%a1),FP_SCR0_EX(%a6) | 
 | 10213 | 	mov.l		LOCAL_HI(%a1),FP_SCR0_HI(%a6) | 
 | 10214 | 	mov.l		LOCAL_LO(%a1),FP_SCR0_LO(%a6) | 
 | 10215 |  | 
 | 10216 | 	lea		FP_SCR0(%a6),%a0 | 
 | 10217 | 	bsr.l		norm			# normalize mantissa | 
 | 10218 | 	addi.l		&0x6000,%d0		# add extra bias | 
 | 10219 | 	andi.w		&0x8000,FP_SCR0_EX(%a6)	# keep old sign | 
 | 10220 | 	or.w		%d0,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 10221 |  | 
 | 10222 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 10223 | 	rts | 
 | 10224 |  | 
 | 10225 | ################################################################# | 
 | 10226 | # UNFL exception:						# | 
 | 10227 | #	- This routine is for cases where even an EXOP isn't	# | 
 | 10228 | #	  large enough to hold the range of this result.	# | 
 | 10229 | #	  In such a case, the EXOP equals zero.			# | 
 | 10230 | #	- Return the default result to the proper precision	# | 
 | 10231 | #	  with the sign of this result being the same as that	# | 
 | 10232 | #	  of the src operand.					# | 
 | 10233 | #	- t_unfl2() is provided to force the result sign to	# | 
 | 10234 | #	  positive which is the desired result for fetox().	# | 
 | 10235 | ################################################################# | 
 | 10236 | 	global		t_unfl | 
 | 10237 | t_unfl: | 
 | 10238 | 	ori.l		&unfinx_mask,USER_FPSR(%a6) # set UNFL/INEX2/AUNFL/AINEX | 
 | 10239 |  | 
 | 10240 | 	tst.b		(%a0)			# is result pos or neg? | 
 | 10241 | 	smi.b		%d1			# set d1 accordingly | 
 | 10242 | 	bsr.l		unf_sub			# calc default unfl result | 
 | 10243 | 	fmovm.x		(%a0),&0x80		# return default result in fp0 | 
 | 10244 |  | 
 | 10245 | 	fmov.s		&0x00000000,%fp1	# return EXOP in fp1 | 
 | 10246 | 	rts | 
 | 10247 |  | 
 | 10248 | # t_unfl2 ALWAYS tells unf_sub to create a positive result | 
 | 10249 | 	global		t_unfl2 | 
 | 10250 | t_unfl2: | 
 | 10251 | 	ori.l		&unfinx_mask,USER_FPSR(%a6) # set UNFL/INEX2/AUNFL/AINEX | 
 | 10252 |  | 
 | 10253 | 	sf.b		%d1			# set d0 to represent positive | 
 | 10254 | 	bsr.l		unf_sub			# calc default unfl result | 
 | 10255 | 	fmovm.x		(%a0),&0x80		# return default result in fp0 | 
 | 10256 |  | 
 | 10257 | 	fmov.s		&0x0000000,%fp1		# return EXOP in fp1 | 
 | 10258 | 	rts | 
 | 10259 |  | 
 | 10260 | ################################################################# | 
 | 10261 | # OVFL exception:						# | 
 | 10262 | #	- This routine is for cases where even an EXOP isn't	# | 
 | 10263 | #	  large enough to hold the range of this result.	# | 
 | 10264 | #	- Return the default result to the proper precision	# | 
 | 10265 | #	  with the sign of this result being the same as that	# | 
 | 10266 | #	  of the src operand.					# | 
 | 10267 | #	- t_ovfl2() is provided to force the result sign to	# | 
 | 10268 | #	  positive which is the desired result for fcosh().	# | 
 | 10269 | #	- t_ovfl_sc() is provided for scale() which only sets	# | 
 | 10270 | #	  the inexact bits if the number is inexact for the	# | 
 | 10271 | #	  precision indicated.					# | 
 | 10272 | ################################################################# | 
 | 10273 |  | 
 | 10274 | 	global		t_ovfl_sc | 
 | 10275 | t_ovfl_sc: | 
 | 10276 | 	ori.l		&ovfl_inx_mask,USER_FPSR(%a6) # set OVFL/AOVFL/AINEX | 
 | 10277 |  | 
 | 10278 | 	mov.b		%d0,%d1			# fetch rnd mode/prec | 
 | 10279 | 	andi.b		&0xc0,%d1		# extract rnd prec | 
 | 10280 | 	beq.b		ovfl_work		# prec is extended | 
 | 10281 |  | 
 | 10282 | 	tst.b		LOCAL_HI(%a0)		# is dst a DENORM? | 
 | 10283 | 	bmi.b		ovfl_sc_norm		# no | 
 | 10284 |  | 
 | 10285 | # dst op is a DENORM. we have to normalize the mantissa to see if the | 
 | 10286 | # result would be inexact for the given precision. make a copy of the | 
 | 10287 | # dst so we don't screw up the version passed to us. | 
 | 10288 | 	mov.w		LOCAL_EX(%a0),FP_SCR0_EX(%a6) | 
 | 10289 | 	mov.l		LOCAL_HI(%a0),FP_SCR0_HI(%a6) | 
 | 10290 | 	mov.l		LOCAL_LO(%a0),FP_SCR0_LO(%a6) | 
 | 10291 | 	lea		FP_SCR0(%a6),%a0	# pass ptr to FP_SCR0 | 
 | 10292 | 	movm.l		&0xc080,-(%sp)		# save d0-d1/a0 | 
 | 10293 | 	bsr.l		norm			# normalize mantissa | 
 | 10294 | 	movm.l		(%sp)+,&0x0103		# restore d0-d1/a0 | 
 | 10295 |  | 
 | 10296 | ovfl_sc_norm: | 
 | 10297 | 	cmpi.b		%d1,&0x40		# is prec dbl? | 
 | 10298 | 	bne.b		ovfl_sc_dbl		# no; sgl | 
 | 10299 | ovfl_sc_sgl: | 
 | 10300 | 	tst.l		LOCAL_LO(%a0)		# is lo lw of sgl set? | 
 | 10301 | 	bne.b		ovfl_sc_inx		# yes | 
 | 10302 | 	tst.b		3+LOCAL_HI(%a0)		# is lo byte of hi lw set? | 
 | 10303 | 	bne.b		ovfl_sc_inx		# yes | 
 | 10304 | 	bra.b		ovfl_work		# don't set INEX2 | 
 | 10305 | ovfl_sc_dbl: | 
 | 10306 | 	mov.l		LOCAL_LO(%a0),%d1	# are any of lo 11 bits of | 
 | 10307 | 	andi.l		&0x7ff,%d1		# dbl mantissa set? | 
 | 10308 | 	beq.b		ovfl_work		# no; don't set INEX2 | 
 | 10309 | ovfl_sc_inx: | 
 | 10310 | 	ori.l		&inex2_mask,USER_FPSR(%a6) # set INEX2 | 
 | 10311 | 	bra.b		ovfl_work		# continue | 
 | 10312 |  | 
 | 10313 | 	global		t_ovfl | 
 | 10314 | t_ovfl: | 
 | 10315 | 	ori.l		&ovfinx_mask,USER_FPSR(%a6) # set OVFL/INEX2/AOVFL/AINEX | 
 | 10316 |  | 
 | 10317 | ovfl_work: | 
 | 10318 | 	tst.b		LOCAL_EX(%a0)		# what is the sign? | 
 | 10319 | 	smi.b		%d1			# set d1 accordingly | 
 | 10320 | 	bsr.l		ovf_res			# calc default ovfl result | 
 | 10321 | 	mov.b		%d0,FPSR_CC(%a6)	# insert new ccodes | 
 | 10322 | 	fmovm.x		(%a0),&0x80		# return default result in fp0 | 
 | 10323 |  | 
 | 10324 | 	fmov.s		&0x00000000,%fp1	# return EXOP in fp1 | 
 | 10325 | 	rts | 
 | 10326 |  | 
 | 10327 | # t_ovfl2 ALWAYS tells ovf_res to create a positive result | 
 | 10328 | 	global		t_ovfl2 | 
 | 10329 | t_ovfl2: | 
 | 10330 | 	ori.l		&ovfinx_mask,USER_FPSR(%a6) # set OVFL/INEX2/AOVFL/AINEX | 
 | 10331 |  | 
 | 10332 | 	sf.b		%d1			# clear sign flag for positive | 
 | 10333 | 	bsr.l		ovf_res			# calc default ovfl result | 
 | 10334 | 	mov.b		%d0,FPSR_CC(%a6)	# insert new ccodes | 
 | 10335 | 	fmovm.x		(%a0),&0x80		# return default result in fp0 | 
 | 10336 |  | 
 | 10337 | 	fmov.s		&0x00000000,%fp1	# return EXOP in fp1 | 
 | 10338 | 	rts | 
 | 10339 |  | 
 | 10340 | ################################################################# | 
 | 10341 | # t_catch():							# | 
 | 10342 | #	- the last operation of a transcendental emulation	# | 
 | 10343 | #	  routine may have caused an underflow or overflow.	# | 
 | 10344 | #	  we find out if this occurred by doing an fsave and	# | 
 | 10345 | #	  checking the exception bit. if one did occur, then we	# | 
 | 10346 | #	  jump to fgen_except() which creates the default	# | 
 | 10347 | #	  result and EXOP for us.				# | 
 | 10348 | ################################################################# | 
 | 10349 | 	global		t_catch | 
 | 10350 | t_catch: | 
 | 10351 |  | 
 | 10352 | 	fsave		-(%sp) | 
 | 10353 | 	tst.b		0x2(%sp) | 
 | 10354 | 	bmi.b		catch | 
 | 10355 | 	add.l		&0xc,%sp | 
 | 10356 |  | 
 | 10357 | ################################################################# | 
 | 10358 | # INEX2 exception:						# | 
 | 10359 | #	- The inex2 and ainex bits are set.			# | 
 | 10360 | ################################################################# | 
 | 10361 | 	global		t_inx2 | 
 | 10362 | t_inx2: | 
 | 10363 | 	fblt.w		t_minx2 | 
 | 10364 | 	fbeq.w		inx2_zero | 
 | 10365 |  | 
 | 10366 | 	global		t_pinx2 | 
 | 10367 | t_pinx2: | 
 | 10368 | 	ori.w		&inx2a_mask,2+USER_FPSR(%a6) # set INEX2/AINEX | 
 | 10369 | 	rts | 
 | 10370 |  | 
 | 10371 | 	global		t_minx2 | 
 | 10372 | t_minx2: | 
 | 10373 | 	ori.l		&inx2a_mask+neg_mask,USER_FPSR(%a6) # set N/INEX2/AINEX | 
 | 10374 | 	rts | 
 | 10375 |  | 
 | 10376 | inx2_zero: | 
 | 10377 | 	mov.b		&z_bmask,FPSR_CC(%a6) | 
 | 10378 | 	ori.w		&inx2a_mask,2+USER_FPSR(%a6) # set INEX2/AINEX | 
 | 10379 | 	rts | 
 | 10380 |  | 
 | 10381 | # an underflow or overflow exception occurred. | 
 | 10382 | # we must set INEX/AINEX since the fmul/fdiv/fmov emulation may not! | 
 | 10383 | catch: | 
 | 10384 | 	ori.w		&inx2a_mask,FPSR_EXCEPT(%a6) | 
 | 10385 | catch2: | 
 | 10386 | 	bsr.l		fgen_except | 
 | 10387 | 	add.l		&0xc,%sp | 
 | 10388 | 	rts | 
 | 10389 |  | 
 | 10390 | 	global		t_catch2 | 
 | 10391 | t_catch2: | 
 | 10392 |  | 
 | 10393 | 	fsave		-(%sp) | 
 | 10394 |  | 
 | 10395 | 	tst.b		0x2(%sp) | 
 | 10396 | 	bmi.b		catch2 | 
 | 10397 | 	add.l		&0xc,%sp | 
 | 10398 |  | 
 | 10399 | 	fmov.l		%fpsr,%d0 | 
 | 10400 | 	or.l		%d0,USER_FPSR(%a6) | 
 | 10401 |  | 
 | 10402 | 	rts | 
 | 10403 |  | 
 | 10404 | ######################################################################### | 
 | 10405 |  | 
 | 10406 | ######################################################################### | 
 | 10407 | # unf_res(): underflow default result calculation for transcendentals	# | 
 | 10408 | #									# | 
 | 10409 | # INPUT:								# | 
 | 10410 | #	d0   : rnd mode,precision					# | 
 | 10411 | #	d1.b : sign bit of result ('11111111 = (-) ; '00000000 = (+))	# | 
 | 10412 | # OUTPUT:								# | 
 | 10413 | #	a0   : points to result (in instruction memory)			# | 
 | 10414 | ######################################################################### | 
 | 10415 | unf_sub: | 
 | 10416 | 	ori.l		&unfinx_mask,USER_FPSR(%a6) | 
 | 10417 |  | 
 | 10418 | 	andi.w		&0x10,%d1		# keep sign bit in 4th spot | 
 | 10419 |  | 
 | 10420 | 	lsr.b		&0x4,%d0		# shift rnd prec,mode to lo bits | 
 | 10421 | 	andi.b		&0xf,%d0		# strip hi rnd mode bit | 
 | 10422 | 	or.b		%d1,%d0			# concat {sgn,mode,prec} | 
 | 10423 |  | 
 | 10424 | 	mov.l		%d0,%d1			# make a copy | 
 | 10425 | 	lsl.b		&0x1,%d1		# mult index 2 by 2 | 
 | 10426 |  | 
 | 10427 | 	mov.b		(tbl_unf_cc.b,%pc,%d0.w*1),FPSR_CC(%a6) # insert ccode bits | 
 | 10428 | 	lea		(tbl_unf_result.b,%pc,%d1.w*8),%a0 # grab result ptr | 
 | 10429 | 	rts | 
 | 10430 |  | 
 | 10431 | tbl_unf_cc: | 
 | 10432 | 	byte		0x4, 0x4, 0x4, 0x0 | 
 | 10433 | 	byte		0x4, 0x4, 0x4, 0x0 | 
 | 10434 | 	byte		0x4, 0x4, 0x4, 0x0 | 
 | 10435 | 	byte		0x0, 0x0, 0x0, 0x0 | 
 | 10436 | 	byte		0x8+0x4, 0x8+0x4, 0x8, 0x8+0x4 | 
 | 10437 | 	byte		0x8+0x4, 0x8+0x4, 0x8, 0x8+0x4 | 
 | 10438 | 	byte		0x8+0x4, 0x8+0x4, 0x8, 0x8+0x4 | 
 | 10439 |  | 
 | 10440 | tbl_unf_result: | 
 | 10441 | 	long		0x00000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext | 
 | 10442 | 	long		0x00000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext | 
 | 10443 | 	long		0x00000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext | 
 | 10444 | 	long		0x00000000, 0x00000000, 0x00000001, 0x0 # MIN; ext | 
 | 10445 |  | 
 | 10446 | 	long		0x3f810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl | 
 | 10447 | 	long		0x3f810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl | 
 | 10448 | 	long		0x3f810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl | 
 | 10449 | 	long		0x3f810000, 0x00000100, 0x00000000, 0x0 # MIN; sgl | 
 | 10450 |  | 
 | 10451 | 	long		0x3c010000, 0x00000000, 0x00000000, 0x0 # ZERO;dbl | 
 | 10452 | 	long		0x3c010000, 0x00000000, 0x00000000, 0x0 # ZER0;dbl | 
 | 10453 | 	long		0x3c010000, 0x00000000, 0x00000000, 0x0 # ZERO;dbl | 
 | 10454 | 	long		0x3c010000, 0x00000000, 0x00000800, 0x0 # MIN; dbl | 
 | 10455 |  | 
 | 10456 | 	long		0x0,0x0,0x0,0x0 | 
 | 10457 | 	long		0x0,0x0,0x0,0x0 | 
 | 10458 | 	long		0x0,0x0,0x0,0x0 | 
 | 10459 | 	long		0x0,0x0,0x0,0x0 | 
 | 10460 |  | 
 | 10461 | 	long		0x80000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext | 
 | 10462 | 	long		0x80000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext | 
 | 10463 | 	long		0x80000000, 0x00000000, 0x00000001, 0x0 # MIN; ext | 
 | 10464 | 	long		0x80000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext | 
 | 10465 |  | 
 | 10466 | 	long		0xbf810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl | 
 | 10467 | 	long		0xbf810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl | 
 | 10468 | 	long		0xbf810000, 0x00000100, 0x00000000, 0x0 # MIN; sgl | 
 | 10469 | 	long		0xbf810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl | 
 | 10470 |  | 
 | 10471 | 	long		0xbc010000, 0x00000000, 0x00000000, 0x0 # ZERO;dbl | 
 | 10472 | 	long		0xbc010000, 0x00000000, 0x00000000, 0x0 # ZERO;dbl | 
 | 10473 | 	long		0xbc010000, 0x00000000, 0x00000800, 0x0 # MIN; dbl | 
 | 10474 | 	long		0xbc010000, 0x00000000, 0x00000000, 0x0 # ZERO;dbl | 
 | 10475 |  | 
 | 10476 | ############################################################ | 
 | 10477 |  | 
 | 10478 | ######################################################################### | 
 | 10479 | # src_zero(): Return signed zero according to sign of src operand.	# | 
 | 10480 | ######################################################################### | 
 | 10481 | 	global		src_zero | 
 | 10482 | src_zero: | 
 | 10483 | 	tst.b		SRC_EX(%a0)		# get sign of src operand | 
 | 10484 | 	bmi.b		ld_mzero		# if neg, load neg zero | 
 | 10485 |  | 
 | 10486 | # | 
 | 10487 | # ld_pzero(): return a positive zero. | 
 | 10488 | # | 
 | 10489 | 	global		ld_pzero | 
 | 10490 | ld_pzero: | 
 | 10491 | 	fmov.s		&0x00000000,%fp0	# load +0 | 
 | 10492 | 	mov.b		&z_bmask,FPSR_CC(%a6)	# set 'Z' ccode bit | 
 | 10493 | 	rts | 
 | 10494 |  | 
 | 10495 | # ld_mzero(): return a negative zero. | 
 | 10496 | 	global		ld_mzero | 
 | 10497 | ld_mzero: | 
 | 10498 | 	fmov.s		&0x80000000,%fp0	# load -0 | 
 | 10499 | 	mov.b		&neg_bmask+z_bmask,FPSR_CC(%a6) # set 'N','Z' ccode bits | 
 | 10500 | 	rts | 
 | 10501 |  | 
 | 10502 | ######################################################################### | 
 | 10503 | # dst_zero(): Return signed zero according to sign of dst operand.	# | 
 | 10504 | ######################################################################### | 
 | 10505 | 	global		dst_zero | 
 | 10506 | dst_zero: | 
 | 10507 | 	tst.b		DST_EX(%a1)		# get sign of dst operand | 
 | 10508 | 	bmi.b		ld_mzero		# if neg, load neg zero | 
 | 10509 | 	bra.b		ld_pzero		# load positive zero | 
 | 10510 |  | 
 | 10511 | ######################################################################### | 
 | 10512 | # src_inf(): Return signed inf according to sign of src operand.	# | 
 | 10513 | ######################################################################### | 
 | 10514 | 	global		src_inf | 
 | 10515 | src_inf: | 
 | 10516 | 	tst.b		SRC_EX(%a0)		# get sign of src operand | 
 | 10517 | 	bmi.b		ld_minf			# if negative branch | 
 | 10518 |  | 
 | 10519 | # | 
 | 10520 | # ld_pinf(): return a positive infinity. | 
 | 10521 | # | 
 | 10522 | 	global		ld_pinf | 
 | 10523 | ld_pinf: | 
 | 10524 | 	fmov.s		&0x7f800000,%fp0	# load +INF | 
 | 10525 | 	mov.b		&inf_bmask,FPSR_CC(%a6)	# set 'INF' ccode bit | 
 | 10526 | 	rts | 
 | 10527 |  | 
 | 10528 | # | 
 | 10529 | # ld_minf():return a negative infinity. | 
 | 10530 | # | 
 | 10531 | 	global		ld_minf | 
 | 10532 | ld_minf: | 
 | 10533 | 	fmov.s		&0xff800000,%fp0	# load -INF | 
 | 10534 | 	mov.b		&neg_bmask+inf_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits | 
 | 10535 | 	rts | 
 | 10536 |  | 
 | 10537 | ######################################################################### | 
 | 10538 | # dst_inf(): Return signed inf according to sign of dst operand.	# | 
 | 10539 | ######################################################################### | 
 | 10540 | 	global		dst_inf | 
 | 10541 | dst_inf: | 
 | 10542 | 	tst.b		DST_EX(%a1)		# get sign of dst operand | 
 | 10543 | 	bmi.b		ld_minf			# if negative branch | 
 | 10544 | 	bra.b		ld_pinf | 
 | 10545 |  | 
 | 10546 | 	global		szr_inf | 
 | 10547 | ################################################################# | 
 | 10548 | # szr_inf(): Return +ZERO for a negative src operand or		# | 
 | 10549 | #	            +INF for a positive src operand.		# | 
 | 10550 | #	     Routine used for fetox, ftwotox, and ftentox.	# | 
 | 10551 | ################################################################# | 
 | 10552 | szr_inf: | 
 | 10553 | 	tst.b		SRC_EX(%a0)		# check sign of source | 
 | 10554 | 	bmi.b		ld_pzero | 
 | 10555 | 	bra.b		ld_pinf | 
 | 10556 |  | 
 | 10557 | ######################################################################### | 
 | 10558 | # sopr_inf(): Return +INF for a positive src operand or			# | 
 | 10559 | #	      jump to operand error routine for a negative src operand.	# | 
 | 10560 | #	      Routine used for flogn, flognp1, flog10, and flog2.	# | 
 | 10561 | ######################################################################### | 
 | 10562 | 	global		sopr_inf | 
 | 10563 | sopr_inf: | 
 | 10564 | 	tst.b		SRC_EX(%a0)		# check sign of source | 
 | 10565 | 	bmi.w		t_operr | 
 | 10566 | 	bra.b		ld_pinf | 
 | 10567 |  | 
 | 10568 | ################################################################# | 
 | 10569 | # setoxm1i(): Return minus one for a negative src operand or	# | 
 | 10570 | #	      positive infinity for a positive src operand.	# | 
 | 10571 | #	      Routine used for fetoxm1.				# | 
 | 10572 | ################################################################# | 
 | 10573 | 	global		setoxm1i | 
 | 10574 | setoxm1i: | 
 | 10575 | 	tst.b		SRC_EX(%a0)		# check sign of source | 
 | 10576 | 	bmi.b		ld_mone | 
 | 10577 | 	bra.b		ld_pinf | 
 | 10578 |  | 
 | 10579 | ######################################################################### | 
 | 10580 | # src_one(): Return signed one according to sign of src operand.	# | 
 | 10581 | ######################################################################### | 
 | 10582 | 	global		src_one | 
 | 10583 | src_one: | 
 | 10584 | 	tst.b		SRC_EX(%a0)		# check sign of source | 
 | 10585 | 	bmi.b		ld_mone | 
 | 10586 |  | 
 | 10587 | # | 
 | 10588 | # ld_pone(): return positive one. | 
 | 10589 | # | 
 | 10590 | 	global		ld_pone | 
 | 10591 | ld_pone: | 
 | 10592 | 	fmov.s		&0x3f800000,%fp0	# load +1 | 
 | 10593 | 	clr.b		FPSR_CC(%a6) | 
 | 10594 | 	rts | 
 | 10595 |  | 
 | 10596 | # | 
 | 10597 | # ld_mone(): return negative one. | 
 | 10598 | # | 
 | 10599 | 	global		ld_mone | 
 | 10600 | ld_mone: | 
 | 10601 | 	fmov.s		&0xbf800000,%fp0	# load -1 | 
 | 10602 | 	mov.b		&neg_bmask,FPSR_CC(%a6)	# set 'N' ccode bit | 
 | 10603 | 	rts | 
 | 10604 |  | 
 | 10605 | ppiby2:	long		0x3fff0000, 0xc90fdaa2, 0x2168c235 | 
 | 10606 | mpiby2:	long		0xbfff0000, 0xc90fdaa2, 0x2168c235 | 
 | 10607 |  | 
 | 10608 | ################################################################# | 
 | 10609 | # spi_2(): Return signed PI/2 according to sign of src operand.	# | 
 | 10610 | ################################################################# | 
 | 10611 | 	global		spi_2 | 
 | 10612 | spi_2: | 
 | 10613 | 	tst.b		SRC_EX(%a0)		# check sign of source | 
 | 10614 | 	bmi.b		ld_mpi2 | 
 | 10615 |  | 
 | 10616 | # | 
 | 10617 | # ld_ppi2(): return positive PI/2. | 
 | 10618 | # | 
 | 10619 | 	global		ld_ppi2 | 
 | 10620 | ld_ppi2: | 
 | 10621 | 	fmov.l		%d0,%fpcr | 
 | 10622 | 	fmov.x		ppiby2(%pc),%fp0	# load +pi/2 | 
 | 10623 | 	bra.w		t_pinx2			# set INEX2 | 
 | 10624 |  | 
 | 10625 | # | 
 | 10626 | # ld_mpi2(): return negative PI/2. | 
 | 10627 | # | 
 | 10628 | 	global		ld_mpi2 | 
 | 10629 | ld_mpi2: | 
 | 10630 | 	fmov.l		%d0,%fpcr | 
 | 10631 | 	fmov.x		mpiby2(%pc),%fp0	# load -pi/2 | 
 | 10632 | 	bra.w		t_minx2			# set INEX2 | 
 | 10633 |  | 
 | 10634 | #################################################### | 
 | 10635 | # The following routines give support for fsincos. # | 
 | 10636 | #################################################### | 
 | 10637 |  | 
 | 10638 | # | 
 | 10639 | # ssincosz(): When the src operand is ZERO, store a one in the | 
 | 10640 | #	      cosine register and return a ZERO in fp0 w/ the same sign | 
 | 10641 | #	      as the src operand. | 
 | 10642 | # | 
 | 10643 | 	global		ssincosz | 
 | 10644 | ssincosz: | 
 | 10645 | 	fmov.s		&0x3f800000,%fp1 | 
 | 10646 | 	tst.b		SRC_EX(%a0)		# test sign | 
 | 10647 | 	bpl.b		sincoszp | 
 | 10648 | 	fmov.s		&0x80000000,%fp0	# return sin result in fp0 | 
 | 10649 | 	mov.b		&z_bmask+neg_bmask,FPSR_CC(%a6) | 
 | 10650 | 	bra.b		sto_cos			# store cosine result | 
 | 10651 | sincoszp: | 
 | 10652 | 	fmov.s		&0x00000000,%fp0	# return sin result in fp0 | 
 | 10653 | 	mov.b		&z_bmask,FPSR_CC(%a6) | 
 | 10654 | 	bra.b		sto_cos			# store cosine result | 
 | 10655 |  | 
 | 10656 | # | 
 | 10657 | # ssincosi(): When the src operand is INF, store a QNAN in the cosine | 
 | 10658 | #	      register and jump to the operand error routine for negative | 
 | 10659 | #	      src operands. | 
 | 10660 | # | 
 | 10661 | 	global		ssincosi | 
 | 10662 | ssincosi: | 
 | 10663 | 	fmov.x		qnan(%pc),%fp1		# load NAN | 
 | 10664 | 	bsr.l		sto_cos			# store cosine result | 
 | 10665 | 	bra.w		t_operr | 
 | 10666 |  | 
 | 10667 | # | 
 | 10668 | # ssincosqnan(): When the src operand is a QNAN, store the QNAN in the cosine | 
 | 10669 | #		 register and branch to the src QNAN routine. | 
 | 10670 | # | 
 | 10671 | 	global		ssincosqnan | 
 | 10672 | ssincosqnan: | 
 | 10673 | 	fmov.x		LOCAL_EX(%a0),%fp1 | 
 | 10674 | 	bsr.l		sto_cos | 
 | 10675 | 	bra.w		src_qnan | 
 | 10676 |  | 
 | 10677 | # | 
 | 10678 | # ssincossnan(): When the src operand is an SNAN, store the SNAN w/ the SNAN bit set | 
 | 10679 | #		 in the cosine register and branch to the src SNAN routine. | 
 | 10680 | # | 
 | 10681 | 	global		ssincossnan | 
 | 10682 | ssincossnan: | 
 | 10683 | 	fmov.x		LOCAL_EX(%a0),%fp1 | 
 | 10684 | 	bsr.l		sto_cos | 
 | 10685 | 	bra.w		src_snan | 
 | 10686 |  | 
 | 10687 | ######################################################################## | 
 | 10688 |  | 
 | 10689 | ######################################################################### | 
 | 10690 | # sto_cos(): store fp1 to the fpreg designated by the CMDREG dst field.	# | 
 | 10691 | #	     fp1 holds the result of the cosine portion of ssincos().	# | 
 | 10692 | #	     the value in fp1 will not take any exceptions when moved.	# | 
 | 10693 | # INPUT:								# | 
 | 10694 | #	fp1 : fp value to store						# | 
 | 10695 | # MODIFIED:								# | 
 | 10696 | #	d0								# | 
 | 10697 | ######################################################################### | 
 | 10698 | 	global		sto_cos | 
 | 10699 | sto_cos: | 
 | 10700 | 	mov.b		1+EXC_CMDREG(%a6),%d0 | 
 | 10701 | 	andi.w		&0x7,%d0 | 
 | 10702 | 	mov.w		(tbl_sto_cos.b,%pc,%d0.w*2),%d0 | 
 | 10703 | 	jmp		(tbl_sto_cos.b,%pc,%d0.w*1) | 
 | 10704 |  | 
 | 10705 | tbl_sto_cos: | 
 | 10706 | 	short		sto_cos_0 - tbl_sto_cos | 
 | 10707 | 	short		sto_cos_1 - tbl_sto_cos | 
 | 10708 | 	short		sto_cos_2 - tbl_sto_cos | 
 | 10709 | 	short		sto_cos_3 - tbl_sto_cos | 
 | 10710 | 	short		sto_cos_4 - tbl_sto_cos | 
 | 10711 | 	short		sto_cos_5 - tbl_sto_cos | 
 | 10712 | 	short		sto_cos_6 - tbl_sto_cos | 
 | 10713 | 	short		sto_cos_7 - tbl_sto_cos | 
 | 10714 |  | 
 | 10715 | sto_cos_0: | 
 | 10716 | 	fmovm.x		&0x40,EXC_FP0(%a6) | 
 | 10717 | 	rts | 
 | 10718 | sto_cos_1: | 
 | 10719 | 	fmovm.x		&0x40,EXC_FP1(%a6) | 
 | 10720 | 	rts | 
 | 10721 | sto_cos_2: | 
 | 10722 | 	fmov.x		%fp1,%fp2 | 
 | 10723 | 	rts | 
 | 10724 | sto_cos_3: | 
 | 10725 | 	fmov.x		%fp1,%fp3 | 
 | 10726 | 	rts | 
 | 10727 | sto_cos_4: | 
 | 10728 | 	fmov.x		%fp1,%fp4 | 
 | 10729 | 	rts | 
 | 10730 | sto_cos_5: | 
 | 10731 | 	fmov.x		%fp1,%fp5 | 
 | 10732 | 	rts | 
 | 10733 | sto_cos_6: | 
 | 10734 | 	fmov.x		%fp1,%fp6 | 
 | 10735 | 	rts | 
 | 10736 | sto_cos_7: | 
 | 10737 | 	fmov.x		%fp1,%fp7 | 
 | 10738 | 	rts | 
 | 10739 |  | 
 | 10740 | ################################################################## | 
 | 10741 | 	global		smod_sdnrm | 
 | 10742 | 	global		smod_snorm | 
 | 10743 | smod_sdnrm: | 
 | 10744 | smod_snorm: | 
 | 10745 | 	mov.b		DTAG(%a6),%d1 | 
 | 10746 | 	beq.l		smod | 
 | 10747 | 	cmpi.b		%d1,&ZERO | 
 | 10748 | 	beq.w		smod_zro | 
 | 10749 | 	cmpi.b		%d1,&INF | 
 | 10750 | 	beq.l		t_operr | 
 | 10751 | 	cmpi.b		%d1,&DENORM | 
 | 10752 | 	beq.l		smod | 
 | 10753 | 	cmpi.b		%d1,&SNAN | 
 | 10754 | 	beq.l		dst_snan | 
 | 10755 | 	bra.l		dst_qnan | 
 | 10756 |  | 
 | 10757 | 	global		smod_szero | 
 | 10758 | smod_szero: | 
 | 10759 | 	mov.b		DTAG(%a6),%d1 | 
 | 10760 | 	beq.l		t_operr | 
 | 10761 | 	cmpi.b		%d1,&ZERO | 
 | 10762 | 	beq.l		t_operr | 
 | 10763 | 	cmpi.b		%d1,&INF | 
 | 10764 | 	beq.l		t_operr | 
 | 10765 | 	cmpi.b		%d1,&DENORM | 
 | 10766 | 	beq.l		t_operr | 
 | 10767 | 	cmpi.b		%d1,&QNAN | 
 | 10768 | 	beq.l		dst_qnan | 
 | 10769 | 	bra.l		dst_snan | 
 | 10770 |  | 
 | 10771 | 	global		smod_sinf | 
 | 10772 | smod_sinf: | 
 | 10773 | 	mov.b		DTAG(%a6),%d1 | 
 | 10774 | 	beq.l		smod_fpn | 
 | 10775 | 	cmpi.b		%d1,&ZERO | 
 | 10776 | 	beq.l		smod_zro | 
 | 10777 | 	cmpi.b		%d1,&INF | 
 | 10778 | 	beq.l		t_operr | 
 | 10779 | 	cmpi.b		%d1,&DENORM | 
 | 10780 | 	beq.l		smod_fpn | 
 | 10781 | 	cmpi.b		%d1,&QNAN | 
 | 10782 | 	beq.l		dst_qnan | 
 | 10783 | 	bra.l		dst_snan | 
 | 10784 |  | 
 | 10785 | smod_zro: | 
 | 10786 | srem_zro: | 
 | 10787 | 	mov.b		SRC_EX(%a0),%d1		# get src sign | 
 | 10788 | 	mov.b		DST_EX(%a1),%d0		# get dst sign | 
 | 10789 | 	eor.b		%d0,%d1			# get qbyte sign | 
 | 10790 | 	andi.b		&0x80,%d1 | 
 | 10791 | 	mov.b		%d1,FPSR_QBYTE(%a6) | 
 | 10792 | 	tst.b		%d0 | 
 | 10793 | 	bpl.w		ld_pzero | 
 | 10794 | 	bra.w		ld_mzero | 
 | 10795 |  | 
 | 10796 | smod_fpn: | 
 | 10797 | srem_fpn: | 
 | 10798 | 	clr.b		FPSR_QBYTE(%a6) | 
 | 10799 | 	mov.l		%d0,-(%sp) | 
 | 10800 | 	mov.b		SRC_EX(%a0),%d1		# get src sign | 
 | 10801 | 	mov.b		DST_EX(%a1),%d0		# get dst sign | 
 | 10802 | 	eor.b		%d0,%d1			# get qbyte sign | 
 | 10803 | 	andi.b		&0x80,%d1 | 
 | 10804 | 	mov.b		%d1,FPSR_QBYTE(%a6) | 
 | 10805 | 	cmpi.b		DTAG(%a6),&DENORM | 
 | 10806 | 	bne.b		smod_nrm | 
 | 10807 | 	lea		DST(%a1),%a0 | 
 | 10808 | 	mov.l		(%sp)+,%d0 | 
 | 10809 | 	bra		t_resdnrm | 
 | 10810 | smod_nrm: | 
 | 10811 | 	fmov.l		(%sp)+,%fpcr | 
 | 10812 | 	fmov.x		DST(%a1),%fp0 | 
 | 10813 | 	tst.b		DST_EX(%a1) | 
 | 10814 | 	bmi.b		smod_nrm_neg | 
 | 10815 | 	rts | 
 | 10816 |  | 
 | 10817 | smod_nrm_neg: | 
 | 10818 | 	mov.b		&neg_bmask,FPSR_CC(%a6)	# set 'N' ccode | 
 | 10819 | 	rts | 
 | 10820 |  | 
 | 10821 | ######################################################################### | 
 | 10822 | 	global		srem_snorm | 
 | 10823 | 	global		srem_sdnrm | 
 | 10824 | srem_sdnrm: | 
 | 10825 | srem_snorm: | 
 | 10826 | 	mov.b		DTAG(%a6),%d1 | 
 | 10827 | 	beq.l		srem | 
 | 10828 | 	cmpi.b		%d1,&ZERO | 
 | 10829 | 	beq.w		srem_zro | 
 | 10830 | 	cmpi.b		%d1,&INF | 
 | 10831 | 	beq.l		t_operr | 
 | 10832 | 	cmpi.b		%d1,&DENORM | 
 | 10833 | 	beq.l		srem | 
 | 10834 | 	cmpi.b		%d1,&QNAN | 
 | 10835 | 	beq.l		dst_qnan | 
 | 10836 | 	bra.l		dst_snan | 
 | 10837 |  | 
 | 10838 | 	global		srem_szero | 
 | 10839 | srem_szero: | 
 | 10840 | 	mov.b		DTAG(%a6),%d1 | 
 | 10841 | 	beq.l		t_operr | 
 | 10842 | 	cmpi.b		%d1,&ZERO | 
 | 10843 | 	beq.l		t_operr | 
 | 10844 | 	cmpi.b		%d1,&INF | 
 | 10845 | 	beq.l		t_operr | 
 | 10846 | 	cmpi.b		%d1,&DENORM | 
 | 10847 | 	beq.l		t_operr | 
 | 10848 | 	cmpi.b		%d1,&QNAN | 
 | 10849 | 	beq.l		dst_qnan | 
 | 10850 | 	bra.l		dst_snan | 
 | 10851 |  | 
 | 10852 | 	global		srem_sinf | 
 | 10853 | srem_sinf: | 
 | 10854 | 	mov.b		DTAG(%a6),%d1 | 
 | 10855 | 	beq.w		srem_fpn | 
 | 10856 | 	cmpi.b		%d1,&ZERO | 
 | 10857 | 	beq.w		srem_zro | 
 | 10858 | 	cmpi.b		%d1,&INF | 
 | 10859 | 	beq.l		t_operr | 
 | 10860 | 	cmpi.b		%d1,&DENORM | 
 | 10861 | 	beq.l		srem_fpn | 
 | 10862 | 	cmpi.b		%d1,&QNAN | 
 | 10863 | 	beq.l		dst_qnan | 
 | 10864 | 	bra.l		dst_snan | 
 | 10865 |  | 
 | 10866 | ######################################################################### | 
 | 10867 | 	global		sscale_snorm | 
 | 10868 | 	global		sscale_sdnrm | 
 | 10869 | sscale_snorm: | 
 | 10870 | sscale_sdnrm: | 
 | 10871 | 	mov.b		DTAG(%a6),%d1 | 
 | 10872 | 	beq.l		sscale | 
 | 10873 | 	cmpi.b		%d1,&ZERO | 
 | 10874 | 	beq.l		dst_zero | 
 | 10875 | 	cmpi.b		%d1,&INF | 
 | 10876 | 	beq.l		dst_inf | 
 | 10877 | 	cmpi.b		%d1,&DENORM | 
 | 10878 | 	beq.l		sscale | 
 | 10879 | 	cmpi.b		%d1,&QNAN | 
 | 10880 | 	beq.l		dst_qnan | 
 | 10881 | 	bra.l		dst_snan | 
 | 10882 |  | 
 | 10883 | 	global		sscale_szero | 
 | 10884 | sscale_szero: | 
 | 10885 | 	mov.b		DTAG(%a6),%d1 | 
 | 10886 | 	beq.l		sscale | 
 | 10887 | 	cmpi.b		%d1,&ZERO | 
 | 10888 | 	beq.l		dst_zero | 
 | 10889 | 	cmpi.b		%d1,&INF | 
 | 10890 | 	beq.l		dst_inf | 
 | 10891 | 	cmpi.b		%d1,&DENORM | 
 | 10892 | 	beq.l		sscale | 
 | 10893 | 	cmpi.b		%d1,&QNAN | 
 | 10894 | 	beq.l		dst_qnan | 
 | 10895 | 	bra.l		dst_snan | 
 | 10896 |  | 
 | 10897 | 	global		sscale_sinf | 
 | 10898 | sscale_sinf: | 
 | 10899 | 	mov.b		DTAG(%a6),%d1 | 
 | 10900 | 	beq.l		t_operr | 
 | 10901 | 	cmpi.b		%d1,&QNAN | 
 | 10902 | 	beq.l		dst_qnan | 
 | 10903 | 	cmpi.b		%d1,&SNAN | 
 | 10904 | 	beq.l		dst_snan | 
 | 10905 | 	bra.l		t_operr | 
 | 10906 |  | 
 | 10907 | ######################################################################## | 
 | 10908 |  | 
 | 10909 | # | 
 | 10910 | # sop_sqnan(): The src op for frem/fmod/fscale was a QNAN. | 
 | 10911 | # | 
 | 10912 | 	global		sop_sqnan | 
 | 10913 | sop_sqnan: | 
 | 10914 | 	mov.b		DTAG(%a6),%d1 | 
 | 10915 | 	cmpi.b		%d1,&QNAN | 
 | 10916 | 	beq.b		dst_qnan | 
 | 10917 | 	cmpi.b		%d1,&SNAN | 
 | 10918 | 	beq.b		dst_snan | 
 | 10919 | 	bra.b		src_qnan | 
 | 10920 |  | 
 | 10921 | # | 
 | 10922 | # sop_ssnan(): The src op for frem/fmod/fscale was an SNAN. | 
 | 10923 | # | 
 | 10924 | 	global		sop_ssnan | 
 | 10925 | sop_ssnan: | 
 | 10926 | 	mov.b		DTAG(%a6),%d1 | 
 | 10927 | 	cmpi.b		%d1,&QNAN | 
 | 10928 | 	beq.b		dst_qnan_src_snan | 
 | 10929 | 	cmpi.b		%d1,&SNAN | 
 | 10930 | 	beq.b		dst_snan | 
 | 10931 | 	bra.b		src_snan | 
 | 10932 |  | 
 | 10933 | dst_qnan_src_snan: | 
 | 10934 | 	ori.l		&snaniop_mask,USER_FPSR(%a6) # set NAN/SNAN/AIOP | 
 | 10935 | 	bra.b		dst_qnan | 
 | 10936 |  | 
 | 10937 | # | 
 | 10938 | # dst_qnan(): Return the dst SNAN w/ the SNAN bit set. | 
 | 10939 | # | 
 | 10940 | 	global		dst_snan | 
 | 10941 | dst_snan: | 
 | 10942 | 	fmov.x		DST(%a1),%fp0		# the fmove sets the SNAN bit | 
 | 10943 | 	fmov.l		%fpsr,%d0		# catch resulting status | 
 | 10944 | 	or.l		%d0,USER_FPSR(%a6)	# store status | 
 | 10945 | 	rts | 
 | 10946 |  | 
 | 10947 | # | 
 | 10948 | # dst_qnan(): Return the dst QNAN. | 
 | 10949 | # | 
 | 10950 | 	global		dst_qnan | 
 | 10951 | dst_qnan: | 
 | 10952 | 	fmov.x		DST(%a1),%fp0		# return the non-signalling nan | 
 | 10953 | 	tst.b		DST_EX(%a1)		# set ccodes according to QNAN sign | 
 | 10954 | 	bmi.b		dst_qnan_m | 
 | 10955 | dst_qnan_p: | 
 | 10956 | 	mov.b		&nan_bmask,FPSR_CC(%a6) | 
 | 10957 | 	rts | 
 | 10958 | dst_qnan_m: | 
 | 10959 | 	mov.b		&neg_bmask+nan_bmask,FPSR_CC(%a6) | 
 | 10960 | 	rts | 
 | 10961 |  | 
 | 10962 | # | 
 | 10963 | # src_snan(): Return the src SNAN w/ the SNAN bit set. | 
 | 10964 | # | 
 | 10965 | 	global		src_snan | 
 | 10966 | src_snan: | 
 | 10967 | 	fmov.x		SRC(%a0),%fp0		# the fmove sets the SNAN bit | 
 | 10968 | 	fmov.l		%fpsr,%d0		# catch resulting status | 
 | 10969 | 	or.l		%d0,USER_FPSR(%a6)	# store status | 
 | 10970 | 	rts | 
 | 10971 |  | 
 | 10972 | # | 
 | 10973 | # src_qnan(): Return the src QNAN. | 
 | 10974 | # | 
 | 10975 | 	global		src_qnan | 
 | 10976 | src_qnan: | 
 | 10977 | 	fmov.x		SRC(%a0),%fp0		# return the non-signalling nan | 
 | 10978 | 	tst.b		SRC_EX(%a0)		# set ccodes according to QNAN sign | 
 | 10979 | 	bmi.b		dst_qnan_m | 
 | 10980 | src_qnan_p: | 
 | 10981 | 	mov.b		&nan_bmask,FPSR_CC(%a6) | 
 | 10982 | 	rts | 
 | 10983 | src_qnan_m: | 
 | 10984 | 	mov.b		&neg_bmask+nan_bmask,FPSR_CC(%a6) | 
 | 10985 | 	rts | 
 | 10986 |  | 
 | 10987 | # | 
 | 10988 | # fkern2.s: | 
 | 10989 | #	These entry points are used by the exception handler | 
 | 10990 | # routines where an instruction is selected by an index into | 
 | 10991 | # a large jump table corresponding to a given instruction which | 
 | 10992 | # has been decoded. Flow continues here where we now decode | 
 | 10993 | # further accoding to the source operand type. | 
 | 10994 | # | 
 | 10995 |  | 
 | 10996 | 	global		fsinh | 
 | 10997 | fsinh: | 
 | 10998 | 	mov.b		STAG(%a6),%d1 | 
 | 10999 | 	beq.l		ssinh | 
 | 11000 | 	cmpi.b		%d1,&ZERO | 
 | 11001 | 	beq.l		src_zero | 
 | 11002 | 	cmpi.b		%d1,&INF | 
 | 11003 | 	beq.l		src_inf | 
 | 11004 | 	cmpi.b		%d1,&DENORM | 
 | 11005 | 	beq.l		ssinhd | 
 | 11006 | 	cmpi.b		%d1,&QNAN | 
 | 11007 | 	beq.l		src_qnan | 
 | 11008 | 	bra.l		src_snan | 
 | 11009 |  | 
 | 11010 | 	global		flognp1 | 
 | 11011 | flognp1: | 
 | 11012 | 	mov.b		STAG(%a6),%d1 | 
 | 11013 | 	beq.l		slognp1 | 
 | 11014 | 	cmpi.b		%d1,&ZERO | 
 | 11015 | 	beq.l		src_zero | 
 | 11016 | 	cmpi.b		%d1,&INF | 
 | 11017 | 	beq.l		sopr_inf | 
 | 11018 | 	cmpi.b		%d1,&DENORM | 
 | 11019 | 	beq.l		slognp1d | 
 | 11020 | 	cmpi.b		%d1,&QNAN | 
 | 11021 | 	beq.l		src_qnan | 
 | 11022 | 	bra.l		src_snan | 
 | 11023 |  | 
 | 11024 | 	global		fetoxm1 | 
 | 11025 | fetoxm1: | 
 | 11026 | 	mov.b		STAG(%a6),%d1 | 
 | 11027 | 	beq.l		setoxm1 | 
 | 11028 | 	cmpi.b		%d1,&ZERO | 
 | 11029 | 	beq.l		src_zero | 
 | 11030 | 	cmpi.b		%d1,&INF | 
 | 11031 | 	beq.l		setoxm1i | 
 | 11032 | 	cmpi.b		%d1,&DENORM | 
 | 11033 | 	beq.l		setoxm1d | 
 | 11034 | 	cmpi.b		%d1,&QNAN | 
 | 11035 | 	beq.l		src_qnan | 
 | 11036 | 	bra.l		src_snan | 
 | 11037 |  | 
 | 11038 | 	global		ftanh | 
 | 11039 | ftanh: | 
 | 11040 | 	mov.b		STAG(%a6),%d1 | 
 | 11041 | 	beq.l		stanh | 
 | 11042 | 	cmpi.b		%d1,&ZERO | 
 | 11043 | 	beq.l		src_zero | 
 | 11044 | 	cmpi.b		%d1,&INF | 
 | 11045 | 	beq.l		src_one | 
 | 11046 | 	cmpi.b		%d1,&DENORM | 
 | 11047 | 	beq.l		stanhd | 
 | 11048 | 	cmpi.b		%d1,&QNAN | 
 | 11049 | 	beq.l		src_qnan | 
 | 11050 | 	bra.l		src_snan | 
 | 11051 |  | 
 | 11052 | 	global		fatan | 
 | 11053 | fatan: | 
 | 11054 | 	mov.b		STAG(%a6),%d1 | 
 | 11055 | 	beq.l		satan | 
 | 11056 | 	cmpi.b		%d1,&ZERO | 
 | 11057 | 	beq.l		src_zero | 
 | 11058 | 	cmpi.b		%d1,&INF | 
 | 11059 | 	beq.l		spi_2 | 
 | 11060 | 	cmpi.b		%d1,&DENORM | 
 | 11061 | 	beq.l		satand | 
 | 11062 | 	cmpi.b		%d1,&QNAN | 
 | 11063 | 	beq.l		src_qnan | 
 | 11064 | 	bra.l		src_snan | 
 | 11065 |  | 
 | 11066 | 	global		fasin | 
 | 11067 | fasin: | 
 | 11068 | 	mov.b		STAG(%a6),%d1 | 
 | 11069 | 	beq.l		sasin | 
 | 11070 | 	cmpi.b		%d1,&ZERO | 
 | 11071 | 	beq.l		src_zero | 
 | 11072 | 	cmpi.b		%d1,&INF | 
 | 11073 | 	beq.l		t_operr | 
 | 11074 | 	cmpi.b		%d1,&DENORM | 
 | 11075 | 	beq.l		sasind | 
 | 11076 | 	cmpi.b		%d1,&QNAN | 
 | 11077 | 	beq.l		src_qnan | 
 | 11078 | 	bra.l		src_snan | 
 | 11079 |  | 
 | 11080 | 	global		fatanh | 
 | 11081 | fatanh: | 
 | 11082 | 	mov.b		STAG(%a6),%d1 | 
 | 11083 | 	beq.l		satanh | 
 | 11084 | 	cmpi.b		%d1,&ZERO | 
 | 11085 | 	beq.l		src_zero | 
 | 11086 | 	cmpi.b		%d1,&INF | 
 | 11087 | 	beq.l		t_operr | 
 | 11088 | 	cmpi.b		%d1,&DENORM | 
 | 11089 | 	beq.l		satanhd | 
 | 11090 | 	cmpi.b		%d1,&QNAN | 
 | 11091 | 	beq.l		src_qnan | 
 | 11092 | 	bra.l		src_snan | 
 | 11093 |  | 
 | 11094 | 	global		fsine | 
 | 11095 | fsine: | 
 | 11096 | 	mov.b		STAG(%a6),%d1 | 
 | 11097 | 	beq.l		ssin | 
 | 11098 | 	cmpi.b		%d1,&ZERO | 
 | 11099 | 	beq.l		src_zero | 
 | 11100 | 	cmpi.b		%d1,&INF | 
 | 11101 | 	beq.l		t_operr | 
 | 11102 | 	cmpi.b		%d1,&DENORM | 
 | 11103 | 	beq.l		ssind | 
 | 11104 | 	cmpi.b		%d1,&QNAN | 
 | 11105 | 	beq.l		src_qnan | 
 | 11106 | 	bra.l		src_snan | 
 | 11107 |  | 
 | 11108 | 	global		ftan | 
 | 11109 | ftan: | 
 | 11110 | 	mov.b		STAG(%a6),%d1 | 
 | 11111 | 	beq.l		stan | 
 | 11112 | 	cmpi.b		%d1,&ZERO | 
 | 11113 | 	beq.l		src_zero | 
 | 11114 | 	cmpi.b		%d1,&INF | 
 | 11115 | 	beq.l		t_operr | 
 | 11116 | 	cmpi.b		%d1,&DENORM | 
 | 11117 | 	beq.l		stand | 
 | 11118 | 	cmpi.b		%d1,&QNAN | 
 | 11119 | 	beq.l		src_qnan | 
 | 11120 | 	bra.l		src_snan | 
 | 11121 |  | 
 | 11122 | 	global		fetox | 
 | 11123 | fetox: | 
 | 11124 | 	mov.b		STAG(%a6),%d1 | 
 | 11125 | 	beq.l		setox | 
 | 11126 | 	cmpi.b		%d1,&ZERO | 
 | 11127 | 	beq.l		ld_pone | 
 | 11128 | 	cmpi.b		%d1,&INF | 
 | 11129 | 	beq.l		szr_inf | 
 | 11130 | 	cmpi.b		%d1,&DENORM | 
 | 11131 | 	beq.l		setoxd | 
 | 11132 | 	cmpi.b		%d1,&QNAN | 
 | 11133 | 	beq.l		src_qnan | 
 | 11134 | 	bra.l		src_snan | 
 | 11135 |  | 
 | 11136 | 	global		ftwotox | 
 | 11137 | ftwotox: | 
 | 11138 | 	mov.b		STAG(%a6),%d1 | 
 | 11139 | 	beq.l		stwotox | 
 | 11140 | 	cmpi.b		%d1,&ZERO | 
 | 11141 | 	beq.l		ld_pone | 
 | 11142 | 	cmpi.b		%d1,&INF | 
 | 11143 | 	beq.l		szr_inf | 
 | 11144 | 	cmpi.b		%d1,&DENORM | 
 | 11145 | 	beq.l		stwotoxd | 
 | 11146 | 	cmpi.b		%d1,&QNAN | 
 | 11147 | 	beq.l		src_qnan | 
 | 11148 | 	bra.l		src_snan | 
 | 11149 |  | 
 | 11150 | 	global		ftentox | 
 | 11151 | ftentox: | 
 | 11152 | 	mov.b		STAG(%a6),%d1 | 
 | 11153 | 	beq.l		stentox | 
 | 11154 | 	cmpi.b		%d1,&ZERO | 
 | 11155 | 	beq.l		ld_pone | 
 | 11156 | 	cmpi.b		%d1,&INF | 
 | 11157 | 	beq.l		szr_inf | 
 | 11158 | 	cmpi.b		%d1,&DENORM | 
 | 11159 | 	beq.l		stentoxd | 
 | 11160 | 	cmpi.b		%d1,&QNAN | 
 | 11161 | 	beq.l		src_qnan | 
 | 11162 | 	bra.l		src_snan | 
 | 11163 |  | 
 | 11164 | 	global		flogn | 
 | 11165 | flogn: | 
 | 11166 | 	mov.b		STAG(%a6),%d1 | 
 | 11167 | 	beq.l		slogn | 
 | 11168 | 	cmpi.b		%d1,&ZERO | 
 | 11169 | 	beq.l		t_dz2 | 
 | 11170 | 	cmpi.b		%d1,&INF | 
 | 11171 | 	beq.l		sopr_inf | 
 | 11172 | 	cmpi.b		%d1,&DENORM | 
 | 11173 | 	beq.l		slognd | 
 | 11174 | 	cmpi.b		%d1,&QNAN | 
 | 11175 | 	beq.l		src_qnan | 
 | 11176 | 	bra.l		src_snan | 
 | 11177 |  | 
 | 11178 | 	global		flog10 | 
 | 11179 | flog10: | 
 | 11180 | 	mov.b		STAG(%a6),%d1 | 
 | 11181 | 	beq.l		slog10 | 
 | 11182 | 	cmpi.b		%d1,&ZERO | 
 | 11183 | 	beq.l		t_dz2 | 
 | 11184 | 	cmpi.b		%d1,&INF | 
 | 11185 | 	beq.l		sopr_inf | 
 | 11186 | 	cmpi.b		%d1,&DENORM | 
 | 11187 | 	beq.l		slog10d | 
 | 11188 | 	cmpi.b		%d1,&QNAN | 
 | 11189 | 	beq.l		src_qnan | 
 | 11190 | 	bra.l		src_snan | 
 | 11191 |  | 
 | 11192 | 	global		flog2 | 
 | 11193 | flog2: | 
 | 11194 | 	mov.b		STAG(%a6),%d1 | 
 | 11195 | 	beq.l		slog2 | 
 | 11196 | 	cmpi.b		%d1,&ZERO | 
 | 11197 | 	beq.l		t_dz2 | 
 | 11198 | 	cmpi.b		%d1,&INF | 
 | 11199 | 	beq.l		sopr_inf | 
 | 11200 | 	cmpi.b		%d1,&DENORM | 
 | 11201 | 	beq.l		slog2d | 
 | 11202 | 	cmpi.b		%d1,&QNAN | 
 | 11203 | 	beq.l		src_qnan | 
 | 11204 | 	bra.l		src_snan | 
 | 11205 |  | 
 | 11206 | 	global		fcosh | 
 | 11207 | fcosh: | 
 | 11208 | 	mov.b		STAG(%a6),%d1 | 
 | 11209 | 	beq.l		scosh | 
 | 11210 | 	cmpi.b		%d1,&ZERO | 
 | 11211 | 	beq.l		ld_pone | 
 | 11212 | 	cmpi.b		%d1,&INF | 
 | 11213 | 	beq.l		ld_pinf | 
 | 11214 | 	cmpi.b		%d1,&DENORM | 
 | 11215 | 	beq.l		scoshd | 
 | 11216 | 	cmpi.b		%d1,&QNAN | 
 | 11217 | 	beq.l		src_qnan | 
 | 11218 | 	bra.l		src_snan | 
 | 11219 |  | 
 | 11220 | 	global		facos | 
 | 11221 | facos: | 
 | 11222 | 	mov.b		STAG(%a6),%d1 | 
 | 11223 | 	beq.l		sacos | 
 | 11224 | 	cmpi.b		%d1,&ZERO | 
 | 11225 | 	beq.l		ld_ppi2 | 
 | 11226 | 	cmpi.b		%d1,&INF | 
 | 11227 | 	beq.l		t_operr | 
 | 11228 | 	cmpi.b		%d1,&DENORM | 
 | 11229 | 	beq.l		sacosd | 
 | 11230 | 	cmpi.b		%d1,&QNAN | 
 | 11231 | 	beq.l		src_qnan | 
 | 11232 | 	bra.l		src_snan | 
 | 11233 |  | 
 | 11234 | 	global		fcos | 
 | 11235 | fcos: | 
 | 11236 | 	mov.b		STAG(%a6),%d1 | 
 | 11237 | 	beq.l		scos | 
 | 11238 | 	cmpi.b		%d1,&ZERO | 
 | 11239 | 	beq.l		ld_pone | 
 | 11240 | 	cmpi.b		%d1,&INF | 
 | 11241 | 	beq.l		t_operr | 
 | 11242 | 	cmpi.b		%d1,&DENORM | 
 | 11243 | 	beq.l		scosd | 
 | 11244 | 	cmpi.b		%d1,&QNAN | 
 | 11245 | 	beq.l		src_qnan | 
 | 11246 | 	bra.l		src_snan | 
 | 11247 |  | 
 | 11248 | 	global		fgetexp | 
 | 11249 | fgetexp: | 
 | 11250 | 	mov.b		STAG(%a6),%d1 | 
 | 11251 | 	beq.l		sgetexp | 
 | 11252 | 	cmpi.b		%d1,&ZERO | 
 | 11253 | 	beq.l		src_zero | 
 | 11254 | 	cmpi.b		%d1,&INF | 
 | 11255 | 	beq.l		t_operr | 
 | 11256 | 	cmpi.b		%d1,&DENORM | 
 | 11257 | 	beq.l		sgetexpd | 
 | 11258 | 	cmpi.b		%d1,&QNAN | 
 | 11259 | 	beq.l		src_qnan | 
 | 11260 | 	bra.l		src_snan | 
 | 11261 |  | 
 | 11262 | 	global		fgetman | 
 | 11263 | fgetman: | 
 | 11264 | 	mov.b		STAG(%a6),%d1 | 
 | 11265 | 	beq.l		sgetman | 
 | 11266 | 	cmpi.b		%d1,&ZERO | 
 | 11267 | 	beq.l		src_zero | 
 | 11268 | 	cmpi.b		%d1,&INF | 
 | 11269 | 	beq.l		t_operr | 
 | 11270 | 	cmpi.b		%d1,&DENORM | 
 | 11271 | 	beq.l		sgetmand | 
 | 11272 | 	cmpi.b		%d1,&QNAN | 
 | 11273 | 	beq.l		src_qnan | 
 | 11274 | 	bra.l		src_snan | 
 | 11275 |  | 
 | 11276 | 	global		fsincos | 
 | 11277 | fsincos: | 
 | 11278 | 	mov.b		STAG(%a6),%d1 | 
 | 11279 | 	beq.l		ssincos | 
 | 11280 | 	cmpi.b		%d1,&ZERO | 
 | 11281 | 	beq.l		ssincosz | 
 | 11282 | 	cmpi.b		%d1,&INF | 
 | 11283 | 	beq.l		ssincosi | 
 | 11284 | 	cmpi.b		%d1,&DENORM | 
 | 11285 | 	beq.l		ssincosd | 
 | 11286 | 	cmpi.b		%d1,&QNAN | 
 | 11287 | 	beq.l		ssincosqnan | 
 | 11288 | 	bra.l		ssincossnan | 
 | 11289 |  | 
 | 11290 | 	global		fmod | 
 | 11291 | fmod: | 
 | 11292 | 	mov.b		STAG(%a6),%d1 | 
 | 11293 | 	beq.l		smod_snorm | 
 | 11294 | 	cmpi.b		%d1,&ZERO | 
 | 11295 | 	beq.l		smod_szero | 
 | 11296 | 	cmpi.b		%d1,&INF | 
 | 11297 | 	beq.l		smod_sinf | 
 | 11298 | 	cmpi.b		%d1,&DENORM | 
 | 11299 | 	beq.l		smod_sdnrm | 
 | 11300 | 	cmpi.b		%d1,&QNAN | 
 | 11301 | 	beq.l		sop_sqnan | 
 | 11302 | 	bra.l		sop_ssnan | 
 | 11303 |  | 
 | 11304 | 	global		frem | 
 | 11305 | frem: | 
 | 11306 | 	mov.b		STAG(%a6),%d1 | 
 | 11307 | 	beq.l		srem_snorm | 
 | 11308 | 	cmpi.b		%d1,&ZERO | 
 | 11309 | 	beq.l		srem_szero | 
 | 11310 | 	cmpi.b		%d1,&INF | 
 | 11311 | 	beq.l		srem_sinf | 
 | 11312 | 	cmpi.b		%d1,&DENORM | 
 | 11313 | 	beq.l		srem_sdnrm | 
 | 11314 | 	cmpi.b		%d1,&QNAN | 
 | 11315 | 	beq.l		sop_sqnan | 
 | 11316 | 	bra.l		sop_ssnan | 
 | 11317 |  | 
 | 11318 | 	global		fscale | 
 | 11319 | fscale: | 
 | 11320 | 	mov.b		STAG(%a6),%d1 | 
 | 11321 | 	beq.l		sscale_snorm | 
 | 11322 | 	cmpi.b		%d1,&ZERO | 
 | 11323 | 	beq.l		sscale_szero | 
 | 11324 | 	cmpi.b		%d1,&INF | 
 | 11325 | 	beq.l		sscale_sinf | 
 | 11326 | 	cmpi.b		%d1,&DENORM | 
 | 11327 | 	beq.l		sscale_sdnrm | 
 | 11328 | 	cmpi.b		%d1,&QNAN | 
 | 11329 | 	beq.l		sop_sqnan | 
 | 11330 | 	bra.l		sop_ssnan | 
 | 11331 |  | 
 | 11332 | ######################################################################### | 
 | 11333 | # XDEF ****************************************************************	# | 
 | 11334 | #	fgen_except(): catch an exception during transcendental		# | 
 | 11335 | #		       emulation					# | 
 | 11336 | #									# | 
 | 11337 | # XREF ****************************************************************	# | 
 | 11338 | #	fmul() - emulate a multiply instruction				# | 
 | 11339 | #	fadd() - emulate an add instruction				# | 
 | 11340 | #	fin() - emulate an fmove instruction				# | 
 | 11341 | #									# | 
 | 11342 | # INPUT ***************************************************************	# | 
 | 11343 | #	fp0 = destination operand					# | 
 | 11344 | #	d0  = type of instruction that took exception			# | 
 | 11345 | #	fsave frame = source operand					# | 
 | 11346 | #									# | 
 | 11347 | # OUTPUT **************************************************************	# | 
 | 11348 | #	fp0 = result							# | 
 | 11349 | #	fp1 = EXOP							# | 
 | 11350 | #									# | 
 | 11351 | # ALGORITHM ***********************************************************	# | 
 | 11352 | #	An exception occurred on the last instruction of the		# | 
 | 11353 | # transcendental emulation. hopefully, this won't be happening much	# | 
 | 11354 | # because it will be VERY slow.						# | 
 | 11355 | #	The only exceptions capable of passing through here are		# | 
 | 11356 | # Overflow, Underflow, and Unsupported Data Type.			# | 
 | 11357 | #									# | 
 | 11358 | ######################################################################### | 
 | 11359 |  | 
 | 11360 | 	global		fgen_except | 
 | 11361 | fgen_except: | 
 | 11362 | 	cmpi.b		0x3(%sp),&0x7		# is exception UNSUPP? | 
 | 11363 | 	beq.b		fge_unsupp		# yes | 
 | 11364 |  | 
 | 11365 | 	mov.b		&NORM,STAG(%a6) | 
 | 11366 |  | 
 | 11367 | fge_cont: | 
 | 11368 | 	mov.b		&NORM,DTAG(%a6) | 
 | 11369 |  | 
 | 11370 | # ok, I have a problem with putting the dst op at FP_DST. the emulation | 
 | 11371 | # routines aren't supposed to alter the operands but we've just squashed | 
 | 11372 | # FP_DST here... | 
 | 11373 |  | 
 | 11374 | # 8/17/93 - this turns out to be more of a "cleanliness" standpoint | 
 | 11375 | # then a potential bug. to begin with, only the dyadic functions | 
 | 11376 | # frem,fmod, and fscale would get the dst trashed here. But, for | 
 | 11377 | # the 060SP, the FP_DST is never used again anyways. | 
 | 11378 | 	fmovm.x		&0x80,FP_DST(%a6)	# dst op is in fp0 | 
 | 11379 |  | 
 | 11380 | 	lea		0x4(%sp),%a0		# pass: ptr to src op | 
 | 11381 | 	lea		FP_DST(%a6),%a1		# pass: ptr to dst op | 
 | 11382 |  | 
 | 11383 | 	cmpi.b		%d1,&FMOV_OP | 
 | 11384 | 	beq.b		fge_fin			# it was an "fmov" | 
 | 11385 | 	cmpi.b		%d1,&FADD_OP | 
 | 11386 | 	beq.b		fge_fadd		# it was an "fadd" | 
 | 11387 | fge_fmul: | 
 | 11388 | 	bsr.l		fmul | 
 | 11389 | 	rts | 
 | 11390 | fge_fadd: | 
 | 11391 | 	bsr.l		fadd | 
 | 11392 | 	rts | 
 | 11393 | fge_fin: | 
 | 11394 | 	bsr.l		fin | 
 | 11395 | 	rts | 
 | 11396 |  | 
 | 11397 | fge_unsupp: | 
 | 11398 | 	mov.b		&DENORM,STAG(%a6) | 
 | 11399 | 	bra.b		fge_cont | 
 | 11400 |  | 
 | 11401 | # | 
 | 11402 | # This table holds the offsets of the emulation routines for each individual | 
 | 11403 | # math operation relative to the address of this table. Included are | 
 | 11404 | # routines like fadd/fmul/fabs as well as the transcendentals. | 
 | 11405 | # The location within the table is determined by the extension bits of the | 
 | 11406 | # operation longword. | 
 | 11407 | # | 
 | 11408 |  | 
 | 11409 | 	swbeg		&109 | 
 | 11410 | tbl_unsupp: | 
 | 11411 | 	long		fin		- tbl_unsupp	# 00: fmove | 
 | 11412 | 	long		fint		- tbl_unsupp	# 01: fint | 
 | 11413 | 	long		fsinh		- tbl_unsupp	# 02: fsinh | 
 | 11414 | 	long		fintrz		- tbl_unsupp	# 03: fintrz | 
 | 11415 | 	long		fsqrt		- tbl_unsupp	# 04: fsqrt | 
 | 11416 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 11417 | 	long		flognp1		- tbl_unsupp	# 06: flognp1 | 
 | 11418 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 11419 | 	long		fetoxm1		- tbl_unsupp	# 08: fetoxm1 | 
 | 11420 | 	long		ftanh		- tbl_unsupp	# 09: ftanh | 
 | 11421 | 	long		fatan		- tbl_unsupp	# 0a: fatan | 
 | 11422 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 11423 | 	long		fasin		- tbl_unsupp	# 0c: fasin | 
 | 11424 | 	long		fatanh		- tbl_unsupp	# 0d: fatanh | 
 | 11425 | 	long		fsine		- tbl_unsupp	# 0e: fsin | 
 | 11426 | 	long		ftan		- tbl_unsupp	# 0f: ftan | 
 | 11427 | 	long		fetox		- tbl_unsupp	# 10: fetox | 
 | 11428 | 	long		ftwotox		- tbl_unsupp	# 11: ftwotox | 
 | 11429 | 	long		ftentox		- tbl_unsupp	# 12: ftentox | 
 | 11430 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 11431 | 	long		flogn		- tbl_unsupp	# 14: flogn | 
 | 11432 | 	long		flog10		- tbl_unsupp	# 15: flog10 | 
 | 11433 | 	long		flog2		- tbl_unsupp	# 16: flog2 | 
 | 11434 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 11435 | 	long		fabs		- tbl_unsupp	# 18: fabs | 
 | 11436 | 	long		fcosh		- tbl_unsupp	# 19: fcosh | 
 | 11437 | 	long		fneg		- tbl_unsupp	# 1a: fneg | 
 | 11438 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 11439 | 	long		facos		- tbl_unsupp	# 1c: facos | 
 | 11440 | 	long		fcos		- tbl_unsupp	# 1d: fcos | 
 | 11441 | 	long		fgetexp		- tbl_unsupp	# 1e: fgetexp | 
 | 11442 | 	long		fgetman		- tbl_unsupp	# 1f: fgetman | 
 | 11443 | 	long		fdiv		- tbl_unsupp	# 20: fdiv | 
 | 11444 | 	long		fmod		- tbl_unsupp	# 21: fmod | 
 | 11445 | 	long		fadd		- tbl_unsupp	# 22: fadd | 
 | 11446 | 	long		fmul		- tbl_unsupp	# 23: fmul | 
 | 11447 | 	long		fsgldiv		- tbl_unsupp	# 24: fsgldiv | 
 | 11448 | 	long		frem		- tbl_unsupp	# 25: frem | 
 | 11449 | 	long		fscale		- tbl_unsupp	# 26: fscale | 
 | 11450 | 	long		fsglmul		- tbl_unsupp	# 27: fsglmul | 
 | 11451 | 	long		fsub		- tbl_unsupp	# 28: fsub | 
 | 11452 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 11453 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 11454 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 11455 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 11456 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 11457 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 11458 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 11459 | 	long		fsincos		- tbl_unsupp	# 30: fsincos | 
 | 11460 | 	long		fsincos		- tbl_unsupp	# 31: fsincos | 
 | 11461 | 	long		fsincos		- tbl_unsupp	# 32: fsincos | 
 | 11462 | 	long		fsincos		- tbl_unsupp	# 33: fsincos | 
 | 11463 | 	long		fsincos		- tbl_unsupp	# 34: fsincos | 
 | 11464 | 	long		fsincos		- tbl_unsupp	# 35: fsincos | 
 | 11465 | 	long		fsincos		- tbl_unsupp	# 36: fsincos | 
 | 11466 | 	long		fsincos		- tbl_unsupp	# 37: fsincos | 
 | 11467 | 	long		fcmp		- tbl_unsupp	# 38: fcmp | 
 | 11468 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 11469 | 	long		ftst		- tbl_unsupp	# 3a: ftst | 
 | 11470 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 11471 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 11472 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 11473 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 11474 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 11475 | 	long		fsin		- tbl_unsupp	# 40: fsmove | 
 | 11476 | 	long		fssqrt		- tbl_unsupp	# 41: fssqrt | 
 | 11477 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 11478 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 11479 | 	long		fdin		- tbl_unsupp	# 44: fdmove | 
 | 11480 | 	long		fdsqrt		- tbl_unsupp	# 45: fdsqrt | 
 | 11481 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 11482 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 11483 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 11484 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 11485 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 11486 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 11487 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 11488 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 11489 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 11490 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 11491 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 11492 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 11493 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 11494 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 11495 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 11496 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 11497 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 11498 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 11499 | 	long		fsabs		- tbl_unsupp	# 58: fsabs | 
 | 11500 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 11501 | 	long		fsneg		- tbl_unsupp	# 5a: fsneg | 
 | 11502 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 11503 | 	long		fdabs		- tbl_unsupp	# 5c: fdabs | 
 | 11504 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 11505 | 	long		fdneg		- tbl_unsupp	# 5e: fdneg | 
 | 11506 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 11507 | 	long		fsdiv		- tbl_unsupp	# 60: fsdiv | 
 | 11508 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 11509 | 	long		fsadd		- tbl_unsupp	# 62: fsadd | 
 | 11510 | 	long		fsmul		- tbl_unsupp	# 63: fsmul | 
 | 11511 | 	long		fddiv		- tbl_unsupp	# 64: fddiv | 
 | 11512 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 11513 | 	long		fdadd		- tbl_unsupp	# 66: fdadd | 
 | 11514 | 	long		fdmul		- tbl_unsupp	# 67: fdmul | 
 | 11515 | 	long		fssub		- tbl_unsupp	# 68: fssub | 
 | 11516 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 11517 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 11518 | 	long		tbl_unsupp	- tbl_unsupp | 
 | 11519 | 	long		fdsub		- tbl_unsupp	# 6c: fdsub | 
 | 11520 |  | 
 | 11521 | ######################################################################### | 
 | 11522 | # XDEF ****************************************************************	# | 
 | 11523 | #	fmul(): emulates the fmul instruction				# | 
 | 11524 | #	fsmul(): emulates the fsmul instruction				# | 
 | 11525 | #	fdmul(): emulates the fdmul instruction				# | 
 | 11526 | #									# | 
 | 11527 | # XREF ****************************************************************	# | 
 | 11528 | #	scale_to_zero_src() - scale src exponent to zero		# | 
 | 11529 | #	scale_to_zero_dst() - scale dst exponent to zero		# | 
 | 11530 | #	unf_res() - return default underflow result			# | 
 | 11531 | #	ovf_res() - return default overflow result			# | 
 | 11532 | #	res_qnan() - return QNAN result					# | 
 | 11533 | #	res_snan() - return SNAN result					# | 
 | 11534 | #									# | 
 | 11535 | # INPUT ***************************************************************	# | 
 | 11536 | #	a0 = pointer to extended precision source operand		# | 
 | 11537 | #	a1 = pointer to extended precision destination operand		# | 
 | 11538 | #	d0  rnd prec,mode						# | 
 | 11539 | #									# | 
 | 11540 | # OUTPUT **************************************************************	# | 
 | 11541 | #	fp0 = result							# | 
 | 11542 | #	fp1 = EXOP (if exception occurred)				# | 
 | 11543 | #									# | 
 | 11544 | # ALGORITHM ***********************************************************	# | 
 | 11545 | #	Handle NANs, infinities, and zeroes as special cases. Divide	# | 
 | 11546 | # norms/denorms into ext/sgl/dbl precision.				# | 
 | 11547 | #	For norms/denorms, scale the exponents such that a multiply	# | 
 | 11548 | # instruction won't cause an exception. Use the regular fmul to		# | 
 | 11549 | # compute a result. Check if the regular operands would have taken	# | 
 | 11550 | # an exception. If so, return the default overflow/underflow result	# | 
 | 11551 | # and return the EXOP if exceptions are enabled. Else, scale the	# | 
 | 11552 | # result operand to the proper exponent.				# | 
 | 11553 | #									# | 
 | 11554 | ######################################################################### | 
 | 11555 |  | 
 | 11556 | 	align		0x10 | 
 | 11557 | tbl_fmul_ovfl: | 
 | 11558 | 	long		0x3fff - 0x7ffe		# ext_max | 
 | 11559 | 	long		0x3fff - 0x407e		# sgl_max | 
 | 11560 | 	long		0x3fff - 0x43fe		# dbl_max | 
 | 11561 | tbl_fmul_unfl: | 
 | 11562 | 	long		0x3fff + 0x0001		# ext_unfl | 
 | 11563 | 	long		0x3fff - 0x3f80		# sgl_unfl | 
 | 11564 | 	long		0x3fff - 0x3c00		# dbl_unfl | 
 | 11565 |  | 
 | 11566 | 	global		fsmul | 
 | 11567 | fsmul: | 
 | 11568 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 11569 | 	ori.b		&s_mode*0x10,%d0	# insert sgl prec | 
 | 11570 | 	bra.b		fmul | 
 | 11571 |  | 
 | 11572 | 	global		fdmul | 
 | 11573 | fdmul: | 
 | 11574 | 	andi.b		&0x30,%d0 | 
 | 11575 | 	ori.b		&d_mode*0x10,%d0	# insert dbl prec | 
 | 11576 |  | 
 | 11577 | 	global		fmul | 
 | 11578 | fmul: | 
 | 11579 | 	mov.l		%d0,L_SCR3(%a6)		# store rnd info | 
 | 11580 |  | 
 | 11581 | 	clr.w		%d1 | 
 | 11582 | 	mov.b		DTAG(%a6),%d1 | 
 | 11583 | 	lsl.b		&0x3,%d1 | 
 | 11584 | 	or.b		STAG(%a6),%d1		# combine src tags | 
 | 11585 | 	bne.w		fmul_not_norm		# optimize on non-norm input | 
 | 11586 |  | 
 | 11587 | fmul_norm: | 
 | 11588 | 	mov.w		DST_EX(%a1),FP_SCR1_EX(%a6) | 
 | 11589 | 	mov.l		DST_HI(%a1),FP_SCR1_HI(%a6) | 
 | 11590 | 	mov.l		DST_LO(%a1),FP_SCR1_LO(%a6) | 
 | 11591 |  | 
 | 11592 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 11593 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 11594 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 11595 |  | 
 | 11596 | 	bsr.l		scale_to_zero_src	# scale src exponent | 
 | 11597 | 	mov.l		%d0,-(%sp)		# save scale factor 1 | 
 | 11598 |  | 
 | 11599 | 	bsr.l		scale_to_zero_dst	# scale dst exponent | 
 | 11600 |  | 
 | 11601 | 	add.l		%d0,(%sp)		# SCALE_FACTOR = scale1 + scale2 | 
 | 11602 |  | 
 | 11603 | 	mov.w		2+L_SCR3(%a6),%d1	# fetch precision | 
 | 11604 | 	lsr.b		&0x6,%d1		# shift to lo bits | 
 | 11605 | 	mov.l		(%sp)+,%d0		# load S.F. | 
 | 11606 | 	cmp.l		%d0,(tbl_fmul_ovfl.w,%pc,%d1.w*4) # would result ovfl? | 
 | 11607 | 	beq.w		fmul_may_ovfl		# result may rnd to overflow | 
 | 11608 | 	blt.w		fmul_ovfl		# result will overflow | 
 | 11609 |  | 
 | 11610 | 	cmp.l		%d0,(tbl_fmul_unfl.w,%pc,%d1.w*4) # would result unfl? | 
 | 11611 | 	beq.w		fmul_may_unfl		# result may rnd to no unfl | 
 | 11612 | 	bgt.w		fmul_unfl		# result will underflow | 
 | 11613 |  | 
 | 11614 | # | 
 | 11615 | # NORMAL: | 
 | 11616 | # - the result of the multiply operation will neither overflow nor underflow. | 
 | 11617 | # - do the multiply to the proper precision and rounding mode. | 
 | 11618 | # - scale the result exponent using the scale factor. if both operands were | 
 | 11619 | # normalized then we really don't need to go through this scaling. but for now, | 
 | 11620 | # this will do. | 
 | 11621 | # | 
 | 11622 | fmul_normal: | 
 | 11623 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst operand | 
 | 11624 |  | 
 | 11625 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 11626 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 11627 |  | 
 | 11628 | 	fmul.x		FP_SCR0(%a6),%fp0	# execute multiply | 
 | 11629 |  | 
 | 11630 | 	fmov.l		%fpsr,%d1		# save status | 
 | 11631 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 11632 |  | 
 | 11633 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 | 11634 |  | 
 | 11635 | fmul_normal_exit: | 
 | 11636 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result | 
 | 11637 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 11638 | 	mov.w		FP_SCR0_EX(%a6),%d1	# load {sgn,exp} | 
 | 11639 | 	mov.l		%d1,%d2			# make a copy | 
 | 11640 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 11641 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 11642 | 	sub.l		%d0,%d1			# add scale factor | 
 | 11643 | 	or.w		%d2,%d1			# concat old sign,new exp | 
 | 11644 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 11645 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 11646 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0 | 
 | 11647 | 	rts | 
 | 11648 |  | 
 | 11649 | # | 
 | 11650 | # OVERFLOW: | 
 | 11651 | # - the result of the multiply operation is an overflow. | 
 | 11652 | # - do the multiply to the proper precision and rounding mode in order to | 
 | 11653 | # set the inexact bits. | 
 | 11654 | # - calculate the default result and return it in fp0. | 
 | 11655 | # - if overflow or inexact is enabled, we need a multiply result rounded to | 
 | 11656 | # extended precision. if the original operation was extended, then we have this | 
 | 11657 | # result. if the original operation was single or double, we have to do another | 
 | 11658 | # multiply using extended precision and the correct rounding mode. the result | 
 | 11659 | # of this operation then has its exponent scaled by -0x6000 to create the | 
 | 11660 | # exceptional operand. | 
 | 11661 | # | 
 | 11662 | fmul_ovfl: | 
 | 11663 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst operand | 
 | 11664 |  | 
 | 11665 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 11666 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 11667 |  | 
 | 11668 | 	fmul.x		FP_SCR0(%a6),%fp0	# execute multiply | 
 | 11669 |  | 
 | 11670 | 	fmov.l		%fpsr,%d1		# save status | 
 | 11671 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 11672 |  | 
 | 11673 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 | 11674 |  | 
 | 11675 | # save setting this until now because this is where fmul_may_ovfl may jump in | 
 | 11676 | fmul_ovfl_tst: | 
 | 11677 | 	or.l		&ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex | 
 | 11678 |  | 
 | 11679 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 11680 | 	andi.b		&0x13,%d1		# is OVFL or INEX enabled? | 
 | 11681 | 	bne.b		fmul_ovfl_ena		# yes | 
 | 11682 |  | 
 | 11683 | # calculate the default result | 
 | 11684 | fmul_ovfl_dis: | 
 | 11685 | 	btst		&neg_bit,FPSR_CC(%a6)	# is result negative? | 
 | 11686 | 	sne		%d1			# set sign param accordingly | 
 | 11687 | 	mov.l		L_SCR3(%a6),%d0		# pass rnd prec,mode | 
 | 11688 | 	bsr.l		ovf_res			# calculate default result | 
 | 11689 | 	or.b		%d0,FPSR_CC(%a6)	# set INF,N if applicable | 
 | 11690 | 	fmovm.x		(%a0),&0x80		# return default result in fp0 | 
 | 11691 | 	rts | 
 | 11692 |  | 
 | 11693 | # | 
 | 11694 | # OVFL is enabled; Create EXOP: | 
 | 11695 | # - if precision is extended, then we have the EXOP. simply bias the exponent | 
 | 11696 | # with an extra -0x6000. if the precision is single or double, we need to | 
 | 11697 | # calculate a result rounded to extended precision. | 
 | 11698 | # | 
 | 11699 | fmul_ovfl_ena: | 
 | 11700 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 11701 | 	andi.b		&0xc0,%d1		# test the rnd prec | 
 | 11702 | 	bne.b		fmul_ovfl_ena_sd	# it's sgl or dbl | 
 | 11703 |  | 
 | 11704 | fmul_ovfl_ena_cont: | 
 | 11705 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# move result to stack | 
 | 11706 |  | 
 | 11707 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 11708 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp} | 
 | 11709 | 	mov.w		%d1,%d2			# make a copy | 
 | 11710 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 11711 | 	sub.l		%d0,%d1			# add scale factor | 
 | 11712 | 	subi.l		&0x6000,%d1		# subtract bias | 
 | 11713 | 	andi.w		&0x7fff,%d1		# clear sign bit | 
 | 11714 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 11715 | 	or.w		%d2,%d1			# concat old sign,new exp | 
 | 11716 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 11717 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 11718 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 11719 | 	bra.b		fmul_ovfl_dis | 
 | 11720 |  | 
 | 11721 | fmul_ovfl_ena_sd: | 
 | 11722 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst operand | 
 | 11723 |  | 
 | 11724 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 11725 | 	andi.b		&0x30,%d1		# keep rnd mode only | 
 | 11726 | 	fmov.l		%d1,%fpcr		# set FPCR | 
 | 11727 |  | 
 | 11728 | 	fmul.x		FP_SCR0(%a6),%fp0	# execute multiply | 
 | 11729 |  | 
 | 11730 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 11731 | 	bra.b		fmul_ovfl_ena_cont | 
 | 11732 |  | 
 | 11733 | # | 
 | 11734 | # may OVERFLOW: | 
 | 11735 | # - the result of the multiply operation MAY overflow. | 
 | 11736 | # - do the multiply to the proper precision and rounding mode in order to | 
 | 11737 | # set the inexact bits. | 
 | 11738 | # - calculate the default result and return it in fp0. | 
 | 11739 | # | 
 | 11740 | fmul_may_ovfl: | 
 | 11741 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 | 11742 |  | 
 | 11743 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 11744 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 11745 |  | 
 | 11746 | 	fmul.x		FP_SCR0(%a6),%fp0	# execute multiply | 
 | 11747 |  | 
 | 11748 | 	fmov.l		%fpsr,%d1		# save status | 
 | 11749 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 11750 |  | 
 | 11751 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 | 11752 |  | 
 | 11753 | 	fabs.x		%fp0,%fp1		# make a copy of result | 
 | 11754 | 	fcmp.b		%fp1,&0x2		# is |result| >= 2.b? | 
 | 11755 | 	fbge.w		fmul_ovfl_tst		# yes; overflow has occurred | 
 | 11756 |  | 
 | 11757 | # no, it didn't overflow; we have correct result | 
 | 11758 | 	bra.w		fmul_normal_exit | 
 | 11759 |  | 
 | 11760 | # | 
 | 11761 | # UNDERFLOW: | 
 | 11762 | # - the result of the multiply operation is an underflow. | 
 | 11763 | # - do the multiply to the proper precision and rounding mode in order to | 
 | 11764 | # set the inexact bits. | 
 | 11765 | # - calculate the default result and return it in fp0. | 
 | 11766 | # - if overflow or inexact is enabled, we need a multiply result rounded to | 
 | 11767 | # extended precision. if the original operation was extended, then we have this | 
 | 11768 | # result. if the original operation was single or double, we have to do another | 
 | 11769 | # multiply using extended precision and the correct rounding mode. the result | 
 | 11770 | # of this operation then has its exponent scaled by -0x6000 to create the | 
 | 11771 | # exceptional operand. | 
 | 11772 | # | 
 | 11773 | fmul_unfl: | 
 | 11774 | 	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | 
 | 11775 |  | 
 | 11776 | # for fun, let's use only extended precision, round to zero. then, let | 
 | 11777 | # the unf_res() routine figure out all the rest. | 
 | 11778 | # will we get the correct answer. | 
 | 11779 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst operand | 
 | 11780 |  | 
 | 11781 | 	fmov.l		&rz_mode*0x10,%fpcr	# set FPCR | 
 | 11782 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 11783 |  | 
 | 11784 | 	fmul.x		FP_SCR0(%a6),%fp0	# execute multiply | 
 | 11785 |  | 
 | 11786 | 	fmov.l		%fpsr,%d1		# save status | 
 | 11787 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 11788 |  | 
 | 11789 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 | 11790 |  | 
 | 11791 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 11792 | 	andi.b		&0x0b,%d1		# is UNFL or INEX enabled? | 
 | 11793 | 	bne.b		fmul_unfl_ena		# yes | 
 | 11794 |  | 
 | 11795 | fmul_unfl_dis: | 
 | 11796 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result | 
 | 11797 |  | 
 | 11798 | 	lea		FP_SCR0(%a6),%a0	# pass: result addr | 
 | 11799 | 	mov.l		L_SCR3(%a6),%d1		# pass: rnd prec,mode | 
 | 11800 | 	bsr.l		unf_res			# calculate default result | 
 | 11801 | 	or.b		%d0,FPSR_CC(%a6)	# unf_res2 may have set 'Z' | 
 | 11802 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0 | 
 | 11803 | 	rts | 
 | 11804 |  | 
 | 11805 | # | 
 | 11806 | # UNFL is enabled. | 
 | 11807 | # | 
 | 11808 | fmul_unfl_ena: | 
 | 11809 | 	fmovm.x		FP_SCR1(%a6),&0x40	# load dst op | 
 | 11810 |  | 
 | 11811 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 11812 | 	andi.b		&0xc0,%d1		# is precision extended? | 
 | 11813 | 	bne.b		fmul_unfl_ena_sd	# no, sgl or dbl | 
 | 11814 |  | 
 | 11815 | # if the rnd mode is anything but RZ, then we have to re-do the above | 
 | 11816 | # multiplication becuase we used RZ for all. | 
 | 11817 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 11818 |  | 
 | 11819 | fmul_unfl_ena_cont: | 
 | 11820 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 11821 |  | 
 | 11822 | 	fmul.x		FP_SCR0(%a6),%fp1	# execute multiply | 
 | 11823 |  | 
 | 11824 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 11825 |  | 
 | 11826 | 	fmovm.x		&0x40,FP_SCR0(%a6)	# save result to stack | 
 | 11827 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 11828 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp} | 
 | 11829 | 	mov.l		%d1,%d2			# make a copy | 
 | 11830 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 11831 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 11832 | 	sub.l		%d0,%d1			# add scale factor | 
 | 11833 | 	addi.l		&0x6000,%d1		# add bias | 
 | 11834 | 	andi.w		&0x7fff,%d1 | 
 | 11835 | 	or.w		%d2,%d1			# concat old sign,new exp | 
 | 11836 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 11837 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 11838 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 11839 | 	bra.w		fmul_unfl_dis | 
 | 11840 |  | 
 | 11841 | fmul_unfl_ena_sd: | 
 | 11842 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 11843 | 	andi.b		&0x30,%d1		# use only rnd mode | 
 | 11844 | 	fmov.l		%d1,%fpcr		# set FPCR | 
 | 11845 |  | 
 | 11846 | 	bra.b		fmul_unfl_ena_cont | 
 | 11847 |  | 
 | 11848 | # MAY UNDERFLOW: | 
 | 11849 | # -use the correct rounding mode and precision. this code favors operations | 
 | 11850 | # that do not underflow. | 
 | 11851 | fmul_may_unfl: | 
 | 11852 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst operand | 
 | 11853 |  | 
 | 11854 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 11855 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 11856 |  | 
 | 11857 | 	fmul.x		FP_SCR0(%a6),%fp0	# execute multiply | 
 | 11858 |  | 
 | 11859 | 	fmov.l		%fpsr,%d1		# save status | 
 | 11860 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 11861 |  | 
 | 11862 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 | 11863 |  | 
 | 11864 | 	fabs.x		%fp0,%fp1		# make a copy of result | 
 | 11865 | 	fcmp.b		%fp1,&0x2		# is |result| > 2.b? | 
 | 11866 | 	fbgt.w		fmul_normal_exit	# no; no underflow occurred | 
 | 11867 | 	fblt.w		fmul_unfl		# yes; underflow occurred | 
 | 11868 |  | 
 | 11869 | # | 
 | 11870 | # we still don't know if underflow occurred. result is ~ equal to 2. but, | 
 | 11871 | # we don't know if the result was an underflow that rounded up to a 2 or | 
 | 11872 | # a normalized number that rounded down to a 2. so, redo the entire operation | 
 | 11873 | # using RZ as the rounding mode to see what the pre-rounded result is. | 
 | 11874 | # this case should be relatively rare. | 
 | 11875 | # | 
 | 11876 | 	fmovm.x		FP_SCR1(%a6),&0x40	# load dst operand | 
 | 11877 |  | 
 | 11878 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 11879 | 	andi.b		&0xc0,%d1		# keep rnd prec | 
 | 11880 | 	ori.b		&rz_mode*0x10,%d1	# insert RZ | 
 | 11881 |  | 
 | 11882 | 	fmov.l		%d1,%fpcr		# set FPCR | 
 | 11883 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 11884 |  | 
 | 11885 | 	fmul.x		FP_SCR0(%a6),%fp1	# execute multiply | 
 | 11886 |  | 
 | 11887 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 11888 | 	fabs.x		%fp1			# make absolute value | 
 | 11889 | 	fcmp.b		%fp1,&0x2		# is |result| < 2.b? | 
 | 11890 | 	fbge.w		fmul_normal_exit	# no; no underflow occurred | 
 | 11891 | 	bra.w		fmul_unfl		# yes, underflow occurred | 
 | 11892 |  | 
 | 11893 | ################################################################################ | 
 | 11894 |  | 
 | 11895 | # | 
 | 11896 | # Multiply: inputs are not both normalized; what are they? | 
 | 11897 | # | 
 | 11898 | fmul_not_norm: | 
 | 11899 | 	mov.w		(tbl_fmul_op.b,%pc,%d1.w*2),%d1 | 
 | 11900 | 	jmp		(tbl_fmul_op.b,%pc,%d1.w) | 
 | 11901 |  | 
 | 11902 | 	swbeg		&48 | 
 | 11903 | tbl_fmul_op: | 
 | 11904 | 	short		fmul_norm	- tbl_fmul_op # NORM x NORM | 
 | 11905 | 	short		fmul_zero	- tbl_fmul_op # NORM x ZERO | 
 | 11906 | 	short		fmul_inf_src	- tbl_fmul_op # NORM x INF | 
 | 11907 | 	short		fmul_res_qnan	- tbl_fmul_op # NORM x QNAN | 
 | 11908 | 	short		fmul_norm	- tbl_fmul_op # NORM x DENORM | 
 | 11909 | 	short		fmul_res_snan	- tbl_fmul_op # NORM x SNAN | 
 | 11910 | 	short		tbl_fmul_op	- tbl_fmul_op # | 
 | 11911 | 	short		tbl_fmul_op	- tbl_fmul_op # | 
 | 11912 |  | 
 | 11913 | 	short		fmul_zero	- tbl_fmul_op # ZERO x NORM | 
 | 11914 | 	short		fmul_zero	- tbl_fmul_op # ZERO x ZERO | 
 | 11915 | 	short		fmul_res_operr	- tbl_fmul_op # ZERO x INF | 
 | 11916 | 	short		fmul_res_qnan	- tbl_fmul_op # ZERO x QNAN | 
 | 11917 | 	short		fmul_zero	- tbl_fmul_op # ZERO x DENORM | 
 | 11918 | 	short		fmul_res_snan	- tbl_fmul_op # ZERO x SNAN | 
 | 11919 | 	short		tbl_fmul_op	- tbl_fmul_op # | 
 | 11920 | 	short		tbl_fmul_op	- tbl_fmul_op # | 
 | 11921 |  | 
 | 11922 | 	short		fmul_inf_dst	- tbl_fmul_op # INF x NORM | 
 | 11923 | 	short		fmul_res_operr	- tbl_fmul_op # INF x ZERO | 
 | 11924 | 	short		fmul_inf_dst	- tbl_fmul_op # INF x INF | 
 | 11925 | 	short		fmul_res_qnan	- tbl_fmul_op # INF x QNAN | 
 | 11926 | 	short		fmul_inf_dst	- tbl_fmul_op # INF x DENORM | 
 | 11927 | 	short		fmul_res_snan	- tbl_fmul_op # INF x SNAN | 
 | 11928 | 	short		tbl_fmul_op	- tbl_fmul_op # | 
 | 11929 | 	short		tbl_fmul_op	- tbl_fmul_op # | 
 | 11930 |  | 
 | 11931 | 	short		fmul_res_qnan	- tbl_fmul_op # QNAN x NORM | 
 | 11932 | 	short		fmul_res_qnan	- tbl_fmul_op # QNAN x ZERO | 
 | 11933 | 	short		fmul_res_qnan	- tbl_fmul_op # QNAN x INF | 
 | 11934 | 	short		fmul_res_qnan	- tbl_fmul_op # QNAN x QNAN | 
 | 11935 | 	short		fmul_res_qnan	- tbl_fmul_op # QNAN x DENORM | 
 | 11936 | 	short		fmul_res_snan	- tbl_fmul_op # QNAN x SNAN | 
 | 11937 | 	short		tbl_fmul_op	- tbl_fmul_op # | 
 | 11938 | 	short		tbl_fmul_op	- tbl_fmul_op # | 
 | 11939 |  | 
 | 11940 | 	short		fmul_norm	- tbl_fmul_op # NORM x NORM | 
 | 11941 | 	short		fmul_zero	- tbl_fmul_op # NORM x ZERO | 
 | 11942 | 	short		fmul_inf_src	- tbl_fmul_op # NORM x INF | 
 | 11943 | 	short		fmul_res_qnan	- tbl_fmul_op # NORM x QNAN | 
 | 11944 | 	short		fmul_norm	- tbl_fmul_op # NORM x DENORM | 
 | 11945 | 	short		fmul_res_snan	- tbl_fmul_op # NORM x SNAN | 
 | 11946 | 	short		tbl_fmul_op	- tbl_fmul_op # | 
 | 11947 | 	short		tbl_fmul_op	- tbl_fmul_op # | 
 | 11948 |  | 
 | 11949 | 	short		fmul_res_snan	- tbl_fmul_op # SNAN x NORM | 
 | 11950 | 	short		fmul_res_snan	- tbl_fmul_op # SNAN x ZERO | 
 | 11951 | 	short		fmul_res_snan	- tbl_fmul_op # SNAN x INF | 
 | 11952 | 	short		fmul_res_snan	- tbl_fmul_op # SNAN x QNAN | 
 | 11953 | 	short		fmul_res_snan	- tbl_fmul_op # SNAN x DENORM | 
 | 11954 | 	short		fmul_res_snan	- tbl_fmul_op # SNAN x SNAN | 
 | 11955 | 	short		tbl_fmul_op	- tbl_fmul_op # | 
 | 11956 | 	short		tbl_fmul_op	- tbl_fmul_op # | 
 | 11957 |  | 
 | 11958 | fmul_res_operr: | 
 | 11959 | 	bra.l		res_operr | 
 | 11960 | fmul_res_snan: | 
 | 11961 | 	bra.l		res_snan | 
 | 11962 | fmul_res_qnan: | 
 | 11963 | 	bra.l		res_qnan | 
 | 11964 |  | 
 | 11965 | # | 
 | 11966 | # Multiply: (Zero x Zero) || (Zero x norm) || (Zero x denorm) | 
 | 11967 | # | 
 | 11968 | 	global		fmul_zero		# global for fsglmul | 
 | 11969 | fmul_zero: | 
 | 11970 | 	mov.b		SRC_EX(%a0),%d0		# exclusive or the signs | 
 | 11971 | 	mov.b		DST_EX(%a1),%d1 | 
 | 11972 | 	eor.b		%d0,%d1 | 
 | 11973 | 	bpl.b		fmul_zero_p		# result ZERO is pos. | 
 | 11974 | fmul_zero_n: | 
 | 11975 | 	fmov.s		&0x80000000,%fp0	# load -ZERO | 
 | 11976 | 	mov.b		&z_bmask+neg_bmask,FPSR_CC(%a6) # set Z/N | 
 | 11977 | 	rts | 
 | 11978 | fmul_zero_p: | 
 | 11979 | 	fmov.s		&0x00000000,%fp0	# load +ZERO | 
 | 11980 | 	mov.b		&z_bmask,FPSR_CC(%a6)	# set Z | 
 | 11981 | 	rts | 
 | 11982 |  | 
 | 11983 | # | 
 | 11984 | # Multiply: (inf x inf) || (inf x norm) || (inf x denorm) | 
 | 11985 | # | 
 | 11986 | # Note: The j-bit for an infinity is a don't-care. However, to be | 
 | 11987 | # strictly compatible w/ the 68881/882, we make sure to return an | 
 | 11988 | # INF w/ the j-bit set if the input INF j-bit was set. Destination | 
 | 11989 | # INFs take priority. | 
 | 11990 | # | 
 | 11991 | 	global		fmul_inf_dst		# global for fsglmul | 
 | 11992 | fmul_inf_dst: | 
 | 11993 | 	fmovm.x		DST(%a1),&0x80		# return INF result in fp0 | 
 | 11994 | 	mov.b		SRC_EX(%a0),%d0		# exclusive or the signs | 
 | 11995 | 	mov.b		DST_EX(%a1),%d1 | 
 | 11996 | 	eor.b		%d0,%d1 | 
 | 11997 | 	bpl.b		fmul_inf_dst_p		# result INF is pos. | 
 | 11998 | fmul_inf_dst_n: | 
 | 11999 | 	fabs.x		%fp0			# clear result sign | 
 | 12000 | 	fneg.x		%fp0			# set result sign | 
 | 12001 | 	mov.b		&inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/N | 
 | 12002 | 	rts | 
 | 12003 | fmul_inf_dst_p: | 
 | 12004 | 	fabs.x		%fp0			# clear result sign | 
 | 12005 | 	mov.b		&inf_bmask,FPSR_CC(%a6)	# set INF | 
 | 12006 | 	rts | 
 | 12007 |  | 
 | 12008 | 	global		fmul_inf_src		# global for fsglmul | 
 | 12009 | fmul_inf_src: | 
 | 12010 | 	fmovm.x		SRC(%a0),&0x80		# return INF result in fp0 | 
 | 12011 | 	mov.b		SRC_EX(%a0),%d0		# exclusive or the signs | 
 | 12012 | 	mov.b		DST_EX(%a1),%d1 | 
 | 12013 | 	eor.b		%d0,%d1 | 
 | 12014 | 	bpl.b		fmul_inf_dst_p		# result INF is pos. | 
 | 12015 | 	bra.b		fmul_inf_dst_n | 
 | 12016 |  | 
 | 12017 | ######################################################################### | 
 | 12018 | # XDEF ****************************************************************	# | 
 | 12019 | #	fin(): emulates the fmove instruction				# | 
 | 12020 | #	fsin(): emulates the fsmove instruction				# | 
 | 12021 | #	fdin(): emulates the fdmove instruction				# | 
 | 12022 | #									# | 
 | 12023 | # XREF ****************************************************************	# | 
 | 12024 | #	norm() - normalize mantissa for EXOP on denorm			# | 
 | 12025 | #	scale_to_zero_src() - scale src exponent to zero		# | 
 | 12026 | #	ovf_res() - return default overflow result			# | 
 | 12027 | #	unf_res() - return default underflow result			# | 
 | 12028 | #	res_qnan_1op() - return QNAN result				# | 
 | 12029 | #	res_snan_1op() - return SNAN result				# | 
 | 12030 | #									# | 
 | 12031 | # INPUT ***************************************************************	# | 
 | 12032 | #	a0 = pointer to extended precision source operand		# | 
 | 12033 | #	d0 = round prec/mode						# | 
 | 12034 | #									# | 
 | 12035 | # OUTPUT **************************************************************	# | 
 | 12036 | #	fp0 = result							# | 
 | 12037 | #	fp1 = EXOP (if exception occurred)				# | 
 | 12038 | #									# | 
 | 12039 | # ALGORITHM ***********************************************************	# | 
 | 12040 | #	Handle NANs, infinities, and zeroes as special cases. Divide	# | 
 | 12041 | # norms into extended, single, and double precision.			# | 
 | 12042 | #	Norms can be emulated w/ a regular fmove instruction. For	# | 
 | 12043 | # sgl/dbl, must scale exponent and perform an "fmove". Check to see	# | 
 | 12044 | # if the result would have overflowed/underflowed. If so, use unf_res()	# | 
 | 12045 | # or ovf_res() to return the default result. Also return EXOP if	# | 
 | 12046 | # exception is enabled. If no exception, return the default result.	# | 
 | 12047 | #	Unnorms don't pass through here.				# | 
 | 12048 | #									# | 
 | 12049 | ######################################################################### | 
 | 12050 |  | 
 | 12051 | 	global		fsin | 
 | 12052 | fsin: | 
 | 12053 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 12054 | 	ori.b		&s_mode*0x10,%d0	# insert sgl precision | 
 | 12055 | 	bra.b		fin | 
 | 12056 |  | 
 | 12057 | 	global		fdin | 
 | 12058 | fdin: | 
 | 12059 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 12060 | 	ori.b		&d_mode*0x10,%d0	# insert dbl precision | 
 | 12061 |  | 
 | 12062 | 	global		fin | 
 | 12063 | fin: | 
 | 12064 | 	mov.l		%d0,L_SCR3(%a6)		# store rnd info | 
 | 12065 |  | 
 | 12066 | 	mov.b		STAG(%a6),%d1		# fetch src optype tag | 
 | 12067 | 	bne.w		fin_not_norm		# optimize on non-norm input | 
 | 12068 |  | 
 | 12069 | # | 
 | 12070 | # FP MOVE IN: NORMs and DENORMs ONLY! | 
 | 12071 | # | 
 | 12072 | fin_norm: | 
 | 12073 | 	andi.b		&0xc0,%d0		# is precision extended? | 
 | 12074 | 	bne.w		fin_not_ext		# no, so go handle dbl or sgl | 
 | 12075 |  | 
 | 12076 | # | 
 | 12077 | # precision selected is extended. so...we cannot get an underflow | 
 | 12078 | # or overflow because of rounding to the correct precision. so... | 
 | 12079 | # skip the scaling and unscaling... | 
 | 12080 | # | 
 | 12081 | 	tst.b		SRC_EX(%a0)		# is the operand negative? | 
 | 12082 | 	bpl.b		fin_norm_done		# no | 
 | 12083 | 	bset		&neg_bit,FPSR_CC(%a6)	# yes, so set 'N' ccode bit | 
 | 12084 | fin_norm_done: | 
 | 12085 | 	fmovm.x		SRC(%a0),&0x80		# return result in fp0 | 
 | 12086 | 	rts | 
 | 12087 |  | 
 | 12088 | # | 
 | 12089 | # for an extended precision DENORM, the UNFL exception bit is set | 
 | 12090 | # the accrued bit is NOT set in this instance(no inexactness!) | 
 | 12091 | # | 
 | 12092 | fin_denorm: | 
 | 12093 | 	andi.b		&0xc0,%d0		# is precision extended? | 
 | 12094 | 	bne.w		fin_not_ext		# no, so go handle dbl or sgl | 
 | 12095 |  | 
 | 12096 | 	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | 
 | 12097 | 	tst.b		SRC_EX(%a0)		# is the operand negative? | 
 | 12098 | 	bpl.b		fin_denorm_done		# no | 
 | 12099 | 	bset		&neg_bit,FPSR_CC(%a6)	# yes, so set 'N' ccode bit | 
 | 12100 | fin_denorm_done: | 
 | 12101 | 	fmovm.x		SRC(%a0),&0x80		# return result in fp0 | 
 | 12102 | 	btst		&unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled? | 
 | 12103 | 	bne.b		fin_denorm_unfl_ena	# yes | 
 | 12104 | 	rts | 
 | 12105 |  | 
 | 12106 | # | 
 | 12107 | # the input is an extended DENORM and underflow is enabled in the FPCR. | 
 | 12108 | # normalize the mantissa and add the bias of 0x6000 to the resulting negative | 
 | 12109 | # exponent and insert back into the operand. | 
 | 12110 | # | 
 | 12111 | fin_denorm_unfl_ena: | 
 | 12112 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 12113 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 12114 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 12115 | 	lea		FP_SCR0(%a6),%a0	# pass: ptr to operand | 
 | 12116 | 	bsr.l		norm			# normalize result | 
 | 12117 | 	neg.w		%d0			# new exponent = -(shft val) | 
 | 12118 | 	addi.w		&0x6000,%d0		# add new bias to exponent | 
 | 12119 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch old sign,exp | 
 | 12120 | 	andi.w		&0x8000,%d1		# keep old sign | 
 | 12121 | 	andi.w		&0x7fff,%d0		# clear sign position | 
 | 12122 | 	or.w		%d1,%d0			# concat new exo,old sign | 
 | 12123 | 	mov.w		%d0,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 12124 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 12125 | 	rts | 
 | 12126 |  | 
 | 12127 | # | 
 | 12128 | # operand is to be rounded to single or double precision | 
 | 12129 | # | 
 | 12130 | fin_not_ext: | 
 | 12131 | 	cmpi.b		%d0,&s_mode*0x10	# separate sgl/dbl prec | 
 | 12132 | 	bne.b		fin_dbl | 
 | 12133 |  | 
 | 12134 | # | 
 | 12135 | # operand is to be rounded to single precision | 
 | 12136 | # | 
 | 12137 | fin_sgl: | 
 | 12138 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 12139 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 12140 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 12141 | 	bsr.l		scale_to_zero_src	# calculate scale factor | 
 | 12142 |  | 
 | 12143 | 	cmpi.l		%d0,&0x3fff-0x3f80	# will move in underflow? | 
 | 12144 | 	bge.w		fin_sd_unfl		# yes; go handle underflow | 
 | 12145 | 	cmpi.l		%d0,&0x3fff-0x407e	# will move in overflow? | 
 | 12146 | 	beq.w		fin_sd_may_ovfl		# maybe; go check | 
 | 12147 | 	blt.w		fin_sd_ovfl		# yes; go handle overflow | 
 | 12148 |  | 
 | 12149 | # | 
 | 12150 | # operand will NOT overflow or underflow when moved into the fp reg file | 
 | 12151 | # | 
 | 12152 | fin_sd_normal: | 
 | 12153 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 12154 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 12155 |  | 
 | 12156 | 	fmov.x		FP_SCR0(%a6),%fp0	# perform move | 
 | 12157 |  | 
 | 12158 | 	fmov.l		%fpsr,%d1		# save FPSR | 
 | 12159 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 12160 |  | 
 | 12161 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 | 12162 |  | 
 | 12163 | fin_sd_normal_exit: | 
 | 12164 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 12165 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result | 
 | 12166 | 	mov.w		FP_SCR0_EX(%a6),%d1	# load {sgn,exp} | 
 | 12167 | 	mov.w		%d1,%d2			# make a copy | 
 | 12168 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 12169 | 	sub.l		%d0,%d1			# add scale factor | 
 | 12170 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 12171 | 	or.w		%d1,%d2			# concat old sign,new exponent | 
 | 12172 | 	mov.w		%d2,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 12173 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 12174 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return result in fp0 | 
 | 12175 | 	rts | 
 | 12176 |  | 
 | 12177 | # | 
 | 12178 | # operand is to be rounded to double precision | 
 | 12179 | # | 
 | 12180 | fin_dbl: | 
 | 12181 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 12182 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 12183 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 12184 | 	bsr.l		scale_to_zero_src	# calculate scale factor | 
 | 12185 |  | 
 | 12186 | 	cmpi.l		%d0,&0x3fff-0x3c00	# will move in underflow? | 
 | 12187 | 	bge.w		fin_sd_unfl		# yes; go handle underflow | 
 | 12188 | 	cmpi.l		%d0,&0x3fff-0x43fe	# will move in overflow? | 
 | 12189 | 	beq.w		fin_sd_may_ovfl		# maybe; go check | 
 | 12190 | 	blt.w		fin_sd_ovfl		# yes; go handle overflow | 
 | 12191 | 	bra.w		fin_sd_normal		# no; ho handle normalized op | 
 | 12192 |  | 
 | 12193 | # | 
 | 12194 | # operand WILL underflow when moved in to the fp register file | 
 | 12195 | # | 
 | 12196 | fin_sd_unfl: | 
 | 12197 | 	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | 
 | 12198 |  | 
 | 12199 | 	tst.b		FP_SCR0_EX(%a6)		# is operand negative? | 
 | 12200 | 	bpl.b		fin_sd_unfl_tst | 
 | 12201 | 	bset		&neg_bit,FPSR_CC(%a6)	# set 'N' ccode bit | 
 | 12202 |  | 
 | 12203 | # if underflow or inexact is enabled, then go calculate the EXOP first. | 
 | 12204 | fin_sd_unfl_tst: | 
 | 12205 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 12206 | 	andi.b		&0x0b,%d1		# is UNFL or INEX enabled? | 
 | 12207 | 	bne.b		fin_sd_unfl_ena		# yes | 
 | 12208 |  | 
 | 12209 | fin_sd_unfl_dis: | 
 | 12210 | 	lea		FP_SCR0(%a6),%a0	# pass: result addr | 
 | 12211 | 	mov.l		L_SCR3(%a6),%d1		# pass: rnd prec,mode | 
 | 12212 | 	bsr.l		unf_res			# calculate default result | 
 | 12213 | 	or.b		%d0,FPSR_CC(%a6)	# unf_res may have set 'Z' | 
 | 12214 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0 | 
 | 12215 | 	rts | 
 | 12216 |  | 
 | 12217 | # | 
 | 12218 | # operand will underflow AND underflow or inexact is enabled. | 
 | 12219 | # therefore, we must return the result rounded to extended precision. | 
 | 12220 | # | 
 | 12221 | fin_sd_unfl_ena: | 
 | 12222 | 	mov.l		FP_SCR0_HI(%a6),FP_SCR1_HI(%a6) | 
 | 12223 | 	mov.l		FP_SCR0_LO(%a6),FP_SCR1_LO(%a6) | 
 | 12224 | 	mov.w		FP_SCR0_EX(%a6),%d1	# load current exponent | 
 | 12225 |  | 
 | 12226 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 12227 | 	mov.w		%d1,%d2			# make a copy | 
 | 12228 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 12229 | 	sub.l		%d0,%d1			# subtract scale factor | 
 | 12230 | 	andi.w		&0x8000,%d2		# extract old sign | 
 | 12231 | 	addi.l		&0x6000,%d1		# add new bias | 
 | 12232 | 	andi.w		&0x7fff,%d1 | 
 | 12233 | 	or.w		%d1,%d2			# concat old sign,new exp | 
 | 12234 | 	mov.w		%d2,FP_SCR1_EX(%a6)	# insert new exponent | 
 | 12235 | 	fmovm.x		FP_SCR1(%a6),&0x40	# return EXOP in fp1 | 
 | 12236 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 12237 | 	bra.b		fin_sd_unfl_dis | 
 | 12238 |  | 
 | 12239 | # | 
 | 12240 | # operand WILL overflow. | 
 | 12241 | # | 
 | 12242 | fin_sd_ovfl: | 
 | 12243 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 12244 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 12245 |  | 
 | 12246 | 	fmov.x		FP_SCR0(%a6),%fp0	# perform move | 
 | 12247 |  | 
 | 12248 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 12249 | 	fmov.l		%fpsr,%d1		# save FPSR | 
 | 12250 |  | 
 | 12251 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 | 12252 |  | 
 | 12253 | fin_sd_ovfl_tst: | 
 | 12254 | 	or.l		&ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex | 
 | 12255 |  | 
 | 12256 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 12257 | 	andi.b		&0x13,%d1		# is OVFL or INEX enabled? | 
 | 12258 | 	bne.b		fin_sd_ovfl_ena		# yes | 
 | 12259 |  | 
 | 12260 | # | 
 | 12261 | # OVFL is not enabled; therefore, we must create the default result by | 
 | 12262 | # calling ovf_res(). | 
 | 12263 | # | 
 | 12264 | fin_sd_ovfl_dis: | 
 | 12265 | 	btst		&neg_bit,FPSR_CC(%a6)	# is result negative? | 
 | 12266 | 	sne		%d1			# set sign param accordingly | 
 | 12267 | 	mov.l		L_SCR3(%a6),%d0		# pass: prec,mode | 
 | 12268 | 	bsr.l		ovf_res			# calculate default result | 
 | 12269 | 	or.b		%d0,FPSR_CC(%a6)	# set INF,N if applicable | 
 | 12270 | 	fmovm.x		(%a0),&0x80		# return default result in fp0 | 
 | 12271 | 	rts | 
 | 12272 |  | 
 | 12273 | # | 
 | 12274 | # OVFL is enabled. | 
 | 12275 | # the INEX2 bit has already been updated by the round to the correct precision. | 
 | 12276 | # now, round to extended(and don't alter the FPSR). | 
 | 12277 | # | 
 | 12278 | fin_sd_ovfl_ena: | 
 | 12279 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 12280 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp} | 
 | 12281 | 	mov.l		%d1,%d2			# make a copy | 
 | 12282 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 12283 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 12284 | 	sub.l		%d0,%d1			# add scale factor | 
 | 12285 | 	sub.l		&0x6000,%d1		# subtract bias | 
 | 12286 | 	andi.w		&0x7fff,%d1 | 
 | 12287 | 	or.w		%d2,%d1 | 
 | 12288 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 12289 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 12290 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 12291 | 	bra.b		fin_sd_ovfl_dis | 
 | 12292 |  | 
 | 12293 | # | 
 | 12294 | # the move in MAY overflow. so... | 
 | 12295 | # | 
 | 12296 | fin_sd_may_ovfl: | 
 | 12297 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 12298 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 12299 |  | 
 | 12300 | 	fmov.x		FP_SCR0(%a6),%fp0	# perform the move | 
 | 12301 |  | 
 | 12302 | 	fmov.l		%fpsr,%d1		# save status | 
 | 12303 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 12304 |  | 
 | 12305 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 | 12306 |  | 
 | 12307 | 	fabs.x		%fp0,%fp1		# make a copy of result | 
 | 12308 | 	fcmp.b		%fp1,&0x2		# is |result| >= 2.b? | 
 | 12309 | 	fbge.w		fin_sd_ovfl_tst		# yes; overflow has occurred | 
 | 12310 |  | 
 | 12311 | # no, it didn't overflow; we have correct result | 
 | 12312 | 	bra.w		fin_sd_normal_exit | 
 | 12313 |  | 
 | 12314 | ########################################################################## | 
 | 12315 |  | 
 | 12316 | # | 
 | 12317 | # operand is not a NORM: check its optype and branch accordingly | 
 | 12318 | # | 
 | 12319 | fin_not_norm: | 
 | 12320 | 	cmpi.b		%d1,&DENORM		# weed out DENORM | 
 | 12321 | 	beq.w		fin_denorm | 
 | 12322 | 	cmpi.b		%d1,&SNAN		# weed out SNANs | 
 | 12323 | 	beq.l		res_snan_1op | 
 | 12324 | 	cmpi.b		%d1,&QNAN		# weed out QNANs | 
 | 12325 | 	beq.l		res_qnan_1op | 
 | 12326 |  | 
 | 12327 | # | 
 | 12328 | # do the fmove in; at this point, only possible ops are ZERO and INF. | 
 | 12329 | # use fmov to determine ccodes. | 
 | 12330 | # prec:mode should be zero at this point but it won't affect answer anyways. | 
 | 12331 | # | 
 | 12332 | 	fmov.x		SRC(%a0),%fp0		# do fmove in | 
 | 12333 | 	fmov.l		%fpsr,%d0		# no exceptions possible | 
 | 12334 | 	rol.l		&0x8,%d0		# put ccodes in lo byte | 
 | 12335 | 	mov.b		%d0,FPSR_CC(%a6)	# insert correct ccodes | 
 | 12336 | 	rts | 
 | 12337 |  | 
 | 12338 | ######################################################################### | 
 | 12339 | # XDEF ****************************************************************	# | 
 | 12340 | #	fdiv(): emulates the fdiv instruction				# | 
 | 12341 | #	fsdiv(): emulates the fsdiv instruction				# | 
 | 12342 | #	fddiv(): emulates the fddiv instruction				# | 
 | 12343 | #									# | 
 | 12344 | # XREF ****************************************************************	# | 
 | 12345 | #	scale_to_zero_src() - scale src exponent to zero		# | 
 | 12346 | #	scale_to_zero_dst() - scale dst exponent to zero		# | 
 | 12347 | #	unf_res() - return default underflow result			# | 
 | 12348 | #	ovf_res() - return default overflow result			# | 
 | 12349 | #	res_qnan() - return QNAN result					# | 
 | 12350 | #	res_snan() - return SNAN result					# | 
 | 12351 | #									# | 
 | 12352 | # INPUT ***************************************************************	# | 
 | 12353 | #	a0 = pointer to extended precision source operand		# | 
 | 12354 | #	a1 = pointer to extended precision destination operand		# | 
 | 12355 | #	d0  rnd prec,mode						# | 
 | 12356 | #									# | 
 | 12357 | # OUTPUT **************************************************************	# | 
 | 12358 | #	fp0 = result							# | 
 | 12359 | #	fp1 = EXOP (if exception occurred)				# | 
 | 12360 | #									# | 
 | 12361 | # ALGORITHM ***********************************************************	# | 
 | 12362 | #	Handle NANs, infinities, and zeroes as special cases. Divide	# | 
 | 12363 | # norms/denorms into ext/sgl/dbl precision.				# | 
 | 12364 | #	For norms/denorms, scale the exponents such that a divide	# | 
 | 12365 | # instruction won't cause an exception. Use the regular fdiv to		# | 
 | 12366 | # compute a result. Check if the regular operands would have taken	# | 
 | 12367 | # an exception. If so, return the default overflow/underflow result	# | 
 | 12368 | # and return the EXOP if exceptions are enabled. Else, scale the	# | 
 | 12369 | # result operand to the proper exponent.				# | 
 | 12370 | #									# | 
 | 12371 | ######################################################################### | 
 | 12372 |  | 
 | 12373 | 	align		0x10 | 
 | 12374 | tbl_fdiv_unfl: | 
 | 12375 | 	long		0x3fff - 0x0000		# ext_unfl | 
 | 12376 | 	long		0x3fff - 0x3f81		# sgl_unfl | 
 | 12377 | 	long		0x3fff - 0x3c01		# dbl_unfl | 
 | 12378 |  | 
 | 12379 | tbl_fdiv_ovfl: | 
 | 12380 | 	long		0x3fff - 0x7ffe		# ext overflow exponent | 
 | 12381 | 	long		0x3fff - 0x407e		# sgl overflow exponent | 
 | 12382 | 	long		0x3fff - 0x43fe		# dbl overflow exponent | 
 | 12383 |  | 
 | 12384 | 	global		fsdiv | 
 | 12385 | fsdiv: | 
 | 12386 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 12387 | 	ori.b		&s_mode*0x10,%d0	# insert sgl prec | 
 | 12388 | 	bra.b		fdiv | 
 | 12389 |  | 
 | 12390 | 	global		fddiv | 
 | 12391 | fddiv: | 
 | 12392 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 12393 | 	ori.b		&d_mode*0x10,%d0	# insert dbl prec | 
 | 12394 |  | 
 | 12395 | 	global		fdiv | 
 | 12396 | fdiv: | 
 | 12397 | 	mov.l		%d0,L_SCR3(%a6)		# store rnd info | 
 | 12398 |  | 
 | 12399 | 	clr.w		%d1 | 
 | 12400 | 	mov.b		DTAG(%a6),%d1 | 
 | 12401 | 	lsl.b		&0x3,%d1 | 
 | 12402 | 	or.b		STAG(%a6),%d1		# combine src tags | 
 | 12403 |  | 
 | 12404 | 	bne.w		fdiv_not_norm		# optimize on non-norm input | 
 | 12405 |  | 
 | 12406 | # | 
 | 12407 | # DIVIDE: NORMs and DENORMs ONLY! | 
 | 12408 | # | 
 | 12409 | fdiv_norm: | 
 | 12410 | 	mov.w		DST_EX(%a1),FP_SCR1_EX(%a6) | 
 | 12411 | 	mov.l		DST_HI(%a1),FP_SCR1_HI(%a6) | 
 | 12412 | 	mov.l		DST_LO(%a1),FP_SCR1_LO(%a6) | 
 | 12413 |  | 
 | 12414 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 12415 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 12416 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 12417 |  | 
 | 12418 | 	bsr.l		scale_to_zero_src	# scale src exponent | 
 | 12419 | 	mov.l		%d0,-(%sp)		# save scale factor 1 | 
 | 12420 |  | 
 | 12421 | 	bsr.l		scale_to_zero_dst	# scale dst exponent | 
 | 12422 |  | 
 | 12423 | 	neg.l		(%sp)			# SCALE FACTOR = scale1 - scale2 | 
 | 12424 | 	add.l		%d0,(%sp) | 
 | 12425 |  | 
 | 12426 | 	mov.w		2+L_SCR3(%a6),%d1	# fetch precision | 
 | 12427 | 	lsr.b		&0x6,%d1		# shift to lo bits | 
 | 12428 | 	mov.l		(%sp)+,%d0		# load S.F. | 
 | 12429 | 	cmp.l		%d0,(tbl_fdiv_ovfl.b,%pc,%d1.w*4) # will result overflow? | 
 | 12430 | 	ble.w		fdiv_may_ovfl		# result will overflow | 
 | 12431 |  | 
 | 12432 | 	cmp.l		%d0,(tbl_fdiv_unfl.w,%pc,%d1.w*4) # will result underflow? | 
 | 12433 | 	beq.w		fdiv_may_unfl		# maybe | 
 | 12434 | 	bgt.w		fdiv_unfl		# yes; go handle underflow | 
 | 12435 |  | 
 | 12436 | fdiv_normal: | 
 | 12437 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 | 12438 |  | 
 | 12439 | 	fmov.l		L_SCR3(%a6),%fpcr	# save FPCR | 
 | 12440 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 12441 |  | 
 | 12442 | 	fdiv.x		FP_SCR0(%a6),%fp0	# perform divide | 
 | 12443 |  | 
 | 12444 | 	fmov.l		%fpsr,%d1		# save FPSR | 
 | 12445 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 12446 |  | 
 | 12447 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 | 12448 |  | 
 | 12449 | fdiv_normal_exit: | 
 | 12450 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# store result on stack | 
 | 12451 | 	mov.l		%d2,-(%sp)		# store d2 | 
 | 12452 | 	mov.w		FP_SCR0_EX(%a6),%d1	# load {sgn,exp} | 
 | 12453 | 	mov.l		%d1,%d2			# make a copy | 
 | 12454 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 12455 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 12456 | 	sub.l		%d0,%d1			# add scale factor | 
 | 12457 | 	or.w		%d2,%d1			# concat old sign,new exp | 
 | 12458 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 12459 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 12460 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return result in fp0 | 
 | 12461 | 	rts | 
 | 12462 |  | 
 | 12463 | tbl_fdiv_ovfl2: | 
 | 12464 | 	long		0x7fff | 
 | 12465 | 	long		0x407f | 
 | 12466 | 	long		0x43ff | 
 | 12467 |  | 
 | 12468 | fdiv_no_ovfl: | 
 | 12469 | 	mov.l		(%sp)+,%d0		# restore scale factor | 
 | 12470 | 	bra.b		fdiv_normal_exit | 
 | 12471 |  | 
 | 12472 | fdiv_may_ovfl: | 
 | 12473 | 	mov.l		%d0,-(%sp)		# save scale factor | 
 | 12474 |  | 
 | 12475 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 | 12476 |  | 
 | 12477 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 12478 | 	fmov.l		&0x0,%fpsr		# set FPSR | 
 | 12479 |  | 
 | 12480 | 	fdiv.x		FP_SCR0(%a6),%fp0	# execute divide | 
 | 12481 |  | 
 | 12482 | 	fmov.l		%fpsr,%d0 | 
 | 12483 | 	fmov.l		&0x0,%fpcr | 
 | 12484 |  | 
 | 12485 | 	or.l		%d0,USER_FPSR(%a6)	# save INEX,N | 
 | 12486 |  | 
 | 12487 | 	fmovm.x		&0x01,-(%sp)		# save result to stack | 
 | 12488 | 	mov.w		(%sp),%d0		# fetch new exponent | 
 | 12489 | 	add.l		&0xc,%sp		# clear result from stack | 
 | 12490 | 	andi.l		&0x7fff,%d0		# strip sign | 
 | 12491 | 	sub.l		(%sp),%d0		# add scale factor | 
 | 12492 | 	cmp.l		%d0,(tbl_fdiv_ovfl2.b,%pc,%d1.w*4) | 
 | 12493 | 	blt.b		fdiv_no_ovfl | 
 | 12494 | 	mov.l		(%sp)+,%d0 | 
 | 12495 |  | 
 | 12496 | fdiv_ovfl_tst: | 
 | 12497 | 	or.l		&ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex | 
 | 12498 |  | 
 | 12499 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 12500 | 	andi.b		&0x13,%d1		# is OVFL or INEX enabled? | 
 | 12501 | 	bne.b		fdiv_ovfl_ena		# yes | 
 | 12502 |  | 
 | 12503 | fdiv_ovfl_dis: | 
 | 12504 | 	btst		&neg_bit,FPSR_CC(%a6)	# is result negative? | 
 | 12505 | 	sne		%d1			# set sign param accordingly | 
 | 12506 | 	mov.l		L_SCR3(%a6),%d0		# pass prec:rnd | 
 | 12507 | 	bsr.l		ovf_res			# calculate default result | 
 | 12508 | 	or.b		%d0,FPSR_CC(%a6)	# set INF if applicable | 
 | 12509 | 	fmovm.x		(%a0),&0x80		# return default result in fp0 | 
 | 12510 | 	rts | 
 | 12511 |  | 
 | 12512 | fdiv_ovfl_ena: | 
 | 12513 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 12514 | 	andi.b		&0xc0,%d1		# is precision extended? | 
 | 12515 | 	bne.b		fdiv_ovfl_ena_sd	# no, do sgl or dbl | 
 | 12516 |  | 
 | 12517 | fdiv_ovfl_ena_cont: | 
 | 12518 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# move result to stack | 
 | 12519 |  | 
 | 12520 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 12521 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp} | 
 | 12522 | 	mov.w		%d1,%d2			# make a copy | 
 | 12523 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 12524 | 	sub.l		%d0,%d1			# add scale factor | 
 | 12525 | 	subi.l		&0x6000,%d1		# subtract bias | 
 | 12526 | 	andi.w		&0x7fff,%d1		# clear sign bit | 
 | 12527 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 12528 | 	or.w		%d2,%d1			# concat old sign,new exp | 
 | 12529 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 12530 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 12531 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 12532 | 	bra.b		fdiv_ovfl_dis | 
 | 12533 |  | 
 | 12534 | fdiv_ovfl_ena_sd: | 
 | 12535 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst operand | 
 | 12536 |  | 
 | 12537 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 12538 | 	andi.b		&0x30,%d1		# keep rnd mode | 
 | 12539 | 	fmov.l		%d1,%fpcr		# set FPCR | 
 | 12540 |  | 
 | 12541 | 	fdiv.x		FP_SCR0(%a6),%fp0	# execute divide | 
 | 12542 |  | 
 | 12543 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 12544 | 	bra.b		fdiv_ovfl_ena_cont | 
 | 12545 |  | 
 | 12546 | fdiv_unfl: | 
 | 12547 | 	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | 
 | 12548 |  | 
 | 12549 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 | 12550 |  | 
 | 12551 | 	fmov.l		&rz_mode*0x10,%fpcr	# set FPCR | 
 | 12552 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 12553 |  | 
 | 12554 | 	fdiv.x		FP_SCR0(%a6),%fp0	# execute divide | 
 | 12555 |  | 
 | 12556 | 	fmov.l		%fpsr,%d1		# save status | 
 | 12557 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 12558 |  | 
 | 12559 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 | 12560 |  | 
 | 12561 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 12562 | 	andi.b		&0x0b,%d1		# is UNFL or INEX enabled? | 
 | 12563 | 	bne.b		fdiv_unfl_ena		# yes | 
 | 12564 |  | 
 | 12565 | fdiv_unfl_dis: | 
 | 12566 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result | 
 | 12567 |  | 
 | 12568 | 	lea		FP_SCR0(%a6),%a0	# pass: result addr | 
 | 12569 | 	mov.l		L_SCR3(%a6),%d1		# pass: rnd prec,mode | 
 | 12570 | 	bsr.l		unf_res			# calculate default result | 
 | 12571 | 	or.b		%d0,FPSR_CC(%a6)	# 'Z' may have been set | 
 | 12572 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0 | 
 | 12573 | 	rts | 
 | 12574 |  | 
 | 12575 | # | 
 | 12576 | # UNFL is enabled. | 
 | 12577 | # | 
 | 12578 | fdiv_unfl_ena: | 
 | 12579 | 	fmovm.x		FP_SCR1(%a6),&0x40	# load dst op | 
 | 12580 |  | 
 | 12581 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 12582 | 	andi.b		&0xc0,%d1		# is precision extended? | 
 | 12583 | 	bne.b		fdiv_unfl_ena_sd	# no, sgl or dbl | 
 | 12584 |  | 
 | 12585 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 12586 |  | 
 | 12587 | fdiv_unfl_ena_cont: | 
 | 12588 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 12589 |  | 
 | 12590 | 	fdiv.x		FP_SCR0(%a6),%fp1	# execute divide | 
 | 12591 |  | 
 | 12592 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 12593 |  | 
 | 12594 | 	fmovm.x		&0x40,FP_SCR0(%a6)	# save result to stack | 
 | 12595 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 12596 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp} | 
 | 12597 | 	mov.l		%d1,%d2			# make a copy | 
 | 12598 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 12599 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 12600 | 	sub.l		%d0,%d1			# add scale factoer | 
 | 12601 | 	addi.l		&0x6000,%d1		# add bias | 
 | 12602 | 	andi.w		&0x7fff,%d1 | 
 | 12603 | 	or.w		%d2,%d1			# concat old sign,new exp | 
 | 12604 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exp | 
 | 12605 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 12606 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 12607 | 	bra.w		fdiv_unfl_dis | 
 | 12608 |  | 
 | 12609 | fdiv_unfl_ena_sd: | 
 | 12610 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 12611 | 	andi.b		&0x30,%d1		# use only rnd mode | 
 | 12612 | 	fmov.l		%d1,%fpcr		# set FPCR | 
 | 12613 |  | 
 | 12614 | 	bra.b		fdiv_unfl_ena_cont | 
 | 12615 |  | 
 | 12616 | # | 
 | 12617 | # the divide operation MAY underflow: | 
 | 12618 | # | 
 | 12619 | fdiv_may_unfl: | 
 | 12620 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 | 12621 |  | 
 | 12622 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 12623 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 12624 |  | 
 | 12625 | 	fdiv.x		FP_SCR0(%a6),%fp0	# execute divide | 
 | 12626 |  | 
 | 12627 | 	fmov.l		%fpsr,%d1		# save status | 
 | 12628 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 12629 |  | 
 | 12630 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 | 12631 |  | 
 | 12632 | 	fabs.x		%fp0,%fp1		# make a copy of result | 
 | 12633 | 	fcmp.b		%fp1,&0x1		# is |result| > 1.b? | 
 | 12634 | 	fbgt.w		fdiv_normal_exit	# no; no underflow occurred | 
 | 12635 | 	fblt.w		fdiv_unfl		# yes; underflow occurred | 
 | 12636 |  | 
 | 12637 | # | 
 | 12638 | # we still don't know if underflow occurred. result is ~ equal to 1. but, | 
 | 12639 | # we don't know if the result was an underflow that rounded up to a 1 | 
 | 12640 | # or a normalized number that rounded down to a 1. so, redo the entire | 
 | 12641 | # operation using RZ as the rounding mode to see what the pre-rounded | 
 | 12642 | # result is. this case should be relatively rare. | 
 | 12643 | # | 
 | 12644 | 	fmovm.x		FP_SCR1(%a6),&0x40	# load dst op into fp1 | 
 | 12645 |  | 
 | 12646 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 12647 | 	andi.b		&0xc0,%d1		# keep rnd prec | 
 | 12648 | 	ori.b		&rz_mode*0x10,%d1	# insert RZ | 
 | 12649 |  | 
 | 12650 | 	fmov.l		%d1,%fpcr		# set FPCR | 
 | 12651 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 12652 |  | 
 | 12653 | 	fdiv.x		FP_SCR0(%a6),%fp1	# execute divide | 
 | 12654 |  | 
 | 12655 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 12656 | 	fabs.x		%fp1			# make absolute value | 
 | 12657 | 	fcmp.b		%fp1,&0x1		# is |result| < 1.b? | 
 | 12658 | 	fbge.w		fdiv_normal_exit	# no; no underflow occurred | 
 | 12659 | 	bra.w		fdiv_unfl		# yes; underflow occurred | 
 | 12660 |  | 
 | 12661 | ############################################################################ | 
 | 12662 |  | 
 | 12663 | # | 
 | 12664 | # Divide: inputs are not both normalized; what are they? | 
 | 12665 | # | 
 | 12666 | fdiv_not_norm: | 
 | 12667 | 	mov.w		(tbl_fdiv_op.b,%pc,%d1.w*2),%d1 | 
 | 12668 | 	jmp		(tbl_fdiv_op.b,%pc,%d1.w*1) | 
 | 12669 |  | 
 | 12670 | 	swbeg		&48 | 
 | 12671 | tbl_fdiv_op: | 
 | 12672 | 	short		fdiv_norm	- tbl_fdiv_op # NORM / NORM | 
 | 12673 | 	short		fdiv_inf_load	- tbl_fdiv_op # NORM / ZERO | 
 | 12674 | 	short		fdiv_zero_load	- tbl_fdiv_op # NORM / INF | 
 | 12675 | 	short		fdiv_res_qnan	- tbl_fdiv_op # NORM / QNAN | 
 | 12676 | 	short		fdiv_norm	- tbl_fdiv_op # NORM / DENORM | 
 | 12677 | 	short		fdiv_res_snan	- tbl_fdiv_op # NORM / SNAN | 
 | 12678 | 	short		tbl_fdiv_op	- tbl_fdiv_op # | 
 | 12679 | 	short		tbl_fdiv_op	- tbl_fdiv_op # | 
 | 12680 |  | 
 | 12681 | 	short		fdiv_zero_load	- tbl_fdiv_op # ZERO / NORM | 
 | 12682 | 	short		fdiv_res_operr	- tbl_fdiv_op # ZERO / ZERO | 
 | 12683 | 	short		fdiv_zero_load	- tbl_fdiv_op # ZERO / INF | 
 | 12684 | 	short		fdiv_res_qnan	- tbl_fdiv_op # ZERO / QNAN | 
 | 12685 | 	short		fdiv_zero_load	- tbl_fdiv_op # ZERO / DENORM | 
 | 12686 | 	short		fdiv_res_snan	- tbl_fdiv_op # ZERO / SNAN | 
 | 12687 | 	short		tbl_fdiv_op	- tbl_fdiv_op # | 
 | 12688 | 	short		tbl_fdiv_op	- tbl_fdiv_op # | 
 | 12689 |  | 
 | 12690 | 	short		fdiv_inf_dst	- tbl_fdiv_op # INF / NORM | 
 | 12691 | 	short		fdiv_inf_dst	- tbl_fdiv_op # INF / ZERO | 
 | 12692 | 	short		fdiv_res_operr	- tbl_fdiv_op # INF / INF | 
 | 12693 | 	short		fdiv_res_qnan	- tbl_fdiv_op # INF / QNAN | 
 | 12694 | 	short		fdiv_inf_dst	- tbl_fdiv_op # INF / DENORM | 
 | 12695 | 	short		fdiv_res_snan	- tbl_fdiv_op # INF / SNAN | 
 | 12696 | 	short		tbl_fdiv_op	- tbl_fdiv_op # | 
 | 12697 | 	short		tbl_fdiv_op	- tbl_fdiv_op # | 
 | 12698 |  | 
 | 12699 | 	short		fdiv_res_qnan	- tbl_fdiv_op # QNAN / NORM | 
 | 12700 | 	short		fdiv_res_qnan	- tbl_fdiv_op # QNAN / ZERO | 
 | 12701 | 	short		fdiv_res_qnan	- tbl_fdiv_op # QNAN / INF | 
 | 12702 | 	short		fdiv_res_qnan	- tbl_fdiv_op # QNAN / QNAN | 
 | 12703 | 	short		fdiv_res_qnan	- tbl_fdiv_op # QNAN / DENORM | 
 | 12704 | 	short		fdiv_res_snan	- tbl_fdiv_op # QNAN / SNAN | 
 | 12705 | 	short		tbl_fdiv_op	- tbl_fdiv_op # | 
 | 12706 | 	short		tbl_fdiv_op	- tbl_fdiv_op # | 
 | 12707 |  | 
 | 12708 | 	short		fdiv_norm	- tbl_fdiv_op # DENORM / NORM | 
 | 12709 | 	short		fdiv_inf_load	- tbl_fdiv_op # DENORM / ZERO | 
 | 12710 | 	short		fdiv_zero_load	- tbl_fdiv_op # DENORM / INF | 
 | 12711 | 	short		fdiv_res_qnan	- tbl_fdiv_op # DENORM / QNAN | 
 | 12712 | 	short		fdiv_norm	- tbl_fdiv_op # DENORM / DENORM | 
 | 12713 | 	short		fdiv_res_snan	- tbl_fdiv_op # DENORM / SNAN | 
 | 12714 | 	short		tbl_fdiv_op	- tbl_fdiv_op # | 
 | 12715 | 	short		tbl_fdiv_op	- tbl_fdiv_op # | 
 | 12716 |  | 
 | 12717 | 	short		fdiv_res_snan	- tbl_fdiv_op # SNAN / NORM | 
 | 12718 | 	short		fdiv_res_snan	- tbl_fdiv_op # SNAN / ZERO | 
 | 12719 | 	short		fdiv_res_snan	- tbl_fdiv_op # SNAN / INF | 
 | 12720 | 	short		fdiv_res_snan	- tbl_fdiv_op # SNAN / QNAN | 
 | 12721 | 	short		fdiv_res_snan	- tbl_fdiv_op # SNAN / DENORM | 
 | 12722 | 	short		fdiv_res_snan	- tbl_fdiv_op # SNAN / SNAN | 
 | 12723 | 	short		tbl_fdiv_op	- tbl_fdiv_op # | 
 | 12724 | 	short		tbl_fdiv_op	- tbl_fdiv_op # | 
 | 12725 |  | 
 | 12726 | fdiv_res_qnan: | 
 | 12727 | 	bra.l		res_qnan | 
 | 12728 | fdiv_res_snan: | 
 | 12729 | 	bra.l		res_snan | 
 | 12730 | fdiv_res_operr: | 
 | 12731 | 	bra.l		res_operr | 
 | 12732 |  | 
 | 12733 | 	global		fdiv_zero_load		# global for fsgldiv | 
 | 12734 | fdiv_zero_load: | 
 | 12735 | 	mov.b		SRC_EX(%a0),%d0		# result sign is exclusive | 
 | 12736 | 	mov.b		DST_EX(%a1),%d1		# or of input signs. | 
 | 12737 | 	eor.b		%d0,%d1 | 
 | 12738 | 	bpl.b		fdiv_zero_load_p	# result is positive | 
 | 12739 | 	fmov.s		&0x80000000,%fp0	# load a -ZERO | 
 | 12740 | 	mov.b		&z_bmask+neg_bmask,FPSR_CC(%a6)	# set Z/N | 
 | 12741 | 	rts | 
 | 12742 | fdiv_zero_load_p: | 
 | 12743 | 	fmov.s		&0x00000000,%fp0	# load a +ZERO | 
 | 12744 | 	mov.b		&z_bmask,FPSR_CC(%a6)	# set Z | 
 | 12745 | 	rts | 
 | 12746 |  | 
 | 12747 | # | 
 | 12748 | # The destination was In Range and the source was a ZERO. The result, | 
 | 12749 | # therefore, is an INF w/ the proper sign. | 
 | 12750 | # So, determine the sign and return a new INF (w/ the j-bit cleared). | 
 | 12751 | # | 
 | 12752 | 	global		fdiv_inf_load		# global for fsgldiv | 
 | 12753 | fdiv_inf_load: | 
 | 12754 | 	ori.w		&dz_mask+adz_mask,2+USER_FPSR(%a6) # no; set DZ/ADZ | 
 | 12755 | 	mov.b		SRC_EX(%a0),%d0		# load both signs | 
 | 12756 | 	mov.b		DST_EX(%a1),%d1 | 
 | 12757 | 	eor.b		%d0,%d1 | 
 | 12758 | 	bpl.b		fdiv_inf_load_p		# result is positive | 
 | 12759 | 	fmov.s		&0xff800000,%fp0	# make result -INF | 
 | 12760 | 	mov.b		&inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/N | 
 | 12761 | 	rts | 
 | 12762 | fdiv_inf_load_p: | 
 | 12763 | 	fmov.s		&0x7f800000,%fp0	# make result +INF | 
 | 12764 | 	mov.b		&inf_bmask,FPSR_CC(%a6)	# set INF | 
 | 12765 | 	rts | 
 | 12766 |  | 
 | 12767 | # | 
 | 12768 | # The destination was an INF w/ an In Range or ZERO source, the result is | 
 | 12769 | # an INF w/ the proper sign. | 
 | 12770 | # The 68881/882 returns the destination INF w/ the new sign(if the j-bit of the | 
 | 12771 | # dst INF is set, then then j-bit of the result INF is also set). | 
 | 12772 | # | 
 | 12773 | 	global		fdiv_inf_dst		# global for fsgldiv | 
 | 12774 | fdiv_inf_dst: | 
 | 12775 | 	mov.b		DST_EX(%a1),%d0		# load both signs | 
 | 12776 | 	mov.b		SRC_EX(%a0),%d1 | 
 | 12777 | 	eor.b		%d0,%d1 | 
 | 12778 | 	bpl.b		fdiv_inf_dst_p		# result is positive | 
 | 12779 |  | 
 | 12780 | 	fmovm.x		DST(%a1),&0x80		# return result in fp0 | 
 | 12781 | 	fabs.x		%fp0			# clear sign bit | 
 | 12782 | 	fneg.x		%fp0			# set sign bit | 
 | 12783 | 	mov.b		&inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/NEG | 
 | 12784 | 	rts | 
 | 12785 |  | 
 | 12786 | fdiv_inf_dst_p: | 
 | 12787 | 	fmovm.x		DST(%a1),&0x80		# return result in fp0 | 
 | 12788 | 	fabs.x		%fp0			# return positive INF | 
 | 12789 | 	mov.b		&inf_bmask,FPSR_CC(%a6) # set INF | 
 | 12790 | 	rts | 
 | 12791 |  | 
 | 12792 | ######################################################################### | 
 | 12793 | # XDEF ****************************************************************	# | 
 | 12794 | #	fneg(): emulates the fneg instruction				# | 
 | 12795 | #	fsneg(): emulates the fsneg instruction				# | 
 | 12796 | #	fdneg(): emulates the fdneg instruction				# | 
 | 12797 | #									# | 
 | 12798 | # XREF ****************************************************************	# | 
 | 12799 | #	norm() - normalize a denorm to provide EXOP			# | 
 | 12800 | #	scale_to_zero_src() - scale sgl/dbl source exponent		# | 
 | 12801 | #	ovf_res() - return default overflow result			# | 
 | 12802 | #	unf_res() - return default underflow result			# | 
 | 12803 | #	res_qnan_1op() - return QNAN result				# | 
 | 12804 | #	res_snan_1op() - return SNAN result				# | 
 | 12805 | #									# | 
 | 12806 | # INPUT ***************************************************************	# | 
 | 12807 | #	a0 = pointer to extended precision source operand		# | 
 | 12808 | #	d0 = rnd prec,mode						# | 
 | 12809 | #									# | 
 | 12810 | # OUTPUT **************************************************************	# | 
 | 12811 | #	fp0 = result							# | 
 | 12812 | #	fp1 = EXOP (if exception occurred)				# | 
 | 12813 | #									# | 
 | 12814 | # ALGORITHM ***********************************************************	# | 
 | 12815 | #	Handle NANs, zeroes, and infinities as special cases. Separate	# | 
 | 12816 | # norms/denorms into ext/sgl/dbl precisions. Extended precision can be	# | 
 | 12817 | # emulated by simply setting sign bit. Sgl/dbl operands must be scaled	# | 
 | 12818 | # and an actual fneg performed to see if overflow/underflow would have	# | 
 | 12819 | # occurred. If so, return default underflow/overflow result. Else,	# | 
 | 12820 | # scale the result exponent and return result. FPSR gets set based on	# | 
 | 12821 | # the result value.							# | 
 | 12822 | #									# | 
 | 12823 | ######################################################################### | 
 | 12824 |  | 
 | 12825 | 	global		fsneg | 
 | 12826 | fsneg: | 
 | 12827 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 12828 | 	ori.b		&s_mode*0x10,%d0	# insert sgl precision | 
 | 12829 | 	bra.b		fneg | 
 | 12830 |  | 
 | 12831 | 	global		fdneg | 
 | 12832 | fdneg: | 
 | 12833 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 12834 | 	ori.b		&d_mode*0x10,%d0	# insert dbl prec | 
 | 12835 |  | 
 | 12836 | 	global		fneg | 
 | 12837 | fneg: | 
 | 12838 | 	mov.l		%d0,L_SCR3(%a6)		# store rnd info | 
 | 12839 | 	mov.b		STAG(%a6),%d1 | 
 | 12840 | 	bne.w		fneg_not_norm		# optimize on non-norm input | 
 | 12841 |  | 
 | 12842 | # | 
 | 12843 | # NEGATE SIGN : norms and denorms ONLY! | 
 | 12844 | # | 
 | 12845 | fneg_norm: | 
 | 12846 | 	andi.b		&0xc0,%d0		# is precision extended? | 
 | 12847 | 	bne.w		fneg_not_ext		# no; go handle sgl or dbl | 
 | 12848 |  | 
 | 12849 | # | 
 | 12850 | # precision selected is extended. so...we can not get an underflow | 
 | 12851 | # or overflow because of rounding to the correct precision. so... | 
 | 12852 | # skip the scaling and unscaling... | 
 | 12853 | # | 
 | 12854 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 12855 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 12856 | 	mov.w		SRC_EX(%a0),%d0 | 
 | 12857 | 	eori.w		&0x8000,%d0		# negate sign | 
 | 12858 | 	bpl.b		fneg_norm_load		# sign is positive | 
 | 12859 | 	mov.b		&neg_bmask,FPSR_CC(%a6)	# set 'N' ccode bit | 
 | 12860 | fneg_norm_load: | 
 | 12861 | 	mov.w		%d0,FP_SCR0_EX(%a6) | 
 | 12862 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return result in fp0 | 
 | 12863 | 	rts | 
 | 12864 |  | 
 | 12865 | # | 
 | 12866 | # for an extended precision DENORM, the UNFL exception bit is set | 
 | 12867 | # the accrued bit is NOT set in this instance(no inexactness!) | 
 | 12868 | # | 
 | 12869 | fneg_denorm: | 
 | 12870 | 	andi.b		&0xc0,%d0		# is precision extended? | 
 | 12871 | 	bne.b		fneg_not_ext		# no; go handle sgl or dbl | 
 | 12872 |  | 
 | 12873 | 	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | 
 | 12874 |  | 
 | 12875 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 12876 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 12877 | 	mov.w		SRC_EX(%a0),%d0 | 
 | 12878 | 	eori.w		&0x8000,%d0		# negate sign | 
 | 12879 | 	bpl.b		fneg_denorm_done	# no | 
 | 12880 | 	mov.b		&neg_bmask,FPSR_CC(%a6)	# yes, set 'N' ccode bit | 
 | 12881 | fneg_denorm_done: | 
 | 12882 | 	mov.w		%d0,FP_SCR0_EX(%a6) | 
 | 12883 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0 | 
 | 12884 |  | 
 | 12885 | 	btst		&unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled? | 
 | 12886 | 	bne.b		fneg_ext_unfl_ena	# yes | 
 | 12887 | 	rts | 
 | 12888 |  | 
 | 12889 | # | 
 | 12890 | # the input is an extended DENORM and underflow is enabled in the FPCR. | 
 | 12891 | # normalize the mantissa and add the bias of 0x6000 to the resulting negative | 
 | 12892 | # exponent and insert back into the operand. | 
 | 12893 | # | 
 | 12894 | fneg_ext_unfl_ena: | 
 | 12895 | 	lea		FP_SCR0(%a6),%a0	# pass: ptr to operand | 
 | 12896 | 	bsr.l		norm			# normalize result | 
 | 12897 | 	neg.w		%d0			# new exponent = -(shft val) | 
 | 12898 | 	addi.w		&0x6000,%d0		# add new bias to exponent | 
 | 12899 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch old sign,exp | 
 | 12900 | 	andi.w		&0x8000,%d1		# keep old sign | 
 | 12901 | 	andi.w		&0x7fff,%d0		# clear sign position | 
 | 12902 | 	or.w		%d1,%d0			# concat old sign, new exponent | 
 | 12903 | 	mov.w		%d0,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 12904 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 12905 | 	rts | 
 | 12906 |  | 
 | 12907 | # | 
 | 12908 | # operand is either single or double | 
 | 12909 | # | 
 | 12910 | fneg_not_ext: | 
 | 12911 | 	cmpi.b		%d0,&s_mode*0x10	# separate sgl/dbl prec | 
 | 12912 | 	bne.b		fneg_dbl | 
 | 12913 |  | 
 | 12914 | # | 
 | 12915 | # operand is to be rounded to single precision | 
 | 12916 | # | 
 | 12917 | fneg_sgl: | 
 | 12918 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 12919 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 12920 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 12921 | 	bsr.l		scale_to_zero_src	# calculate scale factor | 
 | 12922 |  | 
 | 12923 | 	cmpi.l		%d0,&0x3fff-0x3f80	# will move in underflow? | 
 | 12924 | 	bge.w		fneg_sd_unfl		# yes; go handle underflow | 
 | 12925 | 	cmpi.l		%d0,&0x3fff-0x407e	# will move in overflow? | 
 | 12926 | 	beq.w		fneg_sd_may_ovfl	# maybe; go check | 
 | 12927 | 	blt.w		fneg_sd_ovfl		# yes; go handle overflow | 
 | 12928 |  | 
 | 12929 | # | 
 | 12930 | # operand will NOT overflow or underflow when moved in to the fp reg file | 
 | 12931 | # | 
 | 12932 | fneg_sd_normal: | 
 | 12933 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 12934 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 12935 |  | 
 | 12936 | 	fneg.x		FP_SCR0(%a6),%fp0	# perform negation | 
 | 12937 |  | 
 | 12938 | 	fmov.l		%fpsr,%d1		# save FPSR | 
 | 12939 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 12940 |  | 
 | 12941 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 | 12942 |  | 
 | 12943 | fneg_sd_normal_exit: | 
 | 12944 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 12945 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result | 
 | 12946 | 	mov.w		FP_SCR0_EX(%a6),%d1	# load sgn,exp | 
 | 12947 | 	mov.w		%d1,%d2			# make a copy | 
 | 12948 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 12949 | 	sub.l		%d0,%d1			# add scale factor | 
 | 12950 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 12951 | 	or.w		%d1,%d2			# concat old sign,new exp | 
 | 12952 | 	mov.w		%d2,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 12953 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 12954 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return result in fp0 | 
 | 12955 | 	rts | 
 | 12956 |  | 
 | 12957 | # | 
 | 12958 | # operand is to be rounded to double precision | 
 | 12959 | # | 
 | 12960 | fneg_dbl: | 
 | 12961 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 12962 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 12963 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 12964 | 	bsr.l		scale_to_zero_src	# calculate scale factor | 
 | 12965 |  | 
 | 12966 | 	cmpi.l		%d0,&0x3fff-0x3c00	# will move in underflow? | 
 | 12967 | 	bge.b		fneg_sd_unfl		# yes; go handle underflow | 
 | 12968 | 	cmpi.l		%d0,&0x3fff-0x43fe	# will move in overflow? | 
 | 12969 | 	beq.w		fneg_sd_may_ovfl	# maybe; go check | 
 | 12970 | 	blt.w		fneg_sd_ovfl		# yes; go handle overflow | 
 | 12971 | 	bra.w		fneg_sd_normal		# no; ho handle normalized op | 
 | 12972 |  | 
 | 12973 | # | 
 | 12974 | # operand WILL underflow when moved in to the fp register file | 
 | 12975 | # | 
 | 12976 | fneg_sd_unfl: | 
 | 12977 | 	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | 
 | 12978 |  | 
 | 12979 | 	eori.b		&0x80,FP_SCR0_EX(%a6)	# negate sign | 
 | 12980 | 	bpl.b		fneg_sd_unfl_tst | 
 | 12981 | 	bset		&neg_bit,FPSR_CC(%a6)	# set 'N' ccode bit | 
 | 12982 |  | 
 | 12983 | # if underflow or inexact is enabled, go calculate EXOP first. | 
 | 12984 | fneg_sd_unfl_tst: | 
 | 12985 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 12986 | 	andi.b		&0x0b,%d1		# is UNFL or INEX enabled? | 
 | 12987 | 	bne.b		fneg_sd_unfl_ena	# yes | 
 | 12988 |  | 
 | 12989 | fneg_sd_unfl_dis: | 
 | 12990 | 	lea		FP_SCR0(%a6),%a0	# pass: result addr | 
 | 12991 | 	mov.l		L_SCR3(%a6),%d1		# pass: rnd prec,mode | 
 | 12992 | 	bsr.l		unf_res			# calculate default result | 
 | 12993 | 	or.b		%d0,FPSR_CC(%a6)	# unf_res may have set 'Z' | 
 | 12994 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0 | 
 | 12995 | 	rts | 
 | 12996 |  | 
 | 12997 | # | 
 | 12998 | # operand will underflow AND underflow is enabled. | 
 | 12999 | # therefore, we must return the result rounded to extended precision. | 
 | 13000 | # | 
 | 13001 | fneg_sd_unfl_ena: | 
 | 13002 | 	mov.l		FP_SCR0_HI(%a6),FP_SCR1_HI(%a6) | 
 | 13003 | 	mov.l		FP_SCR0_LO(%a6),FP_SCR1_LO(%a6) | 
 | 13004 | 	mov.w		FP_SCR0_EX(%a6),%d1	# load current exponent | 
 | 13005 |  | 
 | 13006 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 13007 | 	mov.l		%d1,%d2			# make a copy | 
 | 13008 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 13009 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 13010 | 	sub.l		%d0,%d1			# subtract scale factor | 
 | 13011 | 	addi.l		&0x6000,%d1		# add new bias | 
 | 13012 | 	andi.w		&0x7fff,%d1 | 
 | 13013 | 	or.w		%d2,%d1			# concat new sign,new exp | 
 | 13014 | 	mov.w		%d1,FP_SCR1_EX(%a6)	# insert new exp | 
 | 13015 | 	fmovm.x		FP_SCR1(%a6),&0x40	# return EXOP in fp1 | 
 | 13016 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 13017 | 	bra.b		fneg_sd_unfl_dis | 
 | 13018 |  | 
 | 13019 | # | 
 | 13020 | # operand WILL overflow. | 
 | 13021 | # | 
 | 13022 | fneg_sd_ovfl: | 
 | 13023 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 13024 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 13025 |  | 
 | 13026 | 	fneg.x		FP_SCR0(%a6),%fp0	# perform negation | 
 | 13027 |  | 
 | 13028 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 13029 | 	fmov.l		%fpsr,%d1		# save FPSR | 
 | 13030 |  | 
 | 13031 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 | 13032 |  | 
 | 13033 | fneg_sd_ovfl_tst: | 
 | 13034 | 	or.l		&ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex | 
 | 13035 |  | 
 | 13036 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 13037 | 	andi.b		&0x13,%d1		# is OVFL or INEX enabled? | 
 | 13038 | 	bne.b		fneg_sd_ovfl_ena	# yes | 
 | 13039 |  | 
 | 13040 | # | 
 | 13041 | # OVFL is not enabled; therefore, we must create the default result by | 
 | 13042 | # calling ovf_res(). | 
 | 13043 | # | 
 | 13044 | fneg_sd_ovfl_dis: | 
 | 13045 | 	btst		&neg_bit,FPSR_CC(%a6)	# is result negative? | 
 | 13046 | 	sne		%d1			# set sign param accordingly | 
 | 13047 | 	mov.l		L_SCR3(%a6),%d0		# pass: prec,mode | 
 | 13048 | 	bsr.l		ovf_res			# calculate default result | 
 | 13049 | 	or.b		%d0,FPSR_CC(%a6)	# set INF,N if applicable | 
 | 13050 | 	fmovm.x		(%a0),&0x80		# return default result in fp0 | 
 | 13051 | 	rts | 
 | 13052 |  | 
 | 13053 | # | 
 | 13054 | # OVFL is enabled. | 
 | 13055 | # the INEX2 bit has already been updated by the round to the correct precision. | 
 | 13056 | # now, round to extended(and don't alter the FPSR). | 
 | 13057 | # | 
 | 13058 | fneg_sd_ovfl_ena: | 
 | 13059 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 13060 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp} | 
 | 13061 | 	mov.l		%d1,%d2			# make a copy | 
 | 13062 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 13063 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 13064 | 	sub.l		%d0,%d1			# add scale factor | 
 | 13065 | 	subi.l		&0x6000,%d1		# subtract bias | 
 | 13066 | 	andi.w		&0x7fff,%d1 | 
 | 13067 | 	or.w		%d2,%d1			# concat sign,exp | 
 | 13068 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 13069 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 13070 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 13071 | 	bra.b		fneg_sd_ovfl_dis | 
 | 13072 |  | 
 | 13073 | # | 
 | 13074 | # the move in MAY underflow. so... | 
 | 13075 | # | 
 | 13076 | fneg_sd_may_ovfl: | 
 | 13077 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 13078 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 13079 |  | 
 | 13080 | 	fneg.x		FP_SCR0(%a6),%fp0	# perform negation | 
 | 13081 |  | 
 | 13082 | 	fmov.l		%fpsr,%d1		# save status | 
 | 13083 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 13084 |  | 
 | 13085 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 | 13086 |  | 
 | 13087 | 	fabs.x		%fp0,%fp1		# make a copy of result | 
 | 13088 | 	fcmp.b		%fp1,&0x2		# is |result| >= 2.b? | 
 | 13089 | 	fbge.w		fneg_sd_ovfl_tst	# yes; overflow has occurred | 
 | 13090 |  | 
 | 13091 | # no, it didn't overflow; we have correct result | 
 | 13092 | 	bra.w		fneg_sd_normal_exit | 
 | 13093 |  | 
 | 13094 | ########################################################################## | 
 | 13095 |  | 
 | 13096 | # | 
 | 13097 | # input is not normalized; what is it? | 
 | 13098 | # | 
 | 13099 | fneg_not_norm: | 
 | 13100 | 	cmpi.b		%d1,&DENORM		# weed out DENORM | 
 | 13101 | 	beq.w		fneg_denorm | 
 | 13102 | 	cmpi.b		%d1,&SNAN		# weed out SNAN | 
 | 13103 | 	beq.l		res_snan_1op | 
 | 13104 | 	cmpi.b		%d1,&QNAN		# weed out QNAN | 
 | 13105 | 	beq.l		res_qnan_1op | 
 | 13106 |  | 
 | 13107 | # | 
 | 13108 | # do the fneg; at this point, only possible ops are ZERO and INF. | 
 | 13109 | # use fneg to determine ccodes. | 
 | 13110 | # prec:mode should be zero at this point but it won't affect answer anyways. | 
 | 13111 | # | 
 | 13112 | 	fneg.x		SRC_EX(%a0),%fp0	# do fneg | 
 | 13113 | 	fmov.l		%fpsr,%d0 | 
 | 13114 | 	rol.l		&0x8,%d0		# put ccodes in lo byte | 
 | 13115 | 	mov.b		%d0,FPSR_CC(%a6)	# insert correct ccodes | 
 | 13116 | 	rts | 
 | 13117 |  | 
 | 13118 | ######################################################################### | 
 | 13119 | # XDEF ****************************************************************	# | 
 | 13120 | #	ftst(): emulates the ftest instruction				# | 
 | 13121 | #									# | 
 | 13122 | # XREF ****************************************************************	# | 
 | 13123 | #	res{s,q}nan_1op() - set NAN result for monadic instruction	# | 
 | 13124 | #									# | 
 | 13125 | # INPUT ***************************************************************	# | 
 | 13126 | #	a0 = pointer to extended precision source operand		# | 
 | 13127 | #									# | 
 | 13128 | # OUTPUT **************************************************************	# | 
 | 13129 | #	none								# | 
 | 13130 | #									# | 
 | 13131 | # ALGORITHM ***********************************************************	# | 
 | 13132 | #	Check the source operand tag (STAG) and set the FPCR according	# | 
 | 13133 | # to the operand type and sign.						# | 
 | 13134 | #									# | 
 | 13135 | ######################################################################### | 
 | 13136 |  | 
 | 13137 | 	global		ftst | 
 | 13138 | ftst: | 
 | 13139 | 	mov.b		STAG(%a6),%d1 | 
 | 13140 | 	bne.b		ftst_not_norm		# optimize on non-norm input | 
 | 13141 |  | 
 | 13142 | # | 
 | 13143 | # Norm: | 
 | 13144 | # | 
 | 13145 | ftst_norm: | 
 | 13146 | 	tst.b		SRC_EX(%a0)		# is operand negative? | 
 | 13147 | 	bmi.b		ftst_norm_m		# yes | 
 | 13148 | 	rts | 
 | 13149 | ftst_norm_m: | 
 | 13150 | 	mov.b		&neg_bmask,FPSR_CC(%a6)	# set 'N' ccode bit | 
 | 13151 | 	rts | 
 | 13152 |  | 
 | 13153 | # | 
 | 13154 | # input is not normalized; what is it? | 
 | 13155 | # | 
 | 13156 | ftst_not_norm: | 
 | 13157 | 	cmpi.b		%d1,&ZERO		# weed out ZERO | 
 | 13158 | 	beq.b		ftst_zero | 
 | 13159 | 	cmpi.b		%d1,&INF		# weed out INF | 
 | 13160 | 	beq.b		ftst_inf | 
 | 13161 | 	cmpi.b		%d1,&SNAN		# weed out SNAN | 
 | 13162 | 	beq.l		res_snan_1op | 
 | 13163 | 	cmpi.b		%d1,&QNAN		# weed out QNAN | 
 | 13164 | 	beq.l		res_qnan_1op | 
 | 13165 |  | 
 | 13166 | # | 
 | 13167 | # Denorm: | 
 | 13168 | # | 
 | 13169 | ftst_denorm: | 
 | 13170 | 	tst.b		SRC_EX(%a0)		# is operand negative? | 
 | 13171 | 	bmi.b		ftst_denorm_m		# yes | 
 | 13172 | 	rts | 
 | 13173 | ftst_denorm_m: | 
 | 13174 | 	mov.b		&neg_bmask,FPSR_CC(%a6)	# set 'N' ccode bit | 
 | 13175 | 	rts | 
 | 13176 |  | 
 | 13177 | # | 
 | 13178 | # Infinity: | 
 | 13179 | # | 
 | 13180 | ftst_inf: | 
 | 13181 | 	tst.b		SRC_EX(%a0)		# is operand negative? | 
 | 13182 | 	bmi.b		ftst_inf_m		# yes | 
 | 13183 | ftst_inf_p: | 
 | 13184 | 	mov.b		&inf_bmask,FPSR_CC(%a6)	# set 'I' ccode bit | 
 | 13185 | 	rts | 
 | 13186 | ftst_inf_m: | 
 | 13187 | 	mov.b		&inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'I','N' ccode bits | 
 | 13188 | 	rts | 
 | 13189 |  | 
 | 13190 | # | 
 | 13191 | # Zero: | 
 | 13192 | # | 
 | 13193 | ftst_zero: | 
 | 13194 | 	tst.b		SRC_EX(%a0)		# is operand negative? | 
 | 13195 | 	bmi.b		ftst_zero_m		# yes | 
 | 13196 | ftst_zero_p: | 
 | 13197 | 	mov.b		&z_bmask,FPSR_CC(%a6)	# set 'N' ccode bit | 
 | 13198 | 	rts | 
 | 13199 | ftst_zero_m: | 
 | 13200 | 	mov.b		&z_bmask+neg_bmask,FPSR_CC(%a6)	# set 'Z','N' ccode bits | 
 | 13201 | 	rts | 
 | 13202 |  | 
 | 13203 | ######################################################################### | 
 | 13204 | # XDEF ****************************************************************	# | 
 | 13205 | #	fint(): emulates the fint instruction				# | 
 | 13206 | #									# | 
 | 13207 | # XREF ****************************************************************	# | 
 | 13208 | #	res_{s,q}nan_1op() - set NAN result for monadic operation	# | 
 | 13209 | #									# | 
 | 13210 | # INPUT ***************************************************************	# | 
 | 13211 | #	a0 = pointer to extended precision source operand		# | 
 | 13212 | #	d0 = round precision/mode					# | 
 | 13213 | #									# | 
 | 13214 | # OUTPUT **************************************************************	# | 
 | 13215 | #	fp0 = result							# | 
 | 13216 | #									# | 
 | 13217 | # ALGORITHM ***********************************************************	# | 
 | 13218 | #	Separate according to operand type. Unnorms don't pass through	# | 
 | 13219 | # here. For norms, load the rounding mode/prec, execute a "fint", then	# | 
 | 13220 | # store the resulting FPSR bits.					# | 
 | 13221 | #	For denorms, force the j-bit to a one and do the same as for	# | 
 | 13222 | # norms. Denorms are so low that the answer will either be a zero or a	# | 
 | 13223 | # one.									# | 
 | 13224 | #	For zeroes/infs/NANs, return the same while setting the FPSR	# | 
 | 13225 | # as appropriate.							# | 
 | 13226 | #									# | 
 | 13227 | ######################################################################### | 
 | 13228 |  | 
 | 13229 | 	global		fint | 
 | 13230 | fint: | 
 | 13231 | 	mov.b		STAG(%a6),%d1 | 
 | 13232 | 	bne.b		fint_not_norm		# optimize on non-norm input | 
 | 13233 |  | 
 | 13234 | # | 
 | 13235 | # Norm: | 
 | 13236 | # | 
 | 13237 | fint_norm: | 
 | 13238 | 	andi.b		&0x30,%d0		# set prec = ext | 
 | 13239 |  | 
 | 13240 | 	fmov.l		%d0,%fpcr		# set FPCR | 
 | 13241 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 13242 |  | 
 | 13243 | 	fint.x		SRC(%a0),%fp0		# execute fint | 
 | 13244 |  | 
 | 13245 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 13246 | 	fmov.l		%fpsr,%d0		# save FPSR | 
 | 13247 | 	or.l		%d0,USER_FPSR(%a6)	# set exception bits | 
 | 13248 |  | 
 | 13249 | 	rts | 
 | 13250 |  | 
 | 13251 | # | 
 | 13252 | # input is not normalized; what is it? | 
 | 13253 | # | 
 | 13254 | fint_not_norm: | 
 | 13255 | 	cmpi.b		%d1,&ZERO		# weed out ZERO | 
 | 13256 | 	beq.b		fint_zero | 
 | 13257 | 	cmpi.b		%d1,&INF		# weed out INF | 
 | 13258 | 	beq.b		fint_inf | 
 | 13259 | 	cmpi.b		%d1,&DENORM		# weed out DENORM | 
 | 13260 | 	beq.b		fint_denorm | 
 | 13261 | 	cmpi.b		%d1,&SNAN		# weed out SNAN | 
 | 13262 | 	beq.l		res_snan_1op | 
 | 13263 | 	bra.l		res_qnan_1op		# weed out QNAN | 
 | 13264 |  | 
 | 13265 | # | 
 | 13266 | # Denorm: | 
 | 13267 | # | 
 | 13268 | # for DENORMs, the result will be either (+/-)ZERO or (+/-)1. | 
 | 13269 | # also, the INEX2 and AINEX exception bits will be set. | 
 | 13270 | # so, we could either set these manually or force the DENORM | 
 | 13271 | # to a very small NORM and ship it to the NORM routine. | 
 | 13272 | # I do the latter. | 
 | 13273 | # | 
 | 13274 | fint_denorm: | 
 | 13275 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) # copy sign, zero exp | 
 | 13276 | 	mov.b		&0x80,FP_SCR0_HI(%a6)	# force DENORM ==> small NORM | 
 | 13277 | 	lea		FP_SCR0(%a6),%a0 | 
 | 13278 | 	bra.b		fint_norm | 
 | 13279 |  | 
 | 13280 | # | 
 | 13281 | # Zero: | 
 | 13282 | # | 
 | 13283 | fint_zero: | 
 | 13284 | 	tst.b		SRC_EX(%a0)		# is ZERO negative? | 
 | 13285 | 	bmi.b		fint_zero_m		# yes | 
 | 13286 | fint_zero_p: | 
 | 13287 | 	fmov.s		&0x00000000,%fp0	# return +ZERO in fp0 | 
 | 13288 | 	mov.b		&z_bmask,FPSR_CC(%a6)	# set 'Z' ccode bit | 
 | 13289 | 	rts | 
 | 13290 | fint_zero_m: | 
 | 13291 | 	fmov.s		&0x80000000,%fp0	# return -ZERO in fp0 | 
 | 13292 | 	mov.b		&z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits | 
 | 13293 | 	rts | 
 | 13294 |  | 
 | 13295 | # | 
 | 13296 | # Infinity: | 
 | 13297 | # | 
 | 13298 | fint_inf: | 
 | 13299 | 	fmovm.x		SRC(%a0),&0x80		# return result in fp0 | 
 | 13300 | 	tst.b		SRC_EX(%a0)		# is INF negative? | 
 | 13301 | 	bmi.b		fint_inf_m		# yes | 
 | 13302 | fint_inf_p: | 
 | 13303 | 	mov.b		&inf_bmask,FPSR_CC(%a6)	# set 'I' ccode bit | 
 | 13304 | 	rts | 
 | 13305 | fint_inf_m: | 
 | 13306 | 	mov.b		&inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits | 
 | 13307 | 	rts | 
 | 13308 |  | 
 | 13309 | ######################################################################### | 
 | 13310 | # XDEF ****************************************************************	# | 
 | 13311 | #	fintrz(): emulates the fintrz instruction			# | 
 | 13312 | #									# | 
 | 13313 | # XREF ****************************************************************	# | 
 | 13314 | #	res_{s,q}nan_1op() - set NAN result for monadic operation	# | 
 | 13315 | #									# | 
 | 13316 | # INPUT ***************************************************************	# | 
 | 13317 | #	a0 = pointer to extended precision source operand		# | 
 | 13318 | #	d0 = round precision/mode					# | 
 | 13319 | #									# | 
 | 13320 | # OUTPUT **************************************************************	# | 
 | 13321 | #	fp0 = result							# | 
 | 13322 | #									# | 
 | 13323 | # ALGORITHM ***********************************************************	# | 
 | 13324 | #	Separate according to operand type. Unnorms don't pass through	# | 
 | 13325 | # here. For norms, load the rounding mode/prec, execute a "fintrz",	# | 
 | 13326 | # then store the resulting FPSR bits.					# | 
 | 13327 | #	For denorms, force the j-bit to a one and do the same as for	# | 
 | 13328 | # norms. Denorms are so low that the answer will either be a zero or a	# | 
 | 13329 | # one.									# | 
 | 13330 | #	For zeroes/infs/NANs, return the same while setting the FPSR	# | 
 | 13331 | # as appropriate.							# | 
 | 13332 | #									# | 
 | 13333 | ######################################################################### | 
 | 13334 |  | 
 | 13335 | 	global		fintrz | 
 | 13336 | fintrz: | 
 | 13337 | 	mov.b		STAG(%a6),%d1 | 
 | 13338 | 	bne.b		fintrz_not_norm		# optimize on non-norm input | 
 | 13339 |  | 
 | 13340 | # | 
 | 13341 | # Norm: | 
 | 13342 | # | 
 | 13343 | fintrz_norm: | 
 | 13344 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 13345 |  | 
 | 13346 | 	fintrz.x	SRC(%a0),%fp0		# execute fintrz | 
 | 13347 |  | 
 | 13348 | 	fmov.l		%fpsr,%d0		# save FPSR | 
 | 13349 | 	or.l		%d0,USER_FPSR(%a6)	# set exception bits | 
 | 13350 |  | 
 | 13351 | 	rts | 
 | 13352 |  | 
 | 13353 | # | 
 | 13354 | # input is not normalized; what is it? | 
 | 13355 | # | 
 | 13356 | fintrz_not_norm: | 
 | 13357 | 	cmpi.b		%d1,&ZERO		# weed out ZERO | 
 | 13358 | 	beq.b		fintrz_zero | 
 | 13359 | 	cmpi.b		%d1,&INF		# weed out INF | 
 | 13360 | 	beq.b		fintrz_inf | 
 | 13361 | 	cmpi.b		%d1,&DENORM		# weed out DENORM | 
 | 13362 | 	beq.b		fintrz_denorm | 
 | 13363 | 	cmpi.b		%d1,&SNAN		# weed out SNAN | 
 | 13364 | 	beq.l		res_snan_1op | 
 | 13365 | 	bra.l		res_qnan_1op		# weed out QNAN | 
 | 13366 |  | 
 | 13367 | # | 
 | 13368 | # Denorm: | 
 | 13369 | # | 
 | 13370 | # for DENORMs, the result will be (+/-)ZERO. | 
 | 13371 | # also, the INEX2 and AINEX exception bits will be set. | 
 | 13372 | # so, we could either set these manually or force the DENORM | 
 | 13373 | # to a very small NORM and ship it to the NORM routine. | 
 | 13374 | # I do the latter. | 
 | 13375 | # | 
 | 13376 | fintrz_denorm: | 
 | 13377 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) # copy sign, zero exp | 
 | 13378 | 	mov.b		&0x80,FP_SCR0_HI(%a6)	# force DENORM ==> small NORM | 
 | 13379 | 	lea		FP_SCR0(%a6),%a0 | 
 | 13380 | 	bra.b		fintrz_norm | 
 | 13381 |  | 
 | 13382 | # | 
 | 13383 | # Zero: | 
 | 13384 | # | 
 | 13385 | fintrz_zero: | 
 | 13386 | 	tst.b		SRC_EX(%a0)		# is ZERO negative? | 
 | 13387 | 	bmi.b		fintrz_zero_m		# yes | 
 | 13388 | fintrz_zero_p: | 
 | 13389 | 	fmov.s		&0x00000000,%fp0	# return +ZERO in fp0 | 
 | 13390 | 	mov.b		&z_bmask,FPSR_CC(%a6)	# set 'Z' ccode bit | 
 | 13391 | 	rts | 
 | 13392 | fintrz_zero_m: | 
 | 13393 | 	fmov.s		&0x80000000,%fp0	# return -ZERO in fp0 | 
 | 13394 | 	mov.b		&z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits | 
 | 13395 | 	rts | 
 | 13396 |  | 
 | 13397 | # | 
 | 13398 | # Infinity: | 
 | 13399 | # | 
 | 13400 | fintrz_inf: | 
 | 13401 | 	fmovm.x		SRC(%a0),&0x80		# return result in fp0 | 
 | 13402 | 	tst.b		SRC_EX(%a0)		# is INF negative? | 
 | 13403 | 	bmi.b		fintrz_inf_m		# yes | 
 | 13404 | fintrz_inf_p: | 
 | 13405 | 	mov.b		&inf_bmask,FPSR_CC(%a6)	# set 'I' ccode bit | 
 | 13406 | 	rts | 
 | 13407 | fintrz_inf_m: | 
 | 13408 | 	mov.b		&inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits | 
 | 13409 | 	rts | 
 | 13410 |  | 
 | 13411 | ######################################################################### | 
 | 13412 | # XDEF ****************************************************************	# | 
 | 13413 | #	fabs():  emulates the fabs instruction				# | 
 | 13414 | #	fsabs(): emulates the fsabs instruction				# | 
 | 13415 | #	fdabs(): emulates the fdabs instruction				# | 
 | 13416 | #									# | 
 | 13417 | # XREF **************************************************************** # | 
 | 13418 | #	norm() - normalize denorm mantissa to provide EXOP		# | 
 | 13419 | #	scale_to_zero_src() - make exponent. = 0; get scale factor	# | 
 | 13420 | #	unf_res() - calculate underflow result				# | 
 | 13421 | #	ovf_res() - calculate overflow result				# | 
 | 13422 | #	res_{s,q}nan_1op() - set NAN result for monadic operation	# | 
 | 13423 | #									# | 
 | 13424 | # INPUT *************************************************************** # | 
 | 13425 | #	a0 = pointer to extended precision source operand		# | 
 | 13426 | #	d0 = rnd precision/mode						# | 
 | 13427 | #									# | 
 | 13428 | # OUTPUT ************************************************************** # | 
 | 13429 | #	fp0 = result							# | 
 | 13430 | #	fp1 = EXOP (if exception occurred)				# | 
 | 13431 | #									# | 
 | 13432 | # ALGORITHM ***********************************************************	# | 
 | 13433 | #	Handle NANs, infinities, and zeroes as special cases. Divide	# | 
 | 13434 | # norms into extended, single, and double precision.			# | 
 | 13435 | #	Simply clear sign for extended precision norm. Ext prec denorm	# | 
 | 13436 | # gets an EXOP created for it since it's an underflow.			# | 
 | 13437 | #	Double and single precision can overflow and underflow. First,	# | 
 | 13438 | # scale the operand such that the exponent is zero. Perform an "fabs"	# | 
 | 13439 | # using the correct rnd mode/prec. Check to see if the original		# | 
 | 13440 | # exponent would take an exception. If so, use unf_res() or ovf_res()	# | 
 | 13441 | # to calculate the default result. Also, create the EXOP for the	# | 
 | 13442 | # exceptional case. If no exception should occur, insert the correct	# | 
 | 13443 | # result exponent and return.						# | 
 | 13444 | #	Unnorms don't pass through here.				# | 
 | 13445 | #									# | 
 | 13446 | ######################################################################### | 
 | 13447 |  | 
 | 13448 | 	global		fsabs | 
 | 13449 | fsabs: | 
 | 13450 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 13451 | 	ori.b		&s_mode*0x10,%d0	# insert sgl precision | 
 | 13452 | 	bra.b		fabs | 
 | 13453 |  | 
 | 13454 | 	global		fdabs | 
 | 13455 | fdabs: | 
 | 13456 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 13457 | 	ori.b		&d_mode*0x10,%d0	# insert dbl precision | 
 | 13458 |  | 
 | 13459 | 	global		fabs | 
 | 13460 | fabs: | 
 | 13461 | 	mov.l		%d0,L_SCR3(%a6)		# store rnd info | 
 | 13462 | 	mov.b		STAG(%a6),%d1 | 
 | 13463 | 	bne.w		fabs_not_norm		# optimize on non-norm input | 
 | 13464 |  | 
 | 13465 | # | 
 | 13466 | # ABSOLUTE VALUE: norms and denorms ONLY! | 
 | 13467 | # | 
 | 13468 | fabs_norm: | 
 | 13469 | 	andi.b		&0xc0,%d0		# is precision extended? | 
 | 13470 | 	bne.b		fabs_not_ext		# no; go handle sgl or dbl | 
 | 13471 |  | 
 | 13472 | # | 
 | 13473 | # precision selected is extended. so...we can not get an underflow | 
 | 13474 | # or overflow because of rounding to the correct precision. so... | 
 | 13475 | # skip the scaling and unscaling... | 
 | 13476 | # | 
 | 13477 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 13478 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 13479 | 	mov.w		SRC_EX(%a0),%d1 | 
 | 13480 | 	bclr		&15,%d1			# force absolute value | 
 | 13481 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert exponent | 
 | 13482 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return result in fp0 | 
 | 13483 | 	rts | 
 | 13484 |  | 
 | 13485 | # | 
 | 13486 | # for an extended precision DENORM, the UNFL exception bit is set | 
 | 13487 | # the accrued bit is NOT set in this instance(no inexactness!) | 
 | 13488 | # | 
 | 13489 | fabs_denorm: | 
 | 13490 | 	andi.b		&0xc0,%d0		# is precision extended? | 
 | 13491 | 	bne.b		fabs_not_ext		# no | 
 | 13492 |  | 
 | 13493 | 	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | 
 | 13494 |  | 
 | 13495 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 13496 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 13497 | 	mov.w		SRC_EX(%a0),%d0 | 
 | 13498 | 	bclr		&15,%d0			# clear sign | 
 | 13499 | 	mov.w		%d0,FP_SCR0_EX(%a6)	# insert exponent | 
 | 13500 |  | 
 | 13501 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0 | 
 | 13502 |  | 
 | 13503 | 	btst		&unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled? | 
 | 13504 | 	bne.b		fabs_ext_unfl_ena | 
 | 13505 | 	rts | 
 | 13506 |  | 
 | 13507 | # | 
 | 13508 | # the input is an extended DENORM and underflow is enabled in the FPCR. | 
 | 13509 | # normalize the mantissa and add the bias of 0x6000 to the resulting negative | 
 | 13510 | # exponent and insert back into the operand. | 
 | 13511 | # | 
 | 13512 | fabs_ext_unfl_ena: | 
 | 13513 | 	lea		FP_SCR0(%a6),%a0	# pass: ptr to operand | 
 | 13514 | 	bsr.l		norm			# normalize result | 
 | 13515 | 	neg.w		%d0			# new exponent = -(shft val) | 
 | 13516 | 	addi.w		&0x6000,%d0		# add new bias to exponent | 
 | 13517 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch old sign,exp | 
 | 13518 | 	andi.w		&0x8000,%d1		# keep old sign | 
 | 13519 | 	andi.w		&0x7fff,%d0		# clear sign position | 
 | 13520 | 	or.w		%d1,%d0			# concat old sign, new exponent | 
 | 13521 | 	mov.w		%d0,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 13522 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 13523 | 	rts | 
 | 13524 |  | 
 | 13525 | # | 
 | 13526 | # operand is either single or double | 
 | 13527 | # | 
 | 13528 | fabs_not_ext: | 
 | 13529 | 	cmpi.b		%d0,&s_mode*0x10	# separate sgl/dbl prec | 
 | 13530 | 	bne.b		fabs_dbl | 
 | 13531 |  | 
 | 13532 | # | 
 | 13533 | # operand is to be rounded to single precision | 
 | 13534 | # | 
 | 13535 | fabs_sgl: | 
 | 13536 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 13537 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 13538 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 13539 | 	bsr.l		scale_to_zero_src	# calculate scale factor | 
 | 13540 |  | 
 | 13541 | 	cmpi.l		%d0,&0x3fff-0x3f80	# will move in underflow? | 
 | 13542 | 	bge.w		fabs_sd_unfl		# yes; go handle underflow | 
 | 13543 | 	cmpi.l		%d0,&0x3fff-0x407e	# will move in overflow? | 
 | 13544 | 	beq.w		fabs_sd_may_ovfl	# maybe; go check | 
 | 13545 | 	blt.w		fabs_sd_ovfl		# yes; go handle overflow | 
 | 13546 |  | 
 | 13547 | # | 
 | 13548 | # operand will NOT overflow or underflow when moved in to the fp reg file | 
 | 13549 | # | 
 | 13550 | fabs_sd_normal: | 
 | 13551 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 13552 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 13553 |  | 
 | 13554 | 	fabs.x		FP_SCR0(%a6),%fp0	# perform absolute | 
 | 13555 |  | 
 | 13556 | 	fmov.l		%fpsr,%d1		# save FPSR | 
 | 13557 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 13558 |  | 
 | 13559 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 | 13560 |  | 
 | 13561 | fabs_sd_normal_exit: | 
 | 13562 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 13563 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result | 
 | 13564 | 	mov.w		FP_SCR0_EX(%a6),%d1	# load sgn,exp | 
 | 13565 | 	mov.l		%d1,%d2			# make a copy | 
 | 13566 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 13567 | 	sub.l		%d0,%d1			# add scale factor | 
 | 13568 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 13569 | 	or.w		%d1,%d2			# concat old sign,new exp | 
 | 13570 | 	mov.w		%d2,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 13571 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 13572 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return result in fp0 | 
 | 13573 | 	rts | 
 | 13574 |  | 
 | 13575 | # | 
 | 13576 | # operand is to be rounded to double precision | 
 | 13577 | # | 
 | 13578 | fabs_dbl: | 
 | 13579 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 13580 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 13581 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 13582 | 	bsr.l		scale_to_zero_src	# calculate scale factor | 
 | 13583 |  | 
 | 13584 | 	cmpi.l		%d0,&0x3fff-0x3c00	# will move in underflow? | 
 | 13585 | 	bge.b		fabs_sd_unfl		# yes; go handle underflow | 
 | 13586 | 	cmpi.l		%d0,&0x3fff-0x43fe	# will move in overflow? | 
 | 13587 | 	beq.w		fabs_sd_may_ovfl	# maybe; go check | 
 | 13588 | 	blt.w		fabs_sd_ovfl		# yes; go handle overflow | 
 | 13589 | 	bra.w		fabs_sd_normal		# no; ho handle normalized op | 
 | 13590 |  | 
 | 13591 | # | 
 | 13592 | # operand WILL underflow when moved in to the fp register file | 
 | 13593 | # | 
 | 13594 | fabs_sd_unfl: | 
 | 13595 | 	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | 
 | 13596 |  | 
 | 13597 | 	bclr		&0x7,FP_SCR0_EX(%a6)	# force absolute value | 
 | 13598 |  | 
 | 13599 | # if underflow or inexact is enabled, go calculate EXOP first. | 
 | 13600 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 13601 | 	andi.b		&0x0b,%d1		# is UNFL or INEX enabled? | 
 | 13602 | 	bne.b		fabs_sd_unfl_ena	# yes | 
 | 13603 |  | 
 | 13604 | fabs_sd_unfl_dis: | 
 | 13605 | 	lea		FP_SCR0(%a6),%a0	# pass: result addr | 
 | 13606 | 	mov.l		L_SCR3(%a6),%d1		# pass: rnd prec,mode | 
 | 13607 | 	bsr.l		unf_res			# calculate default result | 
 | 13608 | 	or.b		%d0,FPSR_CC(%a6)	# set possible 'Z' ccode | 
 | 13609 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0 | 
 | 13610 | 	rts | 
 | 13611 |  | 
 | 13612 | # | 
 | 13613 | # operand will underflow AND underflow is enabled. | 
 | 13614 | # therefore, we must return the result rounded to extended precision. | 
 | 13615 | # | 
 | 13616 | fabs_sd_unfl_ena: | 
 | 13617 | 	mov.l		FP_SCR0_HI(%a6),FP_SCR1_HI(%a6) | 
 | 13618 | 	mov.l		FP_SCR0_LO(%a6),FP_SCR1_LO(%a6) | 
 | 13619 | 	mov.w		FP_SCR0_EX(%a6),%d1	# load current exponent | 
 | 13620 |  | 
 | 13621 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 13622 | 	mov.l		%d1,%d2			# make a copy | 
 | 13623 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 13624 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 13625 | 	sub.l		%d0,%d1			# subtract scale factor | 
 | 13626 | 	addi.l		&0x6000,%d1		# add new bias | 
 | 13627 | 	andi.w		&0x7fff,%d1 | 
 | 13628 | 	or.w		%d2,%d1			# concat new sign,new exp | 
 | 13629 | 	mov.w		%d1,FP_SCR1_EX(%a6)	# insert new exp | 
 | 13630 | 	fmovm.x		FP_SCR1(%a6),&0x40	# return EXOP in fp1 | 
 | 13631 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 13632 | 	bra.b		fabs_sd_unfl_dis | 
 | 13633 |  | 
 | 13634 | # | 
 | 13635 | # operand WILL overflow. | 
 | 13636 | # | 
 | 13637 | fabs_sd_ovfl: | 
 | 13638 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 13639 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 13640 |  | 
 | 13641 | 	fabs.x		FP_SCR0(%a6),%fp0	# perform absolute | 
 | 13642 |  | 
 | 13643 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 13644 | 	fmov.l		%fpsr,%d1		# save FPSR | 
 | 13645 |  | 
 | 13646 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 | 13647 |  | 
 | 13648 | fabs_sd_ovfl_tst: | 
 | 13649 | 	or.l		&ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex | 
 | 13650 |  | 
 | 13651 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 13652 | 	andi.b		&0x13,%d1		# is OVFL or INEX enabled? | 
 | 13653 | 	bne.b		fabs_sd_ovfl_ena	# yes | 
 | 13654 |  | 
 | 13655 | # | 
 | 13656 | # OVFL is not enabled; therefore, we must create the default result by | 
 | 13657 | # calling ovf_res(). | 
 | 13658 | # | 
 | 13659 | fabs_sd_ovfl_dis: | 
 | 13660 | 	btst		&neg_bit,FPSR_CC(%a6)	# is result negative? | 
 | 13661 | 	sne		%d1			# set sign param accordingly | 
 | 13662 | 	mov.l		L_SCR3(%a6),%d0		# pass: prec,mode | 
 | 13663 | 	bsr.l		ovf_res			# calculate default result | 
 | 13664 | 	or.b		%d0,FPSR_CC(%a6)	# set INF,N if applicable | 
 | 13665 | 	fmovm.x		(%a0),&0x80		# return default result in fp0 | 
 | 13666 | 	rts | 
 | 13667 |  | 
 | 13668 | # | 
 | 13669 | # OVFL is enabled. | 
 | 13670 | # the INEX2 bit has already been updated by the round to the correct precision. | 
 | 13671 | # now, round to extended(and don't alter the FPSR). | 
 | 13672 | # | 
 | 13673 | fabs_sd_ovfl_ena: | 
 | 13674 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 13675 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp} | 
 | 13676 | 	mov.l		%d1,%d2			# make a copy | 
 | 13677 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 13678 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 13679 | 	sub.l		%d0,%d1			# add scale factor | 
 | 13680 | 	subi.l		&0x6000,%d1		# subtract bias | 
 | 13681 | 	andi.w		&0x7fff,%d1 | 
 | 13682 | 	or.w		%d2,%d1			# concat sign,exp | 
 | 13683 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 13684 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 13685 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 13686 | 	bra.b		fabs_sd_ovfl_dis | 
 | 13687 |  | 
 | 13688 | # | 
 | 13689 | # the move in MAY underflow. so... | 
 | 13690 | # | 
 | 13691 | fabs_sd_may_ovfl: | 
 | 13692 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 13693 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 13694 |  | 
 | 13695 | 	fabs.x		FP_SCR0(%a6),%fp0	# perform absolute | 
 | 13696 |  | 
 | 13697 | 	fmov.l		%fpsr,%d1		# save status | 
 | 13698 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 13699 |  | 
 | 13700 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 | 13701 |  | 
 | 13702 | 	fabs.x		%fp0,%fp1		# make a copy of result | 
 | 13703 | 	fcmp.b		%fp1,&0x2		# is |result| >= 2.b? | 
 | 13704 | 	fbge.w		fabs_sd_ovfl_tst	# yes; overflow has occurred | 
 | 13705 |  | 
 | 13706 | # no, it didn't overflow; we have correct result | 
 | 13707 | 	bra.w		fabs_sd_normal_exit | 
 | 13708 |  | 
 | 13709 | ########################################################################## | 
 | 13710 |  | 
 | 13711 | # | 
 | 13712 | # input is not normalized; what is it? | 
 | 13713 | # | 
 | 13714 | fabs_not_norm: | 
 | 13715 | 	cmpi.b		%d1,&DENORM		# weed out DENORM | 
 | 13716 | 	beq.w		fabs_denorm | 
 | 13717 | 	cmpi.b		%d1,&SNAN		# weed out SNAN | 
 | 13718 | 	beq.l		res_snan_1op | 
 | 13719 | 	cmpi.b		%d1,&QNAN		# weed out QNAN | 
 | 13720 | 	beq.l		res_qnan_1op | 
 | 13721 |  | 
 | 13722 | 	fabs.x		SRC(%a0),%fp0		# force absolute value | 
 | 13723 |  | 
 | 13724 | 	cmpi.b		%d1,&INF		# weed out INF | 
 | 13725 | 	beq.b		fabs_inf | 
 | 13726 | fabs_zero: | 
 | 13727 | 	mov.b		&z_bmask,FPSR_CC(%a6)	# set 'Z' ccode bit | 
 | 13728 | 	rts | 
 | 13729 | fabs_inf: | 
 | 13730 | 	mov.b		&inf_bmask,FPSR_CC(%a6)	# set 'I' ccode bit | 
 | 13731 | 	rts | 
 | 13732 |  | 
 | 13733 | ######################################################################### | 
 | 13734 | # XDEF ****************************************************************	# | 
 | 13735 | #	fcmp(): fp compare op routine					# | 
 | 13736 | #									# | 
 | 13737 | # XREF ****************************************************************	# | 
 | 13738 | #	res_qnan() - return QNAN result					# | 
 | 13739 | #	res_snan() - return SNAN result					# | 
 | 13740 | #									# | 
 | 13741 | # INPUT ***************************************************************	# | 
 | 13742 | #	a0 = pointer to extended precision source operand		# | 
 | 13743 | #	a1 = pointer to extended precision destination operand		# | 
 | 13744 | #	d0 = round prec/mode						# | 
 | 13745 | #									# | 
 | 13746 | # OUTPUT ************************************************************** # | 
 | 13747 | #	None								# | 
 | 13748 | #									# | 
 | 13749 | # ALGORITHM ***********************************************************	# | 
 | 13750 | #	Handle NANs and denorms as special cases. For everything else,	# | 
 | 13751 | # just use the actual fcmp instruction to produce the correct condition	# | 
 | 13752 | # codes.								# | 
 | 13753 | #									# | 
 | 13754 | ######################################################################### | 
 | 13755 |  | 
 | 13756 | 	global		fcmp | 
 | 13757 | fcmp: | 
 | 13758 | 	clr.w		%d1 | 
 | 13759 | 	mov.b		DTAG(%a6),%d1 | 
 | 13760 | 	lsl.b		&0x3,%d1 | 
 | 13761 | 	or.b		STAG(%a6),%d1 | 
 | 13762 | 	bne.b		fcmp_not_norm		# optimize on non-norm input | 
 | 13763 |  | 
 | 13764 | # | 
 | 13765 | # COMPARE FP OPs : NORMs, ZEROs, INFs, and "corrected" DENORMs | 
 | 13766 | # | 
 | 13767 | fcmp_norm: | 
 | 13768 | 	fmovm.x		DST(%a1),&0x80		# load dst op | 
 | 13769 |  | 
 | 13770 | 	fcmp.x		%fp0,SRC(%a0)		# do compare | 
 | 13771 |  | 
 | 13772 | 	fmov.l		%fpsr,%d0		# save FPSR | 
 | 13773 | 	rol.l		&0x8,%d0		# extract ccode bits | 
 | 13774 | 	mov.b		%d0,FPSR_CC(%a6)	# set ccode bits(no exc bits are set) | 
 | 13775 |  | 
 | 13776 | 	rts | 
 | 13777 |  | 
 | 13778 | # | 
 | 13779 | # fcmp: inputs are not both normalized; what are they? | 
 | 13780 | # | 
 | 13781 | fcmp_not_norm: | 
 | 13782 | 	mov.w		(tbl_fcmp_op.b,%pc,%d1.w*2),%d1 | 
 | 13783 | 	jmp		(tbl_fcmp_op.b,%pc,%d1.w*1) | 
 | 13784 |  | 
 | 13785 | 	swbeg		&48 | 
 | 13786 | tbl_fcmp_op: | 
 | 13787 | 	short		fcmp_norm	- tbl_fcmp_op # NORM - NORM | 
 | 13788 | 	short		fcmp_norm	- tbl_fcmp_op # NORM - ZERO | 
 | 13789 | 	short		fcmp_norm	- tbl_fcmp_op # NORM - INF | 
 | 13790 | 	short		fcmp_res_qnan	- tbl_fcmp_op # NORM - QNAN | 
 | 13791 | 	short		fcmp_nrm_dnrm	- tbl_fcmp_op # NORM - DENORM | 
 | 13792 | 	short		fcmp_res_snan	- tbl_fcmp_op # NORM - SNAN | 
 | 13793 | 	short		tbl_fcmp_op	- tbl_fcmp_op # | 
 | 13794 | 	short		tbl_fcmp_op	- tbl_fcmp_op # | 
 | 13795 |  | 
 | 13796 | 	short		fcmp_norm	- tbl_fcmp_op # ZERO - NORM | 
 | 13797 | 	short		fcmp_norm	- tbl_fcmp_op # ZERO - ZERO | 
 | 13798 | 	short		fcmp_norm	- tbl_fcmp_op # ZERO - INF | 
 | 13799 | 	short		fcmp_res_qnan	- tbl_fcmp_op # ZERO - QNAN | 
 | 13800 | 	short		fcmp_dnrm_s	- tbl_fcmp_op # ZERO - DENORM | 
 | 13801 | 	short		fcmp_res_snan	- tbl_fcmp_op # ZERO - SNAN | 
 | 13802 | 	short		tbl_fcmp_op	- tbl_fcmp_op # | 
 | 13803 | 	short		tbl_fcmp_op	- tbl_fcmp_op # | 
 | 13804 |  | 
 | 13805 | 	short		fcmp_norm	- tbl_fcmp_op # INF - NORM | 
 | 13806 | 	short		fcmp_norm	- tbl_fcmp_op # INF - ZERO | 
 | 13807 | 	short		fcmp_norm	- tbl_fcmp_op # INF - INF | 
 | 13808 | 	short		fcmp_res_qnan	- tbl_fcmp_op # INF - QNAN | 
 | 13809 | 	short		fcmp_dnrm_s	- tbl_fcmp_op # INF - DENORM | 
 | 13810 | 	short		fcmp_res_snan	- tbl_fcmp_op # INF - SNAN | 
 | 13811 | 	short		tbl_fcmp_op	- tbl_fcmp_op # | 
 | 13812 | 	short		tbl_fcmp_op	- tbl_fcmp_op # | 
 | 13813 |  | 
 | 13814 | 	short		fcmp_res_qnan	- tbl_fcmp_op # QNAN - NORM | 
 | 13815 | 	short		fcmp_res_qnan	- tbl_fcmp_op # QNAN - ZERO | 
 | 13816 | 	short		fcmp_res_qnan	- tbl_fcmp_op # QNAN - INF | 
 | 13817 | 	short		fcmp_res_qnan	- tbl_fcmp_op # QNAN - QNAN | 
 | 13818 | 	short		fcmp_res_qnan	- tbl_fcmp_op # QNAN - DENORM | 
 | 13819 | 	short		fcmp_res_snan	- tbl_fcmp_op # QNAN - SNAN | 
 | 13820 | 	short		tbl_fcmp_op	- tbl_fcmp_op # | 
 | 13821 | 	short		tbl_fcmp_op	- tbl_fcmp_op # | 
 | 13822 |  | 
 | 13823 | 	short		fcmp_dnrm_nrm	- tbl_fcmp_op # DENORM - NORM | 
 | 13824 | 	short		fcmp_dnrm_d	- tbl_fcmp_op # DENORM - ZERO | 
 | 13825 | 	short		fcmp_dnrm_d	- tbl_fcmp_op # DENORM - INF | 
 | 13826 | 	short		fcmp_res_qnan	- tbl_fcmp_op # DENORM - QNAN | 
 | 13827 | 	short		fcmp_dnrm_sd	- tbl_fcmp_op # DENORM - DENORM | 
 | 13828 | 	short		fcmp_res_snan	- tbl_fcmp_op # DENORM - SNAN | 
 | 13829 | 	short		tbl_fcmp_op	- tbl_fcmp_op # | 
 | 13830 | 	short		tbl_fcmp_op	- tbl_fcmp_op # | 
 | 13831 |  | 
 | 13832 | 	short		fcmp_res_snan	- tbl_fcmp_op # SNAN - NORM | 
 | 13833 | 	short		fcmp_res_snan	- tbl_fcmp_op # SNAN - ZERO | 
 | 13834 | 	short		fcmp_res_snan	- tbl_fcmp_op # SNAN - INF | 
 | 13835 | 	short		fcmp_res_snan	- tbl_fcmp_op # SNAN - QNAN | 
 | 13836 | 	short		fcmp_res_snan	- tbl_fcmp_op # SNAN - DENORM | 
 | 13837 | 	short		fcmp_res_snan	- tbl_fcmp_op # SNAN - SNAN | 
 | 13838 | 	short		tbl_fcmp_op	- tbl_fcmp_op # | 
 | 13839 | 	short		tbl_fcmp_op	- tbl_fcmp_op # | 
 | 13840 |  | 
 | 13841 | # unlike all other functions for QNAN and SNAN, fcmp does NOT set the | 
 | 13842 | # 'N' bit for a negative QNAN or SNAN input so we must squelch it here. | 
 | 13843 | fcmp_res_qnan: | 
 | 13844 | 	bsr.l		res_qnan | 
 | 13845 | 	andi.b		&0xf7,FPSR_CC(%a6) | 
 | 13846 | 	rts | 
 | 13847 | fcmp_res_snan: | 
 | 13848 | 	bsr.l		res_snan | 
 | 13849 | 	andi.b		&0xf7,FPSR_CC(%a6) | 
 | 13850 | 	rts | 
 | 13851 |  | 
 | 13852 | # | 
 | 13853 | # DENORMs are a little more difficult. | 
 | 13854 | # If you have a 2 DENORMs, then you can just force the j-bit to a one | 
 | 13855 | # and use the fcmp_norm routine. | 
 | 13856 | # If you have a DENORM and an INF or ZERO, just force the DENORM's j-bit to a one | 
 | 13857 | # and use the fcmp_norm routine. | 
 | 13858 | # If you have a DENORM and a NORM with opposite signs, then use fcmp_norm, also. | 
 | 13859 | # But with a DENORM and a NORM of the same sign, the neg bit is set if the | 
 | 13860 | # (1) signs are (+) and the DENORM is the dst or | 
 | 13861 | # (2) signs are (-) and the DENORM is the src | 
 | 13862 | # | 
 | 13863 |  | 
 | 13864 | fcmp_dnrm_s: | 
 | 13865 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 13866 | 	mov.l		SRC_HI(%a0),%d0 | 
 | 13867 | 	bset		&31,%d0			# DENORM src; make into small norm | 
 | 13868 | 	mov.l		%d0,FP_SCR0_HI(%a6) | 
 | 13869 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 13870 | 	lea		FP_SCR0(%a6),%a0 | 
 | 13871 | 	bra.w		fcmp_norm | 
 | 13872 |  | 
 | 13873 | fcmp_dnrm_d: | 
 | 13874 | 	mov.l		DST_EX(%a1),FP_SCR0_EX(%a6) | 
 | 13875 | 	mov.l		DST_HI(%a1),%d0 | 
 | 13876 | 	bset		&31,%d0			# DENORM src; make into small norm | 
 | 13877 | 	mov.l		%d0,FP_SCR0_HI(%a6) | 
 | 13878 | 	mov.l		DST_LO(%a1),FP_SCR0_LO(%a6) | 
 | 13879 | 	lea		FP_SCR0(%a6),%a1 | 
 | 13880 | 	bra.w		fcmp_norm | 
 | 13881 |  | 
 | 13882 | fcmp_dnrm_sd: | 
 | 13883 | 	mov.w		DST_EX(%a1),FP_SCR1_EX(%a6) | 
 | 13884 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 13885 | 	mov.l		DST_HI(%a1),%d0 | 
 | 13886 | 	bset		&31,%d0			# DENORM dst; make into small norm | 
 | 13887 | 	mov.l		%d0,FP_SCR1_HI(%a6) | 
 | 13888 | 	mov.l		SRC_HI(%a0),%d0 | 
 | 13889 | 	bset		&31,%d0			# DENORM dst; make into small norm | 
 | 13890 | 	mov.l		%d0,FP_SCR0_HI(%a6) | 
 | 13891 | 	mov.l		DST_LO(%a1),FP_SCR1_LO(%a6) | 
 | 13892 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 13893 | 	lea		FP_SCR1(%a6),%a1 | 
 | 13894 | 	lea		FP_SCR0(%a6),%a0 | 
 | 13895 | 	bra.w		fcmp_norm | 
 | 13896 |  | 
 | 13897 | fcmp_nrm_dnrm: | 
 | 13898 | 	mov.b		SRC_EX(%a0),%d0		# determine if like signs | 
 | 13899 | 	mov.b		DST_EX(%a1),%d1 | 
 | 13900 | 	eor.b		%d0,%d1 | 
 | 13901 | 	bmi.w		fcmp_dnrm_s | 
 | 13902 |  | 
 | 13903 | # signs are the same, so must determine the answer ourselves. | 
 | 13904 | 	tst.b		%d0			# is src op negative? | 
 | 13905 | 	bmi.b		fcmp_nrm_dnrm_m		# yes | 
 | 13906 | 	rts | 
 | 13907 | fcmp_nrm_dnrm_m: | 
 | 13908 | 	mov.b		&neg_bmask,FPSR_CC(%a6)	# set 'Z' ccode bit | 
 | 13909 | 	rts | 
 | 13910 |  | 
 | 13911 | fcmp_dnrm_nrm: | 
 | 13912 | 	mov.b		SRC_EX(%a0),%d0		# determine if like signs | 
 | 13913 | 	mov.b		DST_EX(%a1),%d1 | 
 | 13914 | 	eor.b		%d0,%d1 | 
 | 13915 | 	bmi.w		fcmp_dnrm_d | 
 | 13916 |  | 
 | 13917 | # signs are the same, so must determine the answer ourselves. | 
 | 13918 | 	tst.b		%d0			# is src op negative? | 
 | 13919 | 	bpl.b		fcmp_dnrm_nrm_m		# no | 
 | 13920 | 	rts | 
 | 13921 | fcmp_dnrm_nrm_m: | 
 | 13922 | 	mov.b		&neg_bmask,FPSR_CC(%a6)	# set 'Z' ccode bit | 
 | 13923 | 	rts | 
 | 13924 |  | 
 | 13925 | ######################################################################### | 
 | 13926 | # XDEF ****************************************************************	# | 
 | 13927 | #	fsglmul(): emulates the fsglmul instruction			# | 
 | 13928 | #									# | 
 | 13929 | # XREF ****************************************************************	# | 
 | 13930 | #	scale_to_zero_src() - scale src exponent to zero		# | 
 | 13931 | #	scale_to_zero_dst() - scale dst exponent to zero		# | 
 | 13932 | #	unf_res4() - return default underflow result for sglop		# | 
 | 13933 | #	ovf_res() - return default overflow result			# | 
 | 13934 | #	res_qnan() - return QNAN result					# | 
 | 13935 | #	res_snan() - return SNAN result					# | 
 | 13936 | #									# | 
 | 13937 | # INPUT ***************************************************************	# | 
 | 13938 | #	a0 = pointer to extended precision source operand		# | 
 | 13939 | #	a1 = pointer to extended precision destination operand		# | 
 | 13940 | #	d0  rnd prec,mode						# | 
 | 13941 | #									# | 
 | 13942 | # OUTPUT **************************************************************	# | 
 | 13943 | #	fp0 = result							# | 
 | 13944 | #	fp1 = EXOP (if exception occurred)				# | 
 | 13945 | #									# | 
 | 13946 | # ALGORITHM ***********************************************************	# | 
 | 13947 | #	Handle NANs, infinities, and zeroes as special cases. Divide	# | 
 | 13948 | # norms/denorms into ext/sgl/dbl precision.				# | 
 | 13949 | #	For norms/denorms, scale the exponents such that a multiply	# | 
 | 13950 | # instruction won't cause an exception. Use the regular fsglmul to	# | 
 | 13951 | # compute a result. Check if the regular operands would have taken	# | 
 | 13952 | # an exception. If so, return the default overflow/underflow result	# | 
 | 13953 | # and return the EXOP if exceptions are enabled. Else, scale the	# | 
 | 13954 | # result operand to the proper exponent.				# | 
 | 13955 | #									# | 
 | 13956 | ######################################################################### | 
 | 13957 |  | 
 | 13958 | 	global		fsglmul | 
 | 13959 | fsglmul: | 
 | 13960 | 	mov.l		%d0,L_SCR3(%a6)		# store rnd info | 
 | 13961 |  | 
 | 13962 | 	clr.w		%d1 | 
 | 13963 | 	mov.b		DTAG(%a6),%d1 | 
 | 13964 | 	lsl.b		&0x3,%d1 | 
 | 13965 | 	or.b		STAG(%a6),%d1 | 
 | 13966 |  | 
 | 13967 | 	bne.w		fsglmul_not_norm	# optimize on non-norm input | 
 | 13968 |  | 
 | 13969 | fsglmul_norm: | 
 | 13970 | 	mov.w		DST_EX(%a1),FP_SCR1_EX(%a6) | 
 | 13971 | 	mov.l		DST_HI(%a1),FP_SCR1_HI(%a6) | 
 | 13972 | 	mov.l		DST_LO(%a1),FP_SCR1_LO(%a6) | 
 | 13973 |  | 
 | 13974 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 13975 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 13976 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 13977 |  | 
 | 13978 | 	bsr.l		scale_to_zero_src	# scale exponent | 
 | 13979 | 	mov.l		%d0,-(%sp)		# save scale factor 1 | 
 | 13980 |  | 
 | 13981 | 	bsr.l		scale_to_zero_dst	# scale dst exponent | 
 | 13982 |  | 
 | 13983 | 	add.l		(%sp)+,%d0		# SCALE_FACTOR = scale1 + scale2 | 
 | 13984 |  | 
 | 13985 | 	cmpi.l		%d0,&0x3fff-0x7ffe	# would result ovfl? | 
 | 13986 | 	beq.w		fsglmul_may_ovfl	# result may rnd to overflow | 
 | 13987 | 	blt.w		fsglmul_ovfl		# result will overflow | 
 | 13988 |  | 
 | 13989 | 	cmpi.l		%d0,&0x3fff+0x0001	# would result unfl? | 
 | 13990 | 	beq.w		fsglmul_may_unfl	# result may rnd to no unfl | 
 | 13991 | 	bgt.w		fsglmul_unfl		# result will underflow | 
 | 13992 |  | 
 | 13993 | fsglmul_normal: | 
 | 13994 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 | 13995 |  | 
 | 13996 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 13997 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 13998 |  | 
 | 13999 | 	fsglmul.x	FP_SCR0(%a6),%fp0	# execute sgl multiply | 
 | 14000 |  | 
 | 14001 | 	fmov.l		%fpsr,%d1		# save status | 
 | 14002 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 14003 |  | 
 | 14004 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 | 14005 |  | 
 | 14006 | fsglmul_normal_exit: | 
 | 14007 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result | 
 | 14008 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 14009 | 	mov.w		FP_SCR0_EX(%a6),%d1	# load {sgn,exp} | 
 | 14010 | 	mov.l		%d1,%d2			# make a copy | 
 | 14011 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 14012 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 14013 | 	sub.l		%d0,%d1			# add scale factor | 
 | 14014 | 	or.w		%d2,%d1			# concat old sign,new exp | 
 | 14015 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 14016 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 14017 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return result in fp0 | 
 | 14018 | 	rts | 
 | 14019 |  | 
 | 14020 | fsglmul_ovfl: | 
 | 14021 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 | 14022 |  | 
 | 14023 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 14024 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 14025 |  | 
 | 14026 | 	fsglmul.x	FP_SCR0(%a6),%fp0	# execute sgl multiply | 
 | 14027 |  | 
 | 14028 | 	fmov.l		%fpsr,%d1		# save status | 
 | 14029 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 14030 |  | 
 | 14031 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 | 14032 |  | 
 | 14033 | fsglmul_ovfl_tst: | 
 | 14034 |  | 
 | 14035 | # save setting this until now because this is where fsglmul_may_ovfl may jump in | 
 | 14036 | 	or.l		&ovfl_inx_mask, USER_FPSR(%a6) # set ovfl/aovfl/ainex | 
 | 14037 |  | 
 | 14038 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 14039 | 	andi.b		&0x13,%d1		# is OVFL or INEX enabled? | 
 | 14040 | 	bne.b		fsglmul_ovfl_ena	# yes | 
 | 14041 |  | 
 | 14042 | fsglmul_ovfl_dis: | 
 | 14043 | 	btst		&neg_bit,FPSR_CC(%a6)	# is result negative? | 
 | 14044 | 	sne		%d1			# set sign param accordingly | 
 | 14045 | 	mov.l		L_SCR3(%a6),%d0		# pass prec:rnd | 
 | 14046 | 	andi.b		&0x30,%d0		# force prec = ext | 
 | 14047 | 	bsr.l		ovf_res			# calculate default result | 
 | 14048 | 	or.b		%d0,FPSR_CC(%a6)	# set INF,N if applicable | 
 | 14049 | 	fmovm.x		(%a0),&0x80		# return default result in fp0 | 
 | 14050 | 	rts | 
 | 14051 |  | 
 | 14052 | fsglmul_ovfl_ena: | 
 | 14053 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# move result to stack | 
 | 14054 |  | 
 | 14055 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 14056 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp} | 
 | 14057 | 	mov.l		%d1,%d2			# make a copy | 
 | 14058 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 14059 | 	sub.l		%d0,%d1			# add scale factor | 
 | 14060 | 	subi.l		&0x6000,%d1		# subtract bias | 
 | 14061 | 	andi.w		&0x7fff,%d1 | 
 | 14062 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 14063 | 	or.w		%d2,%d1			# concat old sign,new exp | 
 | 14064 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 14065 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 14066 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 14067 | 	bra.b		fsglmul_ovfl_dis | 
 | 14068 |  | 
 | 14069 | fsglmul_may_ovfl: | 
 | 14070 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 | 14071 |  | 
 | 14072 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 14073 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 14074 |  | 
 | 14075 | 	fsglmul.x	FP_SCR0(%a6),%fp0	# execute sgl multiply | 
 | 14076 |  | 
 | 14077 | 	fmov.l		%fpsr,%d1		# save status | 
 | 14078 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 14079 |  | 
 | 14080 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 | 14081 |  | 
 | 14082 | 	fabs.x		%fp0,%fp1		# make a copy of result | 
 | 14083 | 	fcmp.b		%fp1,&0x2		# is |result| >= 2.b? | 
 | 14084 | 	fbge.w		fsglmul_ovfl_tst	# yes; overflow has occurred | 
 | 14085 |  | 
 | 14086 | # no, it didn't overflow; we have correct result | 
 | 14087 | 	bra.w		fsglmul_normal_exit | 
 | 14088 |  | 
 | 14089 | fsglmul_unfl: | 
 | 14090 | 	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | 
 | 14091 |  | 
 | 14092 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 | 14093 |  | 
 | 14094 | 	fmov.l		&rz_mode*0x10,%fpcr	# set FPCR | 
 | 14095 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 14096 |  | 
 | 14097 | 	fsglmul.x	FP_SCR0(%a6),%fp0	# execute sgl multiply | 
 | 14098 |  | 
 | 14099 | 	fmov.l		%fpsr,%d1		# save status | 
 | 14100 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 14101 |  | 
 | 14102 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 | 14103 |  | 
 | 14104 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 14105 | 	andi.b		&0x0b,%d1		# is UNFL or INEX enabled? | 
 | 14106 | 	bne.b		fsglmul_unfl_ena	# yes | 
 | 14107 |  | 
 | 14108 | fsglmul_unfl_dis: | 
 | 14109 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result | 
 | 14110 |  | 
 | 14111 | 	lea		FP_SCR0(%a6),%a0	# pass: result addr | 
 | 14112 | 	mov.l		L_SCR3(%a6),%d1		# pass: rnd prec,mode | 
 | 14113 | 	bsr.l		unf_res4		# calculate default result | 
 | 14114 | 	or.b		%d0,FPSR_CC(%a6)	# 'Z' bit may have been set | 
 | 14115 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0 | 
 | 14116 | 	rts | 
 | 14117 |  | 
 | 14118 | # | 
 | 14119 | # UNFL is enabled. | 
 | 14120 | # | 
 | 14121 | fsglmul_unfl_ena: | 
 | 14122 | 	fmovm.x		FP_SCR1(%a6),&0x40	# load dst op | 
 | 14123 |  | 
 | 14124 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 14125 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 14126 |  | 
 | 14127 | 	fsglmul.x	FP_SCR0(%a6),%fp1	# execute sgl multiply | 
 | 14128 |  | 
 | 14129 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 14130 |  | 
 | 14131 | 	fmovm.x		&0x40,FP_SCR0(%a6)	# save result to stack | 
 | 14132 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 14133 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp} | 
 | 14134 | 	mov.l		%d1,%d2			# make a copy | 
 | 14135 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 14136 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 14137 | 	sub.l		%d0,%d1			# add scale factor | 
 | 14138 | 	addi.l		&0x6000,%d1		# add bias | 
 | 14139 | 	andi.w		&0x7fff,%d1 | 
 | 14140 | 	or.w		%d2,%d1			# concat old sign,new exp | 
 | 14141 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 14142 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 14143 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 14144 | 	bra.w		fsglmul_unfl_dis | 
 | 14145 |  | 
 | 14146 | fsglmul_may_unfl: | 
 | 14147 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 | 14148 |  | 
 | 14149 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 14150 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 14151 |  | 
 | 14152 | 	fsglmul.x	FP_SCR0(%a6),%fp0	# execute sgl multiply | 
 | 14153 |  | 
 | 14154 | 	fmov.l		%fpsr,%d1		# save status | 
 | 14155 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 14156 |  | 
 | 14157 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 | 14158 |  | 
 | 14159 | 	fabs.x		%fp0,%fp1		# make a copy of result | 
 | 14160 | 	fcmp.b		%fp1,&0x2		# is |result| > 2.b? | 
 | 14161 | 	fbgt.w		fsglmul_normal_exit	# no; no underflow occurred | 
 | 14162 | 	fblt.w		fsglmul_unfl		# yes; underflow occurred | 
 | 14163 |  | 
 | 14164 | # | 
 | 14165 | # we still don't know if underflow occurred. result is ~ equal to 2. but, | 
 | 14166 | # we don't know if the result was an underflow that rounded up to a 2 or | 
 | 14167 | # a normalized number that rounded down to a 2. so, redo the entire operation | 
 | 14168 | # using RZ as the rounding mode to see what the pre-rounded result is. | 
 | 14169 | # this case should be relatively rare. | 
 | 14170 | # | 
 | 14171 | 	fmovm.x		FP_SCR1(%a6),&0x40	# load dst op into fp1 | 
 | 14172 |  | 
 | 14173 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 14174 | 	andi.b		&0xc0,%d1		# keep rnd prec | 
 | 14175 | 	ori.b		&rz_mode*0x10,%d1	# insert RZ | 
 | 14176 |  | 
 | 14177 | 	fmov.l		%d1,%fpcr		# set FPCR | 
 | 14178 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 14179 |  | 
 | 14180 | 	fsglmul.x	FP_SCR0(%a6),%fp1	# execute sgl multiply | 
 | 14181 |  | 
 | 14182 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 14183 | 	fabs.x		%fp1			# make absolute value | 
 | 14184 | 	fcmp.b		%fp1,&0x2		# is |result| < 2.b? | 
 | 14185 | 	fbge.w		fsglmul_normal_exit	# no; no underflow occurred | 
 | 14186 | 	bra.w		fsglmul_unfl		# yes, underflow occurred | 
 | 14187 |  | 
 | 14188 | ############################################################################## | 
 | 14189 |  | 
 | 14190 | # | 
 | 14191 | # Single Precision Multiply: inputs are not both normalized; what are they? | 
 | 14192 | # | 
 | 14193 | fsglmul_not_norm: | 
 | 14194 | 	mov.w		(tbl_fsglmul_op.b,%pc,%d1.w*2),%d1 | 
 | 14195 | 	jmp		(tbl_fsglmul_op.b,%pc,%d1.w*1) | 
 | 14196 |  | 
 | 14197 | 	swbeg		&48 | 
 | 14198 | tbl_fsglmul_op: | 
 | 14199 | 	short		fsglmul_norm		- tbl_fsglmul_op # NORM x NORM | 
 | 14200 | 	short		fsglmul_zero		- tbl_fsglmul_op # NORM x ZERO | 
 | 14201 | 	short		fsglmul_inf_src		- tbl_fsglmul_op # NORM x INF | 
 | 14202 | 	short		fsglmul_res_qnan	- tbl_fsglmul_op # NORM x QNAN | 
 | 14203 | 	short		fsglmul_norm		- tbl_fsglmul_op # NORM x DENORM | 
 | 14204 | 	short		fsglmul_res_snan	- tbl_fsglmul_op # NORM x SNAN | 
 | 14205 | 	short		tbl_fsglmul_op		- tbl_fsglmul_op # | 
 | 14206 | 	short		tbl_fsglmul_op		- tbl_fsglmul_op # | 
 | 14207 |  | 
 | 14208 | 	short		fsglmul_zero		- tbl_fsglmul_op # ZERO x NORM | 
 | 14209 | 	short		fsglmul_zero		- tbl_fsglmul_op # ZERO x ZERO | 
 | 14210 | 	short		fsglmul_res_operr	- tbl_fsglmul_op # ZERO x INF | 
 | 14211 | 	short		fsglmul_res_qnan	- tbl_fsglmul_op # ZERO x QNAN | 
 | 14212 | 	short		fsglmul_zero		- tbl_fsglmul_op # ZERO x DENORM | 
 | 14213 | 	short		fsglmul_res_snan	- tbl_fsglmul_op # ZERO x SNAN | 
 | 14214 | 	short		tbl_fsglmul_op		- tbl_fsglmul_op # | 
 | 14215 | 	short		tbl_fsglmul_op		- tbl_fsglmul_op # | 
 | 14216 |  | 
 | 14217 | 	short		fsglmul_inf_dst		- tbl_fsglmul_op # INF x NORM | 
 | 14218 | 	short		fsglmul_res_operr	- tbl_fsglmul_op # INF x ZERO | 
 | 14219 | 	short		fsglmul_inf_dst		- tbl_fsglmul_op # INF x INF | 
 | 14220 | 	short		fsglmul_res_qnan	- tbl_fsglmul_op # INF x QNAN | 
 | 14221 | 	short		fsglmul_inf_dst		- tbl_fsglmul_op # INF x DENORM | 
 | 14222 | 	short		fsglmul_res_snan	- tbl_fsglmul_op # INF x SNAN | 
 | 14223 | 	short		tbl_fsglmul_op		- tbl_fsglmul_op # | 
 | 14224 | 	short		tbl_fsglmul_op		- tbl_fsglmul_op # | 
 | 14225 |  | 
 | 14226 | 	short		fsglmul_res_qnan	- tbl_fsglmul_op # QNAN x NORM | 
 | 14227 | 	short		fsglmul_res_qnan	- tbl_fsglmul_op # QNAN x ZERO | 
 | 14228 | 	short		fsglmul_res_qnan	- tbl_fsglmul_op # QNAN x INF | 
 | 14229 | 	short		fsglmul_res_qnan	- tbl_fsglmul_op # QNAN x QNAN | 
 | 14230 | 	short		fsglmul_res_qnan	- tbl_fsglmul_op # QNAN x DENORM | 
 | 14231 | 	short		fsglmul_res_snan	- tbl_fsglmul_op # QNAN x SNAN | 
 | 14232 | 	short		tbl_fsglmul_op		- tbl_fsglmul_op # | 
 | 14233 | 	short		tbl_fsglmul_op		- tbl_fsglmul_op # | 
 | 14234 |  | 
 | 14235 | 	short		fsglmul_norm		- tbl_fsglmul_op # NORM x NORM | 
 | 14236 | 	short		fsglmul_zero		- tbl_fsglmul_op # NORM x ZERO | 
 | 14237 | 	short		fsglmul_inf_src		- tbl_fsglmul_op # NORM x INF | 
 | 14238 | 	short		fsglmul_res_qnan	- tbl_fsglmul_op # NORM x QNAN | 
 | 14239 | 	short		fsglmul_norm		- tbl_fsglmul_op # NORM x DENORM | 
 | 14240 | 	short		fsglmul_res_snan	- tbl_fsglmul_op # NORM x SNAN | 
 | 14241 | 	short		tbl_fsglmul_op		- tbl_fsglmul_op # | 
 | 14242 | 	short		tbl_fsglmul_op		- tbl_fsglmul_op # | 
 | 14243 |  | 
 | 14244 | 	short		fsglmul_res_snan	- tbl_fsglmul_op # SNAN x NORM | 
 | 14245 | 	short		fsglmul_res_snan	- tbl_fsglmul_op # SNAN x ZERO | 
 | 14246 | 	short		fsglmul_res_snan	- tbl_fsglmul_op # SNAN x INF | 
 | 14247 | 	short		fsglmul_res_snan	- tbl_fsglmul_op # SNAN x QNAN | 
 | 14248 | 	short		fsglmul_res_snan	- tbl_fsglmul_op # SNAN x DENORM | 
 | 14249 | 	short		fsglmul_res_snan	- tbl_fsglmul_op # SNAN x SNAN | 
 | 14250 | 	short		tbl_fsglmul_op		- tbl_fsglmul_op # | 
 | 14251 | 	short		tbl_fsglmul_op		- tbl_fsglmul_op # | 
 | 14252 |  | 
 | 14253 | fsglmul_res_operr: | 
 | 14254 | 	bra.l		res_operr | 
 | 14255 | fsglmul_res_snan: | 
 | 14256 | 	bra.l		res_snan | 
 | 14257 | fsglmul_res_qnan: | 
 | 14258 | 	bra.l		res_qnan | 
 | 14259 | fsglmul_zero: | 
 | 14260 | 	bra.l		fmul_zero | 
 | 14261 | fsglmul_inf_src: | 
 | 14262 | 	bra.l		fmul_inf_src | 
 | 14263 | fsglmul_inf_dst: | 
 | 14264 | 	bra.l		fmul_inf_dst | 
 | 14265 |  | 
 | 14266 | ######################################################################### | 
 | 14267 | # XDEF ****************************************************************	# | 
 | 14268 | #	fsgldiv(): emulates the fsgldiv instruction			# | 
 | 14269 | #									# | 
 | 14270 | # XREF ****************************************************************	# | 
 | 14271 | #	scale_to_zero_src() - scale src exponent to zero		# | 
 | 14272 | #	scale_to_zero_dst() - scale dst exponent to zero		# | 
 | 14273 | #	unf_res4() - return default underflow result for sglop		# | 
 | 14274 | #	ovf_res() - return default overflow result			# | 
 | 14275 | #	res_qnan() - return QNAN result					# | 
 | 14276 | #	res_snan() - return SNAN result					# | 
 | 14277 | #									# | 
 | 14278 | # INPUT ***************************************************************	# | 
 | 14279 | #	a0 = pointer to extended precision source operand		# | 
 | 14280 | #	a1 = pointer to extended precision destination operand		# | 
 | 14281 | #	d0  rnd prec,mode						# | 
 | 14282 | #									# | 
 | 14283 | # OUTPUT **************************************************************	# | 
 | 14284 | #	fp0 = result							# | 
 | 14285 | #	fp1 = EXOP (if exception occurred)				# | 
 | 14286 | #									# | 
 | 14287 | # ALGORITHM ***********************************************************	# | 
 | 14288 | #	Handle NANs, infinities, and zeroes as special cases. Divide	# | 
 | 14289 | # norms/denorms into ext/sgl/dbl precision.				# | 
 | 14290 | #	For norms/denorms, scale the exponents such that a divide	# | 
 | 14291 | # instruction won't cause an exception. Use the regular fsgldiv to	# | 
 | 14292 | # compute a result. Check if the regular operands would have taken	# | 
 | 14293 | # an exception. If so, return the default overflow/underflow result	# | 
 | 14294 | # and return the EXOP if exceptions are enabled. Else, scale the	# | 
 | 14295 | # result operand to the proper exponent.				# | 
 | 14296 | #									# | 
 | 14297 | ######################################################################### | 
 | 14298 |  | 
 | 14299 | 	global		fsgldiv | 
 | 14300 | fsgldiv: | 
 | 14301 | 	mov.l		%d0,L_SCR3(%a6)		# store rnd info | 
 | 14302 |  | 
 | 14303 | 	clr.w		%d1 | 
 | 14304 | 	mov.b		DTAG(%a6),%d1 | 
 | 14305 | 	lsl.b		&0x3,%d1 | 
 | 14306 | 	or.b		STAG(%a6),%d1		# combine src tags | 
 | 14307 |  | 
 | 14308 | 	bne.w		fsgldiv_not_norm	# optimize on non-norm input | 
 | 14309 |  | 
 | 14310 | # | 
 | 14311 | # DIVIDE: NORMs and DENORMs ONLY! | 
 | 14312 | # | 
 | 14313 | fsgldiv_norm: | 
 | 14314 | 	mov.w		DST_EX(%a1),FP_SCR1_EX(%a6) | 
 | 14315 | 	mov.l		DST_HI(%a1),FP_SCR1_HI(%a6) | 
 | 14316 | 	mov.l		DST_LO(%a1),FP_SCR1_LO(%a6) | 
 | 14317 |  | 
 | 14318 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 14319 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 14320 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 14321 |  | 
 | 14322 | 	bsr.l		scale_to_zero_src	# calculate scale factor 1 | 
 | 14323 | 	mov.l		%d0,-(%sp)		# save scale factor 1 | 
 | 14324 |  | 
 | 14325 | 	bsr.l		scale_to_zero_dst	# calculate scale factor 2 | 
 | 14326 |  | 
 | 14327 | 	neg.l		(%sp)			# S.F. = scale1 - scale2 | 
 | 14328 | 	add.l		%d0,(%sp) | 
 | 14329 |  | 
 | 14330 | 	mov.w		2+L_SCR3(%a6),%d1	# fetch precision,mode | 
 | 14331 | 	lsr.b		&0x6,%d1 | 
 | 14332 | 	mov.l		(%sp)+,%d0 | 
 | 14333 | 	cmpi.l		%d0,&0x3fff-0x7ffe | 
 | 14334 | 	ble.w		fsgldiv_may_ovfl | 
 | 14335 |  | 
 | 14336 | 	cmpi.l		%d0,&0x3fff-0x0000	# will result underflow? | 
 | 14337 | 	beq.w		fsgldiv_may_unfl	# maybe | 
 | 14338 | 	bgt.w		fsgldiv_unfl		# yes; go handle underflow | 
 | 14339 |  | 
 | 14340 | fsgldiv_normal: | 
 | 14341 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 | 14342 |  | 
 | 14343 | 	fmov.l		L_SCR3(%a6),%fpcr	# save FPCR | 
 | 14344 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 14345 |  | 
 | 14346 | 	fsgldiv.x	FP_SCR0(%a6),%fp0	# perform sgl divide | 
 | 14347 |  | 
 | 14348 | 	fmov.l		%fpsr,%d1		# save FPSR | 
 | 14349 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 14350 |  | 
 | 14351 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 | 14352 |  | 
 | 14353 | fsgldiv_normal_exit: | 
 | 14354 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# store result on stack | 
 | 14355 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 14356 | 	mov.w		FP_SCR0_EX(%a6),%d1	# load {sgn,exp} | 
 | 14357 | 	mov.l		%d1,%d2			# make a copy | 
 | 14358 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 14359 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 14360 | 	sub.l		%d0,%d1			# add scale factor | 
 | 14361 | 	or.w		%d2,%d1			# concat old sign,new exp | 
 | 14362 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 14363 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 14364 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return result in fp0 | 
 | 14365 | 	rts | 
 | 14366 |  | 
 | 14367 | fsgldiv_may_ovfl: | 
 | 14368 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 | 14369 |  | 
 | 14370 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 14371 | 	fmov.l		&0x0,%fpsr		# set FPSR | 
 | 14372 |  | 
 | 14373 | 	fsgldiv.x	FP_SCR0(%a6),%fp0	# execute divide | 
 | 14374 |  | 
 | 14375 | 	fmov.l		%fpsr,%d1 | 
 | 14376 | 	fmov.l		&0x0,%fpcr | 
 | 14377 |  | 
 | 14378 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX,N | 
 | 14379 |  | 
 | 14380 | 	fmovm.x		&0x01,-(%sp)		# save result to stack | 
 | 14381 | 	mov.w		(%sp),%d1		# fetch new exponent | 
 | 14382 | 	add.l		&0xc,%sp		# clear result | 
 | 14383 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 14384 | 	sub.l		%d0,%d1			# add scale factor | 
 | 14385 | 	cmp.l		%d1,&0x7fff		# did divide overflow? | 
 | 14386 | 	blt.b		fsgldiv_normal_exit | 
 | 14387 |  | 
 | 14388 | fsgldiv_ovfl_tst: | 
 | 14389 | 	or.w		&ovfl_inx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex | 
 | 14390 |  | 
 | 14391 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 14392 | 	andi.b		&0x13,%d1		# is OVFL or INEX enabled? | 
 | 14393 | 	bne.b		fsgldiv_ovfl_ena	# yes | 
 | 14394 |  | 
 | 14395 | fsgldiv_ovfl_dis: | 
 | 14396 | 	btst		&neg_bit,FPSR_CC(%a6)	# is result negative | 
 | 14397 | 	sne		%d1			# set sign param accordingly | 
 | 14398 | 	mov.l		L_SCR3(%a6),%d0		# pass prec:rnd | 
 | 14399 | 	andi.b		&0x30,%d0		# kill precision | 
 | 14400 | 	bsr.l		ovf_res			# calculate default result | 
 | 14401 | 	or.b		%d0,FPSR_CC(%a6)	# set INF if applicable | 
 | 14402 | 	fmovm.x		(%a0),&0x80		# return default result in fp0 | 
 | 14403 | 	rts | 
 | 14404 |  | 
 | 14405 | fsgldiv_ovfl_ena: | 
 | 14406 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# move result to stack | 
 | 14407 |  | 
 | 14408 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 14409 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp} | 
 | 14410 | 	mov.l		%d1,%d2			# make a copy | 
 | 14411 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 14412 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 14413 | 	sub.l		%d0,%d1			# add scale factor | 
 | 14414 | 	subi.l		&0x6000,%d1		# subtract new bias | 
 | 14415 | 	andi.w		&0x7fff,%d1		# clear ms bit | 
 | 14416 | 	or.w		%d2,%d1			# concat old sign,new exp | 
 | 14417 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 14418 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 14419 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 14420 | 	bra.b		fsgldiv_ovfl_dis | 
 | 14421 |  | 
 | 14422 | fsgldiv_unfl: | 
 | 14423 | 	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | 
 | 14424 |  | 
 | 14425 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 | 14426 |  | 
 | 14427 | 	fmov.l		&rz_mode*0x10,%fpcr	# set FPCR | 
 | 14428 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 14429 |  | 
 | 14430 | 	fsgldiv.x	FP_SCR0(%a6),%fp0	# execute sgl divide | 
 | 14431 |  | 
 | 14432 | 	fmov.l		%fpsr,%d1		# save status | 
 | 14433 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 14434 |  | 
 | 14435 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 | 14436 |  | 
 | 14437 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 14438 | 	andi.b		&0x0b,%d1		# is UNFL or INEX enabled? | 
 | 14439 | 	bne.b		fsgldiv_unfl_ena	# yes | 
 | 14440 |  | 
 | 14441 | fsgldiv_unfl_dis: | 
 | 14442 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result | 
 | 14443 |  | 
 | 14444 | 	lea		FP_SCR0(%a6),%a0	# pass: result addr | 
 | 14445 | 	mov.l		L_SCR3(%a6),%d1		# pass: rnd prec,mode | 
 | 14446 | 	bsr.l		unf_res4		# calculate default result | 
 | 14447 | 	or.b		%d0,FPSR_CC(%a6)	# 'Z' bit may have been set | 
 | 14448 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0 | 
 | 14449 | 	rts | 
 | 14450 |  | 
 | 14451 | # | 
 | 14452 | # UNFL is enabled. | 
 | 14453 | # | 
 | 14454 | fsgldiv_unfl_ena: | 
 | 14455 | 	fmovm.x		FP_SCR1(%a6),&0x40	# load dst op | 
 | 14456 |  | 
 | 14457 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 14458 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 14459 |  | 
 | 14460 | 	fsgldiv.x	FP_SCR0(%a6),%fp1	# execute sgl divide | 
 | 14461 |  | 
 | 14462 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 14463 |  | 
 | 14464 | 	fmovm.x		&0x40,FP_SCR0(%a6)	# save result to stack | 
 | 14465 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 14466 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp} | 
 | 14467 | 	mov.l		%d1,%d2			# make a copy | 
 | 14468 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 14469 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 14470 | 	sub.l		%d0,%d1			# add scale factor | 
 | 14471 | 	addi.l		&0x6000,%d1		# add bias | 
 | 14472 | 	andi.w		&0x7fff,%d1		# clear top bit | 
 | 14473 | 	or.w		%d2,%d1			# concat old sign, new exp | 
 | 14474 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 14475 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 14476 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 14477 | 	bra.b		fsgldiv_unfl_dis | 
 | 14478 |  | 
 | 14479 | # | 
 | 14480 | # the divide operation MAY underflow: | 
 | 14481 | # | 
 | 14482 | fsgldiv_may_unfl: | 
 | 14483 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 | 14484 |  | 
 | 14485 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 14486 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 14487 |  | 
 | 14488 | 	fsgldiv.x	FP_SCR0(%a6),%fp0	# execute sgl divide | 
 | 14489 |  | 
 | 14490 | 	fmov.l		%fpsr,%d1		# save status | 
 | 14491 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 14492 |  | 
 | 14493 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 | 14494 |  | 
 | 14495 | 	fabs.x		%fp0,%fp1		# make a copy of result | 
 | 14496 | 	fcmp.b		%fp1,&0x1		# is |result| > 1.b? | 
 | 14497 | 	fbgt.w		fsgldiv_normal_exit	# no; no underflow occurred | 
 | 14498 | 	fblt.w		fsgldiv_unfl		# yes; underflow occurred | 
 | 14499 |  | 
 | 14500 | # | 
 | 14501 | # we still don't know if underflow occurred. result is ~ equal to 1. but, | 
 | 14502 | # we don't know if the result was an underflow that rounded up to a 1 | 
 | 14503 | # or a normalized number that rounded down to a 1. so, redo the entire | 
 | 14504 | # operation using RZ as the rounding mode to see what the pre-rounded | 
 | 14505 | # result is. this case should be relatively rare. | 
 | 14506 | # | 
 | 14507 | 	fmovm.x		FP_SCR1(%a6),&0x40	# load dst op into %fp1 | 
 | 14508 |  | 
 | 14509 | 	clr.l		%d1			# clear scratch register | 
 | 14510 | 	ori.b		&rz_mode*0x10,%d1	# force RZ rnd mode | 
 | 14511 |  | 
 | 14512 | 	fmov.l		%d1,%fpcr		# set FPCR | 
 | 14513 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 14514 |  | 
 | 14515 | 	fsgldiv.x	FP_SCR0(%a6),%fp1	# execute sgl divide | 
 | 14516 |  | 
 | 14517 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 14518 | 	fabs.x		%fp1			# make absolute value | 
 | 14519 | 	fcmp.b		%fp1,&0x1		# is |result| < 1.b? | 
 | 14520 | 	fbge.w		fsgldiv_normal_exit	# no; no underflow occurred | 
 | 14521 | 	bra.w		fsgldiv_unfl		# yes; underflow occurred | 
 | 14522 |  | 
 | 14523 | ############################################################################ | 
 | 14524 |  | 
 | 14525 | # | 
 | 14526 | # Divide: inputs are not both normalized; what are they? | 
 | 14527 | # | 
 | 14528 | fsgldiv_not_norm: | 
 | 14529 | 	mov.w		(tbl_fsgldiv_op.b,%pc,%d1.w*2),%d1 | 
 | 14530 | 	jmp		(tbl_fsgldiv_op.b,%pc,%d1.w*1) | 
 | 14531 |  | 
 | 14532 | 	swbeg		&48 | 
 | 14533 | tbl_fsgldiv_op: | 
 | 14534 | 	short		fsgldiv_norm		- tbl_fsgldiv_op # NORM / NORM | 
 | 14535 | 	short		fsgldiv_inf_load	- tbl_fsgldiv_op # NORM / ZERO | 
 | 14536 | 	short		fsgldiv_zero_load	- tbl_fsgldiv_op # NORM / INF | 
 | 14537 | 	short		fsgldiv_res_qnan	- tbl_fsgldiv_op # NORM / QNAN | 
 | 14538 | 	short		fsgldiv_norm		- tbl_fsgldiv_op # NORM / DENORM | 
 | 14539 | 	short		fsgldiv_res_snan	- tbl_fsgldiv_op # NORM / SNAN | 
 | 14540 | 	short		tbl_fsgldiv_op		- tbl_fsgldiv_op # | 
 | 14541 | 	short		tbl_fsgldiv_op		- tbl_fsgldiv_op # | 
 | 14542 |  | 
 | 14543 | 	short		fsgldiv_zero_load	- tbl_fsgldiv_op # ZERO / NORM | 
 | 14544 | 	short		fsgldiv_res_operr	- tbl_fsgldiv_op # ZERO / ZERO | 
 | 14545 | 	short		fsgldiv_zero_load	- tbl_fsgldiv_op # ZERO / INF | 
 | 14546 | 	short		fsgldiv_res_qnan	- tbl_fsgldiv_op # ZERO / QNAN | 
 | 14547 | 	short		fsgldiv_zero_load	- tbl_fsgldiv_op # ZERO / DENORM | 
 | 14548 | 	short		fsgldiv_res_snan	- tbl_fsgldiv_op # ZERO / SNAN | 
 | 14549 | 	short		tbl_fsgldiv_op		- tbl_fsgldiv_op # | 
 | 14550 | 	short		tbl_fsgldiv_op		- tbl_fsgldiv_op # | 
 | 14551 |  | 
 | 14552 | 	short		fsgldiv_inf_dst		- tbl_fsgldiv_op # INF / NORM | 
 | 14553 | 	short		fsgldiv_inf_dst		- tbl_fsgldiv_op # INF / ZERO | 
 | 14554 | 	short		fsgldiv_res_operr	- tbl_fsgldiv_op # INF / INF | 
 | 14555 | 	short		fsgldiv_res_qnan	- tbl_fsgldiv_op # INF / QNAN | 
 | 14556 | 	short		fsgldiv_inf_dst		- tbl_fsgldiv_op # INF / DENORM | 
 | 14557 | 	short		fsgldiv_res_snan	- tbl_fsgldiv_op # INF / SNAN | 
 | 14558 | 	short		tbl_fsgldiv_op		- tbl_fsgldiv_op # | 
 | 14559 | 	short		tbl_fsgldiv_op		- tbl_fsgldiv_op # | 
 | 14560 |  | 
 | 14561 | 	short		fsgldiv_res_qnan	- tbl_fsgldiv_op # QNAN / NORM | 
 | 14562 | 	short		fsgldiv_res_qnan	- tbl_fsgldiv_op # QNAN / ZERO | 
 | 14563 | 	short		fsgldiv_res_qnan	- tbl_fsgldiv_op # QNAN / INF | 
 | 14564 | 	short		fsgldiv_res_qnan	- tbl_fsgldiv_op # QNAN / QNAN | 
 | 14565 | 	short		fsgldiv_res_qnan	- tbl_fsgldiv_op # QNAN / DENORM | 
 | 14566 | 	short		fsgldiv_res_snan	- tbl_fsgldiv_op # QNAN / SNAN | 
 | 14567 | 	short		tbl_fsgldiv_op		- tbl_fsgldiv_op # | 
 | 14568 | 	short		tbl_fsgldiv_op		- tbl_fsgldiv_op # | 
 | 14569 |  | 
 | 14570 | 	short		fsgldiv_norm		- tbl_fsgldiv_op # DENORM / NORM | 
 | 14571 | 	short		fsgldiv_inf_load	- tbl_fsgldiv_op # DENORM / ZERO | 
 | 14572 | 	short		fsgldiv_zero_load	- tbl_fsgldiv_op # DENORM / INF | 
 | 14573 | 	short		fsgldiv_res_qnan	- tbl_fsgldiv_op # DENORM / QNAN | 
 | 14574 | 	short		fsgldiv_norm		- tbl_fsgldiv_op # DENORM / DENORM | 
 | 14575 | 	short		fsgldiv_res_snan	- tbl_fsgldiv_op # DENORM / SNAN | 
 | 14576 | 	short		tbl_fsgldiv_op		- tbl_fsgldiv_op # | 
 | 14577 | 	short		tbl_fsgldiv_op		- tbl_fsgldiv_op # | 
 | 14578 |  | 
 | 14579 | 	short		fsgldiv_res_snan	- tbl_fsgldiv_op # SNAN / NORM | 
 | 14580 | 	short		fsgldiv_res_snan	- tbl_fsgldiv_op # SNAN / ZERO | 
 | 14581 | 	short		fsgldiv_res_snan	- tbl_fsgldiv_op # SNAN / INF | 
 | 14582 | 	short		fsgldiv_res_snan	- tbl_fsgldiv_op # SNAN / QNAN | 
 | 14583 | 	short		fsgldiv_res_snan	- tbl_fsgldiv_op # SNAN / DENORM | 
 | 14584 | 	short		fsgldiv_res_snan	- tbl_fsgldiv_op # SNAN / SNAN | 
 | 14585 | 	short		tbl_fsgldiv_op		- tbl_fsgldiv_op # | 
 | 14586 | 	short		tbl_fsgldiv_op		- tbl_fsgldiv_op # | 
 | 14587 |  | 
 | 14588 | fsgldiv_res_qnan: | 
 | 14589 | 	bra.l		res_qnan | 
 | 14590 | fsgldiv_res_snan: | 
 | 14591 | 	bra.l		res_snan | 
 | 14592 | fsgldiv_res_operr: | 
 | 14593 | 	bra.l		res_operr | 
 | 14594 | fsgldiv_inf_load: | 
 | 14595 | 	bra.l		fdiv_inf_load | 
 | 14596 | fsgldiv_zero_load: | 
 | 14597 | 	bra.l		fdiv_zero_load | 
 | 14598 | fsgldiv_inf_dst: | 
 | 14599 | 	bra.l		fdiv_inf_dst | 
 | 14600 |  | 
 | 14601 | ######################################################################### | 
 | 14602 | # XDEF ****************************************************************	# | 
 | 14603 | #	fadd(): emulates the fadd instruction				# | 
 | 14604 | #	fsadd(): emulates the fadd instruction				# | 
 | 14605 | #	fdadd(): emulates the fdadd instruction				# | 
 | 14606 | #									# | 
 | 14607 | # XREF ****************************************************************	# | 
 | 14608 | #	addsub_scaler2() - scale the operands so they won't take exc	# | 
 | 14609 | #	ovf_res() - return default overflow result			# | 
 | 14610 | #	unf_res() - return default underflow result			# | 
 | 14611 | #	res_qnan() - set QNAN result					# | 
 | 14612 | #	res_snan() - set SNAN result					# | 
 | 14613 | #	res_operr() - set OPERR result					# | 
 | 14614 | #	scale_to_zero_src() - set src operand exponent equal to zero	# | 
 | 14615 | #	scale_to_zero_dst() - set dst operand exponent equal to zero	# | 
 | 14616 | #									# | 
 | 14617 | # INPUT ***************************************************************	# | 
 | 14618 | #	a0 = pointer to extended precision source operand		# | 
 | 14619 | #	a1 = pointer to extended precision destination operand		# | 
 | 14620 | #									# | 
 | 14621 | # OUTPUT **************************************************************	# | 
 | 14622 | #	fp0 = result							# | 
 | 14623 | #	fp1 = EXOP (if exception occurred)				# | 
 | 14624 | #									# | 
 | 14625 | # ALGORITHM ***********************************************************	# | 
 | 14626 | #	Handle NANs, infinities, and zeroes as special cases. Divide	# | 
 | 14627 | # norms into extended, single, and double precision.			# | 
 | 14628 | #	Do addition after scaling exponents such that exception won't	# | 
 | 14629 | # occur. Then, check result exponent to see if exception would have	# | 
 | 14630 | # occurred. If so, return default result and maybe EXOP. Else, insert	# | 
 | 14631 | # the correct result exponent and return. Set FPSR bits as appropriate.	# | 
 | 14632 | #									# | 
 | 14633 | ######################################################################### | 
 | 14634 |  | 
 | 14635 | 	global		fsadd | 
 | 14636 | fsadd: | 
 | 14637 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 14638 | 	ori.b		&s_mode*0x10,%d0	# insert sgl prec | 
 | 14639 | 	bra.b		fadd | 
 | 14640 |  | 
 | 14641 | 	global		fdadd | 
 | 14642 | fdadd: | 
 | 14643 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 14644 | 	ori.b		&d_mode*0x10,%d0	# insert dbl prec | 
 | 14645 |  | 
 | 14646 | 	global		fadd | 
 | 14647 | fadd: | 
 | 14648 | 	mov.l		%d0,L_SCR3(%a6)		# store rnd info | 
 | 14649 |  | 
 | 14650 | 	clr.w		%d1 | 
 | 14651 | 	mov.b		DTAG(%a6),%d1 | 
 | 14652 | 	lsl.b		&0x3,%d1 | 
 | 14653 | 	or.b		STAG(%a6),%d1		# combine src tags | 
 | 14654 |  | 
 | 14655 | 	bne.w		fadd_not_norm		# optimize on non-norm input | 
 | 14656 |  | 
 | 14657 | # | 
 | 14658 | # ADD: norms and denorms | 
 | 14659 | # | 
 | 14660 | fadd_norm: | 
 | 14661 | 	bsr.l		addsub_scaler2		# scale exponents | 
 | 14662 |  | 
 | 14663 | fadd_zero_entry: | 
 | 14664 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 | 14665 |  | 
 | 14666 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 14667 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 14668 |  | 
 | 14669 | 	fadd.x		FP_SCR0(%a6),%fp0	# execute add | 
 | 14670 |  | 
 | 14671 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 14672 | 	fmov.l		%fpsr,%d1		# fetch INEX2,N,Z | 
 | 14673 |  | 
 | 14674 | 	or.l		%d1,USER_FPSR(%a6)	# save exc and ccode bits | 
 | 14675 |  | 
 | 14676 | 	fbeq.w		fadd_zero_exit		# if result is zero, end now | 
 | 14677 |  | 
 | 14678 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 14679 |  | 
 | 14680 | 	fmovm.x		&0x01,-(%sp)		# save result to stack | 
 | 14681 |  | 
 | 14682 | 	mov.w		2+L_SCR3(%a6),%d1 | 
 | 14683 | 	lsr.b		&0x6,%d1 | 
 | 14684 |  | 
 | 14685 | 	mov.w		(%sp),%d2		# fetch new sign, exp | 
 | 14686 | 	andi.l		&0x7fff,%d2		# strip sign | 
 | 14687 | 	sub.l		%d0,%d2			# add scale factor | 
 | 14688 |  | 
 | 14689 | 	cmp.l		%d2,(tbl_fadd_ovfl.b,%pc,%d1.w*4) # is it an overflow? | 
 | 14690 | 	bge.b		fadd_ovfl		# yes | 
 | 14691 |  | 
 | 14692 | 	cmp.l		%d2,(tbl_fadd_unfl.b,%pc,%d1.w*4) # is it an underflow? | 
 | 14693 | 	blt.w		fadd_unfl		# yes | 
 | 14694 | 	beq.w		fadd_may_unfl		# maybe; go find out | 
 | 14695 |  | 
 | 14696 | fadd_normal: | 
 | 14697 | 	mov.w		(%sp),%d1 | 
 | 14698 | 	andi.w		&0x8000,%d1		# keep sign | 
 | 14699 | 	or.w		%d2,%d1			# concat sign,new exp | 
 | 14700 | 	mov.w		%d1,(%sp)		# insert new exponent | 
 | 14701 |  | 
 | 14702 | 	fmovm.x		(%sp)+,&0x80		# return result in fp0 | 
 | 14703 |  | 
 | 14704 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 14705 | 	rts | 
 | 14706 |  | 
 | 14707 | fadd_zero_exit: | 
 | 14708 | #	fmov.s		&0x00000000,%fp0	# return zero in fp0 | 
 | 14709 | 	rts | 
 | 14710 |  | 
 | 14711 | tbl_fadd_ovfl: | 
 | 14712 | 	long		0x7fff			# ext ovfl | 
 | 14713 | 	long		0x407f			# sgl ovfl | 
 | 14714 | 	long		0x43ff			# dbl ovfl | 
 | 14715 |  | 
 | 14716 | tbl_fadd_unfl: | 
 | 14717 | 	long	        0x0000			# ext unfl | 
 | 14718 | 	long		0x3f81			# sgl unfl | 
 | 14719 | 	long		0x3c01			# dbl unfl | 
 | 14720 |  | 
 | 14721 | fadd_ovfl: | 
 | 14722 | 	or.l		&ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex | 
 | 14723 |  | 
 | 14724 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 14725 | 	andi.b		&0x13,%d1		# is OVFL or INEX enabled? | 
 | 14726 | 	bne.b		fadd_ovfl_ena		# yes | 
 | 14727 |  | 
 | 14728 | 	add.l		&0xc,%sp | 
 | 14729 | fadd_ovfl_dis: | 
 | 14730 | 	btst		&neg_bit,FPSR_CC(%a6)	# is result negative? | 
 | 14731 | 	sne		%d1			# set sign param accordingly | 
 | 14732 | 	mov.l		L_SCR3(%a6),%d0		# pass prec:rnd | 
 | 14733 | 	bsr.l		ovf_res			# calculate default result | 
 | 14734 | 	or.b		%d0,FPSR_CC(%a6)	# set INF,N if applicable | 
 | 14735 | 	fmovm.x		(%a0),&0x80		# return default result in fp0 | 
 | 14736 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 14737 | 	rts | 
 | 14738 |  | 
 | 14739 | fadd_ovfl_ena: | 
 | 14740 | 	mov.b		L_SCR3(%a6),%d1 | 
 | 14741 | 	andi.b		&0xc0,%d1		# is precision extended? | 
 | 14742 | 	bne.b		fadd_ovfl_ena_sd	# no; prec = sgl or dbl | 
 | 14743 |  | 
 | 14744 | fadd_ovfl_ena_cont: | 
 | 14745 | 	mov.w		(%sp),%d1 | 
 | 14746 | 	andi.w		&0x8000,%d1		# keep sign | 
 | 14747 | 	subi.l		&0x6000,%d2		# add extra bias | 
 | 14748 | 	andi.w		&0x7fff,%d2 | 
 | 14749 | 	or.w		%d2,%d1			# concat sign,new exp | 
 | 14750 | 	mov.w		%d1,(%sp)		# insert new exponent | 
 | 14751 |  | 
 | 14752 | 	fmovm.x		(%sp)+,&0x40		# return EXOP in fp1 | 
 | 14753 | 	bra.b		fadd_ovfl_dis | 
 | 14754 |  | 
 | 14755 | fadd_ovfl_ena_sd: | 
 | 14756 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 | 14757 |  | 
 | 14758 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 14759 | 	andi.b		&0x30,%d1		# keep rnd mode | 
 | 14760 | 	fmov.l		%d1,%fpcr		# set FPCR | 
 | 14761 |  | 
 | 14762 | 	fadd.x		FP_SCR0(%a6),%fp0	# execute add | 
 | 14763 |  | 
 | 14764 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 14765 |  | 
 | 14766 | 	add.l		&0xc,%sp | 
 | 14767 | 	fmovm.x		&0x01,-(%sp) | 
 | 14768 | 	bra.b		fadd_ovfl_ena_cont | 
 | 14769 |  | 
 | 14770 | fadd_unfl: | 
 | 14771 | 	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | 
 | 14772 |  | 
 | 14773 | 	add.l		&0xc,%sp | 
 | 14774 |  | 
 | 14775 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 | 14776 |  | 
 | 14777 | 	fmov.l		&rz_mode*0x10,%fpcr	# set FPCR | 
 | 14778 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 14779 |  | 
 | 14780 | 	fadd.x		FP_SCR0(%a6),%fp0	# execute add | 
 | 14781 |  | 
 | 14782 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 14783 | 	fmov.l		%fpsr,%d1		# save status | 
 | 14784 |  | 
 | 14785 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX,N | 
 | 14786 |  | 
 | 14787 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 14788 | 	andi.b		&0x0b,%d1		# is UNFL or INEX enabled? | 
 | 14789 | 	bne.b		fadd_unfl_ena		# yes | 
 | 14790 |  | 
 | 14791 | fadd_unfl_dis: | 
 | 14792 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result | 
 | 14793 |  | 
 | 14794 | 	lea		FP_SCR0(%a6),%a0	# pass: result addr | 
 | 14795 | 	mov.l		L_SCR3(%a6),%d1		# pass: rnd prec,mode | 
 | 14796 | 	bsr.l		unf_res			# calculate default result | 
 | 14797 | 	or.b		%d0,FPSR_CC(%a6)	# 'Z' bit may have been set | 
 | 14798 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0 | 
 | 14799 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 14800 | 	rts | 
 | 14801 |  | 
 | 14802 | fadd_unfl_ena: | 
 | 14803 | 	fmovm.x		FP_SCR1(%a6),&0x40	# load dst op | 
 | 14804 |  | 
 | 14805 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 14806 | 	andi.b		&0xc0,%d1		# is precision extended? | 
 | 14807 | 	bne.b		fadd_unfl_ena_sd	# no; sgl or dbl | 
 | 14808 |  | 
 | 14809 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 14810 |  | 
 | 14811 | fadd_unfl_ena_cont: | 
 | 14812 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 14813 |  | 
 | 14814 | 	fadd.x		FP_SCR0(%a6),%fp1	# execute multiply | 
 | 14815 |  | 
 | 14816 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 14817 |  | 
 | 14818 | 	fmovm.x		&0x40,FP_SCR0(%a6)	# save result to stack | 
 | 14819 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp} | 
 | 14820 | 	mov.l		%d1,%d2			# make a copy | 
 | 14821 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 14822 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 14823 | 	sub.l		%d0,%d1			# add scale factor | 
 | 14824 | 	addi.l		&0x6000,%d1		# add new bias | 
 | 14825 | 	andi.w		&0x7fff,%d1		# clear top bit | 
 | 14826 | 	or.w		%d2,%d1			# concat sign,new exp | 
 | 14827 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 14828 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 14829 | 	bra.w		fadd_unfl_dis | 
 | 14830 |  | 
 | 14831 | fadd_unfl_ena_sd: | 
 | 14832 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 14833 | 	andi.b		&0x30,%d1		# use only rnd mode | 
 | 14834 | 	fmov.l		%d1,%fpcr		# set FPCR | 
 | 14835 |  | 
 | 14836 | 	bra.b		fadd_unfl_ena_cont | 
 | 14837 |  | 
 | 14838 | # | 
 | 14839 | # result is equal to the smallest normalized number in the selected precision | 
 | 14840 | # if the precision is extended, this result could not have come from an | 
 | 14841 | # underflow that rounded up. | 
 | 14842 | # | 
 | 14843 | fadd_may_unfl: | 
 | 14844 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 14845 | 	andi.b		&0xc0,%d1 | 
 | 14846 | 	beq.w		fadd_normal		# yes; no underflow occurred | 
 | 14847 |  | 
 | 14848 | 	mov.l		0x4(%sp),%d1		# extract hi(man) | 
 | 14849 | 	cmpi.l		%d1,&0x80000000		# is hi(man) = 0x80000000? | 
 | 14850 | 	bne.w		fadd_normal		# no; no underflow occurred | 
 | 14851 |  | 
 | 14852 | 	tst.l		0x8(%sp)		# is lo(man) = 0x0? | 
 | 14853 | 	bne.w		fadd_normal		# no; no underflow occurred | 
 | 14854 |  | 
 | 14855 | 	btst		&inex2_bit,FPSR_EXCEPT(%a6) # is INEX2 set? | 
 | 14856 | 	beq.w		fadd_normal		# no; no underflow occurred | 
 | 14857 |  | 
 | 14858 | # | 
 | 14859 | # ok, so now the result has a exponent equal to the smallest normalized | 
 | 14860 | # exponent for the selected precision. also, the mantissa is equal to | 
 | 14861 | # 0x8000000000000000 and this mantissa is the result of rounding non-zero | 
 | 14862 | # g,r,s. | 
 | 14863 | # now, we must determine whether the pre-rounded result was an underflow | 
 | 14864 | # rounded "up" or a normalized number rounded "down". | 
 | 14865 | # so, we do this be re-executing the add using RZ as the rounding mode and | 
 | 14866 | # seeing if the new result is smaller or equal to the current result. | 
 | 14867 | # | 
 | 14868 | 	fmovm.x		FP_SCR1(%a6),&0x40	# load dst op into fp1 | 
 | 14869 |  | 
 | 14870 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 14871 | 	andi.b		&0xc0,%d1		# keep rnd prec | 
 | 14872 | 	ori.b		&rz_mode*0x10,%d1	# insert rnd mode | 
 | 14873 | 	fmov.l		%d1,%fpcr		# set FPCR | 
 | 14874 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 14875 |  | 
 | 14876 | 	fadd.x		FP_SCR0(%a6),%fp1	# execute add | 
 | 14877 |  | 
 | 14878 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 14879 |  | 
 | 14880 | 	fabs.x		%fp0			# compare absolute values | 
 | 14881 | 	fabs.x		%fp1 | 
 | 14882 | 	fcmp.x		%fp0,%fp1		# is first result > second? | 
 | 14883 |  | 
 | 14884 | 	fbgt.w		fadd_unfl		# yes; it's an underflow | 
 | 14885 | 	bra.w		fadd_normal		# no; it's not an underflow | 
 | 14886 |  | 
 | 14887 | ########################################################################## | 
 | 14888 |  | 
 | 14889 | # | 
 | 14890 | # Add: inputs are not both normalized; what are they? | 
 | 14891 | # | 
 | 14892 | fadd_not_norm: | 
 | 14893 | 	mov.w		(tbl_fadd_op.b,%pc,%d1.w*2),%d1 | 
 | 14894 | 	jmp		(tbl_fadd_op.b,%pc,%d1.w*1) | 
 | 14895 |  | 
 | 14896 | 	swbeg		&48 | 
 | 14897 | tbl_fadd_op: | 
 | 14898 | 	short		fadd_norm	- tbl_fadd_op # NORM + NORM | 
 | 14899 | 	short		fadd_zero_src	- tbl_fadd_op # NORM + ZERO | 
 | 14900 | 	short		fadd_inf_src	- tbl_fadd_op # NORM + INF | 
 | 14901 | 	short		fadd_res_qnan	- tbl_fadd_op # NORM + QNAN | 
 | 14902 | 	short		fadd_norm	- tbl_fadd_op # NORM + DENORM | 
 | 14903 | 	short		fadd_res_snan	- tbl_fadd_op # NORM + SNAN | 
 | 14904 | 	short		tbl_fadd_op	- tbl_fadd_op # | 
 | 14905 | 	short		tbl_fadd_op	- tbl_fadd_op # | 
 | 14906 |  | 
 | 14907 | 	short		fadd_zero_dst	- tbl_fadd_op # ZERO + NORM | 
 | 14908 | 	short		fadd_zero_2	- tbl_fadd_op # ZERO + ZERO | 
 | 14909 | 	short		fadd_inf_src	- tbl_fadd_op # ZERO + INF | 
 | 14910 | 	short		fadd_res_qnan	- tbl_fadd_op # NORM + QNAN | 
 | 14911 | 	short		fadd_zero_dst	- tbl_fadd_op # ZERO + DENORM | 
 | 14912 | 	short		fadd_res_snan	- tbl_fadd_op # NORM + SNAN | 
 | 14913 | 	short		tbl_fadd_op	- tbl_fadd_op # | 
 | 14914 | 	short		tbl_fadd_op	- tbl_fadd_op # | 
 | 14915 |  | 
 | 14916 | 	short		fadd_inf_dst	- tbl_fadd_op # INF + NORM | 
 | 14917 | 	short		fadd_inf_dst	- tbl_fadd_op # INF + ZERO | 
 | 14918 | 	short		fadd_inf_2	- tbl_fadd_op # INF + INF | 
 | 14919 | 	short		fadd_res_qnan	- tbl_fadd_op # NORM + QNAN | 
 | 14920 | 	short		fadd_inf_dst	- tbl_fadd_op # INF + DENORM | 
 | 14921 | 	short		fadd_res_snan	- tbl_fadd_op # NORM + SNAN | 
 | 14922 | 	short		tbl_fadd_op	- tbl_fadd_op # | 
 | 14923 | 	short		tbl_fadd_op	- tbl_fadd_op # | 
 | 14924 |  | 
 | 14925 | 	short		fadd_res_qnan	- tbl_fadd_op # QNAN + NORM | 
 | 14926 | 	short		fadd_res_qnan	- tbl_fadd_op # QNAN + ZERO | 
 | 14927 | 	short		fadd_res_qnan	- tbl_fadd_op # QNAN + INF | 
 | 14928 | 	short		fadd_res_qnan	- tbl_fadd_op # QNAN + QNAN | 
 | 14929 | 	short		fadd_res_qnan	- tbl_fadd_op # QNAN + DENORM | 
 | 14930 | 	short		fadd_res_snan	- tbl_fadd_op # QNAN + SNAN | 
 | 14931 | 	short		tbl_fadd_op	- tbl_fadd_op # | 
 | 14932 | 	short		tbl_fadd_op	- tbl_fadd_op # | 
 | 14933 |  | 
 | 14934 | 	short		fadd_norm	- tbl_fadd_op # DENORM + NORM | 
 | 14935 | 	short		fadd_zero_src	- tbl_fadd_op # DENORM + ZERO | 
 | 14936 | 	short		fadd_inf_src	- tbl_fadd_op # DENORM + INF | 
 | 14937 | 	short		fadd_res_qnan	- tbl_fadd_op # NORM + QNAN | 
 | 14938 | 	short		fadd_norm	- tbl_fadd_op # DENORM + DENORM | 
 | 14939 | 	short		fadd_res_snan	- tbl_fadd_op # NORM + SNAN | 
 | 14940 | 	short		tbl_fadd_op	- tbl_fadd_op # | 
 | 14941 | 	short		tbl_fadd_op	- tbl_fadd_op # | 
 | 14942 |  | 
 | 14943 | 	short		fadd_res_snan	- tbl_fadd_op # SNAN + NORM | 
 | 14944 | 	short		fadd_res_snan	- tbl_fadd_op # SNAN + ZERO | 
 | 14945 | 	short		fadd_res_snan	- tbl_fadd_op # SNAN + INF | 
 | 14946 | 	short		fadd_res_snan	- tbl_fadd_op # SNAN + QNAN | 
 | 14947 | 	short		fadd_res_snan	- tbl_fadd_op # SNAN + DENORM | 
 | 14948 | 	short		fadd_res_snan	- tbl_fadd_op # SNAN + SNAN | 
 | 14949 | 	short		tbl_fadd_op	- tbl_fadd_op # | 
 | 14950 | 	short		tbl_fadd_op	- tbl_fadd_op # | 
 | 14951 |  | 
 | 14952 | fadd_res_qnan: | 
 | 14953 | 	bra.l		res_qnan | 
 | 14954 | fadd_res_snan: | 
 | 14955 | 	bra.l		res_snan | 
 | 14956 |  | 
 | 14957 | # | 
 | 14958 | # both operands are ZEROes | 
 | 14959 | # | 
 | 14960 | fadd_zero_2: | 
 | 14961 | 	mov.b		SRC_EX(%a0),%d0		# are the signs opposite | 
 | 14962 | 	mov.b		DST_EX(%a1),%d1 | 
 | 14963 | 	eor.b		%d0,%d1 | 
 | 14964 | 	bmi.w		fadd_zero_2_chk_rm	# weed out (-ZERO)+(+ZERO) | 
 | 14965 |  | 
 | 14966 | # the signs are the same. so determine whether they are positive or negative | 
 | 14967 | # and return the appropriately signed zero. | 
 | 14968 | 	tst.b		%d0			# are ZEROes positive or negative? | 
 | 14969 | 	bmi.b		fadd_zero_rm		# negative | 
 | 14970 | 	fmov.s		&0x00000000,%fp0	# return +ZERO | 
 | 14971 | 	mov.b		&z_bmask,FPSR_CC(%a6)	# set Z | 
 | 14972 | 	rts | 
 | 14973 |  | 
 | 14974 | # | 
 | 14975 | # the ZEROes have opposite signs: | 
 | 14976 | # - therefore, we return +ZERO if the rounding modes are RN,RZ, or RP. | 
 | 14977 | # - -ZERO is returned in the case of RM. | 
 | 14978 | # | 
 | 14979 | fadd_zero_2_chk_rm: | 
 | 14980 | 	mov.b		3+L_SCR3(%a6),%d1 | 
 | 14981 | 	andi.b		&0x30,%d1		# extract rnd mode | 
 | 14982 | 	cmpi.b		%d1,&rm_mode*0x10	# is rnd mode == RM? | 
 | 14983 | 	beq.b		fadd_zero_rm		# yes | 
 | 14984 | 	fmov.s		&0x00000000,%fp0	# return +ZERO | 
 | 14985 | 	mov.b		&z_bmask,FPSR_CC(%a6)	# set Z | 
 | 14986 | 	rts | 
 | 14987 |  | 
 | 14988 | fadd_zero_rm: | 
 | 14989 | 	fmov.s		&0x80000000,%fp0	# return -ZERO | 
 | 14990 | 	mov.b		&neg_bmask+z_bmask,FPSR_CC(%a6) # set NEG/Z | 
 | 14991 | 	rts | 
 | 14992 |  | 
 | 14993 | # | 
 | 14994 | # one operand is a ZERO and the other is a DENORM or NORM. scale | 
 | 14995 | # the DENORM or NORM and jump to the regular fadd routine. | 
 | 14996 | # | 
 | 14997 | fadd_zero_dst: | 
 | 14998 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 14999 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 15000 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 15001 | 	bsr.l		scale_to_zero_src	# scale the operand | 
 | 15002 | 	clr.w		FP_SCR1_EX(%a6) | 
 | 15003 | 	clr.l		FP_SCR1_HI(%a6) | 
 | 15004 | 	clr.l		FP_SCR1_LO(%a6) | 
 | 15005 | 	bra.w		fadd_zero_entry		# go execute fadd | 
 | 15006 |  | 
 | 15007 | fadd_zero_src: | 
 | 15008 | 	mov.w		DST_EX(%a1),FP_SCR1_EX(%a6) | 
 | 15009 | 	mov.l		DST_HI(%a1),FP_SCR1_HI(%a6) | 
 | 15010 | 	mov.l		DST_LO(%a1),FP_SCR1_LO(%a6) | 
 | 15011 | 	bsr.l		scale_to_zero_dst	# scale the operand | 
 | 15012 | 	clr.w		FP_SCR0_EX(%a6) | 
 | 15013 | 	clr.l		FP_SCR0_HI(%a6) | 
 | 15014 | 	clr.l		FP_SCR0_LO(%a6) | 
 | 15015 | 	bra.w		fadd_zero_entry		# go execute fadd | 
 | 15016 |  | 
 | 15017 | # | 
 | 15018 | # both operands are INFs. an OPERR will result if the INFs have | 
 | 15019 | # different signs. else, an INF of the same sign is returned | 
 | 15020 | # | 
 | 15021 | fadd_inf_2: | 
 | 15022 | 	mov.b		SRC_EX(%a0),%d0		# exclusive or the signs | 
 | 15023 | 	mov.b		DST_EX(%a1),%d1 | 
 | 15024 | 	eor.b		%d1,%d0 | 
 | 15025 | 	bmi.l		res_operr		# weed out (-INF)+(+INF) | 
 | 15026 |  | 
 | 15027 | # ok, so it's not an OPERR. but, we do have to remember to return the | 
 | 15028 | # src INF since that's where the 881/882 gets the j-bit from... | 
 | 15029 |  | 
 | 15030 | # | 
 | 15031 | # operands are INF and one of {ZERO, INF, DENORM, NORM} | 
 | 15032 | # | 
 | 15033 | fadd_inf_src: | 
 | 15034 | 	fmovm.x		SRC(%a0),&0x80		# return src INF | 
 | 15035 | 	tst.b		SRC_EX(%a0)		# is INF positive? | 
 | 15036 | 	bpl.b		fadd_inf_done		# yes; we're done | 
 | 15037 | 	mov.b		&neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG | 
 | 15038 | 	rts | 
 | 15039 |  | 
 | 15040 | # | 
 | 15041 | # operands are INF and one of {ZERO, INF, DENORM, NORM} | 
 | 15042 | # | 
 | 15043 | fadd_inf_dst: | 
 | 15044 | 	fmovm.x		DST(%a1),&0x80		# return dst INF | 
 | 15045 | 	tst.b		DST_EX(%a1)		# is INF positive? | 
 | 15046 | 	bpl.b		fadd_inf_done		# yes; we're done | 
 | 15047 | 	mov.b		&neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG | 
 | 15048 | 	rts | 
 | 15049 |  | 
 | 15050 | fadd_inf_done: | 
 | 15051 | 	mov.b		&inf_bmask,FPSR_CC(%a6) # set INF | 
 | 15052 | 	rts | 
 | 15053 |  | 
 | 15054 | ######################################################################### | 
 | 15055 | # XDEF ****************************************************************	# | 
 | 15056 | #	fsub(): emulates the fsub instruction				# | 
 | 15057 | #	fssub(): emulates the fssub instruction				# | 
 | 15058 | #	fdsub(): emulates the fdsub instruction				# | 
 | 15059 | #									# | 
 | 15060 | # XREF ****************************************************************	# | 
 | 15061 | #	addsub_scaler2() - scale the operands so they won't take exc	# | 
 | 15062 | #	ovf_res() - return default overflow result			# | 
 | 15063 | #	unf_res() - return default underflow result			# | 
 | 15064 | #	res_qnan() - set QNAN result					# | 
 | 15065 | #	res_snan() - set SNAN result					# | 
 | 15066 | #	res_operr() - set OPERR result					# | 
 | 15067 | #	scale_to_zero_src() - set src operand exponent equal to zero	# | 
 | 15068 | #	scale_to_zero_dst() - set dst operand exponent equal to zero	# | 
 | 15069 | #									# | 
 | 15070 | # INPUT ***************************************************************	# | 
 | 15071 | #	a0 = pointer to extended precision source operand		# | 
 | 15072 | #	a1 = pointer to extended precision destination operand		# | 
 | 15073 | #									# | 
 | 15074 | # OUTPUT **************************************************************	# | 
 | 15075 | #	fp0 = result							# | 
 | 15076 | #	fp1 = EXOP (if exception occurred)				# | 
 | 15077 | #									# | 
 | 15078 | # ALGORITHM ***********************************************************	# | 
 | 15079 | #	Handle NANs, infinities, and zeroes as special cases. Divide	# | 
 | 15080 | # norms into extended, single, and double precision.			# | 
 | 15081 | #	Do subtraction after scaling exponents such that exception won't# | 
 | 15082 | # occur. Then, check result exponent to see if exception would have	# | 
 | 15083 | # occurred. If so, return default result and maybe EXOP. Else, insert	# | 
 | 15084 | # the correct result exponent and return. Set FPSR bits as appropriate.	# | 
 | 15085 | #									# | 
 | 15086 | ######################################################################### | 
 | 15087 |  | 
 | 15088 | 	global		fssub | 
 | 15089 | fssub: | 
 | 15090 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 15091 | 	ori.b		&s_mode*0x10,%d0	# insert sgl prec | 
 | 15092 | 	bra.b		fsub | 
 | 15093 |  | 
 | 15094 | 	global		fdsub | 
 | 15095 | fdsub: | 
 | 15096 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 15097 | 	ori.b		&d_mode*0x10,%d0	# insert dbl prec | 
 | 15098 |  | 
 | 15099 | 	global		fsub | 
 | 15100 | fsub: | 
 | 15101 | 	mov.l		%d0,L_SCR3(%a6)		# store rnd info | 
 | 15102 |  | 
 | 15103 | 	clr.w		%d1 | 
 | 15104 | 	mov.b		DTAG(%a6),%d1 | 
 | 15105 | 	lsl.b		&0x3,%d1 | 
 | 15106 | 	or.b		STAG(%a6),%d1		# combine src tags | 
 | 15107 |  | 
 | 15108 | 	bne.w		fsub_not_norm		# optimize on non-norm input | 
 | 15109 |  | 
 | 15110 | # | 
 | 15111 | # SUB: norms and denorms | 
 | 15112 | # | 
 | 15113 | fsub_norm: | 
 | 15114 | 	bsr.l		addsub_scaler2		# scale exponents | 
 | 15115 |  | 
 | 15116 | fsub_zero_entry: | 
 | 15117 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 | 15118 |  | 
 | 15119 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 15120 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 15121 |  | 
 | 15122 | 	fsub.x		FP_SCR0(%a6),%fp0	# execute subtract | 
 | 15123 |  | 
 | 15124 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 15125 | 	fmov.l		%fpsr,%d1		# fetch INEX2, N, Z | 
 | 15126 |  | 
 | 15127 | 	or.l		%d1,USER_FPSR(%a6)	# save exc and ccode bits | 
 | 15128 |  | 
 | 15129 | 	fbeq.w		fsub_zero_exit		# if result zero, end now | 
 | 15130 |  | 
 | 15131 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 15132 |  | 
 | 15133 | 	fmovm.x		&0x01,-(%sp)		# save result to stack | 
 | 15134 |  | 
 | 15135 | 	mov.w		2+L_SCR3(%a6),%d1 | 
 | 15136 | 	lsr.b		&0x6,%d1 | 
 | 15137 |  | 
 | 15138 | 	mov.w		(%sp),%d2		# fetch new exponent | 
 | 15139 | 	andi.l		&0x7fff,%d2		# strip sign | 
 | 15140 | 	sub.l		%d0,%d2			# add scale factor | 
 | 15141 |  | 
 | 15142 | 	cmp.l		%d2,(tbl_fsub_ovfl.b,%pc,%d1.w*4) # is it an overflow? | 
 | 15143 | 	bge.b		fsub_ovfl		# yes | 
 | 15144 |  | 
 | 15145 | 	cmp.l		%d2,(tbl_fsub_unfl.b,%pc,%d1.w*4) # is it an underflow? | 
 | 15146 | 	blt.w		fsub_unfl		# yes | 
 | 15147 | 	beq.w		fsub_may_unfl		# maybe; go find out | 
 | 15148 |  | 
 | 15149 | fsub_normal: | 
 | 15150 | 	mov.w		(%sp),%d1 | 
 | 15151 | 	andi.w		&0x8000,%d1		# keep sign | 
 | 15152 | 	or.w		%d2,%d1			# insert new exponent | 
 | 15153 | 	mov.w		%d1,(%sp)		# insert new exponent | 
 | 15154 |  | 
 | 15155 | 	fmovm.x		(%sp)+,&0x80		# return result in fp0 | 
 | 15156 |  | 
 | 15157 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 15158 | 	rts | 
 | 15159 |  | 
 | 15160 | fsub_zero_exit: | 
 | 15161 | #	fmov.s		&0x00000000,%fp0	# return zero in fp0 | 
 | 15162 | 	rts | 
 | 15163 |  | 
 | 15164 | tbl_fsub_ovfl: | 
 | 15165 | 	long		0x7fff			# ext ovfl | 
 | 15166 | 	long		0x407f			# sgl ovfl | 
 | 15167 | 	long		0x43ff			# dbl ovfl | 
 | 15168 |  | 
 | 15169 | tbl_fsub_unfl: | 
 | 15170 | 	long	        0x0000			# ext unfl | 
 | 15171 | 	long		0x3f81			# sgl unfl | 
 | 15172 | 	long		0x3c01			# dbl unfl | 
 | 15173 |  | 
 | 15174 | fsub_ovfl: | 
 | 15175 | 	or.l		&ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex | 
 | 15176 |  | 
 | 15177 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 15178 | 	andi.b		&0x13,%d1		# is OVFL or INEX enabled? | 
 | 15179 | 	bne.b		fsub_ovfl_ena		# yes | 
 | 15180 |  | 
 | 15181 | 	add.l		&0xc,%sp | 
 | 15182 | fsub_ovfl_dis: | 
 | 15183 | 	btst		&neg_bit,FPSR_CC(%a6)	# is result negative? | 
 | 15184 | 	sne		%d1			# set sign param accordingly | 
 | 15185 | 	mov.l		L_SCR3(%a6),%d0		# pass prec:rnd | 
 | 15186 | 	bsr.l		ovf_res			# calculate default result | 
 | 15187 | 	or.b		%d0,FPSR_CC(%a6)	# set INF,N if applicable | 
 | 15188 | 	fmovm.x		(%a0),&0x80		# return default result in fp0 | 
 | 15189 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 15190 | 	rts | 
 | 15191 |  | 
 | 15192 | fsub_ovfl_ena: | 
 | 15193 | 	mov.b		L_SCR3(%a6),%d1 | 
 | 15194 | 	andi.b		&0xc0,%d1		# is precision extended? | 
 | 15195 | 	bne.b		fsub_ovfl_ena_sd	# no | 
 | 15196 |  | 
 | 15197 | fsub_ovfl_ena_cont: | 
 | 15198 | 	mov.w		(%sp),%d1		# fetch {sgn,exp} | 
 | 15199 | 	andi.w		&0x8000,%d1		# keep sign | 
 | 15200 | 	subi.l		&0x6000,%d2		# subtract new bias | 
 | 15201 | 	andi.w		&0x7fff,%d2		# clear top bit | 
 | 15202 | 	or.w		%d2,%d1			# concat sign,exp | 
 | 15203 | 	mov.w		%d1,(%sp)		# insert new exponent | 
 | 15204 |  | 
 | 15205 | 	fmovm.x		(%sp)+,&0x40		# return EXOP in fp1 | 
 | 15206 | 	bra.b		fsub_ovfl_dis | 
 | 15207 |  | 
 | 15208 | fsub_ovfl_ena_sd: | 
 | 15209 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 | 15210 |  | 
 | 15211 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 15212 | 	andi.b		&0x30,%d1		# clear rnd prec | 
 | 15213 | 	fmov.l		%d1,%fpcr		# set FPCR | 
 | 15214 |  | 
 | 15215 | 	fsub.x		FP_SCR0(%a6),%fp0	# execute subtract | 
 | 15216 |  | 
 | 15217 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 15218 |  | 
 | 15219 | 	add.l		&0xc,%sp | 
 | 15220 | 	fmovm.x		&0x01,-(%sp) | 
 | 15221 | 	bra.b		fsub_ovfl_ena_cont | 
 | 15222 |  | 
 | 15223 | fsub_unfl: | 
 | 15224 | 	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | 
 | 15225 |  | 
 | 15226 | 	add.l		&0xc,%sp | 
 | 15227 |  | 
 | 15228 | 	fmovm.x		FP_SCR1(%a6),&0x80	# load dst op | 
 | 15229 |  | 
 | 15230 | 	fmov.l		&rz_mode*0x10,%fpcr	# set FPCR | 
 | 15231 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 15232 |  | 
 | 15233 | 	fsub.x		FP_SCR0(%a6),%fp0	# execute subtract | 
 | 15234 |  | 
 | 15235 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 15236 | 	fmov.l		%fpsr,%d1		# save status | 
 | 15237 |  | 
 | 15238 | 	or.l		%d1,USER_FPSR(%a6) | 
 | 15239 |  | 
 | 15240 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 15241 | 	andi.b		&0x0b,%d1		# is UNFL or INEX enabled? | 
 | 15242 | 	bne.b		fsub_unfl_ena		# yes | 
 | 15243 |  | 
 | 15244 | fsub_unfl_dis: | 
 | 15245 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result | 
 | 15246 |  | 
 | 15247 | 	lea		FP_SCR0(%a6),%a0	# pass: result addr | 
 | 15248 | 	mov.l		L_SCR3(%a6),%d1		# pass: rnd prec,mode | 
 | 15249 | 	bsr.l		unf_res			# calculate default result | 
 | 15250 | 	or.b		%d0,FPSR_CC(%a6)	# 'Z' may have been set | 
 | 15251 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0 | 
 | 15252 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 15253 | 	rts | 
 | 15254 |  | 
 | 15255 | fsub_unfl_ena: | 
 | 15256 | 	fmovm.x		FP_SCR1(%a6),&0x40 | 
 | 15257 |  | 
 | 15258 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 15259 | 	andi.b		&0xc0,%d1		# is precision extended? | 
 | 15260 | 	bne.b		fsub_unfl_ena_sd	# no | 
 | 15261 |  | 
 | 15262 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 15263 |  | 
 | 15264 | fsub_unfl_ena_cont: | 
 | 15265 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 15266 |  | 
 | 15267 | 	fsub.x		FP_SCR0(%a6),%fp1	# execute subtract | 
 | 15268 |  | 
 | 15269 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 15270 |  | 
 | 15271 | 	fmovm.x		&0x40,FP_SCR0(%a6)	# store result to stack | 
 | 15272 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp} | 
 | 15273 | 	mov.l		%d1,%d2			# make a copy | 
 | 15274 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 15275 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 15276 | 	sub.l		%d0,%d1			# add scale factor | 
 | 15277 | 	addi.l		&0x6000,%d1		# subtract new bias | 
 | 15278 | 	andi.w		&0x7fff,%d1		# clear top bit | 
 | 15279 | 	or.w		%d2,%d1			# concat sgn,exp | 
 | 15280 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 15281 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 15282 | 	bra.w		fsub_unfl_dis | 
 | 15283 |  | 
 | 15284 | fsub_unfl_ena_sd: | 
 | 15285 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 15286 | 	andi.b		&0x30,%d1		# clear rnd prec | 
 | 15287 | 	fmov.l		%d1,%fpcr		# set FPCR | 
 | 15288 |  | 
 | 15289 | 	bra.b		fsub_unfl_ena_cont | 
 | 15290 |  | 
 | 15291 | # | 
 | 15292 | # result is equal to the smallest normalized number in the selected precision | 
 | 15293 | # if the precision is extended, this result could not have come from an | 
 | 15294 | # underflow that rounded up. | 
 | 15295 | # | 
 | 15296 | fsub_may_unfl: | 
 | 15297 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 15298 | 	andi.b		&0xc0,%d1		# fetch rnd prec | 
 | 15299 | 	beq.w		fsub_normal		# yes; no underflow occurred | 
 | 15300 |  | 
 | 15301 | 	mov.l		0x4(%sp),%d1 | 
 | 15302 | 	cmpi.l		%d1,&0x80000000		# is hi(man) = 0x80000000? | 
 | 15303 | 	bne.w		fsub_normal		# no; no underflow occurred | 
 | 15304 |  | 
 | 15305 | 	tst.l		0x8(%sp)		# is lo(man) = 0x0? | 
 | 15306 | 	bne.w		fsub_normal		# no; no underflow occurred | 
 | 15307 |  | 
 | 15308 | 	btst		&inex2_bit,FPSR_EXCEPT(%a6) # is INEX2 set? | 
 | 15309 | 	beq.w		fsub_normal		# no; no underflow occurred | 
 | 15310 |  | 
 | 15311 | # | 
 | 15312 | # ok, so now the result has a exponent equal to the smallest normalized | 
 | 15313 | # exponent for the selected precision. also, the mantissa is equal to | 
 | 15314 | # 0x8000000000000000 and this mantissa is the result of rounding non-zero | 
 | 15315 | # g,r,s. | 
 | 15316 | # now, we must determine whether the pre-rounded result was an underflow | 
 | 15317 | # rounded "up" or a normalized number rounded "down". | 
 | 15318 | # so, we do this be re-executing the add using RZ as the rounding mode and | 
 | 15319 | # seeing if the new result is smaller or equal to the current result. | 
 | 15320 | # | 
 | 15321 | 	fmovm.x		FP_SCR1(%a6),&0x40	# load dst op into fp1 | 
 | 15322 |  | 
 | 15323 | 	mov.l		L_SCR3(%a6),%d1 | 
 | 15324 | 	andi.b		&0xc0,%d1		# keep rnd prec | 
 | 15325 | 	ori.b		&rz_mode*0x10,%d1	# insert rnd mode | 
 | 15326 | 	fmov.l		%d1,%fpcr		# set FPCR | 
 | 15327 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 15328 |  | 
 | 15329 | 	fsub.x		FP_SCR0(%a6),%fp1	# execute subtract | 
 | 15330 |  | 
 | 15331 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 15332 |  | 
 | 15333 | 	fabs.x		%fp0			# compare absolute values | 
 | 15334 | 	fabs.x		%fp1 | 
 | 15335 | 	fcmp.x		%fp0,%fp1		# is first result > second? | 
 | 15336 |  | 
 | 15337 | 	fbgt.w		fsub_unfl		# yes; it's an underflow | 
 | 15338 | 	bra.w		fsub_normal		# no; it's not an underflow | 
 | 15339 |  | 
 | 15340 | ########################################################################## | 
 | 15341 |  | 
 | 15342 | # | 
 | 15343 | # Sub: inputs are not both normalized; what are they? | 
 | 15344 | # | 
 | 15345 | fsub_not_norm: | 
 | 15346 | 	mov.w		(tbl_fsub_op.b,%pc,%d1.w*2),%d1 | 
 | 15347 | 	jmp		(tbl_fsub_op.b,%pc,%d1.w*1) | 
 | 15348 |  | 
 | 15349 | 	swbeg		&48 | 
 | 15350 | tbl_fsub_op: | 
 | 15351 | 	short		fsub_norm	- tbl_fsub_op # NORM - NORM | 
 | 15352 | 	short		fsub_zero_src	- tbl_fsub_op # NORM - ZERO | 
 | 15353 | 	short		fsub_inf_src	- tbl_fsub_op # NORM - INF | 
 | 15354 | 	short		fsub_res_qnan	- tbl_fsub_op # NORM - QNAN | 
 | 15355 | 	short		fsub_norm	- tbl_fsub_op # NORM - DENORM | 
 | 15356 | 	short		fsub_res_snan	- tbl_fsub_op # NORM - SNAN | 
 | 15357 | 	short		tbl_fsub_op	- tbl_fsub_op # | 
 | 15358 | 	short		tbl_fsub_op	- tbl_fsub_op # | 
 | 15359 |  | 
 | 15360 | 	short		fsub_zero_dst	- tbl_fsub_op # ZERO - NORM | 
 | 15361 | 	short		fsub_zero_2	- tbl_fsub_op # ZERO - ZERO | 
 | 15362 | 	short		fsub_inf_src	- tbl_fsub_op # ZERO - INF | 
 | 15363 | 	short		fsub_res_qnan	- tbl_fsub_op # NORM - QNAN | 
 | 15364 | 	short		fsub_zero_dst	- tbl_fsub_op # ZERO - DENORM | 
 | 15365 | 	short		fsub_res_snan	- tbl_fsub_op # NORM - SNAN | 
 | 15366 | 	short		tbl_fsub_op	- tbl_fsub_op # | 
 | 15367 | 	short		tbl_fsub_op	- tbl_fsub_op # | 
 | 15368 |  | 
 | 15369 | 	short		fsub_inf_dst	- tbl_fsub_op # INF - NORM | 
 | 15370 | 	short		fsub_inf_dst	- tbl_fsub_op # INF - ZERO | 
 | 15371 | 	short		fsub_inf_2	- tbl_fsub_op # INF - INF | 
 | 15372 | 	short		fsub_res_qnan	- tbl_fsub_op # NORM - QNAN | 
 | 15373 | 	short		fsub_inf_dst	- tbl_fsub_op # INF - DENORM | 
 | 15374 | 	short		fsub_res_snan	- tbl_fsub_op # NORM - SNAN | 
 | 15375 | 	short		tbl_fsub_op	- tbl_fsub_op # | 
 | 15376 | 	short		tbl_fsub_op	- tbl_fsub_op # | 
 | 15377 |  | 
 | 15378 | 	short		fsub_res_qnan	- tbl_fsub_op # QNAN - NORM | 
 | 15379 | 	short		fsub_res_qnan	- tbl_fsub_op # QNAN - ZERO | 
 | 15380 | 	short		fsub_res_qnan	- tbl_fsub_op # QNAN - INF | 
 | 15381 | 	short		fsub_res_qnan	- tbl_fsub_op # QNAN - QNAN | 
 | 15382 | 	short		fsub_res_qnan	- tbl_fsub_op # QNAN - DENORM | 
 | 15383 | 	short		fsub_res_snan	- tbl_fsub_op # QNAN - SNAN | 
 | 15384 | 	short		tbl_fsub_op	- tbl_fsub_op # | 
 | 15385 | 	short		tbl_fsub_op	- tbl_fsub_op # | 
 | 15386 |  | 
 | 15387 | 	short		fsub_norm	- tbl_fsub_op # DENORM - NORM | 
 | 15388 | 	short		fsub_zero_src	- tbl_fsub_op # DENORM - ZERO | 
 | 15389 | 	short		fsub_inf_src	- tbl_fsub_op # DENORM - INF | 
 | 15390 | 	short		fsub_res_qnan	- tbl_fsub_op # NORM - QNAN | 
 | 15391 | 	short		fsub_norm	- tbl_fsub_op # DENORM - DENORM | 
 | 15392 | 	short		fsub_res_snan	- tbl_fsub_op # NORM - SNAN | 
 | 15393 | 	short		tbl_fsub_op	- tbl_fsub_op # | 
 | 15394 | 	short		tbl_fsub_op	- tbl_fsub_op # | 
 | 15395 |  | 
 | 15396 | 	short		fsub_res_snan	- tbl_fsub_op # SNAN - NORM | 
 | 15397 | 	short		fsub_res_snan	- tbl_fsub_op # SNAN - ZERO | 
 | 15398 | 	short		fsub_res_snan	- tbl_fsub_op # SNAN - INF | 
 | 15399 | 	short		fsub_res_snan	- tbl_fsub_op # SNAN - QNAN | 
 | 15400 | 	short		fsub_res_snan	- tbl_fsub_op # SNAN - DENORM | 
 | 15401 | 	short		fsub_res_snan	- tbl_fsub_op # SNAN - SNAN | 
 | 15402 | 	short		tbl_fsub_op	- tbl_fsub_op # | 
 | 15403 | 	short		tbl_fsub_op	- tbl_fsub_op # | 
 | 15404 |  | 
 | 15405 | fsub_res_qnan: | 
 | 15406 | 	bra.l		res_qnan | 
 | 15407 | fsub_res_snan: | 
 | 15408 | 	bra.l		res_snan | 
 | 15409 |  | 
 | 15410 | # | 
 | 15411 | # both operands are ZEROes | 
 | 15412 | # | 
 | 15413 | fsub_zero_2: | 
 | 15414 | 	mov.b		SRC_EX(%a0),%d0 | 
 | 15415 | 	mov.b		DST_EX(%a1),%d1 | 
 | 15416 | 	eor.b		%d1,%d0 | 
 | 15417 | 	bpl.b		fsub_zero_2_chk_rm | 
 | 15418 |  | 
 | 15419 | # the signs are opposite, so, return a ZERO w/ the sign of the dst ZERO | 
 | 15420 | 	tst.b		%d0			# is dst negative? | 
 | 15421 | 	bmi.b		fsub_zero_2_rm		# yes | 
 | 15422 | 	fmov.s		&0x00000000,%fp0	# no; return +ZERO | 
 | 15423 | 	mov.b		&z_bmask,FPSR_CC(%a6)	# set Z | 
 | 15424 | 	rts | 
 | 15425 |  | 
 | 15426 | # | 
 | 15427 | # the ZEROes have the same signs: | 
 | 15428 | # - therefore, we return +ZERO if the rounding mode is RN,RZ, or RP | 
 | 15429 | # - -ZERO is returned in the case of RM. | 
 | 15430 | # | 
 | 15431 | fsub_zero_2_chk_rm: | 
 | 15432 | 	mov.b		3+L_SCR3(%a6),%d1 | 
 | 15433 | 	andi.b		&0x30,%d1		# extract rnd mode | 
 | 15434 | 	cmpi.b		%d1,&rm_mode*0x10	# is rnd mode = RM? | 
 | 15435 | 	beq.b		fsub_zero_2_rm		# yes | 
 | 15436 | 	fmov.s		&0x00000000,%fp0	# no; return +ZERO | 
 | 15437 | 	mov.b		&z_bmask,FPSR_CC(%a6)	# set Z | 
 | 15438 | 	rts | 
 | 15439 |  | 
 | 15440 | fsub_zero_2_rm: | 
 | 15441 | 	fmov.s		&0x80000000,%fp0	# return -ZERO | 
 | 15442 | 	mov.b		&z_bmask+neg_bmask,FPSR_CC(%a6)	# set Z/NEG | 
 | 15443 | 	rts | 
 | 15444 |  | 
 | 15445 | # | 
 | 15446 | # one operand is a ZERO and the other is a DENORM or a NORM. | 
 | 15447 | # scale the DENORM or NORM and jump to the regular fsub routine. | 
 | 15448 | # | 
 | 15449 | fsub_zero_dst: | 
 | 15450 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 15451 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 15452 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 15453 | 	bsr.l		scale_to_zero_src	# scale the operand | 
 | 15454 | 	clr.w		FP_SCR1_EX(%a6) | 
 | 15455 | 	clr.l		FP_SCR1_HI(%a6) | 
 | 15456 | 	clr.l		FP_SCR1_LO(%a6) | 
 | 15457 | 	bra.w		fsub_zero_entry		# go execute fsub | 
 | 15458 |  | 
 | 15459 | fsub_zero_src: | 
 | 15460 | 	mov.w		DST_EX(%a1),FP_SCR1_EX(%a6) | 
 | 15461 | 	mov.l		DST_HI(%a1),FP_SCR1_HI(%a6) | 
 | 15462 | 	mov.l		DST_LO(%a1),FP_SCR1_LO(%a6) | 
 | 15463 | 	bsr.l		scale_to_zero_dst	# scale the operand | 
 | 15464 | 	clr.w		FP_SCR0_EX(%a6) | 
 | 15465 | 	clr.l		FP_SCR0_HI(%a6) | 
 | 15466 | 	clr.l		FP_SCR0_LO(%a6) | 
 | 15467 | 	bra.w		fsub_zero_entry		# go execute fsub | 
 | 15468 |  | 
 | 15469 | # | 
 | 15470 | # both operands are INFs. an OPERR will result if the INFs have the | 
 | 15471 | # same signs. else, | 
 | 15472 | # | 
 | 15473 | fsub_inf_2: | 
 | 15474 | 	mov.b		SRC_EX(%a0),%d0		# exclusive or the signs | 
 | 15475 | 	mov.b		DST_EX(%a1),%d1 | 
 | 15476 | 	eor.b		%d1,%d0 | 
 | 15477 | 	bpl.l		res_operr		# weed out (-INF)+(+INF) | 
 | 15478 |  | 
 | 15479 | # ok, so it's not an OPERR. but we do have to remember to return | 
 | 15480 | # the src INF since that's where the 881/882 gets the j-bit. | 
 | 15481 |  | 
 | 15482 | fsub_inf_src: | 
 | 15483 | 	fmovm.x		SRC(%a0),&0x80		# return src INF | 
 | 15484 | 	fneg.x		%fp0			# invert sign | 
 | 15485 | 	fbge.w		fsub_inf_done		# sign is now positive | 
 | 15486 | 	mov.b		&neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG | 
 | 15487 | 	rts | 
 | 15488 |  | 
 | 15489 | fsub_inf_dst: | 
 | 15490 | 	fmovm.x		DST(%a1),&0x80		# return dst INF | 
 | 15491 | 	tst.b		DST_EX(%a1)		# is INF negative? | 
 | 15492 | 	bpl.b		fsub_inf_done		# no | 
 | 15493 | 	mov.b		&neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG | 
 | 15494 | 	rts | 
 | 15495 |  | 
 | 15496 | fsub_inf_done: | 
 | 15497 | 	mov.b		&inf_bmask,FPSR_CC(%a6)	# set INF | 
 | 15498 | 	rts | 
 | 15499 |  | 
 | 15500 | ######################################################################### | 
 | 15501 | # XDEF ****************************************************************	# | 
 | 15502 | #	fsqrt(): emulates the fsqrt instruction				# | 
 | 15503 | #	fssqrt(): emulates the fssqrt instruction			# | 
 | 15504 | #	fdsqrt(): emulates the fdsqrt instruction			# | 
 | 15505 | #									# | 
 | 15506 | # XREF ****************************************************************	# | 
 | 15507 | #	scale_sqrt() - scale the source operand				# | 
 | 15508 | #	unf_res() - return default underflow result			# | 
 | 15509 | #	ovf_res() - return default overflow result			# | 
 | 15510 | #	res_qnan_1op() - return QNAN result				# | 
 | 15511 | #	res_snan_1op() - return SNAN result				# | 
 | 15512 | #									# | 
 | 15513 | # INPUT ***************************************************************	# | 
 | 15514 | #	a0 = pointer to extended precision source operand		# | 
 | 15515 | #	d0  rnd prec,mode						# | 
 | 15516 | #									# | 
 | 15517 | # OUTPUT **************************************************************	# | 
 | 15518 | #	fp0 = result							# | 
 | 15519 | #	fp1 = EXOP (if exception occurred)				# | 
 | 15520 | #									# | 
 | 15521 | # ALGORITHM ***********************************************************	# | 
 | 15522 | #	Handle NANs, infinities, and zeroes as special cases. Divide	# | 
 | 15523 | # norms/denorms into ext/sgl/dbl precision.				# | 
 | 15524 | #	For norms/denorms, scale the exponents such that a sqrt		# | 
 | 15525 | # instruction won't cause an exception. Use the regular fsqrt to	# | 
 | 15526 | # compute a result. Check if the regular operands would have taken	# | 
 | 15527 | # an exception. If so, return the default overflow/underflow result	# | 
 | 15528 | # and return the EXOP if exceptions are enabled. Else, scale the	# | 
 | 15529 | # result operand to the proper exponent.				# | 
 | 15530 | #									# | 
 | 15531 | ######################################################################### | 
 | 15532 |  | 
 | 15533 | 	global		fssqrt | 
 | 15534 | fssqrt: | 
 | 15535 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 15536 | 	ori.b		&s_mode*0x10,%d0	# insert sgl precision | 
 | 15537 | 	bra.b		fsqrt | 
 | 15538 |  | 
 | 15539 | 	global		fdsqrt | 
 | 15540 | fdsqrt: | 
 | 15541 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 15542 | 	ori.b		&d_mode*0x10,%d0	# insert dbl precision | 
 | 15543 |  | 
 | 15544 | 	global		fsqrt | 
 | 15545 | fsqrt: | 
 | 15546 | 	mov.l		%d0,L_SCR3(%a6)		# store rnd info | 
 | 15547 | 	clr.w		%d1 | 
 | 15548 | 	mov.b		STAG(%a6),%d1 | 
 | 15549 | 	bne.w		fsqrt_not_norm		# optimize on non-norm input | 
 | 15550 |  | 
 | 15551 | # | 
 | 15552 | # SQUARE ROOT: norms and denorms ONLY! | 
 | 15553 | # | 
 | 15554 | fsqrt_norm: | 
 | 15555 | 	tst.b		SRC_EX(%a0)		# is operand negative? | 
 | 15556 | 	bmi.l		res_operr		# yes | 
 | 15557 |  | 
 | 15558 | 	andi.b		&0xc0,%d0		# is precision extended? | 
 | 15559 | 	bne.b		fsqrt_not_ext		# no; go handle sgl or dbl | 
 | 15560 |  | 
 | 15561 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 15562 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 15563 |  | 
 | 15564 | 	fsqrt.x		(%a0),%fp0		# execute square root | 
 | 15565 |  | 
 | 15566 | 	fmov.l		%fpsr,%d1 | 
 | 15567 | 	or.l		%d1,USER_FPSR(%a6)	# set N,INEX | 
 | 15568 |  | 
 | 15569 | 	rts | 
 | 15570 |  | 
 | 15571 | fsqrt_denorm: | 
 | 15572 | 	tst.b		SRC_EX(%a0)		# is operand negative? | 
 | 15573 | 	bmi.l		res_operr		# yes | 
 | 15574 |  | 
 | 15575 | 	andi.b		&0xc0,%d0		# is precision extended? | 
 | 15576 | 	bne.b		fsqrt_not_ext		# no; go handle sgl or dbl | 
 | 15577 |  | 
 | 15578 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 15579 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 15580 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 15581 |  | 
 | 15582 | 	bsr.l		scale_sqrt		# calculate scale factor | 
 | 15583 |  | 
 | 15584 | 	bra.w		fsqrt_sd_normal | 
 | 15585 |  | 
 | 15586 | # | 
 | 15587 | # operand is either single or double | 
 | 15588 | # | 
 | 15589 | fsqrt_not_ext: | 
 | 15590 | 	cmpi.b		%d0,&s_mode*0x10	# separate sgl/dbl prec | 
 | 15591 | 	bne.w		fsqrt_dbl | 
 | 15592 |  | 
 | 15593 | # | 
 | 15594 | # operand is to be rounded to single precision | 
 | 15595 | # | 
 | 15596 | fsqrt_sgl: | 
 | 15597 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 15598 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 15599 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 15600 |  | 
 | 15601 | 	bsr.l		scale_sqrt		# calculate scale factor | 
 | 15602 |  | 
 | 15603 | 	cmpi.l		%d0,&0x3fff-0x3f81	# will move in underflow? | 
 | 15604 | 	beq.w		fsqrt_sd_may_unfl | 
 | 15605 | 	bgt.w		fsqrt_sd_unfl		# yes; go handle underflow | 
 | 15606 | 	cmpi.l		%d0,&0x3fff-0x407f	# will move in overflow? | 
 | 15607 | 	beq.w		fsqrt_sd_may_ovfl	# maybe; go check | 
 | 15608 | 	blt.w		fsqrt_sd_ovfl		# yes; go handle overflow | 
 | 15609 |  | 
 | 15610 | # | 
 | 15611 | # operand will NOT overflow or underflow when moved in to the fp reg file | 
 | 15612 | # | 
 | 15613 | fsqrt_sd_normal: | 
 | 15614 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 15615 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 15616 |  | 
 | 15617 | 	fsqrt.x		FP_SCR0(%a6),%fp0	# perform absolute | 
 | 15618 |  | 
 | 15619 | 	fmov.l		%fpsr,%d1		# save FPSR | 
 | 15620 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 15621 |  | 
 | 15622 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 | 15623 |  | 
 | 15624 | fsqrt_sd_normal_exit: | 
 | 15625 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 15626 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result | 
 | 15627 | 	mov.w		FP_SCR0_EX(%a6),%d1	# load sgn,exp | 
 | 15628 | 	mov.l		%d1,%d2			# make a copy | 
 | 15629 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 15630 | 	sub.l		%d0,%d1			# add scale factor | 
 | 15631 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 15632 | 	or.w		%d1,%d2			# concat old sign,new exp | 
 | 15633 | 	mov.w		%d2,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 15634 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 15635 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return result in fp0 | 
 | 15636 | 	rts | 
 | 15637 |  | 
 | 15638 | # | 
 | 15639 | # operand is to be rounded to double precision | 
 | 15640 | # | 
 | 15641 | fsqrt_dbl: | 
 | 15642 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 15643 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 15644 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 15645 |  | 
 | 15646 | 	bsr.l		scale_sqrt		# calculate scale factor | 
 | 15647 |  | 
 | 15648 | 	cmpi.l		%d0,&0x3fff-0x3c01	# will move in underflow? | 
 | 15649 | 	beq.w		fsqrt_sd_may_unfl | 
 | 15650 | 	bgt.b		fsqrt_sd_unfl		# yes; go handle underflow | 
 | 15651 | 	cmpi.l		%d0,&0x3fff-0x43ff	# will move in overflow? | 
 | 15652 | 	beq.w		fsqrt_sd_may_ovfl	# maybe; go check | 
 | 15653 | 	blt.w		fsqrt_sd_ovfl		# yes; go handle overflow | 
 | 15654 | 	bra.w		fsqrt_sd_normal		# no; ho handle normalized op | 
 | 15655 |  | 
 | 15656 | # we're on the line here and the distinguising characteristic is whether | 
 | 15657 | # the exponent is 3fff or 3ffe. if it's 3ffe, then it's a safe number | 
 | 15658 | # elsewise fall through to underflow. | 
 | 15659 | fsqrt_sd_may_unfl: | 
 | 15660 | 	btst		&0x0,1+FP_SCR0_EX(%a6)	# is exponent 0x3fff? | 
 | 15661 | 	bne.w		fsqrt_sd_normal		# yes, so no underflow | 
 | 15662 |  | 
 | 15663 | # | 
 | 15664 | # operand WILL underflow when moved in to the fp register file | 
 | 15665 | # | 
 | 15666 | fsqrt_sd_unfl: | 
 | 15667 | 	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit | 
 | 15668 |  | 
 | 15669 | 	fmov.l		&rz_mode*0x10,%fpcr	# set FPCR | 
 | 15670 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 15671 |  | 
 | 15672 | 	fsqrt.x		FP_SCR0(%a6),%fp0	# execute square root | 
 | 15673 |  | 
 | 15674 | 	fmov.l		%fpsr,%d1		# save status | 
 | 15675 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 15676 |  | 
 | 15677 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 | 15678 |  | 
 | 15679 | # if underflow or inexact is enabled, go calculate EXOP first. | 
 | 15680 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 15681 | 	andi.b		&0x0b,%d1		# is UNFL or INEX enabled? | 
 | 15682 | 	bne.b		fsqrt_sd_unfl_ena	# yes | 
 | 15683 |  | 
 | 15684 | fsqrt_sd_unfl_dis: | 
 | 15685 | 	fmovm.x		&0x80,FP_SCR0(%a6)	# store out result | 
 | 15686 |  | 
 | 15687 | 	lea		FP_SCR0(%a6),%a0	# pass: result addr | 
 | 15688 | 	mov.l		L_SCR3(%a6),%d1		# pass: rnd prec,mode | 
 | 15689 | 	bsr.l		unf_res			# calculate default result | 
 | 15690 | 	or.b		%d0,FPSR_CC(%a6)	# set possible 'Z' ccode | 
 | 15691 | 	fmovm.x		FP_SCR0(%a6),&0x80	# return default result in fp0 | 
 | 15692 | 	rts | 
 | 15693 |  | 
 | 15694 | # | 
 | 15695 | # operand will underflow AND underflow is enabled. | 
 | 15696 | # therefore, we must return the result rounded to extended precision. | 
 | 15697 | # | 
 | 15698 | fsqrt_sd_unfl_ena: | 
 | 15699 | 	mov.l		FP_SCR0_HI(%a6),FP_SCR1_HI(%a6) | 
 | 15700 | 	mov.l		FP_SCR0_LO(%a6),FP_SCR1_LO(%a6) | 
 | 15701 | 	mov.w		FP_SCR0_EX(%a6),%d1	# load current exponent | 
 | 15702 |  | 
 | 15703 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 15704 | 	mov.l		%d1,%d2			# make a copy | 
 | 15705 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 15706 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 15707 | 	sub.l		%d0,%d1			# subtract scale factor | 
 | 15708 | 	addi.l		&0x6000,%d1		# add new bias | 
 | 15709 | 	andi.w		&0x7fff,%d1 | 
 | 15710 | 	or.w		%d2,%d1			# concat new sign,new exp | 
 | 15711 | 	mov.w		%d1,FP_SCR1_EX(%a6)	# insert new exp | 
 | 15712 | 	fmovm.x		FP_SCR1(%a6),&0x40	# return EXOP in fp1 | 
 | 15713 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 15714 | 	bra.b		fsqrt_sd_unfl_dis | 
 | 15715 |  | 
 | 15716 | # | 
 | 15717 | # operand WILL overflow. | 
 | 15718 | # | 
 | 15719 | fsqrt_sd_ovfl: | 
 | 15720 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 15721 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 15722 |  | 
 | 15723 | 	fsqrt.x		FP_SCR0(%a6),%fp0	# perform square root | 
 | 15724 |  | 
 | 15725 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 15726 | 	fmov.l		%fpsr,%d1		# save FPSR | 
 | 15727 |  | 
 | 15728 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 | 15729 |  | 
 | 15730 | fsqrt_sd_ovfl_tst: | 
 | 15731 | 	or.l		&ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex | 
 | 15732 |  | 
 | 15733 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 15734 | 	andi.b		&0x13,%d1		# is OVFL or INEX enabled? | 
 | 15735 | 	bne.b		fsqrt_sd_ovfl_ena	# yes | 
 | 15736 |  | 
 | 15737 | # | 
 | 15738 | # OVFL is not enabled; therefore, we must create the default result by | 
 | 15739 | # calling ovf_res(). | 
 | 15740 | # | 
 | 15741 | fsqrt_sd_ovfl_dis: | 
 | 15742 | 	btst		&neg_bit,FPSR_CC(%a6)	# is result negative? | 
 | 15743 | 	sne		%d1			# set sign param accordingly | 
 | 15744 | 	mov.l		L_SCR3(%a6),%d0		# pass: prec,mode | 
 | 15745 | 	bsr.l		ovf_res			# calculate default result | 
 | 15746 | 	or.b		%d0,FPSR_CC(%a6)	# set INF,N if applicable | 
 | 15747 | 	fmovm.x		(%a0),&0x80		# return default result in fp0 | 
 | 15748 | 	rts | 
 | 15749 |  | 
 | 15750 | # | 
 | 15751 | # OVFL is enabled. | 
 | 15752 | # the INEX2 bit has already been updated by the round to the correct precision. | 
 | 15753 | # now, round to extended(and don't alter the FPSR). | 
 | 15754 | # | 
 | 15755 | fsqrt_sd_ovfl_ena: | 
 | 15756 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 15757 | 	mov.w		FP_SCR0_EX(%a6),%d1	# fetch {sgn,exp} | 
 | 15758 | 	mov.l		%d1,%d2			# make a copy | 
 | 15759 | 	andi.l		&0x7fff,%d1		# strip sign | 
 | 15760 | 	andi.w		&0x8000,%d2		# keep old sign | 
 | 15761 | 	sub.l		%d0,%d1			# add scale factor | 
 | 15762 | 	subi.l		&0x6000,%d1		# subtract bias | 
 | 15763 | 	andi.w		&0x7fff,%d1 | 
 | 15764 | 	or.w		%d2,%d1			# concat sign,exp | 
 | 15765 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 15766 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 15767 | 	mov.l		(%sp)+,%d2		# restore d2 | 
 | 15768 | 	bra.b		fsqrt_sd_ovfl_dis | 
 | 15769 |  | 
 | 15770 | # | 
 | 15771 | # the move in MAY underflow. so... | 
 | 15772 | # | 
 | 15773 | fsqrt_sd_may_ovfl: | 
 | 15774 | 	btst		&0x0,1+FP_SCR0_EX(%a6)	# is exponent 0x3fff? | 
 | 15775 | 	bne.w		fsqrt_sd_ovfl		# yes, so overflow | 
 | 15776 |  | 
 | 15777 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 15778 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 15779 |  | 
 | 15780 | 	fsqrt.x		FP_SCR0(%a6),%fp0	# perform absolute | 
 | 15781 |  | 
 | 15782 | 	fmov.l		%fpsr,%d1		# save status | 
 | 15783 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 15784 |  | 
 | 15785 | 	or.l		%d1,USER_FPSR(%a6)	# save INEX2,N | 
 | 15786 |  | 
 | 15787 | 	fmov.x		%fp0,%fp1		# make a copy of result | 
 | 15788 | 	fcmp.b		%fp1,&0x1		# is |result| >= 1.b? | 
 | 15789 | 	fbge.w		fsqrt_sd_ovfl_tst	# yes; overflow has occurred | 
 | 15790 |  | 
 | 15791 | # no, it didn't overflow; we have correct result | 
 | 15792 | 	bra.w		fsqrt_sd_normal_exit | 
 | 15793 |  | 
 | 15794 | ########################################################################## | 
 | 15795 |  | 
 | 15796 | # | 
 | 15797 | # input is not normalized; what is it? | 
 | 15798 | # | 
 | 15799 | fsqrt_not_norm: | 
 | 15800 | 	cmpi.b		%d1,&DENORM		# weed out DENORM | 
 | 15801 | 	beq.w		fsqrt_denorm | 
 | 15802 | 	cmpi.b		%d1,&ZERO		# weed out ZERO | 
 | 15803 | 	beq.b		fsqrt_zero | 
 | 15804 | 	cmpi.b		%d1,&INF		# weed out INF | 
 | 15805 | 	beq.b		fsqrt_inf | 
 | 15806 | 	cmpi.b		%d1,&SNAN		# weed out SNAN | 
 | 15807 | 	beq.l		res_snan_1op | 
 | 15808 | 	bra.l		res_qnan_1op | 
 | 15809 |  | 
 | 15810 | # | 
 | 15811 | #	fsqrt(+0) = +0 | 
 | 15812 | #	fsqrt(-0) = -0 | 
 | 15813 | #	fsqrt(+INF) = +INF | 
 | 15814 | #	fsqrt(-INF) = OPERR | 
 | 15815 | # | 
 | 15816 | fsqrt_zero: | 
 | 15817 | 	tst.b		SRC_EX(%a0)		# is ZERO positive or negative? | 
 | 15818 | 	bmi.b		fsqrt_zero_m		# negative | 
 | 15819 | fsqrt_zero_p: | 
 | 15820 | 	fmov.s		&0x00000000,%fp0	# return +ZERO | 
 | 15821 | 	mov.b		&z_bmask,FPSR_CC(%a6)	# set 'Z' ccode bit | 
 | 15822 | 	rts | 
 | 15823 | fsqrt_zero_m: | 
 | 15824 | 	fmov.s		&0x80000000,%fp0	# return -ZERO | 
 | 15825 | 	mov.b		&z_bmask+neg_bmask,FPSR_CC(%a6)	# set 'Z','N' ccode bits | 
 | 15826 | 	rts | 
 | 15827 |  | 
 | 15828 | fsqrt_inf: | 
 | 15829 | 	tst.b		SRC_EX(%a0)		# is INF positive or negative? | 
 | 15830 | 	bmi.l		res_operr		# negative | 
 | 15831 | fsqrt_inf_p: | 
 | 15832 | 	fmovm.x		SRC(%a0),&0x80		# return +INF in fp0 | 
 | 15833 | 	mov.b		&inf_bmask,FPSR_CC(%a6)	# set 'I' ccode bit | 
 | 15834 | 	rts | 
 | 15835 |  | 
 | 15836 | ########################################################################## | 
 | 15837 |  | 
 | 15838 | ######################################################################### | 
 | 15839 | # XDEF ****************************************************************	# | 
 | 15840 | #	addsub_scaler2(): scale inputs to fadd/fsub such that no	# | 
 | 15841 | #			  OVFL/UNFL exceptions will result		# | 
 | 15842 | #									# | 
 | 15843 | # XREF ****************************************************************	# | 
 | 15844 | #	norm() - normalize mantissa after adjusting exponent		# | 
 | 15845 | #									# | 
 | 15846 | # INPUT ***************************************************************	# | 
 | 15847 | #	FP_SRC(a6) = fp op1(src)					# | 
 | 15848 | #	FP_DST(a6) = fp op2(dst)					# | 
 | 15849 | #									# | 
 | 15850 | # OUTPUT **************************************************************	# | 
 | 15851 | #	FP_SRC(a6) = fp op1 scaled(src)					# | 
 | 15852 | #	FP_DST(a6) = fp op2 scaled(dst)					# | 
 | 15853 | #	d0         = scale amount					# | 
 | 15854 | #									# | 
 | 15855 | # ALGORITHM ***********************************************************	# | 
 | 15856 | #	If the DST exponent is > the SRC exponent, set the DST exponent	# | 
 | 15857 | # equal to 0x3fff and scale the SRC exponent by the value that the	# | 
 | 15858 | # DST exponent was scaled by. If the SRC exponent is greater or equal,	# | 
 | 15859 | # do the opposite. Return this scale factor in d0.			# | 
 | 15860 | #	If the two exponents differ by > the number of mantissa bits	# | 
 | 15861 | # plus two, then set the smallest exponent to a very small value as a	# | 
 | 15862 | # quick shortcut.							# | 
 | 15863 | #									# | 
 | 15864 | ######################################################################### | 
 | 15865 |  | 
 | 15866 | 	global		addsub_scaler2 | 
 | 15867 | addsub_scaler2: | 
 | 15868 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 15869 | 	mov.l		DST_HI(%a1),FP_SCR1_HI(%a6) | 
 | 15870 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 15871 | 	mov.l		DST_LO(%a1),FP_SCR1_LO(%a6) | 
 | 15872 | 	mov.w		SRC_EX(%a0),%d0 | 
 | 15873 | 	mov.w		DST_EX(%a1),%d1 | 
 | 15874 | 	mov.w		%d0,FP_SCR0_EX(%a6) | 
 | 15875 | 	mov.w		%d1,FP_SCR1_EX(%a6) | 
 | 15876 |  | 
 | 15877 | 	andi.w		&0x7fff,%d0 | 
 | 15878 | 	andi.w		&0x7fff,%d1 | 
 | 15879 | 	mov.w		%d0,L_SCR1(%a6)		# store src exponent | 
 | 15880 | 	mov.w		%d1,2+L_SCR1(%a6)	# store dst exponent | 
 | 15881 |  | 
 | 15882 | 	cmp.w		%d0, %d1		# is src exp >= dst exp? | 
 | 15883 | 	bge.l		src_exp_ge2 | 
 | 15884 |  | 
 | 15885 | # dst exp is >  src exp; scale dst to exp = 0x3fff | 
 | 15886 | dst_exp_gt2: | 
 | 15887 | 	bsr.l		scale_to_zero_dst | 
 | 15888 | 	mov.l		%d0,-(%sp)		# save scale factor | 
 | 15889 |  | 
 | 15890 | 	cmpi.b		STAG(%a6),&DENORM	# is dst denormalized? | 
 | 15891 | 	bne.b		cmpexp12 | 
 | 15892 |  | 
 | 15893 | 	lea		FP_SCR0(%a6),%a0 | 
 | 15894 | 	bsr.l		norm			# normalize the denorm; result is new exp | 
 | 15895 | 	neg.w		%d0			# new exp = -(shft val) | 
 | 15896 | 	mov.w		%d0,L_SCR1(%a6)		# inset new exp | 
 | 15897 |  | 
 | 15898 | cmpexp12: | 
 | 15899 | 	mov.w		2+L_SCR1(%a6),%d0 | 
 | 15900 | 	subi.w		&mantissalen+2,%d0	# subtract mantissalen+2 from larger exp | 
 | 15901 |  | 
 | 15902 | 	cmp.w		%d0,L_SCR1(%a6)		# is difference >= len(mantissa)+2? | 
 | 15903 | 	bge.b		quick_scale12 | 
 | 15904 |  | 
 | 15905 | 	mov.w		L_SCR1(%a6),%d0 | 
 | 15906 | 	add.w		0x2(%sp),%d0		# scale src exponent by scale factor | 
 | 15907 | 	mov.w		FP_SCR0_EX(%a6),%d1 | 
 | 15908 | 	and.w		&0x8000,%d1 | 
 | 15909 | 	or.w		%d1,%d0			# concat {sgn,new exp} | 
 | 15910 | 	mov.w		%d0,FP_SCR0_EX(%a6)	# insert new dst exponent | 
 | 15911 |  | 
 | 15912 | 	mov.l		(%sp)+,%d0		# return SCALE factor | 
 | 15913 | 	rts | 
 | 15914 |  | 
 | 15915 | quick_scale12: | 
 | 15916 | 	andi.w		&0x8000,FP_SCR0_EX(%a6)	# zero src exponent | 
 | 15917 | 	bset		&0x0,1+FP_SCR0_EX(%a6)	# set exp = 1 | 
 | 15918 |  | 
 | 15919 | 	mov.l		(%sp)+,%d0		# return SCALE factor | 
 | 15920 | 	rts | 
 | 15921 |  | 
 | 15922 | # src exp is >= dst exp; scale src to exp = 0x3fff | 
 | 15923 | src_exp_ge2: | 
 | 15924 | 	bsr.l		scale_to_zero_src | 
 | 15925 | 	mov.l		%d0,-(%sp)		# save scale factor | 
 | 15926 |  | 
 | 15927 | 	cmpi.b		DTAG(%a6),&DENORM	# is dst denormalized? | 
 | 15928 | 	bne.b		cmpexp22 | 
 | 15929 | 	lea		FP_SCR1(%a6),%a0 | 
 | 15930 | 	bsr.l		norm			# normalize the denorm; result is new exp | 
 | 15931 | 	neg.w		%d0			# new exp = -(shft val) | 
 | 15932 | 	mov.w		%d0,2+L_SCR1(%a6)	# inset new exp | 
 | 15933 |  | 
 | 15934 | cmpexp22: | 
 | 15935 | 	mov.w		L_SCR1(%a6),%d0 | 
 | 15936 | 	subi.w		&mantissalen+2,%d0	# subtract mantissalen+2 from larger exp | 
 | 15937 |  | 
 | 15938 | 	cmp.w		%d0,2+L_SCR1(%a6)	# is difference >= len(mantissa)+2? | 
 | 15939 | 	bge.b		quick_scale22 | 
 | 15940 |  | 
 | 15941 | 	mov.w		2+L_SCR1(%a6),%d0 | 
 | 15942 | 	add.w		0x2(%sp),%d0		# scale dst exponent by scale factor | 
 | 15943 | 	mov.w		FP_SCR1_EX(%a6),%d1 | 
 | 15944 | 	andi.w		&0x8000,%d1 | 
 | 15945 | 	or.w		%d1,%d0			# concat {sgn,new exp} | 
 | 15946 | 	mov.w		%d0,FP_SCR1_EX(%a6)	# insert new dst exponent | 
 | 15947 |  | 
 | 15948 | 	mov.l		(%sp)+,%d0		# return SCALE factor | 
 | 15949 | 	rts | 
 | 15950 |  | 
 | 15951 | quick_scale22: | 
 | 15952 | 	andi.w		&0x8000,FP_SCR1_EX(%a6)	# zero dst exponent | 
 | 15953 | 	bset		&0x0,1+FP_SCR1_EX(%a6)	# set exp = 1 | 
 | 15954 |  | 
 | 15955 | 	mov.l		(%sp)+,%d0		# return SCALE factor | 
 | 15956 | 	rts | 
 | 15957 |  | 
 | 15958 | ########################################################################## | 
 | 15959 |  | 
 | 15960 | ######################################################################### | 
 | 15961 | # XDEF ****************************************************************	# | 
 | 15962 | #	scale_to_zero_src(): scale the exponent of extended precision	# | 
 | 15963 | #			     value at FP_SCR0(a6).			# | 
 | 15964 | #									# | 
 | 15965 | # XREF ****************************************************************	# | 
 | 15966 | #	norm() - normalize the mantissa if the operand was a DENORM	# | 
 | 15967 | #									# | 
 | 15968 | # INPUT ***************************************************************	# | 
 | 15969 | #	FP_SCR0(a6) = extended precision operand to be scaled		# | 
 | 15970 | #									# | 
 | 15971 | # OUTPUT **************************************************************	# | 
 | 15972 | #	FP_SCR0(a6) = scaled extended precision operand			# | 
 | 15973 | #	d0	    = scale value					# | 
 | 15974 | #									# | 
 | 15975 | # ALGORITHM ***********************************************************	# | 
 | 15976 | #	Set the exponent of the input operand to 0x3fff. Save the value	# | 
 | 15977 | # of the difference between the original and new exponent. Then,	# | 
 | 15978 | # normalize the operand if it was a DENORM. Add this normalization	# | 
 | 15979 | # value to the previous value. Return the result.			# | 
 | 15980 | #									# | 
 | 15981 | ######################################################################### | 
 | 15982 |  | 
 | 15983 | 	global		scale_to_zero_src | 
 | 15984 | scale_to_zero_src: | 
 | 15985 | 	mov.w		FP_SCR0_EX(%a6),%d1	# extract operand's {sgn,exp} | 
 | 15986 | 	mov.w		%d1,%d0			# make a copy | 
 | 15987 |  | 
 | 15988 | 	andi.l		&0x7fff,%d1		# extract operand's exponent | 
 | 15989 |  | 
 | 15990 | 	andi.w		&0x8000,%d0		# extract operand's sgn | 
 | 15991 | 	or.w		&0x3fff,%d0		# insert new operand's exponent(=0) | 
 | 15992 |  | 
 | 15993 | 	mov.w		%d0,FP_SCR0_EX(%a6)	# insert biased exponent | 
 | 15994 |  | 
 | 15995 | 	cmpi.b		STAG(%a6),&DENORM	# is operand normalized? | 
 | 15996 | 	beq.b		stzs_denorm		# normalize the DENORM | 
 | 15997 |  | 
 | 15998 | stzs_norm: | 
 | 15999 | 	mov.l		&0x3fff,%d0 | 
 | 16000 | 	sub.l		%d1,%d0			# scale = BIAS + (-exp) | 
 | 16001 |  | 
 | 16002 | 	rts | 
 | 16003 |  | 
 | 16004 | stzs_denorm: | 
 | 16005 | 	lea		FP_SCR0(%a6),%a0	# pass ptr to src op | 
 | 16006 | 	bsr.l		norm			# normalize denorm | 
 | 16007 | 	neg.l		%d0			# new exponent = -(shft val) | 
 | 16008 | 	mov.l		%d0,%d1			# prepare for op_norm call | 
 | 16009 | 	bra.b		stzs_norm		# finish scaling | 
 | 16010 |  | 
 | 16011 | ### | 
 | 16012 |  | 
 | 16013 | ######################################################################### | 
 | 16014 | # XDEF ****************************************************************	# | 
 | 16015 | #	scale_sqrt(): scale the input operand exponent so a subsequent	# | 
 | 16016 | #		      fsqrt operation won't take an exception.		# | 
 | 16017 | #									# | 
 | 16018 | # XREF ****************************************************************	# | 
 | 16019 | #	norm() - normalize the mantissa if the operand was a DENORM	# | 
 | 16020 | #									# | 
 | 16021 | # INPUT ***************************************************************	# | 
 | 16022 | #	FP_SCR0(a6) = extended precision operand to be scaled		# | 
 | 16023 | #									# | 
 | 16024 | # OUTPUT **************************************************************	# | 
 | 16025 | #	FP_SCR0(a6) = scaled extended precision operand			# | 
 | 16026 | #	d0	    = scale value					# | 
 | 16027 | #									# | 
 | 16028 | # ALGORITHM ***********************************************************	# | 
 | 16029 | #	If the input operand is a DENORM, normalize it.			# | 
 | 16030 | #	If the exponent of the input operand is even, set the exponent	# | 
 | 16031 | # to 0x3ffe and return a scale factor of "(exp-0x3ffe)/2". If the	# | 
 | 16032 | # exponent of the input operand is off, set the exponent to ox3fff and	# | 
 | 16033 | # return a scale factor of "(exp-0x3fff)/2".				# | 
 | 16034 | #									# | 
 | 16035 | ######################################################################### | 
 | 16036 |  | 
 | 16037 | 	global		scale_sqrt | 
 | 16038 | scale_sqrt: | 
 | 16039 | 	cmpi.b		STAG(%a6),&DENORM	# is operand normalized? | 
 | 16040 | 	beq.b		ss_denorm		# normalize the DENORM | 
 | 16041 |  | 
 | 16042 | 	mov.w		FP_SCR0_EX(%a6),%d1	# extract operand's {sgn,exp} | 
 | 16043 | 	andi.l		&0x7fff,%d1		# extract operand's exponent | 
 | 16044 |  | 
 | 16045 | 	andi.w		&0x8000,FP_SCR0_EX(%a6)	# extract operand's sgn | 
 | 16046 |  | 
 | 16047 | 	btst		&0x0,%d1		# is exp even or odd? | 
 | 16048 | 	beq.b		ss_norm_even | 
 | 16049 |  | 
 | 16050 | 	ori.w		&0x3fff,FP_SCR0_EX(%a6)	# insert new operand's exponent(=0) | 
 | 16051 |  | 
 | 16052 | 	mov.l		&0x3fff,%d0 | 
 | 16053 | 	sub.l		%d1,%d0			# scale = BIAS + (-exp) | 
 | 16054 | 	asr.l		&0x1,%d0		# divide scale factor by 2 | 
 | 16055 | 	rts | 
 | 16056 |  | 
 | 16057 | ss_norm_even: | 
 | 16058 | 	ori.w		&0x3ffe,FP_SCR0_EX(%a6)	# insert new operand's exponent(=0) | 
 | 16059 |  | 
 | 16060 | 	mov.l		&0x3ffe,%d0 | 
 | 16061 | 	sub.l		%d1,%d0			# scale = BIAS + (-exp) | 
 | 16062 | 	asr.l		&0x1,%d0		# divide scale factor by 2 | 
 | 16063 | 	rts | 
 | 16064 |  | 
 | 16065 | ss_denorm: | 
 | 16066 | 	lea		FP_SCR0(%a6),%a0	# pass ptr to src op | 
 | 16067 | 	bsr.l		norm			# normalize denorm | 
 | 16068 |  | 
 | 16069 | 	btst		&0x0,%d0		# is exp even or odd? | 
 | 16070 | 	beq.b		ss_denorm_even | 
 | 16071 |  | 
 | 16072 | 	ori.w		&0x3fff,FP_SCR0_EX(%a6)	# insert new operand's exponent(=0) | 
 | 16073 |  | 
 | 16074 | 	add.l		&0x3fff,%d0 | 
 | 16075 | 	asr.l		&0x1,%d0		# divide scale factor by 2 | 
 | 16076 | 	rts | 
 | 16077 |  | 
 | 16078 | ss_denorm_even: | 
 | 16079 | 	ori.w		&0x3ffe,FP_SCR0_EX(%a6)	# insert new operand's exponent(=0) | 
 | 16080 |  | 
 | 16081 | 	add.l		&0x3ffe,%d0 | 
 | 16082 | 	asr.l		&0x1,%d0		# divide scale factor by 2 | 
 | 16083 | 	rts | 
 | 16084 |  | 
 | 16085 | ### | 
 | 16086 |  | 
 | 16087 | ######################################################################### | 
 | 16088 | # XDEF ****************************************************************	# | 
 | 16089 | #	scale_to_zero_dst(): scale the exponent of extended precision	# | 
 | 16090 | #			     value at FP_SCR1(a6).			# | 
 | 16091 | #									# | 
 | 16092 | # XREF ****************************************************************	# | 
 | 16093 | #	norm() - normalize the mantissa if the operand was a DENORM	# | 
 | 16094 | #									# | 
 | 16095 | # INPUT ***************************************************************	# | 
 | 16096 | #	FP_SCR1(a6) = extended precision operand to be scaled		# | 
 | 16097 | #									# | 
 | 16098 | # OUTPUT **************************************************************	# | 
 | 16099 | #	FP_SCR1(a6) = scaled extended precision operand			# | 
 | 16100 | #	d0	    = scale value					# | 
 | 16101 | #									# | 
 | 16102 | # ALGORITHM ***********************************************************	# | 
 | 16103 | #	Set the exponent of the input operand to 0x3fff. Save the value	# | 
 | 16104 | # of the difference between the original and new exponent. Then,	# | 
 | 16105 | # normalize the operand if it was a DENORM. Add this normalization	# | 
 | 16106 | # value to the previous value. Return the result.			# | 
 | 16107 | #									# | 
 | 16108 | ######################################################################### | 
 | 16109 |  | 
 | 16110 | 	global		scale_to_zero_dst | 
 | 16111 | scale_to_zero_dst: | 
 | 16112 | 	mov.w		FP_SCR1_EX(%a6),%d1	# extract operand's {sgn,exp} | 
 | 16113 | 	mov.w		%d1,%d0			# make a copy | 
 | 16114 |  | 
 | 16115 | 	andi.l		&0x7fff,%d1		# extract operand's exponent | 
 | 16116 |  | 
 | 16117 | 	andi.w		&0x8000,%d0		# extract operand's sgn | 
 | 16118 | 	or.w		&0x3fff,%d0		# insert new operand's exponent(=0) | 
 | 16119 |  | 
 | 16120 | 	mov.w		%d0,FP_SCR1_EX(%a6)	# insert biased exponent | 
 | 16121 |  | 
 | 16122 | 	cmpi.b		DTAG(%a6),&DENORM	# is operand normalized? | 
 | 16123 | 	beq.b		stzd_denorm		# normalize the DENORM | 
 | 16124 |  | 
 | 16125 | stzd_norm: | 
 | 16126 | 	mov.l		&0x3fff,%d0 | 
 | 16127 | 	sub.l		%d1,%d0			# scale = BIAS + (-exp) | 
 | 16128 | 	rts | 
 | 16129 |  | 
 | 16130 | stzd_denorm: | 
 | 16131 | 	lea		FP_SCR1(%a6),%a0	# pass ptr to dst op | 
 | 16132 | 	bsr.l		norm			# normalize denorm | 
 | 16133 | 	neg.l		%d0			# new exponent = -(shft val) | 
 | 16134 | 	mov.l		%d0,%d1			# prepare for op_norm call | 
 | 16135 | 	bra.b		stzd_norm		# finish scaling | 
 | 16136 |  | 
 | 16137 | ########################################################################## | 
 | 16138 |  | 
 | 16139 | ######################################################################### | 
 | 16140 | # XDEF ****************************************************************	# | 
 | 16141 | #	res_qnan(): return default result w/ QNAN operand for dyadic	# | 
 | 16142 | #	res_snan(): return default result w/ SNAN operand for dyadic	# | 
 | 16143 | #	res_qnan_1op(): return dflt result w/ QNAN operand for monadic	# | 
 | 16144 | #	res_snan_1op(): return dflt result w/ SNAN operand for monadic	# | 
 | 16145 | #									# | 
 | 16146 | # XREF ****************************************************************	# | 
 | 16147 | #	None								# | 
 | 16148 | #									# | 
 | 16149 | # INPUT ***************************************************************	# | 
 | 16150 | #	FP_SRC(a6) = pointer to extended precision src operand		# | 
 | 16151 | #	FP_DST(a6) = pointer to extended precision dst operand		# | 
 | 16152 | #									# | 
 | 16153 | # OUTPUT **************************************************************	# | 
 | 16154 | #	fp0 = default result						# | 
 | 16155 | #									# | 
 | 16156 | # ALGORITHM ***********************************************************	# | 
 | 16157 | #	If either operand (but not both operands) of an operation is a	# | 
 | 16158 | # nonsignalling NAN, then that NAN is returned as the result. If both	# | 
 | 16159 | # operands are nonsignalling NANs, then the destination operand		# | 
 | 16160 | # nonsignalling NAN is returned as the result.				# | 
 | 16161 | #	If either operand to an operation is a signalling NAN (SNAN),	# | 
 | 16162 | # then, the SNAN bit is set in the FPSR EXC byte. If the SNAN trap	# | 
 | 16163 | # enable bit is set in the FPCR, then the trap is taken and the		# | 
 | 16164 | # destination is not modified. If the SNAN trap enable bit is not set,	# | 
 | 16165 | # then the SNAN is converted to a nonsignalling NAN (by setting the	# | 
 | 16166 | # SNAN bit in the operand to one), and the operation continues as	# | 
 | 16167 | # described in the preceding paragraph, for nonsignalling NANs.		# | 
 | 16168 | #	Make sure the appropriate FPSR bits are set before exiting.	# | 
 | 16169 | #									# | 
 | 16170 | ######################################################################### | 
 | 16171 |  | 
 | 16172 | 	global		res_qnan | 
 | 16173 | 	global		res_snan | 
 | 16174 | res_qnan: | 
 | 16175 | res_snan: | 
 | 16176 | 	cmp.b		DTAG(%a6), &SNAN	# is the dst an SNAN? | 
 | 16177 | 	beq.b		dst_snan2 | 
 | 16178 | 	cmp.b		DTAG(%a6), &QNAN	# is the dst a  QNAN? | 
 | 16179 | 	beq.b		dst_qnan2 | 
 | 16180 | src_nan: | 
 | 16181 | 	cmp.b		STAG(%a6), &QNAN | 
 | 16182 | 	beq.b		src_qnan2 | 
 | 16183 | 	global		res_snan_1op | 
 | 16184 | res_snan_1op: | 
 | 16185 | src_snan2: | 
 | 16186 | 	bset		&0x6, FP_SRC_HI(%a6)	# set SNAN bit | 
 | 16187 | 	or.l		&nan_mask+aiop_mask+snan_mask, USER_FPSR(%a6) | 
 | 16188 | 	lea		FP_SRC(%a6), %a0 | 
 | 16189 | 	bra.b		nan_comp | 
 | 16190 | 	global		res_qnan_1op | 
 | 16191 | res_qnan_1op: | 
 | 16192 | src_qnan2: | 
 | 16193 | 	or.l		&nan_mask, USER_FPSR(%a6) | 
 | 16194 | 	lea		FP_SRC(%a6), %a0 | 
 | 16195 | 	bra.b		nan_comp | 
 | 16196 | dst_snan2: | 
 | 16197 | 	or.l		&nan_mask+aiop_mask+snan_mask, USER_FPSR(%a6) | 
 | 16198 | 	bset		&0x6, FP_DST_HI(%a6)	# set SNAN bit | 
 | 16199 | 	lea		FP_DST(%a6), %a0 | 
 | 16200 | 	bra.b		nan_comp | 
 | 16201 | dst_qnan2: | 
 | 16202 | 	lea		FP_DST(%a6), %a0 | 
 | 16203 | 	cmp.b		STAG(%a6), &SNAN | 
 | 16204 | 	bne		nan_done | 
 | 16205 | 	or.l		&aiop_mask+snan_mask, USER_FPSR(%a6) | 
 | 16206 | nan_done: | 
 | 16207 | 	or.l		&nan_mask, USER_FPSR(%a6) | 
 | 16208 | nan_comp: | 
 | 16209 | 	btst		&0x7, FTEMP_EX(%a0)	# is NAN neg? | 
 | 16210 | 	beq.b		nan_not_neg | 
 | 16211 | 	or.l		&neg_mask, USER_FPSR(%a6) | 
 | 16212 | nan_not_neg: | 
 | 16213 | 	fmovm.x		(%a0), &0x80 | 
 | 16214 | 	rts | 
 | 16215 |  | 
 | 16216 | ######################################################################### | 
 | 16217 | # XDEF ****************************************************************	# | 
 | 16218 | #	res_operr(): return default result during operand error		# | 
 | 16219 | #									# | 
 | 16220 | # XREF ****************************************************************	# | 
 | 16221 | #	None								# | 
 | 16222 | #									# | 
 | 16223 | # INPUT ***************************************************************	# | 
 | 16224 | #	None								# | 
 | 16225 | #									# | 
 | 16226 | # OUTPUT **************************************************************	# | 
 | 16227 | #	fp0 = default operand error result				# | 
 | 16228 | #									# | 
 | 16229 | # ALGORITHM ***********************************************************	# | 
 | 16230 | #	An nonsignalling NAN is returned as the default result when	# | 
 | 16231 | # an operand error occurs for the following cases:			# | 
 | 16232 | #									# | 
 | 16233 | #	Multiply: (Infinity x Zero)					# | 
 | 16234 | #	Divide  : (Zero / Zero) || (Infinity / Infinity)		# | 
 | 16235 | #									# | 
 | 16236 | ######################################################################### | 
 | 16237 |  | 
 | 16238 | 	global		res_operr | 
 | 16239 | res_operr: | 
 | 16240 | 	or.l		&nan_mask+operr_mask+aiop_mask, USER_FPSR(%a6) | 
 | 16241 | 	fmovm.x		nan_return(%pc), &0x80 | 
 | 16242 | 	rts | 
 | 16243 |  | 
 | 16244 | nan_return: | 
 | 16245 | 	long		0x7fff0000, 0xffffffff, 0xffffffff | 
 | 16246 |  | 
 | 16247 | ######################################################################### | 
 | 16248 | # fdbcc(): routine to emulate the fdbcc instruction			# | 
 | 16249 | #									# | 
 | 16250 | # XDEF **************************************************************** # | 
 | 16251 | #	_fdbcc()							# | 
 | 16252 | #									# | 
 | 16253 | # XREF **************************************************************** # | 
 | 16254 | #	fetch_dreg() - fetch Dn value					# | 
 | 16255 | #	store_dreg_l() - store updated Dn value				# | 
 | 16256 | #									# | 
 | 16257 | # INPUT ***************************************************************	# | 
 | 16258 | #	d0 = displacement						# | 
 | 16259 | #									# | 
 | 16260 | # OUTPUT ************************************************************** # | 
 | 16261 | #	none								# | 
 | 16262 | #									# | 
 | 16263 | # ALGORITHM ***********************************************************	# | 
 | 16264 | #	This routine checks which conditional predicate is specified by	# | 
 | 16265 | # the stacked fdbcc instruction opcode and then branches to a routine	# | 
 | 16266 | # for that predicate. The corresponding fbcc instruction is then used	# | 
 | 16267 | # to see whether the condition (specified by the stacked FPSR) is true	# | 
 | 16268 | # or false.								# | 
 | 16269 | #	If a BSUN exception should be indicated, the BSUN and ABSUN	# | 
 | 16270 | # bits are set in the stacked FPSR. If the BSUN exception is enabled,	# | 
 | 16271 | # the fbsun_flg is set in the SPCOND_FLG location on the stack. If an	# | 
 | 16272 | # enabled BSUN should not be flagged and the predicate is true, then	# | 
 | 16273 | # Dn is fetched and decremented by one. If Dn is not equal to -1, add	# | 
 | 16274 | # the displacement value to the stacked PC so that when an "rte" is	# | 
 | 16275 | # finally executed, the branch occurs.					# | 
 | 16276 | #									# | 
 | 16277 | ######################################################################### | 
 | 16278 | 	global		_fdbcc | 
 | 16279 | _fdbcc: | 
 | 16280 | 	mov.l		%d0,L_SCR1(%a6)		# save displacement | 
 | 16281 |  | 
 | 16282 | 	mov.w		EXC_CMDREG(%a6),%d0	# fetch predicate | 
 | 16283 |  | 
 | 16284 | 	clr.l		%d1			# clear scratch reg | 
 | 16285 | 	mov.b		FPSR_CC(%a6),%d1	# fetch fp ccodes | 
 | 16286 | 	ror.l		&0x8,%d1		# rotate to top byte | 
 | 16287 | 	fmov.l		%d1,%fpsr		# insert into FPSR | 
 | 16288 |  | 
 | 16289 | 	mov.w		(tbl_fdbcc.b,%pc,%d0.w*2),%d1 # load table | 
 | 16290 | 	jmp		(tbl_fdbcc.b,%pc,%d1.w) # jump to fdbcc routine | 
 | 16291 |  | 
 | 16292 | tbl_fdbcc: | 
 | 16293 | 	short		fdbcc_f		-	tbl_fdbcc	# 00 | 
 | 16294 | 	short		fdbcc_eq	-	tbl_fdbcc	# 01 | 
 | 16295 | 	short		fdbcc_ogt	-	tbl_fdbcc	# 02 | 
 | 16296 | 	short		fdbcc_oge	-	tbl_fdbcc	# 03 | 
 | 16297 | 	short		fdbcc_olt	-	tbl_fdbcc	# 04 | 
 | 16298 | 	short		fdbcc_ole	-	tbl_fdbcc	# 05 | 
 | 16299 | 	short		fdbcc_ogl	-	tbl_fdbcc	# 06 | 
 | 16300 | 	short		fdbcc_or	-	tbl_fdbcc	# 07 | 
 | 16301 | 	short		fdbcc_un	-	tbl_fdbcc	# 08 | 
 | 16302 | 	short		fdbcc_ueq	-	tbl_fdbcc	# 09 | 
 | 16303 | 	short		fdbcc_ugt	-	tbl_fdbcc	# 10 | 
 | 16304 | 	short		fdbcc_uge	-	tbl_fdbcc	# 11 | 
 | 16305 | 	short		fdbcc_ult	-	tbl_fdbcc	# 12 | 
 | 16306 | 	short		fdbcc_ule	-	tbl_fdbcc	# 13 | 
 | 16307 | 	short		fdbcc_neq	-	tbl_fdbcc	# 14 | 
 | 16308 | 	short		fdbcc_t		-	tbl_fdbcc	# 15 | 
 | 16309 | 	short		fdbcc_sf	-	tbl_fdbcc	# 16 | 
 | 16310 | 	short		fdbcc_seq	-	tbl_fdbcc	# 17 | 
 | 16311 | 	short		fdbcc_gt	-	tbl_fdbcc	# 18 | 
 | 16312 | 	short		fdbcc_ge	-	tbl_fdbcc	# 19 | 
 | 16313 | 	short		fdbcc_lt	-	tbl_fdbcc	# 20 | 
 | 16314 | 	short		fdbcc_le	-	tbl_fdbcc	# 21 | 
 | 16315 | 	short		fdbcc_gl	-	tbl_fdbcc	# 22 | 
 | 16316 | 	short		fdbcc_gle	-	tbl_fdbcc	# 23 | 
 | 16317 | 	short		fdbcc_ngle	-	tbl_fdbcc	# 24 | 
 | 16318 | 	short		fdbcc_ngl	-	tbl_fdbcc	# 25 | 
 | 16319 | 	short		fdbcc_nle	-	tbl_fdbcc	# 26 | 
 | 16320 | 	short		fdbcc_nlt	-	tbl_fdbcc	# 27 | 
 | 16321 | 	short		fdbcc_nge	-	tbl_fdbcc	# 28 | 
 | 16322 | 	short		fdbcc_ngt	-	tbl_fdbcc	# 29 | 
 | 16323 | 	short		fdbcc_sneq	-	tbl_fdbcc	# 30 | 
 | 16324 | 	short		fdbcc_st	-	tbl_fdbcc	# 31 | 
 | 16325 |  | 
 | 16326 | ######################################################################### | 
 | 16327 | #									# | 
 | 16328 | # IEEE Nonaware tests							# | 
 | 16329 | #									# | 
 | 16330 | # For the IEEE nonaware tests, only the false branch changes the	# | 
 | 16331 | # counter. However, the true branch may set bsun so we check to see	# | 
 | 16332 | # if the NAN bit is set, in which case BSUN and AIOP will be set.	# | 
 | 16333 | #									# | 
 | 16334 | # The cases EQ and NE are shared by the Aware and Nonaware groups	# | 
 | 16335 | # and are incapable of setting the BSUN exception bit.			# | 
 | 16336 | #									# | 
 | 16337 | # Typically, only one of the two possible branch directions could	# | 
 | 16338 | # have the NAN bit set.							# | 
 | 16339 | # (This is assuming the mutual exclusiveness of FPSR cc bit groupings	# | 
 | 16340 | #  is preserved.)							# | 
 | 16341 | #									# | 
 | 16342 | ######################################################################### | 
 | 16343 |  | 
 | 16344 | # | 
 | 16345 | # equal: | 
 | 16346 | # | 
 | 16347 | #	Z | 
 | 16348 | # | 
 | 16349 | fdbcc_eq: | 
 | 16350 | 	fbeq.w		fdbcc_eq_yes		# equal? | 
 | 16351 | fdbcc_eq_no: | 
 | 16352 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | 16353 | fdbcc_eq_yes: | 
 | 16354 | 	rts | 
 | 16355 |  | 
 | 16356 | # | 
 | 16357 | # not equal: | 
 | 16358 | #	_ | 
 | 16359 | #	Z | 
 | 16360 | # | 
 | 16361 | fdbcc_neq: | 
 | 16362 | 	fbneq.w		fdbcc_neq_yes		# not equal? | 
 | 16363 | fdbcc_neq_no: | 
 | 16364 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | 16365 | fdbcc_neq_yes: | 
 | 16366 | 	rts | 
 | 16367 |  | 
 | 16368 | # | 
 | 16369 | # greater than: | 
 | 16370 | #	_______ | 
 | 16371 | #	NANvZvN | 
 | 16372 | # | 
 | 16373 | fdbcc_gt: | 
 | 16374 | 	fbgt.w		fdbcc_gt_yes		# greater than? | 
 | 16375 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 16376 | 	beq.w		fdbcc_false		# no;go handle counter | 
 | 16377 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 16378 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | 
 | 16379 | 	bne.w		fdbcc_bsun		# yes; we have an exception | 
 | 16380 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | 16381 | fdbcc_gt_yes: | 
 | 16382 | 	rts					# do nothing | 
 | 16383 |  | 
 | 16384 | # | 
 | 16385 | # not greater than: | 
 | 16386 | # | 
 | 16387 | #	NANvZvN | 
 | 16388 | # | 
 | 16389 | fdbcc_ngt: | 
 | 16390 | 	fbngt.w		fdbcc_ngt_yes		# not greater than? | 
 | 16391 | fdbcc_ngt_no: | 
 | 16392 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | 16393 | fdbcc_ngt_yes: | 
 | 16394 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 16395 | 	beq.b		fdbcc_ngt_done		# no;go finish | 
 | 16396 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 16397 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | 
 | 16398 | 	bne.w		fdbcc_bsun		# yes; we have an exception | 
 | 16399 | fdbcc_ngt_done: | 
 | 16400 | 	rts					# no; do nothing | 
 | 16401 |  | 
 | 16402 | # | 
 | 16403 | # greater than or equal: | 
 | 16404 | #	   _____ | 
 | 16405 | #	Zv(NANvN) | 
 | 16406 | # | 
 | 16407 | fdbcc_ge: | 
 | 16408 | 	fbge.w		fdbcc_ge_yes		# greater than or equal? | 
 | 16409 | fdbcc_ge_no: | 
 | 16410 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 16411 | 	beq.w		fdbcc_false		# no;go handle counter | 
 | 16412 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 16413 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | 
 | 16414 | 	bne.w		fdbcc_bsun		# yes; we have an exception | 
 | 16415 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | 16416 | fdbcc_ge_yes: | 
 | 16417 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 16418 | 	beq.b		fdbcc_ge_yes_done	# no;go do nothing | 
 | 16419 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 16420 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | 
 | 16421 | 	bne.w		fdbcc_bsun		# yes; we have an exception | 
 | 16422 | fdbcc_ge_yes_done: | 
 | 16423 | 	rts					# do nothing | 
 | 16424 |  | 
 | 16425 | # | 
 | 16426 | # not (greater than or equal): | 
 | 16427 | #	       _ | 
 | 16428 | #	NANv(N^Z) | 
 | 16429 | # | 
 | 16430 | fdbcc_nge: | 
 | 16431 | 	fbnge.w		fdbcc_nge_yes		# not (greater than or equal)? | 
 | 16432 | fdbcc_nge_no: | 
 | 16433 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | 16434 | fdbcc_nge_yes: | 
 | 16435 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 16436 | 	beq.b		fdbcc_nge_done		# no;go finish | 
 | 16437 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 16438 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | 
 | 16439 | 	bne.w		fdbcc_bsun		# yes; we have an exception | 
 | 16440 | fdbcc_nge_done: | 
 | 16441 | 	rts					# no; do nothing | 
 | 16442 |  | 
 | 16443 | # | 
 | 16444 | # less than: | 
 | 16445 | #	   _____ | 
 | 16446 | #	N^(NANvZ) | 
 | 16447 | # | 
 | 16448 | fdbcc_lt: | 
 | 16449 | 	fblt.w		fdbcc_lt_yes		# less than? | 
 | 16450 | fdbcc_lt_no: | 
 | 16451 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 16452 | 	beq.w		fdbcc_false		# no; go handle counter | 
 | 16453 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 16454 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | 
 | 16455 | 	bne.w		fdbcc_bsun		# yes; we have an exception | 
 | 16456 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | 16457 | fdbcc_lt_yes: | 
 | 16458 | 	rts					# do nothing | 
 | 16459 |  | 
 | 16460 | # | 
 | 16461 | # not less than: | 
 | 16462 | #	       _ | 
 | 16463 | #	NANv(ZvN) | 
 | 16464 | # | 
 | 16465 | fdbcc_nlt: | 
 | 16466 | 	fbnlt.w		fdbcc_nlt_yes		# not less than? | 
 | 16467 | fdbcc_nlt_no: | 
 | 16468 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | 16469 | fdbcc_nlt_yes: | 
 | 16470 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 16471 | 	beq.b		fdbcc_nlt_done		# no;go finish | 
 | 16472 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 16473 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | 
 | 16474 | 	bne.w		fdbcc_bsun		# yes; we have an exception | 
 | 16475 | fdbcc_nlt_done: | 
 | 16476 | 	rts					# no; do nothing | 
 | 16477 |  | 
 | 16478 | # | 
 | 16479 | # less than or equal: | 
 | 16480 | #	     ___ | 
 | 16481 | #	Zv(N^NAN) | 
 | 16482 | # | 
 | 16483 | fdbcc_le: | 
 | 16484 | 	fble.w		fdbcc_le_yes		# less than or equal? | 
 | 16485 | fdbcc_le_no: | 
 | 16486 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 16487 | 	beq.w		fdbcc_false		# no; go handle counter | 
 | 16488 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 16489 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | 
 | 16490 | 	bne.w		fdbcc_bsun		# yes; we have an exception | 
 | 16491 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | 16492 | fdbcc_le_yes: | 
 | 16493 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 16494 | 	beq.b		fdbcc_le_yes_done	# no; go do nothing | 
 | 16495 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 16496 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | 
 | 16497 | 	bne.w		fdbcc_bsun		# yes; we have an exception | 
 | 16498 | fdbcc_le_yes_done: | 
 | 16499 | 	rts					# do nothing | 
 | 16500 |  | 
 | 16501 | # | 
 | 16502 | # not (less than or equal): | 
 | 16503 | #	     ___ | 
 | 16504 | #	NANv(NvZ) | 
 | 16505 | # | 
 | 16506 | fdbcc_nle: | 
 | 16507 | 	fbnle.w		fdbcc_nle_yes		# not (less than or equal)? | 
 | 16508 | fdbcc_nle_no: | 
 | 16509 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | 16510 | fdbcc_nle_yes: | 
 | 16511 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 16512 | 	beq.w		fdbcc_nle_done		# no; go finish | 
 | 16513 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 16514 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | 
 | 16515 | 	bne.w		fdbcc_bsun		# yes; we have an exception | 
 | 16516 | fdbcc_nle_done: | 
 | 16517 | 	rts					# no; do nothing | 
 | 16518 |  | 
 | 16519 | # | 
 | 16520 | # greater or less than: | 
 | 16521 | #	_____ | 
 | 16522 | #	NANvZ | 
 | 16523 | # | 
 | 16524 | fdbcc_gl: | 
 | 16525 | 	fbgl.w		fdbcc_gl_yes		# greater or less than? | 
 | 16526 | fdbcc_gl_no: | 
 | 16527 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 16528 | 	beq.w		fdbcc_false		# no; handle counter | 
 | 16529 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 16530 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | 
 | 16531 | 	bne.w		fdbcc_bsun		# yes; we have an exception | 
 | 16532 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | 16533 | fdbcc_gl_yes: | 
 | 16534 | 	rts					# do nothing | 
 | 16535 |  | 
 | 16536 | # | 
 | 16537 | # not (greater or less than): | 
 | 16538 | # | 
 | 16539 | #	NANvZ | 
 | 16540 | # | 
 | 16541 | fdbcc_ngl: | 
 | 16542 | 	fbngl.w		fdbcc_ngl_yes		# not (greater or less than)? | 
 | 16543 | fdbcc_ngl_no: | 
 | 16544 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | 16545 | fdbcc_ngl_yes: | 
 | 16546 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 16547 | 	beq.b		fdbcc_ngl_done		# no; go finish | 
 | 16548 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 16549 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | 
 | 16550 | 	bne.w		fdbcc_bsun		# yes; we have an exception | 
 | 16551 | fdbcc_ngl_done: | 
 | 16552 | 	rts					# no; do nothing | 
 | 16553 |  | 
 | 16554 | # | 
 | 16555 | # greater, less, or equal: | 
 | 16556 | #	___ | 
 | 16557 | #	NAN | 
 | 16558 | # | 
 | 16559 | fdbcc_gle: | 
 | 16560 | 	fbgle.w		fdbcc_gle_yes		# greater, less, or equal? | 
 | 16561 | fdbcc_gle_no: | 
 | 16562 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 16563 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | 
 | 16564 | 	bne.w		fdbcc_bsun		# yes; we have an exception | 
 | 16565 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | 16566 | fdbcc_gle_yes: | 
 | 16567 | 	rts					# do nothing | 
 | 16568 |  | 
 | 16569 | # | 
 | 16570 | # not (greater, less, or equal): | 
 | 16571 | # | 
 | 16572 | #	NAN | 
 | 16573 | # | 
 | 16574 | fdbcc_ngle: | 
 | 16575 | 	fbngle.w	fdbcc_ngle_yes		# not (greater, less, or equal)? | 
 | 16576 | fdbcc_ngle_no: | 
 | 16577 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | 16578 | fdbcc_ngle_yes: | 
 | 16579 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 16580 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | 
 | 16581 | 	bne.w		fdbcc_bsun		# yes; we have an exception | 
 | 16582 | 	rts					# no; do nothing | 
 | 16583 |  | 
 | 16584 | ######################################################################### | 
 | 16585 | #									# | 
 | 16586 | # Miscellaneous tests							# | 
 | 16587 | #									# | 
 | 16588 | # For the IEEE miscellaneous tests, all but fdbf and fdbt can set bsun. # | 
 | 16589 | #									# | 
 | 16590 | ######################################################################### | 
 | 16591 |  | 
 | 16592 | # | 
 | 16593 | # false: | 
 | 16594 | # | 
 | 16595 | #	False | 
 | 16596 | # | 
 | 16597 | fdbcc_f:					# no bsun possible | 
 | 16598 | 	bra.w		fdbcc_false		# go handle counter | 
 | 16599 |  | 
 | 16600 | # | 
 | 16601 | # true: | 
 | 16602 | # | 
 | 16603 | #	True | 
 | 16604 | # | 
 | 16605 | fdbcc_t:					# no bsun possible | 
 | 16606 | 	rts					# do nothing | 
 | 16607 |  | 
 | 16608 | # | 
 | 16609 | # signalling false: | 
 | 16610 | # | 
 | 16611 | #	False | 
 | 16612 | # | 
 | 16613 | fdbcc_sf: | 
 | 16614 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set? | 
 | 16615 | 	beq.w		fdbcc_false		# no;go handle counter | 
 | 16616 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 16617 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | 
 | 16618 | 	bne.w		fdbcc_bsun		# yes; we have an exception | 
 | 16619 | 	bra.w		fdbcc_false		# go handle counter | 
 | 16620 |  | 
 | 16621 | # | 
 | 16622 | # signalling true: | 
 | 16623 | # | 
 | 16624 | #	True | 
 | 16625 | # | 
 | 16626 | fdbcc_st: | 
 | 16627 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set? | 
 | 16628 | 	beq.b		fdbcc_st_done		# no;go finish | 
 | 16629 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 16630 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | 
 | 16631 | 	bne.w		fdbcc_bsun		# yes; we have an exception | 
 | 16632 | fdbcc_st_done: | 
 | 16633 | 	rts | 
 | 16634 |  | 
 | 16635 | # | 
 | 16636 | # signalling equal: | 
 | 16637 | # | 
 | 16638 | #	Z | 
 | 16639 | # | 
 | 16640 | fdbcc_seq: | 
 | 16641 | 	fbseq.w		fdbcc_seq_yes		# signalling equal? | 
 | 16642 | fdbcc_seq_no: | 
 | 16643 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set? | 
 | 16644 | 	beq.w		fdbcc_false		# no;go handle counter | 
 | 16645 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 16646 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | 
 | 16647 | 	bne.w		fdbcc_bsun		# yes; we have an exception | 
 | 16648 | 	bra.w		fdbcc_false		# go handle counter | 
 | 16649 | fdbcc_seq_yes: | 
 | 16650 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set? | 
 | 16651 | 	beq.b		fdbcc_seq_yes_done	# no;go do nothing | 
 | 16652 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 16653 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | 
 | 16654 | 	bne.w		fdbcc_bsun		# yes; we have an exception | 
 | 16655 | fdbcc_seq_yes_done: | 
 | 16656 | 	rts					# yes; do nothing | 
 | 16657 |  | 
 | 16658 | # | 
 | 16659 | # signalling not equal: | 
 | 16660 | #	_ | 
 | 16661 | #	Z | 
 | 16662 | # | 
 | 16663 | fdbcc_sneq: | 
 | 16664 | 	fbsneq.w	fdbcc_sneq_yes		# signalling not equal? | 
 | 16665 | fdbcc_sneq_no: | 
 | 16666 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set? | 
 | 16667 | 	beq.w		fdbcc_false		# no;go handle counter | 
 | 16668 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 16669 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | 
 | 16670 | 	bne.w		fdbcc_bsun		# yes; we have an exception | 
 | 16671 | 	bra.w		fdbcc_false		# go handle counter | 
 | 16672 | fdbcc_sneq_yes: | 
 | 16673 | 	btst		&nan_bit, FPSR_CC(%a6)	# set BSUN exc bit | 
 | 16674 | 	beq.w		fdbcc_sneq_done		# no;go finish | 
 | 16675 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 16676 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled? | 
 | 16677 | 	bne.w		fdbcc_bsun		# yes; we have an exception | 
 | 16678 | fdbcc_sneq_done: | 
 | 16679 | 	rts | 
 | 16680 |  | 
 | 16681 | ######################################################################### | 
 | 16682 | #									# | 
 | 16683 | # IEEE Aware tests							# | 
 | 16684 | #									# | 
 | 16685 | # For the IEEE aware tests, action is only taken if the result is false.# | 
 | 16686 | # Therefore, the opposite branch type is used to jump to the decrement	# | 
 | 16687 | # routine.								# | 
 | 16688 | # The BSUN exception will not be set for any of these tests.		# | 
 | 16689 | #									# | 
 | 16690 | ######################################################################### | 
 | 16691 |  | 
 | 16692 | # | 
 | 16693 | # ordered greater than: | 
 | 16694 | #	_______ | 
 | 16695 | #	NANvZvN | 
 | 16696 | # | 
 | 16697 | fdbcc_ogt: | 
 | 16698 | 	fbogt.w		fdbcc_ogt_yes		# ordered greater than? | 
 | 16699 | fdbcc_ogt_no: | 
 | 16700 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | 16701 | fdbcc_ogt_yes: | 
 | 16702 | 	rts					# yes; do nothing | 
 | 16703 |  | 
 | 16704 | # | 
 | 16705 | # unordered or less or equal: | 
 | 16706 | #	_______ | 
 | 16707 | #	NANvZvN | 
 | 16708 | # | 
 | 16709 | fdbcc_ule: | 
 | 16710 | 	fbule.w		fdbcc_ule_yes		# unordered or less or equal? | 
 | 16711 | fdbcc_ule_no: | 
 | 16712 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | 16713 | fdbcc_ule_yes: | 
 | 16714 | 	rts					# yes; do nothing | 
 | 16715 |  | 
 | 16716 | # | 
 | 16717 | # ordered greater than or equal: | 
 | 16718 | #	   _____ | 
 | 16719 | #	Zv(NANvN) | 
 | 16720 | # | 
 | 16721 | fdbcc_oge: | 
 | 16722 | 	fboge.w		fdbcc_oge_yes		# ordered greater than or equal? | 
 | 16723 | fdbcc_oge_no: | 
 | 16724 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | 16725 | fdbcc_oge_yes: | 
 | 16726 | 	rts					# yes; do nothing | 
 | 16727 |  | 
 | 16728 | # | 
 | 16729 | # unordered or less than: | 
 | 16730 | #	       _ | 
 | 16731 | #	NANv(N^Z) | 
 | 16732 | # | 
 | 16733 | fdbcc_ult: | 
 | 16734 | 	fbult.w		fdbcc_ult_yes		# unordered or less than? | 
 | 16735 | fdbcc_ult_no: | 
 | 16736 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | 16737 | fdbcc_ult_yes: | 
 | 16738 | 	rts					# yes; do nothing | 
 | 16739 |  | 
 | 16740 | # | 
 | 16741 | # ordered less than: | 
 | 16742 | #	   _____ | 
 | 16743 | #	N^(NANvZ) | 
 | 16744 | # | 
 | 16745 | fdbcc_olt: | 
 | 16746 | 	fbolt.w		fdbcc_olt_yes		# ordered less than? | 
 | 16747 | fdbcc_olt_no: | 
 | 16748 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | 16749 | fdbcc_olt_yes: | 
 | 16750 | 	rts					# yes; do nothing | 
 | 16751 |  | 
 | 16752 | # | 
 | 16753 | # unordered or greater or equal: | 
 | 16754 | # | 
 | 16755 | #	NANvZvN | 
 | 16756 | # | 
 | 16757 | fdbcc_uge: | 
 | 16758 | 	fbuge.w		fdbcc_uge_yes		# unordered or greater than? | 
 | 16759 | fdbcc_uge_no: | 
 | 16760 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | 16761 | fdbcc_uge_yes: | 
 | 16762 | 	rts					# yes; do nothing | 
 | 16763 |  | 
 | 16764 | # | 
 | 16765 | # ordered less than or equal: | 
 | 16766 | #	     ___ | 
 | 16767 | #	Zv(N^NAN) | 
 | 16768 | # | 
 | 16769 | fdbcc_ole: | 
 | 16770 | 	fbole.w		fdbcc_ole_yes		# ordered greater or less than? | 
 | 16771 | fdbcc_ole_no: | 
 | 16772 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | 16773 | fdbcc_ole_yes: | 
 | 16774 | 	rts					# yes; do nothing | 
 | 16775 |  | 
 | 16776 | # | 
 | 16777 | # unordered or greater than: | 
 | 16778 | #	     ___ | 
 | 16779 | #	NANv(NvZ) | 
 | 16780 | # | 
 | 16781 | fdbcc_ugt: | 
 | 16782 | 	fbugt.w		fdbcc_ugt_yes		# unordered or greater than? | 
 | 16783 | fdbcc_ugt_no: | 
 | 16784 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | 16785 | fdbcc_ugt_yes: | 
 | 16786 | 	rts					# yes; do nothing | 
 | 16787 |  | 
 | 16788 | # | 
 | 16789 | # ordered greater or less than: | 
 | 16790 | #	_____ | 
 | 16791 | #	NANvZ | 
 | 16792 | # | 
 | 16793 | fdbcc_ogl: | 
 | 16794 | 	fbogl.w		fdbcc_ogl_yes		# ordered greater or less than? | 
 | 16795 | fdbcc_ogl_no: | 
 | 16796 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | 16797 | fdbcc_ogl_yes: | 
 | 16798 | 	rts					# yes; do nothing | 
 | 16799 |  | 
 | 16800 | # | 
 | 16801 | # unordered or equal: | 
 | 16802 | # | 
 | 16803 | #	NANvZ | 
 | 16804 | # | 
 | 16805 | fdbcc_ueq: | 
 | 16806 | 	fbueq.w		fdbcc_ueq_yes		# unordered or equal? | 
 | 16807 | fdbcc_ueq_no: | 
 | 16808 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | 16809 | fdbcc_ueq_yes: | 
 | 16810 | 	rts					# yes; do nothing | 
 | 16811 |  | 
 | 16812 | # | 
 | 16813 | # ordered: | 
 | 16814 | #	___ | 
 | 16815 | #	NAN | 
 | 16816 | # | 
 | 16817 | fdbcc_or: | 
 | 16818 | 	fbor.w		fdbcc_or_yes		# ordered? | 
 | 16819 | fdbcc_or_no: | 
 | 16820 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | 16821 | fdbcc_or_yes: | 
 | 16822 | 	rts					# yes; do nothing | 
 | 16823 |  | 
 | 16824 | # | 
 | 16825 | # unordered: | 
 | 16826 | # | 
 | 16827 | #	NAN | 
 | 16828 | # | 
 | 16829 | fdbcc_un: | 
 | 16830 | 	fbun.w		fdbcc_un_yes		# unordered? | 
 | 16831 | fdbcc_un_no: | 
 | 16832 | 	bra.w		fdbcc_false		# no; go handle counter | 
 | 16833 | fdbcc_un_yes: | 
 | 16834 | 	rts					# yes; do nothing | 
 | 16835 |  | 
 | 16836 | ####################################################################### | 
 | 16837 |  | 
 | 16838 | # | 
 | 16839 | # the bsun exception bit was not set. | 
 | 16840 | # | 
 | 16841 | # (1) subtract 1 from the count register | 
 | 16842 | # (2) if (cr == -1) then | 
 | 16843 | #	pc = pc of next instruction | 
 | 16844 | #     else | 
 | 16845 | #	pc += sign_ext(16-bit displacement) | 
 | 16846 | # | 
 | 16847 | fdbcc_false: | 
 | 16848 | 	mov.b		1+EXC_OPWORD(%a6), %d1	# fetch lo opword | 
 | 16849 | 	andi.w		&0x7, %d1		# extract count register | 
 | 16850 |  | 
 | 16851 | 	bsr.l		fetch_dreg		# fetch count value | 
 | 16852 | # make sure that d0 isn't corrupted between calls... | 
 | 16853 |  | 
 | 16854 | 	subq.w		&0x1, %d0		# Dn - 1 -> Dn | 
 | 16855 |  | 
 | 16856 | 	bsr.l		store_dreg_l		# store new count value | 
 | 16857 |  | 
 | 16858 | 	cmpi.w		%d0, &-0x1		# is (Dn == -1)? | 
 | 16859 | 	bne.b		fdbcc_false_cont	# no; | 
 | 16860 | 	rts | 
 | 16861 |  | 
 | 16862 | fdbcc_false_cont: | 
 | 16863 | 	mov.l		L_SCR1(%a6),%d0		# fetch displacement | 
 | 16864 | 	add.l		USER_FPIAR(%a6),%d0	# add instruction PC | 
 | 16865 | 	addq.l		&0x4,%d0		# add instruction length | 
 | 16866 | 	mov.l		%d0,EXC_PC(%a6)		# set new PC | 
 | 16867 | 	rts | 
 | 16868 |  | 
 | 16869 | # the emulation routine set bsun and BSUN was enabled. have to | 
 | 16870 | # fix stack and jump to the bsun handler. | 
 | 16871 | # let the caller of this routine shift the stack frame up to | 
 | 16872 | # eliminate the effective address field. | 
 | 16873 | fdbcc_bsun: | 
 | 16874 | 	mov.b		&fbsun_flg,SPCOND_FLG(%a6) | 
 | 16875 | 	rts | 
 | 16876 |  | 
 | 16877 | ######################################################################### | 
 | 16878 | # ftrapcc(): routine to emulate the ftrapcc instruction			# | 
 | 16879 | #									# | 
 | 16880 | # XDEF ****************************************************************	# | 
 | 16881 | #	_ftrapcc()							# | 
 | 16882 | #									# | 
 | 16883 | # XREF ****************************************************************	# | 
 | 16884 | #	none								# | 
 | 16885 | #									# | 
 | 16886 | # INPUT *************************************************************** # | 
 | 16887 | #	none								# | 
 | 16888 | #									# | 
 | 16889 | # OUTPUT ************************************************************** # | 
 | 16890 | #	none								# | 
 | 16891 | #									# | 
 | 16892 | # ALGORITHM *********************************************************** # | 
 | 16893 | #	This routine checks which conditional predicate is specified by	# | 
 | 16894 | # the stacked ftrapcc instruction opcode and then branches to a routine	# | 
 | 16895 | # for that predicate. The corresponding fbcc instruction is then used	# | 
 | 16896 | # to see whether the condition (specified by the stacked FPSR) is true	# | 
 | 16897 | # or false.								# | 
 | 16898 | #	If a BSUN exception should be indicated, the BSUN and ABSUN	# | 
 | 16899 | # bits are set in the stacked FPSR. If the BSUN exception is enabled,	# | 
 | 16900 | # the fbsun_flg is set in the SPCOND_FLG location on the stack. If an	# | 
 | 16901 | # enabled BSUN should not be flagged and the predicate is true, then	# | 
 | 16902 | # the ftrapcc_flg is set in the SPCOND_FLG location. These special	# | 
 | 16903 | # flags indicate to the calling routine to emulate the exceptional	# | 
 | 16904 | # condition.								# | 
 | 16905 | #									# | 
 | 16906 | ######################################################################### | 
 | 16907 |  | 
 | 16908 | 	global		_ftrapcc | 
 | 16909 | _ftrapcc: | 
 | 16910 | 	mov.w		EXC_CMDREG(%a6),%d0	# fetch predicate | 
 | 16911 |  | 
 | 16912 | 	clr.l		%d1			# clear scratch reg | 
 | 16913 | 	mov.b		FPSR_CC(%a6),%d1	# fetch fp ccodes | 
 | 16914 | 	ror.l		&0x8,%d1		# rotate to top byte | 
 | 16915 | 	fmov.l		%d1,%fpsr		# insert into FPSR | 
 | 16916 |  | 
 | 16917 | 	mov.w		(tbl_ftrapcc.b,%pc,%d0.w*2), %d1 # load table | 
 | 16918 | 	jmp		(tbl_ftrapcc.b,%pc,%d1.w) # jump to ftrapcc routine | 
 | 16919 |  | 
 | 16920 | tbl_ftrapcc: | 
 | 16921 | 	short		ftrapcc_f	-	tbl_ftrapcc	# 00 | 
 | 16922 | 	short		ftrapcc_eq	-	tbl_ftrapcc	# 01 | 
 | 16923 | 	short		ftrapcc_ogt	-	tbl_ftrapcc	# 02 | 
 | 16924 | 	short		ftrapcc_oge	-	tbl_ftrapcc	# 03 | 
 | 16925 | 	short		ftrapcc_olt	-	tbl_ftrapcc	# 04 | 
 | 16926 | 	short		ftrapcc_ole	-	tbl_ftrapcc	# 05 | 
 | 16927 | 	short		ftrapcc_ogl	-	tbl_ftrapcc	# 06 | 
 | 16928 | 	short		ftrapcc_or	-	tbl_ftrapcc	# 07 | 
 | 16929 | 	short		ftrapcc_un	-	tbl_ftrapcc	# 08 | 
 | 16930 | 	short		ftrapcc_ueq	-	tbl_ftrapcc	# 09 | 
 | 16931 | 	short		ftrapcc_ugt	-	tbl_ftrapcc	# 10 | 
 | 16932 | 	short		ftrapcc_uge	-	tbl_ftrapcc	# 11 | 
 | 16933 | 	short		ftrapcc_ult	-	tbl_ftrapcc	# 12 | 
 | 16934 | 	short		ftrapcc_ule	-	tbl_ftrapcc	# 13 | 
 | 16935 | 	short		ftrapcc_neq	-	tbl_ftrapcc	# 14 | 
 | 16936 | 	short		ftrapcc_t	-	tbl_ftrapcc	# 15 | 
 | 16937 | 	short		ftrapcc_sf	-	tbl_ftrapcc	# 16 | 
 | 16938 | 	short		ftrapcc_seq	-	tbl_ftrapcc	# 17 | 
 | 16939 | 	short		ftrapcc_gt	-	tbl_ftrapcc	# 18 | 
 | 16940 | 	short		ftrapcc_ge	-	tbl_ftrapcc	# 19 | 
 | 16941 | 	short		ftrapcc_lt	-	tbl_ftrapcc	# 20 | 
 | 16942 | 	short		ftrapcc_le	-	tbl_ftrapcc	# 21 | 
 | 16943 | 	short		ftrapcc_gl	-	tbl_ftrapcc	# 22 | 
 | 16944 | 	short		ftrapcc_gle	-	tbl_ftrapcc	# 23 | 
 | 16945 | 	short		ftrapcc_ngle	-	tbl_ftrapcc	# 24 | 
 | 16946 | 	short		ftrapcc_ngl	-	tbl_ftrapcc	# 25 | 
 | 16947 | 	short		ftrapcc_nle	-	tbl_ftrapcc	# 26 | 
 | 16948 | 	short		ftrapcc_nlt	-	tbl_ftrapcc	# 27 | 
 | 16949 | 	short		ftrapcc_nge	-	tbl_ftrapcc	# 28 | 
 | 16950 | 	short		ftrapcc_ngt	-	tbl_ftrapcc	# 29 | 
 | 16951 | 	short		ftrapcc_sneq	-	tbl_ftrapcc	# 30 | 
 | 16952 | 	short		ftrapcc_st	-	tbl_ftrapcc	# 31 | 
 | 16953 |  | 
 | 16954 | ######################################################################### | 
 | 16955 | #									# | 
 | 16956 | # IEEE Nonaware tests							# | 
 | 16957 | #									# | 
 | 16958 | # For the IEEE nonaware tests, we set the result based on the		# | 
 | 16959 | # floating point condition codes. In addition, we check to see		# | 
 | 16960 | # if the NAN bit is set, in which case BSUN and AIOP will be set.	# | 
 | 16961 | #									# | 
 | 16962 | # The cases EQ and NE are shared by the Aware and Nonaware groups	# | 
 | 16963 | # and are incapable of setting the BSUN exception bit.			# | 
 | 16964 | #									# | 
 | 16965 | # Typically, only one of the two possible branch directions could	# | 
 | 16966 | # have the NAN bit set.							# | 
 | 16967 | #									# | 
 | 16968 | ######################################################################### | 
 | 16969 |  | 
 | 16970 | # | 
 | 16971 | # equal: | 
 | 16972 | # | 
 | 16973 | #	Z | 
 | 16974 | # | 
 | 16975 | ftrapcc_eq: | 
 | 16976 | 	fbeq.w		ftrapcc_trap		# equal? | 
 | 16977 | ftrapcc_eq_no: | 
 | 16978 | 	rts					# do nothing | 
 | 16979 |  | 
 | 16980 | # | 
 | 16981 | # not equal: | 
 | 16982 | #	_ | 
 | 16983 | #	Z | 
 | 16984 | # | 
 | 16985 | ftrapcc_neq: | 
 | 16986 | 	fbneq.w		ftrapcc_trap		# not equal? | 
 | 16987 | ftrapcc_neq_no: | 
 | 16988 | 	rts					# do nothing | 
 | 16989 |  | 
 | 16990 | # | 
 | 16991 | # greater than: | 
 | 16992 | #	_______ | 
 | 16993 | #	NANvZvN | 
 | 16994 | # | 
 | 16995 | ftrapcc_gt: | 
 | 16996 | 	fbgt.w		ftrapcc_trap		# greater than? | 
 | 16997 | ftrapcc_gt_no: | 
 | 16998 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 16999 | 	beq.b		ftrapcc_gt_done		# no | 
 | 17000 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 17001 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | 
 | 17002 | 	bne.w		ftrapcc_bsun		# yes | 
 | 17003 | ftrapcc_gt_done: | 
 | 17004 | 	rts					# no; do nothing | 
 | 17005 |  | 
 | 17006 | # | 
 | 17007 | # not greater than: | 
 | 17008 | # | 
 | 17009 | #	NANvZvN | 
 | 17010 | # | 
 | 17011 | ftrapcc_ngt: | 
 | 17012 | 	fbngt.w		ftrapcc_ngt_yes		# not greater than? | 
 | 17013 | ftrapcc_ngt_no: | 
 | 17014 | 	rts					# do nothing | 
 | 17015 | ftrapcc_ngt_yes: | 
 | 17016 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 17017 | 	beq.w		ftrapcc_trap		# no; go take trap | 
 | 17018 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 17019 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | 
 | 17020 | 	bne.w		ftrapcc_bsun		# yes | 
 | 17021 | 	bra.w		ftrapcc_trap		# no; go take trap | 
 | 17022 |  | 
 | 17023 | # | 
 | 17024 | # greater than or equal: | 
 | 17025 | #	   _____ | 
 | 17026 | #	Zv(NANvN) | 
 | 17027 | # | 
 | 17028 | ftrapcc_ge: | 
 | 17029 | 	fbge.w		ftrapcc_ge_yes		# greater than or equal? | 
 | 17030 | ftrapcc_ge_no: | 
 | 17031 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 17032 | 	beq.b		ftrapcc_ge_done		# no; go finish | 
 | 17033 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 17034 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | 
 | 17035 | 	bne.w		ftrapcc_bsun		# yes | 
 | 17036 | ftrapcc_ge_done: | 
 | 17037 | 	rts					# no; do nothing | 
 | 17038 | ftrapcc_ge_yes: | 
 | 17039 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 17040 | 	beq.w		ftrapcc_trap		# no; go take trap | 
 | 17041 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 17042 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | 
 | 17043 | 	bne.w		ftrapcc_bsun		# yes | 
 | 17044 | 	bra.w		ftrapcc_trap		# no; go take trap | 
 | 17045 |  | 
 | 17046 | # | 
 | 17047 | # not (greater than or equal): | 
 | 17048 | #	       _ | 
 | 17049 | #	NANv(N^Z) | 
 | 17050 | # | 
 | 17051 | ftrapcc_nge: | 
 | 17052 | 	fbnge.w		ftrapcc_nge_yes		# not (greater than or equal)? | 
 | 17053 | ftrapcc_nge_no: | 
 | 17054 | 	rts					# do nothing | 
 | 17055 | ftrapcc_nge_yes: | 
 | 17056 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 17057 | 	beq.w		ftrapcc_trap		# no; go take trap | 
 | 17058 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 17059 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | 
 | 17060 | 	bne.w		ftrapcc_bsun		# yes | 
 | 17061 | 	bra.w		ftrapcc_trap		# no; go take trap | 
 | 17062 |  | 
 | 17063 | # | 
 | 17064 | # less than: | 
 | 17065 | #	   _____ | 
 | 17066 | #	N^(NANvZ) | 
 | 17067 | # | 
 | 17068 | ftrapcc_lt: | 
 | 17069 | 	fblt.w		ftrapcc_trap		# less than? | 
 | 17070 | ftrapcc_lt_no: | 
 | 17071 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 17072 | 	beq.b		ftrapcc_lt_done		# no; go finish | 
 | 17073 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 17074 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | 
 | 17075 | 	bne.w		ftrapcc_bsun		# yes | 
 | 17076 | ftrapcc_lt_done: | 
 | 17077 | 	rts					# no; do nothing | 
 | 17078 |  | 
 | 17079 | # | 
 | 17080 | # not less than: | 
 | 17081 | #	       _ | 
 | 17082 | #	NANv(ZvN) | 
 | 17083 | # | 
 | 17084 | ftrapcc_nlt: | 
 | 17085 | 	fbnlt.w		ftrapcc_nlt_yes		# not less than? | 
 | 17086 | ftrapcc_nlt_no: | 
 | 17087 | 	rts					# do nothing | 
 | 17088 | ftrapcc_nlt_yes: | 
 | 17089 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 17090 | 	beq.w		ftrapcc_trap		# no; go take trap | 
 | 17091 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 17092 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | 
 | 17093 | 	bne.w		ftrapcc_bsun		# yes | 
 | 17094 | 	bra.w		ftrapcc_trap		# no; go take trap | 
 | 17095 |  | 
 | 17096 | # | 
 | 17097 | # less than or equal: | 
 | 17098 | #	     ___ | 
 | 17099 | #	Zv(N^NAN) | 
 | 17100 | # | 
 | 17101 | ftrapcc_le: | 
 | 17102 | 	fble.w		ftrapcc_le_yes		# less than or equal? | 
 | 17103 | ftrapcc_le_no: | 
 | 17104 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 17105 | 	beq.b		ftrapcc_le_done		# no; go finish | 
 | 17106 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 17107 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | 
 | 17108 | 	bne.w		ftrapcc_bsun		# yes | 
 | 17109 | ftrapcc_le_done: | 
 | 17110 | 	rts					# no; do nothing | 
 | 17111 | ftrapcc_le_yes: | 
 | 17112 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 17113 | 	beq.w		ftrapcc_trap		# no; go take trap | 
 | 17114 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 17115 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | 
 | 17116 | 	bne.w		ftrapcc_bsun		# yes | 
 | 17117 | 	bra.w		ftrapcc_trap		# no; go take trap | 
 | 17118 |  | 
 | 17119 | # | 
 | 17120 | # not (less than or equal): | 
 | 17121 | #	     ___ | 
 | 17122 | #	NANv(NvZ) | 
 | 17123 | # | 
 | 17124 | ftrapcc_nle: | 
 | 17125 | 	fbnle.w		ftrapcc_nle_yes		# not (less than or equal)? | 
 | 17126 | ftrapcc_nle_no: | 
 | 17127 | 	rts					# do nothing | 
 | 17128 | ftrapcc_nle_yes: | 
 | 17129 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 17130 | 	beq.w		ftrapcc_trap		# no; go take trap | 
 | 17131 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 17132 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | 
 | 17133 | 	bne.w		ftrapcc_bsun		# yes | 
 | 17134 | 	bra.w		ftrapcc_trap		# no; go take trap | 
 | 17135 |  | 
 | 17136 | # | 
 | 17137 | # greater or less than: | 
 | 17138 | #	_____ | 
 | 17139 | #	NANvZ | 
 | 17140 | # | 
 | 17141 | ftrapcc_gl: | 
 | 17142 | 	fbgl.w		ftrapcc_trap		# greater or less than? | 
 | 17143 | ftrapcc_gl_no: | 
 | 17144 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 17145 | 	beq.b		ftrapcc_gl_done		# no; go finish | 
 | 17146 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 17147 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | 
 | 17148 | 	bne.w		ftrapcc_bsun		# yes | 
 | 17149 | ftrapcc_gl_done: | 
 | 17150 | 	rts					# no; do nothing | 
 | 17151 |  | 
 | 17152 | # | 
 | 17153 | # not (greater or less than): | 
 | 17154 | # | 
 | 17155 | #	NANvZ | 
 | 17156 | # | 
 | 17157 | ftrapcc_ngl: | 
 | 17158 | 	fbngl.w		ftrapcc_ngl_yes		# not (greater or less than)? | 
 | 17159 | ftrapcc_ngl_no: | 
 | 17160 | 	rts					# do nothing | 
 | 17161 | ftrapcc_ngl_yes: | 
 | 17162 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 17163 | 	beq.w		ftrapcc_trap		# no; go take trap | 
 | 17164 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 17165 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | 
 | 17166 | 	bne.w		ftrapcc_bsun		# yes | 
 | 17167 | 	bra.w		ftrapcc_trap		# no; go take trap | 
 | 17168 |  | 
 | 17169 | # | 
 | 17170 | # greater, less, or equal: | 
 | 17171 | #	___ | 
 | 17172 | #	NAN | 
 | 17173 | # | 
 | 17174 | ftrapcc_gle: | 
 | 17175 | 	fbgle.w		ftrapcc_trap		# greater, less, or equal? | 
 | 17176 | ftrapcc_gle_no: | 
 | 17177 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 17178 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | 
 | 17179 | 	bne.w		ftrapcc_bsun		# yes | 
 | 17180 | 	rts					# no; do nothing | 
 | 17181 |  | 
 | 17182 | # | 
 | 17183 | # not (greater, less, or equal): | 
 | 17184 | # | 
 | 17185 | #	NAN | 
 | 17186 | # | 
 | 17187 | ftrapcc_ngle: | 
 | 17188 | 	fbngle.w	ftrapcc_ngle_yes	# not (greater, less, or equal)? | 
 | 17189 | ftrapcc_ngle_no: | 
 | 17190 | 	rts					# do nothing | 
 | 17191 | ftrapcc_ngle_yes: | 
 | 17192 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 17193 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | 
 | 17194 | 	bne.w		ftrapcc_bsun		# yes | 
 | 17195 | 	bra.w		ftrapcc_trap		# no; go take trap | 
 | 17196 |  | 
 | 17197 | ######################################################################### | 
 | 17198 | #									# | 
 | 17199 | # Miscellaneous tests							# | 
 | 17200 | #									# | 
 | 17201 | # For the IEEE aware tests, we only have to set the result based on the	# | 
 | 17202 | # floating point condition codes. The BSUN exception will not be	# | 
 | 17203 | # set for any of these tests.						# | 
 | 17204 | #									# | 
 | 17205 | ######################################################################### | 
 | 17206 |  | 
 | 17207 | # | 
 | 17208 | # false: | 
 | 17209 | # | 
 | 17210 | #	False | 
 | 17211 | # | 
 | 17212 | ftrapcc_f: | 
 | 17213 | 	rts					# do nothing | 
 | 17214 |  | 
 | 17215 | # | 
 | 17216 | # true: | 
 | 17217 | # | 
 | 17218 | #	True | 
 | 17219 | # | 
 | 17220 | ftrapcc_t: | 
 | 17221 | 	bra.w		ftrapcc_trap		# go take trap | 
 | 17222 |  | 
 | 17223 | # | 
 | 17224 | # signalling false: | 
 | 17225 | # | 
 | 17226 | #	False | 
 | 17227 | # | 
 | 17228 | ftrapcc_sf: | 
 | 17229 | 	btst		&nan_bit, FPSR_CC(%a6)	# set BSUN exc bit | 
 | 17230 | 	beq.b		ftrapcc_sf_done		# no; go finish | 
 | 17231 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 17232 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | 
 | 17233 | 	bne.w		ftrapcc_bsun		# yes | 
 | 17234 | ftrapcc_sf_done: | 
 | 17235 | 	rts					# no; do nothing | 
 | 17236 |  | 
 | 17237 | # | 
 | 17238 | # signalling true: | 
 | 17239 | # | 
 | 17240 | #	True | 
 | 17241 | # | 
 | 17242 | ftrapcc_st: | 
 | 17243 | 	btst		&nan_bit, FPSR_CC(%a6)	# set BSUN exc bit | 
 | 17244 | 	beq.w		ftrapcc_trap		# no; go take trap | 
 | 17245 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 17246 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | 
 | 17247 | 	bne.w		ftrapcc_bsun		# yes | 
 | 17248 | 	bra.w		ftrapcc_trap		# no; go take trap | 
 | 17249 |  | 
 | 17250 | # | 
 | 17251 | # signalling equal: | 
 | 17252 | # | 
 | 17253 | #	Z | 
 | 17254 | # | 
 | 17255 | ftrapcc_seq: | 
 | 17256 | 	fbseq.w		ftrapcc_seq_yes		# signalling equal? | 
 | 17257 | ftrapcc_seq_no: | 
 | 17258 | 	btst		&nan_bit, FPSR_CC(%a6)	# set BSUN exc bit | 
 | 17259 | 	beq.w		ftrapcc_seq_done	# no; go finish | 
 | 17260 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 17261 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | 
 | 17262 | 	bne.w		ftrapcc_bsun		# yes | 
 | 17263 | ftrapcc_seq_done: | 
 | 17264 | 	rts					# no; do nothing | 
 | 17265 | ftrapcc_seq_yes: | 
 | 17266 | 	btst		&nan_bit, FPSR_CC(%a6)	# set BSUN exc bit | 
 | 17267 | 	beq.w		ftrapcc_trap		# no; go take trap | 
 | 17268 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 17269 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | 
 | 17270 | 	bne.w		ftrapcc_bsun		# yes | 
 | 17271 | 	bra.w		ftrapcc_trap		# no; go take trap | 
 | 17272 |  | 
 | 17273 | # | 
 | 17274 | # signalling not equal: | 
 | 17275 | #	_ | 
 | 17276 | #	Z | 
 | 17277 | # | 
 | 17278 | ftrapcc_sneq: | 
 | 17279 | 	fbsneq.w	ftrapcc_sneq_yes	# signalling equal? | 
 | 17280 | ftrapcc_sneq_no: | 
 | 17281 | 	btst		&nan_bit, FPSR_CC(%a6)	# set BSUN exc bit | 
 | 17282 | 	beq.w		ftrapcc_sneq_no_done	# no; go finish | 
 | 17283 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 17284 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | 
 | 17285 | 	bne.w		ftrapcc_bsun		# yes | 
 | 17286 | ftrapcc_sneq_no_done: | 
 | 17287 | 	rts					# do nothing | 
 | 17288 | ftrapcc_sneq_yes: | 
 | 17289 | 	btst		&nan_bit, FPSR_CC(%a6)	# set BSUN exc bit | 
 | 17290 | 	beq.w		ftrapcc_trap		# no; go take trap | 
 | 17291 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 17292 | 	btst		&bsun_bit, FPCR_ENABLE(%a6) # was BSUN set? | 
 | 17293 | 	bne.w		ftrapcc_bsun		# yes | 
 | 17294 | 	bra.w		ftrapcc_trap		# no; go take trap | 
 | 17295 |  | 
 | 17296 | ######################################################################### | 
 | 17297 | #									# | 
 | 17298 | # IEEE Aware tests							# | 
 | 17299 | #									# | 
 | 17300 | # For the IEEE aware tests, we only have to set the result based on the	# | 
 | 17301 | # floating point condition codes. The BSUN exception will not be	# | 
 | 17302 | # set for any of these tests.						# | 
 | 17303 | #									# | 
 | 17304 | ######################################################################### | 
 | 17305 |  | 
 | 17306 | # | 
 | 17307 | # ordered greater than: | 
 | 17308 | #	_______ | 
 | 17309 | #	NANvZvN | 
 | 17310 | # | 
 | 17311 | ftrapcc_ogt: | 
 | 17312 | 	fbogt.w		ftrapcc_trap		# ordered greater than? | 
 | 17313 | ftrapcc_ogt_no: | 
 | 17314 | 	rts					# do nothing | 
 | 17315 |  | 
 | 17316 | # | 
 | 17317 | # unordered or less or equal: | 
 | 17318 | #	_______ | 
 | 17319 | #	NANvZvN | 
 | 17320 | # | 
 | 17321 | ftrapcc_ule: | 
 | 17322 | 	fbule.w		ftrapcc_trap		# unordered or less or equal? | 
 | 17323 | ftrapcc_ule_no: | 
 | 17324 | 	rts					# do nothing | 
 | 17325 |  | 
 | 17326 | # | 
 | 17327 | # ordered greater than or equal: | 
 | 17328 | #	   _____ | 
 | 17329 | #	Zv(NANvN) | 
 | 17330 | # | 
 | 17331 | ftrapcc_oge: | 
 | 17332 | 	fboge.w		ftrapcc_trap		# ordered greater than or equal? | 
 | 17333 | ftrapcc_oge_no: | 
 | 17334 | 	rts					# do nothing | 
 | 17335 |  | 
 | 17336 | # | 
 | 17337 | # unordered or less than: | 
 | 17338 | #	       _ | 
 | 17339 | #	NANv(N^Z) | 
 | 17340 | # | 
 | 17341 | ftrapcc_ult: | 
 | 17342 | 	fbult.w		ftrapcc_trap		# unordered or less than? | 
 | 17343 | ftrapcc_ult_no: | 
 | 17344 | 	rts					# do nothing | 
 | 17345 |  | 
 | 17346 | # | 
 | 17347 | # ordered less than: | 
 | 17348 | #	   _____ | 
 | 17349 | #	N^(NANvZ) | 
 | 17350 | # | 
 | 17351 | ftrapcc_olt: | 
 | 17352 | 	fbolt.w		ftrapcc_trap		# ordered less than? | 
 | 17353 | ftrapcc_olt_no: | 
 | 17354 | 	rts					# do nothing | 
 | 17355 |  | 
 | 17356 | # | 
 | 17357 | # unordered or greater or equal: | 
 | 17358 | # | 
 | 17359 | #	NANvZvN | 
 | 17360 | # | 
 | 17361 | ftrapcc_uge: | 
 | 17362 | 	fbuge.w		ftrapcc_trap		# unordered or greater than? | 
 | 17363 | ftrapcc_uge_no: | 
 | 17364 | 	rts					# do nothing | 
 | 17365 |  | 
 | 17366 | # | 
 | 17367 | # ordered less than or equal: | 
 | 17368 | #	     ___ | 
 | 17369 | #	Zv(N^NAN) | 
 | 17370 | # | 
 | 17371 | ftrapcc_ole: | 
 | 17372 | 	fbole.w		ftrapcc_trap		# ordered greater or less than? | 
 | 17373 | ftrapcc_ole_no: | 
 | 17374 | 	rts					# do nothing | 
 | 17375 |  | 
 | 17376 | # | 
 | 17377 | # unordered or greater than: | 
 | 17378 | #	     ___ | 
 | 17379 | #	NANv(NvZ) | 
 | 17380 | # | 
 | 17381 | ftrapcc_ugt: | 
 | 17382 | 	fbugt.w		ftrapcc_trap		# unordered or greater than? | 
 | 17383 | ftrapcc_ugt_no: | 
 | 17384 | 	rts					# do nothing | 
 | 17385 |  | 
 | 17386 | # | 
 | 17387 | # ordered greater or less than: | 
 | 17388 | #	_____ | 
 | 17389 | #	NANvZ | 
 | 17390 | # | 
 | 17391 | ftrapcc_ogl: | 
 | 17392 | 	fbogl.w		ftrapcc_trap		# ordered greater or less than? | 
 | 17393 | ftrapcc_ogl_no: | 
 | 17394 | 	rts					# do nothing | 
 | 17395 |  | 
 | 17396 | # | 
 | 17397 | # unordered or equal: | 
 | 17398 | # | 
 | 17399 | #	NANvZ | 
 | 17400 | # | 
 | 17401 | ftrapcc_ueq: | 
 | 17402 | 	fbueq.w		ftrapcc_trap		# unordered or equal? | 
 | 17403 | ftrapcc_ueq_no: | 
 | 17404 | 	rts					# do nothing | 
 | 17405 |  | 
 | 17406 | # | 
 | 17407 | # ordered: | 
 | 17408 | #	___ | 
 | 17409 | #	NAN | 
 | 17410 | # | 
 | 17411 | ftrapcc_or: | 
 | 17412 | 	fbor.w		ftrapcc_trap		# ordered? | 
 | 17413 | ftrapcc_or_no: | 
 | 17414 | 	rts					# do nothing | 
 | 17415 |  | 
 | 17416 | # | 
 | 17417 | # unordered: | 
 | 17418 | # | 
 | 17419 | #	NAN | 
 | 17420 | # | 
 | 17421 | ftrapcc_un: | 
 | 17422 | 	fbun.w		ftrapcc_trap		# unordered? | 
 | 17423 | ftrapcc_un_no: | 
 | 17424 | 	rts					# do nothing | 
 | 17425 |  | 
 | 17426 | ####################################################################### | 
 | 17427 |  | 
 | 17428 | # the bsun exception bit was not set. | 
 | 17429 | # we will need to jump to the ftrapcc vector. the stack frame | 
 | 17430 | # is the same size as that of the fp unimp instruction. the | 
 | 17431 | # only difference is that the <ea> field should hold the PC | 
 | 17432 | # of the ftrapcc instruction and the vector offset field | 
 | 17433 | # should denote the ftrapcc trap. | 
 | 17434 | ftrapcc_trap: | 
 | 17435 | 	mov.b		&ftrapcc_flg,SPCOND_FLG(%a6) | 
 | 17436 | 	rts | 
 | 17437 |  | 
 | 17438 | # the emulation routine set bsun and BSUN was enabled. have to | 
 | 17439 | # fix stack and jump to the bsun handler. | 
 | 17440 | # let the caller of this routine shift the stack frame up to | 
 | 17441 | # eliminate the effective address field. | 
 | 17442 | ftrapcc_bsun: | 
 | 17443 | 	mov.b		&fbsun_flg,SPCOND_FLG(%a6) | 
 | 17444 | 	rts | 
 | 17445 |  | 
 | 17446 | ######################################################################### | 
 | 17447 | # fscc(): routine to emulate the fscc instruction			# | 
 | 17448 | #									# | 
 | 17449 | # XDEF **************************************************************** # | 
 | 17450 | #	_fscc()								# | 
 | 17451 | #									# | 
 | 17452 | # XREF **************************************************************** # | 
 | 17453 | #	store_dreg_b() - store result to data register file		# | 
 | 17454 | #	dec_areg() - decrement an areg for -(an) mode			# | 
 | 17455 | #	inc_areg() - increment an areg for (an)+ mode			# | 
 | 17456 | #	_dmem_write_byte() - store result to memory			# | 
 | 17457 | #									# | 
 | 17458 | # INPUT ***************************************************************	# | 
 | 17459 | #	none								# | 
 | 17460 | #									# | 
 | 17461 | # OUTPUT ************************************************************** # | 
 | 17462 | #	none								# | 
 | 17463 | #									# | 
 | 17464 | # ALGORITHM ***********************************************************	# | 
 | 17465 | #	This routine checks which conditional predicate is specified by	# | 
 | 17466 | # the stacked fscc instruction opcode and then branches to a routine	# | 
 | 17467 | # for that predicate. The corresponding fbcc instruction is then used	# | 
 | 17468 | # to see whether the condition (specified by the stacked FPSR) is true	# | 
 | 17469 | # or false.								# | 
 | 17470 | #	If a BSUN exception should be indicated, the BSUN and ABSUN	# | 
 | 17471 | # bits are set in the stacked FPSR. If the BSUN exception is enabled,	# | 
 | 17472 | # the fbsun_flg is set in the SPCOND_FLG location on the stack. If an	# | 
 | 17473 | # enabled BSUN should not be flagged and the predicate is true, then	# | 
 | 17474 | # the result is stored to the data register file or memory		# | 
 | 17475 | #									# | 
 | 17476 | ######################################################################### | 
 | 17477 |  | 
 | 17478 | 	global		_fscc | 
 | 17479 | _fscc: | 
 | 17480 | 	mov.w		EXC_CMDREG(%a6),%d0	# fetch predicate | 
 | 17481 |  | 
 | 17482 | 	clr.l		%d1			# clear scratch reg | 
 | 17483 | 	mov.b		FPSR_CC(%a6),%d1	# fetch fp ccodes | 
 | 17484 | 	ror.l		&0x8,%d1		# rotate to top byte | 
 | 17485 | 	fmov.l		%d1,%fpsr		# insert into FPSR | 
 | 17486 |  | 
 | 17487 | 	mov.w		(tbl_fscc.b,%pc,%d0.w*2),%d1 # load table | 
 | 17488 | 	jmp		(tbl_fscc.b,%pc,%d1.w)	# jump to fscc routine | 
 | 17489 |  | 
 | 17490 | tbl_fscc: | 
 | 17491 | 	short		fscc_f		-	tbl_fscc	# 00 | 
 | 17492 | 	short		fscc_eq		-	tbl_fscc	# 01 | 
 | 17493 | 	short		fscc_ogt	-	tbl_fscc	# 02 | 
 | 17494 | 	short		fscc_oge	-	tbl_fscc	# 03 | 
 | 17495 | 	short		fscc_olt	-	tbl_fscc	# 04 | 
 | 17496 | 	short		fscc_ole	-	tbl_fscc	# 05 | 
 | 17497 | 	short		fscc_ogl	-	tbl_fscc	# 06 | 
 | 17498 | 	short		fscc_or		-	tbl_fscc	# 07 | 
 | 17499 | 	short		fscc_un		-	tbl_fscc	# 08 | 
 | 17500 | 	short		fscc_ueq	-	tbl_fscc	# 09 | 
 | 17501 | 	short		fscc_ugt	-	tbl_fscc	# 10 | 
 | 17502 | 	short		fscc_uge	-	tbl_fscc	# 11 | 
 | 17503 | 	short		fscc_ult	-	tbl_fscc	# 12 | 
 | 17504 | 	short		fscc_ule	-	tbl_fscc	# 13 | 
 | 17505 | 	short		fscc_neq	-	tbl_fscc	# 14 | 
 | 17506 | 	short		fscc_t		-	tbl_fscc	# 15 | 
 | 17507 | 	short		fscc_sf		-	tbl_fscc	# 16 | 
 | 17508 | 	short		fscc_seq	-	tbl_fscc	# 17 | 
 | 17509 | 	short		fscc_gt		-	tbl_fscc	# 18 | 
 | 17510 | 	short		fscc_ge		-	tbl_fscc	# 19 | 
 | 17511 | 	short		fscc_lt		-	tbl_fscc	# 20 | 
 | 17512 | 	short		fscc_le		-	tbl_fscc	# 21 | 
 | 17513 | 	short		fscc_gl		-	tbl_fscc	# 22 | 
 | 17514 | 	short		fscc_gle	-	tbl_fscc	# 23 | 
 | 17515 | 	short		fscc_ngle	-	tbl_fscc	# 24 | 
 | 17516 | 	short		fscc_ngl	-	tbl_fscc	# 25 | 
 | 17517 | 	short		fscc_nle	-	tbl_fscc	# 26 | 
 | 17518 | 	short		fscc_nlt	-	tbl_fscc	# 27 | 
 | 17519 | 	short		fscc_nge	-	tbl_fscc	# 28 | 
 | 17520 | 	short		fscc_ngt	-	tbl_fscc	# 29 | 
 | 17521 | 	short		fscc_sneq	-	tbl_fscc	# 30 | 
 | 17522 | 	short		fscc_st		-	tbl_fscc	# 31 | 
 | 17523 |  | 
 | 17524 | ######################################################################### | 
 | 17525 | #									# | 
 | 17526 | # IEEE Nonaware tests							# | 
 | 17527 | #									# | 
 | 17528 | # For the IEEE nonaware tests, we set the result based on the		# | 
 | 17529 | # floating point condition codes. In addition, we check to see		# | 
 | 17530 | # if the NAN bit is set, in which case BSUN and AIOP will be set.	# | 
 | 17531 | #									# | 
 | 17532 | # The cases EQ and NE are shared by the Aware and Nonaware groups	# | 
 | 17533 | # and are incapable of setting the BSUN exception bit.			# | 
 | 17534 | #									# | 
 | 17535 | # Typically, only one of the two possible branch directions could	# | 
 | 17536 | # have the NAN bit set.							# | 
 | 17537 | #									# | 
 | 17538 | ######################################################################### | 
 | 17539 |  | 
 | 17540 | # | 
 | 17541 | # equal: | 
 | 17542 | # | 
 | 17543 | #	Z | 
 | 17544 | # | 
 | 17545 | fscc_eq: | 
 | 17546 | 	fbeq.w		fscc_eq_yes		# equal? | 
 | 17547 | fscc_eq_no: | 
 | 17548 | 	clr.b		%d0			# set false | 
 | 17549 | 	bra.w		fscc_done		# go finish | 
 | 17550 | fscc_eq_yes: | 
 | 17551 | 	st		%d0			# set true | 
 | 17552 | 	bra.w		fscc_done		# go finish | 
 | 17553 |  | 
 | 17554 | # | 
 | 17555 | # not equal: | 
 | 17556 | #	_ | 
 | 17557 | #	Z | 
 | 17558 | # | 
 | 17559 | fscc_neq: | 
 | 17560 | 	fbneq.w		fscc_neq_yes		# not equal? | 
 | 17561 | fscc_neq_no: | 
 | 17562 | 	clr.b		%d0			# set false | 
 | 17563 | 	bra.w		fscc_done		# go finish | 
 | 17564 | fscc_neq_yes: | 
 | 17565 | 	st		%d0			# set true | 
 | 17566 | 	bra.w		fscc_done		# go finish | 
 | 17567 |  | 
 | 17568 | # | 
 | 17569 | # greater than: | 
 | 17570 | #	_______ | 
 | 17571 | #	NANvZvN | 
 | 17572 | # | 
 | 17573 | fscc_gt: | 
 | 17574 | 	fbgt.w		fscc_gt_yes		# greater than? | 
 | 17575 | fscc_gt_no: | 
 | 17576 | 	clr.b		%d0			# set false | 
 | 17577 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 17578 | 	beq.w		fscc_done		# no;go finish | 
 | 17579 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 17580 | 	bra.w		fscc_chk_bsun		# go finish | 
 | 17581 | fscc_gt_yes: | 
 | 17582 | 	st		%d0			# set true | 
 | 17583 | 	bra.w		fscc_done		# go finish | 
 | 17584 |  | 
 | 17585 | # | 
 | 17586 | # not greater than: | 
 | 17587 | # | 
 | 17588 | #	NANvZvN | 
 | 17589 | # | 
 | 17590 | fscc_ngt: | 
 | 17591 | 	fbngt.w		fscc_ngt_yes		# not greater than? | 
 | 17592 | fscc_ngt_no: | 
 | 17593 | 	clr.b		%d0			# set false | 
 | 17594 | 	bra.w		fscc_done		# go finish | 
 | 17595 | fscc_ngt_yes: | 
 | 17596 | 	st		%d0			# set true | 
 | 17597 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 17598 | 	beq.w		fscc_done		# no;go finish | 
 | 17599 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 17600 | 	bra.w		fscc_chk_bsun		# go finish | 
 | 17601 |  | 
 | 17602 | # | 
 | 17603 | # greater than or equal: | 
 | 17604 | #	   _____ | 
 | 17605 | #	Zv(NANvN) | 
 | 17606 | # | 
 | 17607 | fscc_ge: | 
 | 17608 | 	fbge.w		fscc_ge_yes		# greater than or equal? | 
 | 17609 | fscc_ge_no: | 
 | 17610 | 	clr.b		%d0			# set false | 
 | 17611 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 17612 | 	beq.w		fscc_done		# no;go finish | 
 | 17613 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 17614 | 	bra.w		fscc_chk_bsun		# go finish | 
 | 17615 | fscc_ge_yes: | 
 | 17616 | 	st		%d0			# set true | 
 | 17617 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 17618 | 	beq.w		fscc_done		# no;go finish | 
 | 17619 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 17620 | 	bra.w		fscc_chk_bsun		# go finish | 
 | 17621 |  | 
 | 17622 | # | 
 | 17623 | # not (greater than or equal): | 
 | 17624 | #	       _ | 
 | 17625 | #	NANv(N^Z) | 
 | 17626 | # | 
 | 17627 | fscc_nge: | 
 | 17628 | 	fbnge.w		fscc_nge_yes		# not (greater than or equal)? | 
 | 17629 | fscc_nge_no: | 
 | 17630 | 	clr.b		%d0			# set false | 
 | 17631 | 	bra.w		fscc_done		# go finish | 
 | 17632 | fscc_nge_yes: | 
 | 17633 | 	st		%d0			# set true | 
 | 17634 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 17635 | 	beq.w		fscc_done		# no;go finish | 
 | 17636 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 17637 | 	bra.w		fscc_chk_bsun		# go finish | 
 | 17638 |  | 
 | 17639 | # | 
 | 17640 | # less than: | 
 | 17641 | #	   _____ | 
 | 17642 | #	N^(NANvZ) | 
 | 17643 | # | 
 | 17644 | fscc_lt: | 
 | 17645 | 	fblt.w		fscc_lt_yes		# less than? | 
 | 17646 | fscc_lt_no: | 
 | 17647 | 	clr.b		%d0			# set false | 
 | 17648 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 17649 | 	beq.w		fscc_done		# no;go finish | 
 | 17650 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 17651 | 	bra.w		fscc_chk_bsun		# go finish | 
 | 17652 | fscc_lt_yes: | 
 | 17653 | 	st		%d0			# set true | 
 | 17654 | 	bra.w		fscc_done		# go finish | 
 | 17655 |  | 
 | 17656 | # | 
 | 17657 | # not less than: | 
 | 17658 | #	       _ | 
 | 17659 | #	NANv(ZvN) | 
 | 17660 | # | 
 | 17661 | fscc_nlt: | 
 | 17662 | 	fbnlt.w		fscc_nlt_yes		# not less than? | 
 | 17663 | fscc_nlt_no: | 
 | 17664 | 	clr.b		%d0			# set false | 
 | 17665 | 	bra.w		fscc_done		# go finish | 
 | 17666 | fscc_nlt_yes: | 
 | 17667 | 	st		%d0			# set true | 
 | 17668 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 17669 | 	beq.w		fscc_done		# no;go finish | 
 | 17670 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 17671 | 	bra.w		fscc_chk_bsun		# go finish | 
 | 17672 |  | 
 | 17673 | # | 
 | 17674 | # less than or equal: | 
 | 17675 | #	     ___ | 
 | 17676 | #	Zv(N^NAN) | 
 | 17677 | # | 
 | 17678 | fscc_le: | 
 | 17679 | 	fble.w		fscc_le_yes		# less than or equal? | 
 | 17680 | fscc_le_no: | 
 | 17681 | 	clr.b		%d0			# set false | 
 | 17682 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 17683 | 	beq.w		fscc_done		# no;go finish | 
 | 17684 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 17685 | 	bra.w		fscc_chk_bsun		# go finish | 
 | 17686 | fscc_le_yes: | 
 | 17687 | 	st		%d0			# set true | 
 | 17688 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 17689 | 	beq.w		fscc_done		# no;go finish | 
 | 17690 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 17691 | 	bra.w		fscc_chk_bsun		# go finish | 
 | 17692 |  | 
 | 17693 | # | 
 | 17694 | # not (less than or equal): | 
 | 17695 | #	     ___ | 
 | 17696 | #	NANv(NvZ) | 
 | 17697 | # | 
 | 17698 | fscc_nle: | 
 | 17699 | 	fbnle.w		fscc_nle_yes		# not (less than or equal)? | 
 | 17700 | fscc_nle_no: | 
 | 17701 | 	clr.b		%d0			# set false | 
 | 17702 | 	bra.w		fscc_done		# go finish | 
 | 17703 | fscc_nle_yes: | 
 | 17704 | 	st		%d0			# set true | 
 | 17705 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 17706 | 	beq.w		fscc_done		# no;go finish | 
 | 17707 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 17708 | 	bra.w		fscc_chk_bsun		# go finish | 
 | 17709 |  | 
 | 17710 | # | 
 | 17711 | # greater or less than: | 
 | 17712 | #	_____ | 
 | 17713 | #	NANvZ | 
 | 17714 | # | 
 | 17715 | fscc_gl: | 
 | 17716 | 	fbgl.w		fscc_gl_yes		# greater or less than? | 
 | 17717 | fscc_gl_no: | 
 | 17718 | 	clr.b		%d0			# set false | 
 | 17719 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 17720 | 	beq.w		fscc_done		# no;go finish | 
 | 17721 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 17722 | 	bra.w		fscc_chk_bsun		# go finish | 
 | 17723 | fscc_gl_yes: | 
 | 17724 | 	st		%d0			# set true | 
 | 17725 | 	bra.w		fscc_done		# go finish | 
 | 17726 |  | 
 | 17727 | # | 
 | 17728 | # not (greater or less than): | 
 | 17729 | # | 
 | 17730 | #	NANvZ | 
 | 17731 | # | 
 | 17732 | fscc_ngl: | 
 | 17733 | 	fbngl.w		fscc_ngl_yes		# not (greater or less than)? | 
 | 17734 | fscc_ngl_no: | 
 | 17735 | 	clr.b		%d0			# set false | 
 | 17736 | 	bra.w		fscc_done		# go finish | 
 | 17737 | fscc_ngl_yes: | 
 | 17738 | 	st		%d0			# set true | 
 | 17739 | 	btst		&nan_bit, FPSR_CC(%a6)	# is NAN set in cc? | 
 | 17740 | 	beq.w		fscc_done		# no;go finish | 
 | 17741 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 17742 | 	bra.w		fscc_chk_bsun		# go finish | 
 | 17743 |  | 
 | 17744 | # | 
 | 17745 | # greater, less, or equal: | 
 | 17746 | #	___ | 
 | 17747 | #	NAN | 
 | 17748 | # | 
 | 17749 | fscc_gle: | 
 | 17750 | 	fbgle.w		fscc_gle_yes		# greater, less, or equal? | 
 | 17751 | fscc_gle_no: | 
 | 17752 | 	clr.b		%d0			# set false | 
 | 17753 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 17754 | 	bra.w		fscc_chk_bsun		# go finish | 
 | 17755 | fscc_gle_yes: | 
 | 17756 | 	st		%d0			# set true | 
 | 17757 | 	bra.w		fscc_done		# go finish | 
 | 17758 |  | 
 | 17759 | # | 
 | 17760 | # not (greater, less, or equal): | 
 | 17761 | # | 
 | 17762 | #	NAN | 
 | 17763 | # | 
 | 17764 | fscc_ngle: | 
 | 17765 | 	fbngle.w		fscc_ngle_yes	# not (greater, less, or equal)? | 
 | 17766 | fscc_ngle_no: | 
 | 17767 | 	clr.b		%d0			# set false | 
 | 17768 | 	bra.w		fscc_done		# go finish | 
 | 17769 | fscc_ngle_yes: | 
 | 17770 | 	st		%d0			# set true | 
 | 17771 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 17772 | 	bra.w		fscc_chk_bsun		# go finish | 
 | 17773 |  | 
 | 17774 | ######################################################################### | 
 | 17775 | #									# | 
 | 17776 | # Miscellaneous tests							# | 
 | 17777 | #									# | 
 | 17778 | # For the IEEE aware tests, we only have to set the result based on the	# | 
 | 17779 | # floating point condition codes. The BSUN exception will not be	# | 
 | 17780 | # set for any of these tests.						# | 
 | 17781 | #									# | 
 | 17782 | ######################################################################### | 
 | 17783 |  | 
 | 17784 | # | 
 | 17785 | # false: | 
 | 17786 | # | 
 | 17787 | #	False | 
 | 17788 | # | 
 | 17789 | fscc_f: | 
 | 17790 | 	clr.b		%d0			# set false | 
 | 17791 | 	bra.w		fscc_done		# go finish | 
 | 17792 |  | 
 | 17793 | # | 
 | 17794 | # true: | 
 | 17795 | # | 
 | 17796 | #	True | 
 | 17797 | # | 
 | 17798 | fscc_t: | 
 | 17799 | 	st		%d0			# set true | 
 | 17800 | 	bra.w		fscc_done		# go finish | 
 | 17801 |  | 
 | 17802 | # | 
 | 17803 | # signalling false: | 
 | 17804 | # | 
 | 17805 | #	False | 
 | 17806 | # | 
 | 17807 | fscc_sf: | 
 | 17808 | 	clr.b		%d0			# set false | 
 | 17809 | 	btst		&nan_bit, FPSR_CC(%a6)	# set BSUN exc bit | 
 | 17810 | 	beq.w		fscc_done		# no;go finish | 
 | 17811 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 17812 | 	bra.w		fscc_chk_bsun		# go finish | 
 | 17813 |  | 
 | 17814 | # | 
 | 17815 | # signalling true: | 
 | 17816 | # | 
 | 17817 | #	True | 
 | 17818 | # | 
 | 17819 | fscc_st: | 
 | 17820 | 	st		%d0			# set false | 
 | 17821 | 	btst		&nan_bit, FPSR_CC(%a6)	# set BSUN exc bit | 
 | 17822 | 	beq.w		fscc_done		# no;go finish | 
 | 17823 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 17824 | 	bra.w		fscc_chk_bsun		# go finish | 
 | 17825 |  | 
 | 17826 | # | 
 | 17827 | # signalling equal: | 
 | 17828 | # | 
 | 17829 | #	Z | 
 | 17830 | # | 
 | 17831 | fscc_seq: | 
 | 17832 | 	fbseq.w		fscc_seq_yes		# signalling equal? | 
 | 17833 | fscc_seq_no: | 
 | 17834 | 	clr.b		%d0			# set false | 
 | 17835 | 	btst		&nan_bit, FPSR_CC(%a6)	# set BSUN exc bit | 
 | 17836 | 	beq.w		fscc_done		# no;go finish | 
 | 17837 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 17838 | 	bra.w		fscc_chk_bsun		# go finish | 
 | 17839 | fscc_seq_yes: | 
 | 17840 | 	st		%d0			# set true | 
 | 17841 | 	btst		&nan_bit, FPSR_CC(%a6)	# set BSUN exc bit | 
 | 17842 | 	beq.w		fscc_done		# no;go finish | 
 | 17843 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 17844 | 	bra.w		fscc_chk_bsun		# go finish | 
 | 17845 |  | 
 | 17846 | # | 
 | 17847 | # signalling not equal: | 
 | 17848 | #	_ | 
 | 17849 | #	Z | 
 | 17850 | # | 
 | 17851 | fscc_sneq: | 
 | 17852 | 	fbsneq.w	fscc_sneq_yes		# signalling equal? | 
 | 17853 | fscc_sneq_no: | 
 | 17854 | 	clr.b		%d0			# set false | 
 | 17855 | 	btst		&nan_bit, FPSR_CC(%a6)	# set BSUN exc bit | 
 | 17856 | 	beq.w		fscc_done		# no;go finish | 
 | 17857 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 17858 | 	bra.w		fscc_chk_bsun		# go finish | 
 | 17859 | fscc_sneq_yes: | 
 | 17860 | 	st		%d0			# set true | 
 | 17861 | 	btst		&nan_bit, FPSR_CC(%a6)	# set BSUN exc bit | 
 | 17862 | 	beq.w		fscc_done		# no;go finish | 
 | 17863 | 	ori.l		&bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit | 
 | 17864 | 	bra.w		fscc_chk_bsun		# go finish | 
 | 17865 |  | 
 | 17866 | ######################################################################### | 
 | 17867 | #									# | 
 | 17868 | # IEEE Aware tests							# | 
 | 17869 | #									# | 
 | 17870 | # For the IEEE aware tests, we only have to set the result based on the	# | 
 | 17871 | # floating point condition codes. The BSUN exception will not be	# | 
 | 17872 | # set for any of these tests.						# | 
 | 17873 | #									# | 
 | 17874 | ######################################################################### | 
 | 17875 |  | 
 | 17876 | # | 
 | 17877 | # ordered greater than: | 
 | 17878 | #	_______ | 
 | 17879 | #	NANvZvN | 
 | 17880 | # | 
 | 17881 | fscc_ogt: | 
 | 17882 | 	fbogt.w		fscc_ogt_yes		# ordered greater than? | 
 | 17883 | fscc_ogt_no: | 
 | 17884 | 	clr.b		%d0			# set false | 
 | 17885 | 	bra.w		fscc_done		# go finish | 
 | 17886 | fscc_ogt_yes: | 
 | 17887 | 	st		%d0			# set true | 
 | 17888 | 	bra.w		fscc_done		# go finish | 
 | 17889 |  | 
 | 17890 | # | 
 | 17891 | # unordered or less or equal: | 
 | 17892 | #	_______ | 
 | 17893 | #	NANvZvN | 
 | 17894 | # | 
 | 17895 | fscc_ule: | 
 | 17896 | 	fbule.w		fscc_ule_yes		# unordered or less or equal? | 
 | 17897 | fscc_ule_no: | 
 | 17898 | 	clr.b		%d0			# set false | 
 | 17899 | 	bra.w		fscc_done		# go finish | 
 | 17900 | fscc_ule_yes: | 
 | 17901 | 	st		%d0			# set true | 
 | 17902 | 	bra.w		fscc_done		# go finish | 
 | 17903 |  | 
 | 17904 | # | 
 | 17905 | # ordered greater than or equal: | 
 | 17906 | #	   _____ | 
 | 17907 | #	Zv(NANvN) | 
 | 17908 | # | 
 | 17909 | fscc_oge: | 
 | 17910 | 	fboge.w		fscc_oge_yes		# ordered greater than or equal? | 
 | 17911 | fscc_oge_no: | 
 | 17912 | 	clr.b		%d0			# set false | 
 | 17913 | 	bra.w		fscc_done		# go finish | 
 | 17914 | fscc_oge_yes: | 
 | 17915 | 	st		%d0			# set true | 
 | 17916 | 	bra.w		fscc_done		# go finish | 
 | 17917 |  | 
 | 17918 | # | 
 | 17919 | # unordered or less than: | 
 | 17920 | #	       _ | 
 | 17921 | #	NANv(N^Z) | 
 | 17922 | # | 
 | 17923 | fscc_ult: | 
 | 17924 | 	fbult.w		fscc_ult_yes		# unordered or less than? | 
 | 17925 | fscc_ult_no: | 
 | 17926 | 	clr.b		%d0			# set false | 
 | 17927 | 	bra.w		fscc_done		# go finish | 
 | 17928 | fscc_ult_yes: | 
 | 17929 | 	st		%d0			# set true | 
 | 17930 | 	bra.w		fscc_done		# go finish | 
 | 17931 |  | 
 | 17932 | # | 
 | 17933 | # ordered less than: | 
 | 17934 | #	   _____ | 
 | 17935 | #	N^(NANvZ) | 
 | 17936 | # | 
 | 17937 | fscc_olt: | 
 | 17938 | 	fbolt.w		fscc_olt_yes		# ordered less than? | 
 | 17939 | fscc_olt_no: | 
 | 17940 | 	clr.b		%d0			# set false | 
 | 17941 | 	bra.w		fscc_done		# go finish | 
 | 17942 | fscc_olt_yes: | 
 | 17943 | 	st		%d0			# set true | 
 | 17944 | 	bra.w		fscc_done		# go finish | 
 | 17945 |  | 
 | 17946 | # | 
 | 17947 | # unordered or greater or equal: | 
 | 17948 | # | 
 | 17949 | #	NANvZvN | 
 | 17950 | # | 
 | 17951 | fscc_uge: | 
 | 17952 | 	fbuge.w		fscc_uge_yes		# unordered or greater than? | 
 | 17953 | fscc_uge_no: | 
 | 17954 | 	clr.b		%d0			# set false | 
 | 17955 | 	bra.w		fscc_done		# go finish | 
 | 17956 | fscc_uge_yes: | 
 | 17957 | 	st		%d0			# set true | 
 | 17958 | 	bra.w		fscc_done		# go finish | 
 | 17959 |  | 
 | 17960 | # | 
 | 17961 | # ordered less than or equal: | 
 | 17962 | #	     ___ | 
 | 17963 | #	Zv(N^NAN) | 
 | 17964 | # | 
 | 17965 | fscc_ole: | 
 | 17966 | 	fbole.w		fscc_ole_yes		# ordered greater or less than? | 
 | 17967 | fscc_ole_no: | 
 | 17968 | 	clr.b		%d0			# set false | 
 | 17969 | 	bra.w		fscc_done		# go finish | 
 | 17970 | fscc_ole_yes: | 
 | 17971 | 	st		%d0			# set true | 
 | 17972 | 	bra.w		fscc_done		# go finish | 
 | 17973 |  | 
 | 17974 | # | 
 | 17975 | # unordered or greater than: | 
 | 17976 | #	     ___ | 
 | 17977 | #	NANv(NvZ) | 
 | 17978 | # | 
 | 17979 | fscc_ugt: | 
 | 17980 | 	fbugt.w		fscc_ugt_yes		# unordered or greater than? | 
 | 17981 | fscc_ugt_no: | 
 | 17982 | 	clr.b		%d0			# set false | 
 | 17983 | 	bra.w		fscc_done		# go finish | 
 | 17984 | fscc_ugt_yes: | 
 | 17985 | 	st		%d0			# set true | 
 | 17986 | 	bra.w		fscc_done		# go finish | 
 | 17987 |  | 
 | 17988 | # | 
 | 17989 | # ordered greater or less than: | 
 | 17990 | #	_____ | 
 | 17991 | #	NANvZ | 
 | 17992 | # | 
 | 17993 | fscc_ogl: | 
 | 17994 | 	fbogl.w		fscc_ogl_yes		# ordered greater or less than? | 
 | 17995 | fscc_ogl_no: | 
 | 17996 | 	clr.b		%d0			# set false | 
 | 17997 | 	bra.w		fscc_done		# go finish | 
 | 17998 | fscc_ogl_yes: | 
 | 17999 | 	st		%d0			# set true | 
 | 18000 | 	bra.w		fscc_done		# go finish | 
 | 18001 |  | 
 | 18002 | # | 
 | 18003 | # unordered or equal: | 
 | 18004 | # | 
 | 18005 | #	NANvZ | 
 | 18006 | # | 
 | 18007 | fscc_ueq: | 
 | 18008 | 	fbueq.w		fscc_ueq_yes		# unordered or equal? | 
 | 18009 | fscc_ueq_no: | 
 | 18010 | 	clr.b		%d0			# set false | 
 | 18011 | 	bra.w		fscc_done		# go finish | 
 | 18012 | fscc_ueq_yes: | 
 | 18013 | 	st		%d0			# set true | 
 | 18014 | 	bra.w		fscc_done		# go finish | 
 | 18015 |  | 
 | 18016 | # | 
 | 18017 | # ordered: | 
 | 18018 | #	___ | 
 | 18019 | #	NAN | 
 | 18020 | # | 
 | 18021 | fscc_or: | 
 | 18022 | 	fbor.w		fscc_or_yes		# ordered? | 
 | 18023 | fscc_or_no: | 
 | 18024 | 	clr.b		%d0			# set false | 
 | 18025 | 	bra.w		fscc_done		# go finish | 
 | 18026 | fscc_or_yes: | 
 | 18027 | 	st		%d0			# set true | 
 | 18028 | 	bra.w		fscc_done		# go finish | 
 | 18029 |  | 
 | 18030 | # | 
 | 18031 | # unordered: | 
 | 18032 | # | 
 | 18033 | #	NAN | 
 | 18034 | # | 
 | 18035 | fscc_un: | 
 | 18036 | 	fbun.w		fscc_un_yes		# unordered? | 
 | 18037 | fscc_un_no: | 
 | 18038 | 	clr.b		%d0			# set false | 
 | 18039 | 	bra.w		fscc_done		# go finish | 
 | 18040 | fscc_un_yes: | 
 | 18041 | 	st		%d0			# set true | 
 | 18042 | 	bra.w		fscc_done		# go finish | 
 | 18043 |  | 
 | 18044 | ####################################################################### | 
 | 18045 |  | 
 | 18046 | # | 
 | 18047 | # the bsun exception bit was set. now, check to see is BSUN | 
 | 18048 | # is enabled. if so, don't store result and correct stack frame | 
 | 18049 | # for a bsun exception. | 
 | 18050 | # | 
 | 18051 | fscc_chk_bsun: | 
 | 18052 | 	btst		&bsun_bit,FPCR_ENABLE(%a6) # was BSUN set? | 
 | 18053 | 	bne.w		fscc_bsun | 
 | 18054 |  | 
 | 18055 | # | 
 | 18056 | # the bsun exception bit was not set. | 
 | 18057 | # the result has been selected. | 
 | 18058 | # now, check to see if the result is to be stored in the data register | 
 | 18059 | # file or in memory. | 
 | 18060 | # | 
 | 18061 | fscc_done: | 
 | 18062 | 	mov.l		%d0,%a0			# save result for a moment | 
 | 18063 |  | 
 | 18064 | 	mov.b		1+EXC_OPWORD(%a6),%d1	# fetch lo opword | 
 | 18065 | 	mov.l		%d1,%d0			# make a copy | 
 | 18066 | 	andi.b		&0x38,%d1		# extract src mode | 
 | 18067 |  | 
 | 18068 | 	bne.b		fscc_mem_op		# it's a memory operation | 
 | 18069 |  | 
 | 18070 | 	mov.l		%d0,%d1 | 
 | 18071 | 	andi.w		&0x7,%d1		# pass index in d1 | 
 | 18072 | 	mov.l		%a0,%d0			# pass result in d0 | 
 | 18073 | 	bsr.l		store_dreg_b		# save result in regfile | 
 | 18074 | 	rts | 
 | 18075 |  | 
 | 18076 | # | 
 | 18077 | # the stacked <ea> is correct with the exception of: | 
 | 18078 | #	-> Dn : <ea> is garbage | 
 | 18079 | # | 
 | 18080 | # if the addressing mode is post-increment or pre-decrement, | 
 | 18081 | # then the address registers have not been updated. | 
 | 18082 | # | 
 | 18083 | fscc_mem_op: | 
 | 18084 | 	cmpi.b		%d1,&0x18		# is <ea> (An)+ ? | 
 | 18085 | 	beq.b		fscc_mem_inc		# yes | 
 | 18086 | 	cmpi.b		%d1,&0x20		# is <ea> -(An) ? | 
 | 18087 | 	beq.b		fscc_mem_dec		# yes | 
 | 18088 |  | 
 | 18089 | 	mov.l		%a0,%d0			# pass result in d0 | 
 | 18090 | 	mov.l		EXC_EA(%a6),%a0		# fetch <ea> | 
 | 18091 | 	bsr.l		_dmem_write_byte	# write result byte | 
 | 18092 |  | 
 | 18093 | 	tst.l		%d1			# did dstore fail? | 
 | 18094 | 	bne.w		fscc_err		# yes | 
 | 18095 |  | 
 | 18096 | 	rts | 
 | 18097 |  | 
 | 18098 | # addresing mode is post-increment. write the result byte. if the write | 
 | 18099 | # fails then don't update the address register. if write passes then | 
 | 18100 | # call inc_areg() to update the address register. | 
 | 18101 | fscc_mem_inc: | 
 | 18102 | 	mov.l		%a0,%d0			# pass result in d0 | 
 | 18103 | 	mov.l		EXC_EA(%a6),%a0		# fetch <ea> | 
 | 18104 | 	bsr.l		_dmem_write_byte	# write result byte | 
 | 18105 |  | 
 | 18106 | 	tst.l		%d1			# did dstore fail? | 
 | 18107 | 	bne.w		fscc_err		# yes | 
 | 18108 |  | 
 | 18109 | 	mov.b		0x1+EXC_OPWORD(%a6),%d1	# fetch opword | 
 | 18110 | 	andi.w		&0x7,%d1		# pass index in d1 | 
 | 18111 | 	movq.l		&0x1,%d0		# pass amt to inc by | 
 | 18112 | 	bsr.l		inc_areg		# increment address register | 
 | 18113 |  | 
 | 18114 | 	rts | 
 | 18115 |  | 
 | 18116 | # addressing mode is pre-decrement. write the result byte. if the write | 
 | 18117 | # fails then don't update the address register. if the write passes then | 
 | 18118 | # call dec_areg() to update the address register. | 
 | 18119 | fscc_mem_dec: | 
 | 18120 | 	mov.l		%a0,%d0			# pass result in d0 | 
 | 18121 | 	mov.l		EXC_EA(%a6),%a0		# fetch <ea> | 
 | 18122 | 	bsr.l		_dmem_write_byte	# write result byte | 
 | 18123 |  | 
 | 18124 | 	tst.l		%d1			# did dstore fail? | 
 | 18125 | 	bne.w		fscc_err		# yes | 
 | 18126 |  | 
 | 18127 | 	mov.b		0x1+EXC_OPWORD(%a6),%d1	# fetch opword | 
 | 18128 | 	andi.w		&0x7,%d1		# pass index in d1 | 
 | 18129 | 	movq.l		&0x1,%d0		# pass amt to dec by | 
 | 18130 | 	bsr.l		dec_areg		# decrement address register | 
 | 18131 |  | 
 | 18132 | 	rts | 
 | 18133 |  | 
 | 18134 | # the emulation routine set bsun and BSUN was enabled. have to | 
 | 18135 | # fix stack and jump to the bsun handler. | 
 | 18136 | # let the caller of this routine shift the stack frame up to | 
 | 18137 | # eliminate the effective address field. | 
 | 18138 | fscc_bsun: | 
 | 18139 | 	mov.b		&fbsun_flg,SPCOND_FLG(%a6) | 
 | 18140 | 	rts | 
 | 18141 |  | 
 | 18142 | # the byte write to memory has failed. pass the failing effective address | 
 | 18143 | # and a FSLW to funimp_dacc(). | 
 | 18144 | fscc_err: | 
 | 18145 | 	mov.w		&0x00a1,EXC_VOFF(%a6) | 
 | 18146 | 	bra.l		facc_finish | 
 | 18147 |  | 
 | 18148 | ######################################################################### | 
 | 18149 | # XDEF ****************************************************************	# | 
 | 18150 | #	fmovm_dynamic(): emulate "fmovm" dynamic instruction		# | 
 | 18151 | #									# | 
 | 18152 | # XREF ****************************************************************	# | 
 | 18153 | #	fetch_dreg() - fetch data register				# | 
 | 18154 | #	{i,d,}mem_read() - fetch data from memory			# | 
 | 18155 | #	_mem_write() - write data to memory				# | 
 | 18156 | #	iea_iacc() - instruction memory access error occurred		# | 
 | 18157 | #	iea_dacc() - data memory access error occurred			# | 
 | 18158 | #	restore() - restore An index regs if access error occurred	# | 
 | 18159 | #									# | 
 | 18160 | # INPUT ***************************************************************	# | 
 | 18161 | #	None								# | 
 | 18162 | #									# | 
 | 18163 | # OUTPUT **************************************************************	# | 
 | 18164 | #	If instr is "fmovm Dn,-(A7)" from supervisor mode,		# | 
 | 18165 | #		d0 = size of dump					# | 
 | 18166 | #		d1 = Dn							# | 
 | 18167 | #	Else if instruction access error,				# | 
 | 18168 | #		d0 = FSLW						# | 
 | 18169 | #	Else if data access error,					# | 
 | 18170 | #		d0 = FSLW						# | 
 | 18171 | #		a0 = address of fault					# | 
 | 18172 | #	Else								# | 
 | 18173 | #		none.							# | 
 | 18174 | #									# | 
 | 18175 | # ALGORITHM ***********************************************************	# | 
 | 18176 | #	The effective address must be calculated since this is entered	# | 
 | 18177 | # from an "Unimplemented Effective Address" exception handler. So, we	# | 
 | 18178 | # have our own fcalc_ea() routine here. If an access error is flagged	# | 
 | 18179 | # by a _{i,d,}mem_read() call, we must exit through the special		# | 
 | 18180 | # handler.								# | 
 | 18181 | #	The data register is determined and its value loaded to get the	# | 
 | 18182 | # string of FP registers affected. This value is used as an index into	# | 
 | 18183 | # a lookup table such that we can determine the number of bytes		# | 
 | 18184 | # involved.								# | 
 | 18185 | #	If the instruction is "fmovm.x <ea>,Dn", a _mem_read() is used	# | 
 | 18186 | # to read in all FP values. Again, _mem_read() may fail and require a	# | 
 | 18187 | # special exit.								# | 
 | 18188 | #	If the instruction is "fmovm.x DN,<ea>", a _mem_write() is used	# | 
 | 18189 | # to write all FP values. _mem_write() may also fail.			# | 
 | 18190 | #	If the instruction is "fmovm.x DN,-(a7)" from supervisor mode,	# | 
 | 18191 | # then we return the size of the dump and the string to the caller	# | 
 | 18192 | # so that the move can occur outside of this routine. This special	# | 
 | 18193 | # case is required so that moves to the system stack are handled	# | 
 | 18194 | # correctly.								# | 
 | 18195 | #									# | 
 | 18196 | # DYNAMIC:								# | 
 | 18197 | #	fmovm.x	dn, <ea>						# | 
 | 18198 | #	fmovm.x	<ea>, dn						# | 
 | 18199 | #									# | 
 | 18200 | #	      <WORD 1>		      <WORD2>				# | 
 | 18201 | #	1111 0010 00 |<ea>|	11@& 1000 0$$$ 0000			# | 
 | 18202 | #									# | 
 | 18203 | #	& = (0): predecrement addressing mode				# | 
 | 18204 | #	    (1): postincrement or control addressing mode		# | 
 | 18205 | #	@ = (0): move listed regs from memory to the FPU		# | 
 | 18206 | #	    (1): move listed regs from the FPU to memory		# | 
 | 18207 | #	$$$    : index of data register holding reg select mask		# | 
 | 18208 | #									# | 
 | 18209 | # NOTES:								# | 
 | 18210 | #	If the data register holds a zero, then the			# | 
 | 18211 | #	instruction is a nop.						# | 
 | 18212 | #									# | 
 | 18213 | ######################################################################### | 
 | 18214 |  | 
 | 18215 | 	global		fmovm_dynamic | 
 | 18216 | fmovm_dynamic: | 
 | 18217 |  | 
 | 18218 | # extract the data register in which the bit string resides... | 
 | 18219 | 	mov.b		1+EXC_EXTWORD(%a6),%d1	# fetch extword | 
 | 18220 | 	andi.w		&0x70,%d1		# extract reg bits | 
 | 18221 | 	lsr.b		&0x4,%d1		# shift into lo bits | 
 | 18222 |  | 
 | 18223 | # fetch the bit string into d0... | 
 | 18224 | 	bsr.l		fetch_dreg		# fetch reg string | 
 | 18225 |  | 
 | 18226 | 	andi.l		&0x000000ff,%d0		# keep only lo byte | 
 | 18227 |  | 
 | 18228 | 	mov.l		%d0,-(%sp)		# save strg | 
 | 18229 | 	mov.b		(tbl_fmovm_size.w,%pc,%d0),%d0 | 
 | 18230 | 	mov.l		%d0,-(%sp)		# save size | 
 | 18231 | 	bsr.l		fmovm_calc_ea		# calculate <ea> | 
 | 18232 | 	mov.l		(%sp)+,%d0		# restore size | 
 | 18233 | 	mov.l		(%sp)+,%d1		# restore strg | 
 | 18234 |  | 
 | 18235 | # if the bit string is a zero, then the operation is a no-op | 
 | 18236 | # but, make sure that we've calculated ea and advanced the opword pointer | 
 | 18237 | 	beq.w		fmovm_data_done | 
 | 18238 |  | 
 | 18239 | # separate move ins from move outs... | 
 | 18240 | 	btst		&0x5,EXC_EXTWORD(%a6)	# is it a move in or out? | 
 | 18241 | 	beq.w		fmovm_data_in		# it's a move out | 
 | 18242 |  | 
 | 18243 | ############# | 
 | 18244 | # MOVE OUT: # | 
 | 18245 | ############# | 
 | 18246 | fmovm_data_out: | 
 | 18247 | 	btst		&0x4,EXC_EXTWORD(%a6)	# control or predecrement? | 
 | 18248 | 	bne.w		fmovm_out_ctrl		# control | 
 | 18249 |  | 
 | 18250 | ############################ | 
 | 18251 | fmovm_out_predec: | 
 | 18252 | # for predecrement mode, the bit string is the opposite of both control | 
 | 18253 | # operations and postincrement mode. (bit7 = FP7 ... bit0 = FP0) | 
 | 18254 | # here, we convert it to be just like the others... | 
 | 18255 | 	mov.b		(tbl_fmovm_convert.w,%pc,%d1.w*1),%d1 | 
 | 18256 |  | 
 | 18257 | 	btst		&0x5,EXC_SR(%a6)	# user or supervisor mode? | 
 | 18258 | 	beq.b		fmovm_out_ctrl		# user | 
 | 18259 |  | 
 | 18260 | fmovm_out_predec_s: | 
 | 18261 | 	cmpi.b		SPCOND_FLG(%a6),&mda7_flg # is <ea> mode -(a7)? | 
 | 18262 | 	bne.b		fmovm_out_ctrl | 
 | 18263 |  | 
 | 18264 | # the operation was unfortunately an: fmovm.x dn,-(sp) | 
 | 18265 | # called from supervisor mode. | 
 | 18266 | # we're also passing "size" and "strg" back to the calling routine | 
 | 18267 | 	rts | 
 | 18268 |  | 
 | 18269 | ############################ | 
 | 18270 | fmovm_out_ctrl: | 
 | 18271 | 	mov.l		%a0,%a1			# move <ea> to a1 | 
 | 18272 |  | 
 | 18273 | 	sub.l		%d0,%sp			# subtract size of dump | 
 | 18274 | 	lea		(%sp),%a0 | 
 | 18275 |  | 
 | 18276 | 	tst.b		%d1			# should FP0 be moved? | 
 | 18277 | 	bpl.b		fmovm_out_ctrl_fp1	# no | 
 | 18278 |  | 
 | 18279 | 	mov.l		0x0+EXC_FP0(%a6),(%a0)+	# yes | 
 | 18280 | 	mov.l		0x4+EXC_FP0(%a6),(%a0)+ | 
 | 18281 | 	mov.l		0x8+EXC_FP0(%a6),(%a0)+ | 
 | 18282 |  | 
 | 18283 | fmovm_out_ctrl_fp1: | 
 | 18284 | 	lsl.b		&0x1,%d1		# should FP1 be moved? | 
 | 18285 | 	bpl.b		fmovm_out_ctrl_fp2	# no | 
 | 18286 |  | 
 | 18287 | 	mov.l		0x0+EXC_FP1(%a6),(%a0)+	# yes | 
 | 18288 | 	mov.l		0x4+EXC_FP1(%a6),(%a0)+ | 
 | 18289 | 	mov.l		0x8+EXC_FP1(%a6),(%a0)+ | 
 | 18290 |  | 
 | 18291 | fmovm_out_ctrl_fp2: | 
 | 18292 | 	lsl.b		&0x1,%d1		# should FP2 be moved? | 
 | 18293 | 	bpl.b		fmovm_out_ctrl_fp3	# no | 
 | 18294 |  | 
 | 18295 | 	fmovm.x		&0x20,(%a0)		# yes | 
 | 18296 | 	add.l		&0xc,%a0 | 
 | 18297 |  | 
 | 18298 | fmovm_out_ctrl_fp3: | 
 | 18299 | 	lsl.b		&0x1,%d1		# should FP3 be moved? | 
 | 18300 | 	bpl.b		fmovm_out_ctrl_fp4	# no | 
 | 18301 |  | 
 | 18302 | 	fmovm.x		&0x10,(%a0)		# yes | 
 | 18303 | 	add.l		&0xc,%a0 | 
 | 18304 |  | 
 | 18305 | fmovm_out_ctrl_fp4: | 
 | 18306 | 	lsl.b		&0x1,%d1		# should FP4 be moved? | 
 | 18307 | 	bpl.b		fmovm_out_ctrl_fp5	# no | 
 | 18308 |  | 
 | 18309 | 	fmovm.x		&0x08,(%a0)		# yes | 
 | 18310 | 	add.l		&0xc,%a0 | 
 | 18311 |  | 
 | 18312 | fmovm_out_ctrl_fp5: | 
 | 18313 | 	lsl.b		&0x1,%d1		# should FP5 be moved? | 
 | 18314 | 	bpl.b		fmovm_out_ctrl_fp6	# no | 
 | 18315 |  | 
 | 18316 | 	fmovm.x		&0x04,(%a0)		# yes | 
 | 18317 | 	add.l		&0xc,%a0 | 
 | 18318 |  | 
 | 18319 | fmovm_out_ctrl_fp6: | 
 | 18320 | 	lsl.b		&0x1,%d1		# should FP6 be moved? | 
 | 18321 | 	bpl.b		fmovm_out_ctrl_fp7	# no | 
 | 18322 |  | 
 | 18323 | 	fmovm.x		&0x02,(%a0)		# yes | 
 | 18324 | 	add.l		&0xc,%a0 | 
 | 18325 |  | 
 | 18326 | fmovm_out_ctrl_fp7: | 
 | 18327 | 	lsl.b		&0x1,%d1		# should FP7 be moved? | 
 | 18328 | 	bpl.b		fmovm_out_ctrl_done	# no | 
 | 18329 |  | 
 | 18330 | 	fmovm.x		&0x01,(%a0)		# yes | 
 | 18331 | 	add.l		&0xc,%a0 | 
 | 18332 |  | 
 | 18333 | fmovm_out_ctrl_done: | 
 | 18334 | 	mov.l		%a1,L_SCR1(%a6) | 
 | 18335 |  | 
 | 18336 | 	lea		(%sp),%a0		# pass: supervisor src | 
 | 18337 | 	mov.l		%d0,-(%sp)		# save size | 
 | 18338 | 	bsr.l		_dmem_write		# copy data to user mem | 
 | 18339 |  | 
 | 18340 | 	mov.l		(%sp)+,%d0 | 
 | 18341 | 	add.l		%d0,%sp			# clear fpreg data from stack | 
 | 18342 |  | 
 | 18343 | 	tst.l		%d1			# did dstore err? | 
 | 18344 | 	bne.w		fmovm_out_err		# yes | 
 | 18345 |  | 
 | 18346 | 	rts | 
 | 18347 |  | 
 | 18348 | ############ | 
 | 18349 | # MOVE IN: # | 
 | 18350 | ############ | 
 | 18351 | fmovm_data_in: | 
 | 18352 | 	mov.l		%a0,L_SCR1(%a6) | 
 | 18353 |  | 
 | 18354 | 	sub.l		%d0,%sp			# make room for fpregs | 
 | 18355 | 	lea		(%sp),%a1 | 
 | 18356 |  | 
 | 18357 | 	mov.l		%d1,-(%sp)		# save bit string for later | 
 | 18358 | 	mov.l		%d0,-(%sp)		# save # of bytes | 
 | 18359 |  | 
 | 18360 | 	bsr.l		_dmem_read		# copy data from user mem | 
 | 18361 |  | 
 | 18362 | 	mov.l		(%sp)+,%d0		# retrieve # of bytes | 
 | 18363 |  | 
 | 18364 | 	tst.l		%d1			# did dfetch fail? | 
 | 18365 | 	bne.w		fmovm_in_err		# yes | 
 | 18366 |  | 
 | 18367 | 	mov.l		(%sp)+,%d1		# load bit string | 
 | 18368 |  | 
 | 18369 | 	lea		(%sp),%a0		# addr of stack | 
 | 18370 |  | 
 | 18371 | 	tst.b		%d1			# should FP0 be moved? | 
 | 18372 | 	bpl.b		fmovm_data_in_fp1	# no | 
 | 18373 |  | 
 | 18374 | 	mov.l		(%a0)+,0x0+EXC_FP0(%a6)	# yes | 
 | 18375 | 	mov.l		(%a0)+,0x4+EXC_FP0(%a6) | 
 | 18376 | 	mov.l		(%a0)+,0x8+EXC_FP0(%a6) | 
 | 18377 |  | 
 | 18378 | fmovm_data_in_fp1: | 
 | 18379 | 	lsl.b		&0x1,%d1		# should FP1 be moved? | 
 | 18380 | 	bpl.b		fmovm_data_in_fp2	# no | 
 | 18381 |  | 
 | 18382 | 	mov.l		(%a0)+,0x0+EXC_FP1(%a6)	# yes | 
 | 18383 | 	mov.l		(%a0)+,0x4+EXC_FP1(%a6) | 
 | 18384 | 	mov.l		(%a0)+,0x8+EXC_FP1(%a6) | 
 | 18385 |  | 
 | 18386 | fmovm_data_in_fp2: | 
 | 18387 | 	lsl.b		&0x1,%d1		# should FP2 be moved? | 
 | 18388 | 	bpl.b		fmovm_data_in_fp3	# no | 
 | 18389 |  | 
 | 18390 | 	fmovm.x		(%a0)+,&0x20		# yes | 
 | 18391 |  | 
 | 18392 | fmovm_data_in_fp3: | 
 | 18393 | 	lsl.b		&0x1,%d1		# should FP3 be moved? | 
 | 18394 | 	bpl.b		fmovm_data_in_fp4	# no | 
 | 18395 |  | 
 | 18396 | 	fmovm.x		(%a0)+,&0x10		# yes | 
 | 18397 |  | 
 | 18398 | fmovm_data_in_fp4: | 
 | 18399 | 	lsl.b		&0x1,%d1		# should FP4 be moved? | 
 | 18400 | 	bpl.b		fmovm_data_in_fp5	# no | 
 | 18401 |  | 
 | 18402 | 	fmovm.x		(%a0)+,&0x08		# yes | 
 | 18403 |  | 
 | 18404 | fmovm_data_in_fp5: | 
 | 18405 | 	lsl.b		&0x1,%d1		# should FP5 be moved? | 
 | 18406 | 	bpl.b		fmovm_data_in_fp6	# no | 
 | 18407 |  | 
 | 18408 | 	fmovm.x		(%a0)+,&0x04		# yes | 
 | 18409 |  | 
 | 18410 | fmovm_data_in_fp6: | 
 | 18411 | 	lsl.b		&0x1,%d1		# should FP6 be moved? | 
 | 18412 | 	bpl.b		fmovm_data_in_fp7	# no | 
 | 18413 |  | 
 | 18414 | 	fmovm.x		(%a0)+,&0x02		# yes | 
 | 18415 |  | 
 | 18416 | fmovm_data_in_fp7: | 
 | 18417 | 	lsl.b		&0x1,%d1		# should FP7 be moved? | 
 | 18418 | 	bpl.b		fmovm_data_in_done	# no | 
 | 18419 |  | 
 | 18420 | 	fmovm.x		(%a0)+,&0x01		# yes | 
 | 18421 |  | 
 | 18422 | fmovm_data_in_done: | 
 | 18423 | 	add.l		%d0,%sp			# remove fpregs from stack | 
 | 18424 | 	rts | 
 | 18425 |  | 
 | 18426 | ##################################### | 
 | 18427 |  | 
 | 18428 | fmovm_data_done: | 
 | 18429 | 	rts | 
 | 18430 |  | 
 | 18431 | ############################################################################## | 
 | 18432 |  | 
 | 18433 | # | 
 | 18434 | # table indexed by the operation's bit string that gives the number | 
 | 18435 | # of bytes that will be moved. | 
 | 18436 | # | 
 | 18437 | # number of bytes = (# of 1's in bit string) * 12(bytes/fpreg) | 
 | 18438 | # | 
 | 18439 | tbl_fmovm_size: | 
 | 18440 | 	byte	0x00,0x0c,0x0c,0x18,0x0c,0x18,0x18,0x24 | 
 | 18441 | 	byte	0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30 | 
 | 18442 | 	byte	0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30 | 
 | 18443 | 	byte	0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c | 
 | 18444 | 	byte	0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30 | 
 | 18445 | 	byte	0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c | 
 | 18446 | 	byte	0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c | 
 | 18447 | 	byte	0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 | 
 | 18448 | 	byte	0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30 | 
 | 18449 | 	byte	0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c | 
 | 18450 | 	byte	0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c | 
 | 18451 | 	byte	0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 | 
 | 18452 | 	byte	0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c | 
 | 18453 | 	byte	0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 | 
 | 18454 | 	byte	0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 | 
 | 18455 | 	byte	0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54 | 
 | 18456 | 	byte	0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30 | 
 | 18457 | 	byte	0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c | 
 | 18458 | 	byte	0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c | 
 | 18459 | 	byte	0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 | 
 | 18460 | 	byte	0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c | 
 | 18461 | 	byte	0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 | 
 | 18462 | 	byte	0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 | 
 | 18463 | 	byte	0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54 | 
 | 18464 | 	byte	0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c | 
 | 18465 | 	byte	0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 | 
 | 18466 | 	byte	0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 | 
 | 18467 | 	byte	0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54 | 
 | 18468 | 	byte	0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48 | 
 | 18469 | 	byte	0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54 | 
 | 18470 | 	byte	0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54 | 
 | 18471 | 	byte	0x3c,0x48,0x48,0x54,0x48,0x54,0x54,0x60 | 
 | 18472 |  | 
 | 18473 | # | 
 | 18474 | # table to convert a pre-decrement bit string into a post-increment | 
 | 18475 | # or control bit string. | 
 | 18476 | # ex:	0x00	==>	0x00 | 
 | 18477 | #	0x01	==>	0x80 | 
 | 18478 | #	0x02	==>	0x40 | 
 | 18479 | #		. | 
 | 18480 | #		. | 
 | 18481 | #	0xfd	==>	0xbf | 
 | 18482 | #	0xfe	==>	0x7f | 
 | 18483 | #	0xff	==>	0xff | 
 | 18484 | # | 
 | 18485 | tbl_fmovm_convert: | 
 | 18486 | 	byte	0x00,0x80,0x40,0xc0,0x20,0xa0,0x60,0xe0 | 
 | 18487 | 	byte	0x10,0x90,0x50,0xd0,0x30,0xb0,0x70,0xf0 | 
 | 18488 | 	byte	0x08,0x88,0x48,0xc8,0x28,0xa8,0x68,0xe8 | 
 | 18489 | 	byte	0x18,0x98,0x58,0xd8,0x38,0xb8,0x78,0xf8 | 
 | 18490 | 	byte	0x04,0x84,0x44,0xc4,0x24,0xa4,0x64,0xe4 | 
 | 18491 | 	byte	0x14,0x94,0x54,0xd4,0x34,0xb4,0x74,0xf4 | 
 | 18492 | 	byte	0x0c,0x8c,0x4c,0xcc,0x2c,0xac,0x6c,0xec | 
 | 18493 | 	byte	0x1c,0x9c,0x5c,0xdc,0x3c,0xbc,0x7c,0xfc | 
 | 18494 | 	byte	0x02,0x82,0x42,0xc2,0x22,0xa2,0x62,0xe2 | 
 | 18495 | 	byte	0x12,0x92,0x52,0xd2,0x32,0xb2,0x72,0xf2 | 
 | 18496 | 	byte	0x0a,0x8a,0x4a,0xca,0x2a,0xaa,0x6a,0xea | 
 | 18497 | 	byte	0x1a,0x9a,0x5a,0xda,0x3a,0xba,0x7a,0xfa | 
 | 18498 | 	byte	0x06,0x86,0x46,0xc6,0x26,0xa6,0x66,0xe6 | 
 | 18499 | 	byte	0x16,0x96,0x56,0xd6,0x36,0xb6,0x76,0xf6 | 
 | 18500 | 	byte	0x0e,0x8e,0x4e,0xce,0x2e,0xae,0x6e,0xee | 
 | 18501 | 	byte	0x1e,0x9e,0x5e,0xde,0x3e,0xbe,0x7e,0xfe | 
 | 18502 | 	byte	0x01,0x81,0x41,0xc1,0x21,0xa1,0x61,0xe1 | 
 | 18503 | 	byte	0x11,0x91,0x51,0xd1,0x31,0xb1,0x71,0xf1 | 
 | 18504 | 	byte	0x09,0x89,0x49,0xc9,0x29,0xa9,0x69,0xe9 | 
 | 18505 | 	byte	0x19,0x99,0x59,0xd9,0x39,0xb9,0x79,0xf9 | 
 | 18506 | 	byte	0x05,0x85,0x45,0xc5,0x25,0xa5,0x65,0xe5 | 
 | 18507 | 	byte	0x15,0x95,0x55,0xd5,0x35,0xb5,0x75,0xf5 | 
 | 18508 | 	byte	0x0d,0x8d,0x4d,0xcd,0x2d,0xad,0x6d,0xed | 
 | 18509 | 	byte	0x1d,0x9d,0x5d,0xdd,0x3d,0xbd,0x7d,0xfd | 
 | 18510 | 	byte	0x03,0x83,0x43,0xc3,0x23,0xa3,0x63,0xe3 | 
 | 18511 | 	byte	0x13,0x93,0x53,0xd3,0x33,0xb3,0x73,0xf3 | 
 | 18512 | 	byte	0x0b,0x8b,0x4b,0xcb,0x2b,0xab,0x6b,0xeb | 
 | 18513 | 	byte	0x1b,0x9b,0x5b,0xdb,0x3b,0xbb,0x7b,0xfb | 
 | 18514 | 	byte	0x07,0x87,0x47,0xc7,0x27,0xa7,0x67,0xe7 | 
 | 18515 | 	byte	0x17,0x97,0x57,0xd7,0x37,0xb7,0x77,0xf7 | 
 | 18516 | 	byte	0x0f,0x8f,0x4f,0xcf,0x2f,0xaf,0x6f,0xef | 
 | 18517 | 	byte	0x1f,0x9f,0x5f,0xdf,0x3f,0xbf,0x7f,0xff | 
 | 18518 |  | 
 | 18519 | 	global		fmovm_calc_ea | 
 | 18520 | ############################################### | 
 | 18521 | # _fmovm_calc_ea: calculate effective address # | 
 | 18522 | ############################################### | 
 | 18523 | fmovm_calc_ea: | 
 | 18524 | 	mov.l		%d0,%a0			# move # bytes to a0 | 
 | 18525 |  | 
 | 18526 | # currently, MODE and REG are taken from the EXC_OPWORD. this could be | 
 | 18527 | # easily changed if they were inputs passed in registers. | 
 | 18528 | 	mov.w		EXC_OPWORD(%a6),%d0	# fetch opcode word | 
 | 18529 | 	mov.w		%d0,%d1			# make a copy | 
 | 18530 |  | 
 | 18531 | 	andi.w		&0x3f,%d0		# extract mode field | 
 | 18532 | 	andi.l		&0x7,%d1		# extract reg  field | 
 | 18533 |  | 
 | 18534 | # jump to the corresponding function for each {MODE,REG} pair. | 
 | 18535 | 	mov.w		(tbl_fea_mode.b,%pc,%d0.w*2),%d0 # fetch jmp distance | 
 | 18536 | 	jmp		(tbl_fea_mode.b,%pc,%d0.w*1) # jmp to correct ea mode | 
 | 18537 |  | 
 | 18538 | 	swbeg		&64 | 
 | 18539 | tbl_fea_mode: | 
 | 18540 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 18541 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 18542 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 18543 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 18544 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 18545 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 18546 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 18547 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 18548 |  | 
 | 18549 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 18550 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 18551 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 18552 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 18553 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 18554 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 18555 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 18556 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 18557 |  | 
 | 18558 | 	short		faddr_ind_a0	-	tbl_fea_mode | 
 | 18559 | 	short		faddr_ind_a1	-	tbl_fea_mode | 
 | 18560 | 	short		faddr_ind_a2	-	tbl_fea_mode | 
 | 18561 | 	short		faddr_ind_a3	-	tbl_fea_mode | 
 | 18562 | 	short		faddr_ind_a4	-	tbl_fea_mode | 
 | 18563 | 	short		faddr_ind_a5	-	tbl_fea_mode | 
 | 18564 | 	short		faddr_ind_a6	-	tbl_fea_mode | 
 | 18565 | 	short		faddr_ind_a7	-	tbl_fea_mode | 
 | 18566 |  | 
 | 18567 | 	short		faddr_ind_p_a0	-	tbl_fea_mode | 
 | 18568 | 	short		faddr_ind_p_a1	-	tbl_fea_mode | 
 | 18569 | 	short		faddr_ind_p_a2	-	tbl_fea_mode | 
 | 18570 | 	short		faddr_ind_p_a3	-	tbl_fea_mode | 
 | 18571 | 	short		faddr_ind_p_a4	-	tbl_fea_mode | 
 | 18572 | 	short		faddr_ind_p_a5	-	tbl_fea_mode | 
 | 18573 | 	short		faddr_ind_p_a6	-	tbl_fea_mode | 
 | 18574 | 	short		faddr_ind_p_a7	-	tbl_fea_mode | 
 | 18575 |  | 
 | 18576 | 	short		faddr_ind_m_a0	-	tbl_fea_mode | 
 | 18577 | 	short		faddr_ind_m_a1	-	tbl_fea_mode | 
 | 18578 | 	short		faddr_ind_m_a2	-	tbl_fea_mode | 
 | 18579 | 	short		faddr_ind_m_a3	-	tbl_fea_mode | 
 | 18580 | 	short		faddr_ind_m_a4	-	tbl_fea_mode | 
 | 18581 | 	short		faddr_ind_m_a5	-	tbl_fea_mode | 
 | 18582 | 	short		faddr_ind_m_a6	-	tbl_fea_mode | 
 | 18583 | 	short		faddr_ind_m_a7	-	tbl_fea_mode | 
 | 18584 |  | 
 | 18585 | 	short		faddr_ind_disp_a0	-	tbl_fea_mode | 
 | 18586 | 	short		faddr_ind_disp_a1	-	tbl_fea_mode | 
 | 18587 | 	short		faddr_ind_disp_a2	-	tbl_fea_mode | 
 | 18588 | 	short		faddr_ind_disp_a3	-	tbl_fea_mode | 
 | 18589 | 	short		faddr_ind_disp_a4	-	tbl_fea_mode | 
 | 18590 | 	short		faddr_ind_disp_a5	-	tbl_fea_mode | 
 | 18591 | 	short		faddr_ind_disp_a6	-	tbl_fea_mode | 
 | 18592 | 	short		faddr_ind_disp_a7	-	tbl_fea_mode | 
 | 18593 |  | 
 | 18594 | 	short		faddr_ind_ext	-	tbl_fea_mode | 
 | 18595 | 	short		faddr_ind_ext	-	tbl_fea_mode | 
 | 18596 | 	short		faddr_ind_ext	-	tbl_fea_mode | 
 | 18597 | 	short		faddr_ind_ext	-	tbl_fea_mode | 
 | 18598 | 	short		faddr_ind_ext	-	tbl_fea_mode | 
 | 18599 | 	short		faddr_ind_ext	-	tbl_fea_mode | 
 | 18600 | 	short		faddr_ind_ext	-	tbl_fea_mode | 
 | 18601 | 	short		faddr_ind_ext	-	tbl_fea_mode | 
 | 18602 |  | 
 | 18603 | 	short		fabs_short	-	tbl_fea_mode | 
 | 18604 | 	short		fabs_long	-	tbl_fea_mode | 
 | 18605 | 	short		fpc_ind		-	tbl_fea_mode | 
 | 18606 | 	short		fpc_ind_ext	-	tbl_fea_mode | 
 | 18607 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 18608 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 18609 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 18610 | 	short		tbl_fea_mode	-	tbl_fea_mode | 
 | 18611 |  | 
 | 18612 | ################################### | 
 | 18613 | # Address register indirect: (An) # | 
 | 18614 | ################################### | 
 | 18615 | faddr_ind_a0: | 
 | 18616 | 	mov.l		EXC_DREGS+0x8(%a6),%a0	# Get current a0 | 
 | 18617 | 	rts | 
 | 18618 |  | 
 | 18619 | faddr_ind_a1: | 
 | 18620 | 	mov.l		EXC_DREGS+0xc(%a6),%a0	# Get current a1 | 
 | 18621 | 	rts | 
 | 18622 |  | 
 | 18623 | faddr_ind_a2: | 
 | 18624 | 	mov.l		%a2,%a0			# Get current a2 | 
 | 18625 | 	rts | 
 | 18626 |  | 
 | 18627 | faddr_ind_a3: | 
 | 18628 | 	mov.l		%a3,%a0			# Get current a3 | 
 | 18629 | 	rts | 
 | 18630 |  | 
 | 18631 | faddr_ind_a4: | 
 | 18632 | 	mov.l		%a4,%a0			# Get current a4 | 
 | 18633 | 	rts | 
 | 18634 |  | 
 | 18635 | faddr_ind_a5: | 
 | 18636 | 	mov.l		%a5,%a0			# Get current a5 | 
 | 18637 | 	rts | 
 | 18638 |  | 
 | 18639 | faddr_ind_a6: | 
 | 18640 | 	mov.l		(%a6),%a0		# Get current a6 | 
 | 18641 | 	rts | 
 | 18642 |  | 
 | 18643 | faddr_ind_a7: | 
 | 18644 | 	mov.l		EXC_A7(%a6),%a0		# Get current a7 | 
 | 18645 | 	rts | 
 | 18646 |  | 
 | 18647 | ##################################################### | 
 | 18648 | # Address register indirect w/ postincrement: (An)+ # | 
 | 18649 | ##################################################### | 
 | 18650 | faddr_ind_p_a0: | 
 | 18651 | 	mov.l		EXC_DREGS+0x8(%a6),%d0	# Get current a0 | 
 | 18652 | 	mov.l		%d0,%d1 | 
 | 18653 | 	add.l		%a0,%d1			# Increment | 
 | 18654 | 	mov.l		%d1,EXC_DREGS+0x8(%a6)	# Save incr value | 
 | 18655 | 	mov.l		%d0,%a0 | 
 | 18656 | 	rts | 
 | 18657 |  | 
 | 18658 | faddr_ind_p_a1: | 
 | 18659 | 	mov.l		EXC_DREGS+0xc(%a6),%d0	# Get current a1 | 
 | 18660 | 	mov.l		%d0,%d1 | 
 | 18661 | 	add.l		%a0,%d1			# Increment | 
 | 18662 | 	mov.l		%d1,EXC_DREGS+0xc(%a6)	# Save incr value | 
 | 18663 | 	mov.l		%d0,%a0 | 
 | 18664 | 	rts | 
 | 18665 |  | 
 | 18666 | faddr_ind_p_a2: | 
 | 18667 | 	mov.l		%a2,%d0			# Get current a2 | 
 | 18668 | 	mov.l		%d0,%d1 | 
 | 18669 | 	add.l		%a0,%d1			# Increment | 
 | 18670 | 	mov.l		%d1,%a2			# Save incr value | 
 | 18671 | 	mov.l		%d0,%a0 | 
 | 18672 | 	rts | 
 | 18673 |  | 
 | 18674 | faddr_ind_p_a3: | 
 | 18675 | 	mov.l		%a3,%d0			# Get current a3 | 
 | 18676 | 	mov.l		%d0,%d1 | 
 | 18677 | 	add.l		%a0,%d1			# Increment | 
 | 18678 | 	mov.l		%d1,%a3			# Save incr value | 
 | 18679 | 	mov.l		%d0,%a0 | 
 | 18680 | 	rts | 
 | 18681 |  | 
 | 18682 | faddr_ind_p_a4: | 
 | 18683 | 	mov.l		%a4,%d0			# Get current a4 | 
 | 18684 | 	mov.l		%d0,%d1 | 
 | 18685 | 	add.l		%a0,%d1			# Increment | 
 | 18686 | 	mov.l		%d1,%a4			# Save incr value | 
 | 18687 | 	mov.l		%d0,%a0 | 
 | 18688 | 	rts | 
 | 18689 |  | 
 | 18690 | faddr_ind_p_a5: | 
 | 18691 | 	mov.l		%a5,%d0			# Get current a5 | 
 | 18692 | 	mov.l		%d0,%d1 | 
 | 18693 | 	add.l		%a0,%d1			# Increment | 
 | 18694 | 	mov.l		%d1,%a5			# Save incr value | 
 | 18695 | 	mov.l		%d0,%a0 | 
 | 18696 | 	rts | 
 | 18697 |  | 
 | 18698 | faddr_ind_p_a6: | 
 | 18699 | 	mov.l		(%a6),%d0		# Get current a6 | 
 | 18700 | 	mov.l		%d0,%d1 | 
 | 18701 | 	add.l		%a0,%d1			# Increment | 
 | 18702 | 	mov.l		%d1,(%a6)		# Save incr value | 
 | 18703 | 	mov.l		%d0,%a0 | 
 | 18704 | 	rts | 
 | 18705 |  | 
 | 18706 | faddr_ind_p_a7: | 
 | 18707 | 	mov.b		&mia7_flg,SPCOND_FLG(%a6) # set "special case" flag | 
 | 18708 |  | 
 | 18709 | 	mov.l		EXC_A7(%a6),%d0		# Get current a7 | 
 | 18710 | 	mov.l		%d0,%d1 | 
 | 18711 | 	add.l		%a0,%d1			# Increment | 
 | 18712 | 	mov.l		%d1,EXC_A7(%a6)		# Save incr value | 
 | 18713 | 	mov.l		%d0,%a0 | 
 | 18714 | 	rts | 
 | 18715 |  | 
 | 18716 | #################################################### | 
 | 18717 | # Address register indirect w/ predecrement: -(An) # | 
 | 18718 | #################################################### | 
 | 18719 | faddr_ind_m_a0: | 
 | 18720 | 	mov.l		EXC_DREGS+0x8(%a6),%d0	# Get current a0 | 
 | 18721 | 	sub.l		%a0,%d0			# Decrement | 
 | 18722 | 	mov.l		%d0,EXC_DREGS+0x8(%a6)	# Save decr value | 
 | 18723 | 	mov.l		%d0,%a0 | 
 | 18724 | 	rts | 
 | 18725 |  | 
 | 18726 | faddr_ind_m_a1: | 
 | 18727 | 	mov.l		EXC_DREGS+0xc(%a6),%d0	# Get current a1 | 
 | 18728 | 	sub.l		%a0,%d0			# Decrement | 
 | 18729 | 	mov.l		%d0,EXC_DREGS+0xc(%a6)	# Save decr value | 
 | 18730 | 	mov.l		%d0,%a0 | 
 | 18731 | 	rts | 
 | 18732 |  | 
 | 18733 | faddr_ind_m_a2: | 
 | 18734 | 	mov.l		%a2,%d0			# Get current a2 | 
 | 18735 | 	sub.l		%a0,%d0			# Decrement | 
 | 18736 | 	mov.l		%d0,%a2			# Save decr value | 
 | 18737 | 	mov.l		%d0,%a0 | 
 | 18738 | 	rts | 
 | 18739 |  | 
 | 18740 | faddr_ind_m_a3: | 
 | 18741 | 	mov.l		%a3,%d0			# Get current a3 | 
 | 18742 | 	sub.l		%a0,%d0			# Decrement | 
 | 18743 | 	mov.l		%d0,%a3			# Save decr value | 
 | 18744 | 	mov.l		%d0,%a0 | 
 | 18745 | 	rts | 
 | 18746 |  | 
 | 18747 | faddr_ind_m_a4: | 
 | 18748 | 	mov.l		%a4,%d0			# Get current a4 | 
 | 18749 | 	sub.l		%a0,%d0			# Decrement | 
 | 18750 | 	mov.l		%d0,%a4			# Save decr value | 
 | 18751 | 	mov.l		%d0,%a0 | 
 | 18752 | 	rts | 
 | 18753 |  | 
 | 18754 | faddr_ind_m_a5: | 
 | 18755 | 	mov.l		%a5,%d0			# Get current a5 | 
 | 18756 | 	sub.l		%a0,%d0			# Decrement | 
 | 18757 | 	mov.l		%d0,%a5			# Save decr value | 
 | 18758 | 	mov.l		%d0,%a0 | 
 | 18759 | 	rts | 
 | 18760 |  | 
 | 18761 | faddr_ind_m_a6: | 
 | 18762 | 	mov.l		(%a6),%d0		# Get current a6 | 
 | 18763 | 	sub.l		%a0,%d0			# Decrement | 
 | 18764 | 	mov.l		%d0,(%a6)		# Save decr value | 
 | 18765 | 	mov.l		%d0,%a0 | 
 | 18766 | 	rts | 
 | 18767 |  | 
 | 18768 | faddr_ind_m_a7: | 
 | 18769 | 	mov.b		&mda7_flg,SPCOND_FLG(%a6) # set "special case" flag | 
 | 18770 |  | 
 | 18771 | 	mov.l		EXC_A7(%a6),%d0		# Get current a7 | 
 | 18772 | 	sub.l		%a0,%d0			# Decrement | 
 | 18773 | 	mov.l		%d0,EXC_A7(%a6)		# Save decr value | 
 | 18774 | 	mov.l		%d0,%a0 | 
 | 18775 | 	rts | 
 | 18776 |  | 
 | 18777 | ######################################################## | 
 | 18778 | # Address register indirect w/ displacement: (d16, An) # | 
 | 18779 | ######################################################## | 
 | 18780 | faddr_ind_disp_a0: | 
 | 18781 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 18782 | 	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 18783 | 	bsr.l		_imem_read_word | 
 | 18784 |  | 
 | 18785 | 	tst.l		%d1			# did ifetch fail? | 
 | 18786 | 	bne.l		iea_iacc		# yes | 
 | 18787 |  | 
 | 18788 | 	mov.w		%d0,%a0			# sign extend displacement | 
 | 18789 |  | 
 | 18790 | 	add.l		EXC_DREGS+0x8(%a6),%a0	# a0 + d16 | 
 | 18791 | 	rts | 
 | 18792 |  | 
 | 18793 | faddr_ind_disp_a1: | 
 | 18794 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 18795 | 	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 18796 | 	bsr.l		_imem_read_word | 
 | 18797 |  | 
 | 18798 | 	tst.l		%d1			# did ifetch fail? | 
 | 18799 | 	bne.l		iea_iacc		# yes | 
 | 18800 |  | 
 | 18801 | 	mov.w		%d0,%a0			# sign extend displacement | 
 | 18802 |  | 
 | 18803 | 	add.l		EXC_DREGS+0xc(%a6),%a0	# a1 + d16 | 
 | 18804 | 	rts | 
 | 18805 |  | 
 | 18806 | faddr_ind_disp_a2: | 
 | 18807 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 18808 | 	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 18809 | 	bsr.l		_imem_read_word | 
 | 18810 |  | 
 | 18811 | 	tst.l		%d1			# did ifetch fail? | 
 | 18812 | 	bne.l		iea_iacc		# yes | 
 | 18813 |  | 
 | 18814 | 	mov.w		%d0,%a0			# sign extend displacement | 
 | 18815 |  | 
 | 18816 | 	add.l		%a2,%a0			# a2 + d16 | 
 | 18817 | 	rts | 
 | 18818 |  | 
 | 18819 | faddr_ind_disp_a3: | 
 | 18820 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 18821 | 	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 18822 | 	bsr.l		_imem_read_word | 
 | 18823 |  | 
 | 18824 | 	tst.l		%d1			# did ifetch fail? | 
 | 18825 | 	bne.l		iea_iacc		# yes | 
 | 18826 |  | 
 | 18827 | 	mov.w		%d0,%a0			# sign extend displacement | 
 | 18828 |  | 
 | 18829 | 	add.l		%a3,%a0			# a3 + d16 | 
 | 18830 | 	rts | 
 | 18831 |  | 
 | 18832 | faddr_ind_disp_a4: | 
 | 18833 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 18834 | 	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 18835 | 	bsr.l		_imem_read_word | 
 | 18836 |  | 
 | 18837 | 	tst.l		%d1			# did ifetch fail? | 
 | 18838 | 	bne.l		iea_iacc		# yes | 
 | 18839 |  | 
 | 18840 | 	mov.w		%d0,%a0			# sign extend displacement | 
 | 18841 |  | 
 | 18842 | 	add.l		%a4,%a0			# a4 + d16 | 
 | 18843 | 	rts | 
 | 18844 |  | 
 | 18845 | faddr_ind_disp_a5: | 
 | 18846 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 18847 | 	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 18848 | 	bsr.l		_imem_read_word | 
 | 18849 |  | 
 | 18850 | 	tst.l		%d1			# did ifetch fail? | 
 | 18851 | 	bne.l		iea_iacc		# yes | 
 | 18852 |  | 
 | 18853 | 	mov.w		%d0,%a0			# sign extend displacement | 
 | 18854 |  | 
 | 18855 | 	add.l		%a5,%a0			# a5 + d16 | 
 | 18856 | 	rts | 
 | 18857 |  | 
 | 18858 | faddr_ind_disp_a6: | 
 | 18859 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 18860 | 	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 18861 | 	bsr.l		_imem_read_word | 
 | 18862 |  | 
 | 18863 | 	tst.l		%d1			# did ifetch fail? | 
 | 18864 | 	bne.l		iea_iacc		# yes | 
 | 18865 |  | 
 | 18866 | 	mov.w		%d0,%a0			# sign extend displacement | 
 | 18867 |  | 
 | 18868 | 	add.l		(%a6),%a0		# a6 + d16 | 
 | 18869 | 	rts | 
 | 18870 |  | 
 | 18871 | faddr_ind_disp_a7: | 
 | 18872 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 18873 | 	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 18874 | 	bsr.l		_imem_read_word | 
 | 18875 |  | 
 | 18876 | 	tst.l		%d1			# did ifetch fail? | 
 | 18877 | 	bne.l		iea_iacc		# yes | 
 | 18878 |  | 
 | 18879 | 	mov.w		%d0,%a0			# sign extend displacement | 
 | 18880 |  | 
 | 18881 | 	add.l		EXC_A7(%a6),%a0		# a7 + d16 | 
 | 18882 | 	rts | 
 | 18883 |  | 
 | 18884 | ######################################################################## | 
 | 18885 | # Address register indirect w/ index(8-bit displacement): (d8, An, Xn) # | 
 | 18886 | #    "       "         "    w/   "  (base displacement): (bd, An, Xn)  # | 
 | 18887 | # Memory indirect postindexed: ([bd, An], Xn, od)		       # | 
 | 18888 | # Memory indirect preindexed: ([bd, An, Xn], od)		       # | 
 | 18889 | ######################################################################## | 
 | 18890 | faddr_ind_ext: | 
 | 18891 | 	addq.l		&0x8,%d1 | 
 | 18892 | 	bsr.l		fetch_dreg		# fetch base areg | 
 | 18893 | 	mov.l		%d0,-(%sp) | 
 | 18894 |  | 
 | 18895 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 18896 | 	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 18897 | 	bsr.l		_imem_read_word		# fetch extword in d0 | 
 | 18898 |  | 
 | 18899 | 	tst.l		%d1			# did ifetch fail? | 
 | 18900 | 	bne.l		iea_iacc		# yes | 
 | 18901 |  | 
 | 18902 | 	mov.l		(%sp)+,%a0 | 
 | 18903 |  | 
 | 18904 | 	btst		&0x8,%d0 | 
 | 18905 | 	bne.w		fcalc_mem_ind | 
 | 18906 |  | 
 | 18907 | 	mov.l		%d0,L_SCR1(%a6)		# hold opword | 
 | 18908 |  | 
 | 18909 | 	mov.l		%d0,%d1 | 
 | 18910 | 	rol.w		&0x4,%d1 | 
 | 18911 | 	andi.w		&0xf,%d1		# extract index regno | 
 | 18912 |  | 
 | 18913 | # count on fetch_dreg() not to alter a0... | 
 | 18914 | 	bsr.l		fetch_dreg		# fetch index | 
 | 18915 |  | 
 | 18916 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 18917 | 	mov.l		L_SCR1(%a6),%d2		# fetch opword | 
 | 18918 |  | 
 | 18919 | 	btst		&0xb,%d2		# is it word or long? | 
 | 18920 | 	bne.b		faii8_long | 
 | 18921 | 	ext.l		%d0			# sign extend word index | 
 | 18922 | faii8_long: | 
 | 18923 | 	mov.l		%d2,%d1 | 
 | 18924 | 	rol.w		&0x7,%d1 | 
 | 18925 | 	andi.l		&0x3,%d1		# extract scale value | 
 | 18926 |  | 
 | 18927 | 	lsl.l		%d1,%d0			# shift index by scale | 
 | 18928 |  | 
 | 18929 | 	extb.l		%d2			# sign extend displacement | 
 | 18930 | 	add.l		%d2,%d0			# index + disp | 
 | 18931 | 	add.l		%d0,%a0			# An + (index + disp) | 
 | 18932 |  | 
 | 18933 | 	mov.l		(%sp)+,%d2		# restore old d2 | 
 | 18934 | 	rts | 
 | 18935 |  | 
 | 18936 | ########################### | 
 | 18937 | # Absolute short: (XXX).W # | 
 | 18938 | ########################### | 
 | 18939 | fabs_short: | 
 | 18940 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 18941 | 	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 18942 | 	bsr.l		_imem_read_word		# fetch short address | 
 | 18943 |  | 
 | 18944 | 	tst.l		%d1			# did ifetch fail? | 
 | 18945 | 	bne.l		iea_iacc		# yes | 
 | 18946 |  | 
 | 18947 | 	mov.w		%d0,%a0			# return <ea> in a0 | 
 | 18948 | 	rts | 
 | 18949 |  | 
 | 18950 | ########################## | 
 | 18951 | # Absolute long: (XXX).L # | 
 | 18952 | ########################## | 
 | 18953 | fabs_long: | 
 | 18954 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 18955 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 18956 | 	bsr.l		_imem_read_long		# fetch long address | 
 | 18957 |  | 
 | 18958 | 	tst.l		%d1			# did ifetch fail? | 
 | 18959 | 	bne.l		iea_iacc		# yes | 
 | 18960 |  | 
 | 18961 | 	mov.l		%d0,%a0			# return <ea> in a0 | 
 | 18962 | 	rts | 
 | 18963 |  | 
 | 18964 | ####################################################### | 
 | 18965 | # Program counter indirect w/ displacement: (d16, PC) # | 
 | 18966 | ####################################################### | 
 | 18967 | fpc_ind: | 
 | 18968 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 18969 | 	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 18970 | 	bsr.l		_imem_read_word		# fetch word displacement | 
 | 18971 |  | 
 | 18972 | 	tst.l		%d1			# did ifetch fail? | 
 | 18973 | 	bne.l		iea_iacc		# yes | 
 | 18974 |  | 
 | 18975 | 	mov.w		%d0,%a0			# sign extend displacement | 
 | 18976 |  | 
 | 18977 | 	add.l		EXC_EXTWPTR(%a6),%a0	# pc + d16 | 
 | 18978 |  | 
 | 18979 | # _imem_read_word() increased the extwptr by 2. need to adjust here. | 
 | 18980 | 	subq.l		&0x2,%a0		# adjust <ea> | 
 | 18981 | 	rts | 
 | 18982 |  | 
 | 18983 | ########################################################## | 
 | 18984 | # PC indirect w/ index(8-bit displacement): (d8, PC, An) # | 
 | 18985 | # "     "     w/   "  (base displacement): (bd, PC, An)  # | 
 | 18986 | # PC memory indirect postindexed: ([bd, PC], Xn, od)     # | 
 | 18987 | # PC memory indirect preindexed: ([bd, PC, Xn], od)      # | 
 | 18988 | ########################################################## | 
 | 18989 | fpc_ind_ext: | 
 | 18990 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 18991 | 	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 18992 | 	bsr.l		_imem_read_word		# fetch ext word | 
 | 18993 |  | 
 | 18994 | 	tst.l		%d1			# did ifetch fail? | 
 | 18995 | 	bne.l		iea_iacc		# yes | 
 | 18996 |  | 
 | 18997 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# put base in a0 | 
 | 18998 | 	subq.l		&0x2,%a0		# adjust base | 
 | 18999 |  | 
 | 19000 | 	btst		&0x8,%d0		# is disp only 8 bits? | 
 | 19001 | 	bne.w		fcalc_mem_ind		# calc memory indirect | 
 | 19002 |  | 
 | 19003 | 	mov.l		%d0,L_SCR1(%a6)		# store opword | 
 | 19004 |  | 
 | 19005 | 	mov.l		%d0,%d1			# make extword copy | 
 | 19006 | 	rol.w		&0x4,%d1		# rotate reg num into place | 
 | 19007 | 	andi.w		&0xf,%d1		# extract register number | 
 | 19008 |  | 
 | 19009 | # count on fetch_dreg() not to alter a0... | 
 | 19010 | 	bsr.l		fetch_dreg		# fetch index | 
 | 19011 |  | 
 | 19012 | 	mov.l		%d2,-(%sp)		# save d2 | 
 | 19013 | 	mov.l		L_SCR1(%a6),%d2		# fetch opword | 
 | 19014 |  | 
 | 19015 | 	btst		&0xb,%d2		# is index word or long? | 
 | 19016 | 	bne.b		fpii8_long		# long | 
 | 19017 | 	ext.l		%d0			# sign extend word index | 
 | 19018 | fpii8_long: | 
 | 19019 | 	mov.l		%d2,%d1 | 
 | 19020 | 	rol.w		&0x7,%d1		# rotate scale value into place | 
 | 19021 | 	andi.l		&0x3,%d1		# extract scale value | 
 | 19022 |  | 
 | 19023 | 	lsl.l		%d1,%d0			# shift index by scale | 
 | 19024 |  | 
 | 19025 | 	extb.l		%d2			# sign extend displacement | 
 | 19026 | 	add.l		%d2,%d0			# disp + index | 
 | 19027 | 	add.l		%d0,%a0			# An + (index + disp) | 
 | 19028 |  | 
 | 19029 | 	mov.l		(%sp)+,%d2		# restore temp register | 
 | 19030 | 	rts | 
 | 19031 |  | 
 | 19032 | # d2 = index | 
 | 19033 | # d3 = base | 
 | 19034 | # d4 = od | 
 | 19035 | # d5 = extword | 
 | 19036 | fcalc_mem_ind: | 
 | 19037 | 	btst		&0x6,%d0		# is the index suppressed? | 
 | 19038 | 	beq.b		fcalc_index | 
 | 19039 |  | 
 | 19040 | 	movm.l		&0x3c00,-(%sp)		# save d2-d5 | 
 | 19041 |  | 
 | 19042 | 	mov.l		%d0,%d5			# put extword in d5 | 
 | 19043 | 	mov.l		%a0,%d3			# put base in d3 | 
 | 19044 |  | 
 | 19045 | 	clr.l		%d2			# yes, so index = 0 | 
 | 19046 | 	bra.b		fbase_supp_ck | 
 | 19047 |  | 
 | 19048 | # index: | 
 | 19049 | fcalc_index: | 
 | 19050 | 	mov.l		%d0,L_SCR1(%a6)		# save d0 (opword) | 
 | 19051 | 	bfextu		%d0{&16:&4},%d1		# fetch dreg index | 
 | 19052 | 	bsr.l		fetch_dreg | 
 | 19053 |  | 
 | 19054 | 	movm.l		&0x3c00,-(%sp)		# save d2-d5 | 
 | 19055 | 	mov.l		%d0,%d2			# put index in d2 | 
 | 19056 | 	mov.l		L_SCR1(%a6),%d5 | 
 | 19057 | 	mov.l		%a0,%d3 | 
 | 19058 |  | 
 | 19059 | 	btst		&0xb,%d5		# is index word or long? | 
 | 19060 | 	bne.b		fno_ext | 
 | 19061 | 	ext.l		%d2 | 
 | 19062 |  | 
 | 19063 | fno_ext: | 
 | 19064 | 	bfextu		%d5{&21:&2},%d0 | 
 | 19065 | 	lsl.l		%d0,%d2 | 
 | 19066 |  | 
 | 19067 | # base address (passed as parameter in d3): | 
 | 19068 | # we clear the value here if it should actually be suppressed. | 
 | 19069 | fbase_supp_ck: | 
 | 19070 | 	btst		&0x7,%d5		# is the bd suppressed? | 
 | 19071 | 	beq.b		fno_base_sup | 
 | 19072 | 	clr.l		%d3 | 
 | 19073 |  | 
 | 19074 | # base displacement: | 
 | 19075 | fno_base_sup: | 
 | 19076 | 	bfextu		%d5{&26:&2},%d0		# get bd size | 
 | 19077 | #	beq.l		fmovm_error		# if (size == 0) it's reserved | 
 | 19078 |  | 
 | 19079 | 	cmpi.b		%d0,&0x2 | 
 | 19080 | 	blt.b		fno_bd | 
 | 19081 | 	beq.b		fget_word_bd | 
 | 19082 |  | 
 | 19083 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 19084 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 19085 | 	bsr.l		_imem_read_long | 
 | 19086 |  | 
 | 19087 | 	tst.l		%d1			# did ifetch fail? | 
 | 19088 | 	bne.l		fcea_iacc		# yes | 
 | 19089 |  | 
 | 19090 | 	bra.b		fchk_ind | 
 | 19091 |  | 
 | 19092 | fget_word_bd: | 
 | 19093 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 19094 | 	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 19095 | 	bsr.l		_imem_read_word | 
 | 19096 |  | 
 | 19097 | 	tst.l		%d1			# did ifetch fail? | 
 | 19098 | 	bne.l		fcea_iacc		# yes | 
 | 19099 |  | 
 | 19100 | 	ext.l		%d0			# sign extend bd | 
 | 19101 |  | 
 | 19102 | fchk_ind: | 
 | 19103 | 	add.l		%d0,%d3			# base += bd | 
 | 19104 |  | 
 | 19105 | # outer displacement: | 
 | 19106 | fno_bd: | 
 | 19107 | 	bfextu		%d5{&30:&2},%d0		# is od suppressed? | 
 | 19108 | 	beq.w		faii_bd | 
 | 19109 |  | 
 | 19110 | 	cmpi.b		%d0,&0x2 | 
 | 19111 | 	blt.b		fnull_od | 
 | 19112 | 	beq.b		fword_od | 
 | 19113 |  | 
 | 19114 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 19115 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 19116 | 	bsr.l		_imem_read_long | 
 | 19117 |  | 
 | 19118 | 	tst.l		%d1			# did ifetch fail? | 
 | 19119 | 	bne.l		fcea_iacc		# yes | 
 | 19120 |  | 
 | 19121 | 	bra.b		fadd_them | 
 | 19122 |  | 
 | 19123 | fword_od: | 
 | 19124 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 19125 | 	addq.l		&0x2,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 19126 | 	bsr.l		_imem_read_word | 
 | 19127 |  | 
 | 19128 | 	tst.l		%d1			# did ifetch fail? | 
 | 19129 | 	bne.l		fcea_iacc		# yes | 
 | 19130 |  | 
 | 19131 | 	ext.l		%d0			# sign extend od | 
 | 19132 | 	bra.b		fadd_them | 
 | 19133 |  | 
 | 19134 | fnull_od: | 
 | 19135 | 	clr.l		%d0 | 
 | 19136 |  | 
 | 19137 | fadd_them: | 
 | 19138 | 	mov.l		%d0,%d4 | 
 | 19139 |  | 
 | 19140 | 	btst		&0x2,%d5		# pre or post indexing? | 
 | 19141 | 	beq.b		fpre_indexed | 
 | 19142 |  | 
 | 19143 | 	mov.l		%d3,%a0 | 
 | 19144 | 	bsr.l		_dmem_read_long | 
 | 19145 |  | 
 | 19146 | 	tst.l		%d1			# did dfetch fail? | 
 | 19147 | 	bne.w		fcea_err		# yes | 
 | 19148 |  | 
 | 19149 | 	add.l		%d2,%d0			# <ea> += index | 
 | 19150 | 	add.l		%d4,%d0			# <ea> += od | 
 | 19151 | 	bra.b		fdone_ea | 
 | 19152 |  | 
 | 19153 | fpre_indexed: | 
 | 19154 | 	add.l		%d2,%d3			# preindexing | 
 | 19155 | 	mov.l		%d3,%a0 | 
 | 19156 | 	bsr.l		_dmem_read_long | 
 | 19157 |  | 
 | 19158 | 	tst.l		%d1			# did dfetch fail? | 
 | 19159 | 	bne.w		fcea_err		# yes | 
 | 19160 |  | 
 | 19161 | 	add.l		%d4,%d0			# ea += od | 
 | 19162 | 	bra.b		fdone_ea | 
 | 19163 |  | 
 | 19164 | faii_bd: | 
 | 19165 | 	add.l		%d2,%d3			# ea = (base + bd) + index | 
 | 19166 | 	mov.l		%d3,%d0 | 
 | 19167 | fdone_ea: | 
 | 19168 | 	mov.l		%d0,%a0 | 
 | 19169 |  | 
 | 19170 | 	movm.l		(%sp)+,&0x003c		# restore d2-d5 | 
 | 19171 | 	rts | 
 | 19172 |  | 
 | 19173 | ######################################################### | 
 | 19174 | fcea_err: | 
 | 19175 | 	mov.l		%d3,%a0 | 
 | 19176 |  | 
 | 19177 | 	movm.l		(%sp)+,&0x003c		# restore d2-d5 | 
 | 19178 | 	mov.w		&0x0101,%d0 | 
 | 19179 | 	bra.l		iea_dacc | 
 | 19180 |  | 
 | 19181 | fcea_iacc: | 
 | 19182 | 	movm.l		(%sp)+,&0x003c		# restore d2-d5 | 
 | 19183 | 	bra.l		iea_iacc | 
 | 19184 |  | 
 | 19185 | fmovm_out_err: | 
 | 19186 | 	bsr.l		restore | 
 | 19187 | 	mov.w		&0x00e1,%d0 | 
 | 19188 | 	bra.b		fmovm_err | 
 | 19189 |  | 
 | 19190 | fmovm_in_err: | 
 | 19191 | 	bsr.l		restore | 
 | 19192 | 	mov.w		&0x0161,%d0 | 
 | 19193 |  | 
 | 19194 | fmovm_err: | 
 | 19195 | 	mov.l		L_SCR1(%a6),%a0 | 
 | 19196 | 	bra.l		iea_dacc | 
 | 19197 |  | 
 | 19198 | ######################################################################### | 
 | 19199 | # XDEF ****************************************************************	# | 
 | 19200 | #	fmovm_ctrl(): emulate fmovm.l of control registers instr	# | 
 | 19201 | #									# | 
 | 19202 | # XREF ****************************************************************	# | 
 | 19203 | #	_imem_read_long() - read longword from memory			# | 
 | 19204 | #	iea_iacc() - _imem_read_long() failed; error recovery		# | 
 | 19205 | #									# | 
 | 19206 | # INPUT ***************************************************************	# | 
 | 19207 | #	None								# | 
 | 19208 | #									# | 
 | 19209 | # OUTPUT **************************************************************	# | 
 | 19210 | #	If _imem_read_long() doesn't fail:				# | 
 | 19211 | #		USER_FPCR(a6)  = new FPCR value				# | 
 | 19212 | #		USER_FPSR(a6)  = new FPSR value				# | 
 | 19213 | #		USER_FPIAR(a6) = new FPIAR value			# | 
 | 19214 | #									# | 
 | 19215 | # ALGORITHM ***********************************************************	# | 
 | 19216 | #	Decode the instruction type by looking at the extension word	# | 
 | 19217 | # in order to see how many control registers to fetch from memory.	# | 
 | 19218 | # Fetch them using _imem_read_long(). If this fetch fails, exit through	# | 
 | 19219 | # the special access error exit handler iea_iacc().			# | 
 | 19220 | #									# | 
 | 19221 | # Instruction word decoding:						# | 
 | 19222 | #									# | 
 | 19223 | #	fmovem.l #<data>, {FPIAR&|FPCR&|FPSR}				# | 
 | 19224 | #									# | 
 | 19225 | #		WORD1			WORD2				# | 
 | 19226 | #	1111 0010 00 111100	100$ $$00 0000 0000			# | 
 | 19227 | #									# | 
 | 19228 | #	$$$ (100): FPCR							# | 
 | 19229 | #	    (010): FPSR							# | 
 | 19230 | #	    (001): FPIAR						# | 
 | 19231 | #	    (000): FPIAR						# | 
 | 19232 | #									# | 
 | 19233 | ######################################################################### | 
 | 19234 |  | 
 | 19235 | 	global		fmovm_ctrl | 
 | 19236 | fmovm_ctrl: | 
 | 19237 | 	mov.b		EXC_EXTWORD(%a6),%d0	# fetch reg select bits | 
 | 19238 | 	cmpi.b		%d0,&0x9c		# fpcr & fpsr & fpiar ? | 
 | 19239 | 	beq.w		fctrl_in_7		# yes | 
 | 19240 | 	cmpi.b		%d0,&0x98		# fpcr & fpsr ? | 
 | 19241 | 	beq.w		fctrl_in_6		# yes | 
 | 19242 | 	cmpi.b		%d0,&0x94		# fpcr & fpiar ? | 
 | 19243 | 	beq.b		fctrl_in_5		# yes | 
 | 19244 |  | 
 | 19245 | # fmovem.l #<data>, fpsr/fpiar | 
 | 19246 | fctrl_in_3: | 
 | 19247 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 19248 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 19249 | 	bsr.l		_imem_read_long		# fetch FPSR from mem | 
 | 19250 |  | 
 | 19251 | 	tst.l		%d1			# did ifetch fail? | 
 | 19252 | 	bne.l		iea_iacc		# yes | 
 | 19253 |  | 
 | 19254 | 	mov.l		%d0,USER_FPSR(%a6)	# store new FPSR to stack | 
 | 19255 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 19256 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 19257 | 	bsr.l		_imem_read_long		# fetch FPIAR from mem | 
 | 19258 |  | 
 | 19259 | 	tst.l		%d1			# did ifetch fail? | 
 | 19260 | 	bne.l		iea_iacc		# yes | 
 | 19261 |  | 
 | 19262 | 	mov.l		%d0,USER_FPIAR(%a6)	# store new FPIAR to stack | 
 | 19263 | 	rts | 
 | 19264 |  | 
 | 19265 | # fmovem.l #<data>, fpcr/fpiar | 
 | 19266 | fctrl_in_5: | 
 | 19267 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 19268 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 19269 | 	bsr.l		_imem_read_long		# fetch FPCR from mem | 
 | 19270 |  | 
 | 19271 | 	tst.l		%d1			# did ifetch fail? | 
 | 19272 | 	bne.l		iea_iacc		# yes | 
 | 19273 |  | 
 | 19274 | 	mov.l		%d0,USER_FPCR(%a6)	# store new FPCR to stack | 
 | 19275 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 19276 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 19277 | 	bsr.l		_imem_read_long		# fetch FPIAR from mem | 
 | 19278 |  | 
 | 19279 | 	tst.l		%d1			# did ifetch fail? | 
 | 19280 | 	bne.l		iea_iacc		# yes | 
 | 19281 |  | 
 | 19282 | 	mov.l		%d0,USER_FPIAR(%a6)	# store new FPIAR to stack | 
 | 19283 | 	rts | 
 | 19284 |  | 
 | 19285 | # fmovem.l #<data>, fpcr/fpsr | 
 | 19286 | fctrl_in_6: | 
 | 19287 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 19288 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 19289 | 	bsr.l		_imem_read_long		# fetch FPCR from mem | 
 | 19290 |  | 
 | 19291 | 	tst.l		%d1			# did ifetch fail? | 
 | 19292 | 	bne.l		iea_iacc		# yes | 
 | 19293 |  | 
 | 19294 | 	mov.l		%d0,USER_FPCR(%a6)	# store new FPCR to mem | 
 | 19295 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 19296 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 19297 | 	bsr.l		_imem_read_long		# fetch FPSR from mem | 
 | 19298 |  | 
 | 19299 | 	tst.l		%d1			# did ifetch fail? | 
 | 19300 | 	bne.l		iea_iacc		# yes | 
 | 19301 |  | 
 | 19302 | 	mov.l		%d0,USER_FPSR(%a6)	# store new FPSR to mem | 
 | 19303 | 	rts | 
 | 19304 |  | 
 | 19305 | # fmovem.l #<data>, fpcr/fpsr/fpiar | 
 | 19306 | fctrl_in_7: | 
 | 19307 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 19308 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 19309 | 	bsr.l		_imem_read_long		# fetch FPCR from mem | 
 | 19310 |  | 
 | 19311 | 	tst.l		%d1			# did ifetch fail? | 
 | 19312 | 	bne.l		iea_iacc		# yes | 
 | 19313 |  | 
 | 19314 | 	mov.l		%d0,USER_FPCR(%a6)	# store new FPCR to mem | 
 | 19315 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 19316 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 19317 | 	bsr.l		_imem_read_long		# fetch FPSR from mem | 
 | 19318 |  | 
 | 19319 | 	tst.l		%d1			# did ifetch fail? | 
 | 19320 | 	bne.l		iea_iacc		# yes | 
 | 19321 |  | 
 | 19322 | 	mov.l		%d0,USER_FPSR(%a6)	# store new FPSR to mem | 
 | 19323 | 	mov.l		EXC_EXTWPTR(%a6),%a0	# fetch instruction addr | 
 | 19324 | 	addq.l		&0x4,EXC_EXTWPTR(%a6)	# incr instruction ptr | 
 | 19325 | 	bsr.l		_imem_read_long		# fetch FPIAR from mem | 
 | 19326 |  | 
 | 19327 | 	tst.l		%d1			# did ifetch fail? | 
 | 19328 | 	bne.l		iea_iacc		# yes | 
 | 19329 |  | 
 | 19330 | 	mov.l		%d0,USER_FPIAR(%a6)	# store new FPIAR to mem | 
 | 19331 | 	rts | 
 | 19332 |  | 
 | 19333 | ######################################################################### | 
 | 19334 | # XDEF ****************************************************************	# | 
 | 19335 | #	_dcalc_ea(): calc correct <ea> from <ea> stacked on exception	# | 
 | 19336 | #									# | 
 | 19337 | # XREF ****************************************************************	# | 
 | 19338 | #	inc_areg() - increment an address register			# | 
 | 19339 | #	dec_areg() - decrement an address register			# | 
 | 19340 | #									# | 
 | 19341 | # INPUT ***************************************************************	# | 
 | 19342 | #	d0 = number of bytes to adjust <ea> by				# | 
 | 19343 | #									# | 
 | 19344 | # OUTPUT **************************************************************	# | 
 | 19345 | #	None								# | 
 | 19346 | #									# | 
 | 19347 | # ALGORITHM ***********************************************************	# | 
 | 19348 | # "Dummy" CALCulate Effective Address:					# | 
 | 19349 | #	The stacked <ea> for FP unimplemented instructions and opclass	# | 
 | 19350 | #	two packed instructions is correct with the exception of...	# | 
 | 19351 | #									# | 
 | 19352 | #	1) -(An)   : The register is not updated regardless of size.	# | 
 | 19353 | #		     Also, for extended precision and packed, the	# | 
 | 19354 | #		     stacked <ea> value is 8 bytes too big		# | 
 | 19355 | #	2) (An)+   : The register is not updated.			# | 
 | 19356 | #	3) #<data> : The upper longword of the immediate operand is	# | 
 | 19357 | #		     stacked b,w,l and s sizes are completely stacked.	# | 
 | 19358 | #		     d,x, and p are not.				# | 
 | 19359 | #									# | 
 | 19360 | ######################################################################### | 
 | 19361 |  | 
 | 19362 | 	global		_dcalc_ea | 
 | 19363 | _dcalc_ea: | 
 | 19364 | 	mov.l		%d0, %a0		# move # bytes to %a0 | 
 | 19365 |  | 
 | 19366 | 	mov.b		1+EXC_OPWORD(%a6), %d0	# fetch opcode word | 
 | 19367 | 	mov.l		%d0, %d1		# make a copy | 
 | 19368 |  | 
 | 19369 | 	andi.w		&0x38, %d0		# extract mode field | 
 | 19370 | 	andi.l		&0x7, %d1		# extract reg  field | 
 | 19371 |  | 
 | 19372 | 	cmpi.b		%d0,&0x18		# is mode (An)+ ? | 
 | 19373 | 	beq.b		dcea_pi			# yes | 
 | 19374 |  | 
 | 19375 | 	cmpi.b		%d0,&0x20		# is mode -(An) ? | 
 | 19376 | 	beq.b		dcea_pd			# yes | 
 | 19377 |  | 
 | 19378 | 	or.w		%d1,%d0			# concat mode,reg | 
 | 19379 | 	cmpi.b		%d0,&0x3c		# is mode #<data>? | 
 | 19380 |  | 
 | 19381 | 	beq.b		dcea_imm		# yes | 
 | 19382 |  | 
 | 19383 | 	mov.l		EXC_EA(%a6),%a0		# return <ea> | 
 | 19384 | 	rts | 
 | 19385 |  | 
 | 19386 | # need to set immediate data flag here since we'll need to do | 
 | 19387 | # an imem_read to fetch this later. | 
 | 19388 | dcea_imm: | 
 | 19389 | 	mov.b		&immed_flg,SPCOND_FLG(%a6) | 
 | 19390 | 	lea		([USER_FPIAR,%a6],0x4),%a0 # no; return <ea> | 
 | 19391 | 	rts | 
 | 19392 |  | 
 | 19393 | # here, the <ea> is stacked correctly. however, we must update the | 
 | 19394 | # address register... | 
 | 19395 | dcea_pi: | 
 | 19396 | 	mov.l		%a0,%d0			# pass amt to inc by | 
 | 19397 | 	bsr.l		inc_areg		# inc addr register | 
 | 19398 |  | 
 | 19399 | 	mov.l		EXC_EA(%a6),%a0		# stacked <ea> is correct | 
 | 19400 | 	rts | 
 | 19401 |  | 
 | 19402 | # the <ea> is stacked correctly for all but extended and packed which | 
 | 19403 | # the <ea>s are 8 bytes too large. | 
 | 19404 | # it would make no sense to have a pre-decrement to a7 in supervisor | 
 | 19405 | # mode so we don't even worry about this tricky case here : ) | 
 | 19406 | dcea_pd: | 
 | 19407 | 	mov.l		%a0,%d0			# pass amt to dec by | 
 | 19408 | 	bsr.l		dec_areg		# dec addr register | 
 | 19409 |  | 
 | 19410 | 	mov.l		EXC_EA(%a6),%a0		# stacked <ea> is correct | 
 | 19411 |  | 
 | 19412 | 	cmpi.b		%d0,&0xc		# is opsize ext or packed? | 
 | 19413 | 	beq.b		dcea_pd2		# yes | 
 | 19414 | 	rts | 
 | 19415 | dcea_pd2: | 
 | 19416 | 	sub.l		&0x8,%a0		# correct <ea> | 
 | 19417 | 	mov.l		%a0,EXC_EA(%a6)		# put correct <ea> on stack | 
 | 19418 | 	rts | 
 | 19419 |  | 
 | 19420 | ######################################################################### | 
 | 19421 | # XDEF ****************************************************************	# | 
 | 19422 | #	_calc_ea_fout(): calculate correct stacked <ea> for extended	# | 
 | 19423 | #			 and packed data opclass 3 operations.		# | 
 | 19424 | #									# | 
 | 19425 | # XREF ****************************************************************	# | 
 | 19426 | #	None								# | 
 | 19427 | #									# | 
 | 19428 | # INPUT ***************************************************************	# | 
 | 19429 | #	None								# | 
 | 19430 | #									# | 
 | 19431 | # OUTPUT **************************************************************	# | 
 | 19432 | #	a0 = return correct effective address				# | 
 | 19433 | #									# | 
 | 19434 | # ALGORITHM ***********************************************************	# | 
 | 19435 | #	For opclass 3 extended and packed data operations, the <ea>	# | 
 | 19436 | # stacked for the exception is incorrect for -(an) and (an)+ addressing	# | 
 | 19437 | # modes. Also, while we're at it, the index register itself must get	# | 
 | 19438 | # updated.								# | 
 | 19439 | #	So, for -(an), we must subtract 8 off of the stacked <ea> value	# | 
 | 19440 | # and return that value as the correct <ea> and store that value in An.	# | 
 | 19441 | # For (an)+, the stacked <ea> is correct but we must adjust An by +12.	# | 
 | 19442 | #									# | 
 | 19443 | ######################################################################### | 
 | 19444 |  | 
 | 19445 | # This calc_ea is currently used to retrieve the correct <ea> | 
 | 19446 | # for fmove outs of type extended and packed. | 
 | 19447 | 	global		_calc_ea_fout | 
 | 19448 | _calc_ea_fout: | 
 | 19449 | 	mov.b		1+EXC_OPWORD(%a6),%d0	# fetch opcode word | 
 | 19450 | 	mov.l		%d0,%d1			# make a copy | 
 | 19451 |  | 
 | 19452 | 	andi.w		&0x38,%d0		# extract mode field | 
 | 19453 | 	andi.l		&0x7,%d1		# extract reg  field | 
 | 19454 |  | 
 | 19455 | 	cmpi.b		%d0,&0x18		# is mode (An)+ ? | 
 | 19456 | 	beq.b		ceaf_pi			# yes | 
 | 19457 |  | 
 | 19458 | 	cmpi.b		%d0,&0x20		# is mode -(An) ? | 
 | 19459 | 	beq.w		ceaf_pd			# yes | 
 | 19460 |  | 
 | 19461 | 	mov.l		EXC_EA(%a6),%a0		# stacked <ea> is correct | 
 | 19462 | 	rts | 
 | 19463 |  | 
 | 19464 | # (An)+ : extended and packed fmove out | 
 | 19465 | #	: stacked <ea> is correct | 
 | 19466 | #	: "An" not updated | 
 | 19467 | ceaf_pi: | 
 | 19468 | 	mov.w		(tbl_ceaf_pi.b,%pc,%d1.w*2),%d1 | 
 | 19469 | 	mov.l		EXC_EA(%a6),%a0 | 
 | 19470 | 	jmp		(tbl_ceaf_pi.b,%pc,%d1.w*1) | 
 | 19471 |  | 
 | 19472 | 	swbeg		&0x8 | 
 | 19473 | tbl_ceaf_pi: | 
 | 19474 | 	short		ceaf_pi0 - tbl_ceaf_pi | 
 | 19475 | 	short		ceaf_pi1 - tbl_ceaf_pi | 
 | 19476 | 	short		ceaf_pi2 - tbl_ceaf_pi | 
 | 19477 | 	short		ceaf_pi3 - tbl_ceaf_pi | 
 | 19478 | 	short		ceaf_pi4 - tbl_ceaf_pi | 
 | 19479 | 	short		ceaf_pi5 - tbl_ceaf_pi | 
 | 19480 | 	short		ceaf_pi6 - tbl_ceaf_pi | 
 | 19481 | 	short		ceaf_pi7 - tbl_ceaf_pi | 
 | 19482 |  | 
 | 19483 | ceaf_pi0: | 
 | 19484 | 	addi.l		&0xc,EXC_DREGS+0x8(%a6) | 
 | 19485 | 	rts | 
 | 19486 | ceaf_pi1: | 
 | 19487 | 	addi.l		&0xc,EXC_DREGS+0xc(%a6) | 
 | 19488 | 	rts | 
 | 19489 | ceaf_pi2: | 
 | 19490 | 	add.l		&0xc,%a2 | 
 | 19491 | 	rts | 
 | 19492 | ceaf_pi3: | 
 | 19493 | 	add.l		&0xc,%a3 | 
 | 19494 | 	rts | 
 | 19495 | ceaf_pi4: | 
 | 19496 | 	add.l		&0xc,%a4 | 
 | 19497 | 	rts | 
 | 19498 | ceaf_pi5: | 
 | 19499 | 	add.l		&0xc,%a5 | 
 | 19500 | 	rts | 
 | 19501 | ceaf_pi6: | 
 | 19502 | 	addi.l		&0xc,EXC_A6(%a6) | 
 | 19503 | 	rts | 
 | 19504 | ceaf_pi7: | 
 | 19505 | 	mov.b		&mia7_flg,SPCOND_FLG(%a6) | 
 | 19506 | 	addi.l		&0xc,EXC_A7(%a6) | 
 | 19507 | 	rts | 
 | 19508 |  | 
 | 19509 | # -(An) : extended and packed fmove out | 
 | 19510 | #	: stacked <ea> = actual <ea> + 8 | 
 | 19511 | #	: "An" not updated | 
 | 19512 | ceaf_pd: | 
 | 19513 | 	mov.w		(tbl_ceaf_pd.b,%pc,%d1.w*2),%d1 | 
 | 19514 | 	mov.l		EXC_EA(%a6),%a0 | 
 | 19515 | 	sub.l		&0x8,%a0 | 
 | 19516 | 	sub.l		&0x8,EXC_EA(%a6) | 
 | 19517 | 	jmp		(tbl_ceaf_pd.b,%pc,%d1.w*1) | 
 | 19518 |  | 
 | 19519 | 	swbeg		&0x8 | 
 | 19520 | tbl_ceaf_pd: | 
 | 19521 | 	short		ceaf_pd0 - tbl_ceaf_pd | 
 | 19522 | 	short		ceaf_pd1 - tbl_ceaf_pd | 
 | 19523 | 	short		ceaf_pd2 - tbl_ceaf_pd | 
 | 19524 | 	short		ceaf_pd3 - tbl_ceaf_pd | 
 | 19525 | 	short		ceaf_pd4 - tbl_ceaf_pd | 
 | 19526 | 	short		ceaf_pd5 - tbl_ceaf_pd | 
 | 19527 | 	short		ceaf_pd6 - tbl_ceaf_pd | 
 | 19528 | 	short		ceaf_pd7 - tbl_ceaf_pd | 
 | 19529 |  | 
 | 19530 | ceaf_pd0: | 
 | 19531 | 	mov.l		%a0,EXC_DREGS+0x8(%a6) | 
 | 19532 | 	rts | 
 | 19533 | ceaf_pd1: | 
 | 19534 | 	mov.l		%a0,EXC_DREGS+0xc(%a6) | 
 | 19535 | 	rts | 
 | 19536 | ceaf_pd2: | 
 | 19537 | 	mov.l		%a0,%a2 | 
 | 19538 | 	rts | 
 | 19539 | ceaf_pd3: | 
 | 19540 | 	mov.l		%a0,%a3 | 
 | 19541 | 	rts | 
 | 19542 | ceaf_pd4: | 
 | 19543 | 	mov.l		%a0,%a4 | 
 | 19544 | 	rts | 
 | 19545 | ceaf_pd5: | 
 | 19546 | 	mov.l		%a0,%a5 | 
 | 19547 | 	rts | 
 | 19548 | ceaf_pd6: | 
 | 19549 | 	mov.l		%a0,EXC_A6(%a6) | 
 | 19550 | 	rts | 
 | 19551 | ceaf_pd7: | 
 | 19552 | 	mov.l		%a0,EXC_A7(%a6) | 
 | 19553 | 	mov.b		&mda7_flg,SPCOND_FLG(%a6) | 
 | 19554 | 	rts | 
 | 19555 |  | 
 | 19556 | ######################################################################### | 
 | 19557 | # XDEF ****************************************************************	# | 
 | 19558 | #	_load_fop(): load operand for unimplemented FP exception	# | 
 | 19559 | #									# | 
 | 19560 | # XREF ****************************************************************	# | 
 | 19561 | #	set_tag_x() - determine ext prec optype tag			# | 
 | 19562 | #	set_tag_s() - determine sgl prec optype tag			# | 
 | 19563 | #	set_tag_d() - determine dbl prec optype tag			# | 
 | 19564 | #	unnorm_fix() - convert normalized number to denorm or zero	# | 
 | 19565 | #	norm() - normalize a denormalized number			# | 
 | 19566 | #	get_packed() - fetch a packed operand from memory		# | 
 | 19567 | #	_dcalc_ea() - calculate <ea>, fixing An in process		# | 
 | 19568 | #									# | 
 | 19569 | #	_imem_read_{word,long}() - read from instruction memory		# | 
 | 19570 | #	_dmem_read() - read from data memory				# | 
 | 19571 | #	_dmem_read_{byte,word,long}() - read from data memory		# | 
 | 19572 | #									# | 
 | 19573 | #	facc_in_{b,w,l,d,x}() - mem read failed; special exit point	# | 
 | 19574 | #									# | 
 | 19575 | # INPUT ***************************************************************	# | 
 | 19576 | #	None								# | 
 | 19577 | #									# | 
 | 19578 | # OUTPUT **************************************************************	# | 
 | 19579 | #	If memory access doesn't fail:					# | 
 | 19580 | #		FP_SRC(a6) = source operand in extended precision	# | 
 | 19581 | #		FP_DST(a6) = destination operand in extended precision	# | 
 | 19582 | #									# | 
 | 19583 | # ALGORITHM ***********************************************************	# | 
 | 19584 | #	This is called from the Unimplemented FP exception handler in	# | 
 | 19585 | # order to load the source and maybe destination operand into		# | 
 | 19586 | # FP_SRC(a6) and FP_DST(a6). If the instruction was opclass zero, load	# | 
 | 19587 | # the source and destination from the FP register file. Set the optype	# | 
 | 19588 | # tags for both if dyadic, one for monadic. If a number is an UNNORM,	# | 
 | 19589 | # convert it to a DENORM or a ZERO.					# | 
 | 19590 | #	If the instruction is opclass two (memory->reg), then fetch	# | 
 | 19591 | # the destination from the register file and the source operand from	# | 
 | 19592 | # memory. Tag and fix both as above w/ opclass zero instructions.	# | 
 | 19593 | #	If the source operand is byte,word,long, or single, it may be	# | 
 | 19594 | # in the data register file. If it's actually out in memory, use one of	# | 
 | 19595 | # the mem_read() routines to fetch it. If the mem_read() access returns	# | 
 | 19596 | # a failing value, exit through the special facc_in() routine which	# | 
 | 19597 | # will create an access error exception frame from the current exception # | 
 | 19598 | # frame.								# | 
 | 19599 | #	Immediate data and regular data accesses are separated because	# | 
 | 19600 | # if an immediate data access fails, the resulting fault status		# | 
 | 19601 | # longword stacked for the access error exception must have the		# | 
 | 19602 | # instruction bit set.							# | 
 | 19603 | #									# | 
 | 19604 | ######################################################################### | 
 | 19605 |  | 
 | 19606 | 	global		_load_fop | 
 | 19607 | _load_fop: | 
 | 19608 |  | 
 | 19609 | #  15     13 12 10  9 7  6       0 | 
 | 19610 | # /        \ /   \ /  \ /         \ | 
 | 19611 | # --------------------------------- | 
 | 19612 | # | opclass | RX  | RY | EXTENSION |  (2nd word of general FP instruction) | 
 | 19613 | # --------------------------------- | 
 | 19614 | # | 
 | 19615 |  | 
 | 19616 | #	bfextu		EXC_CMDREG(%a6){&0:&3}, %d0 # extract opclass | 
 | 19617 | #	cmpi.b		%d0, &0x2		# which class is it? ('000,'010,'011) | 
 | 19618 | #	beq.w		op010			# handle <ea> -> fpn | 
 | 19619 | #	bgt.w		op011			# handle fpn -> <ea> | 
 | 19620 |  | 
 | 19621 | # we're not using op011 for now... | 
 | 19622 | 	btst		&0x6,EXC_CMDREG(%a6) | 
 | 19623 | 	bne.b		op010 | 
 | 19624 |  | 
 | 19625 | ############################ | 
 | 19626 | # OPCLASS '000: reg -> reg # | 
 | 19627 | ############################ | 
 | 19628 | op000: | 
 | 19629 | 	mov.b		1+EXC_CMDREG(%a6),%d0	# fetch extension word lo | 
 | 19630 | 	btst		&0x5,%d0		# testing extension bits | 
 | 19631 | 	beq.b		op000_src		# (bit 5 == 0) => monadic | 
 | 19632 | 	btst		&0x4,%d0		# (bit 5 == 1) | 
 | 19633 | 	beq.b		op000_dst		# (bit 4 == 0) => dyadic | 
 | 19634 | 	and.w		&0x007f,%d0		# extract extension bits {6:0} | 
 | 19635 | 	cmpi.w		%d0,&0x0038		# is it an fcmp (dyadic) ? | 
 | 19636 | 	bne.b		op000_src		# it's an fcmp | 
 | 19637 |  | 
 | 19638 | op000_dst: | 
 | 19639 | 	bfextu		EXC_CMDREG(%a6){&6:&3}, %d0 # extract dst field | 
 | 19640 | 	bsr.l		load_fpn2		# fetch dst fpreg into FP_DST | 
 | 19641 |  | 
 | 19642 | 	bsr.l		set_tag_x		# get dst optype tag | 
 | 19643 |  | 
 | 19644 | 	cmpi.b		%d0, &UNNORM		# is dst fpreg an UNNORM? | 
 | 19645 | 	beq.b		op000_dst_unnorm	# yes | 
 | 19646 | op000_dst_cont: | 
 | 19647 | 	mov.b		%d0, DTAG(%a6)		# store the dst optype tag | 
 | 19648 |  | 
 | 19649 | op000_src: | 
 | 19650 | 	bfextu		EXC_CMDREG(%a6){&3:&3}, %d0 # extract src field | 
 | 19651 | 	bsr.l		load_fpn1		# fetch src fpreg into FP_SRC | 
 | 19652 |  | 
 | 19653 | 	bsr.l		set_tag_x		# get src optype tag | 
 | 19654 |  | 
 | 19655 | 	cmpi.b		%d0, &UNNORM		# is src fpreg an UNNORM? | 
 | 19656 | 	beq.b		op000_src_unnorm	# yes | 
 | 19657 | op000_src_cont: | 
 | 19658 | 	mov.b		%d0, STAG(%a6)		# store the src optype tag | 
 | 19659 | 	rts | 
 | 19660 |  | 
 | 19661 | op000_dst_unnorm: | 
 | 19662 | 	bsr.l		unnorm_fix		# fix the dst UNNORM | 
 | 19663 | 	bra.b		op000_dst_cont | 
 | 19664 | op000_src_unnorm: | 
 | 19665 | 	bsr.l		unnorm_fix		# fix the src UNNORM | 
 | 19666 | 	bra.b		op000_src_cont | 
 | 19667 |  | 
 | 19668 | ############################# | 
 | 19669 | # OPCLASS '010: <ea> -> reg # | 
 | 19670 | ############################# | 
 | 19671 | op010: | 
 | 19672 | 	mov.w		EXC_CMDREG(%a6),%d0	# fetch extension word | 
 | 19673 | 	btst		&0x5,%d0		# testing extension bits | 
 | 19674 | 	beq.b		op010_src		# (bit 5 == 0) => monadic | 
 | 19675 | 	btst		&0x4,%d0		# (bit 5 == 1) | 
 | 19676 | 	beq.b		op010_dst		# (bit 4 == 0) => dyadic | 
 | 19677 | 	and.w		&0x007f,%d0		# extract extension bits {6:0} | 
 | 19678 | 	cmpi.w		%d0,&0x0038		# is it an fcmp (dyadic) ? | 
 | 19679 | 	bne.b		op010_src		# it's an fcmp | 
 | 19680 |  | 
 | 19681 | op010_dst: | 
 | 19682 | 	bfextu		EXC_CMDREG(%a6){&6:&3}, %d0 # extract dst field | 
 | 19683 | 	bsr.l		load_fpn2		# fetch dst fpreg ptr | 
 | 19684 |  | 
 | 19685 | 	bsr.l		set_tag_x		# get dst type tag | 
 | 19686 |  | 
 | 19687 | 	cmpi.b		%d0, &UNNORM		# is dst fpreg an UNNORM? | 
 | 19688 | 	beq.b		op010_dst_unnorm	# yes | 
 | 19689 | op010_dst_cont: | 
 | 19690 | 	mov.b		%d0, DTAG(%a6)		# store the dst optype tag | 
 | 19691 |  | 
 | 19692 | op010_src: | 
 | 19693 | 	bfextu		EXC_CMDREG(%a6){&3:&3}, %d0 # extract src type field | 
 | 19694 |  | 
 | 19695 | 	bfextu		EXC_OPWORD(%a6){&10:&3}, %d1 # extract <ea> mode field | 
 | 19696 | 	bne.w		fetch_from_mem		# src op is in memory | 
 | 19697 |  | 
 | 19698 | op010_dreg: | 
 | 19699 | 	clr.b		STAG(%a6)		# either NORM or ZERO | 
 | 19700 | 	bfextu		EXC_OPWORD(%a6){&13:&3}, %d1 # extract src reg field | 
 | 19701 |  | 
 | 19702 | 	mov.w		(tbl_op010_dreg.b,%pc,%d0.w*2), %d0 # jmp based on optype | 
 | 19703 | 	jmp		(tbl_op010_dreg.b,%pc,%d0.w*1) # fetch src from dreg | 
 | 19704 |  | 
 | 19705 | op010_dst_unnorm: | 
 | 19706 | 	bsr.l		unnorm_fix		# fix the dst UNNORM | 
 | 19707 | 	bra.b		op010_dst_cont | 
 | 19708 |  | 
 | 19709 | 	swbeg		&0x8 | 
 | 19710 | tbl_op010_dreg: | 
 | 19711 | 	short		opd_long	- tbl_op010_dreg | 
 | 19712 | 	short		opd_sgl		- tbl_op010_dreg | 
 | 19713 | 	short		tbl_op010_dreg	- tbl_op010_dreg | 
 | 19714 | 	short		tbl_op010_dreg	- tbl_op010_dreg | 
 | 19715 | 	short		opd_word	- tbl_op010_dreg | 
 | 19716 | 	short		tbl_op010_dreg	- tbl_op010_dreg | 
 | 19717 | 	short		opd_byte	- tbl_op010_dreg | 
 | 19718 | 	short		tbl_op010_dreg	- tbl_op010_dreg | 
 | 19719 |  | 
 | 19720 | # | 
 | 19721 | # LONG: can be either NORM or ZERO... | 
 | 19722 | # | 
 | 19723 | opd_long: | 
 | 19724 | 	bsr.l		fetch_dreg		# fetch long in d0 | 
 | 19725 | 	fmov.l		%d0, %fp0		# load a long | 
 | 19726 | 	fmovm.x		&0x80, FP_SRC(%a6)	# return src op in FP_SRC | 
 | 19727 | 	fbeq.w		opd_long_zero		# long is a ZERO | 
 | 19728 | 	rts | 
 | 19729 | opd_long_zero: | 
 | 19730 | 	mov.b		&ZERO, STAG(%a6)	# set ZERO optype flag | 
 | 19731 | 	rts | 
 | 19732 |  | 
 | 19733 | # | 
 | 19734 | # WORD: can be either NORM or ZERO... | 
 | 19735 | # | 
 | 19736 | opd_word: | 
 | 19737 | 	bsr.l		fetch_dreg		# fetch word in d0 | 
 | 19738 | 	fmov.w		%d0, %fp0		# load a word | 
 | 19739 | 	fmovm.x		&0x80, FP_SRC(%a6)	# return src op in FP_SRC | 
 | 19740 | 	fbeq.w		opd_word_zero		# WORD is a ZERO | 
 | 19741 | 	rts | 
 | 19742 | opd_word_zero: | 
 | 19743 | 	mov.b		&ZERO, STAG(%a6)	# set ZERO optype flag | 
 | 19744 | 	rts | 
 | 19745 |  | 
 | 19746 | # | 
 | 19747 | # BYTE: can be either NORM or ZERO... | 
 | 19748 | # | 
 | 19749 | opd_byte: | 
 | 19750 | 	bsr.l		fetch_dreg		# fetch word in d0 | 
 | 19751 | 	fmov.b		%d0, %fp0		# load a byte | 
 | 19752 | 	fmovm.x		&0x80, FP_SRC(%a6)	# return src op in FP_SRC | 
 | 19753 | 	fbeq.w		opd_byte_zero		# byte is a ZERO | 
 | 19754 | 	rts | 
 | 19755 | opd_byte_zero: | 
 | 19756 | 	mov.b		&ZERO, STAG(%a6)	# set ZERO optype flag | 
 | 19757 | 	rts | 
 | 19758 |  | 
 | 19759 | # | 
 | 19760 | # SGL: can be either NORM, DENORM, ZERO, INF, QNAN or SNAN but not UNNORM | 
 | 19761 | # | 
 | 19762 | # separate SNANs and DENORMs so they can be loaded w/ special care. | 
 | 19763 | # all others can simply be moved "in" using fmove. | 
 | 19764 | # | 
 | 19765 | opd_sgl: | 
 | 19766 | 	bsr.l		fetch_dreg		# fetch sgl in d0 | 
 | 19767 | 	mov.l		%d0,L_SCR1(%a6) | 
 | 19768 |  | 
 | 19769 | 	lea		L_SCR1(%a6), %a0	# pass: ptr to the sgl | 
 | 19770 | 	bsr.l		set_tag_s		# determine sgl type | 
 | 19771 | 	mov.b		%d0, STAG(%a6)		# save the src tag | 
 | 19772 |  | 
 | 19773 | 	cmpi.b		%d0, &SNAN		# is it an SNAN? | 
 | 19774 | 	beq.w		get_sgl_snan		# yes | 
 | 19775 |  | 
 | 19776 | 	cmpi.b		%d0, &DENORM		# is it a DENORM? | 
 | 19777 | 	beq.w		get_sgl_denorm		# yes | 
 | 19778 |  | 
 | 19779 | 	fmov.s		(%a0), %fp0		# no, so can load it regular | 
 | 19780 | 	fmovm.x		&0x80, FP_SRC(%a6)	# return src op in FP_SRC | 
 | 19781 | 	rts | 
 | 19782 |  | 
 | 19783 | ############################################################################## | 
 | 19784 |  | 
 | 19785 | ######################################################################### | 
 | 19786 | # fetch_from_mem():							# | 
 | 19787 | # - src is out in memory. must:						# | 
 | 19788 | #	(1) calc ea - must read AFTER you know the src type since	# | 
 | 19789 | #		      if the ea is -() or ()+, need to know # of bytes.	# | 
 | 19790 | #	(2) read it in from either user or supervisor space		# | 
 | 19791 | #	(3) if (b || w || l) then simply read in			# | 
 | 19792 | #	    if (s || d || x) then check for SNAN,UNNORM,DENORM		# | 
 | 19793 | #	    if (packed) then punt for now				# | 
 | 19794 | # INPUT:								# | 
 | 19795 | #	%d0 : src type field						# | 
 | 19796 | ######################################################################### | 
 | 19797 | fetch_from_mem: | 
 | 19798 | 	clr.b		STAG(%a6)		# either NORM or ZERO | 
 | 19799 |  | 
 | 19800 | 	mov.w		(tbl_fp_type.b,%pc,%d0.w*2), %d0 # index by src type field | 
 | 19801 | 	jmp		(tbl_fp_type.b,%pc,%d0.w*1) | 
 | 19802 |  | 
 | 19803 | 	swbeg		&0x8 | 
 | 19804 | tbl_fp_type: | 
 | 19805 | 	short		load_long	- tbl_fp_type | 
 | 19806 | 	short		load_sgl	- tbl_fp_type | 
 | 19807 | 	short		load_ext	- tbl_fp_type | 
 | 19808 | 	short		load_packed	- tbl_fp_type | 
 | 19809 | 	short		load_word	- tbl_fp_type | 
 | 19810 | 	short		load_dbl	- tbl_fp_type | 
 | 19811 | 	short		load_byte	- tbl_fp_type | 
 | 19812 | 	short		tbl_fp_type	- tbl_fp_type | 
 | 19813 |  | 
 | 19814 | ######################################### | 
 | 19815 | # load a LONG into %fp0:		# | 
 | 19816 | #	-number can't fault		# | 
 | 19817 | #	(1) calc ea			# | 
 | 19818 | #	(2) read 4 bytes into L_SCR1	# | 
 | 19819 | #	(3) fmov.l into %fp0		# | 
 | 19820 | ######################################### | 
 | 19821 | load_long: | 
 | 19822 | 	movq.l		&0x4, %d0		# pass: 4 (bytes) | 
 | 19823 | 	bsr.l		_dcalc_ea		# calc <ea>; <ea> in %a0 | 
 | 19824 |  | 
 | 19825 | 	cmpi.b		SPCOND_FLG(%a6),&immed_flg | 
 | 19826 | 	beq.b		load_long_immed | 
 | 19827 |  | 
 | 19828 | 	bsr.l		_dmem_read_long		# fetch src operand from memory | 
 | 19829 |  | 
 | 19830 | 	tst.l		%d1			# did dfetch fail? | 
 | 19831 | 	bne.l		facc_in_l		# yes | 
 | 19832 |  | 
 | 19833 | load_long_cont: | 
 | 19834 | 	fmov.l		%d0, %fp0		# read into %fp0;convert to xprec | 
 | 19835 | 	fmovm.x		&0x80, FP_SRC(%a6)	# return src op in FP_SRC | 
 | 19836 |  | 
 | 19837 | 	fbeq.w		load_long_zero		# src op is a ZERO | 
 | 19838 | 	rts | 
 | 19839 | load_long_zero: | 
 | 19840 | 	mov.b		&ZERO, STAG(%a6)	# set optype tag to ZERO | 
 | 19841 | 	rts | 
 | 19842 |  | 
 | 19843 | load_long_immed: | 
 | 19844 | 	bsr.l		_imem_read_long		# fetch src operand immed data | 
 | 19845 |  | 
 | 19846 | 	tst.l		%d1			# did ifetch fail? | 
 | 19847 | 	bne.l		funimp_iacc		# yes | 
 | 19848 | 	bra.b		load_long_cont | 
 | 19849 |  | 
 | 19850 | ######################################### | 
 | 19851 | # load a WORD into %fp0:		# | 
 | 19852 | #	-number can't fault		# | 
 | 19853 | #	(1) calc ea			# | 
 | 19854 | #	(2) read 2 bytes into L_SCR1	# | 
 | 19855 | #	(3) fmov.w into %fp0		# | 
 | 19856 | ######################################### | 
 | 19857 | load_word: | 
 | 19858 | 	movq.l		&0x2, %d0		# pass: 2 (bytes) | 
 | 19859 | 	bsr.l		_dcalc_ea		# calc <ea>; <ea> in %a0 | 
 | 19860 |  | 
 | 19861 | 	cmpi.b		SPCOND_FLG(%a6),&immed_flg | 
 | 19862 | 	beq.b		load_word_immed | 
 | 19863 |  | 
 | 19864 | 	bsr.l		_dmem_read_word		# fetch src operand from memory | 
 | 19865 |  | 
 | 19866 | 	tst.l		%d1			# did dfetch fail? | 
 | 19867 | 	bne.l		facc_in_w		# yes | 
 | 19868 |  | 
 | 19869 | load_word_cont: | 
 | 19870 | 	fmov.w		%d0, %fp0		# read into %fp0;convert to xprec | 
 | 19871 | 	fmovm.x		&0x80, FP_SRC(%a6)	# return src op in FP_SRC | 
 | 19872 |  | 
 | 19873 | 	fbeq.w		load_word_zero		# src op is a ZERO | 
 | 19874 | 	rts | 
 | 19875 | load_word_zero: | 
 | 19876 | 	mov.b		&ZERO, STAG(%a6)	# set optype tag to ZERO | 
 | 19877 | 	rts | 
 | 19878 |  | 
 | 19879 | load_word_immed: | 
 | 19880 | 	bsr.l		_imem_read_word		# fetch src operand immed data | 
 | 19881 |  | 
 | 19882 | 	tst.l		%d1			# did ifetch fail? | 
 | 19883 | 	bne.l		funimp_iacc		# yes | 
 | 19884 | 	bra.b		load_word_cont | 
 | 19885 |  | 
 | 19886 | ######################################### | 
 | 19887 | # load a BYTE into %fp0:		# | 
 | 19888 | #	-number can't fault		# | 
 | 19889 | #	(1) calc ea			# | 
 | 19890 | #	(2) read 1 byte into L_SCR1	# | 
 | 19891 | #	(3) fmov.b into %fp0		# | 
 | 19892 | ######################################### | 
 | 19893 | load_byte: | 
 | 19894 | 	movq.l		&0x1, %d0		# pass: 1 (byte) | 
 | 19895 | 	bsr.l		_dcalc_ea		# calc <ea>; <ea> in %a0 | 
 | 19896 |  | 
 | 19897 | 	cmpi.b		SPCOND_FLG(%a6),&immed_flg | 
 | 19898 | 	beq.b		load_byte_immed | 
 | 19899 |  | 
 | 19900 | 	bsr.l		_dmem_read_byte		# fetch src operand from memory | 
 | 19901 |  | 
 | 19902 | 	tst.l		%d1			# did dfetch fail? | 
 | 19903 | 	bne.l		facc_in_b		# yes | 
 | 19904 |  | 
 | 19905 | load_byte_cont: | 
 | 19906 | 	fmov.b		%d0, %fp0		# read into %fp0;convert to xprec | 
 | 19907 | 	fmovm.x		&0x80, FP_SRC(%a6)	# return src op in FP_SRC | 
 | 19908 |  | 
 | 19909 | 	fbeq.w		load_byte_zero		# src op is a ZERO | 
 | 19910 | 	rts | 
 | 19911 | load_byte_zero: | 
 | 19912 | 	mov.b		&ZERO, STAG(%a6)	# set optype tag to ZERO | 
 | 19913 | 	rts | 
 | 19914 |  | 
 | 19915 | load_byte_immed: | 
 | 19916 | 	bsr.l		_imem_read_word		# fetch src operand immed data | 
 | 19917 |  | 
 | 19918 | 	tst.l		%d1			# did ifetch fail? | 
 | 19919 | 	bne.l		funimp_iacc		# yes | 
 | 19920 | 	bra.b		load_byte_cont | 
 | 19921 |  | 
 | 19922 | ######################################### | 
 | 19923 | # load a SGL into %fp0:			# | 
 | 19924 | #	-number can't fault		# | 
 | 19925 | #	(1) calc ea			# | 
 | 19926 | #	(2) read 4 bytes into L_SCR1	# | 
 | 19927 | #	(3) fmov.s into %fp0		# | 
 | 19928 | ######################################### | 
 | 19929 | load_sgl: | 
 | 19930 | 	movq.l		&0x4, %d0		# pass: 4 (bytes) | 
 | 19931 | 	bsr.l		_dcalc_ea		# calc <ea>; <ea> in %a0 | 
 | 19932 |  | 
 | 19933 | 	cmpi.b		SPCOND_FLG(%a6),&immed_flg | 
 | 19934 | 	beq.b		load_sgl_immed | 
 | 19935 |  | 
 | 19936 | 	bsr.l		_dmem_read_long		# fetch src operand from memory | 
 | 19937 | 	mov.l		%d0, L_SCR1(%a6)	# store src op on stack | 
 | 19938 |  | 
 | 19939 | 	tst.l		%d1			# did dfetch fail? | 
 | 19940 | 	bne.l		facc_in_l		# yes | 
 | 19941 |  | 
 | 19942 | load_sgl_cont: | 
 | 19943 | 	lea		L_SCR1(%a6), %a0	# pass: ptr to sgl src op | 
 | 19944 | 	bsr.l		set_tag_s		# determine src type tag | 
 | 19945 | 	mov.b		%d0, STAG(%a6)		# save src optype tag on stack | 
 | 19946 |  | 
 | 19947 | 	cmpi.b		%d0, &DENORM		# is it a sgl DENORM? | 
 | 19948 | 	beq.w		get_sgl_denorm		# yes | 
 | 19949 |  | 
 | 19950 | 	cmpi.b		%d0, &SNAN		# is it a sgl SNAN? | 
 | 19951 | 	beq.w		get_sgl_snan		# yes | 
 | 19952 |  | 
 | 19953 | 	fmov.s		L_SCR1(%a6), %fp0	# read into %fp0;convert to xprec | 
 | 19954 | 	fmovm.x		&0x80, FP_SRC(%a6)	# return src op in FP_SRC | 
 | 19955 | 	rts | 
 | 19956 |  | 
 | 19957 | load_sgl_immed: | 
 | 19958 | 	bsr.l		_imem_read_long		# fetch src operand immed data | 
 | 19959 |  | 
 | 19960 | 	tst.l		%d1			# did ifetch fail? | 
 | 19961 | 	bne.l		funimp_iacc		# yes | 
 | 19962 | 	bra.b		load_sgl_cont | 
 | 19963 |  | 
 | 19964 | # must convert sgl denorm format to an Xprec denorm fmt suitable for | 
 | 19965 | # normalization... | 
 | 19966 | # %a0 : points to sgl denorm | 
 | 19967 | get_sgl_denorm: | 
 | 19968 | 	clr.w		FP_SRC_EX(%a6) | 
 | 19969 | 	bfextu		(%a0){&9:&23}, %d0	# fetch sgl hi(_mantissa) | 
 | 19970 | 	lsl.l		&0x8, %d0 | 
 | 19971 | 	mov.l		%d0, FP_SRC_HI(%a6)	# set ext hi(_mantissa) | 
 | 19972 | 	clr.l		FP_SRC_LO(%a6)		# set ext lo(_mantissa) | 
 | 19973 |  | 
 | 19974 | 	clr.w		FP_SRC_EX(%a6) | 
 | 19975 | 	btst		&0x7, (%a0)		# is sgn bit set? | 
 | 19976 | 	beq.b		sgl_dnrm_norm | 
 | 19977 | 	bset		&0x7, FP_SRC_EX(%a6)	# set sgn of xprec value | 
 | 19978 |  | 
 | 19979 | sgl_dnrm_norm: | 
 | 19980 | 	lea		FP_SRC(%a6), %a0 | 
 | 19981 | 	bsr.l		norm			# normalize number | 
 | 19982 | 	mov.w		&0x3f81, %d1		# xprec exp = 0x3f81 | 
 | 19983 | 	sub.w		%d0, %d1		# exp = 0x3f81 - shft amt. | 
 | 19984 | 	or.w		%d1, FP_SRC_EX(%a6)	# {sgn,exp} | 
 | 19985 |  | 
 | 19986 | 	mov.b		&NORM, STAG(%a6)	# fix src type tag | 
 | 19987 | 	rts | 
 | 19988 |  | 
 | 19989 | # convert sgl to ext SNAN | 
 | 19990 | # %a0 : points to sgl SNAN | 
 | 19991 | get_sgl_snan: | 
 | 19992 | 	mov.w		&0x7fff, FP_SRC_EX(%a6) # set exp of SNAN | 
 | 19993 | 	bfextu		(%a0){&9:&23}, %d0 | 
 | 19994 | 	lsl.l		&0x8, %d0		# extract and insert hi(man) | 
 | 19995 | 	mov.l		%d0, FP_SRC_HI(%a6) | 
 | 19996 | 	clr.l		FP_SRC_LO(%a6) | 
 | 19997 |  | 
 | 19998 | 	btst		&0x7, (%a0)		# see if sign of SNAN is set | 
 | 19999 | 	beq.b		no_sgl_snan_sgn | 
 | 20000 | 	bset		&0x7, FP_SRC_EX(%a6) | 
 | 20001 | no_sgl_snan_sgn: | 
 | 20002 | 	rts | 
 | 20003 |  | 
 | 20004 | ######################################### | 
 | 20005 | # load a DBL into %fp0:			# | 
 | 20006 | #	-number can't fault		# | 
 | 20007 | #	(1) calc ea			# | 
 | 20008 | #	(2) read 8 bytes into L_SCR(1,2)# | 
 | 20009 | #	(3) fmov.d into %fp0		# | 
 | 20010 | ######################################### | 
 | 20011 | load_dbl: | 
 | 20012 | 	movq.l		&0x8, %d0		# pass: 8 (bytes) | 
 | 20013 | 	bsr.l		_dcalc_ea		# calc <ea>; <ea> in %a0 | 
 | 20014 |  | 
 | 20015 | 	cmpi.b		SPCOND_FLG(%a6),&immed_flg | 
 | 20016 | 	beq.b		load_dbl_immed | 
 | 20017 |  | 
 | 20018 | 	lea		L_SCR1(%a6), %a1	# pass: ptr to input dbl tmp space | 
 | 20019 | 	movq.l		&0x8, %d0		# pass: # bytes to read | 
 | 20020 | 	bsr.l		_dmem_read		# fetch src operand from memory | 
 | 20021 |  | 
 | 20022 | 	tst.l		%d1			# did dfetch fail? | 
 | 20023 | 	bne.l		facc_in_d		# yes | 
 | 20024 |  | 
 | 20025 | load_dbl_cont: | 
 | 20026 | 	lea		L_SCR1(%a6), %a0	# pass: ptr to input dbl | 
 | 20027 | 	bsr.l		set_tag_d		# determine src type tag | 
 | 20028 | 	mov.b		%d0, STAG(%a6)		# set src optype tag | 
 | 20029 |  | 
 | 20030 | 	cmpi.b		%d0, &DENORM		# is it a dbl DENORM? | 
 | 20031 | 	beq.w		get_dbl_denorm		# yes | 
 | 20032 |  | 
 | 20033 | 	cmpi.b		%d0, &SNAN		# is it a dbl SNAN? | 
 | 20034 | 	beq.w		get_dbl_snan		# yes | 
 | 20035 |  | 
 | 20036 | 	fmov.d		L_SCR1(%a6), %fp0	# read into %fp0;convert to xprec | 
 | 20037 | 	fmovm.x		&0x80, FP_SRC(%a6)	# return src op in FP_SRC | 
 | 20038 | 	rts | 
 | 20039 |  | 
 | 20040 | load_dbl_immed: | 
 | 20041 | 	lea		L_SCR1(%a6), %a1	# pass: ptr to input dbl tmp space | 
 | 20042 | 	movq.l		&0x8, %d0		# pass: # bytes to read | 
 | 20043 | 	bsr.l		_imem_read		# fetch src operand from memory | 
 | 20044 |  | 
 | 20045 | 	tst.l		%d1			# did ifetch fail? | 
 | 20046 | 	bne.l		funimp_iacc		# yes | 
 | 20047 | 	bra.b		load_dbl_cont | 
 | 20048 |  | 
 | 20049 | # must convert dbl denorm format to an Xprec denorm fmt suitable for | 
 | 20050 | # normalization... | 
 | 20051 | # %a0 : loc. of dbl denorm | 
 | 20052 | get_dbl_denorm: | 
 | 20053 | 	clr.w		FP_SRC_EX(%a6) | 
 | 20054 | 	bfextu		(%a0){&12:&31}, %d0	# fetch hi(_mantissa) | 
 | 20055 | 	mov.l		%d0, FP_SRC_HI(%a6) | 
 | 20056 | 	bfextu		4(%a0){&11:&21}, %d0	# fetch lo(_mantissa) | 
 | 20057 | 	mov.l		&0xb, %d1 | 
 | 20058 | 	lsl.l		%d1, %d0 | 
 | 20059 | 	mov.l		%d0, FP_SRC_LO(%a6) | 
 | 20060 |  | 
 | 20061 | 	btst		&0x7, (%a0)		# is sgn bit set? | 
 | 20062 | 	beq.b		dbl_dnrm_norm | 
 | 20063 | 	bset		&0x7, FP_SRC_EX(%a6)	# set sgn of xprec value | 
 | 20064 |  | 
 | 20065 | dbl_dnrm_norm: | 
 | 20066 | 	lea		FP_SRC(%a6), %a0 | 
 | 20067 | 	bsr.l		norm			# normalize number | 
 | 20068 | 	mov.w		&0x3c01, %d1		# xprec exp = 0x3c01 | 
 | 20069 | 	sub.w		%d0, %d1		# exp = 0x3c01 - shft amt. | 
 | 20070 | 	or.w		%d1, FP_SRC_EX(%a6)	# {sgn,exp} | 
 | 20071 |  | 
 | 20072 | 	mov.b		&NORM, STAG(%a6)	# fix src type tag | 
 | 20073 | 	rts | 
 | 20074 |  | 
 | 20075 | # convert dbl to ext SNAN | 
 | 20076 | # %a0 : points to dbl SNAN | 
 | 20077 | get_dbl_snan: | 
 | 20078 | 	mov.w		&0x7fff, FP_SRC_EX(%a6) # set exp of SNAN | 
 | 20079 |  | 
 | 20080 | 	bfextu		(%a0){&12:&31}, %d0	# fetch hi(_mantissa) | 
 | 20081 | 	mov.l		%d0, FP_SRC_HI(%a6) | 
 | 20082 | 	bfextu		4(%a0){&11:&21}, %d0	# fetch lo(_mantissa) | 
 | 20083 | 	mov.l		&0xb, %d1 | 
 | 20084 | 	lsl.l		%d1, %d0 | 
 | 20085 | 	mov.l		%d0, FP_SRC_LO(%a6) | 
 | 20086 |  | 
 | 20087 | 	btst		&0x7, (%a0)		# see if sign of SNAN is set | 
 | 20088 | 	beq.b		no_dbl_snan_sgn | 
 | 20089 | 	bset		&0x7, FP_SRC_EX(%a6) | 
 | 20090 | no_dbl_snan_sgn: | 
 | 20091 | 	rts | 
 | 20092 |  | 
 | 20093 | ################################################# | 
 | 20094 | # load a Xprec into %fp0:			# | 
 | 20095 | #	-number can't fault			# | 
 | 20096 | #	(1) calc ea				# | 
 | 20097 | #	(2) read 12 bytes into L_SCR(1,2)	# | 
 | 20098 | #	(3) fmov.x into %fp0			# | 
 | 20099 | ################################################# | 
 | 20100 | load_ext: | 
 | 20101 | 	mov.l		&0xc, %d0		# pass: 12 (bytes) | 
 | 20102 | 	bsr.l		_dcalc_ea		# calc <ea> | 
 | 20103 |  | 
 | 20104 | 	lea		FP_SRC(%a6), %a1	# pass: ptr to input ext tmp space | 
 | 20105 | 	mov.l		&0xc, %d0		# pass: # of bytes to read | 
 | 20106 | 	bsr.l		_dmem_read		# fetch src operand from memory | 
 | 20107 |  | 
 | 20108 | 	tst.l		%d1			# did dfetch fail? | 
 | 20109 | 	bne.l		facc_in_x		# yes | 
 | 20110 |  | 
 | 20111 | 	lea		FP_SRC(%a6), %a0	# pass: ptr to src op | 
 | 20112 | 	bsr.l		set_tag_x		# determine src type tag | 
 | 20113 |  | 
 | 20114 | 	cmpi.b		%d0, &UNNORM		# is the src op an UNNORM? | 
 | 20115 | 	beq.b		load_ext_unnorm		# yes | 
 | 20116 |  | 
 | 20117 | 	mov.b		%d0, STAG(%a6)		# store the src optype tag | 
 | 20118 | 	rts | 
 | 20119 |  | 
 | 20120 | load_ext_unnorm: | 
 | 20121 | 	bsr.l		unnorm_fix		# fix the src UNNORM | 
 | 20122 | 	mov.b		%d0, STAG(%a6)		# store the src optype tag | 
 | 20123 | 	rts | 
 | 20124 |  | 
 | 20125 | ################################################# | 
 | 20126 | # load a packed into %fp0:			# | 
 | 20127 | #	-number can't fault			# | 
 | 20128 | #	(1) calc ea				# | 
 | 20129 | #	(2) read 12 bytes into L_SCR(1,2,3)	# | 
 | 20130 | #	(3) fmov.x into %fp0			# | 
 | 20131 | ################################################# | 
 | 20132 | load_packed: | 
 | 20133 | 	bsr.l		get_packed | 
 | 20134 |  | 
 | 20135 | 	lea		FP_SRC(%a6),%a0		# pass ptr to src op | 
 | 20136 | 	bsr.l		set_tag_x		# determine src type tag | 
 | 20137 | 	cmpi.b		%d0,&UNNORM		# is the src op an UNNORM ZERO? | 
 | 20138 | 	beq.b		load_packed_unnorm	# yes | 
 | 20139 |  | 
 | 20140 | 	mov.b		%d0,STAG(%a6)		# store the src optype tag | 
 | 20141 | 	rts | 
 | 20142 |  | 
 | 20143 | load_packed_unnorm: | 
 | 20144 | 	bsr.l		unnorm_fix		# fix the UNNORM ZERO | 
 | 20145 | 	mov.b		%d0,STAG(%a6)		# store the src optype tag | 
 | 20146 | 	rts | 
 | 20147 |  | 
 | 20148 | ######################################################################### | 
 | 20149 | # XDEF ****************************************************************	# | 
 | 20150 | #	fout(): move from fp register to memory or data register	# | 
 | 20151 | #									# | 
 | 20152 | # XREF ****************************************************************	# | 
 | 20153 | #	_round() - needed to create EXOP for sgl/dbl precision		# | 
 | 20154 | #	norm() - needed to create EXOP for extended precision		# | 
 | 20155 | #	ovf_res() - create default overflow result for sgl/dbl precision# | 
 | 20156 | #	unf_res() - create default underflow result for sgl/dbl prec.	# | 
 | 20157 | #	dst_dbl() - create rounded dbl precision result.		# | 
 | 20158 | #	dst_sgl() - create rounded sgl precision result.		# | 
 | 20159 | #	fetch_dreg() - fetch dynamic k-factor reg for packed.		# | 
 | 20160 | #	bindec() - convert FP binary number to packed number.		# | 
 | 20161 | #	_mem_write() - write data to memory.				# | 
 | 20162 | #	_mem_write2() - write data to memory unless supv mode -(a7) exc.# | 
 | 20163 | #	_dmem_write_{byte,word,long}() - write data to memory.		# | 
 | 20164 | #	store_dreg_{b,w,l}() - store data to data register file.	# | 
 | 20165 | #	facc_out_{b,w,l,d,x}() - data access error occurred.		# | 
 | 20166 | #									# | 
 | 20167 | # INPUT ***************************************************************	# | 
 | 20168 | #	a0 = pointer to extended precision source operand		# | 
 | 20169 | #	d0 = round prec,mode						# | 
 | 20170 | #									# | 
 | 20171 | # OUTPUT **************************************************************	# | 
 | 20172 | #	fp0 : intermediate underflow or overflow result if		# | 
 | 20173 | #	      OVFL/UNFL occurred for a sgl or dbl operand		# | 
 | 20174 | #									# | 
 | 20175 | # ALGORITHM ***********************************************************	# | 
 | 20176 | #	This routine is accessed by many handlers that need to do an	# | 
 | 20177 | # opclass three move of an operand out to memory.			# | 
 | 20178 | #	Decode an fmove out (opclass 3) instruction to determine if	# | 
 | 20179 | # it's b,w,l,s,d,x, or p in size. b,w,l can be stored to either a data	# | 
 | 20180 | # register or memory. The algorithm uses a standard "fmove" to create	# | 
 | 20181 | # the rounded result. Also, since exceptions are disabled, this also	# | 
 | 20182 | # create the correct OPERR default result if appropriate.		# | 
 | 20183 | #	For sgl or dbl precision, overflow or underflow can occur. If	# | 
 | 20184 | # either occurs and is enabled, the EXOP.				# | 
 | 20185 | #	For extended precision, the stacked <ea> must be fixed along	# | 
 | 20186 | # w/ the address index register as appropriate w/ _calc_ea_fout(). If	# | 
 | 20187 | # the source is a denorm and if underflow is enabled, an EXOP must be	# | 
 | 20188 | # created.								# | 
 | 20189 | #	For packed, the k-factor must be fetched from the instruction	# | 
 | 20190 | # word or a data register. The <ea> must be fixed as w/ extended	# | 
 | 20191 | # precision. Then, bindec() is called to create the appropriate		# | 
 | 20192 | # packed result.							# | 
 | 20193 | #	If at any time an access error is flagged by one of the move-	# | 
 | 20194 | # to-memory routines, then a special exit must be made so that the	# | 
 | 20195 | # access error can be handled properly.					# | 
 | 20196 | #									# | 
 | 20197 | ######################################################################### | 
 | 20198 |  | 
 | 20199 | 	global		fout | 
 | 20200 | fout: | 
 | 20201 | 	bfextu		EXC_CMDREG(%a6){&3:&3},%d1 # extract dst fmt | 
 | 20202 | 	mov.w		(tbl_fout.b,%pc,%d1.w*2),%a1 # use as index | 
 | 20203 | 	jmp		(tbl_fout.b,%pc,%a1)	# jump to routine | 
 | 20204 |  | 
 | 20205 | 	swbeg		&0x8 | 
 | 20206 | tbl_fout: | 
 | 20207 | 	short		fout_long	-	tbl_fout | 
 | 20208 | 	short		fout_sgl	-	tbl_fout | 
 | 20209 | 	short		fout_ext	-	tbl_fout | 
 | 20210 | 	short		fout_pack	-	tbl_fout | 
 | 20211 | 	short		fout_word	-	tbl_fout | 
 | 20212 | 	short		fout_dbl	-	tbl_fout | 
 | 20213 | 	short		fout_byte	-	tbl_fout | 
 | 20214 | 	short		fout_pack	-	tbl_fout | 
 | 20215 |  | 
 | 20216 | ################################################################# | 
 | 20217 | # fmove.b out ################################################### | 
 | 20218 | ################################################################# | 
 | 20219 |  | 
 | 20220 | # Only "Unimplemented Data Type" exceptions enter here. The operand | 
 | 20221 | # is either a DENORM or a NORM. | 
 | 20222 | fout_byte: | 
 | 20223 | 	tst.b		STAG(%a6)		# is operand normalized? | 
 | 20224 | 	bne.b		fout_byte_denorm	# no | 
 | 20225 |  | 
 | 20226 | 	fmovm.x		SRC(%a0),&0x80		# load value | 
 | 20227 |  | 
 | 20228 | fout_byte_norm: | 
 | 20229 | 	fmov.l		%d0,%fpcr		# insert rnd prec,mode | 
 | 20230 |  | 
 | 20231 | 	fmov.b		%fp0,%d0		# exec move out w/ correct rnd mode | 
 | 20232 |  | 
 | 20233 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 20234 | 	fmov.l		%fpsr,%d1		# fetch FPSR | 
 | 20235 | 	or.w		%d1,2+USER_FPSR(%a6)	# save new exc,accrued bits | 
 | 20236 |  | 
 | 20237 | 	mov.b		1+EXC_OPWORD(%a6),%d1	# extract dst mode | 
 | 20238 | 	andi.b		&0x38,%d1		# is mode == 0? (Dreg dst) | 
 | 20239 | 	beq.b		fout_byte_dn		# must save to integer regfile | 
 | 20240 |  | 
 | 20241 | 	mov.l		EXC_EA(%a6),%a0		# stacked <ea> is correct | 
 | 20242 | 	bsr.l		_dmem_write_byte	# write byte | 
 | 20243 |  | 
 | 20244 | 	tst.l		%d1			# did dstore fail? | 
 | 20245 | 	bne.l		facc_out_b		# yes | 
 | 20246 |  | 
 | 20247 | 	rts | 
 | 20248 |  | 
 | 20249 | fout_byte_dn: | 
 | 20250 | 	mov.b		1+EXC_OPWORD(%a6),%d1	# extract Dn | 
 | 20251 | 	andi.w		&0x7,%d1 | 
 | 20252 | 	bsr.l		store_dreg_b | 
 | 20253 | 	rts | 
 | 20254 |  | 
 | 20255 | fout_byte_denorm: | 
 | 20256 | 	mov.l		SRC_EX(%a0),%d1 | 
 | 20257 | 	andi.l		&0x80000000,%d1		# keep DENORM sign | 
 | 20258 | 	ori.l		&0x00800000,%d1		# make smallest sgl | 
 | 20259 | 	fmov.s		%d1,%fp0 | 
 | 20260 | 	bra.b		fout_byte_norm | 
 | 20261 |  | 
 | 20262 | ################################################################# | 
 | 20263 | # fmove.w out ################################################### | 
 | 20264 | ################################################################# | 
 | 20265 |  | 
 | 20266 | # Only "Unimplemented Data Type" exceptions enter here. The operand | 
 | 20267 | # is either a DENORM or a NORM. | 
 | 20268 | fout_word: | 
 | 20269 | 	tst.b		STAG(%a6)		# is operand normalized? | 
 | 20270 | 	bne.b		fout_word_denorm	# no | 
 | 20271 |  | 
 | 20272 | 	fmovm.x		SRC(%a0),&0x80		# load value | 
 | 20273 |  | 
 | 20274 | fout_word_norm: | 
 | 20275 | 	fmov.l		%d0,%fpcr		# insert rnd prec:mode | 
 | 20276 |  | 
 | 20277 | 	fmov.w		%fp0,%d0		# exec move out w/ correct rnd mode | 
 | 20278 |  | 
 | 20279 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 20280 | 	fmov.l		%fpsr,%d1		# fetch FPSR | 
 | 20281 | 	or.w		%d1,2+USER_FPSR(%a6)	# save new exc,accrued bits | 
 | 20282 |  | 
 | 20283 | 	mov.b		1+EXC_OPWORD(%a6),%d1	# extract dst mode | 
 | 20284 | 	andi.b		&0x38,%d1		# is mode == 0? (Dreg dst) | 
 | 20285 | 	beq.b		fout_word_dn		# must save to integer regfile | 
 | 20286 |  | 
 | 20287 | 	mov.l		EXC_EA(%a6),%a0		# stacked <ea> is correct | 
 | 20288 | 	bsr.l		_dmem_write_word	# write word | 
 | 20289 |  | 
 | 20290 | 	tst.l		%d1			# did dstore fail? | 
 | 20291 | 	bne.l		facc_out_w		# yes | 
 | 20292 |  | 
 | 20293 | 	rts | 
 | 20294 |  | 
 | 20295 | fout_word_dn: | 
 | 20296 | 	mov.b		1+EXC_OPWORD(%a6),%d1	# extract Dn | 
 | 20297 | 	andi.w		&0x7,%d1 | 
 | 20298 | 	bsr.l		store_dreg_w | 
 | 20299 | 	rts | 
 | 20300 |  | 
 | 20301 | fout_word_denorm: | 
 | 20302 | 	mov.l		SRC_EX(%a0),%d1 | 
 | 20303 | 	andi.l		&0x80000000,%d1		# keep DENORM sign | 
 | 20304 | 	ori.l		&0x00800000,%d1		# make smallest sgl | 
 | 20305 | 	fmov.s		%d1,%fp0 | 
 | 20306 | 	bra.b		fout_word_norm | 
 | 20307 |  | 
 | 20308 | ################################################################# | 
 | 20309 | # fmove.l out ################################################### | 
 | 20310 | ################################################################# | 
 | 20311 |  | 
 | 20312 | # Only "Unimplemented Data Type" exceptions enter here. The operand | 
 | 20313 | # is either a DENORM or a NORM. | 
 | 20314 | fout_long: | 
 | 20315 | 	tst.b		STAG(%a6)		# is operand normalized? | 
 | 20316 | 	bne.b		fout_long_denorm	# no | 
 | 20317 |  | 
 | 20318 | 	fmovm.x		SRC(%a0),&0x80		# load value | 
 | 20319 |  | 
 | 20320 | fout_long_norm: | 
 | 20321 | 	fmov.l		%d0,%fpcr		# insert rnd prec:mode | 
 | 20322 |  | 
 | 20323 | 	fmov.l		%fp0,%d0		# exec move out w/ correct rnd mode | 
 | 20324 |  | 
 | 20325 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 20326 | 	fmov.l		%fpsr,%d1		# fetch FPSR | 
 | 20327 | 	or.w		%d1,2+USER_FPSR(%a6)	# save new exc,accrued bits | 
 | 20328 |  | 
 | 20329 | fout_long_write: | 
 | 20330 | 	mov.b		1+EXC_OPWORD(%a6),%d1	# extract dst mode | 
 | 20331 | 	andi.b		&0x38,%d1		# is mode == 0? (Dreg dst) | 
 | 20332 | 	beq.b		fout_long_dn		# must save to integer regfile | 
 | 20333 |  | 
 | 20334 | 	mov.l		EXC_EA(%a6),%a0		# stacked <ea> is correct | 
 | 20335 | 	bsr.l		_dmem_write_long	# write long | 
 | 20336 |  | 
 | 20337 | 	tst.l		%d1			# did dstore fail? | 
 | 20338 | 	bne.l		facc_out_l		# yes | 
 | 20339 |  | 
 | 20340 | 	rts | 
 | 20341 |  | 
 | 20342 | fout_long_dn: | 
 | 20343 | 	mov.b		1+EXC_OPWORD(%a6),%d1	# extract Dn | 
 | 20344 | 	andi.w		&0x7,%d1 | 
 | 20345 | 	bsr.l		store_dreg_l | 
 | 20346 | 	rts | 
 | 20347 |  | 
 | 20348 | fout_long_denorm: | 
 | 20349 | 	mov.l		SRC_EX(%a0),%d1 | 
 | 20350 | 	andi.l		&0x80000000,%d1		# keep DENORM sign | 
 | 20351 | 	ori.l		&0x00800000,%d1		# make smallest sgl | 
 | 20352 | 	fmov.s		%d1,%fp0 | 
 | 20353 | 	bra.b		fout_long_norm | 
 | 20354 |  | 
 | 20355 | ################################################################# | 
 | 20356 | # fmove.x out ################################################### | 
 | 20357 | ################################################################# | 
 | 20358 |  | 
 | 20359 | # Only "Unimplemented Data Type" exceptions enter here. The operand | 
 | 20360 | # is either a DENORM or a NORM. | 
 | 20361 | # The DENORM causes an Underflow exception. | 
 | 20362 | fout_ext: | 
 | 20363 |  | 
 | 20364 | # we copy the extended precision result to FP_SCR0 so that the reserved | 
 | 20365 | # 16-bit field gets zeroed. we do this since we promise not to disturb | 
 | 20366 | # what's at SRC(a0). | 
 | 20367 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 20368 | 	clr.w		2+FP_SCR0_EX(%a6)	# clear reserved field | 
 | 20369 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 20370 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 20371 |  | 
 | 20372 | 	fmovm.x		SRC(%a0),&0x80		# return result | 
 | 20373 |  | 
 | 20374 | 	bsr.l		_calc_ea_fout		# fix stacked <ea> | 
 | 20375 |  | 
 | 20376 | 	mov.l		%a0,%a1			# pass: dst addr | 
 | 20377 | 	lea		FP_SCR0(%a6),%a0	# pass: src addr | 
 | 20378 | 	mov.l		&0xc,%d0		# pass: opsize is 12 bytes | 
 | 20379 |  | 
 | 20380 | # we must not yet write the extended precision data to the stack | 
 | 20381 | # in the pre-decrement case from supervisor mode or else we'll corrupt | 
 | 20382 | # the stack frame. so, leave it in FP_SRC for now and deal with it later... | 
 | 20383 | 	cmpi.b		SPCOND_FLG(%a6),&mda7_flg | 
 | 20384 | 	beq.b		fout_ext_a7 | 
 | 20385 |  | 
 | 20386 | 	bsr.l		_dmem_write		# write ext prec number to memory | 
 | 20387 |  | 
 | 20388 | 	tst.l		%d1			# did dstore fail? | 
 | 20389 | 	bne.w		fout_ext_err		# yes | 
 | 20390 |  | 
 | 20391 | 	tst.b		STAG(%a6)		# is operand normalized? | 
 | 20392 | 	bne.b		fout_ext_denorm		# no | 
 | 20393 | 	rts | 
 | 20394 |  | 
 | 20395 | # the number is a DENORM. must set the underflow exception bit | 
 | 20396 | fout_ext_denorm: | 
 | 20397 | 	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set underflow exc bit | 
 | 20398 |  | 
 | 20399 | 	mov.b		FPCR_ENABLE(%a6),%d0 | 
 | 20400 | 	andi.b		&0x0a,%d0		# is UNFL or INEX enabled? | 
 | 20401 | 	bne.b		fout_ext_exc		# yes | 
 | 20402 | 	rts | 
 | 20403 |  | 
 | 20404 | # we don't want to do the write if the exception occurred in supervisor mode | 
 | 20405 | # so _mem_write2() handles this for us. | 
 | 20406 | fout_ext_a7: | 
 | 20407 | 	bsr.l		_mem_write2		# write ext prec number to memory | 
 | 20408 |  | 
 | 20409 | 	tst.l		%d1			# did dstore fail? | 
 | 20410 | 	bne.w		fout_ext_err		# yes | 
 | 20411 |  | 
 | 20412 | 	tst.b		STAG(%a6)		# is operand normalized? | 
 | 20413 | 	bne.b		fout_ext_denorm		# no | 
 | 20414 | 	rts | 
 | 20415 |  | 
 | 20416 | fout_ext_exc: | 
 | 20417 | 	lea		FP_SCR0(%a6),%a0 | 
 | 20418 | 	bsr.l		norm			# normalize the mantissa | 
 | 20419 | 	neg.w		%d0			# new exp = -(shft amt) | 
 | 20420 | 	andi.w		&0x7fff,%d0 | 
 | 20421 | 	andi.w		&0x8000,FP_SCR0_EX(%a6)	# keep only old sign | 
 | 20422 | 	or.w		%d0,FP_SCR0_EX(%a6)	# insert new exponent | 
 | 20423 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 20424 | 	rts | 
 | 20425 |  | 
 | 20426 | fout_ext_err: | 
 | 20427 | 	mov.l		EXC_A6(%a6),(%a6)	# fix stacked a6 | 
 | 20428 | 	bra.l		facc_out_x | 
 | 20429 |  | 
 | 20430 | ######################################################################### | 
 | 20431 | # fmove.s out ########################################################### | 
 | 20432 | ######################################################################### | 
 | 20433 | fout_sgl: | 
 | 20434 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 20435 | 	ori.b		&s_mode*0x10,%d0	# insert sgl prec | 
 | 20436 | 	mov.l		%d0,L_SCR3(%a6)		# save rnd prec,mode on stack | 
 | 20437 |  | 
 | 20438 | # | 
 | 20439 | # operand is a normalized number. first, we check to see if the move out | 
 | 20440 | # would cause either an underflow or overflow. these cases are handled | 
 | 20441 | # separately. otherwise, set the FPCR to the proper rounding mode and | 
 | 20442 | # execute the move. | 
 | 20443 | # | 
 | 20444 | 	mov.w		SRC_EX(%a0),%d0		# extract exponent | 
 | 20445 | 	andi.w		&0x7fff,%d0		# strip sign | 
 | 20446 |  | 
 | 20447 | 	cmpi.w		%d0,&SGL_HI		# will operand overflow? | 
 | 20448 | 	bgt.w		fout_sgl_ovfl		# yes; go handle OVFL | 
 | 20449 | 	beq.w		fout_sgl_may_ovfl	# maybe; go handle possible OVFL | 
 | 20450 | 	cmpi.w		%d0,&SGL_LO		# will operand underflow? | 
 | 20451 | 	blt.w		fout_sgl_unfl		# yes; go handle underflow | 
 | 20452 |  | 
 | 20453 | # | 
 | 20454 | # NORMs(in range) can be stored out by a simple "fmov.s" | 
 | 20455 | # Unnormalized inputs can come through this point. | 
 | 20456 | # | 
 | 20457 | fout_sgl_exg: | 
 | 20458 | 	fmovm.x		SRC(%a0),&0x80		# fetch fop from stack | 
 | 20459 |  | 
 | 20460 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 20461 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 20462 |  | 
 | 20463 | 	fmov.s		%fp0,%d0		# store does convert and round | 
 | 20464 |  | 
 | 20465 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 20466 | 	fmov.l		%fpsr,%d1		# save FPSR | 
 | 20467 |  | 
 | 20468 | 	or.w		%d1,2+USER_FPSR(%a6)	# set possible inex2/ainex | 
 | 20469 |  | 
 | 20470 | fout_sgl_exg_write: | 
 | 20471 | 	mov.b		1+EXC_OPWORD(%a6),%d1	# extract dst mode | 
 | 20472 | 	andi.b		&0x38,%d1		# is mode == 0? (Dreg dst) | 
 | 20473 | 	beq.b		fout_sgl_exg_write_dn	# must save to integer regfile | 
 | 20474 |  | 
 | 20475 | 	mov.l		EXC_EA(%a6),%a0		# stacked <ea> is correct | 
 | 20476 | 	bsr.l		_dmem_write_long	# write long | 
 | 20477 |  | 
 | 20478 | 	tst.l		%d1			# did dstore fail? | 
 | 20479 | 	bne.l		facc_out_l		# yes | 
 | 20480 |  | 
 | 20481 | 	rts | 
 | 20482 |  | 
 | 20483 | fout_sgl_exg_write_dn: | 
 | 20484 | 	mov.b		1+EXC_OPWORD(%a6),%d1	# extract Dn | 
 | 20485 | 	andi.w		&0x7,%d1 | 
 | 20486 | 	bsr.l		store_dreg_l | 
 | 20487 | 	rts | 
 | 20488 |  | 
 | 20489 | # | 
 | 20490 | # here, we know that the operand would UNFL if moved out to single prec, | 
 | 20491 | # so, denorm and round and then use generic store single routine to | 
 | 20492 | # write the value to memory. | 
 | 20493 | # | 
 | 20494 | fout_sgl_unfl: | 
 | 20495 | 	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set UNFL | 
 | 20496 |  | 
 | 20497 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 20498 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 20499 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 20500 | 	mov.l		%a0,-(%sp) | 
 | 20501 |  | 
 | 20502 | 	clr.l		%d0			# pass: S.F. = 0 | 
 | 20503 |  | 
 | 20504 | 	cmpi.b		STAG(%a6),&DENORM	# fetch src optype tag | 
 | 20505 | 	bne.b		fout_sgl_unfl_cont	# let DENORMs fall through | 
 | 20506 |  | 
 | 20507 | 	lea		FP_SCR0(%a6),%a0 | 
 | 20508 | 	bsr.l		norm			# normalize the DENORM | 
 | 20509 |  | 
 | 20510 | fout_sgl_unfl_cont: | 
 | 20511 | 	lea		FP_SCR0(%a6),%a0	# pass: ptr to operand | 
 | 20512 | 	mov.l		L_SCR3(%a6),%d1		# pass: rnd prec,mode | 
 | 20513 | 	bsr.l		unf_res			# calc default underflow result | 
 | 20514 |  | 
 | 20515 | 	lea		FP_SCR0(%a6),%a0	# pass: ptr to fop | 
 | 20516 | 	bsr.l		dst_sgl			# convert to single prec | 
 | 20517 |  | 
 | 20518 | 	mov.b		1+EXC_OPWORD(%a6),%d1	# extract dst mode | 
 | 20519 | 	andi.b		&0x38,%d1		# is mode == 0? (Dreg dst) | 
 | 20520 | 	beq.b		fout_sgl_unfl_dn	# must save to integer regfile | 
 | 20521 |  | 
 | 20522 | 	mov.l		EXC_EA(%a6),%a0		# stacked <ea> is correct | 
 | 20523 | 	bsr.l		_dmem_write_long	# write long | 
 | 20524 |  | 
 | 20525 | 	tst.l		%d1			# did dstore fail? | 
 | 20526 | 	bne.l		facc_out_l		# yes | 
 | 20527 |  | 
 | 20528 | 	bra.b		fout_sgl_unfl_chkexc | 
 | 20529 |  | 
 | 20530 | fout_sgl_unfl_dn: | 
 | 20531 | 	mov.b		1+EXC_OPWORD(%a6),%d1	# extract Dn | 
 | 20532 | 	andi.w		&0x7,%d1 | 
 | 20533 | 	bsr.l		store_dreg_l | 
 | 20534 |  | 
 | 20535 | fout_sgl_unfl_chkexc: | 
 | 20536 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 20537 | 	andi.b		&0x0a,%d1		# is UNFL or INEX enabled? | 
 | 20538 | 	bne.w		fout_sd_exc_unfl	# yes | 
 | 20539 | 	addq.l		&0x4,%sp | 
 | 20540 | 	rts | 
 | 20541 |  | 
 | 20542 | # | 
 | 20543 | # it's definitely an overflow so call ovf_res to get the correct answer | 
 | 20544 | # | 
 | 20545 | fout_sgl_ovfl: | 
 | 20546 | 	tst.b		3+SRC_HI(%a0)		# is result inexact? | 
 | 20547 | 	bne.b		fout_sgl_ovfl_inex2 | 
 | 20548 | 	tst.l		SRC_LO(%a0)		# is result inexact? | 
 | 20549 | 	bne.b		fout_sgl_ovfl_inex2 | 
 | 20550 | 	ori.w		&ovfl_inx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex | 
 | 20551 | 	bra.b		fout_sgl_ovfl_cont | 
 | 20552 | fout_sgl_ovfl_inex2: | 
 | 20553 | 	ori.w		&ovfinx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex/inex2 | 
 | 20554 |  | 
 | 20555 | fout_sgl_ovfl_cont: | 
 | 20556 | 	mov.l		%a0,-(%sp) | 
 | 20557 |  | 
 | 20558 | # call ovf_res() w/ sgl prec and the correct rnd mode to create the default | 
 | 20559 | # overflow result. DON'T save the returned ccodes from ovf_res() since | 
 | 20560 | # fmove out doesn't alter them. | 
 | 20561 | 	tst.b		SRC_EX(%a0)		# is operand negative? | 
 | 20562 | 	smi		%d1			# set if so | 
 | 20563 | 	mov.l		L_SCR3(%a6),%d0		# pass: sgl prec,rnd mode | 
 | 20564 | 	bsr.l		ovf_res			# calc OVFL result | 
 | 20565 | 	fmovm.x		(%a0),&0x80		# load default overflow result | 
 | 20566 | 	fmov.s		%fp0,%d0		# store to single | 
 | 20567 |  | 
 | 20568 | 	mov.b		1+EXC_OPWORD(%a6),%d1	# extract dst mode | 
 | 20569 | 	andi.b		&0x38,%d1		# is mode == 0? (Dreg dst) | 
 | 20570 | 	beq.b		fout_sgl_ovfl_dn	# must save to integer regfile | 
 | 20571 |  | 
 | 20572 | 	mov.l		EXC_EA(%a6),%a0		# stacked <ea> is correct | 
 | 20573 | 	bsr.l		_dmem_write_long	# write long | 
 | 20574 |  | 
 | 20575 | 	tst.l		%d1			# did dstore fail? | 
 | 20576 | 	bne.l		facc_out_l		# yes | 
 | 20577 |  | 
 | 20578 | 	bra.b		fout_sgl_ovfl_chkexc | 
 | 20579 |  | 
 | 20580 | fout_sgl_ovfl_dn: | 
 | 20581 | 	mov.b		1+EXC_OPWORD(%a6),%d1	# extract Dn | 
 | 20582 | 	andi.w		&0x7,%d1 | 
 | 20583 | 	bsr.l		store_dreg_l | 
 | 20584 |  | 
 | 20585 | fout_sgl_ovfl_chkexc: | 
 | 20586 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 20587 | 	andi.b		&0x0a,%d1		# is UNFL or INEX enabled? | 
 | 20588 | 	bne.w		fout_sd_exc_ovfl	# yes | 
 | 20589 | 	addq.l		&0x4,%sp | 
 | 20590 | 	rts | 
 | 20591 |  | 
 | 20592 | # | 
 | 20593 | # move out MAY overflow: | 
 | 20594 | # (1) force the exp to 0x3fff | 
 | 20595 | # (2) do a move w/ appropriate rnd mode | 
 | 20596 | # (3) if exp still equals zero, then insert original exponent | 
 | 20597 | #	for the correct result. | 
 | 20598 | #     if exp now equals one, then it overflowed so call ovf_res. | 
 | 20599 | # | 
 | 20600 | fout_sgl_may_ovfl: | 
 | 20601 | 	mov.w		SRC_EX(%a0),%d1		# fetch current sign | 
 | 20602 | 	andi.w		&0x8000,%d1		# keep it,clear exp | 
 | 20603 | 	ori.w		&0x3fff,%d1		# insert exp = 0 | 
 | 20604 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert scaled exp | 
 | 20605 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) # copy hi(man) | 
 | 20606 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) # copy lo(man) | 
 | 20607 |  | 
 | 20608 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 20609 |  | 
 | 20610 | 	fmov.x		FP_SCR0(%a6),%fp0	# force fop to be rounded | 
 | 20611 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 20612 |  | 
 | 20613 | 	fabs.x		%fp0			# need absolute value | 
 | 20614 | 	fcmp.b		%fp0,&0x2		# did exponent increase? | 
 | 20615 | 	fblt.w		fout_sgl_exg		# no; go finish NORM | 
 | 20616 | 	bra.w		fout_sgl_ovfl		# yes; go handle overflow | 
 | 20617 |  | 
 | 20618 | ################ | 
 | 20619 |  | 
 | 20620 | fout_sd_exc_unfl: | 
 | 20621 | 	mov.l		(%sp)+,%a0 | 
 | 20622 |  | 
 | 20623 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 20624 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 20625 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 20626 |  | 
 | 20627 | 	cmpi.b		STAG(%a6),&DENORM	# was src a DENORM? | 
 | 20628 | 	bne.b		fout_sd_exc_cont	# no | 
 | 20629 |  | 
 | 20630 | 	lea		FP_SCR0(%a6),%a0 | 
 | 20631 | 	bsr.l		norm | 
 | 20632 | 	neg.l		%d0 | 
 | 20633 | 	andi.w		&0x7fff,%d0 | 
 | 20634 | 	bfins		%d0,FP_SCR0_EX(%a6){&1:&15} | 
 | 20635 | 	bra.b		fout_sd_exc_cont | 
 | 20636 |  | 
 | 20637 | fout_sd_exc: | 
 | 20638 | fout_sd_exc_ovfl: | 
 | 20639 | 	mov.l		(%sp)+,%a0		# restore a0 | 
 | 20640 |  | 
 | 20641 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 20642 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 20643 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 20644 |  | 
 | 20645 | fout_sd_exc_cont: | 
 | 20646 | 	bclr		&0x7,FP_SCR0_EX(%a6)	# clear sign bit | 
 | 20647 | 	sne.b		2+FP_SCR0_EX(%a6)	# set internal sign bit | 
 | 20648 | 	lea		FP_SCR0(%a6),%a0	# pass: ptr to DENORM | 
 | 20649 |  | 
 | 20650 | 	mov.b		3+L_SCR3(%a6),%d1 | 
 | 20651 | 	lsr.b		&0x4,%d1 | 
 | 20652 | 	andi.w		&0x0c,%d1 | 
 | 20653 | 	swap		%d1 | 
 | 20654 | 	mov.b		3+L_SCR3(%a6),%d1 | 
 | 20655 | 	lsr.b		&0x4,%d1 | 
 | 20656 | 	andi.w		&0x03,%d1 | 
 | 20657 | 	clr.l		%d0			# pass: zero g,r,s | 
 | 20658 | 	bsr.l		_round			# round the DENORM | 
 | 20659 |  | 
 | 20660 | 	tst.b		2+FP_SCR0_EX(%a6)	# is EXOP negative? | 
 | 20661 | 	beq.b		fout_sd_exc_done	# no | 
 | 20662 | 	bset		&0x7,FP_SCR0_EX(%a6)	# yes | 
 | 20663 |  | 
 | 20664 | fout_sd_exc_done: | 
 | 20665 | 	fmovm.x		FP_SCR0(%a6),&0x40	# return EXOP in fp1 | 
 | 20666 | 	rts | 
 | 20667 |  | 
 | 20668 | ################################################################# | 
 | 20669 | # fmove.d out ################################################### | 
 | 20670 | ################################################################# | 
 | 20671 | fout_dbl: | 
 | 20672 | 	andi.b		&0x30,%d0		# clear rnd prec | 
 | 20673 | 	ori.b		&d_mode*0x10,%d0	# insert dbl prec | 
 | 20674 | 	mov.l		%d0,L_SCR3(%a6)		# save rnd prec,mode on stack | 
 | 20675 |  | 
 | 20676 | # | 
 | 20677 | # operand is a normalized number. first, we check to see if the move out | 
 | 20678 | # would cause either an underflow or overflow. these cases are handled | 
 | 20679 | # separately. otherwise, set the FPCR to the proper rounding mode and | 
 | 20680 | # execute the move. | 
 | 20681 | # | 
 | 20682 | 	mov.w		SRC_EX(%a0),%d0		# extract exponent | 
 | 20683 | 	andi.w		&0x7fff,%d0		# strip sign | 
 | 20684 |  | 
 | 20685 | 	cmpi.w		%d0,&DBL_HI		# will operand overflow? | 
 | 20686 | 	bgt.w		fout_dbl_ovfl		# yes; go handle OVFL | 
 | 20687 | 	beq.w		fout_dbl_may_ovfl	# maybe; go handle possible OVFL | 
 | 20688 | 	cmpi.w		%d0,&DBL_LO		# will operand underflow? | 
 | 20689 | 	blt.w		fout_dbl_unfl		# yes; go handle underflow | 
 | 20690 |  | 
 | 20691 | # | 
 | 20692 | # NORMs(in range) can be stored out by a simple "fmov.d" | 
 | 20693 | # Unnormalized inputs can come through this point. | 
 | 20694 | # | 
 | 20695 | fout_dbl_exg: | 
 | 20696 | 	fmovm.x		SRC(%a0),&0x80		# fetch fop from stack | 
 | 20697 |  | 
 | 20698 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 20699 | 	fmov.l		&0x0,%fpsr		# clear FPSR | 
 | 20700 |  | 
 | 20701 | 	fmov.d		%fp0,L_SCR1(%a6)	# store does convert and round | 
 | 20702 |  | 
 | 20703 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 20704 | 	fmov.l		%fpsr,%d0		# save FPSR | 
 | 20705 |  | 
 | 20706 | 	or.w		%d0,2+USER_FPSR(%a6)	# set possible inex2/ainex | 
 | 20707 |  | 
 | 20708 | 	mov.l		EXC_EA(%a6),%a1		# pass: dst addr | 
 | 20709 | 	lea		L_SCR1(%a6),%a0		# pass: src addr | 
 | 20710 | 	movq.l		&0x8,%d0		# pass: opsize is 8 bytes | 
 | 20711 | 	bsr.l		_dmem_write		# store dbl fop to memory | 
 | 20712 |  | 
 | 20713 | 	tst.l		%d1			# did dstore fail? | 
 | 20714 | 	bne.l		facc_out_d		# yes | 
 | 20715 |  | 
 | 20716 | 	rts					# no; so we're finished | 
 | 20717 |  | 
 | 20718 | # | 
 | 20719 | # here, we know that the operand would UNFL if moved out to double prec, | 
 | 20720 | # so, denorm and round and then use generic store double routine to | 
 | 20721 | # write the value to memory. | 
 | 20722 | # | 
 | 20723 | fout_dbl_unfl: | 
 | 20724 | 	bset		&unfl_bit,FPSR_EXCEPT(%a6) # set UNFL | 
 | 20725 |  | 
 | 20726 | 	mov.w		SRC_EX(%a0),FP_SCR0_EX(%a6) | 
 | 20727 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) | 
 | 20728 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) | 
 | 20729 | 	mov.l		%a0,-(%sp) | 
 | 20730 |  | 
 | 20731 | 	clr.l		%d0			# pass: S.F. = 0 | 
 | 20732 |  | 
 | 20733 | 	cmpi.b		STAG(%a6),&DENORM	# fetch src optype tag | 
 | 20734 | 	bne.b		fout_dbl_unfl_cont	# let DENORMs fall through | 
 | 20735 |  | 
 | 20736 | 	lea		FP_SCR0(%a6),%a0 | 
 | 20737 | 	bsr.l		norm			# normalize the DENORM | 
 | 20738 |  | 
 | 20739 | fout_dbl_unfl_cont: | 
 | 20740 | 	lea		FP_SCR0(%a6),%a0	# pass: ptr to operand | 
 | 20741 | 	mov.l		L_SCR3(%a6),%d1		# pass: rnd prec,mode | 
 | 20742 | 	bsr.l		unf_res			# calc default underflow result | 
 | 20743 |  | 
 | 20744 | 	lea		FP_SCR0(%a6),%a0	# pass: ptr to fop | 
 | 20745 | 	bsr.l		dst_dbl			# convert to single prec | 
 | 20746 | 	mov.l		%d0,L_SCR1(%a6) | 
 | 20747 | 	mov.l		%d1,L_SCR2(%a6) | 
 | 20748 |  | 
 | 20749 | 	mov.l		EXC_EA(%a6),%a1		# pass: dst addr | 
 | 20750 | 	lea		L_SCR1(%a6),%a0		# pass: src addr | 
 | 20751 | 	movq.l		&0x8,%d0		# pass: opsize is 8 bytes | 
 | 20752 | 	bsr.l		_dmem_write		# store dbl fop to memory | 
 | 20753 |  | 
 | 20754 | 	tst.l		%d1			# did dstore fail? | 
 | 20755 | 	bne.l		facc_out_d		# yes | 
 | 20756 |  | 
 | 20757 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 20758 | 	andi.b		&0x0a,%d1		# is UNFL or INEX enabled? | 
 | 20759 | 	bne.w		fout_sd_exc_unfl	# yes | 
 | 20760 | 	addq.l		&0x4,%sp | 
 | 20761 | 	rts | 
 | 20762 |  | 
 | 20763 | # | 
 | 20764 | # it's definitely an overflow so call ovf_res to get the correct answer | 
 | 20765 | # | 
 | 20766 | fout_dbl_ovfl: | 
 | 20767 | 	mov.w		2+SRC_LO(%a0),%d0 | 
 | 20768 | 	andi.w		&0x7ff,%d0 | 
 | 20769 | 	bne.b		fout_dbl_ovfl_inex2 | 
 | 20770 |  | 
 | 20771 | 	ori.w		&ovfl_inx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex | 
 | 20772 | 	bra.b		fout_dbl_ovfl_cont | 
 | 20773 | fout_dbl_ovfl_inex2: | 
 | 20774 | 	ori.w		&ovfinx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex/inex2 | 
 | 20775 |  | 
 | 20776 | fout_dbl_ovfl_cont: | 
 | 20777 | 	mov.l		%a0,-(%sp) | 
 | 20778 |  | 
 | 20779 | # call ovf_res() w/ dbl prec and the correct rnd mode to create the default | 
 | 20780 | # overflow result. DON'T save the returned ccodes from ovf_res() since | 
 | 20781 | # fmove out doesn't alter them. | 
 | 20782 | 	tst.b		SRC_EX(%a0)		# is operand negative? | 
 | 20783 | 	smi		%d1			# set if so | 
 | 20784 | 	mov.l		L_SCR3(%a6),%d0		# pass: dbl prec,rnd mode | 
 | 20785 | 	bsr.l		ovf_res			# calc OVFL result | 
 | 20786 | 	fmovm.x		(%a0),&0x80		# load default overflow result | 
 | 20787 | 	fmov.d		%fp0,L_SCR1(%a6)	# store to double | 
 | 20788 |  | 
 | 20789 | 	mov.l		EXC_EA(%a6),%a1		# pass: dst addr | 
 | 20790 | 	lea		L_SCR1(%a6),%a0		# pass: src addr | 
 | 20791 | 	movq.l		&0x8,%d0		# pass: opsize is 8 bytes | 
 | 20792 | 	bsr.l		_dmem_write		# store dbl fop to memory | 
 | 20793 |  | 
 | 20794 | 	tst.l		%d1			# did dstore fail? | 
 | 20795 | 	bne.l		facc_out_d		# yes | 
 | 20796 |  | 
 | 20797 | 	mov.b		FPCR_ENABLE(%a6),%d1 | 
 | 20798 | 	andi.b		&0x0a,%d1		# is UNFL or INEX enabled? | 
 | 20799 | 	bne.w		fout_sd_exc_ovfl	# yes | 
 | 20800 | 	addq.l		&0x4,%sp | 
 | 20801 | 	rts | 
 | 20802 |  | 
 | 20803 | # | 
 | 20804 | # move out MAY overflow: | 
 | 20805 | # (1) force the exp to 0x3fff | 
 | 20806 | # (2) do a move w/ appropriate rnd mode | 
 | 20807 | # (3) if exp still equals zero, then insert original exponent | 
 | 20808 | #	for the correct result. | 
 | 20809 | #     if exp now equals one, then it overflowed so call ovf_res. | 
 | 20810 | # | 
 | 20811 | fout_dbl_may_ovfl: | 
 | 20812 | 	mov.w		SRC_EX(%a0),%d1		# fetch current sign | 
 | 20813 | 	andi.w		&0x8000,%d1		# keep it,clear exp | 
 | 20814 | 	ori.w		&0x3fff,%d1		# insert exp = 0 | 
 | 20815 | 	mov.w		%d1,FP_SCR0_EX(%a6)	# insert scaled exp | 
 | 20816 | 	mov.l		SRC_HI(%a0),FP_SCR0_HI(%a6) # copy hi(man) | 
 | 20817 | 	mov.l		SRC_LO(%a0),FP_SCR0_LO(%a6) # copy lo(man) | 
 | 20818 |  | 
 | 20819 | 	fmov.l		L_SCR3(%a6),%fpcr	# set FPCR | 
 | 20820 |  | 
 | 20821 | 	fmov.x		FP_SCR0(%a6),%fp0	# force fop to be rounded | 
 | 20822 | 	fmov.l		&0x0,%fpcr		# clear FPCR | 
 | 20823 |  | 
 | 20824 | 	fabs.x		%fp0			# need absolute value | 
 | 20825 | 	fcmp.b		%fp0,&0x2		# did exponent increase? | 
 | 20826 | 	fblt.w		fout_dbl_exg		# no; go finish NORM | 
 | 20827 | 	bra.w		fout_dbl_ovfl		# yes; go handle overflow | 
 | 20828 |  | 
 | 20829 | ######################################################################### | 
 | 20830 | # XDEF ****************************************************************	# | 
 | 20831 | #	dst_dbl(): create double precision value from extended prec.	# | 
 | 20832 | #									# | 
 | 20833 | # XREF ****************************************************************	# | 
 | 20834 | #	None								# | 
 | 20835 | #									# | 
 | 20836 | # INPUT ***************************************************************	# | 
 | 20837 | #	a0 = pointer to source operand in extended precision		# | 
 | 20838 | #									# | 
 | 20839 | # OUTPUT **************************************************************	# | 
 | 20840 | #	d0 = hi(double precision result)				# | 
 | 20841 | #	d1 = lo(double precision result)				# | 
 | 20842 | #									# | 
 | 20843 | # ALGORITHM ***********************************************************	# | 
 | 20844 | #									# | 
 | 20845 | #  Changes extended precision to double precision.			# | 
 | 20846 | #  Note: no attempt is made to round the extended value to double.	# | 
 | 20847 | #	dbl_sign = ext_sign						# | 
 | 20848 | #	dbl_exp = ext_exp - $3fff(ext bias) + $7ff(dbl bias)		# | 
 | 20849 | #	get rid of ext integer bit					# | 
 | 20850 | #	dbl_mant = ext_mant{62:12}					# | 
 | 20851 | #									# | 
 | 20852 | #		---------------   ---------------    ---------------	# | 
 | 20853 | #  extended ->  |s|    exp    |   |1| ms mant   |    | ls mant     |	# | 
 | 20854 | #		---------------   ---------------    ---------------	# | 
 | 20855 | #		 95	    64    63 62	      32      31     11	  0	# | 
 | 20856 | #				     |			     |		# | 
 | 20857 | #				     |			     |		# | 
 | 20858 | #				     |			     |		# | 
 | 20859 | #			             v			     v		# | 
 | 20860 | #			      ---------------   ---------------		# | 
 | 20861 | #  double   ->		      |s|exp| mant  |   |  mant       |		# | 
 | 20862 | #			      ---------------   ---------------		# | 
 | 20863 | #			      63     51   32   31	       0	# | 
 | 20864 | #									# | 
 | 20865 | ######################################################################### | 
 | 20866 |  | 
 | 20867 | dst_dbl: | 
 | 20868 | 	clr.l		%d0			# clear d0 | 
 | 20869 | 	mov.w		FTEMP_EX(%a0),%d0	# get exponent | 
 | 20870 | 	subi.w		&EXT_BIAS,%d0		# subtract extended precision bias | 
 | 20871 | 	addi.w		&DBL_BIAS,%d0		# add double precision bias | 
 | 20872 | 	tst.b		FTEMP_HI(%a0)		# is number a denorm? | 
 | 20873 | 	bmi.b		dst_get_dupper		# no | 
 | 20874 | 	subq.w		&0x1,%d0		# yes; denorm bias = DBL_BIAS - 1 | 
 | 20875 | dst_get_dupper: | 
 | 20876 | 	swap		%d0			# d0 now in upper word | 
 | 20877 | 	lsl.l		&0x4,%d0		# d0 in proper place for dbl prec exp | 
 | 20878 | 	tst.b		FTEMP_EX(%a0)		# test sign | 
 | 20879 | 	bpl.b		dst_get_dman		# if postive, go process mantissa | 
 | 20880 | 	bset		&0x1f,%d0		# if negative, set sign | 
 | 20881 | dst_get_dman: | 
 | 20882 | 	mov.l		FTEMP_HI(%a0),%d1	# get ms mantissa | 
 | 20883 | 	bfextu		%d1{&1:&20},%d1		# get upper 20 bits of ms | 
 | 20884 | 	or.l		%d1,%d0			# put these bits in ms word of double | 
 | 20885 | 	mov.l		%d0,L_SCR1(%a6)		# put the new exp back on the stack | 
 | 20886 | 	mov.l		FTEMP_HI(%a0),%d1	# get ms mantissa | 
 | 20887 | 	mov.l		&21,%d0			# load shift count | 
 | 20888 | 	lsl.l		%d0,%d1			# put lower 11 bits in upper bits | 
 | 20889 | 	mov.l		%d1,L_SCR2(%a6)		# build lower lword in memory | 
 | 20890 | 	mov.l		FTEMP_LO(%a0),%d1	# get ls mantissa | 
 | 20891 | 	bfextu		%d1{&0:&21},%d0		# get ls 21 bits of double | 
 | 20892 | 	mov.l		L_SCR2(%a6),%d1 | 
 | 20893 | 	or.l		%d0,%d1			# put them in double result | 
 | 20894 | 	mov.l		L_SCR1(%a6),%d0 | 
 | 20895 | 	rts | 
 | 20896 |  | 
 | 20897 | ######################################################################### | 
 | 20898 | # XDEF ****************************************************************	# | 
 | 20899 | #	dst_sgl(): create single precision value from extended prec	# | 
 | 20900 | #									# | 
 | 20901 | # XREF ****************************************************************	# | 
 | 20902 | #									# | 
 | 20903 | # INPUT ***************************************************************	# | 
 | 20904 | #	a0 = pointer to source operand in extended precision		# | 
 | 20905 | #									# | 
 | 20906 | # OUTPUT **************************************************************	# | 
 | 20907 | #	d0 = single precision result					# | 
 | 20908 | #									# | 
 | 20909 | # ALGORITHM ***********************************************************	# | 
 | 20910 | #									# | 
 | 20911 | # Changes extended precision to single precision.			# | 
 | 20912 | #	sgl_sign = ext_sign						# | 
 | 20913 | #	sgl_exp = ext_exp - $3fff(ext bias) + $7f(sgl bias)		# | 
 | 20914 | #	get rid of ext integer bit					# | 
 | 20915 | #	sgl_mant = ext_mant{62:12}					# | 
 | 20916 | #									# | 
 | 20917 | #		---------------   ---------------    ---------------	# | 
 | 20918 | #  extended ->  |s|    exp    |   |1| ms mant   |    | ls mant     |	# | 
 | 20919 | #		---------------   ---------------    ---------------	# | 
 | 20920 | #		 95	    64    63 62	   40 32      31     12	  0	# | 
 | 20921 | #				     |	   |				# | 
 | 20922 | #				     |	   |				# | 
 | 20923 | #				     |	   |				# | 
 | 20924 | #			             v     v				# | 
 | 20925 | #			      ---------------				# | 
 | 20926 | #  single   ->		      |s|exp| mant  |				# | 
 | 20927 | #			      ---------------				# | 
 | 20928 | #			      31     22     0				# | 
 | 20929 | #									# | 
 | 20930 | ######################################################################### | 
 | 20931 |  | 
 | 20932 | dst_sgl: | 
 | 20933 | 	clr.l		%d0 | 
 | 20934 | 	mov.w		FTEMP_EX(%a0),%d0	# get exponent | 
 | 20935 | 	subi.w		&EXT_BIAS,%d0		# subtract extended precision bias | 
 | 20936 | 	addi.w		&SGL_BIAS,%d0		# add single precision bias | 
 | 20937 | 	tst.b		FTEMP_HI(%a0)		# is number a denorm? | 
 | 20938 | 	bmi.b		dst_get_supper		# no | 
 | 20939 | 	subq.w		&0x1,%d0		# yes; denorm bias = SGL_BIAS - 1 | 
 | 20940 | dst_get_supper: | 
 | 20941 | 	swap		%d0			# put exp in upper word of d0 | 
 | 20942 | 	lsl.l		&0x7,%d0		# shift it into single exp bits | 
 | 20943 | 	tst.b		FTEMP_EX(%a0)		# test sign | 
 | 20944 | 	bpl.b		dst_get_sman		# if positive, continue | 
 | 20945 | 	bset		&0x1f,%d0		# if negative, put in sign first | 
 | 20946 | dst_get_sman: | 
 | 20947 | 	mov.l		FTEMP_HI(%a0),%d1	# get ms mantissa | 
 | 20948 | 	andi.l		&0x7fffff00,%d1		# get upper 23 bits of ms | 
 | 20949 | 	lsr.l		&0x8,%d1		# and put them flush right | 
 | 20950 | 	or.l		%d1,%d0			# put these bits in ms word of single | 
 | 20951 | 	rts | 
 | 20952 |  | 
 | 20953 | ############################################################################## | 
 | 20954 | fout_pack: | 
 | 20955 | 	bsr.l		_calc_ea_fout		# fetch the <ea> | 
 | 20956 | 	mov.l		%a0,-(%sp) | 
 | 20957 |  | 
 | 20958 | 	mov.b		STAG(%a6),%d0		# fetch input type | 
 | 20959 | 	bne.w		fout_pack_not_norm	# input is not NORM | 
 | 20960 |  | 
 | 20961 | fout_pack_norm: | 
 | 20962 | 	btst		&0x4,EXC_CMDREG(%a6)	# static or dynamic? | 
 | 20963 | 	beq.b		fout_pack_s		# static | 
 | 20964 |  | 
 | 20965 | fout_pack_d: | 
 | 20966 | 	mov.b		1+EXC_CMDREG(%a6),%d1	# fetch dynamic reg | 
 | 20967 | 	lsr.b		&0x4,%d1 | 
 | 20968 | 	andi.w		&0x7,%d1 | 
 | 20969 |  | 
 | 20970 | 	bsr.l		fetch_dreg		# fetch Dn w/ k-factor | 
 | 20971 |  | 
 | 20972 | 	bra.b		fout_pack_type | 
 | 20973 | fout_pack_s: | 
 | 20974 | 	mov.b		1+EXC_CMDREG(%a6),%d0	# fetch static field | 
 | 20975 |  | 
 | 20976 | fout_pack_type: | 
 | 20977 | 	bfexts		%d0{&25:&7},%d0		# extract k-factor | 
 | 20978 | 	mov.l	%d0,-(%sp) | 
 | 20979 |  | 
 | 20980 | 	lea		FP_SRC(%a6),%a0		# pass: ptr to input | 
 | 20981 |  | 
 | 20982 | # bindec is currently scrambling FP_SRC for denorm inputs. | 
 | 20983 | # we'll have to change this, but for now, tough luck!!! | 
 | 20984 | 	bsr.l		bindec			# convert xprec to packed | 
 | 20985 |  | 
 | 20986 | #	andi.l		&0xcfff000f,FP_SCR0(%a6) # clear unused fields | 
 | 20987 | 	andi.l		&0xcffff00f,FP_SCR0(%a6) # clear unused fields | 
 | 20988 |  | 
 | 20989 | 	mov.l	(%sp)+,%d0 | 
 | 20990 |  | 
 | 20991 | 	tst.b		3+FP_SCR0_EX(%a6) | 
 | 20992 | 	bne.b		fout_pack_set | 
 | 20993 | 	tst.l		FP_SCR0_HI(%a6) | 
 | 20994 | 	bne.b		fout_pack_set | 
 | 20995 | 	tst.l		FP_SCR0_LO(%a6) | 
 | 20996 | 	bne.b		fout_pack_set | 
 | 20997 |  | 
 | 20998 | # add the extra condition that only if the k-factor was zero, too, should | 
 | 20999 | # we zero the exponent | 
 | 21000 | 	tst.l		%d0 | 
 | 21001 | 	bne.b		fout_pack_set | 
 | 21002 | # "mantissa" is all zero which means that the answer is zero. but, the '040 | 
 | 21003 | # algorithm allows the exponent to be non-zero. the 881/2 do not. therefore, | 
 | 21004 | # if the mantissa is zero, I will zero the exponent, too. | 
 | 21005 | # the question now is whether the exponents sign bit is allowed to be non-zero | 
 | 21006 | # for a zero, also... | 
 | 21007 | 	andi.w		&0xf000,FP_SCR0(%a6) | 
 | 21008 |  | 
 | 21009 | fout_pack_set: | 
 | 21010 |  | 
 | 21011 | 	lea		FP_SCR0(%a6),%a0	# pass: src addr | 
 | 21012 |  | 
 | 21013 | fout_pack_write: | 
 | 21014 | 	mov.l		(%sp)+,%a1		# pass: dst addr | 
 | 21015 | 	mov.l		&0xc,%d0		# pass: opsize is 12 bytes | 
 | 21016 |  | 
 | 21017 | 	cmpi.b		SPCOND_FLG(%a6),&mda7_flg | 
 | 21018 | 	beq.b		fout_pack_a7 | 
 | 21019 |  | 
 | 21020 | 	bsr.l		_dmem_write		# write ext prec number to memory | 
 | 21021 |  | 
 | 21022 | 	tst.l		%d1			# did dstore fail? | 
 | 21023 | 	bne.w		fout_ext_err		# yes | 
 | 21024 |  | 
 | 21025 | 	rts | 
 | 21026 |  | 
 | 21027 | # we don't want to do the write if the exception occurred in supervisor mode | 
 | 21028 | # so _mem_write2() handles this for us. | 
 | 21029 | fout_pack_a7: | 
 | 21030 | 	bsr.l		_mem_write2		# write ext prec number to memory | 
 | 21031 |  | 
 | 21032 | 	tst.l		%d1			# did dstore fail? | 
 | 21033 | 	bne.w		fout_ext_err		# yes | 
 | 21034 |  | 
 | 21035 | 	rts | 
 | 21036 |  | 
 | 21037 | fout_pack_not_norm: | 
 | 21038 | 	cmpi.b		%d0,&DENORM		# is it a DENORM? | 
 | 21039 | 	beq.w		fout_pack_norm		# yes | 
 | 21040 | 	lea		FP_SRC(%a6),%a0 | 
 | 21041 | 	clr.w		2+FP_SRC_EX(%a6) | 
 | 21042 | 	cmpi.b		%d0,&SNAN		# is it an SNAN? | 
 | 21043 | 	beq.b		fout_pack_snan		# yes | 
 | 21044 | 	bra.b		fout_pack_write		# no | 
 | 21045 |  | 
 | 21046 | fout_pack_snan: | 
 | 21047 | 	ori.w		&snaniop2_mask,FPSR_EXCEPT(%a6) # set SNAN/AIOP | 
 | 21048 | 	bset		&0x6,FP_SRC_HI(%a6)	# set snan bit | 
 | 21049 | 	bra.b		fout_pack_write | 
 | 21050 |  | 
 | 21051 | ######################################################################### | 
 | 21052 | # XDEF ****************************************************************	# | 
 | 21053 | #	fetch_dreg(): fetch register according to index in d1		# | 
 | 21054 | #									# | 
 | 21055 | # XREF ****************************************************************	# | 
 | 21056 | #	None								# | 
 | 21057 | #									# | 
 | 21058 | # INPUT ***************************************************************	# | 
 | 21059 | #	d1 = index of register to fetch from				# | 
 | 21060 | #									# | 
 | 21061 | # OUTPUT **************************************************************	# | 
 | 21062 | #	d0 = value of register fetched					# | 
 | 21063 | #									# | 
 | 21064 | # ALGORITHM ***********************************************************	# | 
 | 21065 | #	According to the index value in d1 which can range from zero	# | 
 | 21066 | # to fifteen, load the corresponding register file value (where		# | 
 | 21067 | # address register indexes start at 8). D0/D1/A0/A1/A6/A7 are on the	# | 
 | 21068 | # stack. The rest should still be in their original places.		# | 
 | 21069 | #									# | 
 | 21070 | ######################################################################### | 
 | 21071 |  | 
 | 21072 | # this routine leaves d1 intact for subsequent store_dreg calls. | 
 | 21073 | 	global		fetch_dreg | 
 | 21074 | fetch_dreg: | 
 | 21075 | 	mov.w		(tbl_fdreg.b,%pc,%d1.w*2),%d0 | 
 | 21076 | 	jmp		(tbl_fdreg.b,%pc,%d0.w*1) | 
 | 21077 |  | 
 | 21078 | tbl_fdreg: | 
 | 21079 | 	short		fdreg0 - tbl_fdreg | 
 | 21080 | 	short		fdreg1 - tbl_fdreg | 
 | 21081 | 	short		fdreg2 - tbl_fdreg | 
 | 21082 | 	short		fdreg3 - tbl_fdreg | 
 | 21083 | 	short		fdreg4 - tbl_fdreg | 
 | 21084 | 	short		fdreg5 - tbl_fdreg | 
 | 21085 | 	short		fdreg6 - tbl_fdreg | 
 | 21086 | 	short		fdreg7 - tbl_fdreg | 
 | 21087 | 	short		fdreg8 - tbl_fdreg | 
 | 21088 | 	short		fdreg9 - tbl_fdreg | 
 | 21089 | 	short		fdrega - tbl_fdreg | 
 | 21090 | 	short		fdregb - tbl_fdreg | 
 | 21091 | 	short		fdregc - tbl_fdreg | 
 | 21092 | 	short		fdregd - tbl_fdreg | 
 | 21093 | 	short		fdrege - tbl_fdreg | 
 | 21094 | 	short		fdregf - tbl_fdreg | 
 | 21095 |  | 
 | 21096 | fdreg0: | 
 | 21097 | 	mov.l		EXC_DREGS+0x0(%a6),%d0 | 
 | 21098 | 	rts | 
 | 21099 | fdreg1: | 
 | 21100 | 	mov.l		EXC_DREGS+0x4(%a6),%d0 | 
 | 21101 | 	rts | 
 | 21102 | fdreg2: | 
 | 21103 | 	mov.l		%d2,%d0 | 
 | 21104 | 	rts | 
 | 21105 | fdreg3: | 
 | 21106 | 	mov.l		%d3,%d0 | 
 | 21107 | 	rts | 
 | 21108 | fdreg4: | 
 | 21109 | 	mov.l		%d4,%d0 | 
 | 21110 | 	rts | 
 | 21111 | fdreg5: | 
 | 21112 | 	mov.l		%d5,%d0 | 
 | 21113 | 	rts | 
 | 21114 | fdreg6: | 
 | 21115 | 	mov.l		%d6,%d0 | 
 | 21116 | 	rts | 
 | 21117 | fdreg7: | 
 | 21118 | 	mov.l		%d7,%d0 | 
 | 21119 | 	rts | 
 | 21120 | fdreg8: | 
 | 21121 | 	mov.l		EXC_DREGS+0x8(%a6),%d0 | 
 | 21122 | 	rts | 
 | 21123 | fdreg9: | 
 | 21124 | 	mov.l		EXC_DREGS+0xc(%a6),%d0 | 
 | 21125 | 	rts | 
 | 21126 | fdrega: | 
 | 21127 | 	mov.l		%a2,%d0 | 
 | 21128 | 	rts | 
 | 21129 | fdregb: | 
 | 21130 | 	mov.l		%a3,%d0 | 
 | 21131 | 	rts | 
 | 21132 | fdregc: | 
 | 21133 | 	mov.l		%a4,%d0 | 
 | 21134 | 	rts | 
 | 21135 | fdregd: | 
 | 21136 | 	mov.l		%a5,%d0 | 
 | 21137 | 	rts | 
 | 21138 | fdrege: | 
 | 21139 | 	mov.l		(%a6),%d0 | 
 | 21140 | 	rts | 
 | 21141 | fdregf: | 
 | 21142 | 	mov.l		EXC_A7(%a6),%d0 | 
 | 21143 | 	rts | 
 | 21144 |  | 
 | 21145 | ######################################################################### | 
 | 21146 | # XDEF ****************************************************************	# | 
 | 21147 | #	store_dreg_l(): store longword to data register specified by d1	# | 
 | 21148 | #									# | 
 | 21149 | # XREF ****************************************************************	# | 
 | 21150 | #	None								# | 
 | 21151 | #									# | 
 | 21152 | # INPUT ***************************************************************	# | 
 | 21153 | #	d0 = longowrd value to store					# | 
 | 21154 | #	d1 = index of register to fetch from				# | 
 | 21155 | #									# | 
 | 21156 | # OUTPUT **************************************************************	# | 
 | 21157 | #	(data register is updated)					# | 
 | 21158 | #									# | 
 | 21159 | # ALGORITHM ***********************************************************	# | 
 | 21160 | #	According to the index value in d1, store the longword value	# | 
 | 21161 | # in d0 to the corresponding data register. D0/D1 are on the stack	# | 
 | 21162 | # while the rest are in their initial places.				# | 
 | 21163 | #									# | 
 | 21164 | ######################################################################### | 
 | 21165 |  | 
 | 21166 | 	global		store_dreg_l | 
 | 21167 | store_dreg_l: | 
 | 21168 | 	mov.w		(tbl_sdregl.b,%pc,%d1.w*2),%d1 | 
 | 21169 | 	jmp		(tbl_sdregl.b,%pc,%d1.w*1) | 
 | 21170 |  | 
 | 21171 | tbl_sdregl: | 
 | 21172 | 	short		sdregl0 - tbl_sdregl | 
 | 21173 | 	short		sdregl1 - tbl_sdregl | 
 | 21174 | 	short		sdregl2 - tbl_sdregl | 
 | 21175 | 	short		sdregl3 - tbl_sdregl | 
 | 21176 | 	short		sdregl4 - tbl_sdregl | 
 | 21177 | 	short		sdregl5 - tbl_sdregl | 
 | 21178 | 	short		sdregl6 - tbl_sdregl | 
 | 21179 | 	short		sdregl7 - tbl_sdregl | 
 | 21180 |  | 
 | 21181 | sdregl0: | 
 | 21182 | 	mov.l		%d0,EXC_DREGS+0x0(%a6) | 
 | 21183 | 	rts | 
 | 21184 | sdregl1: | 
 | 21185 | 	mov.l		%d0,EXC_DREGS+0x4(%a6) | 
 | 21186 | 	rts | 
 | 21187 | sdregl2: | 
 | 21188 | 	mov.l		%d0,%d2 | 
 | 21189 | 	rts | 
 | 21190 | sdregl3: | 
 | 21191 | 	mov.l		%d0,%d3 | 
 | 21192 | 	rts | 
 | 21193 | sdregl4: | 
 | 21194 | 	mov.l		%d0,%d4 | 
 | 21195 | 	rts | 
 | 21196 | sdregl5: | 
 | 21197 | 	mov.l		%d0,%d5 | 
 | 21198 | 	rts | 
 | 21199 | sdregl6: | 
 | 21200 | 	mov.l		%d0,%d6 | 
 | 21201 | 	rts | 
 | 21202 | sdregl7: | 
 | 21203 | 	mov.l		%d0,%d7 | 
 | 21204 | 	rts | 
 | 21205 |  | 
 | 21206 | ######################################################################### | 
 | 21207 | # XDEF ****************************************************************	# | 
 | 21208 | #	store_dreg_w(): store word to data register specified by d1	# | 
 | 21209 | #									# | 
 | 21210 | # XREF ****************************************************************	# | 
 | 21211 | #	None								# | 
 | 21212 | #									# | 
 | 21213 | # INPUT ***************************************************************	# | 
 | 21214 | #	d0 = word value to store					# | 
 | 21215 | #	d1 = index of register to fetch from				# | 
 | 21216 | #									# | 
 | 21217 | # OUTPUT **************************************************************	# | 
 | 21218 | #	(data register is updated)					# | 
 | 21219 | #									# | 
 | 21220 | # ALGORITHM ***********************************************************	# | 
 | 21221 | #	According to the index value in d1, store the word value	# | 
 | 21222 | # in d0 to the corresponding data register. D0/D1 are on the stack	# | 
 | 21223 | # while the rest are in their initial places.				# | 
 | 21224 | #									# | 
 | 21225 | ######################################################################### | 
 | 21226 |  | 
 | 21227 | 	global		store_dreg_w | 
 | 21228 | store_dreg_w: | 
 | 21229 | 	mov.w		(tbl_sdregw.b,%pc,%d1.w*2),%d1 | 
 | 21230 | 	jmp		(tbl_sdregw.b,%pc,%d1.w*1) | 
 | 21231 |  | 
 | 21232 | tbl_sdregw: | 
 | 21233 | 	short		sdregw0 - tbl_sdregw | 
 | 21234 | 	short		sdregw1 - tbl_sdregw | 
 | 21235 | 	short		sdregw2 - tbl_sdregw | 
 | 21236 | 	short		sdregw3 - tbl_sdregw | 
 | 21237 | 	short		sdregw4 - tbl_sdregw | 
 | 21238 | 	short		sdregw5 - tbl_sdregw | 
 | 21239 | 	short		sdregw6 - tbl_sdregw | 
 | 21240 | 	short		sdregw7 - tbl_sdregw | 
 | 21241 |  | 
 | 21242 | sdregw0: | 
 | 21243 | 	mov.w		%d0,2+EXC_DREGS+0x0(%a6) | 
 | 21244 | 	rts | 
 | 21245 | sdregw1: | 
 | 21246 | 	mov.w		%d0,2+EXC_DREGS+0x4(%a6) | 
 | 21247 | 	rts | 
 | 21248 | sdregw2: | 
 | 21249 | 	mov.w		%d0,%d2 | 
 | 21250 | 	rts | 
 | 21251 | sdregw3: | 
 | 21252 | 	mov.w		%d0,%d3 | 
 | 21253 | 	rts | 
 | 21254 | sdregw4: | 
 | 21255 | 	mov.w		%d0,%d4 | 
 | 21256 | 	rts | 
 | 21257 | sdregw5: | 
 | 21258 | 	mov.w		%d0,%d5 | 
 | 21259 | 	rts | 
 | 21260 | sdregw6: | 
 | 21261 | 	mov.w		%d0,%d6 | 
 | 21262 | 	rts | 
 | 21263 | sdregw7: | 
 | 21264 | 	mov.w		%d0,%d7 | 
 | 21265 | 	rts | 
 | 21266 |  | 
 | 21267 | ######################################################################### | 
 | 21268 | # XDEF ****************************************************************	# | 
 | 21269 | #	store_dreg_b(): store byte to data register specified by d1	# | 
 | 21270 | #									# | 
 | 21271 | # XREF ****************************************************************	# | 
 | 21272 | #	None								# | 
 | 21273 | #									# | 
 | 21274 | # INPUT ***************************************************************	# | 
 | 21275 | #	d0 = byte value to store					# | 
 | 21276 | #	d1 = index of register to fetch from				# | 
 | 21277 | #									# | 
 | 21278 | # OUTPUT **************************************************************	# | 
 | 21279 | #	(data register is updated)					# | 
 | 21280 | #									# | 
 | 21281 | # ALGORITHM ***********************************************************	# | 
 | 21282 | #	According to the index value in d1, store the byte value	# | 
 | 21283 | # in d0 to the corresponding data register. D0/D1 are on the stack	# | 
 | 21284 | # while the rest are in their initial places.				# | 
 | 21285 | #									# | 
 | 21286 | ######################################################################### | 
 | 21287 |  | 
 | 21288 | 	global		store_dreg_b | 
 | 21289 | store_dreg_b: | 
 | 21290 | 	mov.w		(tbl_sdregb.b,%pc,%d1.w*2),%d1 | 
 | 21291 | 	jmp		(tbl_sdregb.b,%pc,%d1.w*1) | 
 | 21292 |  | 
 | 21293 | tbl_sdregb: | 
 | 21294 | 	short		sdregb0 - tbl_sdregb | 
 | 21295 | 	short		sdregb1 - tbl_sdregb | 
 | 21296 | 	short		sdregb2 - tbl_sdregb | 
 | 21297 | 	short		sdregb3 - tbl_sdregb | 
 | 21298 | 	short		sdregb4 - tbl_sdregb | 
 | 21299 | 	short		sdregb5 - tbl_sdregb | 
 | 21300 | 	short		sdregb6 - tbl_sdregb | 
 | 21301 | 	short		sdregb7 - tbl_sdregb | 
 | 21302 |  | 
 | 21303 | sdregb0: | 
 | 21304 | 	mov.b		%d0,3+EXC_DREGS+0x0(%a6) | 
 | 21305 | 	rts | 
 | 21306 | sdregb1: | 
 | 21307 | 	mov.b		%d0,3+EXC_DREGS+0x4(%a6) | 
 | 21308 | 	rts | 
 | 21309 | sdregb2: | 
 | 21310 | 	mov.b		%d0,%d2 | 
 | 21311 | 	rts | 
 | 21312 | sdregb3: | 
 | 21313 | 	mov.b		%d0,%d3 | 
 | 21314 | 	rts | 
 | 21315 | sdregb4: | 
 | 21316 | 	mov.b		%d0,%d4 | 
 | 21317 | 	rts | 
 | 21318 | sdregb5: | 
 | 21319 | 	mov.b		%d0,%d5 | 
 | 21320 | 	rts | 
 | 21321 | sdregb6: | 
 | 21322 | 	mov.b		%d0,%d6 | 
 | 21323 | 	rts | 
 | 21324 | sdregb7: | 
 | 21325 | 	mov.b		%d0,%d7 | 
 | 21326 | 	rts | 
 | 21327 |  | 
 | 21328 | ######################################################################### | 
 | 21329 | # XDEF ****************************************************************	# | 
 | 21330 | #	inc_areg(): increment an address register by the value in d0	# | 
 | 21331 | #									# | 
 | 21332 | # XREF ****************************************************************	# | 
 | 21333 | #	None								# | 
 | 21334 | #									# | 
 | 21335 | # INPUT ***************************************************************	# | 
 | 21336 | #	d0 = amount to increment by					# | 
 | 21337 | #	d1 = index of address register to increment			# | 
 | 21338 | #									# | 
 | 21339 | # OUTPUT **************************************************************	# | 
 | 21340 | #	(address register is updated)					# | 
 | 21341 | #									# | 
 | 21342 | # ALGORITHM ***********************************************************	# | 
 | 21343 | #	Typically used for an instruction w/ a post-increment <ea>,	# | 
 | 21344 | # this routine adds the increment value in d0 to the address register	# | 
 | 21345 | # specified by d1. A0/A1/A6/A7 reside on the stack. The rest reside	# | 
 | 21346 | # in their original places.						# | 
 | 21347 | #	For a7, if the increment amount is one, then we have to		# | 
 | 21348 | # increment by two. For any a7 update, set the mia7_flag so that if	# | 
 | 21349 | # an access error exception occurs later in emulation, this address	# | 
 | 21350 | # register update can be undone.					# | 
 | 21351 | #									# | 
 | 21352 | ######################################################################### | 
 | 21353 |  | 
 | 21354 | 	global		inc_areg | 
 | 21355 | inc_areg: | 
 | 21356 | 	mov.w		(tbl_iareg.b,%pc,%d1.w*2),%d1 | 
 | 21357 | 	jmp		(tbl_iareg.b,%pc,%d1.w*1) | 
 | 21358 |  | 
 | 21359 | tbl_iareg: | 
 | 21360 | 	short		iareg0 - tbl_iareg | 
 | 21361 | 	short		iareg1 - tbl_iareg | 
 | 21362 | 	short		iareg2 - tbl_iareg | 
 | 21363 | 	short		iareg3 - tbl_iareg | 
 | 21364 | 	short		iareg4 - tbl_iareg | 
 | 21365 | 	short		iareg5 - tbl_iareg | 
 | 21366 | 	short		iareg6 - tbl_iareg | 
 | 21367 | 	short		iareg7 - tbl_iareg | 
 | 21368 |  | 
 | 21369 | iareg0:	add.l		%d0,EXC_DREGS+0x8(%a6) | 
 | 21370 | 	rts | 
 | 21371 | iareg1:	add.l		%d0,EXC_DREGS+0xc(%a6) | 
 | 21372 | 	rts | 
 | 21373 | iareg2:	add.l		%d0,%a2 | 
 | 21374 | 	rts | 
 | 21375 | iareg3:	add.l		%d0,%a3 | 
 | 21376 | 	rts | 
 | 21377 | iareg4:	add.l		%d0,%a4 | 
 | 21378 | 	rts | 
 | 21379 | iareg5:	add.l		%d0,%a5 | 
 | 21380 | 	rts | 
 | 21381 | iareg6:	add.l		%d0,(%a6) | 
 | 21382 | 	rts | 
 | 21383 | iareg7:	mov.b		&mia7_flg,SPCOND_FLG(%a6) | 
 | 21384 | 	cmpi.b		%d0,&0x1 | 
 | 21385 | 	beq.b		iareg7b | 
 | 21386 | 	add.l		%d0,EXC_A7(%a6) | 
 | 21387 | 	rts | 
 | 21388 | iareg7b: | 
 | 21389 | 	addq.l		&0x2,EXC_A7(%a6) | 
 | 21390 | 	rts | 
 | 21391 |  | 
 | 21392 | ######################################################################### | 
 | 21393 | # XDEF ****************************************************************	# | 
 | 21394 | #	dec_areg(): decrement an address register by the value in d0	# | 
 | 21395 | #									# | 
 | 21396 | # XREF ****************************************************************	# | 
 | 21397 | #	None								# | 
 | 21398 | #									# | 
 | 21399 | # INPUT ***************************************************************	# | 
 | 21400 | #	d0 = amount to decrement by					# | 
 | 21401 | #	d1 = index of address register to decrement			# | 
 | 21402 | #									# | 
 | 21403 | # OUTPUT **************************************************************	# | 
 | 21404 | #	(address register is updated)					# | 
 | 21405 | #									# | 
 | 21406 | # ALGORITHM ***********************************************************	# | 
 | 21407 | #	Typically used for an instruction w/ a pre-decrement <ea>,	# | 
 | 21408 | # this routine adds the decrement value in d0 to the address register	# | 
 | 21409 | # specified by d1. A0/A1/A6/A7 reside on the stack. The rest reside	# | 
 | 21410 | # in their original places.						# | 
 | 21411 | #	For a7, if the decrement amount is one, then we have to		# | 
 | 21412 | # decrement by two. For any a7 update, set the mda7_flag so that if	# | 
 | 21413 | # an access error exception occurs later in emulation, this address	# | 
 | 21414 | # register update can be undone.					# | 
 | 21415 | #									# | 
 | 21416 | ######################################################################### | 
 | 21417 |  | 
 | 21418 | 	global		dec_areg | 
 | 21419 | dec_areg: | 
 | 21420 | 	mov.w		(tbl_dareg.b,%pc,%d1.w*2),%d1 | 
 | 21421 | 	jmp		(tbl_dareg.b,%pc,%d1.w*1) | 
 | 21422 |  | 
 | 21423 | tbl_dareg: | 
 | 21424 | 	short		dareg0 - tbl_dareg | 
 | 21425 | 	short		dareg1 - tbl_dareg | 
 | 21426 | 	short		dareg2 - tbl_dareg | 
 | 21427 | 	short		dareg3 - tbl_dareg | 
 | 21428 | 	short		dareg4 - tbl_dareg | 
 | 21429 | 	short		dareg5 - tbl_dareg | 
 | 21430 | 	short		dareg6 - tbl_dareg | 
 | 21431 | 	short		dareg7 - tbl_dareg | 
 | 21432 |  | 
 | 21433 | dareg0:	sub.l		%d0,EXC_DREGS+0x8(%a6) | 
 | 21434 | 	rts | 
 | 21435 | dareg1:	sub.l		%d0,EXC_DREGS+0xc(%a6) | 
 | 21436 | 	rts | 
 | 21437 | dareg2:	sub.l		%d0,%a2 | 
 | 21438 | 	rts | 
 | 21439 | dareg3:	sub.l		%d0,%a3 | 
 | 21440 | 	rts | 
 | 21441 | dareg4:	sub.l		%d0,%a4 | 
 | 21442 | 	rts | 
 | 21443 | dareg5:	sub.l		%d0,%a5 | 
 | 21444 | 	rts | 
 | 21445 | dareg6:	sub.l		%d0,(%a6) | 
 | 21446 | 	rts | 
 | 21447 | dareg7:	mov.b		&mda7_flg,SPCOND_FLG(%a6) | 
 | 21448 | 	cmpi.b		%d0,&0x1 | 
 | 21449 | 	beq.b		dareg7b | 
 | 21450 | 	sub.l		%d0,EXC_A7(%a6) | 
 | 21451 | 	rts | 
 | 21452 | dareg7b: | 
 | 21453 | 	subq.l		&0x2,EXC_A7(%a6) | 
 | 21454 | 	rts | 
 | 21455 |  | 
 | 21456 | ############################################################################## | 
 | 21457 |  | 
 | 21458 | ######################################################################### | 
 | 21459 | # XDEF ****************************************************************	# | 
 | 21460 | #	load_fpn1(): load FP register value into FP_SRC(a6).		# | 
 | 21461 | #									# | 
 | 21462 | # XREF ****************************************************************	# | 
 | 21463 | #	None								# | 
 | 21464 | #									# | 
 | 21465 | # INPUT ***************************************************************	# | 
 | 21466 | #	d0 = index of FP register to load				# | 
 | 21467 | #									# | 
 | 21468 | # OUTPUT **************************************************************	# | 
 | 21469 | #	FP_SRC(a6) = value loaded from FP register file			# | 
 | 21470 | #									# | 
 | 21471 | # ALGORITHM ***********************************************************	# | 
 | 21472 | #	Using the index in d0, load FP_SRC(a6) with a number from the	# | 
 | 21473 | # FP register file.							# | 
 | 21474 | #									# | 
 | 21475 | ######################################################################### | 
 | 21476 |  | 
 | 21477 | 	global		load_fpn1 | 
 | 21478 | load_fpn1: | 
 | 21479 | 	mov.w		(tbl_load_fpn1.b,%pc,%d0.w*2), %d0 | 
 | 21480 | 	jmp		(tbl_load_fpn1.b,%pc,%d0.w*1) | 
 | 21481 |  | 
 | 21482 | tbl_load_fpn1: | 
 | 21483 | 	short		load_fpn1_0 - tbl_load_fpn1 | 
 | 21484 | 	short		load_fpn1_1 - tbl_load_fpn1 | 
 | 21485 | 	short		load_fpn1_2 - tbl_load_fpn1 | 
 | 21486 | 	short		load_fpn1_3 - tbl_load_fpn1 | 
 | 21487 | 	short		load_fpn1_4 - tbl_load_fpn1 | 
 | 21488 | 	short		load_fpn1_5 - tbl_load_fpn1 | 
 | 21489 | 	short		load_fpn1_6 - tbl_load_fpn1 | 
 | 21490 | 	short		load_fpn1_7 - tbl_load_fpn1 | 
 | 21491 |  | 
 | 21492 | load_fpn1_0: | 
 | 21493 | 	mov.l		0+EXC_FP0(%a6), 0+FP_SRC(%a6) | 
 | 21494 | 	mov.l		4+EXC_FP0(%a6), 4+FP_SRC(%a6) | 
 | 21495 | 	mov.l		8+EXC_FP0(%a6), 8+FP_SRC(%a6) | 
 | 21496 | 	lea		FP_SRC(%a6), %a0 | 
 | 21497 | 	rts | 
 | 21498 | load_fpn1_1: | 
 | 21499 | 	mov.l		0+EXC_FP1(%a6), 0+FP_SRC(%a6) | 
 | 21500 | 	mov.l		4+EXC_FP1(%a6), 4+FP_SRC(%a6) | 
 | 21501 | 	mov.l		8+EXC_FP1(%a6), 8+FP_SRC(%a6) | 
 | 21502 | 	lea		FP_SRC(%a6), %a0 | 
 | 21503 | 	rts | 
 | 21504 | load_fpn1_2: | 
 | 21505 | 	fmovm.x		&0x20, FP_SRC(%a6) | 
 | 21506 | 	lea		FP_SRC(%a6), %a0 | 
 | 21507 | 	rts | 
 | 21508 | load_fpn1_3: | 
 | 21509 | 	fmovm.x		&0x10, FP_SRC(%a6) | 
 | 21510 | 	lea		FP_SRC(%a6), %a0 | 
 | 21511 | 	rts | 
 | 21512 | load_fpn1_4: | 
 | 21513 | 	fmovm.x		&0x08, FP_SRC(%a6) | 
 | 21514 | 	lea		FP_SRC(%a6), %a0 | 
 | 21515 | 	rts | 
 | 21516 | load_fpn1_5: | 
 | 21517 | 	fmovm.x		&0x04, FP_SRC(%a6) | 
 | 21518 | 	lea		FP_SRC(%a6), %a0 | 
 | 21519 | 	rts | 
 | 21520 | load_fpn1_6: | 
 | 21521 | 	fmovm.x		&0x02, FP_SRC(%a6) | 
 | 21522 | 	lea		FP_SRC(%a6), %a0 | 
 | 21523 | 	rts | 
 | 21524 | load_fpn1_7: | 
 | 21525 | 	fmovm.x		&0x01, FP_SRC(%a6) | 
 | 21526 | 	lea		FP_SRC(%a6), %a0 | 
 | 21527 | 	rts | 
 | 21528 |  | 
 | 21529 | ############################################################################# | 
 | 21530 |  | 
 | 21531 | ######################################################################### | 
 | 21532 | # XDEF ****************************************************************	# | 
 | 21533 | #	load_fpn2(): load FP register value into FP_DST(a6).		# | 
 | 21534 | #									# | 
 | 21535 | # XREF ****************************************************************	# | 
 | 21536 | #	None								# | 
 | 21537 | #									# | 
 | 21538 | # INPUT ***************************************************************	# | 
 | 21539 | #	d0 = index of FP register to load				# | 
 | 21540 | #									# | 
 | 21541 | # OUTPUT **************************************************************	# | 
 | 21542 | #	FP_DST(a6) = value loaded from FP register file			# | 
 | 21543 | #									# | 
 | 21544 | # ALGORITHM ***********************************************************	# | 
 | 21545 | #	Using the index in d0, load FP_DST(a6) with a number from the	# | 
 | 21546 | # FP register file.							# | 
 | 21547 | #									# | 
 | 21548 | ######################################################################### | 
 | 21549 |  | 
 | 21550 | 	global		load_fpn2 | 
 | 21551 | load_fpn2: | 
 | 21552 | 	mov.w		(tbl_load_fpn2.b,%pc,%d0.w*2), %d0 | 
 | 21553 | 	jmp		(tbl_load_fpn2.b,%pc,%d0.w*1) | 
 | 21554 |  | 
 | 21555 | tbl_load_fpn2: | 
 | 21556 | 	short		load_fpn2_0 - tbl_load_fpn2 | 
 | 21557 | 	short		load_fpn2_1 - tbl_load_fpn2 | 
 | 21558 | 	short		load_fpn2_2 - tbl_load_fpn2 | 
 | 21559 | 	short		load_fpn2_3 - tbl_load_fpn2 | 
 | 21560 | 	short		load_fpn2_4 - tbl_load_fpn2 | 
 | 21561 | 	short		load_fpn2_5 - tbl_load_fpn2 | 
 | 21562 | 	short		load_fpn2_6 - tbl_load_fpn2 | 
 | 21563 | 	short		load_fpn2_7 - tbl_load_fpn2 | 
 | 21564 |  | 
 | 21565 | load_fpn2_0: | 
 | 21566 | 	mov.l		0+EXC_FP0(%a6), 0+FP_DST(%a6) | 
 | 21567 | 	mov.l		4+EXC_FP0(%a6), 4+FP_DST(%a6) | 
 | 21568 | 	mov.l		8+EXC_FP0(%a6), 8+FP_DST(%a6) | 
 | 21569 | 	lea		FP_DST(%a6), %a0 | 
 | 21570 | 	rts | 
 | 21571 | load_fpn2_1: | 
 | 21572 | 	mov.l		0+EXC_FP1(%a6), 0+FP_DST(%a6) | 
 | 21573 | 	mov.l		4+EXC_FP1(%a6), 4+FP_DST(%a6) | 
 | 21574 | 	mov.l		8+EXC_FP1(%a6), 8+FP_DST(%a6) | 
 | 21575 | 	lea		FP_DST(%a6), %a0 | 
 | 21576 | 	rts | 
 | 21577 | load_fpn2_2: | 
 | 21578 | 	fmovm.x		&0x20, FP_DST(%a6) | 
 | 21579 | 	lea		FP_DST(%a6), %a0 | 
 | 21580 | 	rts | 
 | 21581 | load_fpn2_3: | 
 | 21582 | 	fmovm.x		&0x10, FP_DST(%a6) | 
 | 21583 | 	lea		FP_DST(%a6), %a0 | 
 | 21584 | 	rts | 
 | 21585 | load_fpn2_4: | 
 | 21586 | 	fmovm.x		&0x08, FP_DST(%a6) | 
 | 21587 | 	lea		FP_DST(%a6), %a0 | 
 | 21588 | 	rts | 
 | 21589 | load_fpn2_5: | 
 | 21590 | 	fmovm.x		&0x04, FP_DST(%a6) | 
 | 21591 | 	lea		FP_DST(%a6), %a0 | 
 | 21592 | 	rts | 
 | 21593 | load_fpn2_6: | 
 | 21594 | 	fmovm.x		&0x02, FP_DST(%a6) | 
 | 21595 | 	lea		FP_DST(%a6), %a0 | 
 | 21596 | 	rts | 
 | 21597 | load_fpn2_7: | 
 | 21598 | 	fmovm.x		&0x01, FP_DST(%a6) | 
 | 21599 | 	lea		FP_DST(%a6), %a0 | 
 | 21600 | 	rts | 
 | 21601 |  | 
 | 21602 | ############################################################################# | 
 | 21603 |  | 
 | 21604 | ######################################################################### | 
 | 21605 | # XDEF ****************************************************************	# | 
 | 21606 | #	store_fpreg(): store an fp value to the fpreg designated d0.	# | 
 | 21607 | #									# | 
 | 21608 | # XREF ****************************************************************	# | 
 | 21609 | #	None								# | 
 | 21610 | #									# | 
 | 21611 | # INPUT ***************************************************************	# | 
 | 21612 | #	fp0 = extended precision value to store				# | 
 | 21613 | #	d0  = index of floating-point register				# | 
 | 21614 | #									# | 
 | 21615 | # OUTPUT **************************************************************	# | 
 | 21616 | #	None								# | 
 | 21617 | #									# | 
 | 21618 | # ALGORITHM ***********************************************************	# | 
 | 21619 | #	Store the value in fp0 to the FP register designated by the	# | 
 | 21620 | # value in d0. The FP number can be DENORM or SNAN so we have to be	# | 
 | 21621 | # careful that we don't take an exception here.				# | 
 | 21622 | #									# | 
 | 21623 | ######################################################################### | 
 | 21624 |  | 
 | 21625 | 	global		store_fpreg | 
 | 21626 | store_fpreg: | 
 | 21627 | 	mov.w		(tbl_store_fpreg.b,%pc,%d0.w*2), %d0 | 
 | 21628 | 	jmp		(tbl_store_fpreg.b,%pc,%d0.w*1) | 
 | 21629 |  | 
 | 21630 | tbl_store_fpreg: | 
 | 21631 | 	short		store_fpreg_0 - tbl_store_fpreg | 
 | 21632 | 	short		store_fpreg_1 - tbl_store_fpreg | 
 | 21633 | 	short		store_fpreg_2 - tbl_store_fpreg | 
 | 21634 | 	short		store_fpreg_3 - tbl_store_fpreg | 
 | 21635 | 	short		store_fpreg_4 - tbl_store_fpreg | 
 | 21636 | 	short		store_fpreg_5 - tbl_store_fpreg | 
 | 21637 | 	short		store_fpreg_6 - tbl_store_fpreg | 
 | 21638 | 	short		store_fpreg_7 - tbl_store_fpreg | 
 | 21639 |  | 
 | 21640 | store_fpreg_0: | 
 | 21641 | 	fmovm.x		&0x80, EXC_FP0(%a6) | 
 | 21642 | 	rts | 
 | 21643 | store_fpreg_1: | 
 | 21644 | 	fmovm.x		&0x80, EXC_FP1(%a6) | 
 | 21645 | 	rts | 
 | 21646 | store_fpreg_2: | 
 | 21647 | 	fmovm.x		&0x01, -(%sp) | 
 | 21648 | 	fmovm.x		(%sp)+, &0x20 | 
 | 21649 | 	rts | 
 | 21650 | store_fpreg_3: | 
 | 21651 | 	fmovm.x		&0x01, -(%sp) | 
 | 21652 | 	fmovm.x		(%sp)+, &0x10 | 
 | 21653 | 	rts | 
 | 21654 | store_fpreg_4: | 
 | 21655 | 	fmovm.x		&0x01, -(%sp) | 
 | 21656 | 	fmovm.x		(%sp)+, &0x08 | 
 | 21657 | 	rts | 
 | 21658 | store_fpreg_5: | 
 | 21659 | 	fmovm.x		&0x01, -(%sp) | 
 | 21660 | 	fmovm.x		(%sp)+, &0x04 | 
 | 21661 | 	rts | 
 | 21662 | store_fpreg_6: | 
 | 21663 | 	fmovm.x		&0x01, -(%sp) | 
 | 21664 | 	fmovm.x		(%sp)+, &0x02 | 
 | 21665 | 	rts | 
 | 21666 | store_fpreg_7: | 
 | 21667 | 	fmovm.x		&0x01, -(%sp) | 
 | 21668 | 	fmovm.x		(%sp)+, &0x01 | 
 | 21669 | 	rts | 
 | 21670 |  | 
 | 21671 | ######################################################################### | 
 | 21672 | # XDEF ****************************************************************	# | 
 | 21673 | #	_denorm(): denormalize an intermediate result			# | 
 | 21674 | #									# | 
 | 21675 | # XREF ****************************************************************	# | 
 | 21676 | #	None								# | 
 | 21677 | #									# | 
 | 21678 | # INPUT *************************************************************** # | 
 | 21679 | #	a0 = points to the operand to be denormalized			# | 
 | 21680 | #		(in the internal extended format)			# | 
 | 21681 | #									# | 
 | 21682 | #	d0 = rounding precision						# | 
 | 21683 | #									# | 
 | 21684 | # OUTPUT **************************************************************	# | 
 | 21685 | #	a0 = pointer to the denormalized result				# | 
 | 21686 | #		(in the internal extended format)			# | 
 | 21687 | #									# | 
 | 21688 | #	d0 = guard,round,sticky						# | 
 | 21689 | #									# | 
 | 21690 | # ALGORITHM ***********************************************************	# | 
 | 21691 | #	According to the exponent underflow threshold for the given	# | 
 | 21692 | # precision, shift the mantissa bits to the right in order raise the	# | 
 | 21693 | # exponent of the operand to the threshold value. While shifting the	# | 
 | 21694 | # mantissa bits right, maintain the value of the guard, round, and	# | 
 | 21695 | # sticky bits.								# | 
 | 21696 | # other notes:								# | 
 | 21697 | #	(1) _denorm() is called by the underflow routines		# | 
 | 21698 | #	(2) _denorm() does NOT affect the status register		# | 
 | 21699 | #									# | 
 | 21700 | ######################################################################### | 
 | 21701 |  | 
 | 21702 | # | 
 | 21703 | # table of exponent threshold values for each precision | 
 | 21704 | # | 
 | 21705 | tbl_thresh: | 
 | 21706 | 	short		0x0 | 
 | 21707 | 	short		sgl_thresh | 
 | 21708 | 	short		dbl_thresh | 
 | 21709 |  | 
 | 21710 | 	global		_denorm | 
 | 21711 | _denorm: | 
 | 21712 | # | 
 | 21713 | # Load the exponent threshold for the precision selected and check | 
 | 21714 | # to see if (threshold - exponent) is > 65 in which case we can | 
 | 21715 | # simply calculate the sticky bit and zero the mantissa. otherwise | 
 | 21716 | # we have to call the denormalization routine. | 
 | 21717 | # | 
 | 21718 | 	lsr.b		&0x2, %d0		# shift prec to lo bits | 
 | 21719 | 	mov.w		(tbl_thresh.b,%pc,%d0.w*2), %d1 # load prec threshold | 
 | 21720 | 	mov.w		%d1, %d0		# copy d1 into d0 | 
 | 21721 | 	sub.w		FTEMP_EX(%a0), %d0	# diff = threshold - exp | 
 | 21722 | 	cmpi.w		%d0, &66		# is diff > 65? (mant + g,r bits) | 
 | 21723 | 	bpl.b		denorm_set_stky		# yes; just calc sticky | 
 | 21724 |  | 
 | 21725 | 	clr.l		%d0			# clear g,r,s | 
 | 21726 | 	btst		&inex2_bit, FPSR_EXCEPT(%a6) # yes; was INEX2 set? | 
 | 21727 | 	beq.b		denorm_call		# no; don't change anything | 
 | 21728 | 	bset		&29, %d0		# yes; set sticky bit | 
 | 21729 |  | 
 | 21730 | denorm_call: | 
 | 21731 | 	bsr.l		dnrm_lp			# denormalize the number | 
 | 21732 | 	rts | 
 | 21733 |  | 
 | 21734 | # | 
 | 21735 | # all bit would have been shifted off during the denorm so simply | 
 | 21736 | # calculate if the sticky should be set and clear the entire mantissa. | 
 | 21737 | # | 
 | 21738 | denorm_set_stky: | 
 | 21739 | 	mov.l		&0x20000000, %d0	# set sticky bit in return value | 
 | 21740 | 	mov.w		%d1, FTEMP_EX(%a0)	# load exp with threshold | 
 | 21741 | 	clr.l		FTEMP_HI(%a0)		# set d1 = 0 (ms mantissa) | 
 | 21742 | 	clr.l		FTEMP_LO(%a0)		# set d2 = 0 (ms mantissa) | 
 | 21743 | 	rts | 
 | 21744 |  | 
 | 21745 | #									# | 
 | 21746 | # dnrm_lp(): normalize exponent/mantissa to specified threshhold	# | 
 | 21747 | #									# | 
 | 21748 | # INPUT:								# | 
 | 21749 | #	%a0	   : points to the operand to be denormalized		# | 
 | 21750 | #	%d0{31:29} : initial guard,round,sticky				# | 
 | 21751 | #	%d1{15:0}  : denormalization threshold				# | 
 | 21752 | # OUTPUT:								# | 
 | 21753 | #	%a0	   : points to the denormalized operand			# | 
 | 21754 | #	%d0{31:29} : final guard,round,sticky				# | 
 | 21755 | #									# | 
 | 21756 |  | 
 | 21757 | # *** Local Equates *** # | 
 | 21758 | set	GRS,		L_SCR2			# g,r,s temp storage | 
 | 21759 | set	FTEMP_LO2,	L_SCR1			# FTEMP_LO copy | 
 | 21760 |  | 
 | 21761 | 	global		dnrm_lp | 
 | 21762 | dnrm_lp: | 
 | 21763 |  | 
 | 21764 | # | 
 | 21765 | # make a copy of FTEMP_LO and place the g,r,s bits directly after it | 
 | 21766 | # in memory so as to make the bitfield extraction for denormalization easier. | 
 | 21767 | # | 
 | 21768 | 	mov.l		FTEMP_LO(%a0), FTEMP_LO2(%a6) # make FTEMP_LO copy | 
 | 21769 | 	mov.l		%d0, GRS(%a6)		# place g,r,s after it | 
 | 21770 |  | 
 | 21771 | # | 
 | 21772 | # check to see how much less than the underflow threshold the operand | 
 | 21773 | # exponent is. | 
 | 21774 | # | 
 | 21775 | 	mov.l		%d1, %d0		# copy the denorm threshold | 
 | 21776 | 	sub.w		FTEMP_EX(%a0), %d1	# d1 = threshold - uns exponent | 
 | 21777 | 	ble.b		dnrm_no_lp		# d1 <= 0 | 
 | 21778 | 	cmpi.w		%d1, &0x20		# is ( 0 <= d1 < 32) ? | 
 | 21779 | 	blt.b		case_1			# yes | 
 | 21780 | 	cmpi.w		%d1, &0x40		# is (32 <= d1 < 64) ? | 
 | 21781 | 	blt.b		case_2			# yes | 
 | 21782 | 	bra.w		case_3			# (d1 >= 64) | 
 | 21783 |  | 
 | 21784 | # | 
 | 21785 | # No normalization necessary | 
 | 21786 | # | 
 | 21787 | dnrm_no_lp: | 
 | 21788 | 	mov.l		GRS(%a6), %d0		# restore original g,r,s | 
 | 21789 | 	rts | 
 | 21790 |  | 
 | 21791 | # | 
 | 21792 | # case (0<d1<32) | 
 | 21793 | # | 
 | 21794 | # %d0 = denorm threshold | 
 | 21795 | # %d1 = "n" = amt to shift | 
 | 21796 | # | 
 | 21797 | #	--------------------------------------------------------- | 
 | 21798 | #	|     FTEMP_HI	  |	FTEMP_LO     |grs000.........000| | 
 | 21799 | #	--------------------------------------------------------- | 
 | 21800 | #	<-(32 - n)-><-(n)-><-(32 - n)-><-(n)-><-(32 - n)-><-(n)-> | 
 | 21801 | #	\	   \		      \			 \ | 
 | 21802 | #	 \	    \		       \		  \ | 
 | 21803 | #	  \	     \			\		   \ | 
 | 21804 | #	   \	      \			 \		    \ | 
 | 21805 | #	    \	       \		  \		     \ | 
 | 21806 | #	     \		\		   \		      \ | 
 | 21807 | #	      \		 \		    \		       \ | 
 | 21808 | #	       \	  \		     \			\ | 
 | 21809 | #	<-(n)-><-(32 - n)-><------(32)-------><------(32)-------> | 
 | 21810 | #	--------------------------------------------------------- | 
 | 21811 | #	|0.....0| NEW_HI  |  NEW_FTEMP_LO     |grs		| | 
 | 21812 | #	--------------------------------------------------------- | 
 | 21813 | # | 
 | 21814 | case_1: | 
 | 21815 | 	mov.l		%d2, -(%sp)		# create temp storage | 
 | 21816 |  | 
 | 21817 | 	mov.w		%d0, FTEMP_EX(%a0)	# exponent = denorm threshold | 
 | 21818 | 	mov.l		&32, %d0 | 
 | 21819 | 	sub.w		%d1, %d0		# %d0 = 32 - %d1 | 
 | 21820 |  | 
 | 21821 | 	cmpi.w		%d1, &29		# is shft amt >= 29 | 
 | 21822 | 	blt.b		case1_extract		# no; no fix needed | 
 | 21823 | 	mov.b		GRS(%a6), %d2 | 
 | 21824 | 	or.b		%d2, 3+FTEMP_LO2(%a6) | 
 | 21825 |  | 
 | 21826 | case1_extract: | 
 | 21827 | 	bfextu		FTEMP_HI(%a0){&0:%d0}, %d2 # %d2 = new FTEMP_HI | 
 | 21828 | 	bfextu		FTEMP_HI(%a0){%d0:&32}, %d1 # %d1 = new FTEMP_LO | 
 | 21829 | 	bfextu		FTEMP_LO2(%a6){%d0:&32}, %d0 # %d0 = new G,R,S | 
 | 21830 |  | 
 | 21831 | 	mov.l		%d2, FTEMP_HI(%a0)	# store new FTEMP_HI | 
 | 21832 | 	mov.l		%d1, FTEMP_LO(%a0)	# store new FTEMP_LO | 
 | 21833 |  | 
 | 21834 | 	bftst		%d0{&2:&30}		# were bits shifted off? | 
 | 21835 | 	beq.b		case1_sticky_clear	# no; go finish | 
 | 21836 | 	bset		&rnd_stky_bit, %d0	# yes; set sticky bit | 
 | 21837 |  | 
 | 21838 | case1_sticky_clear: | 
 | 21839 | 	and.l		&0xe0000000, %d0	# clear all but G,R,S | 
 | 21840 | 	mov.l		(%sp)+, %d2		# restore temp register | 
 | 21841 | 	rts | 
 | 21842 |  | 
 | 21843 | # | 
 | 21844 | # case (32<=d1<64) | 
 | 21845 | # | 
 | 21846 | # %d0 = denorm threshold | 
 | 21847 | # %d1 = "n" = amt to shift | 
 | 21848 | # | 
 | 21849 | #	--------------------------------------------------------- | 
 | 21850 | #	|     FTEMP_HI	  |	FTEMP_LO     |grs000.........000| | 
 | 21851 | #	--------------------------------------------------------- | 
 | 21852 | #	<-(32 - n)-><-(n)-><-(32 - n)-><-(n)-><-(32 - n)-><-(n)-> | 
 | 21853 | #	\	   \		      \ | 
 | 21854 | #	 \	    \		       \ | 
 | 21855 | #	  \	     \			------------------- | 
 | 21856 | #	   \	      --------------------		   \ | 
 | 21857 | #	    -------------------		  \		    \ | 
 | 21858 | #			       \	   \		     \ | 
 | 21859 | #				\	    \		      \ | 
 | 21860 | #				 \	     \		       \ | 
 | 21861 | #	<-------(32)------><-(n)-><-(32 - n)-><------(32)-------> | 
 | 21862 | #	--------------------------------------------------------- | 
 | 21863 | #	|0...............0|0....0| NEW_LO     |grs		| | 
 | 21864 | #	--------------------------------------------------------- | 
 | 21865 | # | 
 | 21866 | case_2: | 
 | 21867 | 	mov.l		%d2, -(%sp)		# create temp storage | 
 | 21868 |  | 
 | 21869 | 	mov.w		%d0, FTEMP_EX(%a0)	# exponent = denorm threshold | 
 | 21870 | 	subi.w		&0x20, %d1		# %d1 now between 0 and 32 | 
 | 21871 | 	mov.l		&0x20, %d0 | 
 | 21872 | 	sub.w		%d1, %d0		# %d0 = 32 - %d1 | 
 | 21873 |  | 
 | 21874 | # subtle step here; or in the g,r,s at the bottom of FTEMP_LO to minimize | 
 | 21875 | # the number of bits to check for the sticky detect. | 
 | 21876 | # it only plays a role in shift amounts of 61-63. | 
 | 21877 | 	mov.b		GRS(%a6), %d2 | 
 | 21878 | 	or.b		%d2, 3+FTEMP_LO2(%a6) | 
 | 21879 |  | 
 | 21880 | 	bfextu		FTEMP_HI(%a0){&0:%d0}, %d2 # %d2 = new FTEMP_LO | 
 | 21881 | 	bfextu		FTEMP_HI(%a0){%d0:&32}, %d1 # %d1 = new G,R,S | 
 | 21882 |  | 
 | 21883 | 	bftst		%d1{&2:&30}		# were any bits shifted off? | 
 | 21884 | 	bne.b		case2_set_sticky	# yes; set sticky bit | 
 | 21885 | 	bftst		FTEMP_LO2(%a6){%d0:&31}	# were any bits shifted off? | 
 | 21886 | 	bne.b		case2_set_sticky	# yes; set sticky bit | 
 | 21887 |  | 
 | 21888 | 	mov.l		%d1, %d0		# move new G,R,S to %d0 | 
 | 21889 | 	bra.b		case2_end | 
 | 21890 |  | 
 | 21891 | case2_set_sticky: | 
 | 21892 | 	mov.l		%d1, %d0		# move new G,R,S to %d0 | 
 | 21893 | 	bset		&rnd_stky_bit, %d0	# set sticky bit | 
 | 21894 |  | 
 | 21895 | case2_end: | 
 | 21896 | 	clr.l		FTEMP_HI(%a0)		# store FTEMP_HI = 0 | 
 | 21897 | 	mov.l		%d2, FTEMP_LO(%a0)	# store FTEMP_LO | 
 | 21898 | 	and.l		&0xe0000000, %d0	# clear all but G,R,S | 
 | 21899 |  | 
 | 21900 | 	mov.l		(%sp)+,%d2		# restore temp register | 
 | 21901 | 	rts | 
 | 21902 |  | 
 | 21903 | # | 
 | 21904 | # case (d1>=64) | 
 | 21905 | # | 
 | 21906 | # %d0 = denorm threshold | 
 | 21907 | # %d1 = amt to shift | 
 | 21908 | # | 
 | 21909 | case_3: | 
 | 21910 | 	mov.w		%d0, FTEMP_EX(%a0)	# insert denorm threshold | 
 | 21911 |  | 
 | 21912 | 	cmpi.w		%d1, &65		# is shift amt > 65? | 
 | 21913 | 	blt.b		case3_64		# no; it's == 64 | 
 | 21914 | 	beq.b		case3_65		# no; it's == 65 | 
 | 21915 |  | 
 | 21916 | # | 
 | 21917 | # case (d1>65) | 
 | 21918 | # | 
 | 21919 | # Shift value is > 65 and out of range. All bits are shifted off. | 
 | 21920 | # Return a zero mantissa with the sticky bit set | 
 | 21921 | # | 
 | 21922 | 	clr.l		FTEMP_HI(%a0)		# clear hi(mantissa) | 
 | 21923 | 	clr.l		FTEMP_LO(%a0)		# clear lo(mantissa) | 
 | 21924 | 	mov.l		&0x20000000, %d0	# set sticky bit | 
 | 21925 | 	rts | 
 | 21926 |  | 
 | 21927 | # | 
 | 21928 | # case (d1 == 64) | 
 | 21929 | # | 
 | 21930 | #	--------------------------------------------------------- | 
 | 21931 | #	|     FTEMP_HI	  |	FTEMP_LO     |grs000.........000| | 
 | 21932 | #	--------------------------------------------------------- | 
 | 21933 | #	<-------(32)------> | 
 | 21934 | #	\		   \ | 
 | 21935 | #	 \		    \ | 
 | 21936 | #	  \		     \ | 
 | 21937 | #	   \		      ------------------------------ | 
 | 21938 | #	    -------------------------------		    \ | 
 | 21939 | #					   \		     \ | 
 | 21940 | #					    \		      \ | 
 | 21941 | #					     \		       \ | 
 | 21942 | #					      <-------(32)------> | 
 | 21943 | #	--------------------------------------------------------- | 
 | 21944 | #	|0...............0|0................0|grs		| | 
 | 21945 | #	--------------------------------------------------------- | 
 | 21946 | # | 
 | 21947 | case3_64: | 
 | 21948 | 	mov.l		FTEMP_HI(%a0), %d0	# fetch hi(mantissa) | 
 | 21949 | 	mov.l		%d0, %d1		# make a copy | 
 | 21950 | 	and.l		&0xc0000000, %d0	# extract G,R | 
 | 21951 | 	and.l		&0x3fffffff, %d1	# extract other bits | 
 | 21952 |  | 
 | 21953 | 	bra.b		case3_complete | 
 | 21954 |  | 
 | 21955 | # | 
 | 21956 | # case (d1 == 65) | 
 | 21957 | # | 
 | 21958 | #	--------------------------------------------------------- | 
 | 21959 | #	|     FTEMP_HI	  |	FTEMP_LO     |grs000.........000| | 
 | 21960 | #	--------------------------------------------------------- | 
 | 21961 | #	<-------(32)------> | 
 | 21962 | #	\		   \ | 
 | 21963 | #	 \		    \ | 
 | 21964 | #	  \		     \ | 
 | 21965 | #	   \		      ------------------------------ | 
 | 21966 | #	    --------------------------------		    \ | 
 | 21967 | #					    \		     \ | 
 | 21968 | #					     \		      \ | 
 | 21969 | #					      \		       \ | 
 | 21970 | #					       <-------(31)-----> | 
 | 21971 | #	--------------------------------------------------------- | 
 | 21972 | #	|0...............0|0................0|0rs		| | 
 | 21973 | #	--------------------------------------------------------- | 
 | 21974 | # | 
 | 21975 | case3_65: | 
 | 21976 | 	mov.l		FTEMP_HI(%a0), %d0	# fetch hi(mantissa) | 
 | 21977 | 	and.l		&0x80000000, %d0	# extract R bit | 
 | 21978 | 	lsr.l		&0x1, %d0		# shift high bit into R bit | 
 | 21979 | 	and.l		&0x7fffffff, %d1	# extract other bits | 
 | 21980 |  | 
 | 21981 | case3_complete: | 
 | 21982 | # last operation done was an "and" of the bits shifted off so the condition | 
 | 21983 | # codes are already set so branch accordingly. | 
 | 21984 | 	bne.b		case3_set_sticky	# yes; go set new sticky | 
 | 21985 | 	tst.l		FTEMP_LO(%a0)		# were any bits shifted off? | 
 | 21986 | 	bne.b		case3_set_sticky	# yes; go set new sticky | 
 | 21987 | 	tst.b		GRS(%a6)		# were any bits shifted off? | 
 | 21988 | 	bne.b		case3_set_sticky	# yes; go set new sticky | 
 | 21989 |  | 
 | 21990 | # | 
 | 21991 | # no bits were shifted off so don't set the sticky bit. | 
 | 21992 | # the guard and | 
 | 21993 | # the entire mantissa is zero. | 
 | 21994 | # | 
 | 21995 | 	clr.l		FTEMP_HI(%a0)		# clear hi(mantissa) | 
 | 21996 | 	clr.l		FTEMP_LO(%a0)		# clear lo(mantissa) | 
 | 21997 | 	rts | 
 | 21998 |  | 
 | 21999 | # | 
 | 22000 | # some bits were shifted off so set the sticky bit. | 
 | 22001 | # the entire mantissa is zero. | 
 | 22002 | # | 
 | 22003 | case3_set_sticky: | 
 | 22004 | 	bset		&rnd_stky_bit,%d0	# set new sticky bit | 
 | 22005 | 	clr.l		FTEMP_HI(%a0)		# clear hi(mantissa) | 
 | 22006 | 	clr.l		FTEMP_LO(%a0)		# clear lo(mantissa) | 
 | 22007 | 	rts | 
 | 22008 |  | 
 | 22009 | ######################################################################### | 
 | 22010 | # XDEF ****************************************************************	# | 
 | 22011 | #	_round(): round result according to precision/mode		# | 
 | 22012 | #									# | 
 | 22013 | # XREF ****************************************************************	# | 
 | 22014 | #	None								# | 
 | 22015 | #									# | 
 | 22016 | # INPUT ***************************************************************	# | 
 | 22017 | #	a0	  = ptr to input operand in internal extended format	# | 
 | 22018 | #	d1(hi)    = contains rounding precision:			# | 
 | 22019 | #			ext = $0000xxxx					# | 
 | 22020 | #			sgl = $0004xxxx					# | 
 | 22021 | #			dbl = $0008xxxx					# | 
 | 22022 | #	d1(lo)	  = contains rounding mode:				# | 
 | 22023 | #			RN  = $xxxx0000					# | 
 | 22024 | #			RZ  = $xxxx0001					# | 
 | 22025 | #			RM  = $xxxx0002					# | 
 | 22026 | #			RP  = $xxxx0003					# | 
 | 22027 | #	d0{31:29} = contains the g,r,s bits (extended)			# | 
 | 22028 | #									# | 
 | 22029 | # OUTPUT **************************************************************	# | 
 | 22030 | #	a0 = pointer to rounded result					# | 
 | 22031 | #									# | 
 | 22032 | # ALGORITHM ***********************************************************	# | 
 | 22033 | #	On return the value pointed to by a0 is correctly rounded,	# | 
 | 22034 | #	a0 is preserved and the g-r-s bits in d0 are cleared.		# | 
 | 22035 | #	The result is not typed - the tag field is invalid.  The	# | 
 | 22036 | #	result is still in the internal extended format.		# | 
 | 22037 | #									# | 
 | 22038 | #	The INEX bit of USER_FPSR will be set if the rounded result was	# | 
 | 22039 | #	inexact (i.e. if any of the g-r-s bits were set).		# | 
 | 22040 | #									# | 
 | 22041 | ######################################################################### | 
 | 22042 |  | 
 | 22043 | 	global		_round | 
 | 22044 | _round: | 
 | 22045 | # | 
 | 22046 | # ext_grs() looks at the rounding precision and sets the appropriate | 
 | 22047 | # G,R,S bits. | 
 | 22048 | # If (G,R,S == 0) then result is exact and round is done, else set | 
 | 22049 | # the inex flag in status reg and continue. | 
 | 22050 | # | 
 | 22051 | 	bsr.l		ext_grs			# extract G,R,S | 
 | 22052 |  | 
 | 22053 | 	tst.l		%d0			# are G,R,S zero? | 
 | 22054 | 	beq.w		truncate		# yes; round is complete | 
 | 22055 |  | 
 | 22056 | 	or.w		&inx2a_mask, 2+USER_FPSR(%a6) # set inex2/ainex | 
 | 22057 |  | 
 | 22058 | # | 
 | 22059 | # Use rounding mode as an index into a jump table for these modes. | 
 | 22060 | # All of the following assumes grs != 0. | 
 | 22061 | # | 
 | 22062 | 	mov.w		(tbl_mode.b,%pc,%d1.w*2), %a1 # load jump offset | 
 | 22063 | 	jmp		(tbl_mode.b,%pc,%a1)	# jmp to rnd mode handler | 
 | 22064 |  | 
 | 22065 | tbl_mode: | 
 | 22066 | 	short		rnd_near - tbl_mode | 
 | 22067 | 	short		truncate - tbl_mode	# RZ always truncates | 
 | 22068 | 	short		rnd_mnus - tbl_mode | 
 | 22069 | 	short		rnd_plus - tbl_mode | 
 | 22070 |  | 
 | 22071 | ################################################################# | 
 | 22072 | #	ROUND PLUS INFINITY					# | 
 | 22073 | #								# | 
 | 22074 | #	If sign of fp number = 0 (positive), then add 1 to l.	# | 
 | 22075 | ################################################################# | 
 | 22076 | rnd_plus: | 
 | 22077 | 	tst.b		FTEMP_SGN(%a0)		# check for sign | 
 | 22078 | 	bmi.w		truncate		# if positive then truncate | 
 | 22079 |  | 
 | 22080 | 	mov.l		&0xffffffff, %d0	# force g,r,s to be all f's | 
 | 22081 | 	swap		%d1			# set up d1 for round prec. | 
 | 22082 |  | 
 | 22083 | 	cmpi.b		%d1, &s_mode		# is prec = sgl? | 
 | 22084 | 	beq.w		add_sgl			# yes | 
 | 22085 | 	bgt.w		add_dbl			# no; it's dbl | 
 | 22086 | 	bra.w		add_ext			# no; it's ext | 
 | 22087 |  | 
 | 22088 | ################################################################# | 
 | 22089 | #	ROUND MINUS INFINITY					# | 
 | 22090 | #								# | 
 | 22091 | #	If sign of fp number = 1 (negative), then add 1 to l.	# | 
 | 22092 | ################################################################# | 
 | 22093 | rnd_mnus: | 
 | 22094 | 	tst.b		FTEMP_SGN(%a0)		# check for sign | 
 | 22095 | 	bpl.w		truncate		# if negative then truncate | 
 | 22096 |  | 
 | 22097 | 	mov.l		&0xffffffff, %d0	# force g,r,s to be all f's | 
 | 22098 | 	swap		%d1			# set up d1 for round prec. | 
 | 22099 |  | 
 | 22100 | 	cmpi.b		%d1, &s_mode		# is prec = sgl? | 
 | 22101 | 	beq.w		add_sgl			# yes | 
 | 22102 | 	bgt.w		add_dbl			# no; it's dbl | 
 | 22103 | 	bra.w		add_ext			# no; it's ext | 
 | 22104 |  | 
 | 22105 | ################################################################# | 
 | 22106 | #	ROUND NEAREST						# | 
 | 22107 | #								# | 
 | 22108 | #	If (g=1), then add 1 to l and if (r=s=0), then clear l	# | 
 | 22109 | #	Note that this will round to even in case of a tie.	# | 
 | 22110 | ################################################################# | 
 | 22111 | rnd_near: | 
 | 22112 | 	asl.l		&0x1, %d0		# shift g-bit to c-bit | 
 | 22113 | 	bcc.w		truncate		# if (g=1) then | 
 | 22114 |  | 
 | 22115 | 	swap		%d1			# set up d1 for round prec. | 
 | 22116 |  | 
 | 22117 | 	cmpi.b		%d1, &s_mode		# is prec = sgl? | 
 | 22118 | 	beq.w		add_sgl			# yes | 
 | 22119 | 	bgt.w		add_dbl			# no; it's dbl | 
 | 22120 | 	bra.w		add_ext			# no; it's ext | 
 | 22121 |  | 
 | 22122 | # *** LOCAL EQUATES *** | 
 | 22123 | set	ad_1_sgl,	0x00000100	# constant to add 1 to l-bit in sgl prec | 
 | 22124 | set	ad_1_dbl,	0x00000800	# constant to add 1 to l-bit in dbl prec | 
 | 22125 |  | 
 | 22126 | ######################### | 
 | 22127 | #	ADD SINGLE	# | 
 | 22128 | ######################### | 
 | 22129 | add_sgl: | 
 | 22130 | 	add.l		&ad_1_sgl, FTEMP_HI(%a0) | 
 | 22131 | 	bcc.b		scc_clr			# no mantissa overflow | 
 | 22132 | 	roxr.w		FTEMP_HI(%a0)		# shift v-bit back in | 
 | 22133 | 	roxr.w		FTEMP_HI+2(%a0)		# shift v-bit back in | 
 | 22134 | 	add.w		&0x1, FTEMP_EX(%a0)	# and incr exponent | 
 | 22135 | scc_clr: | 
 | 22136 | 	tst.l		%d0			# test for rs = 0 | 
 | 22137 | 	bne.b		sgl_done | 
 | 22138 | 	and.w		&0xfe00, FTEMP_HI+2(%a0) # clear the l-bit | 
 | 22139 | sgl_done: | 
 | 22140 | 	and.l		&0xffffff00, FTEMP_HI(%a0) # truncate bits beyond sgl limit | 
 | 22141 | 	clr.l		FTEMP_LO(%a0)		# clear d2 | 
 | 22142 | 	rts | 
 | 22143 |  | 
 | 22144 | ######################### | 
 | 22145 | #	ADD EXTENDED	# | 
 | 22146 | ######################### | 
 | 22147 | add_ext: | 
 | 22148 | 	addq.l		&1,FTEMP_LO(%a0)	# add 1 to l-bit | 
 | 22149 | 	bcc.b		xcc_clr			# test for carry out | 
 | 22150 | 	addq.l		&1,FTEMP_HI(%a0)	# propagate carry | 
 | 22151 | 	bcc.b		xcc_clr | 
 | 22152 | 	roxr.w		FTEMP_HI(%a0)		# mant is 0 so restore v-bit | 
 | 22153 | 	roxr.w		FTEMP_HI+2(%a0)		# mant is 0 so restore v-bit | 
 | 22154 | 	roxr.w		FTEMP_LO(%a0) | 
 | 22155 | 	roxr.w		FTEMP_LO+2(%a0) | 
 | 22156 | 	add.w		&0x1,FTEMP_EX(%a0)	# and inc exp | 
 | 22157 | xcc_clr: | 
 | 22158 | 	tst.l		%d0			# test rs = 0 | 
 | 22159 | 	bne.b		add_ext_done | 
 | 22160 | 	and.b		&0xfe,FTEMP_LO+3(%a0)	# clear the l bit | 
 | 22161 | add_ext_done: | 
 | 22162 | 	rts | 
 | 22163 |  | 
 | 22164 | ######################### | 
 | 22165 | #	ADD DOUBLE	# | 
 | 22166 | ######################### | 
 | 22167 | add_dbl: | 
 | 22168 | 	add.l		&ad_1_dbl, FTEMP_LO(%a0) # add 1 to lsb | 
 | 22169 | 	bcc.b		dcc_clr			# no carry | 
 | 22170 | 	addq.l		&0x1, FTEMP_HI(%a0)	# propagate carry | 
 | 22171 | 	bcc.b		dcc_clr			# no carry | 
 | 22172 |  | 
 | 22173 | 	roxr.w		FTEMP_HI(%a0)		# mant is 0 so restore v-bit | 
 | 22174 | 	roxr.w		FTEMP_HI+2(%a0)		# mant is 0 so restore v-bit | 
 | 22175 | 	roxr.w		FTEMP_LO(%a0) | 
 | 22176 | 	roxr.w		FTEMP_LO+2(%a0) | 
 | 22177 | 	addq.w		&0x1, FTEMP_EX(%a0)	# incr exponent | 
 | 22178 | dcc_clr: | 
 | 22179 | 	tst.l		%d0			# test for rs = 0 | 
 | 22180 | 	bne.b		dbl_done | 
 | 22181 | 	and.w		&0xf000, FTEMP_LO+2(%a0) # clear the l-bit | 
 | 22182 |  | 
 | 22183 | dbl_done: | 
 | 22184 | 	and.l		&0xfffff800,FTEMP_LO(%a0) # truncate bits beyond dbl limit | 
 | 22185 | 	rts | 
 | 22186 |  | 
 | 22187 | ########################### | 
 | 22188 | # Truncate all other bits # | 
 | 22189 | ########################### | 
 | 22190 | truncate: | 
 | 22191 | 	swap		%d1			# select rnd prec | 
 | 22192 |  | 
 | 22193 | 	cmpi.b		%d1, &s_mode		# is prec sgl? | 
 | 22194 | 	beq.w		sgl_done		# yes | 
 | 22195 | 	bgt.b		dbl_done		# no; it's dbl | 
 | 22196 | 	rts					# no; it's ext | 
 | 22197 |  | 
 | 22198 |  | 
 | 22199 | # | 
 | 22200 | # ext_grs(): extract guard, round and sticky bits according to | 
 | 22201 | #	     rounding precision. | 
 | 22202 | # | 
 | 22203 | # INPUT | 
 | 22204 | #	d0	   = extended precision g,r,s (in d0{31:29}) | 
 | 22205 | #	d1	   = {PREC,ROUND} | 
 | 22206 | # OUTPUT | 
 | 22207 | #	d0{31:29}  = guard, round, sticky | 
 | 22208 | # | 
 | 22209 | # The ext_grs extract the guard/round/sticky bits according to the | 
 | 22210 | # selected rounding precision. It is called by the round subroutine | 
 | 22211 | # only.  All registers except d0 are kept intact. d0 becomes an | 
 | 22212 | # updated guard,round,sticky in d0{31:29} | 
 | 22213 | # | 
 | 22214 | # Notes: the ext_grs uses the round PREC, and therefore has to swap d1 | 
 | 22215 | #	 prior to usage, and needs to restore d1 to original. this | 
 | 22216 | #	 routine is tightly tied to the round routine and not meant to | 
 | 22217 | #	 uphold standard subroutine calling practices. | 
 | 22218 | # | 
 | 22219 |  | 
 | 22220 | ext_grs: | 
 | 22221 | 	swap		%d1			# have d1.w point to round precision | 
 | 22222 | 	tst.b		%d1			# is rnd prec = extended? | 
 | 22223 | 	bne.b		ext_grs_not_ext		# no; go handle sgl or dbl | 
 | 22224 |  | 
 | 22225 | # | 
 | 22226 | # %d0 actually already hold g,r,s since _round() had it before calling | 
 | 22227 | # this function. so, as long as we don't disturb it, we are "returning" it. | 
 | 22228 | # | 
 | 22229 | ext_grs_ext: | 
 | 22230 | 	swap		%d1			# yes; return to correct positions | 
 | 22231 | 	rts | 
 | 22232 |  | 
 | 22233 | ext_grs_not_ext: | 
 | 22234 | 	movm.l		&0x3000, -(%sp)		# make some temp registers {d2/d3} | 
 | 22235 |  | 
 | 22236 | 	cmpi.b		%d1, &s_mode		# is rnd prec = sgl? | 
 | 22237 | 	bne.b		ext_grs_dbl		# no; go handle dbl | 
 | 22238 |  | 
 | 22239 | # | 
 | 22240 | # sgl: | 
 | 22241 | #	96		64	  40	32		0 | 
 | 22242 | #	----------------------------------------------------- | 
 | 22243 | #	| EXP	|XXXXXXX|	  |xx	|		|grs| | 
 | 22244 | #	----------------------------------------------------- | 
 | 22245 | #			<--(24)--->nn\			   / | 
 | 22246 | #				   ee --------------------- | 
 | 22247 | #				   ww		| | 
 | 22248 | #						v | 
 | 22249 | #				   gr	   new sticky | 
 | 22250 | # | 
 | 22251 | ext_grs_sgl: | 
 | 22252 | 	bfextu		FTEMP_HI(%a0){&24:&2}, %d3 # sgl prec. g-r are 2 bits right | 
 | 22253 | 	mov.l		&30, %d2		# of the sgl prec. limits | 
 | 22254 | 	lsl.l		%d2, %d3		# shift g-r bits to MSB of d3 | 
 | 22255 | 	mov.l		FTEMP_HI(%a0), %d2	# get word 2 for s-bit test | 
 | 22256 | 	and.l		&0x0000003f, %d2	# s bit is the or of all other | 
 | 22257 | 	bne.b		ext_grs_st_stky		# bits to the right of g-r | 
 | 22258 | 	tst.l		FTEMP_LO(%a0)		# test lower mantissa | 
 | 22259 | 	bne.b		ext_grs_st_stky		# if any are set, set sticky | 
 | 22260 | 	tst.l		%d0			# test original g,r,s | 
 | 22261 | 	bne.b		ext_grs_st_stky		# if any are set, set sticky | 
 | 22262 | 	bra.b		ext_grs_end_sd		# if words 3 and 4 are clr, exit | 
 | 22263 |  | 
 | 22264 | # | 
 | 22265 | # dbl: | 
 | 22266 | #	96		64		32	 11	0 | 
 | 22267 | #	----------------------------------------------------- | 
 | 22268 | #	| EXP	|XXXXXXX|		|	 |xx	|grs| | 
 | 22269 | #	----------------------------------------------------- | 
 | 22270 | #						  nn\	    / | 
 | 22271 | #						  ee ------- | 
 | 22272 | #						  ww	| | 
 | 22273 | #							v | 
 | 22274 | #						  gr	new sticky | 
 | 22275 | # | 
 | 22276 | ext_grs_dbl: | 
 | 22277 | 	bfextu		FTEMP_LO(%a0){&21:&2}, %d3 # dbl-prec. g-r are 2 bits right | 
 | 22278 | 	mov.l		&30, %d2		# of the dbl prec. limits | 
 | 22279 | 	lsl.l		%d2, %d3		# shift g-r bits to the MSB of d3 | 
 | 22280 | 	mov.l		FTEMP_LO(%a0), %d2	# get lower mantissa  for s-bit test | 
 | 22281 | 	and.l		&0x000001ff, %d2	# s bit is the or-ing of all | 
 | 22282 | 	bne.b		ext_grs_st_stky		# other bits to the right of g-r | 
 | 22283 | 	tst.l		%d0			# test word original g,r,s | 
 | 22284 | 	bne.b		ext_grs_st_stky		# if any are set, set sticky | 
 | 22285 | 	bra.b		ext_grs_end_sd		# if clear, exit | 
 | 22286 |  | 
 | 22287 | ext_grs_st_stky: | 
 | 22288 | 	bset		&rnd_stky_bit, %d3	# set sticky bit | 
 | 22289 | ext_grs_end_sd: | 
 | 22290 | 	mov.l		%d3, %d0		# return grs to d0 | 
 | 22291 |  | 
 | 22292 | 	movm.l		(%sp)+, &0xc		# restore scratch registers {d2/d3} | 
 | 22293 |  | 
 | 22294 | 	swap		%d1			# restore d1 to original | 
 | 22295 | 	rts | 
 | 22296 |  | 
 | 22297 | ######################################################################### | 
 | 22298 | # norm(): normalize the mantissa of an extended precision input. the	# | 
 | 22299 | #	  input operand should not be normalized already.		# | 
 | 22300 | #									# | 
 | 22301 | # XDEF ****************************************************************	# | 
 | 22302 | #	norm()								# | 
 | 22303 | #									# | 
 | 22304 | # XREF **************************************************************** # | 
 | 22305 | #	none								# | 
 | 22306 | #									# | 
 | 22307 | # INPUT *************************************************************** # | 
 | 22308 | #	a0 = pointer fp extended precision operand to normalize		# | 
 | 22309 | #									# | 
 | 22310 | # OUTPUT ************************************************************** # | 
 | 22311 | #	d0 = number of bit positions the mantissa was shifted		# | 
 | 22312 | #	a0 = the input operand's mantissa is normalized; the exponent	# | 
 | 22313 | #	     is unchanged.						# | 
 | 22314 | #									# | 
 | 22315 | ######################################################################### | 
 | 22316 | 	global		norm | 
 | 22317 | norm: | 
 | 22318 | 	mov.l		%d2, -(%sp)		# create some temp regs | 
 | 22319 | 	mov.l		%d3, -(%sp) | 
 | 22320 |  | 
 | 22321 | 	mov.l		FTEMP_HI(%a0), %d0	# load hi(mantissa) | 
 | 22322 | 	mov.l		FTEMP_LO(%a0), %d1	# load lo(mantissa) | 
 | 22323 |  | 
 | 22324 | 	bfffo		%d0{&0:&32}, %d2	# how many places to shift? | 
 | 22325 | 	beq.b		norm_lo			# hi(man) is all zeroes! | 
 | 22326 |  | 
 | 22327 | norm_hi: | 
 | 22328 | 	lsl.l		%d2, %d0		# left shift hi(man) | 
 | 22329 | 	bfextu		%d1{&0:%d2}, %d3	# extract lo bits | 
 | 22330 |  | 
 | 22331 | 	or.l		%d3, %d0		# create hi(man) | 
 | 22332 | 	lsl.l		%d2, %d1		# create lo(man) | 
 | 22333 |  | 
 | 22334 | 	mov.l		%d0, FTEMP_HI(%a0)	# store new hi(man) | 
 | 22335 | 	mov.l		%d1, FTEMP_LO(%a0)	# store new lo(man) | 
 | 22336 |  | 
 | 22337 | 	mov.l		%d2, %d0		# return shift amount | 
 | 22338 |  | 
 | 22339 | 	mov.l		(%sp)+, %d3		# restore temp regs | 
 | 22340 | 	mov.l		(%sp)+, %d2 | 
 | 22341 |  | 
 | 22342 | 	rts | 
 | 22343 |  | 
 | 22344 | norm_lo: | 
 | 22345 | 	bfffo		%d1{&0:&32}, %d2	# how many places to shift? | 
 | 22346 | 	lsl.l		%d2, %d1		# shift lo(man) | 
 | 22347 | 	add.l		&32, %d2		# add 32 to shft amount | 
 | 22348 |  | 
 | 22349 | 	mov.l		%d1, FTEMP_HI(%a0)	# store hi(man) | 
 | 22350 | 	clr.l		FTEMP_LO(%a0)		# lo(man) is now zero | 
 | 22351 |  | 
 | 22352 | 	mov.l		%d2, %d0		# return shift amount | 
 | 22353 |  | 
 | 22354 | 	mov.l		(%sp)+, %d3		# restore temp regs | 
 | 22355 | 	mov.l		(%sp)+, %d2 | 
 | 22356 |  | 
 | 22357 | 	rts | 
 | 22358 |  | 
 | 22359 | ######################################################################### | 
 | 22360 | # unnorm_fix(): - changes an UNNORM to one of NORM, DENORM, or ZERO	# | 
 | 22361 | #		- returns corresponding optype tag			# | 
 | 22362 | #									# | 
 | 22363 | # XDEF ****************************************************************	# | 
 | 22364 | #	unnorm_fix()							# | 
 | 22365 | #									# | 
 | 22366 | # XREF **************************************************************** # | 
 | 22367 | #	norm() - normalize the mantissa					# | 
 | 22368 | #									# | 
 | 22369 | # INPUT *************************************************************** # | 
 | 22370 | #	a0 = pointer to unnormalized extended precision number		# | 
 | 22371 | #									# | 
 | 22372 | # OUTPUT ************************************************************** # | 
 | 22373 | #	d0 = optype tag - is corrected to one of NORM, DENORM, or ZERO	# | 
 | 22374 | #	a0 = input operand has been converted to a norm, denorm, or	# | 
 | 22375 | #	     zero; both the exponent and mantissa are changed.		# | 
 | 22376 | #									# | 
 | 22377 | ######################################################################### | 
 | 22378 |  | 
 | 22379 | 	global		unnorm_fix | 
 | 22380 | unnorm_fix: | 
 | 22381 | 	bfffo		FTEMP_HI(%a0){&0:&32}, %d0 # how many shifts are needed? | 
 | 22382 | 	bne.b		unnorm_shift		# hi(man) is not all zeroes | 
 | 22383 |  | 
 | 22384 | # | 
 | 22385 | # hi(man) is all zeroes so see if any bits in lo(man) are set | 
 | 22386 | # | 
 | 22387 | unnorm_chk_lo: | 
 | 22388 | 	bfffo		FTEMP_LO(%a0){&0:&32}, %d0 # is operand really a zero? | 
 | 22389 | 	beq.w		unnorm_zero		# yes | 
 | 22390 |  | 
 | 22391 | 	add.w		&32, %d0		# no; fix shift distance | 
 | 22392 |  | 
 | 22393 | # | 
 | 22394 | # d0 = # shifts needed for complete normalization | 
 | 22395 | # | 
 | 22396 | unnorm_shift: | 
 | 22397 | 	clr.l		%d1			# clear top word | 
 | 22398 | 	mov.w		FTEMP_EX(%a0), %d1	# extract exponent | 
 | 22399 | 	and.w		&0x7fff, %d1		# strip off sgn | 
 | 22400 |  | 
 | 22401 | 	cmp.w		%d0, %d1		# will denorm push exp < 0? | 
 | 22402 | 	bgt.b		unnorm_nrm_zero		# yes; denorm only until exp = 0 | 
 | 22403 |  | 
 | 22404 | # | 
 | 22405 | # exponent would not go < 0. therefore, number stays normalized | 
 | 22406 | # | 
 | 22407 | 	sub.w		%d0, %d1		# shift exponent value | 
 | 22408 | 	mov.w		FTEMP_EX(%a0), %d0	# load old exponent | 
 | 22409 | 	and.w		&0x8000, %d0		# save old sign | 
 | 22410 | 	or.w		%d0, %d1		# {sgn,new exp} | 
 | 22411 | 	mov.w		%d1, FTEMP_EX(%a0)	# insert new exponent | 
 | 22412 |  | 
 | 22413 | 	bsr.l		norm			# normalize UNNORM | 
 | 22414 |  | 
 | 22415 | 	mov.b		&NORM, %d0		# return new optype tag | 
 | 22416 | 	rts | 
 | 22417 |  | 
 | 22418 | # | 
 | 22419 | # exponent would go < 0, so only denormalize until exp = 0 | 
 | 22420 | # | 
 | 22421 | unnorm_nrm_zero: | 
 | 22422 | 	cmp.b		%d1, &32		# is exp <= 32? | 
 | 22423 | 	bgt.b		unnorm_nrm_zero_lrg	# no; go handle large exponent | 
 | 22424 |  | 
 | 22425 | 	bfextu		FTEMP_HI(%a0){%d1:&32}, %d0 # extract new hi(man) | 
 | 22426 | 	mov.l		%d0, FTEMP_HI(%a0)	# save new hi(man) | 
 | 22427 |  | 
 | 22428 | 	mov.l		FTEMP_LO(%a0), %d0	# fetch old lo(man) | 
 | 22429 | 	lsl.l		%d1, %d0		# extract new lo(man) | 
 | 22430 | 	mov.l		%d0, FTEMP_LO(%a0)	# save new lo(man) | 
 | 22431 |  | 
 | 22432 | 	and.w		&0x8000, FTEMP_EX(%a0)	# set exp = 0 | 
 | 22433 |  | 
 | 22434 | 	mov.b		&DENORM, %d0		# return new optype tag | 
 | 22435 | 	rts | 
 | 22436 |  | 
 | 22437 | # | 
 | 22438 | # only mantissa bits set are in lo(man) | 
 | 22439 | # | 
 | 22440 | unnorm_nrm_zero_lrg: | 
 | 22441 | 	sub.w		&32, %d1		# adjust shft amt by 32 | 
 | 22442 |  | 
 | 22443 | 	mov.l		FTEMP_LO(%a0), %d0	# fetch old lo(man) | 
 | 22444 | 	lsl.l		%d1, %d0		# left shift lo(man) | 
 | 22445 |  | 
 | 22446 | 	mov.l		%d0, FTEMP_HI(%a0)	# store new hi(man) | 
 | 22447 | 	clr.l		FTEMP_LO(%a0)		# lo(man) = 0 | 
 | 22448 |  | 
 | 22449 | 	and.w		&0x8000, FTEMP_EX(%a0)	# set exp = 0 | 
 | 22450 |  | 
 | 22451 | 	mov.b		&DENORM, %d0		# return new optype tag | 
 | 22452 | 	rts | 
 | 22453 |  | 
 | 22454 | # | 
 | 22455 | # whole mantissa is zero so this UNNORM is actually a zero | 
 | 22456 | # | 
 | 22457 | unnorm_zero: | 
 | 22458 | 	and.w		&0x8000, FTEMP_EX(%a0)	# force exponent to zero | 
 | 22459 |  | 
 | 22460 | 	mov.b		&ZERO, %d0		# fix optype tag | 
 | 22461 | 	rts | 
 | 22462 |  | 
 | 22463 | ######################################################################### | 
 | 22464 | # XDEF ****************************************************************	# | 
 | 22465 | #	set_tag_x(): return the optype of the input ext fp number	# | 
 | 22466 | #									# | 
 | 22467 | # XREF ****************************************************************	# | 
 | 22468 | #	None								# | 
 | 22469 | #									# | 
 | 22470 | # INPUT ***************************************************************	# | 
 | 22471 | #	a0 = pointer to extended precision operand			# | 
 | 22472 | #									# | 
 | 22473 | # OUTPUT **************************************************************	# | 
 | 22474 | #	d0 = value of type tag						# | 
 | 22475 | #		one of: NORM, INF, QNAN, SNAN, DENORM, UNNORM, ZERO	# | 
 | 22476 | #									# | 
 | 22477 | # ALGORITHM ***********************************************************	# | 
 | 22478 | #	Simply test the exponent, j-bit, and mantissa values to		# | 
 | 22479 | # determine the type of operand.					# | 
 | 22480 | #	If it's an unnormalized zero, alter the operand and force it	# | 
 | 22481 | # to be a normal zero.							# | 
 | 22482 | #									# | 
 | 22483 | ######################################################################### | 
 | 22484 |  | 
 | 22485 | 	global		set_tag_x | 
 | 22486 | set_tag_x: | 
 | 22487 | 	mov.w		FTEMP_EX(%a0), %d0	# extract exponent | 
 | 22488 | 	andi.w		&0x7fff, %d0		# strip off sign | 
 | 22489 | 	cmpi.w		%d0, &0x7fff		# is (EXP == MAX)? | 
 | 22490 | 	beq.b		inf_or_nan_x | 
 | 22491 | not_inf_or_nan_x: | 
 | 22492 | 	btst		&0x7,FTEMP_HI(%a0) | 
 | 22493 | 	beq.b		not_norm_x | 
 | 22494 | is_norm_x: | 
 | 22495 | 	mov.b		&NORM, %d0 | 
 | 22496 | 	rts | 
 | 22497 | not_norm_x: | 
 | 22498 | 	tst.w		%d0			# is exponent = 0? | 
 | 22499 | 	bne.b		is_unnorm_x | 
 | 22500 | not_unnorm_x: | 
 | 22501 | 	tst.l		FTEMP_HI(%a0) | 
 | 22502 | 	bne.b		is_denorm_x | 
 | 22503 | 	tst.l		FTEMP_LO(%a0) | 
 | 22504 | 	bne.b		is_denorm_x | 
 | 22505 | is_zero_x: | 
 | 22506 | 	mov.b		&ZERO, %d0 | 
 | 22507 | 	rts | 
 | 22508 | is_denorm_x: | 
 | 22509 | 	mov.b		&DENORM, %d0 | 
 | 22510 | 	rts | 
 | 22511 | # must distinguish now "Unnormalized zeroes" which we | 
 | 22512 | # must convert to zero. | 
 | 22513 | is_unnorm_x: | 
 | 22514 | 	tst.l		FTEMP_HI(%a0) | 
 | 22515 | 	bne.b		is_unnorm_reg_x | 
 | 22516 | 	tst.l		FTEMP_LO(%a0) | 
 | 22517 | 	bne.b		is_unnorm_reg_x | 
 | 22518 | # it's an "unnormalized zero". let's convert it to an actual zero... | 
 | 22519 | 	andi.w		&0x8000,FTEMP_EX(%a0)	# clear exponent | 
 | 22520 | 	mov.b		&ZERO, %d0 | 
 | 22521 | 	rts | 
 | 22522 | is_unnorm_reg_x: | 
 | 22523 | 	mov.b		&UNNORM, %d0 | 
 | 22524 | 	rts | 
 | 22525 | inf_or_nan_x: | 
 | 22526 | 	tst.l		FTEMP_LO(%a0) | 
 | 22527 | 	bne.b		is_nan_x | 
 | 22528 | 	mov.l		FTEMP_HI(%a0), %d0 | 
 | 22529 | 	and.l		&0x7fffffff, %d0	# msb is a don't care! | 
 | 22530 | 	bne.b		is_nan_x | 
 | 22531 | is_inf_x: | 
 | 22532 | 	mov.b		&INF, %d0 | 
 | 22533 | 	rts | 
 | 22534 | is_nan_x: | 
 | 22535 | 	btst		&0x6, FTEMP_HI(%a0) | 
 | 22536 | 	beq.b		is_snan_x | 
 | 22537 | 	mov.b		&QNAN, %d0 | 
 | 22538 | 	rts | 
 | 22539 | is_snan_x: | 
 | 22540 | 	mov.b		&SNAN, %d0 | 
 | 22541 | 	rts | 
 | 22542 |  | 
 | 22543 | ######################################################################### | 
 | 22544 | # XDEF ****************************************************************	# | 
 | 22545 | #	set_tag_d(): return the optype of the input dbl fp number	# | 
 | 22546 | #									# | 
 | 22547 | # XREF ****************************************************************	# | 
 | 22548 | #	None								# | 
 | 22549 | #									# | 
 | 22550 | # INPUT ***************************************************************	# | 
 | 22551 | #	a0 = points to double precision operand				# | 
 | 22552 | #									# | 
 | 22553 | # OUTPUT **************************************************************	# | 
 | 22554 | #	d0 = value of type tag						# | 
 | 22555 | #		one of: NORM, INF, QNAN, SNAN, DENORM, ZERO		# | 
 | 22556 | #									# | 
 | 22557 | # ALGORITHM ***********************************************************	# | 
 | 22558 | #	Simply test the exponent, j-bit, and mantissa values to		# | 
 | 22559 | # determine the type of operand.					# | 
 | 22560 | #									# | 
 | 22561 | ######################################################################### | 
 | 22562 |  | 
 | 22563 | 	global		set_tag_d | 
 | 22564 | set_tag_d: | 
 | 22565 | 	mov.l		FTEMP(%a0), %d0 | 
 | 22566 | 	mov.l		%d0, %d1 | 
 | 22567 |  | 
 | 22568 | 	andi.l		&0x7ff00000, %d0 | 
 | 22569 | 	beq.b		zero_or_denorm_d | 
 | 22570 |  | 
 | 22571 | 	cmpi.l		%d0, &0x7ff00000 | 
 | 22572 | 	beq.b		inf_or_nan_d | 
 | 22573 |  | 
 | 22574 | is_norm_d: | 
 | 22575 | 	mov.b		&NORM, %d0 | 
 | 22576 | 	rts | 
 | 22577 | zero_or_denorm_d: | 
 | 22578 | 	and.l		&0x000fffff, %d1 | 
 | 22579 | 	bne		is_denorm_d | 
 | 22580 | 	tst.l		4+FTEMP(%a0) | 
 | 22581 | 	bne		is_denorm_d | 
 | 22582 | is_zero_d: | 
 | 22583 | 	mov.b		&ZERO, %d0 | 
 | 22584 | 	rts | 
 | 22585 | is_denorm_d: | 
 | 22586 | 	mov.b		&DENORM, %d0 | 
 | 22587 | 	rts | 
 | 22588 | inf_or_nan_d: | 
 | 22589 | 	and.l		&0x000fffff, %d1 | 
 | 22590 | 	bne		is_nan_d | 
 | 22591 | 	tst.l		4+FTEMP(%a0) | 
 | 22592 | 	bne		is_nan_d | 
 | 22593 | is_inf_d: | 
 | 22594 | 	mov.b		&INF, %d0 | 
 | 22595 | 	rts | 
 | 22596 | is_nan_d: | 
 | 22597 | 	btst		&19, %d1 | 
 | 22598 | 	bne		is_qnan_d | 
 | 22599 | is_snan_d: | 
 | 22600 | 	mov.b		&SNAN, %d0 | 
 | 22601 | 	rts | 
 | 22602 | is_qnan_d: | 
 | 22603 | 	mov.b		&QNAN, %d0 | 
 | 22604 | 	rts | 
 | 22605 |  | 
 | 22606 | ######################################################################### | 
 | 22607 | # XDEF ****************************************************************	# | 
 | 22608 | #	set_tag_s(): return the optype of the input sgl fp number	# | 
 | 22609 | #									# | 
 | 22610 | # XREF ****************************************************************	# | 
 | 22611 | #	None								# | 
 | 22612 | #									# | 
 | 22613 | # INPUT ***************************************************************	# | 
 | 22614 | #	a0 = pointer to single precision operand			# | 
 | 22615 | #									# | 
 | 22616 | # OUTPUT **************************************************************	# | 
 | 22617 | #	d0 = value of type tag						# | 
 | 22618 | #		one of: NORM, INF, QNAN, SNAN, DENORM, ZERO		# | 
 | 22619 | #									# | 
 | 22620 | # ALGORITHM ***********************************************************	# | 
 | 22621 | #	Simply test the exponent, j-bit, and mantissa values to		# | 
 | 22622 | # determine the type of operand.					# | 
 | 22623 | #									# | 
 | 22624 | ######################################################################### | 
 | 22625 |  | 
 | 22626 | 	global		set_tag_s | 
 | 22627 | set_tag_s: | 
 | 22628 | 	mov.l		FTEMP(%a0), %d0 | 
 | 22629 | 	mov.l		%d0, %d1 | 
 | 22630 |  | 
 | 22631 | 	andi.l		&0x7f800000, %d0 | 
 | 22632 | 	beq.b		zero_or_denorm_s | 
 | 22633 |  | 
 | 22634 | 	cmpi.l		%d0, &0x7f800000 | 
 | 22635 | 	beq.b		inf_or_nan_s | 
 | 22636 |  | 
 | 22637 | is_norm_s: | 
 | 22638 | 	mov.b		&NORM, %d0 | 
 | 22639 | 	rts | 
 | 22640 | zero_or_denorm_s: | 
 | 22641 | 	and.l		&0x007fffff, %d1 | 
 | 22642 | 	bne		is_denorm_s | 
 | 22643 | is_zero_s: | 
 | 22644 | 	mov.b		&ZERO, %d0 | 
 | 22645 | 	rts | 
 | 22646 | is_denorm_s: | 
 | 22647 | 	mov.b		&DENORM, %d0 | 
 | 22648 | 	rts | 
 | 22649 | inf_or_nan_s: | 
 | 22650 | 	and.l		&0x007fffff, %d1 | 
 | 22651 | 	bne		is_nan_s | 
 | 22652 | is_inf_s: | 
 | 22653 | 	mov.b		&INF, %d0 | 
 | 22654 | 	rts | 
 | 22655 | is_nan_s: | 
 | 22656 | 	btst		&22, %d1 | 
 | 22657 | 	bne		is_qnan_s | 
 | 22658 | is_snan_s: | 
 | 22659 | 	mov.b		&SNAN, %d0 | 
 | 22660 | 	rts | 
 | 22661 | is_qnan_s: | 
 | 22662 | 	mov.b		&QNAN, %d0 | 
 | 22663 | 	rts | 
 | 22664 |  | 
 | 22665 | ######################################################################### | 
 | 22666 | # XDEF ****************************************************************	# | 
 | 22667 | #	unf_res(): routine to produce default underflow result of a	# | 
 | 22668 | #		   scaled extended precision number; this is used by	# | 
 | 22669 | #		   fadd/fdiv/fmul/etc. emulation routines.		# | 
 | 22670 | #	unf_res4(): same as above but for fsglmul/fsgldiv which use	# | 
 | 22671 | #		    single round prec and extended prec mode.		# | 
 | 22672 | #									# | 
 | 22673 | # XREF ****************************************************************	# | 
 | 22674 | #	_denorm() - denormalize according to scale factor		# | 
 | 22675 | #	_round() - round denormalized number according to rnd prec	# | 
 | 22676 | #									# | 
 | 22677 | # INPUT ***************************************************************	# | 
 | 22678 | #	a0 = pointer to extended precison operand			# | 
 | 22679 | #	d0 = scale factor						# | 
 | 22680 | #	d1 = rounding precision/mode					# | 
 | 22681 | #									# | 
 | 22682 | # OUTPUT **************************************************************	# | 
 | 22683 | #	a0 = pointer to default underflow result in extended precision	# | 
 | 22684 | #	d0.b = result FPSR_cc which caller may or may not want to save	# | 
 | 22685 | #									# | 
 | 22686 | # ALGORITHM ***********************************************************	# | 
 | 22687 | #	Convert the input operand to "internal format" which means the	# | 
 | 22688 | # exponent is extended to 16 bits and the sign is stored in the unused	# | 
 | 22689 | # portion of the extended precison operand. Denormalize the number	# | 
 | 22690 | # according to the scale factor passed in d0. Then, round the		# | 
 | 22691 | # denormalized result.							# | 
 | 22692 | #	Set the FPSR_exc bits as appropriate but return the cc bits in	# | 
 | 22693 | # d0 in case the caller doesn't want to save them (as is the case for	# | 
 | 22694 | # fmove out).								# | 
 | 22695 | #	unf_res4() for fsglmul/fsgldiv forces the denorm to extended	# | 
 | 22696 | # precision and the rounding mode to single.				# | 
 | 22697 | #									# | 
 | 22698 | ######################################################################### | 
 | 22699 | 	global		unf_res | 
 | 22700 | unf_res: | 
 | 22701 | 	mov.l		%d1, -(%sp)		# save rnd prec,mode on stack | 
 | 22702 |  | 
 | 22703 | 	btst		&0x7, FTEMP_EX(%a0)	# make "internal" format | 
 | 22704 | 	sne		FTEMP_SGN(%a0) | 
 | 22705 |  | 
 | 22706 | 	mov.w		FTEMP_EX(%a0), %d1	# extract exponent | 
 | 22707 | 	and.w		&0x7fff, %d1 | 
 | 22708 | 	sub.w		%d0, %d1 | 
 | 22709 | 	mov.w		%d1, FTEMP_EX(%a0)	# insert 16 bit exponent | 
 | 22710 |  | 
 | 22711 | 	mov.l		%a0, -(%sp)		# save operand ptr during calls | 
 | 22712 |  | 
 | 22713 | 	mov.l		0x4(%sp),%d0		# pass rnd prec. | 
 | 22714 | 	andi.w		&0x00c0,%d0 | 
 | 22715 | 	lsr.w		&0x4,%d0 | 
 | 22716 | 	bsr.l		_denorm			# denorm result | 
 | 22717 |  | 
 | 22718 | 	mov.l		(%sp),%a0 | 
 | 22719 | 	mov.w		0x6(%sp),%d1		# load prec:mode into %d1 | 
 | 22720 | 	andi.w		&0xc0,%d1		# extract rnd prec | 
 | 22721 | 	lsr.w		&0x4,%d1 | 
 | 22722 | 	swap		%d1 | 
 | 22723 | 	mov.w		0x6(%sp),%d1 | 
 | 22724 | 	andi.w		&0x30,%d1 | 
 | 22725 | 	lsr.w		&0x4,%d1 | 
 | 22726 | 	bsr.l		_round			# round the denorm | 
 | 22727 |  | 
 | 22728 | 	mov.l		(%sp)+, %a0 | 
 | 22729 |  | 
 | 22730 | # result is now rounded properly. convert back to normal format | 
 | 22731 | 	bclr		&0x7, FTEMP_EX(%a0)	# clear sgn first; may have residue | 
 | 22732 | 	tst.b		FTEMP_SGN(%a0)		# is "internal result" sign set? | 
 | 22733 | 	beq.b		unf_res_chkifzero	# no; result is positive | 
 | 22734 | 	bset		&0x7, FTEMP_EX(%a0)	# set result sgn | 
 | 22735 | 	clr.b		FTEMP_SGN(%a0)		# clear temp sign | 
 | 22736 |  | 
 | 22737 | # the number may have become zero after rounding. set ccodes accordingly. | 
 | 22738 | unf_res_chkifzero: | 
 | 22739 | 	clr.l		%d0 | 
 | 22740 | 	tst.l		FTEMP_HI(%a0)		# is value now a zero? | 
 | 22741 | 	bne.b		unf_res_cont		# no | 
 | 22742 | 	tst.l		FTEMP_LO(%a0) | 
 | 22743 | 	bne.b		unf_res_cont		# no | 
 | 22744 | #	bset		&z_bit, FPSR_CC(%a6)	# yes; set zero ccode bit | 
 | 22745 | 	bset		&z_bit, %d0		# yes; set zero ccode bit | 
 | 22746 |  | 
 | 22747 | unf_res_cont: | 
 | 22748 |  | 
 | 22749 | # | 
 | 22750 | # can inex1 also be set along with unfl and inex2??? | 
 | 22751 | # | 
 | 22752 | # we know that underflow has occurred. aunfl should be set if INEX2 is also set. | 
 | 22753 | # | 
 | 22754 | 	btst		&inex2_bit, FPSR_EXCEPT(%a6) # is INEX2 set? | 
 | 22755 | 	beq.b		unf_res_end		# no | 
 | 22756 | 	bset		&aunfl_bit, FPSR_AEXCEPT(%a6) # yes; set aunfl | 
 | 22757 |  | 
 | 22758 | unf_res_end: | 
 | 22759 | 	add.l		&0x4, %sp		# clear stack | 
 | 22760 | 	rts | 
 | 22761 |  | 
 | 22762 | # unf_res() for fsglmul() and fsgldiv(). | 
 | 22763 | 	global		unf_res4 | 
 | 22764 | unf_res4: | 
 | 22765 | 	mov.l		%d1,-(%sp)		# save rnd prec,mode on stack | 
 | 22766 |  | 
 | 22767 | 	btst		&0x7,FTEMP_EX(%a0)	# make "internal" format | 
 | 22768 | 	sne		FTEMP_SGN(%a0) | 
 | 22769 |  | 
 | 22770 | 	mov.w		FTEMP_EX(%a0),%d1	# extract exponent | 
 | 22771 | 	and.w		&0x7fff,%d1 | 
 | 22772 | 	sub.w		%d0,%d1 | 
 | 22773 | 	mov.w		%d1,FTEMP_EX(%a0)	# insert 16 bit exponent | 
 | 22774 |  | 
 | 22775 | 	mov.l		%a0,-(%sp)		# save operand ptr during calls | 
 | 22776 |  | 
 | 22777 | 	clr.l		%d0			# force rnd prec = ext | 
 | 22778 | 	bsr.l		_denorm			# denorm result | 
 | 22779 |  | 
 | 22780 | 	mov.l		(%sp),%a0 | 
 | 22781 | 	mov.w		&s_mode,%d1		# force rnd prec = sgl | 
 | 22782 | 	swap		%d1 | 
 | 22783 | 	mov.w		0x6(%sp),%d1		# load rnd mode | 
 | 22784 | 	andi.w		&0x30,%d1		# extract rnd prec | 
 | 22785 | 	lsr.w		&0x4,%d1 | 
 | 22786 | 	bsr.l		_round			# round the denorm | 
 | 22787 |  | 
 | 22788 | 	mov.l		(%sp)+,%a0 | 
 | 22789 |  | 
 | 22790 | # result is now rounded properly. convert back to normal format | 
 | 22791 | 	bclr		&0x7,FTEMP_EX(%a0)	# clear sgn first; may have residue | 
 | 22792 | 	tst.b		FTEMP_SGN(%a0)		# is "internal result" sign set? | 
 | 22793 | 	beq.b		unf_res4_chkifzero	# no; result is positive | 
 | 22794 | 	bset		&0x7,FTEMP_EX(%a0)	# set result sgn | 
 | 22795 | 	clr.b		FTEMP_SGN(%a0)		# clear temp sign | 
 | 22796 |  | 
 | 22797 | # the number may have become zero after rounding. set ccodes accordingly. | 
 | 22798 | unf_res4_chkifzero: | 
 | 22799 | 	clr.l		%d0 | 
 | 22800 | 	tst.l		FTEMP_HI(%a0)		# is value now a zero? | 
 | 22801 | 	bne.b		unf_res4_cont		# no | 
 | 22802 | 	tst.l		FTEMP_LO(%a0) | 
 | 22803 | 	bne.b		unf_res4_cont		# no | 
 | 22804 | #	bset		&z_bit,FPSR_CC(%a6)	# yes; set zero ccode bit | 
 | 22805 | 	bset		&z_bit,%d0		# yes; set zero ccode bit | 
 | 22806 |  | 
 | 22807 | unf_res4_cont: | 
 | 22808 |  | 
 | 22809 | # | 
 | 22810 | # can inex1 also be set along with unfl and inex2??? | 
 | 22811 | # | 
 | 22812 | # we know that underflow has occurred. aunfl should be set if INEX2 is also set. | 
 | 22813 | # | 
 | 22814 | 	btst		&inex2_bit,FPSR_EXCEPT(%a6) # is INEX2 set? | 
 | 22815 | 	beq.b		unf_res4_end		# no | 
 | 22816 | 	bset		&aunfl_bit,FPSR_AEXCEPT(%a6) # yes; set aunfl | 
 | 22817 |  | 
 | 22818 | unf_res4_end: | 
 | 22819 | 	add.l		&0x4,%sp		# clear stack | 
 | 22820 | 	rts | 
 | 22821 |  | 
 | 22822 | ######################################################################### | 
 | 22823 | # XDEF ****************************************************************	# | 
 | 22824 | #	ovf_res(): routine to produce the default overflow result of	# | 
 | 22825 | #		   an overflowing number.				# | 
 | 22826 | #	ovf_res2(): same as above but the rnd mode/prec are passed	# | 
 | 22827 | #		    differently.					# | 
 | 22828 | #									# | 
 | 22829 | # XREF ****************************************************************	# | 
 | 22830 | #	none								# | 
 | 22831 | #									# | 
 | 22832 | # INPUT ***************************************************************	# | 
 | 22833 | #	d1.b	= '-1' => (-); '0' => (+)				# | 
 | 22834 | #   ovf_res():								# | 
 | 22835 | #	d0	= rnd mode/prec						# | 
 | 22836 | #   ovf_res2():								# | 
 | 22837 | #	hi(d0)	= rnd prec						# | 
 | 22838 | #	lo(d0)	= rnd mode						# | 
 | 22839 | #									# | 
 | 22840 | # OUTPUT **************************************************************	# | 
 | 22841 | #	a0	= points to extended precision result			# | 
 | 22842 | #	d0.b	= condition code bits					# | 
 | 22843 | #									# | 
 | 22844 | # ALGORITHM ***********************************************************	# | 
 | 22845 | #	The default overflow result can be determined by the sign of	# | 
 | 22846 | # the result and the rounding mode/prec in effect. These bits are	# | 
 | 22847 | # concatenated together to create an index into the default result	# | 
 | 22848 | # table. A pointer to the correct result is returned in a0. The		# | 
 | 22849 | # resulting condition codes are returned in d0 in case the caller	# | 
 | 22850 | # doesn't want FPSR_cc altered (as is the case for fmove out).		# | 
 | 22851 | #									# | 
 | 22852 | ######################################################################### | 
 | 22853 |  | 
 | 22854 | 	global		ovf_res | 
 | 22855 | ovf_res: | 
 | 22856 | 	andi.w		&0x10,%d1		# keep result sign | 
 | 22857 | 	lsr.b		&0x4,%d0		# shift prec/mode | 
 | 22858 | 	or.b		%d0,%d1			# concat the two | 
 | 22859 | 	mov.w		%d1,%d0			# make a copy | 
 | 22860 | 	lsl.b		&0x1,%d1		# multiply d1 by 2 | 
 | 22861 | 	bra.b		ovf_res_load | 
 | 22862 |  | 
 | 22863 | 	global		ovf_res2 | 
 | 22864 | ovf_res2: | 
 | 22865 | 	and.w		&0x10, %d1		# keep result sign | 
 | 22866 | 	or.b		%d0, %d1		# insert rnd mode | 
 | 22867 | 	swap		%d0 | 
 | 22868 | 	or.b		%d0, %d1		# insert rnd prec | 
 | 22869 | 	mov.w		%d1, %d0		# make a copy | 
 | 22870 | 	lsl.b		&0x1, %d1		# shift left by 1 | 
 | 22871 |  | 
 | 22872 | # | 
 | 22873 | # use the rounding mode, precision, and result sign as in index into the | 
 | 22874 | # two tables below to fetch the default result and the result ccodes. | 
 | 22875 | # | 
 | 22876 | ovf_res_load: | 
 | 22877 | 	mov.b		(tbl_ovfl_cc.b,%pc,%d0.w*1), %d0 # fetch result ccodes | 
 | 22878 | 	lea		(tbl_ovfl_result.b,%pc,%d1.w*8), %a0 # return result ptr | 
 | 22879 |  | 
 | 22880 | 	rts | 
 | 22881 |  | 
 | 22882 | tbl_ovfl_cc: | 
 | 22883 | 	byte		0x2, 0x0, 0x0, 0x2 | 
 | 22884 | 	byte		0x2, 0x0, 0x0, 0x2 | 
 | 22885 | 	byte		0x2, 0x0, 0x0, 0x2 | 
 | 22886 | 	byte		0x0, 0x0, 0x0, 0x0 | 
 | 22887 | 	byte		0x2+0x8, 0x8, 0x2+0x8, 0x8 | 
 | 22888 | 	byte		0x2+0x8, 0x8, 0x2+0x8, 0x8 | 
 | 22889 | 	byte		0x2+0x8, 0x8, 0x2+0x8, 0x8 | 
 | 22890 |  | 
 | 22891 | tbl_ovfl_result: | 
 | 22892 | 	long		0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RN | 
 | 22893 | 	long		0x7ffe0000,0xffffffff,0xffffffff,0x00000000 # +EXT; RZ | 
 | 22894 | 	long		0x7ffe0000,0xffffffff,0xffffffff,0x00000000 # +EXT; RM | 
 | 22895 | 	long		0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RP | 
 | 22896 |  | 
 | 22897 | 	long		0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RN | 
 | 22898 | 	long		0x407e0000,0xffffff00,0x00000000,0x00000000 # +SGL; RZ | 
 | 22899 | 	long		0x407e0000,0xffffff00,0x00000000,0x00000000 # +SGL; RM | 
 | 22900 | 	long		0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RP | 
 | 22901 |  | 
 | 22902 | 	long		0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RN | 
 | 22903 | 	long		0x43fe0000,0xffffffff,0xfffff800,0x00000000 # +DBL; RZ | 
 | 22904 | 	long		0x43fe0000,0xffffffff,0xfffff800,0x00000000 # +DBL; RM | 
 | 22905 | 	long		0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RP | 
 | 22906 |  | 
 | 22907 | 	long		0x00000000,0x00000000,0x00000000,0x00000000 | 
 | 22908 | 	long		0x00000000,0x00000000,0x00000000,0x00000000 | 
 | 22909 | 	long		0x00000000,0x00000000,0x00000000,0x00000000 | 
 | 22910 | 	long		0x00000000,0x00000000,0x00000000,0x00000000 | 
 | 22911 |  | 
 | 22912 | 	long		0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RN | 
 | 22913 | 	long		0xfffe0000,0xffffffff,0xffffffff,0x00000000 # -EXT; RZ | 
 | 22914 | 	long		0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RM | 
 | 22915 | 	long		0xfffe0000,0xffffffff,0xffffffff,0x00000000 # -EXT; RP | 
 | 22916 |  | 
 | 22917 | 	long		0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RN | 
 | 22918 | 	long		0xc07e0000,0xffffff00,0x00000000,0x00000000 # -SGL; RZ | 
 | 22919 | 	long		0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RM | 
 | 22920 | 	long		0xc07e0000,0xffffff00,0x00000000,0x00000000 # -SGL; RP | 
 | 22921 |  | 
 | 22922 | 	long		0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RN | 
 | 22923 | 	long		0xc3fe0000,0xffffffff,0xfffff800,0x00000000 # -DBL; RZ | 
 | 22924 | 	long		0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RM | 
 | 22925 | 	long		0xc3fe0000,0xffffffff,0xfffff800,0x00000000 # -DBL; RP | 
 | 22926 |  | 
 | 22927 | ######################################################################### | 
 | 22928 | # XDEF ****************************************************************	# | 
 | 22929 | #	get_packed(): fetch a packed operand from memory and then	# | 
 | 22930 | #		      convert it to a floating-point binary number.	# | 
 | 22931 | #									# | 
 | 22932 | # XREF ****************************************************************	# | 
 | 22933 | #	_dcalc_ea() - calculate the correct <ea>			# | 
 | 22934 | #	_mem_read() - fetch the packed operand from memory		# | 
 | 22935 | #	facc_in_x() - the fetch failed so jump to special exit code	# | 
 | 22936 | #	decbin()    - convert packed to binary extended precision	# | 
 | 22937 | #									# | 
 | 22938 | # INPUT ***************************************************************	# | 
 | 22939 | #	None								# | 
 | 22940 | #									# | 
 | 22941 | # OUTPUT **************************************************************	# | 
 | 22942 | #	If no failure on _mem_read():					# | 
 | 22943 | #	FP_SRC(a6) = packed operand now as a binary FP number		# | 
 | 22944 | #									# | 
 | 22945 | # ALGORITHM ***********************************************************	# | 
 | 22946 | #	Get the correct <ea> whihc is the value on the exception stack	# | 
 | 22947 | # frame w/ maybe a correction factor if the <ea> is -(an) or (an)+.	# | 
 | 22948 | # Then, fetch the operand from memory. If the fetch fails, exit		# | 
 | 22949 | # through facc_in_x().							# | 
 | 22950 | #	If the packed operand is a ZERO,NAN, or INF, convert it to	# | 
 | 22951 | # its binary representation here. Else, call decbin() which will	# | 
 | 22952 | # convert the packed value to an extended precision binary value.	# | 
 | 22953 | #									# | 
 | 22954 | ######################################################################### | 
 | 22955 |  | 
 | 22956 | # the stacked <ea> for packed is correct except for -(An). | 
 | 22957 | # the base reg must be updated for both -(An) and (An)+. | 
 | 22958 | 	global		get_packed | 
 | 22959 | get_packed: | 
 | 22960 | 	mov.l		&0xc,%d0		# packed is 12 bytes | 
 | 22961 | 	bsr.l		_dcalc_ea		# fetch <ea>; correct An | 
 | 22962 |  | 
 | 22963 | 	lea		FP_SRC(%a6),%a1		# pass: ptr to super dst | 
 | 22964 | 	mov.l		&0xc,%d0		# pass: 12 bytes | 
 | 22965 | 	bsr.l		_dmem_read		# read packed operand | 
 | 22966 |  | 
 | 22967 | 	tst.l		%d1			# did dfetch fail? | 
 | 22968 | 	bne.l		facc_in_x		# yes | 
 | 22969 |  | 
 | 22970 | # The packed operand is an INF or a NAN if the exponent field is all ones. | 
 | 22971 | 	bfextu		FP_SRC(%a6){&1:&15},%d0	# get exp | 
 | 22972 | 	cmpi.w		%d0,&0x7fff		# INF or NAN? | 
 | 22973 | 	bne.b		gp_try_zero		# no | 
 | 22974 | 	rts					# operand is an INF or NAN | 
 | 22975 |  | 
 | 22976 | # The packed operand is a zero if the mantissa is all zero, else it's | 
 | 22977 | # a normal packed op. | 
 | 22978 | gp_try_zero: | 
 | 22979 | 	mov.b		3+FP_SRC(%a6),%d0	# get byte 4 | 
 | 22980 | 	andi.b		&0x0f,%d0		# clear all but last nybble | 
 | 22981 | 	bne.b		gp_not_spec		# not a zero | 
 | 22982 | 	tst.l		FP_SRC_HI(%a6)		# is lw 2 zero? | 
 | 22983 | 	bne.b		gp_not_spec		# not a zero | 
 | 22984 | 	tst.l		FP_SRC_LO(%a6)		# is lw 3 zero? | 
 | 22985 | 	bne.b		gp_not_spec		# not a zero | 
 | 22986 | 	rts					# operand is a ZERO | 
 | 22987 | gp_not_spec: | 
 | 22988 | 	lea		FP_SRC(%a6),%a0		# pass: ptr to packed op | 
 | 22989 | 	bsr.l		decbin			# convert to extended | 
 | 22990 | 	fmovm.x		&0x80,FP_SRC(%a6)	# make this the srcop | 
 | 22991 | 	rts | 
 | 22992 |  | 
 | 22993 | ######################################################################### | 
 | 22994 | # decbin(): Converts normalized packed bcd value pointed to by register	# | 
 | 22995 | #	    a0 to extended-precision value in fp0.			# | 
 | 22996 | #									# | 
 | 22997 | # INPUT ***************************************************************	# | 
 | 22998 | #	a0 = pointer to normalized packed bcd value			# | 
 | 22999 | #									# | 
 | 23000 | # OUTPUT **************************************************************	# | 
 | 23001 | #	fp0 = exact fp representation of the packed bcd value.		# | 
 | 23002 | #									# | 
 | 23003 | # ALGORITHM ***********************************************************	# | 
 | 23004 | #	Expected is a normal bcd (i.e. non-exceptional; all inf, zero,	# | 
 | 23005 | #	and NaN operands are dispatched without entering this routine)	# | 
 | 23006 | #	value in 68881/882 format at location (a0).			# | 
 | 23007 | #									# | 
 | 23008 | #	A1. Convert the bcd exponent to binary by successive adds and	# | 
 | 23009 | #	muls. Set the sign according to SE. Subtract 16 to compensate	# | 
 | 23010 | #	for the mantissa which is to be interpreted as 17 integer	# | 
 | 23011 | #	digits, rather than 1 integer and 16 fraction digits.		# | 
 | 23012 | #	Note: this operation can never overflow.			# | 
 | 23013 | #									# | 
 | 23014 | #	A2. Convert the bcd mantissa to binary by successive		# | 
 | 23015 | #	adds and muls in FP0. Set the sign according to SM.		# | 
 | 23016 | #	The mantissa digits will be converted with the decimal point	# | 
 | 23017 | #	assumed following the least-significant digit.			# | 
 | 23018 | #	Note: this operation can never overflow.			# | 
 | 23019 | #									# | 
 | 23020 | #	A3. Count the number of leading/trailing zeros in the		# | 
 | 23021 | #	bcd string.  If SE is positive, count the leading zeros;	# | 
 | 23022 | #	if negative, count the trailing zeros.  Set the adjusted	# | 
 | 23023 | #	exponent equal to the exponent from A1 and the zero count	# | 
 | 23024 | #	added if SM = 1 and subtracted if SM = 0.  Scale the		# | 
 | 23025 | #	mantissa the equivalent of forcing in the bcd value:		# | 
 | 23026 | #									# | 
 | 23027 | #	SM = 0	a non-zero digit in the integer position		# | 
 | 23028 | #	SM = 1	a non-zero digit in Mant0, lsd of the fraction		# | 
 | 23029 | #									# | 
 | 23030 | #	this will insure that any value, regardless of its		# | 
 | 23031 | #	representation (ex. 0.1E2, 1E1, 10E0, 100E-1), is converted	# | 
 | 23032 | #	consistently.							# | 
 | 23033 | #									# | 
 | 23034 | #	A4. Calculate the factor 10^exp in FP1 using a table of		# | 
 | 23035 | #	10^(2^n) values.  To reduce the error in forming factors	# | 
 | 23036 | #	greater than 10^27, a directed rounding scheme is used with	# | 
 | 23037 | #	tables rounded to RN, RM, and RP, according to the table	# | 
 | 23038 | #	in the comments of the pwrten section.				# | 
 | 23039 | #									# | 
 | 23040 | #	A5. Form the final binary number by scaling the mantissa by	# | 
 | 23041 | #	the exponent factor.  This is done by multiplying the		# | 
 | 23042 | #	mantissa in FP0 by the factor in FP1 if the adjusted		# | 
 | 23043 | #	exponent sign is positive, and dividing FP0 by FP1 if		# | 
 | 23044 | #	it is negative.							# | 
 | 23045 | #									# | 
 | 23046 | #	Clean up and return. Check if the final mul or div was inexact.	# | 
 | 23047 | #	If so, set INEX1 in USER_FPSR.					# | 
 | 23048 | #									# | 
 | 23049 | ######################################################################### | 
 | 23050 |  | 
 | 23051 | # | 
 | 23052 | #	PTENRN, PTENRM, and PTENRP are arrays of powers of 10 rounded | 
 | 23053 | #	to nearest, minus, and plus, respectively.  The tables include | 
 | 23054 | #	10**{1,2,4,8,16,32,64,128,256,512,1024,2048,4096}.  No rounding | 
 | 23055 | #	is required until the power is greater than 27, however, all | 
 | 23056 | #	tables include the first 5 for ease of indexing. | 
 | 23057 | # | 
 | 23058 | RTABLE: | 
 | 23059 | 	byte		0,0,0,0 | 
 | 23060 | 	byte		2,3,2,3 | 
 | 23061 | 	byte		2,3,3,2 | 
 | 23062 | 	byte		3,2,2,3 | 
 | 23063 |  | 
 | 23064 | 	set		FNIBS,7 | 
 | 23065 | 	set		FSTRT,0 | 
 | 23066 |  | 
 | 23067 | 	set		ESTRT,4 | 
 | 23068 | 	set		EDIGITS,2 | 
 | 23069 |  | 
 | 23070 | 	global		decbin | 
 | 23071 | decbin: | 
 | 23072 | 	mov.l		0x0(%a0),FP_SCR0_EX(%a6) # make a copy of input | 
 | 23073 | 	mov.l		0x4(%a0),FP_SCR0_HI(%a6) # so we don't alter it | 
 | 23074 | 	mov.l		0x8(%a0),FP_SCR0_LO(%a6) | 
 | 23075 |  | 
 | 23076 | 	lea		FP_SCR0(%a6),%a0 | 
 | 23077 |  | 
 | 23078 | 	movm.l		&0x3c00,-(%sp)		# save d2-d5 | 
 | 23079 | 	fmovm.x		&0x1,-(%sp)		# save fp1 | 
 | 23080 | # | 
 | 23081 | # Calculate exponent: | 
 | 23082 | #  1. Copy bcd value in memory for use as a working copy. | 
 | 23083 | #  2. Calculate absolute value of exponent in d1 by mul and add. | 
 | 23084 | #  3. Correct for exponent sign. | 
 | 23085 | #  4. Subtract 16 to compensate for interpreting the mant as all integer digits. | 
 | 23086 | #     (i.e., all digits assumed left of the decimal point.) | 
 | 23087 | # | 
 | 23088 | # Register usage: | 
 | 23089 | # | 
 | 23090 | #  calc_e: | 
 | 23091 | #	(*)  d0: temp digit storage | 
 | 23092 | #	(*)  d1: accumulator for binary exponent | 
 | 23093 | #	(*)  d2: digit count | 
 | 23094 | #	(*)  d3: offset pointer | 
 | 23095 | #	( )  d4: first word of bcd | 
 | 23096 | #	( )  a0: pointer to working bcd value | 
 | 23097 | #	( )  a6: pointer to original bcd value | 
 | 23098 | #	(*)  FP_SCR1: working copy of original bcd value | 
 | 23099 | #	(*)  L_SCR1: copy of original exponent word | 
 | 23100 | # | 
 | 23101 | calc_e: | 
 | 23102 | 	mov.l		&EDIGITS,%d2		# # of nibbles (digits) in fraction part | 
 | 23103 | 	mov.l		&ESTRT,%d3		# counter to pick up digits | 
 | 23104 | 	mov.l		(%a0),%d4		# get first word of bcd | 
 | 23105 | 	clr.l		%d1			# zero d1 for accumulator | 
 | 23106 | e_gd: | 
 | 23107 | 	mulu.l		&0xa,%d1		# mul partial product by one digit place | 
 | 23108 | 	bfextu		%d4{%d3:&4},%d0		# get the digit and zero extend into d0 | 
 | 23109 | 	add.l		%d0,%d1			# d1 = d1 + d0 | 
 | 23110 | 	addq.b		&4,%d3			# advance d3 to the next digit | 
 | 23111 | 	dbf.w		%d2,e_gd		# if we have used all 3 digits, exit loop | 
 | 23112 | 	btst		&30,%d4			# get SE | 
 | 23113 | 	beq.b		e_pos			# don't negate if pos | 
 | 23114 | 	neg.l		%d1			# negate before subtracting | 
 | 23115 | e_pos: | 
 | 23116 | 	sub.l		&16,%d1			# sub to compensate for shift of mant | 
 | 23117 | 	bge.b		e_save			# if still pos, do not neg | 
 | 23118 | 	neg.l		%d1			# now negative, make pos and set SE | 
 | 23119 | 	or.l		&0x40000000,%d4		# set SE in d4, | 
 | 23120 | 	or.l		&0x40000000,(%a0)	# and in working bcd | 
 | 23121 | e_save: | 
 | 23122 | 	mov.l		%d1,-(%sp)		# save exp on stack | 
 | 23123 | # | 
 | 23124 | # | 
 | 23125 | # Calculate mantissa: | 
 | 23126 | #  1. Calculate absolute value of mantissa in fp0 by mul and add. | 
 | 23127 | #  2. Correct for mantissa sign. | 
 | 23128 | #     (i.e., all digits assumed left of the decimal point.) | 
 | 23129 | # | 
 | 23130 | # Register usage: | 
 | 23131 | # | 
 | 23132 | #  calc_m: | 
 | 23133 | #	(*)  d0: temp digit storage | 
 | 23134 | #	(*)  d1: lword counter | 
 | 23135 | #	(*)  d2: digit count | 
 | 23136 | #	(*)  d3: offset pointer | 
 | 23137 | #	( )  d4: words 2 and 3 of bcd | 
 | 23138 | #	( )  a0: pointer to working bcd value | 
 | 23139 | #	( )  a6: pointer to original bcd value | 
 | 23140 | #	(*) fp0: mantissa accumulator | 
 | 23141 | #	( )  FP_SCR1: working copy of original bcd value | 
 | 23142 | #	( )  L_SCR1: copy of original exponent word | 
 | 23143 | # | 
 | 23144 | calc_m: | 
 | 23145 | 	mov.l		&1,%d1			# word counter, init to 1 | 
 | 23146 | 	fmov.s		&0x00000000,%fp0	# accumulator | 
 | 23147 | # | 
 | 23148 | # | 
 | 23149 | #  Since the packed number has a long word between the first & second parts, | 
 | 23150 | #  get the integer digit then skip down & get the rest of the | 
 | 23151 | #  mantissa.  We will unroll the loop once. | 
 | 23152 | # | 
 | 23153 | 	bfextu		(%a0){&28:&4},%d0	# integer part is ls digit in long word | 
 | 23154 | 	fadd.b		%d0,%fp0		# add digit to sum in fp0 | 
 | 23155 | # | 
 | 23156 | # | 
 | 23157 | #  Get the rest of the mantissa. | 
 | 23158 | # | 
 | 23159 | loadlw: | 
 | 23160 | 	mov.l		(%a0,%d1.L*4),%d4	# load mantissa lonqword into d4 | 
 | 23161 | 	mov.l		&FSTRT,%d3		# counter to pick up digits | 
 | 23162 | 	mov.l		&FNIBS,%d2		# reset number of digits per a0 ptr | 
 | 23163 | md2b: | 
 | 23164 | 	fmul.s		&0x41200000,%fp0	# fp0 = fp0 * 10 | 
 | 23165 | 	bfextu		%d4{%d3:&4},%d0		# get the digit and zero extend | 
 | 23166 | 	fadd.b		%d0,%fp0		# fp0 = fp0 + digit | 
 | 23167 | # | 
 | 23168 | # | 
 | 23169 | #  If all the digits (8) in that long word have been converted (d2=0), | 
 | 23170 | #  then inc d1 (=2) to point to the next long word and reset d3 to 0 | 
 | 23171 | #  to initialize the digit offset, and set d2 to 7 for the digit count; | 
 | 23172 | #  else continue with this long word. | 
 | 23173 | # | 
 | 23174 | 	addq.b		&4,%d3			# advance d3 to the next digit | 
 | 23175 | 	dbf.w		%d2,md2b		# check for last digit in this lw | 
 | 23176 | nextlw: | 
 | 23177 | 	addq.l		&1,%d1			# inc lw pointer in mantissa | 
 | 23178 | 	cmp.l		%d1,&2			# test for last lw | 
 | 23179 | 	ble.b		loadlw			# if not, get last one | 
 | 23180 | # | 
 | 23181 | #  Check the sign of the mant and make the value in fp0 the same sign. | 
 | 23182 | # | 
 | 23183 | m_sign: | 
 | 23184 | 	btst		&31,(%a0)		# test sign of the mantissa | 
 | 23185 | 	beq.b		ap_st_z			# if clear, go to append/strip zeros | 
 | 23186 | 	fneg.x		%fp0			# if set, negate fp0 | 
 | 23187 | # | 
 | 23188 | # Append/strip zeros: | 
 | 23189 | # | 
 | 23190 | #  For adjusted exponents which have an absolute value greater than 27*, | 
 | 23191 | #  this routine calculates the amount needed to normalize the mantissa | 
 | 23192 | #  for the adjusted exponent.  That number is subtracted from the exp | 
 | 23193 | #  if the exp was positive, and added if it was negative.  The purpose | 
 | 23194 | #  of this is to reduce the value of the exponent and the possibility | 
 | 23195 | #  of error in calculation of pwrten. | 
 | 23196 | # | 
 | 23197 | #  1. Branch on the sign of the adjusted exponent. | 
 | 23198 | #  2p.(positive exp) | 
 | 23199 | #   2. Check M16 and the digits in lwords 2 and 3 in decending order. | 
 | 23200 | #   3. Add one for each zero encountered until a non-zero digit. | 
 | 23201 | #   4. Subtract the count from the exp. | 
 | 23202 | #   5. Check if the exp has crossed zero in #3 above; make the exp abs | 
 | 23203 | #	   and set SE. | 
 | 23204 | #	6. Multiply the mantissa by 10**count. | 
 | 23205 | #  2n.(negative exp) | 
 | 23206 | #   2. Check the digits in lwords 3 and 2 in decending order. | 
 | 23207 | #   3. Add one for each zero encountered until a non-zero digit. | 
 | 23208 | #   4. Add the count to the exp. | 
 | 23209 | #   5. Check if the exp has crossed zero in #3 above; clear SE. | 
 | 23210 | #   6. Divide the mantissa by 10**count. | 
 | 23211 | # | 
 | 23212 | #  *Why 27?  If the adjusted exponent is within -28 < expA < 28, than | 
 | 23213 | #   any adjustment due to append/strip zeros will drive the resultane | 
 | 23214 | #   exponent towards zero.  Since all pwrten constants with a power | 
 | 23215 | #   of 27 or less are exact, there is no need to use this routine to | 
 | 23216 | #   attempt to lessen the resultant exponent. | 
 | 23217 | # | 
 | 23218 | # Register usage: | 
 | 23219 | # | 
 | 23220 | #  ap_st_z: | 
 | 23221 | #	(*)  d0: temp digit storage | 
 | 23222 | #	(*)  d1: zero count | 
 | 23223 | #	(*)  d2: digit count | 
 | 23224 | #	(*)  d3: offset pointer | 
 | 23225 | #	( )  d4: first word of bcd | 
 | 23226 | #	(*)  d5: lword counter | 
 | 23227 | #	( )  a0: pointer to working bcd value | 
 | 23228 | #	( )  FP_SCR1: working copy of original bcd value | 
 | 23229 | #	( )  L_SCR1: copy of original exponent word | 
 | 23230 | # | 
 | 23231 | # | 
 | 23232 | # First check the absolute value of the exponent to see if this | 
 | 23233 | # routine is necessary.  If so, then check the sign of the exponent | 
 | 23234 | # and do append (+) or strip (-) zeros accordingly. | 
 | 23235 | # This section handles a positive adjusted exponent. | 
 | 23236 | # | 
 | 23237 | ap_st_z: | 
 | 23238 | 	mov.l		(%sp),%d1		# load expA for range test | 
 | 23239 | 	cmp.l		%d1,&27			# test is with 27 | 
 | 23240 | 	ble.w		pwrten			# if abs(expA) <28, skip ap/st zeros | 
 | 23241 | 	btst		&30,(%a0)		# check sign of exp | 
 | 23242 | 	bne.b		ap_st_n			# if neg, go to neg side | 
 | 23243 | 	clr.l		%d1			# zero count reg | 
 | 23244 | 	mov.l		(%a0),%d4		# load lword 1 to d4 | 
 | 23245 | 	bfextu		%d4{&28:&4},%d0		# get M16 in d0 | 
 | 23246 | 	bne.b		ap_p_fx			# if M16 is non-zero, go fix exp | 
 | 23247 | 	addq.l		&1,%d1			# inc zero count | 
 | 23248 | 	mov.l		&1,%d5			# init lword counter | 
 | 23249 | 	mov.l		(%a0,%d5.L*4),%d4	# get lword 2 to d4 | 
 | 23250 | 	bne.b		ap_p_cl			# if lw 2 is zero, skip it | 
 | 23251 | 	addq.l		&8,%d1			# and inc count by 8 | 
 | 23252 | 	addq.l		&1,%d5			# inc lword counter | 
 | 23253 | 	mov.l		(%a0,%d5.L*4),%d4	# get lword 3 to d4 | 
 | 23254 | ap_p_cl: | 
 | 23255 | 	clr.l		%d3			# init offset reg | 
 | 23256 | 	mov.l		&7,%d2			# init digit counter | 
 | 23257 | ap_p_gd: | 
 | 23258 | 	bfextu		%d4{%d3:&4},%d0		# get digit | 
 | 23259 | 	bne.b		ap_p_fx			# if non-zero, go to fix exp | 
 | 23260 | 	addq.l		&4,%d3			# point to next digit | 
 | 23261 | 	addq.l		&1,%d1			# inc digit counter | 
 | 23262 | 	dbf.w		%d2,ap_p_gd		# get next digit | 
 | 23263 | ap_p_fx: | 
 | 23264 | 	mov.l		%d1,%d0			# copy counter to d2 | 
 | 23265 | 	mov.l		(%sp),%d1		# get adjusted exp from memory | 
 | 23266 | 	sub.l		%d0,%d1			# subtract count from exp | 
 | 23267 | 	bge.b		ap_p_fm			# if still pos, go to pwrten | 
 | 23268 | 	neg.l		%d1			# now its neg; get abs | 
 | 23269 | 	mov.l		(%a0),%d4		# load lword 1 to d4 | 
 | 23270 | 	or.l		&0x40000000,%d4		# and set SE in d4 | 
 | 23271 | 	or.l		&0x40000000,(%a0)	# and in memory | 
 | 23272 | # | 
 | 23273 | # Calculate the mantissa multiplier to compensate for the striping of | 
 | 23274 | # zeros from the mantissa. | 
 | 23275 | # | 
 | 23276 | ap_p_fm: | 
 | 23277 | 	lea.l		PTENRN(%pc),%a1		# get address of power-of-ten table | 
 | 23278 | 	clr.l		%d3			# init table index | 
 | 23279 | 	fmov.s		&0x3f800000,%fp1	# init fp1 to 1 | 
 | 23280 | 	mov.l		&3,%d2			# init d2 to count bits in counter | 
 | 23281 | ap_p_el: | 
 | 23282 | 	asr.l		&1,%d0			# shift lsb into carry | 
 | 23283 | 	bcc.b		ap_p_en			# if 1, mul fp1 by pwrten factor | 
 | 23284 | 	fmul.x		(%a1,%d3),%fp1		# mul by 10**(d3_bit_no) | 
 | 23285 | ap_p_en: | 
 | 23286 | 	add.l		&12,%d3			# inc d3 to next rtable entry | 
 | 23287 | 	tst.l		%d0			# check if d0 is zero | 
 | 23288 | 	bne.b		ap_p_el			# if not, get next bit | 
 | 23289 | 	fmul.x		%fp1,%fp0		# mul mantissa by 10**(no_bits_shifted) | 
 | 23290 | 	bra.b		pwrten			# go calc pwrten | 
 | 23291 | # | 
 | 23292 | # This section handles a negative adjusted exponent. | 
 | 23293 | # | 
 | 23294 | ap_st_n: | 
 | 23295 | 	clr.l		%d1			# clr counter | 
 | 23296 | 	mov.l		&2,%d5			# set up d5 to point to lword 3 | 
 | 23297 | 	mov.l		(%a0,%d5.L*4),%d4	# get lword 3 | 
 | 23298 | 	bne.b		ap_n_cl			# if not zero, check digits | 
 | 23299 | 	sub.l		&1,%d5			# dec d5 to point to lword 2 | 
 | 23300 | 	addq.l		&8,%d1			# inc counter by 8 | 
 | 23301 | 	mov.l		(%a0,%d5.L*4),%d4	# get lword 2 | 
 | 23302 | ap_n_cl: | 
 | 23303 | 	mov.l		&28,%d3			# point to last digit | 
 | 23304 | 	mov.l		&7,%d2			# init digit counter | 
 | 23305 | ap_n_gd: | 
 | 23306 | 	bfextu		%d4{%d3:&4},%d0		# get digit | 
 | 23307 | 	bne.b		ap_n_fx			# if non-zero, go to exp fix | 
 | 23308 | 	subq.l		&4,%d3			# point to previous digit | 
 | 23309 | 	addq.l		&1,%d1			# inc digit counter | 
 | 23310 | 	dbf.w		%d2,ap_n_gd		# get next digit | 
 | 23311 | ap_n_fx: | 
 | 23312 | 	mov.l		%d1,%d0			# copy counter to d0 | 
 | 23313 | 	mov.l		(%sp),%d1		# get adjusted exp from memory | 
 | 23314 | 	sub.l		%d0,%d1			# subtract count from exp | 
 | 23315 | 	bgt.b		ap_n_fm			# if still pos, go fix mantissa | 
 | 23316 | 	neg.l		%d1			# take abs of exp and clr SE | 
 | 23317 | 	mov.l		(%a0),%d4		# load lword 1 to d4 | 
 | 23318 | 	and.l		&0xbfffffff,%d4		# and clr SE in d4 | 
 | 23319 | 	and.l		&0xbfffffff,(%a0)	# and in memory | 
 | 23320 | # | 
 | 23321 | # Calculate the mantissa multiplier to compensate for the appending of | 
 | 23322 | # zeros to the mantissa. | 
 | 23323 | # | 
 | 23324 | ap_n_fm: | 
 | 23325 | 	lea.l		PTENRN(%pc),%a1		# get address of power-of-ten table | 
 | 23326 | 	clr.l		%d3			# init table index | 
 | 23327 | 	fmov.s		&0x3f800000,%fp1	# init fp1 to 1 | 
 | 23328 | 	mov.l		&3,%d2			# init d2 to count bits in counter | 
 | 23329 | ap_n_el: | 
 | 23330 | 	asr.l		&1,%d0			# shift lsb into carry | 
 | 23331 | 	bcc.b		ap_n_en			# if 1, mul fp1 by pwrten factor | 
 | 23332 | 	fmul.x		(%a1,%d3),%fp1		# mul by 10**(d3_bit_no) | 
 | 23333 | ap_n_en: | 
 | 23334 | 	add.l		&12,%d3			# inc d3 to next rtable entry | 
 | 23335 | 	tst.l		%d0			# check if d0 is zero | 
 | 23336 | 	bne.b		ap_n_el			# if not, get next bit | 
 | 23337 | 	fdiv.x		%fp1,%fp0		# div mantissa by 10**(no_bits_shifted) | 
 | 23338 | # | 
 | 23339 | # | 
 | 23340 | # Calculate power-of-ten factor from adjusted and shifted exponent. | 
 | 23341 | # | 
 | 23342 | # Register usage: | 
 | 23343 | # | 
 | 23344 | #  pwrten: | 
 | 23345 | #	(*)  d0: temp | 
 | 23346 | #	( )  d1: exponent | 
 | 23347 | #	(*)  d2: {FPCR[6:5],SM,SE} as index in RTABLE; temp | 
 | 23348 | #	(*)  d3: FPCR work copy | 
 | 23349 | #	( )  d4: first word of bcd | 
 | 23350 | #	(*)  a1: RTABLE pointer | 
 | 23351 | #  calc_p: | 
 | 23352 | #	(*)  d0: temp | 
 | 23353 | #	( )  d1: exponent | 
 | 23354 | #	(*)  d3: PWRTxx table index | 
 | 23355 | #	( )  a0: pointer to working copy of bcd | 
 | 23356 | #	(*)  a1: PWRTxx pointer | 
 | 23357 | #	(*) fp1: power-of-ten accumulator | 
 | 23358 | # | 
 | 23359 | # Pwrten calculates the exponent factor in the selected rounding mode | 
 | 23360 | # according to the following table: | 
 | 23361 | # | 
 | 23362 | #	Sign of Mant  Sign of Exp  Rounding Mode  PWRTEN Rounding Mode | 
 | 23363 | # | 
 | 23364 | #	ANY	  ANY	RN	RN | 
 | 23365 | # | 
 | 23366 | #	 +	   +	RP	RP | 
 | 23367 | #	 -	   +	RP	RM | 
 | 23368 | #	 +	   -	RP	RM | 
 | 23369 | #	 -	   -	RP	RP | 
 | 23370 | # | 
 | 23371 | #	 +	   +	RM	RM | 
 | 23372 | #	 -	   +	RM	RP | 
 | 23373 | #	 +	   -	RM	RP | 
 | 23374 | #	 -	   -	RM	RM | 
 | 23375 | # | 
 | 23376 | #	 +	   +	RZ	RM | 
 | 23377 | #	 -	   +	RZ	RM | 
 | 23378 | #	 +	   -	RZ	RP | 
 | 23379 | #	 -	   -	RZ	RP | 
 | 23380 | # | 
 | 23381 | # | 
 | 23382 | pwrten: | 
 | 23383 | 	mov.l		USER_FPCR(%a6),%d3	# get user's FPCR | 
 | 23384 | 	bfextu		%d3{&26:&2},%d2		# isolate rounding mode bits | 
 | 23385 | 	mov.l		(%a0),%d4		# reload 1st bcd word to d4 | 
 | 23386 | 	asl.l		&2,%d2			# format d2 to be | 
 | 23387 | 	bfextu		%d4{&0:&2},%d0		# {FPCR[6],FPCR[5],SM,SE} | 
 | 23388 | 	add.l		%d0,%d2			# in d2 as index into RTABLE | 
 | 23389 | 	lea.l		RTABLE(%pc),%a1		# load rtable base | 
 | 23390 | 	mov.b		(%a1,%d2),%d0		# load new rounding bits from table | 
 | 23391 | 	clr.l		%d3			# clear d3 to force no exc and extended | 
 | 23392 | 	bfins		%d0,%d3{&26:&2}		# stuff new rounding bits in FPCR | 
 | 23393 | 	fmov.l		%d3,%fpcr		# write new FPCR | 
 | 23394 | 	asr.l		&1,%d0			# write correct PTENxx table | 
 | 23395 | 	bcc.b		not_rp			# to a1 | 
 | 23396 | 	lea.l		PTENRP(%pc),%a1		# it is RP | 
 | 23397 | 	bra.b		calc_p			# go to init section | 
 | 23398 | not_rp: | 
 | 23399 | 	asr.l		&1,%d0			# keep checking | 
 | 23400 | 	bcc.b		not_rm | 
 | 23401 | 	lea.l		PTENRM(%pc),%a1		# it is RM | 
 | 23402 | 	bra.b		calc_p			# go to init section | 
 | 23403 | not_rm: | 
 | 23404 | 	lea.l		PTENRN(%pc),%a1		# it is RN | 
 | 23405 | calc_p: | 
 | 23406 | 	mov.l		%d1,%d0			# copy exp to d0;use d0 | 
 | 23407 | 	bpl.b		no_neg			# if exp is negative, | 
 | 23408 | 	neg.l		%d0			# invert it | 
 | 23409 | 	or.l		&0x40000000,(%a0)	# and set SE bit | 
 | 23410 | no_neg: | 
 | 23411 | 	clr.l		%d3			# table index | 
 | 23412 | 	fmov.s		&0x3f800000,%fp1	# init fp1 to 1 | 
 | 23413 | e_loop: | 
 | 23414 | 	asr.l		&1,%d0			# shift next bit into carry | 
 | 23415 | 	bcc.b		e_next			# if zero, skip the mul | 
 | 23416 | 	fmul.x		(%a1,%d3),%fp1		# mul by 10**(d3_bit_no) | 
 | 23417 | e_next: | 
 | 23418 | 	add.l		&12,%d3			# inc d3 to next rtable entry | 
 | 23419 | 	tst.l		%d0			# check if d0 is zero | 
 | 23420 | 	bne.b		e_loop			# not zero, continue shifting | 
 | 23421 | # | 
 | 23422 | # | 
 | 23423 | #  Check the sign of the adjusted exp and make the value in fp0 the | 
 | 23424 | #  same sign. If the exp was pos then multiply fp1*fp0; | 
 | 23425 | #  else divide fp0/fp1. | 
 | 23426 | # | 
 | 23427 | # Register Usage: | 
 | 23428 | #  norm: | 
 | 23429 | #	( )  a0: pointer to working bcd value | 
 | 23430 | #	(*) fp0: mantissa accumulator | 
 | 23431 | #	( ) fp1: scaling factor - 10**(abs(exp)) | 
 | 23432 | # | 
 | 23433 | pnorm: | 
 | 23434 | 	btst		&30,(%a0)		# test the sign of the exponent | 
 | 23435 | 	beq.b		mul			# if clear, go to multiply | 
 | 23436 | div: | 
 | 23437 | 	fdiv.x		%fp1,%fp0		# exp is negative, so divide mant by exp | 
 | 23438 | 	bra.b		end_dec | 
 | 23439 | mul: | 
 | 23440 | 	fmul.x		%fp1,%fp0		# exp is positive, so multiply by exp | 
 | 23441 | # | 
 | 23442 | # | 
 | 23443 | # Clean up and return with result in fp0. | 
 | 23444 | # | 
 | 23445 | # If the final mul/div in decbin incurred an inex exception, | 
 | 23446 | # it will be inex2, but will be reported as inex1 by get_op. | 
 | 23447 | # | 
 | 23448 | end_dec: | 
 | 23449 | 	fmov.l		%fpsr,%d0		# get status register | 
 | 23450 | 	bclr		&inex2_bit+8,%d0	# test for inex2 and clear it | 
 | 23451 | 	beq.b		no_exc			# skip this if no exc | 
 | 23452 | 	ori.w		&inx1a_mask,2+USER_FPSR(%a6) # set INEX1/AINEX | 
 | 23453 | no_exc: | 
 | 23454 | 	add.l		&0x4,%sp		# clear 1 lw param | 
 | 23455 | 	fmovm.x		(%sp)+,&0x40		# restore fp1 | 
 | 23456 | 	movm.l		(%sp)+,&0x3c		# restore d2-d5 | 
 | 23457 | 	fmov.l		&0x0,%fpcr | 
 | 23458 | 	fmov.l		&0x0,%fpsr | 
 | 23459 | 	rts | 
 | 23460 |  | 
 | 23461 | ######################################################################### | 
 | 23462 | # bindec(): Converts an input in extended precision format to bcd format# | 
 | 23463 | #									# | 
 | 23464 | # INPUT ***************************************************************	# | 
 | 23465 | #	a0 = pointer to the input extended precision value in memory.	# | 
 | 23466 | #	     the input may be either normalized, unnormalized, or	# | 
 | 23467 | #	     denormalized.						# | 
 | 23468 | #	d0 = contains the k-factor sign-extended to 32-bits.		# | 
 | 23469 | #									# | 
 | 23470 | # OUTPUT **************************************************************	# | 
 | 23471 | #	FP_SCR0(a6) = bcd format result on the stack.			# | 
 | 23472 | #									# | 
 | 23473 | # ALGORITHM ***********************************************************	# | 
 | 23474 | #									# | 
 | 23475 | #	A1.	Set RM and size ext;  Set SIGMA = sign of input.	# | 
 | 23476 | #		The k-factor is saved for use in d7. Clear the		# | 
 | 23477 | #		BINDEC_FLG for separating normalized/denormalized	# | 
 | 23478 | #		input.  If input is unnormalized or denormalized,	# | 
 | 23479 | #		normalize it.						# | 
 | 23480 | #									# | 
 | 23481 | #	A2.	Set X = abs(input).					# | 
 | 23482 | #									# | 
 | 23483 | #	A3.	Compute ILOG.						# | 
 | 23484 | #		ILOG is the log base 10 of the input value.  It is	# | 
 | 23485 | #		approximated by adding e + 0.f when the original	# | 
 | 23486 | #		value is viewed as 2^^e * 1.f in extended precision.	# | 
 | 23487 | #		This value is stored in d6.				# | 
 | 23488 | #									# | 
 | 23489 | #	A4.	Clr INEX bit.						# | 
 | 23490 | #		The operation in A3 above may have set INEX2.		# | 
 | 23491 | #									# | 
 | 23492 | #	A5.	Set ICTR = 0;						# | 
 | 23493 | #		ICTR is a flag used in A13.  It must be set before the	# | 
 | 23494 | #		loop entry A6.						# | 
 | 23495 | #									# | 
 | 23496 | #	A6.	Calculate LEN.						# | 
 | 23497 | #		LEN is the number of digits to be displayed.  The	# | 
 | 23498 | #		k-factor can dictate either the total number of digits,	# | 
 | 23499 | #		if it is a positive number, or the number of digits	# | 
 | 23500 | #		after the decimal point which are to be included as	# | 
 | 23501 | #		significant.  See the 68882 manual for examples.	# | 
 | 23502 | #		If LEN is computed to be greater than 17, set OPERR in	# | 
 | 23503 | #		USER_FPSR.  LEN is stored in d4.			# | 
 | 23504 | #									# | 
 | 23505 | #	A7.	Calculate SCALE.					# | 
 | 23506 | #		SCALE is equal to 10^ISCALE, where ISCALE is the number	# | 
 | 23507 | #		of decimal places needed to insure LEN integer digits	# | 
 | 23508 | #		in the output before conversion to bcd. LAMBDA is the	# | 
 | 23509 | #		sign of ISCALE, used in A9. Fp1 contains		# | 
 | 23510 | #		10^^(abs(ISCALE)) using a rounding mode which is a	# | 
 | 23511 | #		function of the original rounding mode and the signs	# | 
 | 23512 | #		of ISCALE and X.  A table is given in the code.		# | 
 | 23513 | #									# | 
 | 23514 | #	A8.	Clr INEX; Force RZ.					# | 
 | 23515 | #		The operation in A3 above may have set INEX2.		# | 
 | 23516 | #		RZ mode is forced for the scaling operation to insure	# | 
 | 23517 | #		only one rounding error.  The grs bits are collected in # | 
 | 23518 | #		the INEX flag for use in A10.				# | 
 | 23519 | #									# | 
 | 23520 | #	A9.	Scale X -> Y.						# | 
 | 23521 | #		The mantissa is scaled to the desired number of		# | 
 | 23522 | #		significant digits.  The excess digits are collected	# | 
 | 23523 | #		in INEX2.						# | 
 | 23524 | #									# | 
 | 23525 | #	A10.	Or in INEX.						# | 
 | 23526 | #		If INEX is set, round error occurred.  This is		# | 
 | 23527 | #		compensated for by 'or-ing' in the INEX2 flag to	# | 
 | 23528 | #		the lsb of Y.						# | 
 | 23529 | #									# | 
 | 23530 | #	A11.	Restore original FPCR; set size ext.			# | 
 | 23531 | #		Perform FINT operation in the user's rounding mode.	# | 
 | 23532 | #		Keep the size to extended.				# | 
 | 23533 | #									# | 
 | 23534 | #	A12.	Calculate YINT = FINT(Y) according to user's rounding	# | 
 | 23535 | #		mode.  The FPSP routine sintd0 is used.  The output	# | 
 | 23536 | #		is in fp0.						# | 
 | 23537 | #									# | 
 | 23538 | #	A13.	Check for LEN digits.					# | 
 | 23539 | #		If the int operation results in more than LEN digits,	# | 
 | 23540 | #		or less than LEN -1 digits, adjust ILOG and repeat from	# | 
 | 23541 | #		A6.  This test occurs only on the first pass.  If the	# | 
 | 23542 | #		result is exactly 10^LEN, decrement ILOG and divide	# | 
 | 23543 | #		the mantissa by 10.					# | 
 | 23544 | #									# | 
 | 23545 | #	A14.	Convert the mantissa to bcd.				# | 
 | 23546 | #		The binstr routine is used to convert the LEN digit	# | 
 | 23547 | #		mantissa to bcd in memory.  The input to binstr is	# | 
 | 23548 | #		to be a fraction; i.e. (mantissa)/10^LEN and adjusted	# | 
 | 23549 | #		such that the decimal point is to the left of bit 63.	# | 
 | 23550 | #		The bcd digits are stored in the correct position in	# | 
 | 23551 | #		the final string area in memory.			# | 
 | 23552 | #									# | 
 | 23553 | #	A15.	Convert the exponent to bcd.				# | 
 | 23554 | #		As in A14 above, the exp is converted to bcd and the	# | 
 | 23555 | #		digits are stored in the final string.			# | 
 | 23556 | #		Test the length of the final exponent string.  If the	# | 
 | 23557 | #		length is 4, set operr.					# | 
 | 23558 | #									# | 
 | 23559 | #	A16.	Write sign bits to final string.			# | 
 | 23560 | #									# | 
 | 23561 | ######################################################################### | 
 | 23562 |  | 
 | 23563 | set	BINDEC_FLG,	EXC_TEMP	# DENORM flag | 
 | 23564 |  | 
 | 23565 | # Constants in extended precision | 
 | 23566 | PLOG2: | 
 | 23567 | 	long		0x3FFD0000,0x9A209A84,0xFBCFF798,0x00000000 | 
 | 23568 | PLOG2UP1: | 
 | 23569 | 	long		0x3FFD0000,0x9A209A84,0xFBCFF799,0x00000000 | 
 | 23570 |  | 
 | 23571 | # Constants in single precision | 
 | 23572 | FONE: | 
 | 23573 | 	long		0x3F800000,0x00000000,0x00000000,0x00000000 | 
 | 23574 | FTWO: | 
 | 23575 | 	long		0x40000000,0x00000000,0x00000000,0x00000000 | 
 | 23576 | FTEN: | 
 | 23577 | 	long		0x41200000,0x00000000,0x00000000,0x00000000 | 
 | 23578 | F4933: | 
 | 23579 | 	long		0x459A2800,0x00000000,0x00000000,0x00000000 | 
 | 23580 |  | 
 | 23581 | RBDTBL: | 
 | 23582 | 	byte		0,0,0,0 | 
 | 23583 | 	byte		3,3,2,2 | 
 | 23584 | 	byte		3,2,2,3 | 
 | 23585 | 	byte		2,3,3,2 | 
 | 23586 |  | 
 | 23587 | #	Implementation Notes: | 
 | 23588 | # | 
 | 23589 | #	The registers are used as follows: | 
 | 23590 | # | 
 | 23591 | #		d0: scratch; LEN input to binstr | 
 | 23592 | #		d1: scratch | 
 | 23593 | #		d2: upper 32-bits of mantissa for binstr | 
 | 23594 | #		d3: scratch;lower 32-bits of mantissa for binstr | 
 | 23595 | #		d4: LEN | 
 | 23596 | #		d5: LAMBDA/ICTR | 
 | 23597 | #		d6: ILOG | 
 | 23598 | #		d7: k-factor | 
 | 23599 | #		a0: ptr for original operand/final result | 
 | 23600 | #		a1: scratch pointer | 
 | 23601 | #		a2: pointer to FP_X; abs(original value) in ext | 
 | 23602 | #		fp0: scratch | 
 | 23603 | #		fp1: scratch | 
 | 23604 | #		fp2: scratch | 
 | 23605 | #		F_SCR1: | 
 | 23606 | #		F_SCR2: | 
 | 23607 | #		L_SCR1: | 
 | 23608 | #		L_SCR2: | 
 | 23609 |  | 
 | 23610 | 	global		bindec | 
 | 23611 | bindec: | 
 | 23612 | 	movm.l		&0x3f20,-(%sp)	#  {%d2-%d7/%a2} | 
 | 23613 | 	fmovm.x		&0x7,-(%sp)	#  {%fp0-%fp2} | 
 | 23614 |  | 
 | 23615 | # A1. Set RM and size ext. Set SIGMA = sign input; | 
 | 23616 | #     The k-factor is saved for use in d7.  Clear BINDEC_FLG for | 
 | 23617 | #     separating  normalized/denormalized input.  If the input | 
 | 23618 | #     is a denormalized number, set the BINDEC_FLG memory word | 
 | 23619 | #     to signal denorm.  If the input is unnormalized, normalize | 
 | 23620 | #     the input and test for denormalized result. | 
 | 23621 | # | 
 | 23622 | 	fmov.l		&rm_mode*0x10,%fpcr	# set RM and ext | 
 | 23623 | 	mov.l		(%a0),L_SCR2(%a6)	# save exponent for sign check | 
 | 23624 | 	mov.l		%d0,%d7		# move k-factor to d7 | 
 | 23625 |  | 
 | 23626 | 	clr.b		BINDEC_FLG(%a6)	# clr norm/denorm flag | 
 | 23627 | 	cmpi.b		STAG(%a6),&DENORM # is input a DENORM? | 
 | 23628 | 	bne.w		A2_str		# no; input is a NORM | 
 | 23629 |  | 
 | 23630 | # | 
 | 23631 | # Normalize the denorm | 
 | 23632 | # | 
 | 23633 | un_de_norm: | 
 | 23634 | 	mov.w		(%a0),%d0 | 
 | 23635 | 	and.w		&0x7fff,%d0	# strip sign of normalized exp | 
 | 23636 | 	mov.l		4(%a0),%d1 | 
 | 23637 | 	mov.l		8(%a0),%d2 | 
 | 23638 | norm_loop: | 
 | 23639 | 	sub.w		&1,%d0 | 
 | 23640 | 	lsl.l		&1,%d2 | 
 | 23641 | 	roxl.l		&1,%d1 | 
 | 23642 | 	tst.l		%d1 | 
 | 23643 | 	bge.b		norm_loop | 
 | 23644 | # | 
 | 23645 | # Test if the normalized input is denormalized | 
 | 23646 | # | 
 | 23647 | 	tst.w		%d0 | 
 | 23648 | 	bgt.b		pos_exp		# if greater than zero, it is a norm | 
 | 23649 | 	st		BINDEC_FLG(%a6)	# set flag for denorm | 
 | 23650 | pos_exp: | 
 | 23651 | 	and.w		&0x7fff,%d0	# strip sign of normalized exp | 
 | 23652 | 	mov.w		%d0,(%a0) | 
 | 23653 | 	mov.l		%d1,4(%a0) | 
 | 23654 | 	mov.l		%d2,8(%a0) | 
 | 23655 |  | 
 | 23656 | # A2. Set X = abs(input). | 
 | 23657 | # | 
 | 23658 | A2_str: | 
 | 23659 | 	mov.l		(%a0),FP_SCR1(%a6)	# move input to work space | 
 | 23660 | 	mov.l		4(%a0),FP_SCR1+4(%a6)	# move input to work space | 
 | 23661 | 	mov.l		8(%a0),FP_SCR1+8(%a6)	# move input to work space | 
 | 23662 | 	and.l		&0x7fffffff,FP_SCR1(%a6)	# create abs(X) | 
 | 23663 |  | 
 | 23664 | # A3. Compute ILOG. | 
 | 23665 | #     ILOG is the log base 10 of the input value.  It is approx- | 
 | 23666 | #     imated by adding e + 0.f when the original value is viewed | 
 | 23667 | #     as 2^^e * 1.f in extended precision.  This value is stored | 
 | 23668 | #     in d6. | 
 | 23669 | # | 
 | 23670 | # Register usage: | 
 | 23671 | #	Input/Output | 
 | 23672 | #	d0: k-factor/exponent | 
 | 23673 | #	d2: x/x | 
 | 23674 | #	d3: x/x | 
 | 23675 | #	d4: x/x | 
 | 23676 | #	d5: x/x | 
 | 23677 | #	d6: x/ILOG | 
 | 23678 | #	d7: k-factor/Unchanged | 
 | 23679 | #	a0: ptr for original operand/final result | 
 | 23680 | #	a1: x/x | 
 | 23681 | #	a2: x/x | 
 | 23682 | #	fp0: x/float(ILOG) | 
 | 23683 | #	fp1: x/x | 
 | 23684 | #	fp2: x/x | 
 | 23685 | #	F_SCR1:x/x | 
 | 23686 | #	F_SCR2:Abs(X)/Abs(X) with $3fff exponent | 
 | 23687 | #	L_SCR1:x/x | 
 | 23688 | #	L_SCR2:first word of X packed/Unchanged | 
 | 23689 |  | 
 | 23690 | 	tst.b		BINDEC_FLG(%a6)	# check for denorm | 
 | 23691 | 	beq.b		A3_cont		# if clr, continue with norm | 
 | 23692 | 	mov.l		&-4933,%d6	# force ILOG = -4933 | 
 | 23693 | 	bra.b		A4_str | 
 | 23694 | A3_cont: | 
 | 23695 | 	mov.w		FP_SCR1(%a6),%d0	# move exp to d0 | 
 | 23696 | 	mov.w		&0x3fff,FP_SCR1(%a6)	# replace exponent with 0x3fff | 
 | 23697 | 	fmov.x		FP_SCR1(%a6),%fp0	# now fp0 has 1.f | 
 | 23698 | 	sub.w		&0x3fff,%d0	# strip off bias | 
 | 23699 | 	fadd.w		%d0,%fp0	# add in exp | 
 | 23700 | 	fsub.s		FONE(%pc),%fp0	# subtract off 1.0 | 
 | 23701 | 	fbge.w		pos_res		# if pos, branch | 
 | 23702 | 	fmul.x		PLOG2UP1(%pc),%fp0	# if neg, mul by LOG2UP1 | 
 | 23703 | 	fmov.l		%fp0,%d6	# put ILOG in d6 as a lword | 
 | 23704 | 	bra.b		A4_str		# go move out ILOG | 
 | 23705 | pos_res: | 
 | 23706 | 	fmul.x		PLOG2(%pc),%fp0	# if pos, mul by LOG2 | 
 | 23707 | 	fmov.l		%fp0,%d6	# put ILOG in d6 as a lword | 
 | 23708 |  | 
 | 23709 |  | 
 | 23710 | # A4. Clr INEX bit. | 
 | 23711 | #     The operation in A3 above may have set INEX2. | 
 | 23712 |  | 
 | 23713 | A4_str: | 
 | 23714 | 	fmov.l		&0,%fpsr	# zero all of fpsr - nothing needed | 
 | 23715 |  | 
 | 23716 |  | 
 | 23717 | # A5. Set ICTR = 0; | 
 | 23718 | #     ICTR is a flag used in A13.  It must be set before the | 
 | 23719 | #     loop entry A6. The lower word of d5 is used for ICTR. | 
 | 23720 |  | 
 | 23721 | 	clr.w		%d5		# clear ICTR | 
 | 23722 |  | 
 | 23723 | # A6. Calculate LEN. | 
 | 23724 | #     LEN is the number of digits to be displayed.  The k-factor | 
 | 23725 | #     can dictate either the total number of digits, if it is | 
 | 23726 | #     a positive number, or the number of digits after the | 
 | 23727 | #     original decimal point which are to be included as | 
 | 23728 | #     significant.  See the 68882 manual for examples. | 
 | 23729 | #     If LEN is computed to be greater than 17, set OPERR in | 
 | 23730 | #     USER_FPSR.  LEN is stored in d4. | 
 | 23731 | # | 
 | 23732 | # Register usage: | 
 | 23733 | #	Input/Output | 
 | 23734 | #	d0: exponent/Unchanged | 
 | 23735 | #	d2: x/x/scratch | 
 | 23736 | #	d3: x/x | 
 | 23737 | #	d4: exc picture/LEN | 
 | 23738 | #	d5: ICTR/Unchanged | 
 | 23739 | #	d6: ILOG/Unchanged | 
 | 23740 | #	d7: k-factor/Unchanged | 
 | 23741 | #	a0: ptr for original operand/final result | 
 | 23742 | #	a1: x/x | 
 | 23743 | #	a2: x/x | 
 | 23744 | #	fp0: float(ILOG)/Unchanged | 
 | 23745 | #	fp1: x/x | 
 | 23746 | #	fp2: x/x | 
 | 23747 | #	F_SCR1:x/x | 
 | 23748 | #	F_SCR2:Abs(X) with $3fff exponent/Unchanged | 
 | 23749 | #	L_SCR1:x/x | 
 | 23750 | #	L_SCR2:first word of X packed/Unchanged | 
 | 23751 |  | 
 | 23752 | A6_str: | 
 | 23753 | 	tst.l		%d7		# branch on sign of k | 
 | 23754 | 	ble.b		k_neg		# if k <= 0, LEN = ILOG + 1 - k | 
 | 23755 | 	mov.l		%d7,%d4		# if k > 0, LEN = k | 
 | 23756 | 	bra.b		len_ck		# skip to LEN check | 
 | 23757 | k_neg: | 
 | 23758 | 	mov.l		%d6,%d4		# first load ILOG to d4 | 
 | 23759 | 	sub.l		%d7,%d4		# subtract off k | 
 | 23760 | 	addq.l		&1,%d4		# add in the 1 | 
 | 23761 | len_ck: | 
 | 23762 | 	tst.l		%d4		# LEN check: branch on sign of LEN | 
 | 23763 | 	ble.b		LEN_ng		# if neg, set LEN = 1 | 
 | 23764 | 	cmp.l		%d4,&17		# test if LEN > 17 | 
 | 23765 | 	ble.b		A7_str		# if not, forget it | 
 | 23766 | 	mov.l		&17,%d4		# set max LEN = 17 | 
 | 23767 | 	tst.l		%d7		# if negative, never set OPERR | 
 | 23768 | 	ble.b		A7_str		# if positive, continue | 
 | 23769 | 	or.l		&opaop_mask,USER_FPSR(%a6)	# set OPERR & AIOP in USER_FPSR | 
 | 23770 | 	bra.b		A7_str		# finished here | 
 | 23771 | LEN_ng: | 
 | 23772 | 	mov.l		&1,%d4		# min LEN is 1 | 
 | 23773 |  | 
 | 23774 |  | 
 | 23775 | # A7. Calculate SCALE. | 
 | 23776 | #     SCALE is equal to 10^ISCALE, where ISCALE is the number | 
 | 23777 | #     of decimal places needed to insure LEN integer digits | 
 | 23778 | #     in the output before conversion to bcd. LAMBDA is the sign | 
 | 23779 | #     of ISCALE, used in A9.  Fp1 contains 10^^(abs(ISCALE)) using | 
 | 23780 | #     the rounding mode as given in the following table (see | 
 | 23781 | #     Coonen, p. 7.23 as ref.; however, the SCALE variable is | 
 | 23782 | #     of opposite sign in bindec.sa from Coonen). | 
 | 23783 | # | 
 | 23784 | #	Initial					USE | 
 | 23785 | #	FPCR[6:5]	LAMBDA	SIGN(X)		FPCR[6:5] | 
 | 23786 | #	---------------------------------------------- | 
 | 23787 | #	 RN	00	   0	   0		00/0	RN | 
 | 23788 | #	 RN	00	   0	   1		00/0	RN | 
 | 23789 | #	 RN	00	   1	   0		00/0	RN | 
 | 23790 | #	 RN	00	   1	   1		00/0	RN | 
 | 23791 | #	 RZ	01	   0	   0		11/3	RP | 
 | 23792 | #	 RZ	01	   0	   1		11/3	RP | 
 | 23793 | #	 RZ	01	   1	   0		10/2	RM | 
 | 23794 | #	 RZ	01	   1	   1		10/2	RM | 
 | 23795 | #	 RM	10	   0	   0		11/3	RP | 
 | 23796 | #	 RM	10	   0	   1		10/2	RM | 
 | 23797 | #	 RM	10	   1	   0		10/2	RM | 
 | 23798 | #	 RM	10	   1	   1		11/3	RP | 
 | 23799 | #	 RP	11	   0	   0		10/2	RM | 
 | 23800 | #	 RP	11	   0	   1		11/3	RP | 
 | 23801 | #	 RP	11	   1	   0		11/3	RP | 
 | 23802 | #	 RP	11	   1	   1		10/2	RM | 
 | 23803 | # | 
 | 23804 | # Register usage: | 
 | 23805 | #	Input/Output | 
 | 23806 | #	d0: exponent/scratch - final is 0 | 
 | 23807 | #	d2: x/0 or 24 for A9 | 
 | 23808 | #	d3: x/scratch - offset ptr into PTENRM array | 
 | 23809 | #	d4: LEN/Unchanged | 
 | 23810 | #	d5: 0/ICTR:LAMBDA | 
 | 23811 | #	d6: ILOG/ILOG or k if ((k<=0)&(ILOG<k)) | 
 | 23812 | #	d7: k-factor/Unchanged | 
 | 23813 | #	a0: ptr for original operand/final result | 
 | 23814 | #	a1: x/ptr to PTENRM array | 
 | 23815 | #	a2: x/x | 
 | 23816 | #	fp0: float(ILOG)/Unchanged | 
 | 23817 | #	fp1: x/10^ISCALE | 
 | 23818 | #	fp2: x/x | 
 | 23819 | #	F_SCR1:x/x | 
 | 23820 | #	F_SCR2:Abs(X) with $3fff exponent/Unchanged | 
 | 23821 | #	L_SCR1:x/x | 
 | 23822 | #	L_SCR2:first word of X packed/Unchanged | 
 | 23823 |  | 
 | 23824 | A7_str: | 
 | 23825 | 	tst.l		%d7		# test sign of k | 
 | 23826 | 	bgt.b		k_pos		# if pos and > 0, skip this | 
 | 23827 | 	cmp.l		%d7,%d6		# test k - ILOG | 
 | 23828 | 	blt.b		k_pos		# if ILOG >= k, skip this | 
 | 23829 | 	mov.l		%d7,%d6		# if ((k<0) & (ILOG < k)) ILOG = k | 
 | 23830 | k_pos: | 
 | 23831 | 	mov.l		%d6,%d0		# calc ILOG + 1 - LEN in d0 | 
 | 23832 | 	addq.l		&1,%d0		# add the 1 | 
 | 23833 | 	sub.l		%d4,%d0		# sub off LEN | 
 | 23834 | 	swap		%d5		# use upper word of d5 for LAMBDA | 
 | 23835 | 	clr.w		%d5		# set it zero initially | 
 | 23836 | 	clr.w		%d2		# set up d2 for very small case | 
 | 23837 | 	tst.l		%d0		# test sign of ISCALE | 
 | 23838 | 	bge.b		iscale		# if pos, skip next inst | 
 | 23839 | 	addq.w		&1,%d5		# if neg, set LAMBDA true | 
 | 23840 | 	cmp.l		%d0,&0xffffecd4	# test iscale <= -4908 | 
 | 23841 | 	bgt.b		no_inf		# if false, skip rest | 
 | 23842 | 	add.l		&24,%d0		# add in 24 to iscale | 
 | 23843 | 	mov.l		&24,%d2		# put 24 in d2 for A9 | 
 | 23844 | no_inf: | 
 | 23845 | 	neg.l		%d0		# and take abs of ISCALE | 
 | 23846 | iscale: | 
 | 23847 | 	fmov.s		FONE(%pc),%fp1	# init fp1 to 1 | 
 | 23848 | 	bfextu		USER_FPCR(%a6){&26:&2},%d1	# get initial rmode bits | 
 | 23849 | 	lsl.w		&1,%d1		# put them in bits 2:1 | 
 | 23850 | 	add.w		%d5,%d1		# add in LAMBDA | 
 | 23851 | 	lsl.w		&1,%d1		# put them in bits 3:1 | 
 | 23852 | 	tst.l		L_SCR2(%a6)	# test sign of original x | 
 | 23853 | 	bge.b		x_pos		# if pos, don't set bit 0 | 
 | 23854 | 	addq.l		&1,%d1		# if neg, set bit 0 | 
 | 23855 | x_pos: | 
 | 23856 | 	lea.l		RBDTBL(%pc),%a2	# load rbdtbl base | 
 | 23857 | 	mov.b		(%a2,%d1),%d3	# load d3 with new rmode | 
 | 23858 | 	lsl.l		&4,%d3		# put bits in proper position | 
 | 23859 | 	fmov.l		%d3,%fpcr	# load bits into fpu | 
 | 23860 | 	lsr.l		&4,%d3		# put bits in proper position | 
 | 23861 | 	tst.b		%d3		# decode new rmode for pten table | 
 | 23862 | 	bne.b		not_rn		# if zero, it is RN | 
 | 23863 | 	lea.l		PTENRN(%pc),%a1	# load a1 with RN table base | 
 | 23864 | 	bra.b		rmode		# exit decode | 
 | 23865 | not_rn: | 
 | 23866 | 	lsr.b		&1,%d3		# get lsb in carry | 
 | 23867 | 	bcc.b		not_rp2		# if carry clear, it is RM | 
 | 23868 | 	lea.l		PTENRP(%pc),%a1	# load a1 with RP table base | 
 | 23869 | 	bra.b		rmode		# exit decode | 
 | 23870 | not_rp2: | 
 | 23871 | 	lea.l		PTENRM(%pc),%a1	# load a1 with RM table base | 
 | 23872 | rmode: | 
 | 23873 | 	clr.l		%d3		# clr table index | 
 | 23874 | e_loop2: | 
 | 23875 | 	lsr.l		&1,%d0		# shift next bit into carry | 
 | 23876 | 	bcc.b		e_next2		# if zero, skip the mul | 
 | 23877 | 	fmul.x		(%a1,%d3),%fp1	# mul by 10**(d3_bit_no) | 
 | 23878 | e_next2: | 
 | 23879 | 	add.l		&12,%d3		# inc d3 to next pwrten table entry | 
 | 23880 | 	tst.l		%d0		# test if ISCALE is zero | 
 | 23881 | 	bne.b		e_loop2		# if not, loop | 
 | 23882 |  | 
 | 23883 | # A8. Clr INEX; Force RZ. | 
 | 23884 | #     The operation in A3 above may have set INEX2. | 
 | 23885 | #     RZ mode is forced for the scaling operation to insure | 
 | 23886 | #     only one rounding error.  The grs bits are collected in | 
 | 23887 | #     the INEX flag for use in A10. | 
 | 23888 | # | 
 | 23889 | # Register usage: | 
 | 23890 | #	Input/Output | 
 | 23891 |  | 
 | 23892 | 	fmov.l		&0,%fpsr	# clr INEX | 
 | 23893 | 	fmov.l		&rz_mode*0x10,%fpcr	# set RZ rounding mode | 
 | 23894 |  | 
 | 23895 | # A9. Scale X -> Y. | 
 | 23896 | #     The mantissa is scaled to the desired number of significant | 
 | 23897 | #     digits.  The excess digits are collected in INEX2. If mul, | 
 | 23898 | #     Check d2 for excess 10 exponential value.  If not zero, | 
 | 23899 | #     the iscale value would have caused the pwrten calculation | 
 | 23900 | #     to overflow.  Only a negative iscale can cause this, so | 
 | 23901 | #     multiply by 10^(d2), which is now only allowed to be 24, | 
 | 23902 | #     with a multiply by 10^8 and 10^16, which is exact since | 
 | 23903 | #     10^24 is exact.  If the input was denormalized, we must | 
 | 23904 | #     create a busy stack frame with the mul command and the | 
 | 23905 | #     two operands, and allow the fpu to complete the multiply. | 
 | 23906 | # | 
 | 23907 | # Register usage: | 
 | 23908 | #	Input/Output | 
 | 23909 | #	d0: FPCR with RZ mode/Unchanged | 
 | 23910 | #	d2: 0 or 24/unchanged | 
 | 23911 | #	d3: x/x | 
 | 23912 | #	d4: LEN/Unchanged | 
 | 23913 | #	d5: ICTR:LAMBDA | 
 | 23914 | #	d6: ILOG/Unchanged | 
 | 23915 | #	d7: k-factor/Unchanged | 
 | 23916 | #	a0: ptr for original operand/final result | 
 | 23917 | #	a1: ptr to PTENRM array/Unchanged | 
 | 23918 | #	a2: x/x | 
 | 23919 | #	fp0: float(ILOG)/X adjusted for SCALE (Y) | 
 | 23920 | #	fp1: 10^ISCALE/Unchanged | 
 | 23921 | #	fp2: x/x | 
 | 23922 | #	F_SCR1:x/x | 
 | 23923 | #	F_SCR2:Abs(X) with $3fff exponent/Unchanged | 
 | 23924 | #	L_SCR1:x/x | 
 | 23925 | #	L_SCR2:first word of X packed/Unchanged | 
 | 23926 |  | 
 | 23927 | A9_str: | 
 | 23928 | 	fmov.x		(%a0),%fp0	# load X from memory | 
 | 23929 | 	fabs.x		%fp0		# use abs(X) | 
 | 23930 | 	tst.w		%d5		# LAMBDA is in lower word of d5 | 
 | 23931 | 	bne.b		sc_mul		# if neg (LAMBDA = 1), scale by mul | 
 | 23932 | 	fdiv.x		%fp1,%fp0	# calculate X / SCALE -> Y to fp0 | 
 | 23933 | 	bra.w		A10_st		# branch to A10 | 
 | 23934 |  | 
 | 23935 | sc_mul: | 
 | 23936 | 	tst.b		BINDEC_FLG(%a6)	# check for denorm | 
 | 23937 | 	beq.w		A9_norm		# if norm, continue with mul | 
 | 23938 |  | 
 | 23939 | # for DENORM, we must calculate: | 
 | 23940 | #	fp0 = input_op * 10^ISCALE * 10^24 | 
 | 23941 | # since the input operand is a DENORM, we can't multiply it directly. | 
 | 23942 | # so, we do the multiplication of the exponents and mantissas separately. | 
 | 23943 | # in this way, we avoid underflow on intermediate stages of the | 
 | 23944 | # multiplication and guarantee a result without exception. | 
 | 23945 | 	fmovm.x		&0x2,-(%sp)	# save 10^ISCALE to stack | 
 | 23946 |  | 
 | 23947 | 	mov.w		(%sp),%d3	# grab exponent | 
 | 23948 | 	andi.w		&0x7fff,%d3	# clear sign | 
 | 23949 | 	ori.w		&0x8000,(%a0)	# make DENORM exp negative | 
 | 23950 | 	add.w		(%a0),%d3	# add DENORM exp to 10^ISCALE exp | 
 | 23951 | 	subi.w		&0x3fff,%d3	# subtract BIAS | 
 | 23952 | 	add.w		36(%a1),%d3 | 
 | 23953 | 	subi.w		&0x3fff,%d3	# subtract BIAS | 
 | 23954 | 	add.w		48(%a1),%d3 | 
 | 23955 | 	subi.w		&0x3fff,%d3	# subtract BIAS | 
 | 23956 |  | 
 | 23957 | 	bmi.w		sc_mul_err	# is result is DENORM, punt!!! | 
 | 23958 |  | 
 | 23959 | 	andi.w		&0x8000,(%sp)	# keep sign | 
 | 23960 | 	or.w		%d3,(%sp)	# insert new exponent | 
 | 23961 | 	andi.w		&0x7fff,(%a0)	# clear sign bit on DENORM again | 
 | 23962 | 	mov.l		0x8(%a0),-(%sp) # put input op mantissa on stk | 
 | 23963 | 	mov.l		0x4(%a0),-(%sp) | 
 | 23964 | 	mov.l		&0x3fff0000,-(%sp) # force exp to zero | 
 | 23965 | 	fmovm.x		(%sp)+,&0x80	# load normalized DENORM into fp0 | 
 | 23966 | 	fmul.x		(%sp)+,%fp0 | 
 | 23967 |  | 
 | 23968 | #	fmul.x	36(%a1),%fp0	# multiply fp0 by 10^8 | 
 | 23969 | #	fmul.x	48(%a1),%fp0	# multiply fp0 by 10^16 | 
 | 23970 | 	mov.l		36+8(%a1),-(%sp) # get 10^8 mantissa | 
 | 23971 | 	mov.l		36+4(%a1),-(%sp) | 
 | 23972 | 	mov.l		&0x3fff0000,-(%sp) # force exp to zero | 
 | 23973 | 	mov.l		48+8(%a1),-(%sp) # get 10^16 mantissa | 
 | 23974 | 	mov.l		48+4(%a1),-(%sp) | 
 | 23975 | 	mov.l		&0x3fff0000,-(%sp)# force exp to zero | 
 | 23976 | 	fmul.x		(%sp)+,%fp0	# multiply fp0 by 10^8 | 
 | 23977 | 	fmul.x		(%sp)+,%fp0	# multiply fp0 by 10^16 | 
 | 23978 | 	bra.b		A10_st | 
 | 23979 |  | 
 | 23980 | sc_mul_err: | 
 | 23981 | 	bra.b		sc_mul_err | 
 | 23982 |  | 
 | 23983 | A9_norm: | 
 | 23984 | 	tst.w		%d2		# test for small exp case | 
 | 23985 | 	beq.b		A9_con		# if zero, continue as normal | 
 | 23986 | 	fmul.x		36(%a1),%fp0	# multiply fp0 by 10^8 | 
 | 23987 | 	fmul.x		48(%a1),%fp0	# multiply fp0 by 10^16 | 
 | 23988 | A9_con: | 
 | 23989 | 	fmul.x		%fp1,%fp0	# calculate X * SCALE -> Y to fp0 | 
 | 23990 |  | 
 | 23991 | # A10. Or in INEX. | 
 | 23992 | #      If INEX is set, round error occurred.  This is compensated | 
 | 23993 | #      for by 'or-ing' in the INEX2 flag to the lsb of Y. | 
 | 23994 | # | 
 | 23995 | # Register usage: | 
 | 23996 | #	Input/Output | 
 | 23997 | #	d0: FPCR with RZ mode/FPSR with INEX2 isolated | 
 | 23998 | #	d2: x/x | 
 | 23999 | #	d3: x/x | 
 | 24000 | #	d4: LEN/Unchanged | 
 | 24001 | #	d5: ICTR:LAMBDA | 
 | 24002 | #	d6: ILOG/Unchanged | 
 | 24003 | #	d7: k-factor/Unchanged | 
 | 24004 | #	a0: ptr for original operand/final result | 
 | 24005 | #	a1: ptr to PTENxx array/Unchanged | 
 | 24006 | #	a2: x/ptr to FP_SCR1(a6) | 
 | 24007 | #	fp0: Y/Y with lsb adjusted | 
 | 24008 | #	fp1: 10^ISCALE/Unchanged | 
 | 24009 | #	fp2: x/x | 
 | 24010 |  | 
 | 24011 | A10_st: | 
 | 24012 | 	fmov.l		%fpsr,%d0	# get FPSR | 
 | 24013 | 	fmov.x		%fp0,FP_SCR1(%a6)	# move Y to memory | 
 | 24014 | 	lea.l		FP_SCR1(%a6),%a2	# load a2 with ptr to FP_SCR1 | 
 | 24015 | 	btst		&9,%d0		# check if INEX2 set | 
 | 24016 | 	beq.b		A11_st		# if clear, skip rest | 
 | 24017 | 	or.l		&1,8(%a2)	# or in 1 to lsb of mantissa | 
 | 24018 | 	fmov.x		FP_SCR1(%a6),%fp0	# write adjusted Y back to fpu | 
 | 24019 |  | 
 | 24020 |  | 
 | 24021 | # A11. Restore original FPCR; set size ext. | 
 | 24022 | #      Perform FINT operation in the user's rounding mode.  Keep | 
 | 24023 | #      the size to extended.  The sintdo entry point in the sint | 
 | 24024 | #      routine expects the FPCR value to be in USER_FPCR for | 
 | 24025 | #      mode and precision.  The original FPCR is saved in L_SCR1. | 
 | 24026 |  | 
 | 24027 | A11_st: | 
 | 24028 | 	mov.l		USER_FPCR(%a6),L_SCR1(%a6)	# save it for later | 
 | 24029 | 	and.l		&0x00000030,USER_FPCR(%a6)	# set size to ext, | 
 | 24030 | #					;block exceptions | 
 | 24031 |  | 
 | 24032 |  | 
 | 24033 | # A12. Calculate YINT = FINT(Y) according to user's rounding mode. | 
 | 24034 | #      The FPSP routine sintd0 is used.  The output is in fp0. | 
 | 24035 | # | 
 | 24036 | # Register usage: | 
 | 24037 | #	Input/Output | 
 | 24038 | #	d0: FPSR with AINEX cleared/FPCR with size set to ext | 
 | 24039 | #	d2: x/x/scratch | 
 | 24040 | #	d3: x/x | 
 | 24041 | #	d4: LEN/Unchanged | 
 | 24042 | #	d5: ICTR:LAMBDA/Unchanged | 
 | 24043 | #	d6: ILOG/Unchanged | 
 | 24044 | #	d7: k-factor/Unchanged | 
 | 24045 | #	a0: ptr for original operand/src ptr for sintdo | 
 | 24046 | #	a1: ptr to PTENxx array/Unchanged | 
 | 24047 | #	a2: ptr to FP_SCR1(a6)/Unchanged | 
 | 24048 | #	a6: temp pointer to FP_SCR1(a6) - orig value saved and restored | 
 | 24049 | #	fp0: Y/YINT | 
 | 24050 | #	fp1: 10^ISCALE/Unchanged | 
 | 24051 | #	fp2: x/x | 
 | 24052 | #	F_SCR1:x/x | 
 | 24053 | #	F_SCR2:Y adjusted for inex/Y with original exponent | 
 | 24054 | #	L_SCR1:x/original USER_FPCR | 
 | 24055 | #	L_SCR2:first word of X packed/Unchanged | 
 | 24056 |  | 
 | 24057 | A12_st: | 
 | 24058 | 	movm.l	&0xc0c0,-(%sp)	# save regs used by sintd0	 {%d0-%d1/%a0-%a1} | 
 | 24059 | 	mov.l	L_SCR1(%a6),-(%sp) | 
 | 24060 | 	mov.l	L_SCR2(%a6),-(%sp) | 
 | 24061 |  | 
 | 24062 | 	lea.l		FP_SCR1(%a6),%a0	# a0 is ptr to FP_SCR1(a6) | 
 | 24063 | 	fmov.x		%fp0,(%a0)	# move Y to memory at FP_SCR1(a6) | 
 | 24064 | 	tst.l		L_SCR2(%a6)	# test sign of original operand | 
 | 24065 | 	bge.b		do_fint12		# if pos, use Y | 
 | 24066 | 	or.l		&0x80000000,(%a0)	# if neg, use -Y | 
 | 24067 | do_fint12: | 
 | 24068 | 	mov.l	USER_FPSR(%a6),-(%sp) | 
 | 24069 | #	bsr	sintdo		# sint routine returns int in fp0 | 
 | 24070 |  | 
 | 24071 | 	fmov.l	USER_FPCR(%a6),%fpcr | 
 | 24072 | 	fmov.l	&0x0,%fpsr			# clear the AEXC bits!!! | 
 | 24073 | ##	mov.l		USER_FPCR(%a6),%d0	# ext prec/keep rnd mode | 
 | 24074 | ##	andi.l		&0x00000030,%d0 | 
 | 24075 | ##	fmov.l		%d0,%fpcr | 
 | 24076 | 	fint.x		FP_SCR1(%a6),%fp0	# do fint() | 
 | 24077 | 	fmov.l	%fpsr,%d0 | 
 | 24078 | 	or.w	%d0,FPSR_EXCEPT(%a6) | 
 | 24079 | ##	fmov.l		&0x0,%fpcr | 
 | 24080 | ##	fmov.l		%fpsr,%d0		# don't keep ccodes | 
 | 24081 | ##	or.w		%d0,FPSR_EXCEPT(%a6) | 
 | 24082 |  | 
 | 24083 | 	mov.b	(%sp),USER_FPSR(%a6) | 
 | 24084 | 	add.l	&4,%sp | 
 | 24085 |  | 
 | 24086 | 	mov.l	(%sp)+,L_SCR2(%a6) | 
 | 24087 | 	mov.l	(%sp)+,L_SCR1(%a6) | 
 | 24088 | 	movm.l	(%sp)+,&0x303	# restore regs used by sint	 {%d0-%d1/%a0-%a1} | 
 | 24089 |  | 
 | 24090 | 	mov.l	L_SCR2(%a6),FP_SCR1(%a6)	# restore original exponent | 
 | 24091 | 	mov.l	L_SCR1(%a6),USER_FPCR(%a6)	# restore user's FPCR | 
 | 24092 |  | 
 | 24093 | # A13. Check for LEN digits. | 
 | 24094 | #      If the int operation results in more than LEN digits, | 
 | 24095 | #      or less than LEN -1 digits, adjust ILOG and repeat from | 
 | 24096 | #      A6.  This test occurs only on the first pass.  If the | 
 | 24097 | #      result is exactly 10^LEN, decrement ILOG and divide | 
 | 24098 | #      the mantissa by 10.  The calculation of 10^LEN cannot | 
 | 24099 | #      be inexact, since all powers of ten upto 10^27 are exact | 
 | 24100 | #      in extended precision, so the use of a previous power-of-ten | 
 | 24101 | #      table will introduce no error. | 
 | 24102 | # | 
 | 24103 | # | 
 | 24104 | # Register usage: | 
 | 24105 | #	Input/Output | 
 | 24106 | #	d0: FPCR with size set to ext/scratch final = 0 | 
 | 24107 | #	d2: x/x | 
 | 24108 | #	d3: x/scratch final = x | 
 | 24109 | #	d4: LEN/LEN adjusted | 
 | 24110 | #	d5: ICTR:LAMBDA/LAMBDA:ICTR | 
 | 24111 | #	d6: ILOG/ILOG adjusted | 
 | 24112 | #	d7: k-factor/Unchanged | 
 | 24113 | #	a0: pointer into memory for packed bcd string formation | 
 | 24114 | #	a1: ptr to PTENxx array/Unchanged | 
 | 24115 | #	a2: ptr to FP_SCR1(a6)/Unchanged | 
 | 24116 | #	fp0: int portion of Y/abs(YINT) adjusted | 
 | 24117 | #	fp1: 10^ISCALE/Unchanged | 
 | 24118 | #	fp2: x/10^LEN | 
 | 24119 | #	F_SCR1:x/x | 
 | 24120 | #	F_SCR2:Y with original exponent/Unchanged | 
 | 24121 | #	L_SCR1:original USER_FPCR/Unchanged | 
 | 24122 | #	L_SCR2:first word of X packed/Unchanged | 
 | 24123 |  | 
 | 24124 | A13_st: | 
 | 24125 | 	swap		%d5		# put ICTR in lower word of d5 | 
 | 24126 | 	tst.w		%d5		# check if ICTR = 0 | 
 | 24127 | 	bne		not_zr		# if non-zero, go to second test | 
 | 24128 | # | 
 | 24129 | # Compute 10^(LEN-1) | 
 | 24130 | # | 
 | 24131 | 	fmov.s		FONE(%pc),%fp2	# init fp2 to 1.0 | 
 | 24132 | 	mov.l		%d4,%d0		# put LEN in d0 | 
 | 24133 | 	subq.l		&1,%d0		# d0 = LEN -1 | 
 | 24134 | 	clr.l		%d3		# clr table index | 
 | 24135 | l_loop: | 
 | 24136 | 	lsr.l		&1,%d0		# shift next bit into carry | 
 | 24137 | 	bcc.b		l_next		# if zero, skip the mul | 
 | 24138 | 	fmul.x		(%a1,%d3),%fp2	# mul by 10**(d3_bit_no) | 
 | 24139 | l_next: | 
 | 24140 | 	add.l		&12,%d3		# inc d3 to next pwrten table entry | 
 | 24141 | 	tst.l		%d0		# test if LEN is zero | 
 | 24142 | 	bne.b		l_loop		# if not, loop | 
 | 24143 | # | 
 | 24144 | # 10^LEN-1 is computed for this test and A14.  If the input was | 
 | 24145 | # denormalized, check only the case in which YINT > 10^LEN. | 
 | 24146 | # | 
 | 24147 | 	tst.b		BINDEC_FLG(%a6)	# check if input was norm | 
 | 24148 | 	beq.b		A13_con		# if norm, continue with checking | 
 | 24149 | 	fabs.x		%fp0		# take abs of YINT | 
 | 24150 | 	bra		test_2 | 
 | 24151 | # | 
 | 24152 | # Compare abs(YINT) to 10^(LEN-1) and 10^LEN | 
 | 24153 | # | 
 | 24154 | A13_con: | 
 | 24155 | 	fabs.x		%fp0		# take abs of YINT | 
 | 24156 | 	fcmp.x		%fp0,%fp2	# compare abs(YINT) with 10^(LEN-1) | 
 | 24157 | 	fbge.w		test_2		# if greater, do next test | 
 | 24158 | 	subq.l		&1,%d6		# subtract 1 from ILOG | 
 | 24159 | 	mov.w		&1,%d5		# set ICTR | 
 | 24160 | 	fmov.l		&rm_mode*0x10,%fpcr	# set rmode to RM | 
 | 24161 | 	fmul.s		FTEN(%pc),%fp2	# compute 10^LEN | 
 | 24162 | 	bra.w		A6_str		# return to A6 and recompute YINT | 
 | 24163 | test_2: | 
 | 24164 | 	fmul.s		FTEN(%pc),%fp2	# compute 10^LEN | 
 | 24165 | 	fcmp.x		%fp0,%fp2	# compare abs(YINT) with 10^LEN | 
 | 24166 | 	fblt.w		A14_st		# if less, all is ok, go to A14 | 
 | 24167 | 	fbgt.w		fix_ex		# if greater, fix and redo | 
 | 24168 | 	fdiv.s		FTEN(%pc),%fp0	# if equal, divide by 10 | 
 | 24169 | 	addq.l		&1,%d6		# and inc ILOG | 
 | 24170 | 	bra.b		A14_st		# and continue elsewhere | 
 | 24171 | fix_ex: | 
 | 24172 | 	addq.l		&1,%d6		# increment ILOG by 1 | 
 | 24173 | 	mov.w		&1,%d5		# set ICTR | 
 | 24174 | 	fmov.l		&rm_mode*0x10,%fpcr	# set rmode to RM | 
 | 24175 | 	bra.w		A6_str		# return to A6 and recompute YINT | 
 | 24176 | # | 
 | 24177 | # Since ICTR <> 0, we have already been through one adjustment, | 
 | 24178 | # and shouldn't have another; this is to check if abs(YINT) = 10^LEN | 
 | 24179 | # 10^LEN is again computed using whatever table is in a1 since the | 
 | 24180 | # value calculated cannot be inexact. | 
 | 24181 | # | 
 | 24182 | not_zr: | 
 | 24183 | 	fmov.s		FONE(%pc),%fp2	# init fp2 to 1.0 | 
 | 24184 | 	mov.l		%d4,%d0		# put LEN in d0 | 
 | 24185 | 	clr.l		%d3		# clr table index | 
 | 24186 | z_loop: | 
 | 24187 | 	lsr.l		&1,%d0		# shift next bit into carry | 
 | 24188 | 	bcc.b		z_next		# if zero, skip the mul | 
 | 24189 | 	fmul.x		(%a1,%d3),%fp2	# mul by 10**(d3_bit_no) | 
 | 24190 | z_next: | 
 | 24191 | 	add.l		&12,%d3		# inc d3 to next pwrten table entry | 
 | 24192 | 	tst.l		%d0		# test if LEN is zero | 
 | 24193 | 	bne.b		z_loop		# if not, loop | 
 | 24194 | 	fabs.x		%fp0		# get abs(YINT) | 
 | 24195 | 	fcmp.x		%fp0,%fp2	# check if abs(YINT) = 10^LEN | 
 | 24196 | 	fbneq.w		A14_st		# if not, skip this | 
 | 24197 | 	fdiv.s		FTEN(%pc),%fp0	# divide abs(YINT) by 10 | 
 | 24198 | 	addq.l		&1,%d6		# and inc ILOG by 1 | 
 | 24199 | 	addq.l		&1,%d4		# and inc LEN | 
 | 24200 | 	fmul.s		FTEN(%pc),%fp2	# if LEN++, the get 10^^LEN | 
 | 24201 |  | 
 | 24202 | # A14. Convert the mantissa to bcd. | 
 | 24203 | #      The binstr routine is used to convert the LEN digit | 
 | 24204 | #      mantissa to bcd in memory.  The input to binstr is | 
 | 24205 | #      to be a fraction; i.e. (mantissa)/10^LEN and adjusted | 
 | 24206 | #      such that the decimal point is to the left of bit 63. | 
 | 24207 | #      The bcd digits are stored in the correct position in | 
 | 24208 | #      the final string area in memory. | 
 | 24209 | # | 
 | 24210 | # | 
 | 24211 | # Register usage: | 
 | 24212 | #	Input/Output | 
 | 24213 | #	d0: x/LEN call to binstr - final is 0 | 
 | 24214 | #	d1: x/0 | 
 | 24215 | #	d2: x/ms 32-bits of mant of abs(YINT) | 
 | 24216 | #	d3: x/ls 32-bits of mant of abs(YINT) | 
 | 24217 | #	d4: LEN/Unchanged | 
 | 24218 | #	d5: ICTR:LAMBDA/LAMBDA:ICTR | 
 | 24219 | #	d6: ILOG | 
 | 24220 | #	d7: k-factor/Unchanged | 
 | 24221 | #	a0: pointer into memory for packed bcd string formation | 
 | 24222 | #	    /ptr to first mantissa byte in result string | 
 | 24223 | #	a1: ptr to PTENxx array/Unchanged | 
 | 24224 | #	a2: ptr to FP_SCR1(a6)/Unchanged | 
 | 24225 | #	fp0: int portion of Y/abs(YINT) adjusted | 
 | 24226 | #	fp1: 10^ISCALE/Unchanged | 
 | 24227 | #	fp2: 10^LEN/Unchanged | 
 | 24228 | #	F_SCR1:x/Work area for final result | 
 | 24229 | #	F_SCR2:Y with original exponent/Unchanged | 
 | 24230 | #	L_SCR1:original USER_FPCR/Unchanged | 
 | 24231 | #	L_SCR2:first word of X packed/Unchanged | 
 | 24232 |  | 
 | 24233 | A14_st: | 
 | 24234 | 	fmov.l		&rz_mode*0x10,%fpcr	# force rz for conversion | 
 | 24235 | 	fdiv.x		%fp2,%fp0	# divide abs(YINT) by 10^LEN | 
 | 24236 | 	lea.l		FP_SCR0(%a6),%a0 | 
 | 24237 | 	fmov.x		%fp0,(%a0)	# move abs(YINT)/10^LEN to memory | 
 | 24238 | 	mov.l		4(%a0),%d2	# move 2nd word of FP_RES to d2 | 
 | 24239 | 	mov.l		8(%a0),%d3	# move 3rd word of FP_RES to d3 | 
 | 24240 | 	clr.l		4(%a0)		# zero word 2 of FP_RES | 
 | 24241 | 	clr.l		8(%a0)		# zero word 3 of FP_RES | 
 | 24242 | 	mov.l		(%a0),%d0	# move exponent to d0 | 
 | 24243 | 	swap		%d0		# put exponent in lower word | 
 | 24244 | 	beq.b		no_sft		# if zero, don't shift | 
 | 24245 | 	sub.l		&0x3ffd,%d0	# sub bias less 2 to make fract | 
 | 24246 | 	tst.l		%d0		# check if > 1 | 
 | 24247 | 	bgt.b		no_sft		# if so, don't shift | 
 | 24248 | 	neg.l		%d0		# make exp positive | 
 | 24249 | m_loop: | 
 | 24250 | 	lsr.l		&1,%d2		# shift d2:d3 right, add 0s | 
 | 24251 | 	roxr.l		&1,%d3		# the number of places | 
 | 24252 | 	dbf.w		%d0,m_loop	# given in d0 | 
 | 24253 | no_sft: | 
 | 24254 | 	tst.l		%d2		# check for mantissa of zero | 
 | 24255 | 	bne.b		no_zr		# if not, go on | 
 | 24256 | 	tst.l		%d3		# continue zero check | 
 | 24257 | 	beq.b		zer_m		# if zero, go directly to binstr | 
 | 24258 | no_zr: | 
 | 24259 | 	clr.l		%d1		# put zero in d1 for addx | 
 | 24260 | 	add.l		&0x00000080,%d3	# inc at bit 7 | 
 | 24261 | 	addx.l		%d1,%d2		# continue inc | 
 | 24262 | 	and.l		&0xffffff80,%d3	# strip off lsb not used by 882 | 
 | 24263 | zer_m: | 
 | 24264 | 	mov.l		%d4,%d0		# put LEN in d0 for binstr call | 
 | 24265 | 	addq.l		&3,%a0		# a0 points to M16 byte in result | 
 | 24266 | 	bsr		binstr		# call binstr to convert mant | 
 | 24267 |  | 
 | 24268 |  | 
 | 24269 | # A15. Convert the exponent to bcd. | 
 | 24270 | #      As in A14 above, the exp is converted to bcd and the | 
 | 24271 | #      digits are stored in the final string. | 
 | 24272 | # | 
 | 24273 | #      Digits are stored in L_SCR1(a6) on return from BINDEC as: | 
 | 24274 | # | 
 | 24275 | #	 32               16 15                0 | 
 | 24276 | #	----------------------------------------- | 
 | 24277 | #	|  0 | e3 | e2 | e1 | e4 |  X |  X |  X | | 
 | 24278 | #	----------------------------------------- | 
 | 24279 | # | 
 | 24280 | # And are moved into their proper places in FP_SCR0.  If digit e4 | 
 | 24281 | # is non-zero, OPERR is signaled.  In all cases, all 4 digits are | 
 | 24282 | # written as specified in the 881/882 manual for packed decimal. | 
 | 24283 | # | 
 | 24284 | # Register usage: | 
 | 24285 | #	Input/Output | 
 | 24286 | #	d0: x/LEN call to binstr - final is 0 | 
 | 24287 | #	d1: x/scratch (0);shift count for final exponent packing | 
 | 24288 | #	d2: x/ms 32-bits of exp fraction/scratch | 
 | 24289 | #	d3: x/ls 32-bits of exp fraction | 
 | 24290 | #	d4: LEN/Unchanged | 
 | 24291 | #	d5: ICTR:LAMBDA/LAMBDA:ICTR | 
 | 24292 | #	d6: ILOG | 
 | 24293 | #	d7: k-factor/Unchanged | 
 | 24294 | #	a0: ptr to result string/ptr to L_SCR1(a6) | 
 | 24295 | #	a1: ptr to PTENxx array/Unchanged | 
 | 24296 | #	a2: ptr to FP_SCR1(a6)/Unchanged | 
 | 24297 | #	fp0: abs(YINT) adjusted/float(ILOG) | 
 | 24298 | #	fp1: 10^ISCALE/Unchanged | 
 | 24299 | #	fp2: 10^LEN/Unchanged | 
 | 24300 | #	F_SCR1:Work area for final result/BCD result | 
 | 24301 | #	F_SCR2:Y with original exponent/ILOG/10^4 | 
 | 24302 | #	L_SCR1:original USER_FPCR/Exponent digits on return from binstr | 
 | 24303 | #	L_SCR2:first word of X packed/Unchanged | 
 | 24304 |  | 
 | 24305 | A15_st: | 
 | 24306 | 	tst.b		BINDEC_FLG(%a6)	# check for denorm | 
 | 24307 | 	beq.b		not_denorm | 
 | 24308 | 	ftest.x		%fp0		# test for zero | 
 | 24309 | 	fbeq.w		den_zero	# if zero, use k-factor or 4933 | 
 | 24310 | 	fmov.l		%d6,%fp0	# float ILOG | 
 | 24311 | 	fabs.x		%fp0		# get abs of ILOG | 
 | 24312 | 	bra.b		convrt | 
 | 24313 | den_zero: | 
 | 24314 | 	tst.l		%d7		# check sign of the k-factor | 
 | 24315 | 	blt.b		use_ilog	# if negative, use ILOG | 
 | 24316 | 	fmov.s		F4933(%pc),%fp0	# force exponent to 4933 | 
 | 24317 | 	bra.b		convrt		# do it | 
 | 24318 | use_ilog: | 
 | 24319 | 	fmov.l		%d6,%fp0	# float ILOG | 
 | 24320 | 	fabs.x		%fp0		# get abs of ILOG | 
 | 24321 | 	bra.b		convrt | 
 | 24322 | not_denorm: | 
 | 24323 | 	ftest.x		%fp0		# test for zero | 
 | 24324 | 	fbneq.w		not_zero	# if zero, force exponent | 
 | 24325 | 	fmov.s		FONE(%pc),%fp0	# force exponent to 1 | 
 | 24326 | 	bra.b		convrt		# do it | 
 | 24327 | not_zero: | 
 | 24328 | 	fmov.l		%d6,%fp0	# float ILOG | 
 | 24329 | 	fabs.x		%fp0		# get abs of ILOG | 
 | 24330 | convrt: | 
 | 24331 | 	fdiv.x		24(%a1),%fp0	# compute ILOG/10^4 | 
 | 24332 | 	fmov.x		%fp0,FP_SCR1(%a6)	# store fp0 in memory | 
 | 24333 | 	mov.l		4(%a2),%d2	# move word 2 to d2 | 
 | 24334 | 	mov.l		8(%a2),%d3	# move word 3 to d3 | 
 | 24335 | 	mov.w		(%a2),%d0	# move exp to d0 | 
 | 24336 | 	beq.b		x_loop_fin	# if zero, skip the shift | 
 | 24337 | 	sub.w		&0x3ffd,%d0	# subtract off bias | 
 | 24338 | 	neg.w		%d0		# make exp positive | 
 | 24339 | x_loop: | 
 | 24340 | 	lsr.l		&1,%d2		# shift d2:d3 right | 
 | 24341 | 	roxr.l		&1,%d3		# the number of places | 
 | 24342 | 	dbf.w		%d0,x_loop	# given in d0 | 
 | 24343 | x_loop_fin: | 
 | 24344 | 	clr.l		%d1		# put zero in d1 for addx | 
 | 24345 | 	add.l		&0x00000080,%d3	# inc at bit 6 | 
 | 24346 | 	addx.l		%d1,%d2		# continue inc | 
 | 24347 | 	and.l		&0xffffff80,%d3	# strip off lsb not used by 882 | 
 | 24348 | 	mov.l		&4,%d0		# put 4 in d0 for binstr call | 
 | 24349 | 	lea.l		L_SCR1(%a6),%a0	# a0 is ptr to L_SCR1 for exp digits | 
 | 24350 | 	bsr		binstr		# call binstr to convert exp | 
 | 24351 | 	mov.l		L_SCR1(%a6),%d0	# load L_SCR1 lword to d0 | 
 | 24352 | 	mov.l		&12,%d1		# use d1 for shift count | 
 | 24353 | 	lsr.l		%d1,%d0		# shift d0 right by 12 | 
 | 24354 | 	bfins		%d0,FP_SCR0(%a6){&4:&12}	# put e3:e2:e1 in FP_SCR0 | 
 | 24355 | 	lsr.l		%d1,%d0		# shift d0 right by 12 | 
 | 24356 | 	bfins		%d0,FP_SCR0(%a6){&16:&4}	# put e4 in FP_SCR0 | 
 | 24357 | 	tst.b		%d0		# check if e4 is zero | 
 | 24358 | 	beq.b		A16_st		# if zero, skip rest | 
 | 24359 | 	or.l		&opaop_mask,USER_FPSR(%a6)	# set OPERR & AIOP in USER_FPSR | 
 | 24360 |  | 
 | 24361 |  | 
 | 24362 | # A16. Write sign bits to final string. | 
 | 24363 | #	   Sigma is bit 31 of initial value; RHO is bit 31 of d6 (ILOG). | 
 | 24364 | # | 
 | 24365 | # Register usage: | 
 | 24366 | #	Input/Output | 
 | 24367 | #	d0: x/scratch - final is x | 
 | 24368 | #	d2: x/x | 
 | 24369 | #	d3: x/x | 
 | 24370 | #	d4: LEN/Unchanged | 
 | 24371 | #	d5: ICTR:LAMBDA/LAMBDA:ICTR | 
 | 24372 | #	d6: ILOG/ILOG adjusted | 
 | 24373 | #	d7: k-factor/Unchanged | 
 | 24374 | #	a0: ptr to L_SCR1(a6)/Unchanged | 
 | 24375 | #	a1: ptr to PTENxx array/Unchanged | 
 | 24376 | #	a2: ptr to FP_SCR1(a6)/Unchanged | 
 | 24377 | #	fp0: float(ILOG)/Unchanged | 
 | 24378 | #	fp1: 10^ISCALE/Unchanged | 
 | 24379 | #	fp2: 10^LEN/Unchanged | 
 | 24380 | #	F_SCR1:BCD result with correct signs | 
 | 24381 | #	F_SCR2:ILOG/10^4 | 
 | 24382 | #	L_SCR1:Exponent digits on return from binstr | 
 | 24383 | #	L_SCR2:first word of X packed/Unchanged | 
 | 24384 |  | 
 | 24385 | A16_st: | 
 | 24386 | 	clr.l		%d0		# clr d0 for collection of signs | 
 | 24387 | 	and.b		&0x0f,FP_SCR0(%a6)	# clear first nibble of FP_SCR0 | 
 | 24388 | 	tst.l		L_SCR2(%a6)	# check sign of original mantissa | 
 | 24389 | 	bge.b		mant_p		# if pos, don't set SM | 
 | 24390 | 	mov.l		&2,%d0		# move 2 in to d0 for SM | 
 | 24391 | mant_p: | 
 | 24392 | 	tst.l		%d6		# check sign of ILOG | 
 | 24393 | 	bge.b		wr_sgn		# if pos, don't set SE | 
 | 24394 | 	addq.l		&1,%d0		# set bit 0 in d0 for SE | 
 | 24395 | wr_sgn: | 
 | 24396 | 	bfins		%d0,FP_SCR0(%a6){&0:&2}	# insert SM and SE into FP_SCR0 | 
 | 24397 |  | 
 | 24398 | # Clean up and restore all registers used. | 
 | 24399 |  | 
 | 24400 | 	fmov.l		&0,%fpsr	# clear possible inex2/ainex bits | 
 | 24401 | 	fmovm.x		(%sp)+,&0xe0	#  {%fp0-%fp2} | 
 | 24402 | 	movm.l		(%sp)+,&0x4fc	#  {%d2-%d7/%a2} | 
 | 24403 | 	rts | 
 | 24404 |  | 
 | 24405 | 	global		PTENRN | 
 | 24406 | PTENRN: | 
 | 24407 | 	long		0x40020000,0xA0000000,0x00000000	# 10 ^ 1 | 
 | 24408 | 	long		0x40050000,0xC8000000,0x00000000	# 10 ^ 2 | 
 | 24409 | 	long		0x400C0000,0x9C400000,0x00000000	# 10 ^ 4 | 
 | 24410 | 	long		0x40190000,0xBEBC2000,0x00000000	# 10 ^ 8 | 
 | 24411 | 	long		0x40340000,0x8E1BC9BF,0x04000000	# 10 ^ 16 | 
 | 24412 | 	long		0x40690000,0x9DC5ADA8,0x2B70B59E	# 10 ^ 32 | 
 | 24413 | 	long		0x40D30000,0xC2781F49,0xFFCFA6D5	# 10 ^ 64 | 
 | 24414 | 	long		0x41A80000,0x93BA47C9,0x80E98CE0	# 10 ^ 128 | 
 | 24415 | 	long		0x43510000,0xAA7EEBFB,0x9DF9DE8E	# 10 ^ 256 | 
 | 24416 | 	long		0x46A30000,0xE319A0AE,0xA60E91C7	# 10 ^ 512 | 
 | 24417 | 	long		0x4D480000,0xC9767586,0x81750C17	# 10 ^ 1024 | 
 | 24418 | 	long		0x5A920000,0x9E8B3B5D,0xC53D5DE5	# 10 ^ 2048 | 
 | 24419 | 	long		0x75250000,0xC4605202,0x8A20979B	# 10 ^ 4096 | 
 | 24420 |  | 
 | 24421 | 	global		PTENRP | 
 | 24422 | PTENRP: | 
 | 24423 | 	long		0x40020000,0xA0000000,0x00000000	# 10 ^ 1 | 
 | 24424 | 	long		0x40050000,0xC8000000,0x00000000	# 10 ^ 2 | 
 | 24425 | 	long		0x400C0000,0x9C400000,0x00000000	# 10 ^ 4 | 
 | 24426 | 	long		0x40190000,0xBEBC2000,0x00000000	# 10 ^ 8 | 
 | 24427 | 	long		0x40340000,0x8E1BC9BF,0x04000000	# 10 ^ 16 | 
 | 24428 | 	long		0x40690000,0x9DC5ADA8,0x2B70B59E	# 10 ^ 32 | 
 | 24429 | 	long		0x40D30000,0xC2781F49,0xFFCFA6D6	# 10 ^ 64 | 
 | 24430 | 	long		0x41A80000,0x93BA47C9,0x80E98CE0	# 10 ^ 128 | 
 | 24431 | 	long		0x43510000,0xAA7EEBFB,0x9DF9DE8E	# 10 ^ 256 | 
 | 24432 | 	long		0x46A30000,0xE319A0AE,0xA60E91C7	# 10 ^ 512 | 
 | 24433 | 	long		0x4D480000,0xC9767586,0x81750C18	# 10 ^ 1024 | 
 | 24434 | 	long		0x5A920000,0x9E8B3B5D,0xC53D5DE5	# 10 ^ 2048 | 
 | 24435 | 	long		0x75250000,0xC4605202,0x8A20979B	# 10 ^ 4096 | 
 | 24436 |  | 
 | 24437 | 	global		PTENRM | 
 | 24438 | PTENRM: | 
 | 24439 | 	long		0x40020000,0xA0000000,0x00000000	# 10 ^ 1 | 
 | 24440 | 	long		0x40050000,0xC8000000,0x00000000	# 10 ^ 2 | 
 | 24441 | 	long		0x400C0000,0x9C400000,0x00000000	# 10 ^ 4 | 
 | 24442 | 	long		0x40190000,0xBEBC2000,0x00000000	# 10 ^ 8 | 
 | 24443 | 	long		0x40340000,0x8E1BC9BF,0x04000000	# 10 ^ 16 | 
 | 24444 | 	long		0x40690000,0x9DC5ADA8,0x2B70B59D	# 10 ^ 32 | 
 | 24445 | 	long		0x40D30000,0xC2781F49,0xFFCFA6D5	# 10 ^ 64 | 
 | 24446 | 	long		0x41A80000,0x93BA47C9,0x80E98CDF	# 10 ^ 128 | 
 | 24447 | 	long		0x43510000,0xAA7EEBFB,0x9DF9DE8D	# 10 ^ 256 | 
 | 24448 | 	long		0x46A30000,0xE319A0AE,0xA60E91C6	# 10 ^ 512 | 
 | 24449 | 	long		0x4D480000,0xC9767586,0x81750C17	# 10 ^ 1024 | 
 | 24450 | 	long		0x5A920000,0x9E8B3B5D,0xC53D5DE4	# 10 ^ 2048 | 
 | 24451 | 	long		0x75250000,0xC4605202,0x8A20979A	# 10 ^ 4096 | 
 | 24452 |  | 
 | 24453 | ######################################################################### | 
 | 24454 | # binstr(): Converts a 64-bit binary integer to bcd.			# | 
 | 24455 | #									# | 
 | 24456 | # INPUT *************************************************************** # | 
 | 24457 | #	d2:d3 = 64-bit binary integer					# | 
 | 24458 | #	d0    = desired length (LEN)					# | 
 | 24459 | #	a0    = pointer to start in memory for bcd characters		# | 
 | 24460 | #		(This pointer must point to byte 4 of the first		# | 
 | 24461 | #		 lword of the packed decimal memory string.)		# | 
 | 24462 | #									# | 
 | 24463 | # OUTPUT ************************************************************** # | 
 | 24464 | #	a0 = pointer to LEN bcd digits representing the 64-bit integer.	# | 
 | 24465 | #									# | 
 | 24466 | # ALGORITHM ***********************************************************	# | 
 | 24467 | #	The 64-bit binary is assumed to have a decimal point before	# | 
 | 24468 | #	bit 63.  The fraction is multiplied by 10 using a mul by 2	# | 
 | 24469 | #	shift and a mul by 8 shift.  The bits shifted out of the	# | 
 | 24470 | #	msb form a decimal digit.  This process is iterated until	# | 
 | 24471 | #	LEN digits are formed.						# | 
 | 24472 | #									# | 
 | 24473 | # A1. Init d7 to 1.  D7 is the byte digit counter, and if 1, the	# | 
 | 24474 | #     digit formed will be assumed the least significant.  This is	# | 
 | 24475 | #     to force the first byte formed to have a 0 in the upper 4 bits.	# | 
 | 24476 | #									# | 
 | 24477 | # A2. Beginning of the loop:						# | 
 | 24478 | #     Copy the fraction in d2:d3 to d4:d5.				# | 
 | 24479 | #									# | 
 | 24480 | # A3. Multiply the fraction in d2:d3 by 8 using bit-field		# | 
 | 24481 | #     extracts and shifts.  The three msbs from d2 will go into d1.	# | 
 | 24482 | #									# | 
 | 24483 | # A4. Multiply the fraction in d4:d5 by 2 using shifts.  The msb	# | 
 | 24484 | #     will be collected by the carry.					# | 
 | 24485 | #									# | 
 | 24486 | # A5. Add using the carry the 64-bit quantities in d2:d3 and d4:d5	# | 
 | 24487 | #     into d2:d3.  D1 will contain the bcd digit formed.		# | 
 | 24488 | #									# | 
 | 24489 | # A6. Test d7.  If zero, the digit formed is the ms digit.  If non-	# | 
 | 24490 | #     zero, it is the ls digit.  Put the digit in its place in the	# | 
 | 24491 | #     upper word of d0.  If it is the ls digit, write the word		# | 
 | 24492 | #     from d0 to memory.						# | 
 | 24493 | #									# | 
 | 24494 | # A7. Decrement d6 (LEN counter) and repeat the loop until zero.	# | 
 | 24495 | #									# | 
 | 24496 | ######################################################################### | 
 | 24497 |  | 
 | 24498 | #	Implementation Notes: | 
 | 24499 | # | 
 | 24500 | #	The registers are used as follows: | 
 | 24501 | # | 
 | 24502 | #		d0: LEN counter | 
 | 24503 | #		d1: temp used to form the digit | 
 | 24504 | #		d2: upper 32-bits of fraction for mul by 8 | 
 | 24505 | #		d3: lower 32-bits of fraction for mul by 8 | 
 | 24506 | #		d4: upper 32-bits of fraction for mul by 2 | 
 | 24507 | #		d5: lower 32-bits of fraction for mul by 2 | 
 | 24508 | #		d6: temp for bit-field extracts | 
 | 24509 | #		d7: byte digit formation word;digit count {0,1} | 
 | 24510 | #		a0: pointer into memory for packed bcd string formation | 
 | 24511 | # | 
 | 24512 |  | 
 | 24513 | 	global		binstr | 
 | 24514 | binstr: | 
 | 24515 | 	movm.l		&0xff00,-(%sp)	#  {%d0-%d7} | 
 | 24516 |  | 
 | 24517 | # | 
 | 24518 | # A1: Init d7 | 
 | 24519 | # | 
 | 24520 | 	mov.l		&1,%d7		# init d7 for second digit | 
 | 24521 | 	subq.l		&1,%d0		# for dbf d0 would have LEN+1 passes | 
 | 24522 | # | 
 | 24523 | # A2. Copy d2:d3 to d4:d5.  Start loop. | 
 | 24524 | # | 
 | 24525 | loop: | 
 | 24526 | 	mov.l		%d2,%d4		# copy the fraction before muls | 
 | 24527 | 	mov.l		%d3,%d5		# to d4:d5 | 
 | 24528 | # | 
 | 24529 | # A3. Multiply d2:d3 by 8; extract msbs into d1. | 
 | 24530 | # | 
 | 24531 | 	bfextu		%d2{&0:&3},%d1	# copy 3 msbs of d2 into d1 | 
 | 24532 | 	asl.l		&3,%d2		# shift d2 left by 3 places | 
 | 24533 | 	bfextu		%d3{&0:&3},%d6	# copy 3 msbs of d3 into d6 | 
 | 24534 | 	asl.l		&3,%d3		# shift d3 left by 3 places | 
 | 24535 | 	or.l		%d6,%d2		# or in msbs from d3 into d2 | 
 | 24536 | # | 
 | 24537 | # A4. Multiply d4:d5 by 2; add carry out to d1. | 
 | 24538 | # | 
 | 24539 | 	asl.l		&1,%d5		# mul d5 by 2 | 
 | 24540 | 	roxl.l		&1,%d4		# mul d4 by 2 | 
 | 24541 | 	swap		%d6		# put 0 in d6 lower word | 
 | 24542 | 	addx.w		%d6,%d1		# add in extend from mul by 2 | 
 | 24543 | # | 
 | 24544 | # A5. Add mul by 8 to mul by 2.  D1 contains the digit formed. | 
 | 24545 | # | 
 | 24546 | 	add.l		%d5,%d3		# add lower 32 bits | 
 | 24547 | 	nop				# ERRATA FIX #13 (Rev. 1.2 6/6/90) | 
 | 24548 | 	addx.l		%d4,%d2		# add with extend upper 32 bits | 
 | 24549 | 	nop				# ERRATA FIX #13 (Rev. 1.2 6/6/90) | 
 | 24550 | 	addx.w		%d6,%d1		# add in extend from add to d1 | 
 | 24551 | 	swap		%d6		# with d6 = 0; put 0 in upper word | 
 | 24552 | # | 
 | 24553 | # A6. Test d7 and branch. | 
 | 24554 | # | 
 | 24555 | 	tst.w		%d7		# if zero, store digit & to loop | 
 | 24556 | 	beq.b		first_d		# if non-zero, form byte & write | 
 | 24557 | sec_d: | 
 | 24558 | 	swap		%d7		# bring first digit to word d7b | 
 | 24559 | 	asl.w		&4,%d7		# first digit in upper 4 bits d7b | 
 | 24560 | 	add.w		%d1,%d7		# add in ls digit to d7b | 
 | 24561 | 	mov.b		%d7,(%a0)+	# store d7b byte in memory | 
 | 24562 | 	swap		%d7		# put LEN counter in word d7a | 
 | 24563 | 	clr.w		%d7		# set d7a to signal no digits done | 
 | 24564 | 	dbf.w		%d0,loop	# do loop some more! | 
 | 24565 | 	bra.b		end_bstr	# finished, so exit | 
 | 24566 | first_d: | 
 | 24567 | 	swap		%d7		# put digit word in d7b | 
 | 24568 | 	mov.w		%d1,%d7		# put new digit in d7b | 
 | 24569 | 	swap		%d7		# put LEN counter in word d7a | 
 | 24570 | 	addq.w		&1,%d7		# set d7a to signal first digit done | 
 | 24571 | 	dbf.w		%d0,loop	# do loop some more! | 
 | 24572 | 	swap		%d7		# put last digit in string | 
 | 24573 | 	lsl.w		&4,%d7		# move it to upper 4 bits | 
 | 24574 | 	mov.b		%d7,(%a0)+	# store it in memory string | 
 | 24575 | # | 
 | 24576 | # Clean up and return with result in fp0. | 
 | 24577 | # | 
 | 24578 | end_bstr: | 
 | 24579 | 	movm.l		(%sp)+,&0xff	#  {%d0-%d7} | 
 | 24580 | 	rts | 
 | 24581 |  | 
 | 24582 | ######################################################################### | 
 | 24583 | # XDEF ****************************************************************	# | 
 | 24584 | #	facc_in_b(): dmem_read_byte failed				# | 
 | 24585 | #	facc_in_w(): dmem_read_word failed				# | 
 | 24586 | #	facc_in_l(): dmem_read_long failed				# | 
 | 24587 | #	facc_in_d(): dmem_read of dbl prec failed			# | 
 | 24588 | #	facc_in_x(): dmem_read of ext prec failed			# | 
 | 24589 | #									# | 
 | 24590 | #	facc_out_b(): dmem_write_byte failed				# | 
 | 24591 | #	facc_out_w(): dmem_write_word failed				# | 
 | 24592 | #	facc_out_l(): dmem_write_long failed				# | 
 | 24593 | #	facc_out_d(): dmem_write of dbl prec failed			# | 
 | 24594 | #	facc_out_x(): dmem_write of ext prec failed			# | 
 | 24595 | #									# | 
 | 24596 | # XREF ****************************************************************	# | 
 | 24597 | #	_real_access() - exit through access error handler		# | 
 | 24598 | #									# | 
 | 24599 | # INPUT ***************************************************************	# | 
 | 24600 | #	None								# | 
 | 24601 | #									# | 
 | 24602 | # OUTPUT **************************************************************	# | 
 | 24603 | #	None								# | 
 | 24604 | #									# | 
 | 24605 | # ALGORITHM ***********************************************************	# | 
 | 24606 | #	Flow jumps here when an FP data fetch call gets an error	# | 
 | 24607 | # result. This means the operating system wants an access error frame	# | 
 | 24608 | # made out of the current exception stack frame.			# | 
 | 24609 | #	So, we first call restore() which makes sure that any updated	# | 
 | 24610 | # -(an)+ register gets returned to its pre-exception value and then	# | 
 | 24611 | # we change the stack to an access error stack frame.			# | 
 | 24612 | #									# | 
 | 24613 | ######################################################################### | 
 | 24614 |  | 
 | 24615 | facc_in_b: | 
 | 24616 | 	movq.l		&0x1,%d0			# one byte | 
 | 24617 | 	bsr.w		restore				# fix An | 
 | 24618 |  | 
 | 24619 | 	mov.w		&0x0121,EXC_VOFF(%a6)		# set FSLW | 
 | 24620 | 	bra.w		facc_finish | 
 | 24621 |  | 
 | 24622 | facc_in_w: | 
 | 24623 | 	movq.l		&0x2,%d0			# two bytes | 
 | 24624 | 	bsr.w		restore				# fix An | 
 | 24625 |  | 
 | 24626 | 	mov.w		&0x0141,EXC_VOFF(%a6)		# set FSLW | 
 | 24627 | 	bra.b		facc_finish | 
 | 24628 |  | 
 | 24629 | facc_in_l: | 
 | 24630 | 	movq.l		&0x4,%d0			# four bytes | 
 | 24631 | 	bsr.w		restore				# fix An | 
 | 24632 |  | 
 | 24633 | 	mov.w		&0x0101,EXC_VOFF(%a6)		# set FSLW | 
 | 24634 | 	bra.b		facc_finish | 
 | 24635 |  | 
 | 24636 | facc_in_d: | 
 | 24637 | 	movq.l		&0x8,%d0			# eight bytes | 
 | 24638 | 	bsr.w		restore				# fix An | 
 | 24639 |  | 
 | 24640 | 	mov.w		&0x0161,EXC_VOFF(%a6)		# set FSLW | 
 | 24641 | 	bra.b		facc_finish | 
 | 24642 |  | 
 | 24643 | facc_in_x: | 
 | 24644 | 	movq.l		&0xc,%d0			# twelve bytes | 
 | 24645 | 	bsr.w		restore				# fix An | 
 | 24646 |  | 
 | 24647 | 	mov.w		&0x0161,EXC_VOFF(%a6)		# set FSLW | 
 | 24648 | 	bra.b		facc_finish | 
 | 24649 |  | 
 | 24650 | ################################################################ | 
 | 24651 |  | 
 | 24652 | facc_out_b: | 
 | 24653 | 	movq.l		&0x1,%d0			# one byte | 
 | 24654 | 	bsr.w		restore				# restore An | 
 | 24655 |  | 
 | 24656 | 	mov.w		&0x00a1,EXC_VOFF(%a6)		# set FSLW | 
 | 24657 | 	bra.b		facc_finish | 
 | 24658 |  | 
 | 24659 | facc_out_w: | 
 | 24660 | 	movq.l		&0x2,%d0			# two bytes | 
 | 24661 | 	bsr.w		restore				# restore An | 
 | 24662 |  | 
 | 24663 | 	mov.w		&0x00c1,EXC_VOFF(%a6)		# set FSLW | 
 | 24664 | 	bra.b		facc_finish | 
 | 24665 |  | 
 | 24666 | facc_out_l: | 
 | 24667 | 	movq.l		&0x4,%d0			# four bytes | 
 | 24668 | 	bsr.w		restore				# restore An | 
 | 24669 |  | 
 | 24670 | 	mov.w		&0x0081,EXC_VOFF(%a6)		# set FSLW | 
 | 24671 | 	bra.b		facc_finish | 
 | 24672 |  | 
 | 24673 | facc_out_d: | 
 | 24674 | 	movq.l		&0x8,%d0			# eight bytes | 
 | 24675 | 	bsr.w		restore				# restore An | 
 | 24676 |  | 
 | 24677 | 	mov.w		&0x00e1,EXC_VOFF(%a6)		# set FSLW | 
 | 24678 | 	bra.b		facc_finish | 
 | 24679 |  | 
 | 24680 | facc_out_x: | 
 | 24681 | 	mov.l		&0xc,%d0			# twelve bytes | 
 | 24682 | 	bsr.w		restore				# restore An | 
 | 24683 |  | 
 | 24684 | 	mov.w		&0x00e1,EXC_VOFF(%a6)		# set FSLW | 
 | 24685 |  | 
 | 24686 | # here's where we actually create the access error frame from the | 
 | 24687 | # current exception stack frame. | 
 | 24688 | facc_finish: | 
 | 24689 | 	mov.l		USER_FPIAR(%a6),EXC_PC(%a6) # store current PC | 
 | 24690 |  | 
 | 24691 | 	fmovm.x		EXC_FPREGS(%a6),&0xc0	# restore fp0-fp1 | 
 | 24692 | 	fmovm.l		USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs | 
 | 24693 | 	movm.l		EXC_DREGS(%a6),&0x0303	# restore d0-d1/a0-a1 | 
 | 24694 |  | 
 | 24695 | 	unlk		%a6 | 
 | 24696 |  | 
 | 24697 | 	mov.l		(%sp),-(%sp)		# store SR, hi(PC) | 
 | 24698 | 	mov.l		0x8(%sp),0x4(%sp)	# store lo(PC) | 
 | 24699 | 	mov.l		0xc(%sp),0x8(%sp)	# store EA | 
 | 24700 | 	mov.l		&0x00000001,0xc(%sp)	# store FSLW | 
 | 24701 | 	mov.w		0x6(%sp),0xc(%sp)	# fix FSLW (size) | 
 | 24702 | 	mov.w		&0x4008,0x6(%sp)	# store voff | 
 | 24703 |  | 
 | 24704 | 	btst		&0x5,(%sp)		# supervisor or user mode? | 
 | 24705 | 	beq.b		facc_out2		# user | 
 | 24706 | 	bset		&0x2,0xd(%sp)		# set supervisor TM bit | 
 | 24707 |  | 
 | 24708 | facc_out2: | 
 | 24709 | 	bra.l		_real_access | 
 | 24710 |  | 
 | 24711 | ################################################################## | 
 | 24712 |  | 
 | 24713 | # if the effective addressing mode was predecrement or postincrement, | 
 | 24714 | # the emulation has already changed its value to the correct post- | 
 | 24715 | # instruction value. but since we're exiting to the access error | 
 | 24716 | # handler, then AN must be returned to its pre-instruction value. | 
 | 24717 | # we do that here. | 
 | 24718 | restore: | 
 | 24719 | 	mov.b		EXC_OPWORD+0x1(%a6),%d1 | 
 | 24720 | 	andi.b		&0x38,%d1		# extract opmode | 
 | 24721 | 	cmpi.b		%d1,&0x18		# postinc? | 
 | 24722 | 	beq.w		rest_inc | 
 | 24723 | 	cmpi.b		%d1,&0x20		# predec? | 
 | 24724 | 	beq.w		rest_dec | 
 | 24725 | 	rts | 
 | 24726 |  | 
 | 24727 | rest_inc: | 
 | 24728 | 	mov.b		EXC_OPWORD+0x1(%a6),%d1 | 
 | 24729 | 	andi.w		&0x0007,%d1		# fetch An | 
 | 24730 |  | 
 | 24731 | 	mov.w		(tbl_rest_inc.b,%pc,%d1.w*2),%d1 | 
 | 24732 | 	jmp		(tbl_rest_inc.b,%pc,%d1.w*1) | 
 | 24733 |  | 
 | 24734 | tbl_rest_inc: | 
 | 24735 | 	short		ri_a0 - tbl_rest_inc | 
 | 24736 | 	short		ri_a1 - tbl_rest_inc | 
 | 24737 | 	short		ri_a2 - tbl_rest_inc | 
 | 24738 | 	short		ri_a3 - tbl_rest_inc | 
 | 24739 | 	short		ri_a4 - tbl_rest_inc | 
 | 24740 | 	short		ri_a5 - tbl_rest_inc | 
 | 24741 | 	short		ri_a6 - tbl_rest_inc | 
 | 24742 | 	short		ri_a7 - tbl_rest_inc | 
 | 24743 |  | 
 | 24744 | ri_a0: | 
 | 24745 | 	sub.l		%d0,EXC_DREGS+0x8(%a6)	# fix stacked a0 | 
 | 24746 | 	rts | 
 | 24747 | ri_a1: | 
 | 24748 | 	sub.l		%d0,EXC_DREGS+0xc(%a6)	# fix stacked a1 | 
 | 24749 | 	rts | 
 | 24750 | ri_a2: | 
 | 24751 | 	sub.l		%d0,%a2			# fix a2 | 
 | 24752 | 	rts | 
 | 24753 | ri_a3: | 
 | 24754 | 	sub.l		%d0,%a3			# fix a3 | 
 | 24755 | 	rts | 
 | 24756 | ri_a4: | 
 | 24757 | 	sub.l		%d0,%a4			# fix a4 | 
 | 24758 | 	rts | 
 | 24759 | ri_a5: | 
 | 24760 | 	sub.l		%d0,%a5			# fix a5 | 
 | 24761 | 	rts | 
 | 24762 | ri_a6: | 
 | 24763 | 	sub.l		%d0,(%a6)		# fix stacked a6 | 
 | 24764 | 	rts | 
 | 24765 | # if it's a fmove out instruction, we don't have to fix a7 | 
 | 24766 | # because we hadn't changed it yet. if it's an opclass two | 
 | 24767 | # instruction (data moved in) and the exception was in supervisor | 
 | 24768 | # mode, then also also wasn't updated. if it was user mode, then | 
 | 24769 | # restore the correct a7 which is in the USP currently. | 
 | 24770 | ri_a7: | 
 | 24771 | 	cmpi.b		EXC_VOFF(%a6),&0x30	# move in or out? | 
 | 24772 | 	bne.b		ri_a7_done		# out | 
 | 24773 |  | 
 | 24774 | 	btst		&0x5,EXC_SR(%a6)	# user or supervisor? | 
 | 24775 | 	bne.b		ri_a7_done		# supervisor | 
 | 24776 | 	movc		%usp,%a0		# restore USP | 
 | 24777 | 	sub.l		%d0,%a0 | 
 | 24778 | 	movc		%a0,%usp | 
 | 24779 | ri_a7_done: | 
 | 24780 | 	rts | 
 | 24781 |  | 
 | 24782 | # need to invert adjustment value if the <ea> was predec | 
 | 24783 | rest_dec: | 
 | 24784 | 	neg.l		%d0 | 
 | 24785 | 	bra.b		rest_inc |