| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /*  | 
 | 2 |  * drivers/net/gianfar.c | 
 | 3 |  * | 
 | 4 |  * Gianfar Ethernet Driver | 
 | 5 |  * Driver for FEC on MPC8540 and TSEC on MPC8540/MPC8560 | 
 | 6 |  * Based on 8260_io/fcc_enet.c | 
 | 7 |  * | 
 | 8 |  * Author: Andy Fleming | 
 | 9 |  * Maintainer: Kumar Gala (kumar.gala@freescale.com) | 
 | 10 |  * | 
 | 11 |  * Copyright (c) 2002-2004 Freescale Semiconductor, Inc. | 
 | 12 |  * | 
 | 13 |  * This program is free software; you can redistribute  it and/or modify it | 
 | 14 |  * under  the terms of  the GNU General  Public License as published by the | 
 | 15 |  * Free Software Foundation;  either version 2 of the  License, or (at your | 
 | 16 |  * option) any later version. | 
 | 17 |  * | 
 | 18 |  *  Gianfar:  AKA Lambda Draconis, "Dragon" | 
 | 19 |  *  RA 11 31 24.2 | 
 | 20 |  *  Dec +69 19 52 | 
 | 21 |  *  V 3.84 | 
 | 22 |  *  B-V +1.62 | 
 | 23 |  * | 
 | 24 |  *  Theory of operation | 
 | 25 |  *  This driver is designed for the Triple-speed Ethernet | 
 | 26 |  *  controllers on the Freescale 8540/8560 integrated processors, | 
 | 27 |  *  as well as the Fast Ethernet Controller on the 8540.   | 
 | 28 |  *   | 
 | 29 |  *  The driver is initialized through platform_device.  Structures which | 
 | 30 |  *  define the configuration needed by the board are defined in a | 
 | 31 |  *  board structure in arch/ppc/platforms (though I do not | 
 | 32 |  *  discount the possibility that other architectures could one | 
 | 33 |  *  day be supported.  One assumption the driver currently makes | 
 | 34 |  *  is that the PHY is configured in such a way to advertise all | 
 | 35 |  *  capabilities.  This is a sensible default, and on certain | 
 | 36 |  *  PHYs, changing this default encounters substantial errata | 
 | 37 |  *  issues.  Future versions may remove this requirement, but for | 
 | 38 |  *  now, it is best for the firmware to ensure this is the case. | 
 | 39 |  * | 
 | 40 |  *  The Gianfar Ethernet Controller uses a ring of buffer | 
 | 41 |  *  descriptors.  The beginning is indicated by a register | 
 | 42 |  *  pointing to the physical address of the start of the ring.  | 
 | 43 |  *  The end is determined by a "wrap" bit being set in the  | 
 | 44 |  *  last descriptor of the ring. | 
 | 45 |  * | 
 | 46 |  *  When a packet is received, the RXF bit in the | 
 | 47 |  *  IEVENT register is set, triggering an interrupt when the  | 
 | 48 |  *  corresponding bit in the IMASK register is also set (if | 
 | 49 |  *  interrupt coalescing is active, then the interrupt may not | 
 | 50 |  *  happen immediately, but will wait until either a set number | 
 | 51 |  *  of frames or amount of time have passed.).  In NAPI, the | 
 | 52 |  *  interrupt handler will signal there is work to be done, and | 
 | 53 |  *  exit.  Without NAPI, the packet(s) will be handled | 
 | 54 |  *  immediately.  Both methods will start at the last known empty | 
 | 55 |  *  descriptor, and process every subsequent descriptor until there  | 
 | 56 |  *  are none left with data (NAPI will stop after a set number of | 
 | 57 |  *  packets to give time to other tasks, but will eventually | 
 | 58 |  *  process all the packets).  The data arrives inside a | 
 | 59 |  *  pre-allocated skb, and so after the skb is passed up to the | 
 | 60 |  *  stack, a new skb must be allocated, and the address field in | 
 | 61 |  *  the buffer descriptor must be updated to indicate this new | 
 | 62 |  *  skb. | 
 | 63 |  * | 
 | 64 |  *  When the kernel requests that a packet be transmitted, the | 
 | 65 |  *  driver starts where it left off last time, and points the | 
 | 66 |  *  descriptor at the buffer which was passed in.  The driver | 
 | 67 |  *  then informs the DMA engine that there are packets ready to | 
 | 68 |  *  be transmitted.  Once the controller is finished transmitting | 
 | 69 |  *  the packet, an interrupt may be triggered (under the same | 
 | 70 |  *  conditions as for reception, but depending on the TXF bit). | 
 | 71 |  *  The driver then cleans up the buffer. | 
 | 72 |  */ | 
 | 73 |  | 
 | 74 | #include <linux/config.h> | 
 | 75 | #include <linux/kernel.h> | 
 | 76 | #include <linux/sched.h> | 
 | 77 | #include <linux/string.h> | 
 | 78 | #include <linux/errno.h> | 
 | 79 | #include <linux/slab.h> | 
 | 80 | #include <linux/interrupt.h> | 
 | 81 | #include <linux/init.h> | 
 | 82 | #include <linux/delay.h> | 
 | 83 | #include <linux/netdevice.h> | 
 | 84 | #include <linux/etherdevice.h> | 
 | 85 | #include <linux/skbuff.h> | 
 | 86 | #include <linux/spinlock.h> | 
 | 87 | #include <linux/mm.h> | 
 | 88 | #include <linux/device.h> | 
 | 89 |  | 
 | 90 | #include <asm/io.h> | 
 | 91 | #include <asm/irq.h> | 
 | 92 | #include <asm/uaccess.h> | 
 | 93 | #include <linux/module.h> | 
 | 94 | #include <linux/version.h> | 
 | 95 | #include <linux/dma-mapping.h> | 
 | 96 | #include <linux/crc32.h> | 
 | 97 |  | 
 | 98 | #include "gianfar.h" | 
 | 99 | #include "gianfar_phy.h" | 
 | 100 |  | 
 | 101 | #define TX_TIMEOUT      (1*HZ) | 
 | 102 | #define SKB_ALLOC_TIMEOUT 1000000 | 
 | 103 | #undef BRIEF_GFAR_ERRORS | 
 | 104 | #undef VERBOSE_GFAR_ERRORS | 
 | 105 |  | 
 | 106 | #ifdef CONFIG_GFAR_NAPI | 
 | 107 | #define RECEIVE(x) netif_receive_skb(x) | 
 | 108 | #else | 
 | 109 | #define RECEIVE(x) netif_rx(x) | 
 | 110 | #endif | 
 | 111 |  | 
 | 112 | const char gfar_driver_name[] = "Gianfar Ethernet"; | 
 | 113 | const char gfar_driver_version[] = "1.1"; | 
 | 114 |  | 
 | 115 | int startup_gfar(struct net_device *dev); | 
 | 116 | static int gfar_enet_open(struct net_device *dev); | 
 | 117 | static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev); | 
 | 118 | static void gfar_timeout(struct net_device *dev); | 
 | 119 | static int gfar_close(struct net_device *dev); | 
 | 120 | struct sk_buff *gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp); | 
 | 121 | static struct net_device_stats *gfar_get_stats(struct net_device *dev); | 
 | 122 | static int gfar_set_mac_address(struct net_device *dev); | 
 | 123 | static int gfar_change_mtu(struct net_device *dev, int new_mtu); | 
 | 124 | static irqreturn_t gfar_error(int irq, void *dev_id, struct pt_regs *regs); | 
 | 125 | static irqreturn_t gfar_transmit(int irq, void *dev_id, struct pt_regs *regs); | 
 | 126 | irqreturn_t gfar_receive(int irq, void *dev_id, struct pt_regs *regs); | 
 | 127 | static irqreturn_t gfar_interrupt(int irq, void *dev_id, struct pt_regs *regs); | 
 | 128 | static irqreturn_t phy_interrupt(int irq, void *dev_id, struct pt_regs *regs); | 
 | 129 | static void gfar_phy_change(void *data); | 
 | 130 | static void gfar_phy_timer(unsigned long data); | 
 | 131 | static void adjust_link(struct net_device *dev); | 
 | 132 | static void init_registers(struct net_device *dev); | 
 | 133 | static int init_phy(struct net_device *dev); | 
 | 134 | static int gfar_probe(struct device *device); | 
 | 135 | static int gfar_remove(struct device *device); | 
 | 136 | void free_skb_resources(struct gfar_private *priv); | 
 | 137 | static void gfar_set_multi(struct net_device *dev); | 
 | 138 | static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr); | 
 | 139 | #ifdef CONFIG_GFAR_NAPI | 
 | 140 | static int gfar_poll(struct net_device *dev, int *budget); | 
 | 141 | #endif | 
 | 142 | static int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit); | 
 | 143 | static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, int length); | 
 | 144 | static void gfar_phy_startup_timer(unsigned long data); | 
 | 145 |  | 
 | 146 | extern struct ethtool_ops gfar_ethtool_ops; | 
 | 147 |  | 
 | 148 | MODULE_AUTHOR("Freescale Semiconductor, Inc"); | 
 | 149 | MODULE_DESCRIPTION("Gianfar Ethernet Driver"); | 
 | 150 | MODULE_LICENSE("GPL"); | 
 | 151 |  | 
 | 152 | static int gfar_probe(struct device *device) | 
 | 153 | { | 
 | 154 | 	u32 tempval; | 
 | 155 | 	struct net_device *dev = NULL; | 
 | 156 | 	struct gfar_private *priv = NULL; | 
 | 157 | 	struct platform_device *pdev = to_platform_device(device); | 
 | 158 | 	struct gianfar_platform_data *einfo; | 
 | 159 | 	struct resource *r; | 
 | 160 | 	int idx; | 
 | 161 | 	int err = 0; | 
 | 162 | 	int dev_ethtool_ops = 0; | 
 | 163 |  | 
 | 164 | 	einfo = (struct gianfar_platform_data *) pdev->dev.platform_data; | 
 | 165 |  | 
 | 166 | 	if (einfo == NULL) { | 
 | 167 | 		printk(KERN_ERR "gfar %d: Missing additional data!\n", | 
 | 168 | 		       pdev->id); | 
 | 169 |  | 
 | 170 | 		return -ENODEV; | 
 | 171 | 	} | 
 | 172 |  | 
 | 173 | 	/* Create an ethernet device instance */ | 
 | 174 | 	dev = alloc_etherdev(sizeof (*priv)); | 
 | 175 |  | 
 | 176 | 	if (dev == NULL) | 
 | 177 | 		return -ENOMEM; | 
 | 178 |  | 
 | 179 | 	priv = netdev_priv(dev); | 
 | 180 |  | 
 | 181 | 	/* Set the info in the priv to the current info */ | 
 | 182 | 	priv->einfo = einfo; | 
 | 183 |  | 
 | 184 | 	/* fill out IRQ fields */ | 
 | 185 | 	if (einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { | 
 | 186 | 		priv->interruptTransmit = platform_get_irq_byname(pdev, "tx"); | 
 | 187 | 		priv->interruptReceive = platform_get_irq_byname(pdev, "rx"); | 
 | 188 | 		priv->interruptError = platform_get_irq_byname(pdev, "error"); | 
 | 189 | 	} else { | 
 | 190 | 		priv->interruptTransmit = platform_get_irq(pdev, 0); | 
 | 191 | 	} | 
 | 192 |  | 
 | 193 | 	/* get a pointer to the register memory */ | 
 | 194 | 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0); | 
 | 195 | 	priv->regs = (struct gfar *) | 
 | 196 | 		ioremap(r->start, sizeof (struct gfar)); | 
 | 197 |  | 
 | 198 | 	if (priv->regs == NULL) { | 
 | 199 | 		err = -ENOMEM; | 
 | 200 | 		goto regs_fail; | 
 | 201 | 	} | 
 | 202 |  | 
 | 203 | 	/* Set the PHY base address */ | 
 | 204 | 	priv->phyregs = (struct gfar *) | 
 | 205 | 	    ioremap(einfo->phy_reg_addr, sizeof (struct gfar)); | 
 | 206 |  | 
 | 207 | 	if (priv->phyregs == NULL) { | 
 | 208 | 		err = -ENOMEM; | 
 | 209 | 		goto phy_regs_fail; | 
 | 210 | 	} | 
 | 211 |  | 
 | 212 | 	spin_lock_init(&priv->lock); | 
 | 213 |  | 
 | 214 | 	dev_set_drvdata(device, dev); | 
 | 215 |  | 
 | 216 | 	/* Stop the DMA engine now, in case it was running before */ | 
 | 217 | 	/* (The firmware could have used it, and left it running). */ | 
 | 218 | 	/* To do this, we write Graceful Receive Stop and Graceful */ | 
 | 219 | 	/* Transmit Stop, and then wait until the corresponding bits */ | 
 | 220 | 	/* in IEVENT indicate the stops have completed. */ | 
 | 221 | 	tempval = gfar_read(&priv->regs->dmactrl); | 
 | 222 | 	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS); | 
 | 223 | 	gfar_write(&priv->regs->dmactrl, tempval); | 
 | 224 |  | 
 | 225 | 	tempval = gfar_read(&priv->regs->dmactrl); | 
 | 226 | 	tempval |= (DMACTRL_GRS | DMACTRL_GTS); | 
 | 227 | 	gfar_write(&priv->regs->dmactrl, tempval); | 
 | 228 |  | 
 | 229 | 	while (!(gfar_read(&priv->regs->ievent) & (IEVENT_GRSC | IEVENT_GTSC))) | 
 | 230 | 		cpu_relax(); | 
 | 231 |  | 
 | 232 | 	/* Reset MAC layer */ | 
 | 233 | 	gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET); | 
 | 234 |  | 
 | 235 | 	tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW); | 
 | 236 | 	gfar_write(&priv->regs->maccfg1, tempval); | 
 | 237 |  | 
 | 238 | 	/* Initialize MACCFG2. */ | 
 | 239 | 	gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS); | 
 | 240 |  | 
 | 241 | 	/* Initialize ECNTRL */ | 
 | 242 | 	gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS); | 
 | 243 |  | 
 | 244 | 	/* Copy the station address into the dev structure, */ | 
 | 245 | 	memcpy(dev->dev_addr, einfo->mac_addr, MAC_ADDR_LEN); | 
 | 246 |  | 
 | 247 | 	/* Set the dev->base_addr to the gfar reg region */ | 
 | 248 | 	dev->base_addr = (unsigned long) (priv->regs); | 
 | 249 |  | 
 | 250 | 	SET_MODULE_OWNER(dev); | 
 | 251 | 	SET_NETDEV_DEV(dev, device); | 
 | 252 |  | 
 | 253 | 	/* Fill in the dev structure */ | 
 | 254 | 	dev->open = gfar_enet_open; | 
 | 255 | 	dev->hard_start_xmit = gfar_start_xmit; | 
 | 256 | 	dev->tx_timeout = gfar_timeout; | 
 | 257 | 	dev->watchdog_timeo = TX_TIMEOUT; | 
 | 258 | #ifdef CONFIG_GFAR_NAPI | 
 | 259 | 	dev->poll = gfar_poll; | 
 | 260 | 	dev->weight = GFAR_DEV_WEIGHT; | 
 | 261 | #endif | 
 | 262 | 	dev->stop = gfar_close; | 
 | 263 | 	dev->get_stats = gfar_get_stats; | 
 | 264 | 	dev->change_mtu = gfar_change_mtu; | 
 | 265 | 	dev->mtu = 1500; | 
 | 266 | 	dev->set_multicast_list = gfar_set_multi; | 
 | 267 |  | 
 | 268 | 	/* Index into the array of possible ethtool | 
 | 269 | 	 * ops to catch all 4 possibilities */ | 
 | 270 | 	if((priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_RMON) == 0) | 
 | 271 | 		dev_ethtool_ops += 1; | 
 | 272 |  | 
 | 273 | 	if((priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_COALESCE) == 0) | 
 | 274 | 		dev_ethtool_ops += 2; | 
 | 275 |  | 
 | 276 | 	dev->ethtool_ops = gfar_op_array[dev_ethtool_ops]; | 
 | 277 |  | 
 | 278 | 	priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE; | 
 | 279 | #ifdef CONFIG_GFAR_BUFSTASH | 
 | 280 | 	priv->rx_stash_size = STASH_LENGTH; | 
 | 281 | #endif | 
 | 282 | 	priv->tx_ring_size = DEFAULT_TX_RING_SIZE; | 
 | 283 | 	priv->rx_ring_size = DEFAULT_RX_RING_SIZE; | 
 | 284 |  | 
 | 285 | 	priv->txcoalescing = DEFAULT_TX_COALESCE; | 
 | 286 | 	priv->txcount = DEFAULT_TXCOUNT; | 
 | 287 | 	priv->txtime = DEFAULT_TXTIME; | 
 | 288 | 	priv->rxcoalescing = DEFAULT_RX_COALESCE; | 
 | 289 | 	priv->rxcount = DEFAULT_RXCOUNT; | 
 | 290 | 	priv->rxtime = DEFAULT_RXTIME; | 
 | 291 |  | 
 | 292 | 	err = register_netdev(dev); | 
 | 293 |  | 
 | 294 | 	if (err) { | 
 | 295 | 		printk(KERN_ERR "%s: Cannot register net device, aborting.\n", | 
 | 296 | 				dev->name); | 
 | 297 | 		goto register_fail; | 
 | 298 | 	} | 
 | 299 |  | 
 | 300 | 	/* Print out the device info */ | 
 | 301 | 	printk(KERN_INFO DEVICE_NAME, dev->name); | 
 | 302 | 	for (idx = 0; idx < 6; idx++) | 
 | 303 | 		printk("%2.2x%c", dev->dev_addr[idx], idx == 5 ? ' ' : ':'); | 
 | 304 | 	printk("\n"); | 
 | 305 |  | 
 | 306 | 	/* Even more device info helps when determining which kernel */ | 
 | 307 | 	/* provided which set of benchmarks.  Since this is global for all */ | 
 | 308 | 	/* devices, we only print it once */ | 
 | 309 | #ifdef CONFIG_GFAR_NAPI | 
 | 310 | 	printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name); | 
 | 311 | #else | 
 | 312 | 	printk(KERN_INFO "%s: Running with NAPI disabled\n", dev->name); | 
 | 313 | #endif | 
 | 314 | 	printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n", | 
 | 315 | 	       dev->name, priv->rx_ring_size, priv->tx_ring_size); | 
 | 316 |  | 
 | 317 | 	return 0; | 
 | 318 |  | 
 | 319 | register_fail: | 
 | 320 | 	iounmap((void *) priv->phyregs); | 
 | 321 | phy_regs_fail: | 
 | 322 | 	iounmap((void *) priv->regs); | 
 | 323 | regs_fail: | 
 | 324 | 	free_netdev(dev); | 
 | 325 | 	return -ENOMEM; | 
 | 326 | } | 
 | 327 |  | 
 | 328 | static int gfar_remove(struct device *device) | 
 | 329 | { | 
 | 330 | 	struct net_device *dev = dev_get_drvdata(device); | 
 | 331 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 332 |  | 
 | 333 | 	dev_set_drvdata(device, NULL); | 
 | 334 |  | 
 | 335 | 	iounmap((void *) priv->regs); | 
 | 336 | 	iounmap((void *) priv->phyregs); | 
 | 337 | 	free_netdev(dev); | 
 | 338 |  | 
 | 339 | 	return 0; | 
 | 340 | } | 
 | 341 |  | 
 | 342 |  | 
 | 343 | /* Configure the PHY for dev. | 
 | 344 |  * returns 0 if success.  -1 if failure | 
 | 345 |  */ | 
 | 346 | static int init_phy(struct net_device *dev) | 
 | 347 | { | 
 | 348 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 349 | 	struct phy_info *curphy; | 
 | 350 | 	unsigned int timeout = PHY_INIT_TIMEOUT; | 
 | 351 | 	struct gfar *phyregs = priv->phyregs; | 
 | 352 | 	struct gfar_mii_info *mii_info; | 
 | 353 | 	int err; | 
 | 354 |  | 
 | 355 | 	priv->oldlink = 0; | 
 | 356 | 	priv->oldspeed = 0; | 
 | 357 | 	priv->oldduplex = -1; | 
 | 358 |  | 
 | 359 | 	mii_info = kmalloc(sizeof(struct gfar_mii_info), | 
 | 360 | 			GFP_KERNEL); | 
 | 361 |  | 
 | 362 | 	if(NULL == mii_info) { | 
 | 363 | 		printk(KERN_ERR "%s: Could not allocate mii_info\n",  | 
 | 364 | 				dev->name); | 
 | 365 | 		return -ENOMEM; | 
 | 366 | 	} | 
 | 367 |  | 
 | 368 | 	mii_info->speed = SPEED_1000; | 
 | 369 | 	mii_info->duplex = DUPLEX_FULL; | 
 | 370 | 	mii_info->pause = 0; | 
 | 371 | 	mii_info->link = 1; | 
 | 372 |  | 
 | 373 | 	mii_info->advertising = (ADVERTISED_10baseT_Half | | 
 | 374 | 			ADVERTISED_10baseT_Full | | 
 | 375 | 			ADVERTISED_100baseT_Half | | 
 | 376 | 			ADVERTISED_100baseT_Full | | 
 | 377 | 			ADVERTISED_1000baseT_Full); | 
 | 378 | 	mii_info->autoneg = 1; | 
 | 379 |  | 
 | 380 | 	spin_lock_init(&mii_info->mdio_lock); | 
 | 381 |  | 
 | 382 | 	mii_info->mii_id = priv->einfo->phyid; | 
 | 383 |  | 
 | 384 | 	mii_info->dev = dev; | 
 | 385 |  | 
 | 386 | 	mii_info->mdio_read = &read_phy_reg; | 
 | 387 | 	mii_info->mdio_write = &write_phy_reg; | 
 | 388 |  | 
 | 389 | 	priv->mii_info = mii_info; | 
 | 390 |  | 
 | 391 | 	/* Reset the management interface */ | 
 | 392 | 	gfar_write(&phyregs->miimcfg, MIIMCFG_RESET); | 
 | 393 |  | 
 | 394 | 	/* Setup the MII Mgmt clock speed */ | 
 | 395 | 	gfar_write(&phyregs->miimcfg, MIIMCFG_INIT_VALUE); | 
 | 396 |  | 
 | 397 | 	/* Wait until the bus is free */ | 
 | 398 | 	while ((gfar_read(&phyregs->miimind) & MIIMIND_BUSY) && | 
 | 399 | 			timeout--) | 
 | 400 | 		cpu_relax(); | 
 | 401 |  | 
 | 402 | 	if(timeout <= 0) { | 
 | 403 | 		printk(KERN_ERR "%s: The MII Bus is stuck!\n", | 
 | 404 | 				dev->name); | 
 | 405 | 		err = -1; | 
 | 406 | 		goto bus_fail; | 
 | 407 | 	} | 
 | 408 |  | 
 | 409 | 	/* get info for this PHY */ | 
 | 410 | 	curphy = get_phy_info(priv->mii_info); | 
 | 411 |  | 
 | 412 | 	if (curphy == NULL) { | 
 | 413 | 		printk(KERN_ERR "%s: No PHY found\n", dev->name); | 
 | 414 | 		err = -1; | 
 | 415 | 		goto no_phy; | 
 | 416 | 	} | 
 | 417 |  | 
 | 418 | 	mii_info->phyinfo = curphy; | 
 | 419 |  | 
 | 420 | 	/* Run the commands which initialize the PHY */ | 
 | 421 | 	if(curphy->init) { | 
 | 422 | 		err = curphy->init(priv->mii_info); | 
 | 423 |  | 
 | 424 | 		if (err)  | 
 | 425 | 			goto phy_init_fail; | 
 | 426 | 	} | 
 | 427 |  | 
 | 428 | 	return 0; | 
 | 429 |  | 
 | 430 | phy_init_fail: | 
 | 431 | no_phy: | 
 | 432 | bus_fail: | 
 | 433 | 	kfree(mii_info); | 
 | 434 |  | 
 | 435 | 	return err; | 
 | 436 | } | 
 | 437 |  | 
 | 438 | static void init_registers(struct net_device *dev) | 
 | 439 | { | 
 | 440 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 441 |  | 
 | 442 | 	/* Clear IEVENT */ | 
 | 443 | 	gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR); | 
 | 444 |  | 
 | 445 | 	/* Initialize IMASK */ | 
 | 446 | 	gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR); | 
 | 447 |  | 
 | 448 | 	/* Init hash registers to zero */ | 
 | 449 | 	gfar_write(&priv->regs->iaddr0, 0); | 
 | 450 | 	gfar_write(&priv->regs->iaddr1, 0); | 
 | 451 | 	gfar_write(&priv->regs->iaddr2, 0); | 
 | 452 | 	gfar_write(&priv->regs->iaddr3, 0); | 
 | 453 | 	gfar_write(&priv->regs->iaddr4, 0); | 
 | 454 | 	gfar_write(&priv->regs->iaddr5, 0); | 
 | 455 | 	gfar_write(&priv->regs->iaddr6, 0); | 
 | 456 | 	gfar_write(&priv->regs->iaddr7, 0); | 
 | 457 |  | 
 | 458 | 	gfar_write(&priv->regs->gaddr0, 0); | 
 | 459 | 	gfar_write(&priv->regs->gaddr1, 0); | 
 | 460 | 	gfar_write(&priv->regs->gaddr2, 0); | 
 | 461 | 	gfar_write(&priv->regs->gaddr3, 0); | 
 | 462 | 	gfar_write(&priv->regs->gaddr4, 0); | 
 | 463 | 	gfar_write(&priv->regs->gaddr5, 0); | 
 | 464 | 	gfar_write(&priv->regs->gaddr6, 0); | 
 | 465 | 	gfar_write(&priv->regs->gaddr7, 0); | 
 | 466 |  | 
 | 467 | 	/* Zero out rctrl */ | 
 | 468 | 	gfar_write(&priv->regs->rctrl, 0x00000000); | 
 | 469 |  | 
 | 470 | 	/* Zero out the rmon mib registers if it has them */ | 
 | 471 | 	if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_RMON) { | 
 | 472 | 		memset((void *) &(priv->regs->rmon), 0, | 
 | 473 | 		       sizeof (struct rmon_mib)); | 
 | 474 |  | 
 | 475 | 		/* Mask off the CAM interrupts */ | 
 | 476 | 		gfar_write(&priv->regs->rmon.cam1, 0xffffffff); | 
 | 477 | 		gfar_write(&priv->regs->rmon.cam2, 0xffffffff); | 
 | 478 | 	} | 
 | 479 |  | 
 | 480 | 	/* Initialize the max receive buffer length */ | 
 | 481 | 	gfar_write(&priv->regs->mrblr, priv->rx_buffer_size); | 
 | 482 |  | 
 | 483 | #ifdef CONFIG_GFAR_BUFSTASH | 
 | 484 | 	/* If we are stashing buffers, we need to set the | 
 | 485 | 	 * extraction length to the size of the buffer */ | 
 | 486 | 	gfar_write(&priv->regs->attreli, priv->rx_stash_size << 16); | 
 | 487 | #endif | 
 | 488 |  | 
 | 489 | 	/* Initialize the Minimum Frame Length Register */ | 
 | 490 | 	gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS); | 
 | 491 |  | 
 | 492 | 	/* Setup Attributes so that snooping is on for rx */ | 
 | 493 | 	gfar_write(&priv->regs->attr, ATTR_INIT_SETTINGS); | 
 | 494 | 	gfar_write(&priv->regs->attreli, ATTRELI_INIT_SETTINGS); | 
 | 495 |  | 
 | 496 | 	/* Assign the TBI an address which won't conflict with the PHYs */ | 
 | 497 | 	gfar_write(&priv->regs->tbipa, TBIPA_VALUE); | 
 | 498 | } | 
 | 499 |  | 
 | 500 | void stop_gfar(struct net_device *dev) | 
 | 501 | { | 
 | 502 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 503 | 	struct gfar *regs = priv->regs; | 
 | 504 | 	unsigned long flags; | 
 | 505 | 	u32 tempval; | 
 | 506 |  | 
 | 507 | 	/* Lock it down */ | 
 | 508 | 	spin_lock_irqsave(&priv->lock, flags); | 
 | 509 |  | 
 | 510 | 	/* Tell the kernel the link is down */ | 
 | 511 | 	priv->mii_info->link = 0; | 
 | 512 | 	adjust_link(dev); | 
 | 513 |  | 
 | 514 | 	/* Mask all interrupts */ | 
 | 515 | 	gfar_write(®s->imask, IMASK_INIT_CLEAR); | 
 | 516 |  | 
 | 517 | 	/* Clear all interrupts */ | 
 | 518 | 	gfar_write(®s->ievent, IEVENT_INIT_CLEAR); | 
 | 519 |  | 
 | 520 | 	/* Stop the DMA, and wait for it to stop */ | 
 | 521 | 	tempval = gfar_read(&priv->regs->dmactrl); | 
 | 522 | 	if ((tempval & (DMACTRL_GRS | DMACTRL_GTS)) | 
 | 523 | 	    != (DMACTRL_GRS | DMACTRL_GTS)) { | 
 | 524 | 		tempval |= (DMACTRL_GRS | DMACTRL_GTS); | 
 | 525 | 		gfar_write(&priv->regs->dmactrl, tempval); | 
 | 526 |  | 
 | 527 | 		while (!(gfar_read(&priv->regs->ievent) & | 
 | 528 | 			 (IEVENT_GRSC | IEVENT_GTSC))) | 
 | 529 | 			cpu_relax(); | 
 | 530 | 	} | 
 | 531 |  | 
 | 532 | 	/* Disable Rx and Tx */ | 
 | 533 | 	tempval = gfar_read(®s->maccfg1); | 
 | 534 | 	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN); | 
 | 535 | 	gfar_write(®s->maccfg1, tempval); | 
 | 536 |  | 
 | 537 | 	if (priv->einfo->board_flags & FSL_GIANFAR_BRD_HAS_PHY_INTR) { | 
 | 538 | 		/* Clear any pending interrupts */ | 
 | 539 | 		mii_clear_phy_interrupt(priv->mii_info); | 
 | 540 |  | 
 | 541 | 		/* Disable PHY Interrupts */ | 
 | 542 | 		mii_configure_phy_interrupt(priv->mii_info,  | 
 | 543 | 				MII_INTERRUPT_DISABLED); | 
 | 544 | 	} | 
 | 545 |  | 
 | 546 | 	spin_unlock_irqrestore(&priv->lock, flags); | 
 | 547 |  | 
 | 548 | 	/* Free the IRQs */ | 
 | 549 | 	if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { | 
 | 550 | 		free_irq(priv->interruptError, dev); | 
 | 551 | 		free_irq(priv->interruptTransmit, dev); | 
 | 552 | 		free_irq(priv->interruptReceive, dev); | 
 | 553 | 	} else { | 
 | 554 | 		free_irq(priv->interruptTransmit, dev); | 
 | 555 | 	} | 
 | 556 |  | 
 | 557 | 	if (priv->einfo->board_flags & FSL_GIANFAR_BRD_HAS_PHY_INTR) { | 
 | 558 | 		free_irq(priv->einfo->interruptPHY, dev); | 
 | 559 | 	} else { | 
 | 560 | 		del_timer_sync(&priv->phy_info_timer); | 
 | 561 | 	} | 
 | 562 |  | 
 | 563 | 	free_skb_resources(priv); | 
 | 564 |  | 
 | 565 | 	dma_free_coherent(NULL, | 
 | 566 | 			sizeof(struct txbd8)*priv->tx_ring_size | 
 | 567 | 			+ sizeof(struct rxbd8)*priv->rx_ring_size, | 
 | 568 | 			priv->tx_bd_base, | 
 | 569 | 			gfar_read(®s->tbase)); | 
 | 570 | } | 
 | 571 |  | 
 | 572 | /* If there are any tx skbs or rx skbs still around, free them. | 
 | 573 |  * Then free tx_skbuff and rx_skbuff */ | 
 | 574 | void free_skb_resources(struct gfar_private *priv) | 
 | 575 | { | 
 | 576 | 	struct rxbd8 *rxbdp; | 
 | 577 | 	struct txbd8 *txbdp; | 
 | 578 | 	int i; | 
 | 579 |  | 
 | 580 | 	/* Go through all the buffer descriptors and free their data buffers */ | 
 | 581 | 	txbdp = priv->tx_bd_base; | 
 | 582 |  | 
 | 583 | 	for (i = 0; i < priv->tx_ring_size; i++) { | 
 | 584 |  | 
 | 585 | 		if (priv->tx_skbuff[i]) { | 
 | 586 | 			dma_unmap_single(NULL, txbdp->bufPtr, | 
 | 587 | 					txbdp->length, | 
 | 588 | 					DMA_TO_DEVICE); | 
 | 589 | 			dev_kfree_skb_any(priv->tx_skbuff[i]); | 
 | 590 | 			priv->tx_skbuff[i] = NULL; | 
 | 591 | 		} | 
 | 592 | 	} | 
 | 593 |  | 
 | 594 | 	kfree(priv->tx_skbuff); | 
 | 595 |  | 
 | 596 | 	rxbdp = priv->rx_bd_base; | 
 | 597 |  | 
 | 598 | 	/* rx_skbuff is not guaranteed to be allocated, so only | 
 | 599 | 	 * free it and its contents if it is allocated */ | 
 | 600 | 	if(priv->rx_skbuff != NULL) { | 
 | 601 | 		for (i = 0; i < priv->rx_ring_size; i++) { | 
 | 602 | 			if (priv->rx_skbuff[i]) { | 
 | 603 | 				dma_unmap_single(NULL, rxbdp->bufPtr, | 
 | 604 | 						priv->rx_buffer_size | 
 | 605 | 						+ RXBUF_ALIGNMENT, | 
 | 606 | 						DMA_FROM_DEVICE); | 
 | 607 |  | 
 | 608 | 				dev_kfree_skb_any(priv->rx_skbuff[i]); | 
 | 609 | 				priv->rx_skbuff[i] = NULL; | 
 | 610 | 			} | 
 | 611 |  | 
 | 612 | 			rxbdp->status = 0; | 
 | 613 | 			rxbdp->length = 0; | 
 | 614 | 			rxbdp->bufPtr = 0; | 
 | 615 |  | 
 | 616 | 			rxbdp++; | 
 | 617 | 		} | 
 | 618 |  | 
 | 619 | 		kfree(priv->rx_skbuff); | 
 | 620 | 	} | 
 | 621 | } | 
 | 622 |  | 
 | 623 | /* Bring the controller up and running */ | 
 | 624 | int startup_gfar(struct net_device *dev) | 
 | 625 | { | 
 | 626 | 	struct txbd8 *txbdp; | 
 | 627 | 	struct rxbd8 *rxbdp; | 
 | 628 | 	dma_addr_t addr; | 
 | 629 | 	unsigned long vaddr; | 
 | 630 | 	int i; | 
 | 631 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 632 | 	struct gfar *regs = priv->regs; | 
 | 633 | 	u32 tempval; | 
 | 634 | 	int err = 0; | 
 | 635 |  | 
 | 636 | 	gfar_write(®s->imask, IMASK_INIT_CLEAR); | 
 | 637 |  | 
 | 638 | 	/* Allocate memory for the buffer descriptors */ | 
 | 639 | 	vaddr = (unsigned long) dma_alloc_coherent(NULL,  | 
 | 640 | 			sizeof (struct txbd8) * priv->tx_ring_size + | 
 | 641 | 			sizeof (struct rxbd8) * priv->rx_ring_size, | 
 | 642 | 			&addr, GFP_KERNEL); | 
 | 643 |  | 
 | 644 | 	if (vaddr == 0) { | 
 | 645 | 		printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n", | 
 | 646 | 		       dev->name); | 
 | 647 | 		return -ENOMEM; | 
 | 648 | 	} | 
 | 649 |  | 
 | 650 | 	priv->tx_bd_base = (struct txbd8 *) vaddr; | 
 | 651 |  | 
 | 652 | 	/* enet DMA only understands physical addresses */ | 
 | 653 | 	gfar_write(®s->tbase, addr); | 
 | 654 |  | 
 | 655 | 	/* Start the rx descriptor ring where the tx ring leaves off */ | 
 | 656 | 	addr = addr + sizeof (struct txbd8) * priv->tx_ring_size; | 
 | 657 | 	vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size; | 
 | 658 | 	priv->rx_bd_base = (struct rxbd8 *) vaddr; | 
 | 659 | 	gfar_write(®s->rbase, addr); | 
 | 660 |  | 
 | 661 | 	/* Setup the skbuff rings */ | 
 | 662 | 	priv->tx_skbuff = | 
 | 663 | 	    (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) * | 
 | 664 | 					priv->tx_ring_size, GFP_KERNEL); | 
 | 665 |  | 
 | 666 | 	if (priv->tx_skbuff == NULL) { | 
 | 667 | 		printk(KERN_ERR "%s: Could not allocate tx_skbuff\n", | 
 | 668 | 		       dev->name); | 
 | 669 | 		err = -ENOMEM; | 
 | 670 | 		goto tx_skb_fail; | 
 | 671 | 	} | 
 | 672 |  | 
 | 673 | 	for (i = 0; i < priv->tx_ring_size; i++) | 
 | 674 | 		priv->tx_skbuff[i] = NULL; | 
 | 675 |  | 
 | 676 | 	priv->rx_skbuff = | 
 | 677 | 	    (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) * | 
 | 678 | 					priv->rx_ring_size, GFP_KERNEL); | 
 | 679 |  | 
 | 680 | 	if (priv->rx_skbuff == NULL) { | 
 | 681 | 		printk(KERN_ERR "%s: Could not allocate rx_skbuff\n", | 
 | 682 | 		       dev->name); | 
 | 683 | 		err = -ENOMEM; | 
 | 684 | 		goto rx_skb_fail; | 
 | 685 | 	} | 
 | 686 |  | 
 | 687 | 	for (i = 0; i < priv->rx_ring_size; i++) | 
 | 688 | 		priv->rx_skbuff[i] = NULL; | 
 | 689 |  | 
 | 690 | 	/* Initialize some variables in our dev structure */ | 
 | 691 | 	priv->dirty_tx = priv->cur_tx = priv->tx_bd_base; | 
 | 692 | 	priv->cur_rx = priv->rx_bd_base; | 
 | 693 | 	priv->skb_curtx = priv->skb_dirtytx = 0; | 
 | 694 | 	priv->skb_currx = 0; | 
 | 695 |  | 
 | 696 | 	/* Initialize Transmit Descriptor Ring */ | 
 | 697 | 	txbdp = priv->tx_bd_base; | 
 | 698 | 	for (i = 0; i < priv->tx_ring_size; i++) { | 
 | 699 | 		txbdp->status = 0; | 
 | 700 | 		txbdp->length = 0; | 
 | 701 | 		txbdp->bufPtr = 0; | 
 | 702 | 		txbdp++; | 
 | 703 | 	} | 
 | 704 |  | 
 | 705 | 	/* Set the last descriptor in the ring to indicate wrap */ | 
 | 706 | 	txbdp--; | 
 | 707 | 	txbdp->status |= TXBD_WRAP; | 
 | 708 |  | 
 | 709 | 	rxbdp = priv->rx_bd_base; | 
 | 710 | 	for (i = 0; i < priv->rx_ring_size; i++) { | 
 | 711 | 		struct sk_buff *skb = NULL; | 
 | 712 |  | 
 | 713 | 		rxbdp->status = 0; | 
 | 714 |  | 
 | 715 | 		skb = gfar_new_skb(dev, rxbdp); | 
 | 716 |  | 
 | 717 | 		priv->rx_skbuff[i] = skb; | 
 | 718 |  | 
 | 719 | 		rxbdp++; | 
 | 720 | 	} | 
 | 721 |  | 
 | 722 | 	/* Set the last descriptor in the ring to wrap */ | 
 | 723 | 	rxbdp--; | 
 | 724 | 	rxbdp->status |= RXBD_WRAP; | 
 | 725 |  | 
 | 726 | 	/* If the device has multiple interrupts, register for | 
 | 727 | 	 * them.  Otherwise, only register for the one */ | 
 | 728 | 	if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { | 
 | 729 | 		/* Install our interrupt handlers for Error,  | 
 | 730 | 		 * Transmit, and Receive */ | 
 | 731 | 		if (request_irq(priv->interruptError, gfar_error, | 
 | 732 | 				0, "enet_error", dev) < 0) { | 
 | 733 | 			printk(KERN_ERR "%s: Can't get IRQ %d\n", | 
 | 734 | 			       dev->name, priv->interruptError); | 
 | 735 |  | 
 | 736 | 			err = -1; | 
 | 737 | 			goto err_irq_fail; | 
 | 738 | 		} | 
 | 739 |  | 
 | 740 | 		if (request_irq(priv->interruptTransmit, gfar_transmit, | 
 | 741 | 				0, "enet_tx", dev) < 0) { | 
 | 742 | 			printk(KERN_ERR "%s: Can't get IRQ %d\n", | 
 | 743 | 			       dev->name, priv->interruptTransmit); | 
 | 744 |  | 
 | 745 | 			err = -1; | 
 | 746 |  | 
 | 747 | 			goto tx_irq_fail; | 
 | 748 | 		} | 
 | 749 |  | 
 | 750 | 		if (request_irq(priv->interruptReceive, gfar_receive, | 
 | 751 | 				0, "enet_rx", dev) < 0) { | 
 | 752 | 			printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n", | 
 | 753 | 			       dev->name, priv->interruptReceive); | 
 | 754 |  | 
 | 755 | 			err = -1; | 
 | 756 | 			goto rx_irq_fail; | 
 | 757 | 		} | 
 | 758 | 	} else { | 
 | 759 | 		if (request_irq(priv->interruptTransmit, gfar_interrupt, | 
 | 760 | 				0, "gfar_interrupt", dev) < 0) { | 
 | 761 | 			printk(KERN_ERR "%s: Can't get IRQ %d\n", | 
 | 762 | 			       dev->name, priv->interruptError); | 
 | 763 |  | 
 | 764 | 			err = -1; | 
 | 765 | 			goto err_irq_fail; | 
 | 766 | 		} | 
 | 767 | 	} | 
 | 768 |  | 
 | 769 | 	/* Set up the PHY change work queue */ | 
 | 770 | 	INIT_WORK(&priv->tq, gfar_phy_change, dev); | 
 | 771 |  | 
 | 772 | 	init_timer(&priv->phy_info_timer); | 
 | 773 | 	priv->phy_info_timer.function = &gfar_phy_startup_timer; | 
 | 774 | 	priv->phy_info_timer.data = (unsigned long) priv->mii_info; | 
 | 775 | 	mod_timer(&priv->phy_info_timer, jiffies + HZ); | 
 | 776 |  | 
 | 777 | 	/* Configure the coalescing support */ | 
 | 778 | 	if (priv->txcoalescing) | 
 | 779 | 		gfar_write(®s->txic, | 
 | 780 | 			   mk_ic_value(priv->txcount, priv->txtime)); | 
 | 781 | 	else | 
 | 782 | 		gfar_write(®s->txic, 0); | 
 | 783 |  | 
 | 784 | 	if (priv->rxcoalescing) | 
 | 785 | 		gfar_write(®s->rxic, | 
 | 786 | 			   mk_ic_value(priv->rxcount, priv->rxtime)); | 
 | 787 | 	else | 
 | 788 | 		gfar_write(®s->rxic, 0); | 
 | 789 |  | 
 | 790 | 	init_waitqueue_head(&priv->rxcleanupq); | 
 | 791 |  | 
 | 792 | 	/* Enable Rx and Tx in MACCFG1 */ | 
 | 793 | 	tempval = gfar_read(®s->maccfg1); | 
 | 794 | 	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN); | 
 | 795 | 	gfar_write(®s->maccfg1, tempval); | 
 | 796 |  | 
 | 797 | 	/* Initialize DMACTRL to have WWR and WOP */ | 
 | 798 | 	tempval = gfar_read(&priv->regs->dmactrl); | 
 | 799 | 	tempval |= DMACTRL_INIT_SETTINGS; | 
 | 800 | 	gfar_write(&priv->regs->dmactrl, tempval); | 
 | 801 |  | 
 | 802 | 	/* Clear THLT, so that the DMA starts polling now */ | 
 | 803 | 	gfar_write(®s->tstat, TSTAT_CLEAR_THALT); | 
 | 804 |  | 
 | 805 | 	/* Make sure we aren't stopped */ | 
 | 806 | 	tempval = gfar_read(&priv->regs->dmactrl); | 
 | 807 | 	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS); | 
 | 808 | 	gfar_write(&priv->regs->dmactrl, tempval); | 
 | 809 |  | 
 | 810 | 	/* Unmask the interrupts we look for */ | 
 | 811 | 	gfar_write(®s->imask, IMASK_DEFAULT); | 
 | 812 |  | 
 | 813 | 	return 0; | 
 | 814 |  | 
 | 815 | rx_irq_fail: | 
 | 816 | 	free_irq(priv->interruptTransmit, dev); | 
 | 817 | tx_irq_fail: | 
 | 818 | 	free_irq(priv->interruptError, dev); | 
 | 819 | err_irq_fail: | 
 | 820 | rx_skb_fail: | 
 | 821 | 	free_skb_resources(priv); | 
 | 822 | tx_skb_fail: | 
 | 823 | 	dma_free_coherent(NULL, | 
 | 824 | 			sizeof(struct txbd8)*priv->tx_ring_size | 
 | 825 | 			+ sizeof(struct rxbd8)*priv->rx_ring_size, | 
 | 826 | 			priv->tx_bd_base, | 
 | 827 | 			gfar_read(®s->tbase)); | 
 | 828 |  | 
 | 829 | 	if (priv->mii_info->phyinfo->close) | 
 | 830 | 		priv->mii_info->phyinfo->close(priv->mii_info); | 
 | 831 |  | 
 | 832 | 	kfree(priv->mii_info); | 
 | 833 |  | 
 | 834 | 	return err; | 
 | 835 | } | 
 | 836 |  | 
 | 837 | /* Called when something needs to use the ethernet device */ | 
 | 838 | /* Returns 0 for success. */ | 
 | 839 | static int gfar_enet_open(struct net_device *dev) | 
 | 840 | { | 
 | 841 | 	int err; | 
 | 842 |  | 
 | 843 | 	/* Initialize a bunch of registers */ | 
 | 844 | 	init_registers(dev); | 
 | 845 |  | 
 | 846 | 	gfar_set_mac_address(dev); | 
 | 847 |  | 
 | 848 | 	err = init_phy(dev); | 
 | 849 |  | 
 | 850 | 	if(err) | 
 | 851 | 		return err; | 
 | 852 |  | 
 | 853 | 	err = startup_gfar(dev); | 
 | 854 |  | 
 | 855 | 	netif_start_queue(dev); | 
 | 856 |  | 
 | 857 | 	return err; | 
 | 858 | } | 
 | 859 |  | 
 | 860 | /* This is called by the kernel when a frame is ready for transmission. */ | 
 | 861 | /* It is pointed to by the dev->hard_start_xmit function pointer */ | 
 | 862 | static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev) | 
 | 863 | { | 
 | 864 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 865 | 	struct txbd8 *txbdp; | 
 | 866 |  | 
 | 867 | 	/* Update transmit stats */ | 
 | 868 | 	priv->stats.tx_bytes += skb->len; | 
 | 869 |  | 
 | 870 | 	/* Lock priv now */ | 
 | 871 | 	spin_lock_irq(&priv->lock); | 
 | 872 |  | 
 | 873 | 	/* Point at the first free tx descriptor */ | 
 | 874 | 	txbdp = priv->cur_tx; | 
 | 875 |  | 
 | 876 | 	/* Clear all but the WRAP status flags */ | 
 | 877 | 	txbdp->status &= TXBD_WRAP; | 
 | 878 |  | 
 | 879 | 	/* Set buffer length and pointer */ | 
 | 880 | 	txbdp->length = skb->len; | 
 | 881 | 	txbdp->bufPtr = dma_map_single(NULL, skb->data,  | 
 | 882 | 			skb->len, DMA_TO_DEVICE); | 
 | 883 |  | 
 | 884 | 	/* Save the skb pointer so we can free it later */ | 
 | 885 | 	priv->tx_skbuff[priv->skb_curtx] = skb; | 
 | 886 |  | 
 | 887 | 	/* Update the current skb pointer (wrapping if this was the last) */ | 
 | 888 | 	priv->skb_curtx = | 
 | 889 | 	    (priv->skb_curtx + 1) & TX_RING_MOD_MASK(priv->tx_ring_size); | 
 | 890 |  | 
 | 891 | 	/* Flag the BD as interrupt-causing */ | 
 | 892 | 	txbdp->status |= TXBD_INTERRUPT; | 
 | 893 |  | 
 | 894 | 	/* Flag the BD as ready to go, last in frame, and  */ | 
 | 895 | 	/* in need of CRC */ | 
 | 896 | 	txbdp->status |= (TXBD_READY | TXBD_LAST | TXBD_CRC); | 
 | 897 |  | 
 | 898 | 	dev->trans_start = jiffies; | 
 | 899 |  | 
 | 900 | 	/* If this was the last BD in the ring, the next one */ | 
 | 901 | 	/* is at the beginning of the ring */ | 
 | 902 | 	if (txbdp->status & TXBD_WRAP) | 
 | 903 | 		txbdp = priv->tx_bd_base; | 
 | 904 | 	else | 
 | 905 | 		txbdp++; | 
 | 906 |  | 
 | 907 | 	/* If the next BD still needs to be cleaned up, then the bds | 
 | 908 | 	   are full.  We need to tell the kernel to stop sending us stuff. */ | 
 | 909 | 	if (txbdp == priv->dirty_tx) { | 
 | 910 | 		netif_stop_queue(dev); | 
 | 911 |  | 
 | 912 | 		priv->stats.tx_fifo_errors++; | 
 | 913 | 	} | 
 | 914 |  | 
 | 915 | 	/* Update the current txbd to the next one */ | 
 | 916 | 	priv->cur_tx = txbdp; | 
 | 917 |  | 
 | 918 | 	/* Tell the DMA to go go go */ | 
 | 919 | 	gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT); | 
 | 920 |  | 
 | 921 | 	/* Unlock priv */ | 
 | 922 | 	spin_unlock_irq(&priv->lock); | 
 | 923 |  | 
 | 924 | 	return 0; | 
 | 925 | } | 
 | 926 |  | 
 | 927 | /* Stops the kernel queue, and halts the controller */ | 
 | 928 | static int gfar_close(struct net_device *dev) | 
 | 929 | { | 
 | 930 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 931 | 	stop_gfar(dev); | 
 | 932 |  | 
 | 933 | 	/* Shutdown the PHY */ | 
 | 934 | 	if (priv->mii_info->phyinfo->close) | 
 | 935 | 		priv->mii_info->phyinfo->close(priv->mii_info); | 
 | 936 |  | 
 | 937 | 	kfree(priv->mii_info); | 
 | 938 |  | 
 | 939 | 	netif_stop_queue(dev); | 
 | 940 |  | 
 | 941 | 	return 0; | 
 | 942 | } | 
 | 943 |  | 
 | 944 | /* returns a net_device_stats structure pointer */ | 
 | 945 | static struct net_device_stats * gfar_get_stats(struct net_device *dev) | 
 | 946 | { | 
 | 947 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 948 |  | 
 | 949 | 	return &(priv->stats); | 
 | 950 | } | 
 | 951 |  | 
 | 952 | /* Changes the mac address if the controller is not running. */ | 
 | 953 | int gfar_set_mac_address(struct net_device *dev) | 
 | 954 | { | 
 | 955 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 956 | 	int i; | 
 | 957 | 	char tmpbuf[MAC_ADDR_LEN]; | 
 | 958 | 	u32 tempval; | 
 | 959 |  | 
 | 960 | 	/* Now copy it into the mac registers backwards, cuz */ | 
 | 961 | 	/* little endian is silly */ | 
 | 962 | 	for (i = 0; i < MAC_ADDR_LEN; i++) | 
 | 963 | 		tmpbuf[MAC_ADDR_LEN - 1 - i] = dev->dev_addr[i]; | 
 | 964 |  | 
 | 965 | 	gfar_write(&priv->regs->macstnaddr1, *((u32 *) (tmpbuf))); | 
 | 966 |  | 
 | 967 | 	tempval = *((u32 *) (tmpbuf + 4)); | 
 | 968 |  | 
 | 969 | 	gfar_write(&priv->regs->macstnaddr2, tempval); | 
 | 970 |  | 
 | 971 | 	return 0; | 
 | 972 | } | 
 | 973 |  | 
 | 974 |  | 
 | 975 | static int gfar_change_mtu(struct net_device *dev, int new_mtu) | 
 | 976 | { | 
 | 977 | 	int tempsize, tempval; | 
 | 978 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 979 | 	int oldsize = priv->rx_buffer_size; | 
 | 980 | 	int frame_size = new_mtu + 18; | 
 | 981 |  | 
 | 982 | 	if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) { | 
 | 983 | 		printk(KERN_ERR "%s: Invalid MTU setting\n", dev->name); | 
 | 984 | 		return -EINVAL; | 
 | 985 | 	} | 
 | 986 |  | 
 | 987 | 	tempsize = | 
 | 988 | 	    (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) + | 
 | 989 | 	    INCREMENTAL_BUFFER_SIZE; | 
 | 990 |  | 
 | 991 | 	/* Only stop and start the controller if it isn't already | 
 | 992 | 	 * stopped */ | 
 | 993 | 	if ((oldsize != tempsize) && (dev->flags & IFF_UP)) | 
 | 994 | 		stop_gfar(dev); | 
 | 995 |  | 
 | 996 | 	priv->rx_buffer_size = tempsize; | 
 | 997 |  | 
 | 998 | 	dev->mtu = new_mtu; | 
 | 999 |  | 
 | 1000 | 	gfar_write(&priv->regs->mrblr, priv->rx_buffer_size); | 
 | 1001 | 	gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size); | 
 | 1002 |  | 
 | 1003 | 	/* If the mtu is larger than the max size for standard | 
 | 1004 | 	 * ethernet frames (ie, a jumbo frame), then set maccfg2 | 
 | 1005 | 	 * to allow huge frames, and to check the length */ | 
 | 1006 | 	tempval = gfar_read(&priv->regs->maccfg2); | 
 | 1007 |  | 
 | 1008 | 	if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE) | 
 | 1009 | 		tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK); | 
 | 1010 | 	else | 
 | 1011 | 		tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK); | 
 | 1012 |  | 
 | 1013 | 	gfar_write(&priv->regs->maccfg2, tempval); | 
 | 1014 |  | 
 | 1015 | 	if ((oldsize != tempsize) && (dev->flags & IFF_UP)) | 
 | 1016 | 		startup_gfar(dev); | 
 | 1017 |  | 
 | 1018 | 	return 0; | 
 | 1019 | } | 
 | 1020 |  | 
 | 1021 | /* gfar_timeout gets called when a packet has not been | 
 | 1022 |  * transmitted after a set amount of time. | 
 | 1023 |  * For now, assume that clearing out all the structures, and | 
 | 1024 |  * starting over will fix the problem. */ | 
 | 1025 | static void gfar_timeout(struct net_device *dev) | 
 | 1026 | { | 
 | 1027 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 1028 |  | 
 | 1029 | 	priv->stats.tx_errors++; | 
 | 1030 |  | 
 | 1031 | 	if (dev->flags & IFF_UP) { | 
 | 1032 | 		stop_gfar(dev); | 
 | 1033 | 		startup_gfar(dev); | 
 | 1034 | 	} | 
 | 1035 |  | 
 | 1036 | 	netif_schedule(dev); | 
 | 1037 | } | 
 | 1038 |  | 
 | 1039 | /* Interrupt Handler for Transmit complete */ | 
 | 1040 | static irqreturn_t gfar_transmit(int irq, void *dev_id, struct pt_regs *regs) | 
 | 1041 | { | 
 | 1042 | 	struct net_device *dev = (struct net_device *) dev_id; | 
 | 1043 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 1044 | 	struct txbd8 *bdp; | 
 | 1045 |  | 
 | 1046 | 	/* Clear IEVENT */ | 
 | 1047 | 	gfar_write(&priv->regs->ievent, IEVENT_TX_MASK); | 
 | 1048 |  | 
 | 1049 | 	/* Lock priv */ | 
 | 1050 | 	spin_lock(&priv->lock); | 
 | 1051 | 	bdp = priv->dirty_tx; | 
 | 1052 | 	while ((bdp->status & TXBD_READY) == 0) { | 
 | 1053 | 		/* If dirty_tx and cur_tx are the same, then either the */ | 
 | 1054 | 		/* ring is empty or full now (it could only be full in the beginning, */ | 
 | 1055 | 		/* obviously).  If it is empty, we are done. */ | 
 | 1056 | 		if ((bdp == priv->cur_tx) && (netif_queue_stopped(dev) == 0)) | 
 | 1057 | 			break; | 
 | 1058 |  | 
 | 1059 | 		priv->stats.tx_packets++; | 
 | 1060 |  | 
 | 1061 | 		/* Deferred means some collisions occurred during transmit, */ | 
 | 1062 | 		/* but we eventually sent the packet. */ | 
 | 1063 | 		if (bdp->status & TXBD_DEF) | 
 | 1064 | 			priv->stats.collisions++; | 
 | 1065 |  | 
 | 1066 | 		/* Free the sk buffer associated with this TxBD */ | 
 | 1067 | 		dev_kfree_skb_irq(priv->tx_skbuff[priv->skb_dirtytx]); | 
 | 1068 | 		priv->tx_skbuff[priv->skb_dirtytx] = NULL; | 
 | 1069 | 		priv->skb_dirtytx = | 
 | 1070 | 		    (priv->skb_dirtytx + | 
 | 1071 | 		     1) & TX_RING_MOD_MASK(priv->tx_ring_size); | 
 | 1072 |  | 
 | 1073 | 		/* update bdp to point at next bd in the ring (wrapping if necessary) */ | 
 | 1074 | 		if (bdp->status & TXBD_WRAP) | 
 | 1075 | 			bdp = priv->tx_bd_base; | 
 | 1076 | 		else | 
 | 1077 | 			bdp++; | 
 | 1078 |  | 
 | 1079 | 		/* Move dirty_tx to be the next bd */ | 
 | 1080 | 		priv->dirty_tx = bdp; | 
 | 1081 |  | 
 | 1082 | 		/* We freed a buffer, so now we can restart transmission */ | 
 | 1083 | 		if (netif_queue_stopped(dev)) | 
 | 1084 | 			netif_wake_queue(dev); | 
 | 1085 | 	} /* while ((bdp->status & TXBD_READY) == 0) */ | 
 | 1086 |  | 
 | 1087 | 	/* If we are coalescing the interrupts, reset the timer */ | 
 | 1088 | 	/* Otherwise, clear it */ | 
 | 1089 | 	if (priv->txcoalescing) | 
 | 1090 | 		gfar_write(&priv->regs->txic, | 
 | 1091 | 			   mk_ic_value(priv->txcount, priv->txtime)); | 
 | 1092 | 	else | 
 | 1093 | 		gfar_write(&priv->regs->txic, 0); | 
 | 1094 |  | 
 | 1095 | 	spin_unlock(&priv->lock); | 
 | 1096 |  | 
 | 1097 | 	return IRQ_HANDLED; | 
 | 1098 | } | 
 | 1099 |  | 
 | 1100 | struct sk_buff * gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp) | 
 | 1101 | { | 
 | 1102 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 1103 | 	struct sk_buff *skb = NULL; | 
 | 1104 | 	unsigned int timeout = SKB_ALLOC_TIMEOUT; | 
 | 1105 |  | 
 | 1106 | 	/* We have to allocate the skb, so keep trying till we succeed */ | 
 | 1107 | 	while ((!skb) && timeout--) | 
 | 1108 | 		skb = dev_alloc_skb(priv->rx_buffer_size + RXBUF_ALIGNMENT); | 
 | 1109 |  | 
 | 1110 | 	if (skb == NULL) | 
 | 1111 | 		return NULL; | 
 | 1112 |  | 
 | 1113 | 	/* We need the data buffer to be aligned properly.  We will reserve | 
 | 1114 | 	 * as many bytes as needed to align the data properly | 
 | 1115 | 	 */ | 
 | 1116 | 	skb_reserve(skb, | 
 | 1117 | 		    RXBUF_ALIGNMENT - | 
 | 1118 | 		    (((unsigned) skb->data) & (RXBUF_ALIGNMENT - 1))); | 
 | 1119 |  | 
 | 1120 | 	skb->dev = dev; | 
 | 1121 |  | 
 | 1122 | 	bdp->bufPtr = dma_map_single(NULL, skb->data, | 
 | 1123 | 			priv->rx_buffer_size + RXBUF_ALIGNMENT,  | 
 | 1124 | 			DMA_FROM_DEVICE); | 
 | 1125 |  | 
 | 1126 | 	bdp->length = 0; | 
 | 1127 |  | 
 | 1128 | 	/* Mark the buffer empty */ | 
 | 1129 | 	bdp->status |= (RXBD_EMPTY | RXBD_INTERRUPT); | 
 | 1130 |  | 
 | 1131 | 	return skb; | 
 | 1132 | } | 
 | 1133 |  | 
 | 1134 | static inline void count_errors(unsigned short status, struct gfar_private *priv) | 
 | 1135 | { | 
 | 1136 | 	struct net_device_stats *stats = &priv->stats; | 
 | 1137 | 	struct gfar_extra_stats *estats = &priv->extra_stats; | 
 | 1138 |  | 
 | 1139 | 	/* If the packet was truncated, none of the other errors | 
 | 1140 | 	 * matter */ | 
 | 1141 | 	if (status & RXBD_TRUNCATED) { | 
 | 1142 | 		stats->rx_length_errors++; | 
 | 1143 |  | 
 | 1144 | 		estats->rx_trunc++; | 
 | 1145 |  | 
 | 1146 | 		return; | 
 | 1147 | 	} | 
 | 1148 | 	/* Count the errors, if there were any */ | 
 | 1149 | 	if (status & (RXBD_LARGE | RXBD_SHORT)) { | 
 | 1150 | 		stats->rx_length_errors++; | 
 | 1151 |  | 
 | 1152 | 		if (status & RXBD_LARGE) | 
 | 1153 | 			estats->rx_large++; | 
 | 1154 | 		else | 
 | 1155 | 			estats->rx_short++; | 
 | 1156 | 	} | 
 | 1157 | 	if (status & RXBD_NONOCTET) { | 
 | 1158 | 		stats->rx_frame_errors++; | 
 | 1159 | 		estats->rx_nonoctet++; | 
 | 1160 | 	} | 
 | 1161 | 	if (status & RXBD_CRCERR) { | 
 | 1162 | 		estats->rx_crcerr++; | 
 | 1163 | 		stats->rx_crc_errors++; | 
 | 1164 | 	} | 
 | 1165 | 	if (status & RXBD_OVERRUN) { | 
 | 1166 | 		estats->rx_overrun++; | 
 | 1167 | 		stats->rx_crc_errors++; | 
 | 1168 | 	} | 
 | 1169 | } | 
 | 1170 |  | 
 | 1171 | irqreturn_t gfar_receive(int irq, void *dev_id, struct pt_regs *regs) | 
 | 1172 | { | 
 | 1173 | 	struct net_device *dev = (struct net_device *) dev_id; | 
 | 1174 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 1175 |  | 
 | 1176 | #ifdef CONFIG_GFAR_NAPI | 
 | 1177 | 	u32 tempval; | 
 | 1178 | #endif | 
 | 1179 |  | 
 | 1180 | 	/* Clear IEVENT, so rx interrupt isn't called again | 
 | 1181 | 	 * because of this interrupt */ | 
 | 1182 | 	gfar_write(&priv->regs->ievent, IEVENT_RX_MASK); | 
 | 1183 |  | 
 | 1184 | 	/* support NAPI */ | 
 | 1185 | #ifdef CONFIG_GFAR_NAPI | 
 | 1186 | 	if (netif_rx_schedule_prep(dev)) { | 
 | 1187 | 		tempval = gfar_read(&priv->regs->imask); | 
 | 1188 | 		tempval &= IMASK_RX_DISABLED; | 
 | 1189 | 		gfar_write(&priv->regs->imask, tempval); | 
 | 1190 |  | 
 | 1191 | 		__netif_rx_schedule(dev); | 
 | 1192 | 	} else { | 
 | 1193 | #ifdef VERBOSE_GFAR_ERRORS | 
 | 1194 | 		printk(KERN_DEBUG "%s: receive called twice (%x)[%x]\n", | 
 | 1195 | 		       dev->name, gfar_read(&priv->regs->ievent), | 
 | 1196 | 		       gfar_read(&priv->regs->imask)); | 
 | 1197 | #endif | 
 | 1198 | 	} | 
 | 1199 | #else | 
 | 1200 |  | 
 | 1201 | 	spin_lock(&priv->lock); | 
 | 1202 | 	gfar_clean_rx_ring(dev, priv->rx_ring_size); | 
 | 1203 |  | 
 | 1204 | 	/* If we are coalescing interrupts, update the timer */ | 
 | 1205 | 	/* Otherwise, clear it */ | 
 | 1206 | 	if (priv->rxcoalescing) | 
 | 1207 | 		gfar_write(&priv->regs->rxic, | 
 | 1208 | 			   mk_ic_value(priv->rxcount, priv->rxtime)); | 
 | 1209 | 	else | 
 | 1210 | 		gfar_write(&priv->regs->rxic, 0); | 
 | 1211 |  | 
 | 1212 | 	/* Just in case we need to wake the ring param changer */ | 
 | 1213 | 	priv->rxclean = 1; | 
 | 1214 |  | 
 | 1215 | 	spin_unlock(&priv->lock); | 
 | 1216 | #endif | 
 | 1217 |  | 
 | 1218 | 	return IRQ_HANDLED; | 
 | 1219 | } | 
 | 1220 |  | 
 | 1221 |  | 
 | 1222 | /* gfar_process_frame() -- handle one incoming packet if skb | 
 | 1223 |  * isn't NULL.  */ | 
 | 1224 | static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, | 
 | 1225 | 		int length) | 
 | 1226 | { | 
 | 1227 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 1228 |  | 
 | 1229 | 	if (skb == NULL) { | 
 | 1230 | #ifdef BRIEF_GFAR_ERRORS | 
 | 1231 | 		printk(KERN_WARNING "%s: Missing skb!!.\n", | 
 | 1232 | 				dev->name); | 
 | 1233 | #endif | 
 | 1234 | 		priv->stats.rx_dropped++; | 
 | 1235 | 		priv->extra_stats.rx_skbmissing++; | 
 | 1236 | 	} else { | 
 | 1237 | 		/* Prep the skb for the packet */ | 
 | 1238 | 		skb_put(skb, length); | 
 | 1239 |  | 
 | 1240 | 		/* Tell the skb what kind of packet this is */ | 
 | 1241 | 		skb->protocol = eth_type_trans(skb, dev); | 
 | 1242 |  | 
 | 1243 | 		/* Send the packet up the stack */ | 
 | 1244 | 		if (RECEIVE(skb) == NET_RX_DROP) { | 
 | 1245 | 			priv->extra_stats.kernel_dropped++; | 
 | 1246 | 		} | 
 | 1247 | 	} | 
 | 1248 |  | 
 | 1249 | 	return 0; | 
 | 1250 | } | 
 | 1251 |  | 
 | 1252 | /* gfar_clean_rx_ring() -- Processes each frame in the rx ring | 
 | 1253 |  *   until the budget/quota has been reached. Returns the number  | 
 | 1254 |  *   of frames handled | 
 | 1255 |  */ | 
 | 1256 | static int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit) | 
 | 1257 | { | 
 | 1258 | 	struct rxbd8 *bdp; | 
 | 1259 | 	struct sk_buff *skb; | 
 | 1260 | 	u16 pkt_len; | 
 | 1261 | 	int howmany = 0; | 
 | 1262 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 1263 |  | 
 | 1264 | 	/* Get the first full descriptor */ | 
 | 1265 | 	bdp = priv->cur_rx; | 
 | 1266 |  | 
 | 1267 | 	while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) { | 
 | 1268 | 		skb = priv->rx_skbuff[priv->skb_currx]; | 
 | 1269 |  | 
 | 1270 | 		if (!(bdp->status & | 
 | 1271 | 		      (RXBD_LARGE | RXBD_SHORT | RXBD_NONOCTET | 
 | 1272 | 		       | RXBD_CRCERR | RXBD_OVERRUN | RXBD_TRUNCATED))) { | 
 | 1273 | 			/* Increment the number of packets */ | 
 | 1274 | 			priv->stats.rx_packets++; | 
 | 1275 | 			howmany++; | 
 | 1276 |  | 
 | 1277 | 			/* Remove the FCS from the packet length */ | 
 | 1278 | 			pkt_len = bdp->length - 4; | 
 | 1279 |  | 
 | 1280 | 			gfar_process_frame(dev, skb, pkt_len); | 
 | 1281 |  | 
 | 1282 | 			priv->stats.rx_bytes += pkt_len; | 
 | 1283 | 		} else { | 
 | 1284 | 			count_errors(bdp->status, priv); | 
 | 1285 |  | 
 | 1286 | 			if (skb) | 
 | 1287 | 				dev_kfree_skb_any(skb); | 
 | 1288 |  | 
 | 1289 | 			priv->rx_skbuff[priv->skb_currx] = NULL; | 
 | 1290 | 		} | 
 | 1291 |  | 
 | 1292 | 		dev->last_rx = jiffies; | 
 | 1293 |  | 
 | 1294 | 		/* Clear the status flags for this buffer */ | 
 | 1295 | 		bdp->status &= ~RXBD_STATS; | 
 | 1296 |  | 
 | 1297 | 		/* Add another skb for the future */ | 
 | 1298 | 		skb = gfar_new_skb(dev, bdp); | 
 | 1299 | 		priv->rx_skbuff[priv->skb_currx] = skb; | 
 | 1300 |  | 
 | 1301 | 		/* Update to the next pointer */ | 
 | 1302 | 		if (bdp->status & RXBD_WRAP) | 
 | 1303 | 			bdp = priv->rx_bd_base; | 
 | 1304 | 		else | 
 | 1305 | 			bdp++; | 
 | 1306 |  | 
 | 1307 | 		/* update to point at the next skb */ | 
 | 1308 | 		priv->skb_currx = | 
 | 1309 | 		    (priv->skb_currx + | 
 | 1310 | 		     1) & RX_RING_MOD_MASK(priv->rx_ring_size); | 
 | 1311 |  | 
 | 1312 | 	} | 
 | 1313 |  | 
 | 1314 | 	/* Update the current rxbd pointer to be the next one */ | 
 | 1315 | 	priv->cur_rx = bdp; | 
 | 1316 |  | 
 | 1317 | 	/* If no packets have arrived since the | 
 | 1318 | 	 * last one we processed, clear the IEVENT RX and | 
 | 1319 | 	 * BSY bits so that another interrupt won't be | 
 | 1320 | 	 * generated when we set IMASK */ | 
 | 1321 | 	if (bdp->status & RXBD_EMPTY) | 
 | 1322 | 		gfar_write(&priv->regs->ievent, IEVENT_RX_MASK); | 
 | 1323 |  | 
 | 1324 | 	return howmany; | 
 | 1325 | } | 
 | 1326 |  | 
 | 1327 | #ifdef CONFIG_GFAR_NAPI | 
 | 1328 | static int gfar_poll(struct net_device *dev, int *budget) | 
 | 1329 | { | 
 | 1330 | 	int howmany; | 
 | 1331 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 1332 | 	int rx_work_limit = *budget; | 
 | 1333 |  | 
 | 1334 | 	if (rx_work_limit > dev->quota) | 
 | 1335 | 		rx_work_limit = dev->quota; | 
 | 1336 |  | 
 | 1337 | 	howmany = gfar_clean_rx_ring(dev, rx_work_limit); | 
 | 1338 |  | 
 | 1339 | 	dev->quota -= howmany; | 
 | 1340 | 	rx_work_limit -= howmany; | 
 | 1341 | 	*budget -= howmany; | 
 | 1342 |  | 
 | 1343 | 	if (rx_work_limit >= 0) { | 
 | 1344 | 		netif_rx_complete(dev); | 
 | 1345 |  | 
 | 1346 | 		/* Clear the halt bit in RSTAT */ | 
 | 1347 | 		gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT); | 
 | 1348 |  | 
 | 1349 | 		gfar_write(&priv->regs->imask, IMASK_DEFAULT); | 
 | 1350 |  | 
 | 1351 | 		/* If we are coalescing interrupts, update the timer */ | 
 | 1352 | 		/* Otherwise, clear it */ | 
 | 1353 | 		if (priv->rxcoalescing) | 
 | 1354 | 			gfar_write(&priv->regs->rxic, | 
 | 1355 | 				   mk_ic_value(priv->rxcount, priv->rxtime)); | 
 | 1356 | 		else | 
 | 1357 | 			gfar_write(&priv->regs->rxic, 0); | 
 | 1358 |  | 
 | 1359 | 		/* Signal to the ring size changer that it's safe to go */ | 
 | 1360 | 		priv->rxclean = 1; | 
 | 1361 | 	} | 
 | 1362 |  | 
 | 1363 | 	return (rx_work_limit < 0) ? 1 : 0; | 
 | 1364 | } | 
 | 1365 | #endif | 
 | 1366 |  | 
 | 1367 | /* The interrupt handler for devices with one interrupt */ | 
 | 1368 | static irqreturn_t gfar_interrupt(int irq, void *dev_id, struct pt_regs *regs) | 
 | 1369 | { | 
 | 1370 | 	struct net_device *dev = dev_id; | 
 | 1371 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 1372 |  | 
 | 1373 | 	/* Save ievent for future reference */ | 
 | 1374 | 	u32 events = gfar_read(&priv->regs->ievent); | 
 | 1375 |  | 
 | 1376 | 	/* Clear IEVENT */ | 
 | 1377 | 	gfar_write(&priv->regs->ievent, events); | 
 | 1378 |  | 
 | 1379 | 	/* Check for reception */ | 
 | 1380 | 	if ((events & IEVENT_RXF0) || (events & IEVENT_RXB0)) | 
 | 1381 | 		gfar_receive(irq, dev_id, regs); | 
 | 1382 |  | 
 | 1383 | 	/* Check for transmit completion */ | 
 | 1384 | 	if ((events & IEVENT_TXF) || (events & IEVENT_TXB)) | 
 | 1385 | 		gfar_transmit(irq, dev_id, regs); | 
 | 1386 |  | 
 | 1387 | 	/* Update error statistics */ | 
 | 1388 | 	if (events & IEVENT_TXE) { | 
 | 1389 | 		priv->stats.tx_errors++; | 
 | 1390 |  | 
 | 1391 | 		if (events & IEVENT_LC) | 
 | 1392 | 			priv->stats.tx_window_errors++; | 
 | 1393 | 		if (events & IEVENT_CRL) | 
 | 1394 | 			priv->stats.tx_aborted_errors++; | 
 | 1395 | 		if (events & IEVENT_XFUN) { | 
 | 1396 | #ifdef VERBOSE_GFAR_ERRORS | 
 | 1397 | 			printk(KERN_WARNING "%s: tx underrun. dropped packet\n", | 
 | 1398 | 			       dev->name); | 
 | 1399 | #endif | 
 | 1400 | 			priv->stats.tx_dropped++; | 
 | 1401 | 			priv->extra_stats.tx_underrun++; | 
 | 1402 |  | 
 | 1403 | 			/* Reactivate the Tx Queues */ | 
 | 1404 | 			gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT); | 
 | 1405 | 		} | 
 | 1406 | 	} | 
 | 1407 | 	if (events & IEVENT_BSY) { | 
 | 1408 | 		priv->stats.rx_errors++; | 
 | 1409 | 		priv->extra_stats.rx_bsy++; | 
 | 1410 |  | 
 | 1411 | 		gfar_receive(irq, dev_id, regs); | 
 | 1412 |  | 
 | 1413 | #ifndef CONFIG_GFAR_NAPI | 
 | 1414 | 		/* Clear the halt bit in RSTAT */ | 
 | 1415 | 		gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT); | 
 | 1416 | #endif | 
 | 1417 |  | 
 | 1418 | #ifdef VERBOSE_GFAR_ERRORS | 
 | 1419 | 		printk(KERN_DEBUG "%s: busy error (rhalt: %x)\n", dev->name, | 
 | 1420 | 		       gfar_read(&priv->regs->rstat)); | 
 | 1421 | #endif | 
 | 1422 | 	} | 
 | 1423 | 	if (events & IEVENT_BABR) { | 
 | 1424 | 		priv->stats.rx_errors++; | 
 | 1425 | 		priv->extra_stats.rx_babr++; | 
 | 1426 |  | 
 | 1427 | #ifdef VERBOSE_GFAR_ERRORS | 
 | 1428 | 		printk(KERN_DEBUG "%s: babbling error\n", dev->name); | 
 | 1429 | #endif | 
 | 1430 | 	} | 
 | 1431 | 	if (events & IEVENT_EBERR) { | 
 | 1432 | 		priv->extra_stats.eberr++; | 
 | 1433 | #ifdef VERBOSE_GFAR_ERRORS | 
 | 1434 | 		printk(KERN_DEBUG "%s: EBERR\n", dev->name); | 
 | 1435 | #endif | 
 | 1436 | 	} | 
 | 1437 | 	if (events & IEVENT_RXC) { | 
 | 1438 | #ifdef VERBOSE_GFAR_ERRORS | 
 | 1439 | 		printk(KERN_DEBUG "%s: control frame\n", dev->name); | 
 | 1440 | #endif | 
 | 1441 | 	} | 
 | 1442 |  | 
 | 1443 | 	if (events & IEVENT_BABT) { | 
 | 1444 | 		priv->extra_stats.tx_babt++; | 
 | 1445 | #ifdef VERBOSE_GFAR_ERRORS | 
 | 1446 | 		printk(KERN_DEBUG "%s: babt error\n", dev->name); | 
 | 1447 | #endif | 
 | 1448 | 	} | 
 | 1449 |  | 
 | 1450 | 	return IRQ_HANDLED; | 
 | 1451 | } | 
 | 1452 |  | 
 | 1453 | static irqreturn_t phy_interrupt(int irq, void *dev_id, struct pt_regs *regs) | 
 | 1454 | { | 
 | 1455 | 	struct net_device *dev = (struct net_device *) dev_id; | 
 | 1456 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 1457 |  | 
 | 1458 | 	/* Clear the interrupt */ | 
 | 1459 | 	mii_clear_phy_interrupt(priv->mii_info); | 
 | 1460 |  | 
 | 1461 | 	/* Disable PHY interrupts */ | 
 | 1462 | 	mii_configure_phy_interrupt(priv->mii_info, | 
 | 1463 | 			MII_INTERRUPT_DISABLED); | 
 | 1464 |  | 
 | 1465 | 	/* Schedule the phy change */ | 
 | 1466 | 	schedule_work(&priv->tq); | 
 | 1467 |  | 
 | 1468 | 	return IRQ_HANDLED; | 
 | 1469 | } | 
 | 1470 |  | 
 | 1471 | /* Scheduled by the phy_interrupt/timer to handle PHY changes */ | 
 | 1472 | static void gfar_phy_change(void *data) | 
 | 1473 | { | 
 | 1474 | 	struct net_device *dev = (struct net_device *) data; | 
 | 1475 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 1476 | 	int result = 0; | 
 | 1477 |  | 
 | 1478 | 	/* Delay to give the PHY a chance to change the | 
 | 1479 | 	 * register state */ | 
 | 1480 | 	msleep(1); | 
 | 1481 |  | 
 | 1482 | 	/* Update the link, speed, duplex */ | 
 | 1483 | 	result = priv->mii_info->phyinfo->read_status(priv->mii_info); | 
 | 1484 |  | 
 | 1485 | 	/* Adjust the known status as long as the link | 
 | 1486 | 	 * isn't still coming up */ | 
 | 1487 | 	if((0 == result) || (priv->mii_info->link == 0)) | 
 | 1488 | 		adjust_link(dev); | 
 | 1489 |  | 
 | 1490 | 	/* Reenable interrupts, if needed */ | 
 | 1491 | 	if (priv->einfo->board_flags & FSL_GIANFAR_BRD_HAS_PHY_INTR) | 
 | 1492 | 		mii_configure_phy_interrupt(priv->mii_info, | 
 | 1493 | 				MII_INTERRUPT_ENABLED); | 
 | 1494 | } | 
 | 1495 |  | 
 | 1496 | /* Called every so often on systems that don't interrupt | 
 | 1497 |  * the core for PHY changes */ | 
 | 1498 | static void gfar_phy_timer(unsigned long data) | 
 | 1499 | { | 
 | 1500 | 	struct net_device *dev = (struct net_device *) data; | 
 | 1501 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 1502 |  | 
 | 1503 | 	schedule_work(&priv->tq); | 
 | 1504 |  | 
 | 1505 | 	mod_timer(&priv->phy_info_timer, jiffies + | 
 | 1506 | 			GFAR_PHY_CHANGE_TIME * HZ); | 
 | 1507 | } | 
 | 1508 |  | 
 | 1509 | /* Keep trying aneg for some time | 
 | 1510 |  * If, after GFAR_AN_TIMEOUT seconds, it has not | 
 | 1511 |  * finished, we switch to forced. | 
 | 1512 |  * Either way, once the process has completed, we either | 
 | 1513 |  * request the interrupt, or switch the timer over to  | 
 | 1514 |  * using gfar_phy_timer to check status */ | 
 | 1515 | static void gfar_phy_startup_timer(unsigned long data) | 
 | 1516 | { | 
 | 1517 | 	int result; | 
 | 1518 | 	static int secondary = GFAR_AN_TIMEOUT; | 
 | 1519 | 	struct gfar_mii_info *mii_info = (struct gfar_mii_info *)data; | 
 | 1520 | 	struct gfar_private *priv = netdev_priv(mii_info->dev); | 
 | 1521 |  | 
 | 1522 | 	/* Configure the Auto-negotiation */ | 
 | 1523 | 	result = mii_info->phyinfo->config_aneg(mii_info); | 
 | 1524 |  | 
 | 1525 | 	/* If autonegotiation failed to start, and | 
 | 1526 | 	 * we haven't timed out, reset the timer, and return */ | 
 | 1527 | 	if (result && secondary--) { | 
 | 1528 | 		mod_timer(&priv->phy_info_timer, jiffies + HZ); | 
 | 1529 | 		return; | 
 | 1530 | 	} else if (result) { | 
 | 1531 | 		/* Couldn't start autonegotiation. | 
 | 1532 | 		 * Try switching to forced */ | 
 | 1533 | 		mii_info->autoneg = 0; | 
 | 1534 | 		result = mii_info->phyinfo->config_aneg(mii_info); | 
 | 1535 |  | 
 | 1536 | 		/* Forcing failed!  Give up */ | 
 | 1537 | 		if(result) { | 
 | 1538 | 			printk(KERN_ERR "%s: Forcing failed!\n", | 
 | 1539 | 					mii_info->dev->name); | 
 | 1540 | 			return; | 
 | 1541 | 		} | 
 | 1542 | 	} | 
 | 1543 |  | 
 | 1544 | 	/* Kill the timer so it can be restarted */ | 
 | 1545 | 	del_timer_sync(&priv->phy_info_timer); | 
 | 1546 |  | 
 | 1547 | 	/* Grab the PHY interrupt, if necessary/possible */ | 
 | 1548 | 	if (priv->einfo->board_flags & FSL_GIANFAR_BRD_HAS_PHY_INTR) { | 
 | 1549 | 		if (request_irq(priv->einfo->interruptPHY,  | 
 | 1550 | 					phy_interrupt, | 
 | 1551 | 					SA_SHIRQ,  | 
 | 1552 | 					"phy_interrupt",  | 
 | 1553 | 					mii_info->dev) < 0) { | 
 | 1554 | 			printk(KERN_ERR "%s: Can't get IRQ %d (PHY)\n", | 
 | 1555 | 					mii_info->dev->name, | 
 | 1556 | 					priv->einfo->interruptPHY); | 
 | 1557 | 		} else { | 
 | 1558 | 			mii_configure_phy_interrupt(priv->mii_info,  | 
 | 1559 | 					MII_INTERRUPT_ENABLED); | 
 | 1560 | 			return; | 
 | 1561 | 		} | 
 | 1562 | 	} | 
 | 1563 |  | 
 | 1564 | 	/* Start the timer again, this time in order to | 
 | 1565 | 	 * handle a change in status */ | 
 | 1566 | 	init_timer(&priv->phy_info_timer); | 
 | 1567 | 	priv->phy_info_timer.function = &gfar_phy_timer; | 
 | 1568 | 	priv->phy_info_timer.data = (unsigned long) mii_info->dev; | 
 | 1569 | 	mod_timer(&priv->phy_info_timer, jiffies + | 
 | 1570 | 			GFAR_PHY_CHANGE_TIME * HZ); | 
 | 1571 | } | 
 | 1572 |  | 
 | 1573 | /* Called every time the controller might need to be made | 
 | 1574 |  * aware of new link state.  The PHY code conveys this | 
 | 1575 |  * information through variables in the priv structure, and this | 
 | 1576 |  * function converts those variables into the appropriate | 
 | 1577 |  * register values, and can bring down the device if needed. | 
 | 1578 |  */ | 
 | 1579 | static void adjust_link(struct net_device *dev) | 
 | 1580 | { | 
 | 1581 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 1582 | 	struct gfar *regs = priv->regs; | 
 | 1583 | 	u32 tempval; | 
 | 1584 | 	struct gfar_mii_info *mii_info = priv->mii_info; | 
 | 1585 |  | 
 | 1586 | 	if (mii_info->link) { | 
 | 1587 | 		/* Now we make sure that we can be in full duplex mode. | 
 | 1588 | 		 * If not, we operate in half-duplex mode. */ | 
 | 1589 | 		if (mii_info->duplex != priv->oldduplex) { | 
 | 1590 | 			if (!(mii_info->duplex)) { | 
 | 1591 | 				tempval = gfar_read(®s->maccfg2); | 
 | 1592 | 				tempval &= ~(MACCFG2_FULL_DUPLEX); | 
 | 1593 | 				gfar_write(®s->maccfg2, tempval); | 
 | 1594 |  | 
 | 1595 | 				printk(KERN_INFO "%s: Half Duplex\n", | 
 | 1596 | 				       dev->name); | 
 | 1597 | 			} else { | 
 | 1598 | 				tempval = gfar_read(®s->maccfg2); | 
 | 1599 | 				tempval |= MACCFG2_FULL_DUPLEX; | 
 | 1600 | 				gfar_write(®s->maccfg2, tempval); | 
 | 1601 |  | 
 | 1602 | 				printk(KERN_INFO "%s: Full Duplex\n", | 
 | 1603 | 				       dev->name); | 
 | 1604 | 			} | 
 | 1605 |  | 
 | 1606 | 			priv->oldduplex = mii_info->duplex; | 
 | 1607 | 		} | 
 | 1608 |  | 
 | 1609 | 		if (mii_info->speed != priv->oldspeed) { | 
 | 1610 | 			switch (mii_info->speed) { | 
 | 1611 | 			case 1000: | 
 | 1612 | 				tempval = gfar_read(®s->maccfg2); | 
 | 1613 | 				tempval = | 
 | 1614 | 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII); | 
 | 1615 | 				gfar_write(®s->maccfg2, tempval); | 
 | 1616 | 				break; | 
 | 1617 | 			case 100: | 
 | 1618 | 			case 10: | 
 | 1619 | 				tempval = gfar_read(®s->maccfg2); | 
 | 1620 | 				tempval = | 
 | 1621 | 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII); | 
 | 1622 | 				gfar_write(®s->maccfg2, tempval); | 
 | 1623 | 				break; | 
 | 1624 | 			default: | 
 | 1625 | 				printk(KERN_WARNING | 
 | 1626 | 				       "%s: Ack!  Speed (%d) is not 10/100/1000!\n", | 
 | 1627 | 				       dev->name, mii_info->speed); | 
 | 1628 | 				break; | 
 | 1629 | 			} | 
 | 1630 |  | 
 | 1631 | 			printk(KERN_INFO "%s: Speed %dBT\n", dev->name, | 
 | 1632 | 			       mii_info->speed); | 
 | 1633 |  | 
 | 1634 | 			priv->oldspeed = mii_info->speed; | 
 | 1635 | 		} | 
 | 1636 |  | 
 | 1637 | 		if (!priv->oldlink) { | 
 | 1638 | 			printk(KERN_INFO "%s: Link is up\n", dev->name); | 
 | 1639 | 			priv->oldlink = 1; | 
 | 1640 | 			netif_carrier_on(dev); | 
 | 1641 | 			netif_schedule(dev); | 
 | 1642 | 		} | 
 | 1643 | 	} else { | 
 | 1644 | 		if (priv->oldlink) { | 
 | 1645 | 			printk(KERN_INFO "%s: Link is down\n", dev->name); | 
 | 1646 | 			priv->oldlink = 0; | 
 | 1647 | 			priv->oldspeed = 0; | 
 | 1648 | 			priv->oldduplex = -1; | 
 | 1649 | 			netif_carrier_off(dev); | 
 | 1650 | 		} | 
 | 1651 | 	} | 
 | 1652 | } | 
 | 1653 |  | 
 | 1654 |  | 
 | 1655 | /* Update the hash table based on the current list of multicast | 
 | 1656 |  * addresses we subscribe to.  Also, change the promiscuity of | 
 | 1657 |  * the device based on the flags (this function is called | 
 | 1658 |  * whenever dev->flags is changed */ | 
 | 1659 | static void gfar_set_multi(struct net_device *dev) | 
 | 1660 | { | 
 | 1661 | 	struct dev_mc_list *mc_ptr; | 
 | 1662 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 1663 | 	struct gfar *regs = priv->regs; | 
 | 1664 | 	u32 tempval; | 
 | 1665 |  | 
 | 1666 | 	if(dev->flags & IFF_PROMISC) { | 
 | 1667 | 		printk(KERN_INFO "%s: Entering promiscuous mode.\n", | 
 | 1668 | 				dev->name); | 
 | 1669 | 		/* Set RCTRL to PROM */ | 
 | 1670 | 		tempval = gfar_read(®s->rctrl); | 
 | 1671 | 		tempval |= RCTRL_PROM; | 
 | 1672 | 		gfar_write(®s->rctrl, tempval); | 
 | 1673 | 	} else { | 
 | 1674 | 		/* Set RCTRL to not PROM */ | 
 | 1675 | 		tempval = gfar_read(®s->rctrl); | 
 | 1676 | 		tempval &= ~(RCTRL_PROM); | 
 | 1677 | 		gfar_write(®s->rctrl, tempval); | 
 | 1678 | 	} | 
 | 1679 | 	 | 
 | 1680 | 	if(dev->flags & IFF_ALLMULTI) { | 
 | 1681 | 		/* Set the hash to rx all multicast frames */ | 
 | 1682 | 		gfar_write(®s->gaddr0, 0xffffffff); | 
 | 1683 | 		gfar_write(®s->gaddr1, 0xffffffff); | 
 | 1684 | 		gfar_write(®s->gaddr2, 0xffffffff); | 
 | 1685 | 		gfar_write(®s->gaddr3, 0xffffffff); | 
 | 1686 | 		gfar_write(®s->gaddr4, 0xffffffff); | 
 | 1687 | 		gfar_write(®s->gaddr5, 0xffffffff); | 
 | 1688 | 		gfar_write(®s->gaddr6, 0xffffffff); | 
 | 1689 | 		gfar_write(®s->gaddr7, 0xffffffff); | 
 | 1690 | 	} else { | 
 | 1691 | 		/* zero out the hash */ | 
 | 1692 | 		gfar_write(®s->gaddr0, 0x0); | 
 | 1693 | 		gfar_write(®s->gaddr1, 0x0); | 
 | 1694 | 		gfar_write(®s->gaddr2, 0x0); | 
 | 1695 | 		gfar_write(®s->gaddr3, 0x0); | 
 | 1696 | 		gfar_write(®s->gaddr4, 0x0); | 
 | 1697 | 		gfar_write(®s->gaddr5, 0x0); | 
 | 1698 | 		gfar_write(®s->gaddr6, 0x0); | 
 | 1699 | 		gfar_write(®s->gaddr7, 0x0); | 
 | 1700 |  | 
 | 1701 | 		if(dev->mc_count == 0) | 
 | 1702 | 			return; | 
 | 1703 |  | 
 | 1704 | 		/* Parse the list, and set the appropriate bits */ | 
 | 1705 | 		for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) { | 
 | 1706 | 			gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr); | 
 | 1707 | 		} | 
 | 1708 | 	} | 
 | 1709 |  | 
 | 1710 | 	return; | 
 | 1711 | } | 
 | 1712 |  | 
 | 1713 | /* Set the appropriate hash bit for the given addr */ | 
 | 1714 | /* The algorithm works like so: | 
 | 1715 |  * 1) Take the Destination Address (ie the multicast address), and | 
 | 1716 |  * do a CRC on it (little endian), and reverse the bits of the | 
 | 1717 |  * result. | 
 | 1718 |  * 2) Use the 8 most significant bits as a hash into a 256-entry | 
 | 1719 |  * table.  The table is controlled through 8 32-bit registers: | 
 | 1720 |  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is | 
 | 1721 |  * gaddr7.  This means that the 3 most significant bits in the | 
 | 1722 |  * hash index which gaddr register to use, and the 5 other bits | 
 | 1723 |  * indicate which bit (assuming an IBM numbering scheme, which | 
 | 1724 |  * for PowerPC (tm) is usually the case) in the register holds | 
 | 1725 |  * the entry. */ | 
 | 1726 | static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr) | 
 | 1727 | { | 
 | 1728 | 	u32 tempval; | 
 | 1729 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 1730 | 	struct gfar *regs = priv->regs; | 
 | 1731 | 	u32 *hash = ®s->gaddr0; | 
 | 1732 | 	u32 result = ether_crc(MAC_ADDR_LEN, addr); | 
 | 1733 | 	u8 whichreg = ((result >> 29) & 0x7); | 
 | 1734 | 	u8 whichbit = ((result >> 24) & 0x1f); | 
 | 1735 | 	u32 value = (1 << (31-whichbit)); | 
 | 1736 |  | 
 | 1737 | 	tempval = gfar_read(&hash[whichreg]); | 
 | 1738 | 	tempval |= value; | 
 | 1739 | 	gfar_write(&hash[whichreg], tempval); | 
 | 1740 |  | 
 | 1741 | 	return; | 
 | 1742 | } | 
 | 1743 |  | 
 | 1744 | /* GFAR error interrupt handler */ | 
 | 1745 | static irqreturn_t gfar_error(int irq, void *dev_id, struct pt_regs *regs) | 
 | 1746 | { | 
 | 1747 | 	struct net_device *dev = dev_id; | 
 | 1748 | 	struct gfar_private *priv = netdev_priv(dev); | 
 | 1749 |  | 
 | 1750 | 	/* Save ievent for future reference */ | 
 | 1751 | 	u32 events = gfar_read(&priv->regs->ievent); | 
 | 1752 |  | 
 | 1753 | 	/* Clear IEVENT */ | 
 | 1754 | 	gfar_write(&priv->regs->ievent, IEVENT_ERR_MASK); | 
 | 1755 |  | 
 | 1756 | 	/* Hmm... */ | 
 | 1757 | #if defined (BRIEF_GFAR_ERRORS) || defined (VERBOSE_GFAR_ERRORS) | 
 | 1758 | 	printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n", | 
 | 1759 | 	       dev->name, events, gfar_read(&priv->regs->imask)); | 
 | 1760 | #endif | 
 | 1761 |  | 
 | 1762 | 	/* Update the error counters */ | 
 | 1763 | 	if (events & IEVENT_TXE) { | 
 | 1764 | 		priv->stats.tx_errors++; | 
 | 1765 |  | 
 | 1766 | 		if (events & IEVENT_LC) | 
 | 1767 | 			priv->stats.tx_window_errors++; | 
 | 1768 | 		if (events & IEVENT_CRL) | 
 | 1769 | 			priv->stats.tx_aborted_errors++; | 
 | 1770 | 		if (events & IEVENT_XFUN) { | 
 | 1771 | #ifdef VERBOSE_GFAR_ERRORS | 
 | 1772 | 			printk(KERN_DEBUG "%s: underrun.  packet dropped.\n", | 
 | 1773 | 			       dev->name); | 
 | 1774 | #endif | 
 | 1775 | 			priv->stats.tx_dropped++; | 
 | 1776 | 			priv->extra_stats.tx_underrun++; | 
 | 1777 |  | 
 | 1778 | 			/* Reactivate the Tx Queues */ | 
 | 1779 | 			gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT); | 
 | 1780 | 		} | 
 | 1781 | #ifdef VERBOSE_GFAR_ERRORS | 
 | 1782 | 		printk(KERN_DEBUG "%s: Transmit Error\n", dev->name); | 
 | 1783 | #endif | 
 | 1784 | 	} | 
 | 1785 | 	if (events & IEVENT_BSY) { | 
 | 1786 | 		priv->stats.rx_errors++; | 
 | 1787 | 		priv->extra_stats.rx_bsy++; | 
 | 1788 |  | 
 | 1789 | 		gfar_receive(irq, dev_id, regs); | 
 | 1790 |  | 
 | 1791 | #ifndef CONFIG_GFAR_NAPI | 
 | 1792 | 		/* Clear the halt bit in RSTAT */ | 
 | 1793 | 		gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT); | 
 | 1794 | #endif | 
 | 1795 |  | 
 | 1796 | #ifdef VERBOSE_GFAR_ERRORS | 
 | 1797 | 		printk(KERN_DEBUG "%s: busy error (rhalt: %x)\n", dev->name, | 
 | 1798 | 		       gfar_read(&priv->regs->rstat)); | 
 | 1799 | #endif | 
 | 1800 | 	} | 
 | 1801 | 	if (events & IEVENT_BABR) { | 
 | 1802 | 		priv->stats.rx_errors++; | 
 | 1803 | 		priv->extra_stats.rx_babr++; | 
 | 1804 |  | 
 | 1805 | #ifdef VERBOSE_GFAR_ERRORS | 
 | 1806 | 		printk(KERN_DEBUG "%s: babbling error\n", dev->name); | 
 | 1807 | #endif | 
 | 1808 | 	} | 
 | 1809 | 	if (events & IEVENT_EBERR) { | 
 | 1810 | 		priv->extra_stats.eberr++; | 
 | 1811 | #ifdef VERBOSE_GFAR_ERRORS | 
 | 1812 | 		printk(KERN_DEBUG "%s: EBERR\n", dev->name); | 
 | 1813 | #endif | 
 | 1814 | 	} | 
 | 1815 | 	if (events & IEVENT_RXC) | 
 | 1816 | #ifdef VERBOSE_GFAR_ERRORS | 
 | 1817 | 		printk(KERN_DEBUG "%s: control frame\n", dev->name); | 
 | 1818 | #endif | 
 | 1819 |  | 
 | 1820 | 	if (events & IEVENT_BABT) { | 
 | 1821 | 		priv->extra_stats.tx_babt++; | 
 | 1822 | #ifdef VERBOSE_GFAR_ERRORS | 
 | 1823 | 		printk(KERN_DEBUG "%s: babt error\n", dev->name); | 
 | 1824 | #endif | 
 | 1825 | 	} | 
 | 1826 | 	return IRQ_HANDLED; | 
 | 1827 | } | 
 | 1828 |  | 
 | 1829 | /* Structure for a device driver */ | 
 | 1830 | static struct device_driver gfar_driver = { | 
 | 1831 | 	.name = "fsl-gianfar", | 
 | 1832 | 	.bus = &platform_bus_type, | 
 | 1833 | 	.probe = gfar_probe, | 
 | 1834 | 	.remove = gfar_remove, | 
 | 1835 | }; | 
 | 1836 |  | 
 | 1837 | static int __init gfar_init(void) | 
 | 1838 | { | 
 | 1839 | 	return driver_register(&gfar_driver); | 
 | 1840 | } | 
 | 1841 |  | 
 | 1842 | static void __exit gfar_exit(void) | 
 | 1843 | { | 
 | 1844 | 	driver_unregister(&gfar_driver); | 
 | 1845 | } | 
 | 1846 |  | 
 | 1847 | module_init(gfar_init); | 
 | 1848 | module_exit(gfar_exit); | 
 | 1849 |  |