| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  *    in2000.c -  Linux device driver for the | 
 | 3 |  *                Always IN2000 ISA SCSI card. | 
 | 4 |  * | 
 | 5 |  * Copyright (c) 1996 John Shifflett, GeoLog Consulting | 
 | 6 |  *    john@geolog.com | 
 | 7 |  *    jshiffle@netcom.com | 
 | 8 |  * | 
 | 9 |  * This program is free software; you can redistribute it and/or modify | 
 | 10 |  * it under the terms of the GNU General Public License as published by | 
 | 11 |  * the Free Software Foundation; either version 2, or (at your option) | 
 | 12 |  * any later version. | 
 | 13 |  * | 
 | 14 |  * This program is distributed in the hope that it will be useful, | 
 | 15 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 | 16 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 | 17 |  * GNU General Public License for more details. | 
 | 18 |  * | 
 | 19 |  * For the avoidance of doubt the "preferred form" of this code is one which | 
 | 20 |  * is in an open non patent encumbered format. Where cryptographic key signing | 
 | 21 |  * forms part of the process of creating an executable the information | 
 | 22 |  * including keys needed to generate an equivalently functional executable | 
 | 23 |  * are deemed to be part of the source code. | 
 | 24 |  * | 
 | 25 |  * Drew Eckhardt's excellent 'Generic NCR5380' sources provided | 
 | 26 |  * much of the inspiration and some of the code for this driver. | 
 | 27 |  * The Linux IN2000 driver distributed in the Linux kernels through | 
 | 28 |  * version 1.2.13 was an extremely valuable reference on the arcane | 
 | 29 |  * (and still mysterious) workings of the IN2000's fifo. It also | 
 | 30 |  * is where I lifted in2000_biosparam(), the gist of the card | 
 | 31 |  * detection scheme, and other bits of code. Many thanks to the | 
 | 32 |  * talented and courageous people who wrote, contributed to, and | 
 | 33 |  * maintained that driver (including Brad McLean, Shaun Savage, | 
 | 34 |  * Bill Earnest, Larry Doolittle, Roger Sunshine, John Luckey, | 
 | 35 |  * Matt Postiff, Peter Lu, zerucha@shell.portal.com, and Eric | 
 | 36 |  * Youngdale). I should also mention the driver written by | 
 | 37 |  * Hamish Macdonald for the (GASP!) Amiga A2091 card, included | 
 | 38 |  * in the Linux-m68k distribution; it gave me a good initial | 
 | 39 |  * understanding of the proper way to run a WD33c93 chip, and I | 
 | 40 |  * ended up stealing lots of code from it. | 
 | 41 |  * | 
 | 42 |  * _This_ driver is (I feel) an improvement over the old one in | 
 | 43 |  * several respects: | 
 | 44 |  *    -  All problems relating to the data size of a SCSI request are | 
 | 45 |  *          gone (as far as I know). The old driver couldn't handle | 
 | 46 |  *          swapping to partitions because that involved 4k blocks, nor | 
 | 47 |  *          could it deal with the st.c tape driver unmodified, because | 
 | 48 |  *          that usually involved 4k - 32k blocks. The old driver never | 
 | 49 |  *          quite got away from a morbid dependence on 2k block sizes - | 
 | 50 |  *          which of course is the size of the card's fifo. | 
 | 51 |  * | 
 | 52 |  *    -  Target Disconnection/Reconnection is now supported. Any | 
 | 53 |  *          system with more than one device active on the SCSI bus | 
 | 54 |  *          will benefit from this. The driver defaults to what I'm | 
 | 55 |  *          calling 'adaptive disconnect' - meaning that each command | 
 | 56 |  *          is evaluated individually as to whether or not it should | 
 | 57 |  *          be run with the option to disconnect/reselect (if the | 
 | 58 |  *          device chooses), or as a "SCSI-bus-hog". | 
 | 59 |  * | 
 | 60 |  *    -  Synchronous data transfers are now supported. Because there | 
 | 61 |  *          are a few devices (and many improperly terminated systems) | 
 | 62 |  *          that choke when doing sync, the default is sync DISABLED | 
 | 63 |  *          for all devices. This faster protocol can (and should!) | 
 | 64 |  *          be enabled on selected devices via the command-line. | 
 | 65 |  * | 
 | 66 |  *    -  Runtime operating parameters can now be specified through | 
 | 67 |  *       either the LILO or the 'insmod' command line. For LILO do: | 
 | 68 |  *          "in2000=blah,blah,blah" | 
 | 69 |  *       and with insmod go like: | 
 | 70 |  *          "insmod /usr/src/linux/modules/in2000.o setup_strings=blah,blah" | 
 | 71 |  *       The defaults should be good for most people. See the comment | 
 | 72 |  *       for 'setup_strings' below for more details. | 
 | 73 |  * | 
 | 74 |  *    -  The old driver relied exclusively on what the Western Digital | 
 | 75 |  *          docs call "Combination Level 2 Commands", which are a great | 
 | 76 |  *          idea in that the CPU is relieved of a lot of interrupt | 
 | 77 |  *          overhead. However, by accepting a certain (user-settable) | 
 | 78 |  *          amount of additional interrupts, this driver achieves | 
 | 79 |  *          better control over the SCSI bus, and data transfers are | 
 | 80 |  *          almost as fast while being much easier to define, track, | 
 | 81 |  *          and debug. | 
 | 82 |  * | 
 | 83 |  *    -  You can force detection of a card whose BIOS has been disabled. | 
 | 84 |  * | 
 | 85 |  *    -  Multiple IN2000 cards might almost be supported. I've tried to | 
 | 86 |  *       keep it in mind, but have no way to test... | 
 | 87 |  * | 
 | 88 |  * | 
 | 89 |  * TODO: | 
 | 90 |  *       tagged queuing. multiple cards. | 
 | 91 |  * | 
 | 92 |  * | 
 | 93 |  * NOTE: | 
 | 94 |  *       When using this or any other SCSI driver as a module, you'll | 
 | 95 |  *       find that with the stock kernel, at most _two_ SCSI hard | 
 | 96 |  *       drives will be linked into the device list (ie, usable). | 
 | 97 |  *       If your IN2000 card has more than 2 disks on its bus, you | 
 | 98 |  *       might want to change the define of 'SD_EXTRA_DEVS' in the | 
 | 99 |  *       'hosts.h' file from 2 to whatever is appropriate. It took | 
 | 100 |  *       me a while to track down this surprisingly obscure and | 
 | 101 |  *       undocumented little "feature". | 
 | 102 |  * | 
 | 103 |  * | 
 | 104 |  * People with bug reports, wish-lists, complaints, comments, | 
 | 105 |  * or improvements are asked to pah-leeez email me (John Shifflett) | 
 | 106 |  * at john@geolog.com or jshiffle@netcom.com! I'm anxious to get | 
 | 107 |  * this thing into as good a shape as possible, and I'm positive | 
 | 108 |  * there are lots of lurking bugs and "Stupid Places". | 
 | 109 |  * | 
 | 110 |  * Updated for Linux 2.5 by Alan Cox <alan@redhat.com> | 
 | 111 |  *	- Using new_eh handler | 
 | 112 |  *	- Hopefully got all the locking right again | 
 | 113 |  *	See "FIXME" notes for items that could do with more work | 
 | 114 |  */ | 
 | 115 |  | 
 | 116 | #include <linux/module.h> | 
 | 117 | #include <linux/blkdev.h> | 
 | 118 | #include <linux/interrupt.h> | 
 | 119 | #include <linux/string.h> | 
 | 120 | #include <linux/delay.h> | 
 | 121 | #include <linux/proc_fs.h> | 
 | 122 | #include <linux/ioport.h> | 
 | 123 | #include <linux/stat.h> | 
 | 124 |  | 
 | 125 | #include <asm/io.h> | 
 | 126 | #include <asm/system.h> | 
 | 127 |  | 
 | 128 | #include "scsi.h" | 
 | 129 | #include <scsi/scsi_host.h> | 
 | 130 |  | 
 | 131 | #define IN2000_VERSION    "1.33-2.5" | 
 | 132 | #define IN2000_DATE       "2002/11/03" | 
 | 133 |  | 
 | 134 | #include "in2000.h" | 
 | 135 |  | 
 | 136 |  | 
 | 137 | /* | 
 | 138 |  * 'setup_strings' is a single string used to pass operating parameters and | 
 | 139 |  * settings from the kernel/module command-line to the driver. 'setup_args[]' | 
 | 140 |  * is an array of strings that define the compile-time default values for | 
 | 141 |  * these settings. If Linux boots with a LILO or insmod command-line, those | 
 | 142 |  * settings are combined with 'setup_args[]'. Note that LILO command-lines | 
 | 143 |  * are prefixed with "in2000=" while insmod uses a "setup_strings=" prefix. | 
 | 144 |  * The driver recognizes the following keywords (lower case required) and | 
 | 145 |  * arguments: | 
 | 146 |  * | 
 | 147 |  * -  ioport:addr    -Where addr is IO address of a (usually ROM-less) card. | 
 | 148 |  * -  noreset        -No optional args. Prevents SCSI bus reset at boot time. | 
 | 149 |  * -  nosync:x       -x is a bitmask where the 1st 7 bits correspond with | 
 | 150 |  *                    the 7 possible SCSI devices (bit 0 for device #0, etc). | 
 | 151 |  *                    Set a bit to PREVENT sync negotiation on that device. | 
 | 152 |  *                    The driver default is sync DISABLED on all devices. | 
 | 153 |  * -  period:ns      -ns is the minimum # of nanoseconds in a SCSI data transfer | 
 | 154 |  *                    period. Default is 500; acceptable values are 250 - 1000. | 
 | 155 |  * -  disconnect:x   -x = 0 to never allow disconnects, 2 to always allow them. | 
 | 156 |  *                    x = 1 does 'adaptive' disconnects, which is the default | 
 | 157 |  *                    and generally the best choice. | 
 | 158 |  * -  debug:x        -If 'DEBUGGING_ON' is defined, x is a bitmask that causes | 
 | 159 |  *                    various types of debug output to printed - see the DB_xxx | 
 | 160 |  *                    defines in in2000.h | 
 | 161 |  * -  proc:x         -If 'PROC_INTERFACE' is defined, x is a bitmask that | 
 | 162 |  *                    determines how the /proc interface works and what it | 
 | 163 |  *                    does - see the PR_xxx defines in in2000.h | 
 | 164 |  * | 
 | 165 |  * Syntax Notes: | 
 | 166 |  * -  Numeric arguments can be decimal or the '0x' form of hex notation. There | 
 | 167 |  *    _must_ be a colon between a keyword and its numeric argument, with no | 
 | 168 |  *    spaces. | 
 | 169 |  * -  Keywords are separated by commas, no spaces, in the standard kernel | 
 | 170 |  *    command-line manner. | 
 | 171 |  * -  A keyword in the 'nth' comma-separated command-line member will overwrite | 
 | 172 |  *    the 'nth' element of setup_args[]. A blank command-line member (in | 
 | 173 |  *    other words, a comma with no preceding keyword) will _not_ overwrite | 
 | 174 |  *    the corresponding setup_args[] element. | 
 | 175 |  * | 
 | 176 |  * A few LILO examples (for insmod, use 'setup_strings' instead of 'in2000'): | 
 | 177 |  * -  in2000=ioport:0x220,noreset | 
 | 178 |  * -  in2000=period:250,disconnect:2,nosync:0x03 | 
 | 179 |  * -  in2000=debug:0x1e | 
 | 180 |  * -  in2000=proc:3 | 
 | 181 |  */ | 
 | 182 |  | 
 | 183 | /* Normally, no defaults are specified... */ | 
 | 184 | static char *setup_args[] = { "", "", "", "", "", "", "", "", "" }; | 
 | 185 |  | 
 | 186 | /* filled in by 'insmod' */ | 
 | 187 | static char *setup_strings; | 
 | 188 |  | 
 | 189 | module_param(setup_strings, charp, 0); | 
 | 190 |  | 
 | 191 | static inline uchar read_3393(struct IN2000_hostdata *hostdata, uchar reg_num) | 
 | 192 | { | 
 | 193 | 	write1_io(reg_num, IO_WD_ADDR); | 
 | 194 | 	return read1_io(IO_WD_DATA); | 
 | 195 | } | 
 | 196 |  | 
 | 197 |  | 
 | 198 | #define READ_AUX_STAT() read1_io(IO_WD_ASR) | 
 | 199 |  | 
 | 200 |  | 
 | 201 | static inline void write_3393(struct IN2000_hostdata *hostdata, uchar reg_num, uchar value) | 
 | 202 | { | 
 | 203 | 	write1_io(reg_num, IO_WD_ADDR); | 
 | 204 | 	write1_io(value, IO_WD_DATA); | 
 | 205 | } | 
 | 206 |  | 
 | 207 |  | 
 | 208 | static inline void write_3393_cmd(struct IN2000_hostdata *hostdata, uchar cmd) | 
 | 209 | { | 
 | 210 | /*   while (READ_AUX_STAT() & ASR_CIP) | 
 | 211 |       printk("|");*/ | 
 | 212 | 	write1_io(WD_COMMAND, IO_WD_ADDR); | 
 | 213 | 	write1_io(cmd, IO_WD_DATA); | 
 | 214 | } | 
 | 215 |  | 
 | 216 |  | 
 | 217 | static uchar read_1_byte(struct IN2000_hostdata *hostdata) | 
 | 218 | { | 
 | 219 | 	uchar asr, x = 0; | 
 | 220 |  | 
 | 221 | 	write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED); | 
 | 222 | 	write_3393_cmd(hostdata, WD_CMD_TRANS_INFO | 0x80); | 
 | 223 | 	do { | 
 | 224 | 		asr = READ_AUX_STAT(); | 
 | 225 | 		if (asr & ASR_DBR) | 
 | 226 | 			x = read_3393(hostdata, WD_DATA); | 
 | 227 | 	} while (!(asr & ASR_INT)); | 
 | 228 | 	return x; | 
 | 229 | } | 
 | 230 |  | 
 | 231 |  | 
 | 232 | static void write_3393_count(struct IN2000_hostdata *hostdata, unsigned long value) | 
 | 233 | { | 
 | 234 | 	write1_io(WD_TRANSFER_COUNT_MSB, IO_WD_ADDR); | 
 | 235 | 	write1_io((value >> 16), IO_WD_DATA); | 
 | 236 | 	write1_io((value >> 8), IO_WD_DATA); | 
 | 237 | 	write1_io(value, IO_WD_DATA); | 
 | 238 | } | 
 | 239 |  | 
 | 240 |  | 
 | 241 | static unsigned long read_3393_count(struct IN2000_hostdata *hostdata) | 
 | 242 | { | 
 | 243 | 	unsigned long value; | 
 | 244 |  | 
 | 245 | 	write1_io(WD_TRANSFER_COUNT_MSB, IO_WD_ADDR); | 
 | 246 | 	value = read1_io(IO_WD_DATA) << 16; | 
 | 247 | 	value |= read1_io(IO_WD_DATA) << 8; | 
 | 248 | 	value |= read1_io(IO_WD_DATA); | 
 | 249 | 	return value; | 
 | 250 | } | 
 | 251 |  | 
 | 252 |  | 
 | 253 | /* The 33c93 needs to be told which direction a command transfers its | 
 | 254 |  * data; we use this function to figure it out. Returns true if there | 
 | 255 |  * will be a DATA_OUT phase with this command, false otherwise. | 
 | 256 |  * (Thanks to Joerg Dorchain for the research and suggestion.) | 
 | 257 |  */ | 
 | 258 | static int is_dir_out(Scsi_Cmnd * cmd) | 
 | 259 | { | 
 | 260 | 	switch (cmd->cmnd[0]) { | 
 | 261 | 	case WRITE_6: | 
 | 262 | 	case WRITE_10: | 
 | 263 | 	case WRITE_12: | 
 | 264 | 	case WRITE_LONG: | 
 | 265 | 	case WRITE_SAME: | 
 | 266 | 	case WRITE_BUFFER: | 
 | 267 | 	case WRITE_VERIFY: | 
 | 268 | 	case WRITE_VERIFY_12: | 
 | 269 | 	case COMPARE: | 
 | 270 | 	case COPY: | 
 | 271 | 	case COPY_VERIFY: | 
 | 272 | 	case SEARCH_EQUAL: | 
 | 273 | 	case SEARCH_HIGH: | 
 | 274 | 	case SEARCH_LOW: | 
 | 275 | 	case SEARCH_EQUAL_12: | 
 | 276 | 	case SEARCH_HIGH_12: | 
 | 277 | 	case SEARCH_LOW_12: | 
 | 278 | 	case FORMAT_UNIT: | 
 | 279 | 	case REASSIGN_BLOCKS: | 
 | 280 | 	case RESERVE: | 
 | 281 | 	case MODE_SELECT: | 
 | 282 | 	case MODE_SELECT_10: | 
 | 283 | 	case LOG_SELECT: | 
 | 284 | 	case SEND_DIAGNOSTIC: | 
 | 285 | 	case CHANGE_DEFINITION: | 
 | 286 | 	case UPDATE_BLOCK: | 
 | 287 | 	case SET_WINDOW: | 
 | 288 | 	case MEDIUM_SCAN: | 
 | 289 | 	case SEND_VOLUME_TAG: | 
 | 290 | 	case 0xea: | 
 | 291 | 		return 1; | 
 | 292 | 	default: | 
 | 293 | 		return 0; | 
 | 294 | 	} | 
 | 295 | } | 
 | 296 |  | 
 | 297 |  | 
 | 298 |  | 
 | 299 | static struct sx_period sx_table[] = { | 
 | 300 | 	{1, 0x20}, | 
 | 301 | 	{252, 0x20}, | 
 | 302 | 	{376, 0x30}, | 
 | 303 | 	{500, 0x40}, | 
 | 304 | 	{624, 0x50}, | 
 | 305 | 	{752, 0x60}, | 
 | 306 | 	{876, 0x70}, | 
 | 307 | 	{1000, 0x00}, | 
 | 308 | 	{0, 0} | 
 | 309 | }; | 
 | 310 |  | 
 | 311 | static int round_period(unsigned int period) | 
 | 312 | { | 
 | 313 | 	int x; | 
 | 314 |  | 
 | 315 | 	for (x = 1; sx_table[x].period_ns; x++) { | 
 | 316 | 		if ((period <= sx_table[x - 0].period_ns) && (period > sx_table[x - 1].period_ns)) { | 
 | 317 | 			return x; | 
 | 318 | 		} | 
 | 319 | 	} | 
 | 320 | 	return 7; | 
 | 321 | } | 
 | 322 |  | 
 | 323 | static uchar calc_sync_xfer(unsigned int period, unsigned int offset) | 
 | 324 | { | 
 | 325 | 	uchar result; | 
 | 326 |  | 
 | 327 | 	period *= 4;		/* convert SDTR code to ns */ | 
 | 328 | 	result = sx_table[round_period(period)].reg_value; | 
 | 329 | 	result |= (offset < OPTIMUM_SX_OFF) ? offset : OPTIMUM_SX_OFF; | 
 | 330 | 	return result; | 
 | 331 | } | 
 | 332 |  | 
 | 333 |  | 
 | 334 |  | 
 | 335 | static void in2000_execute(struct Scsi_Host *instance); | 
 | 336 |  | 
 | 337 | static int in2000_queuecommand(Scsi_Cmnd * cmd, void (*done) (Scsi_Cmnd *)) | 
 | 338 | { | 
 | 339 | 	struct Scsi_Host *instance; | 
 | 340 | 	struct IN2000_hostdata *hostdata; | 
 | 341 | 	Scsi_Cmnd *tmp; | 
 | 342 |  | 
 | 343 | 	instance = cmd->device->host; | 
 | 344 | 	hostdata = (struct IN2000_hostdata *) instance->hostdata; | 
 | 345 |  | 
 | 346 | 	DB(DB_QUEUE_COMMAND, printk("Q-%d-%02x-%ld(", cmd->device->id, cmd->cmnd[0], cmd->pid)) | 
 | 347 |  | 
 | 348 | /* Set up a few fields in the Scsi_Cmnd structure for our own use: | 
 | 349 |  *  - host_scribble is the pointer to the next cmd in the input queue | 
 | 350 |  *  - scsi_done points to the routine we call when a cmd is finished | 
 | 351 |  *  - result is what you'd expect | 
 | 352 |  */ | 
 | 353 | 	    cmd->host_scribble = NULL; | 
 | 354 | 	cmd->scsi_done = done; | 
 | 355 | 	cmd->result = 0; | 
 | 356 |  | 
 | 357 | /* We use the Scsi_Pointer structure that's included with each command | 
 | 358 |  * as a scratchpad (as it's intended to be used!). The handy thing about | 
 | 359 |  * the SCp.xxx fields is that they're always associated with a given | 
 | 360 |  * cmd, and are preserved across disconnect-reselect. This means we | 
 | 361 |  * can pretty much ignore SAVE_POINTERS and RESTORE_POINTERS messages | 
 | 362 |  * if we keep all the critical pointers and counters in SCp: | 
 | 363 |  *  - SCp.ptr is the pointer into the RAM buffer | 
 | 364 |  *  - SCp.this_residual is the size of that buffer | 
 | 365 |  *  - SCp.buffer points to the current scatter-gather buffer | 
 | 366 |  *  - SCp.buffers_residual tells us how many S.G. buffers there are | 
 | 367 |  *  - SCp.have_data_in helps keep track of >2048 byte transfers | 
 | 368 |  *  - SCp.sent_command is not used | 
 | 369 |  *  - SCp.phase records this command's SRCID_ER bit setting | 
 | 370 |  */ | 
 | 371 |  | 
 | 372 | 	if (cmd->use_sg) { | 
 | 373 | 		cmd->SCp.buffer = (struct scatterlist *) cmd->buffer; | 
 | 374 | 		cmd->SCp.buffers_residual = cmd->use_sg - 1; | 
 | 375 | 		cmd->SCp.ptr = (char *) page_address(cmd->SCp.buffer->page) + cmd->SCp.buffer->offset; | 
 | 376 | 		cmd->SCp.this_residual = cmd->SCp.buffer->length; | 
 | 377 | 	} else { | 
 | 378 | 		cmd->SCp.buffer = NULL; | 
 | 379 | 		cmd->SCp.buffers_residual = 0; | 
 | 380 | 		cmd->SCp.ptr = (char *) cmd->request_buffer; | 
 | 381 | 		cmd->SCp.this_residual = cmd->request_bufflen; | 
 | 382 | 	} | 
 | 383 | 	cmd->SCp.have_data_in = 0; | 
 | 384 |  | 
 | 385 | /* We don't set SCp.phase here - that's done in in2000_execute() */ | 
 | 386 |  | 
 | 387 | /* WD docs state that at the conclusion of a "LEVEL2" command, the | 
 | 388 |  * status byte can be retrieved from the LUN register. Apparently, | 
 | 389 |  * this is the case only for *uninterrupted* LEVEL2 commands! If | 
 | 390 |  * there are any unexpected phases entered, even if they are 100% | 
 | 391 |  * legal (different devices may choose to do things differently), | 
 | 392 |  * the LEVEL2 command sequence is exited. This often occurs prior | 
 | 393 |  * to receiving the status byte, in which case the driver does a | 
 | 394 |  * status phase interrupt and gets the status byte on its own. | 
 | 395 |  * While such a command can then be "resumed" (ie restarted to | 
 | 396 |  * finish up as a LEVEL2 command), the LUN register will NOT be | 
 | 397 |  * a valid status byte at the command's conclusion, and we must | 
 | 398 |  * use the byte obtained during the earlier interrupt. Here, we | 
 | 399 |  * preset SCp.Status to an illegal value (0xff) so that when | 
 | 400 |  * this command finally completes, we can tell where the actual | 
 | 401 |  * status byte is stored. | 
 | 402 |  */ | 
 | 403 |  | 
 | 404 | 	cmd->SCp.Status = ILLEGAL_STATUS_BYTE; | 
 | 405 |  | 
 | 406 | /* We need to disable interrupts before messing with the input | 
 | 407 |  * queue and calling in2000_execute(). | 
 | 408 |  */ | 
 | 409 |  | 
 | 410 | 	/* | 
 | 411 | 	 * Add the cmd to the end of 'input_Q'. Note that REQUEST_SENSE | 
 | 412 | 	 * commands are added to the head of the queue so that the desired | 
 | 413 | 	 * sense data is not lost before REQUEST_SENSE executes. | 
 | 414 | 	 */ | 
 | 415 |  | 
 | 416 | 	if (!(hostdata->input_Q) || (cmd->cmnd[0] == REQUEST_SENSE)) { | 
 | 417 | 		cmd->host_scribble = (uchar *) hostdata->input_Q; | 
 | 418 | 		hostdata->input_Q = cmd; | 
 | 419 | 	} else {		/* find the end of the queue */ | 
 | 420 | 		for (tmp = (Scsi_Cmnd *) hostdata->input_Q; tmp->host_scribble; tmp = (Scsi_Cmnd *) tmp->host_scribble); | 
 | 421 | 		tmp->host_scribble = (uchar *) cmd; | 
 | 422 | 	} | 
 | 423 |  | 
 | 424 | /* We know that there's at least one command in 'input_Q' now. | 
 | 425 |  * Go see if any of them are runnable! | 
 | 426 |  */ | 
 | 427 |  | 
 | 428 | 	in2000_execute(cmd->device->host); | 
 | 429 |  | 
 | 430 | 	DB(DB_QUEUE_COMMAND, printk(")Q-%ld ", cmd->pid)) | 
 | 431 | 	    return 0; | 
 | 432 | } | 
 | 433 |  | 
 | 434 |  | 
 | 435 |  | 
 | 436 | /* | 
 | 437 |  * This routine attempts to start a scsi command. If the host_card is | 
 | 438 |  * already connected, we give up immediately. Otherwise, look through | 
 | 439 |  * the input_Q, using the first command we find that's intended | 
 | 440 |  * for a currently non-busy target/lun. | 
 | 441 |  * Note that this function is always called with interrupts already | 
 | 442 |  * disabled (either from in2000_queuecommand() or in2000_intr()). | 
 | 443 |  */ | 
 | 444 | static void in2000_execute(struct Scsi_Host *instance) | 
 | 445 | { | 
 | 446 | 	struct IN2000_hostdata *hostdata; | 
 | 447 | 	Scsi_Cmnd *cmd, *prev; | 
 | 448 | 	int i; | 
 | 449 | 	unsigned short *sp; | 
 | 450 | 	unsigned short f; | 
 | 451 | 	unsigned short flushbuf[16]; | 
 | 452 |  | 
 | 453 |  | 
 | 454 | 	hostdata = (struct IN2000_hostdata *) instance->hostdata; | 
 | 455 |  | 
 | 456 | 	DB(DB_EXECUTE, printk("EX(")) | 
 | 457 |  | 
 | 458 | 	    if (hostdata->selecting || hostdata->connected) { | 
 | 459 |  | 
 | 460 | 		DB(DB_EXECUTE, printk(")EX-0 ")) | 
 | 461 |  | 
 | 462 | 		    return; | 
 | 463 | 	} | 
 | 464 |  | 
 | 465 | 	/* | 
 | 466 | 	 * Search through the input_Q for a command destined | 
 | 467 | 	 * for an idle target/lun. | 
 | 468 | 	 */ | 
 | 469 |  | 
 | 470 | 	cmd = (Scsi_Cmnd *) hostdata->input_Q; | 
 | 471 | 	prev = NULL; | 
 | 472 | 	while (cmd) { | 
 | 473 | 		if (!(hostdata->busy[cmd->device->id] & (1 << cmd->device->lun))) | 
 | 474 | 			break; | 
 | 475 | 		prev = cmd; | 
 | 476 | 		cmd = (Scsi_Cmnd *) cmd->host_scribble; | 
 | 477 | 	} | 
 | 478 |  | 
 | 479 | 	/* quit if queue empty or all possible targets are busy */ | 
 | 480 |  | 
 | 481 | 	if (!cmd) { | 
 | 482 |  | 
 | 483 | 		DB(DB_EXECUTE, printk(")EX-1 ")) | 
 | 484 |  | 
 | 485 | 		    return; | 
 | 486 | 	} | 
 | 487 |  | 
 | 488 | 	/*  remove command from queue */ | 
 | 489 |  | 
 | 490 | 	if (prev) | 
 | 491 | 		prev->host_scribble = cmd->host_scribble; | 
 | 492 | 	else | 
 | 493 | 		hostdata->input_Q = (Scsi_Cmnd *) cmd->host_scribble; | 
 | 494 |  | 
 | 495 | #ifdef PROC_STATISTICS | 
 | 496 | 	hostdata->cmd_cnt[cmd->device->id]++; | 
 | 497 | #endif | 
 | 498 |  | 
 | 499 | /* | 
 | 500 |  * Start the selection process | 
 | 501 |  */ | 
 | 502 |  | 
 | 503 | 	if (is_dir_out(cmd)) | 
 | 504 | 		write_3393(hostdata, WD_DESTINATION_ID, cmd->device->id); | 
 | 505 | 	else | 
 | 506 | 		write_3393(hostdata, WD_DESTINATION_ID, cmd->device->id | DSTID_DPD); | 
 | 507 |  | 
 | 508 | /* Now we need to figure out whether or not this command is a good | 
 | 509 |  * candidate for disconnect/reselect. We guess to the best of our | 
 | 510 |  * ability, based on a set of hierarchical rules. When several | 
 | 511 |  * devices are operating simultaneously, disconnects are usually | 
 | 512 |  * an advantage. In a single device system, or if only 1 device | 
 | 513 |  * is being accessed, transfers usually go faster if disconnects | 
 | 514 |  * are not allowed: | 
 | 515 |  * | 
 | 516 |  * + Commands should NEVER disconnect if hostdata->disconnect = | 
 | 517 |  *   DIS_NEVER (this holds for tape drives also), and ALWAYS | 
 | 518 |  *   disconnect if hostdata->disconnect = DIS_ALWAYS. | 
 | 519 |  * + Tape drive commands should always be allowed to disconnect. | 
 | 520 |  * + Disconnect should be allowed if disconnected_Q isn't empty. | 
 | 521 |  * + Commands should NOT disconnect if input_Q is empty. | 
 | 522 |  * + Disconnect should be allowed if there are commands in input_Q | 
 | 523 |  *   for a different target/lun. In this case, the other commands | 
 | 524 |  *   should be made disconnect-able, if not already. | 
 | 525 |  * | 
 | 526 |  * I know, I know - this code would flunk me out of any | 
 | 527 |  * "C Programming 101" class ever offered. But it's easy | 
 | 528 |  * to change around and experiment with for now. | 
 | 529 |  */ | 
 | 530 |  | 
 | 531 | 	cmd->SCp.phase = 0;	/* assume no disconnect */ | 
 | 532 | 	if (hostdata->disconnect == DIS_NEVER) | 
 | 533 | 		goto no; | 
 | 534 | 	if (hostdata->disconnect == DIS_ALWAYS) | 
 | 535 | 		goto yes; | 
 | 536 | 	if (cmd->device->type == 1)	/* tape drive? */ | 
 | 537 | 		goto yes; | 
 | 538 | 	if (hostdata->disconnected_Q)	/* other commands disconnected? */ | 
 | 539 | 		goto yes; | 
 | 540 | 	if (!(hostdata->input_Q))	/* input_Q empty? */ | 
 | 541 | 		goto no; | 
 | 542 | 	for (prev = (Scsi_Cmnd *) hostdata->input_Q; prev; prev = (Scsi_Cmnd *) prev->host_scribble) { | 
 | 543 | 		if ((prev->device->id != cmd->device->id) || (prev->device->lun != cmd->device->lun)) { | 
 | 544 | 			for (prev = (Scsi_Cmnd *) hostdata->input_Q; prev; prev = (Scsi_Cmnd *) prev->host_scribble) | 
 | 545 | 				prev->SCp.phase = 1; | 
 | 546 | 			goto yes; | 
 | 547 | 		} | 
 | 548 | 	} | 
 | 549 | 	goto no; | 
 | 550 |  | 
 | 551 |       yes: | 
 | 552 | 	cmd->SCp.phase = 1; | 
 | 553 |  | 
 | 554 | #ifdef PROC_STATISTICS | 
 | 555 | 	hostdata->disc_allowed_cnt[cmd->device->id]++; | 
 | 556 | #endif | 
 | 557 |  | 
 | 558 |       no: | 
 | 559 | 	write_3393(hostdata, WD_SOURCE_ID, ((cmd->SCp.phase) ? SRCID_ER : 0)); | 
 | 560 |  | 
 | 561 | 	write_3393(hostdata, WD_TARGET_LUN, cmd->device->lun); | 
 | 562 | 	write_3393(hostdata, WD_SYNCHRONOUS_TRANSFER, hostdata->sync_xfer[cmd->device->id]); | 
 | 563 | 	hostdata->busy[cmd->device->id] |= (1 << cmd->device->lun); | 
 | 564 |  | 
 | 565 | 	if ((hostdata->level2 <= L2_NONE) || (hostdata->sync_stat[cmd->device->id] == SS_UNSET)) { | 
 | 566 |  | 
 | 567 | 		/* | 
 | 568 | 		 * Do a 'Select-With-ATN' command. This will end with | 
 | 569 | 		 * one of the following interrupts: | 
 | 570 | 		 *    CSR_RESEL_AM:  failure - can try again later. | 
 | 571 | 		 *    CSR_TIMEOUT:   failure - give up. | 
 | 572 | 		 *    CSR_SELECT:    success - proceed. | 
 | 573 | 		 */ | 
 | 574 |  | 
 | 575 | 		hostdata->selecting = cmd; | 
 | 576 |  | 
 | 577 | /* Every target has its own synchronous transfer setting, kept in | 
 | 578 |  * the sync_xfer array, and a corresponding status byte in sync_stat[]. | 
 | 579 |  * Each target's sync_stat[] entry is initialized to SS_UNSET, and its | 
 | 580 |  * sync_xfer[] entry is initialized to the default/safe value. SS_UNSET | 
 | 581 |  * means that the parameters are undetermined as yet, and that we | 
 | 582 |  * need to send an SDTR message to this device after selection is | 
 | 583 |  * complete. We set SS_FIRST to tell the interrupt routine to do so, | 
 | 584 |  * unless we don't want to even _try_ synchronous transfers: In this | 
 | 585 |  * case we set SS_SET to make the defaults final. | 
 | 586 |  */ | 
 | 587 | 		if (hostdata->sync_stat[cmd->device->id] == SS_UNSET) { | 
 | 588 | 			if (hostdata->sync_off & (1 << cmd->device->id)) | 
 | 589 | 				hostdata->sync_stat[cmd->device->id] = SS_SET; | 
 | 590 | 			else | 
 | 591 | 				hostdata->sync_stat[cmd->device->id] = SS_FIRST; | 
 | 592 | 		} | 
 | 593 | 		hostdata->state = S_SELECTING; | 
 | 594 | 		write_3393_count(hostdata, 0);	/* this guarantees a DATA_PHASE interrupt */ | 
 | 595 | 		write_3393_cmd(hostdata, WD_CMD_SEL_ATN); | 
 | 596 | 	} | 
 | 597 |  | 
 | 598 | 	else { | 
 | 599 |  | 
 | 600 | 		/* | 
 | 601 | 		 * Do a 'Select-With-ATN-Xfer' command. This will end with | 
 | 602 | 		 * one of the following interrupts: | 
 | 603 | 		 *    CSR_RESEL_AM:  failure - can try again later. | 
 | 604 | 		 *    CSR_TIMEOUT:   failure - give up. | 
 | 605 | 		 *    anything else: success - proceed. | 
 | 606 | 		 */ | 
 | 607 |  | 
 | 608 | 		hostdata->connected = cmd; | 
 | 609 | 		write_3393(hostdata, WD_COMMAND_PHASE, 0); | 
 | 610 |  | 
 | 611 | 		/* copy command_descriptor_block into WD chip | 
 | 612 | 		 * (take advantage of auto-incrementing) | 
 | 613 | 		 */ | 
 | 614 |  | 
 | 615 | 		write1_io(WD_CDB_1, IO_WD_ADDR); | 
 | 616 | 		for (i = 0; i < cmd->cmd_len; i++) | 
 | 617 | 			write1_io(cmd->cmnd[i], IO_WD_DATA); | 
 | 618 |  | 
 | 619 | 		/* The wd33c93 only knows about Group 0, 1, and 5 commands when | 
 | 620 | 		 * it's doing a 'select-and-transfer'. To be safe, we write the | 
 | 621 | 		 * size of the CDB into the OWN_ID register for every case. This | 
 | 622 | 		 * way there won't be problems with vendor-unique, audio, etc. | 
 | 623 | 		 */ | 
 | 624 |  | 
 | 625 | 		write_3393(hostdata, WD_OWN_ID, cmd->cmd_len); | 
 | 626 |  | 
 | 627 | 		/* When doing a non-disconnect command, we can save ourselves a DATA | 
 | 628 | 		 * phase interrupt later by setting everything up now. With writes we | 
 | 629 | 		 * need to pre-fill the fifo; if there's room for the 32 flush bytes, | 
 | 630 | 		 * put them in there too - that'll avoid a fifo interrupt. Reads are | 
 | 631 | 		 * somewhat simpler. | 
 | 632 | 		 * KLUDGE NOTE: It seems that you can't completely fill the fifo here: | 
 | 633 | 		 * This results in the IO_FIFO_COUNT register rolling over to zero, | 
 | 634 | 		 * and apparently the gate array logic sees this as empty, not full, | 
 | 635 | 		 * so the 3393 chip is never signalled to start reading from the | 
 | 636 | 		 * fifo. Or maybe it's seen as a permanent fifo interrupt condition. | 
 | 637 | 		 * Regardless, we fix this by temporarily pretending that the fifo | 
 | 638 | 		 * is 16 bytes smaller. (I see now that the old driver has a comment | 
 | 639 | 		 * about "don't fill completely" in an analogous place - must be the | 
 | 640 | 		 * same deal.) This results in CDROM, swap partitions, and tape drives | 
 | 641 | 		 * needing an extra interrupt per write command - I think we can live | 
 | 642 | 		 * with that! | 
 | 643 | 		 */ | 
 | 644 |  | 
 | 645 | 		if (!(cmd->SCp.phase)) { | 
 | 646 | 			write_3393_count(hostdata, cmd->SCp.this_residual); | 
 | 647 | 			write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_BUS); | 
 | 648 | 			write1_io(0, IO_FIFO_WRITE);	/* clear fifo counter, write mode */ | 
 | 649 |  | 
 | 650 | 			if (is_dir_out(cmd)) { | 
 | 651 | 				hostdata->fifo = FI_FIFO_WRITING; | 
 | 652 | 				if ((i = cmd->SCp.this_residual) > (IN2000_FIFO_SIZE - 16)) | 
 | 653 | 					i = IN2000_FIFO_SIZE - 16; | 
 | 654 | 				cmd->SCp.have_data_in = i;	/* this much data in fifo */ | 
 | 655 | 				i >>= 1;	/* Gulp. Assuming modulo 2. */ | 
 | 656 | 				sp = (unsigned short *) cmd->SCp.ptr; | 
 | 657 | 				f = hostdata->io_base + IO_FIFO; | 
 | 658 |  | 
 | 659 | #ifdef FAST_WRITE_IO | 
 | 660 |  | 
 | 661 | 				FAST_WRITE2_IO(); | 
 | 662 | #else | 
 | 663 | 				while (i--) | 
 | 664 | 					write2_io(*sp++, IO_FIFO); | 
 | 665 |  | 
 | 666 | #endif | 
 | 667 |  | 
 | 668 | 				/* Is there room for the flush bytes? */ | 
 | 669 |  | 
 | 670 | 				if (cmd->SCp.have_data_in <= ((IN2000_FIFO_SIZE - 16) - 32)) { | 
 | 671 | 					sp = flushbuf; | 
 | 672 | 					i = 16; | 
 | 673 |  | 
 | 674 | #ifdef FAST_WRITE_IO | 
 | 675 |  | 
 | 676 | 					FAST_WRITE2_IO(); | 
 | 677 | #else | 
 | 678 | 					while (i--) | 
 | 679 | 						write2_io(0, IO_FIFO); | 
 | 680 |  | 
 | 681 | #endif | 
 | 682 |  | 
 | 683 | 				} | 
 | 684 | 			} | 
 | 685 |  | 
 | 686 | 			else { | 
 | 687 | 				write1_io(0, IO_FIFO_READ);	/* put fifo in read mode */ | 
 | 688 | 				hostdata->fifo = FI_FIFO_READING; | 
 | 689 | 				cmd->SCp.have_data_in = 0;	/* nothing transferred yet */ | 
 | 690 | 			} | 
 | 691 |  | 
 | 692 | 		} else { | 
 | 693 | 			write_3393_count(hostdata, 0);	/* this guarantees a DATA_PHASE interrupt */ | 
 | 694 | 		} | 
 | 695 | 		hostdata->state = S_RUNNING_LEVEL2; | 
 | 696 | 		write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER); | 
 | 697 | 	} | 
 | 698 |  | 
 | 699 | 	/* | 
 | 700 | 	 * Since the SCSI bus can handle only 1 connection at a time, | 
 | 701 | 	 * we get out of here now. If the selection fails, or when | 
 | 702 | 	 * the command disconnects, we'll come back to this routine | 
 | 703 | 	 * to search the input_Q again... | 
 | 704 | 	 */ | 
 | 705 |  | 
 | 706 | 	DB(DB_EXECUTE, printk("%s%ld)EX-2 ", (cmd->SCp.phase) ? "d:" : "", cmd->pid)) | 
 | 707 |  | 
 | 708 | } | 
 | 709 |  | 
 | 710 |  | 
 | 711 |  | 
 | 712 | static void transfer_pio(uchar * buf, int cnt, int data_in_dir, struct IN2000_hostdata *hostdata) | 
 | 713 | { | 
 | 714 | 	uchar asr; | 
 | 715 |  | 
 | 716 | 	DB(DB_TRANSFER, printk("(%p,%d,%s)", buf, cnt, data_in_dir ? "in" : "out")) | 
 | 717 |  | 
 | 718 | 	    write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED); | 
 | 719 | 	write_3393_count(hostdata, cnt); | 
 | 720 | 	write_3393_cmd(hostdata, WD_CMD_TRANS_INFO); | 
 | 721 | 	if (data_in_dir) { | 
 | 722 | 		do { | 
 | 723 | 			asr = READ_AUX_STAT(); | 
 | 724 | 			if (asr & ASR_DBR) | 
 | 725 | 				*buf++ = read_3393(hostdata, WD_DATA); | 
 | 726 | 		} while (!(asr & ASR_INT)); | 
 | 727 | 	} else { | 
 | 728 | 		do { | 
 | 729 | 			asr = READ_AUX_STAT(); | 
 | 730 | 			if (asr & ASR_DBR) | 
 | 731 | 				write_3393(hostdata, WD_DATA, *buf++); | 
 | 732 | 		} while (!(asr & ASR_INT)); | 
 | 733 | 	} | 
 | 734 |  | 
 | 735 | 	/* Note: we are returning with the interrupt UN-cleared. | 
 | 736 | 	 * Since (presumably) an entire I/O operation has | 
 | 737 | 	 * completed, the bus phase is probably different, and | 
 | 738 | 	 * the interrupt routine will discover this when it | 
 | 739 | 	 * responds to the uncleared int. | 
 | 740 | 	 */ | 
 | 741 |  | 
 | 742 | } | 
 | 743 |  | 
 | 744 |  | 
 | 745 |  | 
 | 746 | static void transfer_bytes(Scsi_Cmnd * cmd, int data_in_dir) | 
 | 747 | { | 
 | 748 | 	struct IN2000_hostdata *hostdata; | 
 | 749 | 	unsigned short *sp; | 
 | 750 | 	unsigned short f; | 
 | 751 | 	int i; | 
 | 752 |  | 
 | 753 | 	hostdata = (struct IN2000_hostdata *) cmd->device->host->hostdata; | 
 | 754 |  | 
 | 755 | /* Normally, you'd expect 'this_residual' to be non-zero here. | 
 | 756 |  * In a series of scatter-gather transfers, however, this | 
 | 757 |  * routine will usually be called with 'this_residual' equal | 
 | 758 |  * to 0 and 'buffers_residual' non-zero. This means that a | 
 | 759 |  * previous transfer completed, clearing 'this_residual', and | 
 | 760 |  * now we need to setup the next scatter-gather buffer as the | 
 | 761 |  * source or destination for THIS transfer. | 
 | 762 |  */ | 
 | 763 | 	if (!cmd->SCp.this_residual && cmd->SCp.buffers_residual) { | 
 | 764 | 		++cmd->SCp.buffer; | 
 | 765 | 		--cmd->SCp.buffers_residual; | 
 | 766 | 		cmd->SCp.this_residual = cmd->SCp.buffer->length; | 
 | 767 | 		cmd->SCp.ptr = page_address(cmd->SCp.buffer->page) + cmd->SCp.buffer->offset; | 
 | 768 | 	} | 
 | 769 |  | 
 | 770 | /* Set up hardware registers */ | 
 | 771 |  | 
 | 772 | 	write_3393(hostdata, WD_SYNCHRONOUS_TRANSFER, hostdata->sync_xfer[cmd->device->id]); | 
 | 773 | 	write_3393_count(hostdata, cmd->SCp.this_residual); | 
 | 774 | 	write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_BUS); | 
 | 775 | 	write1_io(0, IO_FIFO_WRITE);	/* zero counter, assume write */ | 
 | 776 |  | 
 | 777 | /* Reading is easy. Just issue the command and return - we'll | 
 | 778 |  * get an interrupt later when we have actual data to worry about. | 
 | 779 |  */ | 
 | 780 |  | 
 | 781 | 	if (data_in_dir) { | 
 | 782 | 		write1_io(0, IO_FIFO_READ); | 
 | 783 | 		if ((hostdata->level2 >= L2_DATA) || (hostdata->level2 == L2_BASIC && cmd->SCp.phase == 0)) { | 
 | 784 | 			write_3393(hostdata, WD_COMMAND_PHASE, 0x45); | 
 | 785 | 			write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER); | 
 | 786 | 			hostdata->state = S_RUNNING_LEVEL2; | 
 | 787 | 		} else | 
 | 788 | 			write_3393_cmd(hostdata, WD_CMD_TRANS_INFO); | 
 | 789 | 		hostdata->fifo = FI_FIFO_READING; | 
 | 790 | 		cmd->SCp.have_data_in = 0; | 
 | 791 | 		return; | 
 | 792 | 	} | 
 | 793 |  | 
 | 794 | /* Writing is more involved - we'll start the WD chip and write as | 
 | 795 |  * much data to the fifo as we can right now. Later interrupts will | 
 | 796 |  * write any bytes that don't make it at this stage. | 
 | 797 |  */ | 
 | 798 |  | 
 | 799 | 	if ((hostdata->level2 >= L2_DATA) || (hostdata->level2 == L2_BASIC && cmd->SCp.phase == 0)) { | 
 | 800 | 		write_3393(hostdata, WD_COMMAND_PHASE, 0x45); | 
 | 801 | 		write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER); | 
 | 802 | 		hostdata->state = S_RUNNING_LEVEL2; | 
 | 803 | 	} else | 
 | 804 | 		write_3393_cmd(hostdata, WD_CMD_TRANS_INFO); | 
 | 805 | 	hostdata->fifo = FI_FIFO_WRITING; | 
 | 806 | 	sp = (unsigned short *) cmd->SCp.ptr; | 
 | 807 |  | 
 | 808 | 	if ((i = cmd->SCp.this_residual) > IN2000_FIFO_SIZE) | 
 | 809 | 		i = IN2000_FIFO_SIZE; | 
 | 810 | 	cmd->SCp.have_data_in = i; | 
 | 811 | 	i >>= 1;		/* Gulp. We assume this_residual is modulo 2 */ | 
 | 812 | 	f = hostdata->io_base + IO_FIFO; | 
 | 813 |  | 
 | 814 | #ifdef FAST_WRITE_IO | 
 | 815 |  | 
 | 816 | 	FAST_WRITE2_IO(); | 
 | 817 | #else | 
 | 818 | 	while (i--) | 
 | 819 | 		write2_io(*sp++, IO_FIFO); | 
 | 820 |  | 
 | 821 | #endif | 
 | 822 |  | 
 | 823 | } | 
 | 824 |  | 
 | 825 |  | 
 | 826 | /* We need to use spin_lock_irqsave() & spin_unlock_irqrestore() in this | 
 | 827 |  * function in order to work in an SMP environment. (I'd be surprised | 
 | 828 |  * if the driver is ever used by anyone on a real multi-CPU motherboard, | 
 | 829 |  * but it _does_ need to be able to compile and run in an SMP kernel.) | 
 | 830 |  */ | 
 | 831 |  | 
 | 832 | static irqreturn_t in2000_intr(int irqnum, void *dev_id, struct pt_regs *ptregs) | 
 | 833 | { | 
 | 834 | 	struct Scsi_Host *instance = dev_id; | 
 | 835 | 	struct IN2000_hostdata *hostdata; | 
 | 836 | 	Scsi_Cmnd *patch, *cmd; | 
 | 837 | 	uchar asr, sr, phs, id, lun, *ucp, msg; | 
 | 838 | 	int i, j; | 
 | 839 | 	unsigned long length; | 
 | 840 | 	unsigned short *sp; | 
 | 841 | 	unsigned short f; | 
 | 842 | 	unsigned long flags; | 
 | 843 |  | 
 | 844 | 	hostdata = (struct IN2000_hostdata *) instance->hostdata; | 
 | 845 |  | 
 | 846 | /* Get the spin_lock and disable further ints, for SMP */ | 
 | 847 |  | 
 | 848 | 	spin_lock_irqsave(instance->host_lock, flags); | 
 | 849 |  | 
 | 850 | #ifdef PROC_STATISTICS | 
 | 851 | 	hostdata->int_cnt++; | 
 | 852 | #endif | 
 | 853 |  | 
 | 854 | /* The IN2000 card has 2 interrupt sources OR'ed onto its IRQ line - the | 
 | 855 |  * WD3393 chip and the 2k fifo (which is actually a dual-port RAM combined | 
 | 856 |  * with a big logic array, so it's a little different than what you might | 
 | 857 |  * expect). As far as I know, there's no reason that BOTH can't be active | 
 | 858 |  * at the same time, but there's a problem: while we can read the 3393 | 
 | 859 |  * to tell if _it_ wants an interrupt, I don't know of a way to ask the | 
 | 860 |  * fifo the same question. The best we can do is check the 3393 and if | 
 | 861 |  * it _isn't_ the source of the interrupt, then we can be pretty sure | 
 | 862 |  * that the fifo is the culprit. | 
 | 863 |  *  UPDATE: I have it on good authority (Bill Earnest) that bit 0 of the | 
 | 864 |  *          IO_FIFO_COUNT register mirrors the fifo interrupt state. I | 
 | 865 |  *          assume that bit clear means interrupt active. As it turns | 
 | 866 |  *          out, the driver really doesn't need to check for this after | 
 | 867 |  *          all, so my remarks above about a 'problem' can safely be | 
 | 868 |  *          ignored. The way the logic is set up, there's no advantage | 
 | 869 |  *          (that I can see) to worrying about it. | 
 | 870 |  * | 
 | 871 |  * It seems that the fifo interrupt signal is negated when we extract | 
 | 872 |  * bytes during read or write bytes during write. | 
 | 873 |  *  - fifo will interrupt when data is moving from it to the 3393, and | 
 | 874 |  *    there are 31 (or less?) bytes left to go. This is sort of short- | 
 | 875 |  *    sighted: what if you don't WANT to do more? In any case, our | 
 | 876 |  *    response is to push more into the fifo - either actual data or | 
 | 877 |  *    dummy bytes if need be. Note that we apparently have to write at | 
 | 878 |  *    least 32 additional bytes to the fifo after an interrupt in order | 
 | 879 |  *    to get it to release the ones it was holding on to - writing fewer | 
 | 880 |  *    than 32 will result in another fifo int. | 
 | 881 |  *  UPDATE: Again, info from Bill Earnest makes this more understandable: | 
 | 882 |  *          32 bytes = two counts of the fifo counter register. He tells | 
 | 883 |  *          me that the fifo interrupt is a non-latching signal derived | 
 | 884 |  *          from a straightforward boolean interpretation of the 7 | 
 | 885 |  *          highest bits of the fifo counter and the fifo-read/fifo-write | 
 | 886 |  *          state. Who'd a thought? | 
 | 887 |  */ | 
 | 888 |  | 
 | 889 | 	write1_io(0, IO_LED_ON); | 
 | 890 | 	asr = READ_AUX_STAT(); | 
 | 891 | 	if (!(asr & ASR_INT)) {	/* no WD33c93 interrupt? */ | 
 | 892 |  | 
 | 893 | /* Ok. This is definitely a FIFO-only interrupt. | 
 | 894 |  * | 
 | 895 |  * If FI_FIFO_READING is set, there are up to 2048 bytes waiting to be read, | 
 | 896 |  * maybe more to come from the SCSI bus. Read as many as we can out of the | 
 | 897 |  * fifo and into memory at the location of SCp.ptr[SCp.have_data_in], and | 
 | 898 |  * update have_data_in afterwards. | 
 | 899 |  * | 
 | 900 |  * If we have FI_FIFO_WRITING, the FIFO has almost run out of bytes to move | 
 | 901 |  * into the WD3393 chip (I think the interrupt happens when there are 31 | 
 | 902 |  * bytes left, but it may be fewer...). The 3393 is still waiting, so we | 
 | 903 |  * shove some more into the fifo, which gets things moving again. If the | 
 | 904 |  * original SCSI command specified more than 2048 bytes, there may still | 
 | 905 |  * be some of that data left: fine - use it (from SCp.ptr[SCp.have_data_in]). | 
 | 906 |  * Don't forget to update have_data_in. If we've already written out the | 
 | 907 |  * entire buffer, feed 32 dummy bytes to the fifo - they're needed to | 
 | 908 |  * push out the remaining real data. | 
 | 909 |  *    (Big thanks to Bill Earnest for getting me out of the mud in here.) | 
 | 910 |  */ | 
 | 911 |  | 
 | 912 | 		cmd = (Scsi_Cmnd *) hostdata->connected;	/* assume we're connected */ | 
 | 913 | 		CHECK_NULL(cmd, "fifo_int") | 
 | 914 |  | 
 | 915 | 		    if (hostdata->fifo == FI_FIFO_READING) { | 
 | 916 |  | 
 | 917 | 			DB(DB_FIFO, printk("{R:%02x} ", read1_io(IO_FIFO_COUNT))) | 
 | 918 |  | 
 | 919 | 			    sp = (unsigned short *) (cmd->SCp.ptr + cmd->SCp.have_data_in); | 
 | 920 | 			i = read1_io(IO_FIFO_COUNT) & 0xfe; | 
 | 921 | 			i <<= 2;	/* # of words waiting in the fifo */ | 
 | 922 | 			f = hostdata->io_base + IO_FIFO; | 
 | 923 |  | 
 | 924 | #ifdef FAST_READ_IO | 
 | 925 |  | 
 | 926 | 			FAST_READ2_IO(); | 
 | 927 | #else | 
 | 928 | 			while (i--) | 
 | 929 | 				*sp++ = read2_io(IO_FIFO); | 
 | 930 |  | 
 | 931 | #endif | 
 | 932 |  | 
 | 933 | 			i = sp - (unsigned short *) (cmd->SCp.ptr + cmd->SCp.have_data_in); | 
 | 934 | 			i <<= 1; | 
 | 935 | 			cmd->SCp.have_data_in += i; | 
 | 936 | 		} | 
 | 937 |  | 
 | 938 | 		else if (hostdata->fifo == FI_FIFO_WRITING) { | 
 | 939 |  | 
 | 940 | 			DB(DB_FIFO, printk("{W:%02x} ", read1_io(IO_FIFO_COUNT))) | 
 | 941 |  | 
 | 942 | /* If all bytes have been written to the fifo, flush out the stragglers. | 
 | 943 |  * Note that while writing 16 dummy words seems arbitrary, we don't | 
 | 944 |  * have another choice that I can see. What we really want is to read | 
 | 945 |  * the 3393 transfer count register (that would tell us how many bytes | 
 | 946 |  * needed flushing), but the TRANSFER_INFO command hasn't completed | 
 | 947 |  * yet (not enough bytes!) and that register won't be accessible. So, | 
 | 948 |  * we use 16 words - a number obtained through trial and error. | 
 | 949 |  *  UPDATE: Bill says this is exactly what Always does, so there. | 
 | 950 |  *          More thanks due him for help in this section. | 
 | 951 |  */ | 
 | 952 | 			    if (cmd->SCp.this_residual == cmd->SCp.have_data_in) { | 
 | 953 | 				i = 16; | 
 | 954 | 				while (i--)	/* write 32 dummy bytes */ | 
 | 955 | 					write2_io(0, IO_FIFO); | 
 | 956 | 			} | 
 | 957 |  | 
 | 958 | /* If there are still bytes left in the SCSI buffer, write as many as we | 
 | 959 |  * can out to the fifo. | 
 | 960 |  */ | 
 | 961 |  | 
 | 962 | 			else { | 
 | 963 | 				sp = (unsigned short *) (cmd->SCp.ptr + cmd->SCp.have_data_in); | 
 | 964 | 				i = cmd->SCp.this_residual - cmd->SCp.have_data_in;	/* bytes yet to go */ | 
 | 965 | 				j = read1_io(IO_FIFO_COUNT) & 0xfe; | 
 | 966 | 				j <<= 2;	/* how many words the fifo has room for */ | 
 | 967 | 				if ((j << 1) > i) | 
 | 968 | 					j = (i >> 1); | 
 | 969 | 				while (j--) | 
 | 970 | 					write2_io(*sp++, IO_FIFO); | 
 | 971 |  | 
 | 972 | 				i = sp - (unsigned short *) (cmd->SCp.ptr + cmd->SCp.have_data_in); | 
 | 973 | 				i <<= 1; | 
 | 974 | 				cmd->SCp.have_data_in += i; | 
 | 975 | 			} | 
 | 976 | 		} | 
 | 977 |  | 
 | 978 | 		else { | 
 | 979 | 			printk("*** Spurious FIFO interrupt ***"); | 
 | 980 | 		} | 
 | 981 |  | 
 | 982 | 		write1_io(0, IO_LED_OFF); | 
 | 983 |  | 
 | 984 | /* release the SMP spin_lock and restore irq state */ | 
 | 985 | 		spin_unlock_irqrestore(instance->host_lock, flags); | 
 | 986 | 		return IRQ_HANDLED; | 
 | 987 | 	} | 
 | 988 |  | 
 | 989 | /* This interrupt was triggered by the WD33c93 chip. The fifo interrupt | 
 | 990 |  * may also be asserted, but we don't bother to check it: we get more | 
 | 991 |  * detailed info from FIFO_READING and FIFO_WRITING (see below). | 
 | 992 |  */ | 
 | 993 |  | 
 | 994 | 	cmd = (Scsi_Cmnd *) hostdata->connected;	/* assume we're connected */ | 
 | 995 | 	sr = read_3393(hostdata, WD_SCSI_STATUS);	/* clear the interrupt */ | 
 | 996 | 	phs = read_3393(hostdata, WD_COMMAND_PHASE); | 
 | 997 |  | 
 | 998 | 	if (!cmd && (sr != CSR_RESEL_AM && sr != CSR_TIMEOUT && sr != CSR_SELECT)) { | 
 | 999 | 		printk("\nNR:wd-intr-1\n"); | 
 | 1000 | 		write1_io(0, IO_LED_OFF); | 
 | 1001 |  | 
 | 1002 | /* release the SMP spin_lock and restore irq state */ | 
 | 1003 | 		spin_unlock_irqrestore(instance->host_lock, flags); | 
 | 1004 | 		return IRQ_HANDLED; | 
 | 1005 | 	} | 
 | 1006 |  | 
 | 1007 | 	DB(DB_INTR, printk("{%02x:%02x-", asr, sr)) | 
 | 1008 |  | 
 | 1009 | /* After starting a FIFO-based transfer, the next _WD3393_ interrupt is | 
 | 1010 |  * guaranteed to be in response to the completion of the transfer. | 
 | 1011 |  * If we were reading, there's probably data in the fifo that needs | 
 | 1012 |  * to be copied into RAM - do that here. Also, we have to update | 
 | 1013 |  * 'this_residual' and 'ptr' based on the contents of the | 
 | 1014 |  * TRANSFER_COUNT register, in case the device decided to do an | 
 | 1015 |  * intermediate disconnect (a device may do this if it has to | 
 | 1016 |  * do a seek,  or just to be nice and let other devices have | 
 | 1017 |  * some bus time during long transfers). | 
 | 1018 |  * After doing whatever is necessary with the fifo, we go on and | 
 | 1019 |  * service the WD3393 interrupt normally. | 
 | 1020 |  */ | 
 | 1021 | 	    if (hostdata->fifo == FI_FIFO_READING) { | 
 | 1022 |  | 
 | 1023 | /* buffer index = start-of-buffer + #-of-bytes-already-read */ | 
 | 1024 |  | 
 | 1025 | 		sp = (unsigned short *) (cmd->SCp.ptr + cmd->SCp.have_data_in); | 
 | 1026 |  | 
 | 1027 | /* bytes remaining in fifo = (total-wanted - #-not-got) - #-already-read */ | 
 | 1028 |  | 
 | 1029 | 		i = (cmd->SCp.this_residual - read_3393_count(hostdata)) - cmd->SCp.have_data_in; | 
 | 1030 | 		i >>= 1;	/* Gulp. We assume this will always be modulo 2 */ | 
 | 1031 | 		f = hostdata->io_base + IO_FIFO; | 
 | 1032 |  | 
 | 1033 | #ifdef FAST_READ_IO | 
 | 1034 |  | 
 | 1035 | 		FAST_READ2_IO(); | 
 | 1036 | #else | 
 | 1037 | 		while (i--) | 
 | 1038 | 			*sp++ = read2_io(IO_FIFO); | 
 | 1039 |  | 
 | 1040 | #endif | 
 | 1041 |  | 
 | 1042 | 		hostdata->fifo = FI_FIFO_UNUSED; | 
 | 1043 | 		length = cmd->SCp.this_residual; | 
 | 1044 | 		cmd->SCp.this_residual = read_3393_count(hostdata); | 
 | 1045 | 		cmd->SCp.ptr += (length - cmd->SCp.this_residual); | 
 | 1046 |  | 
 | 1047 | 		DB(DB_TRANSFER, printk("(%p,%d)", cmd->SCp.ptr, cmd->SCp.this_residual)) | 
 | 1048 |  | 
 | 1049 | 	} | 
 | 1050 |  | 
 | 1051 | 	else if (hostdata->fifo == FI_FIFO_WRITING) { | 
 | 1052 | 		hostdata->fifo = FI_FIFO_UNUSED; | 
 | 1053 | 		length = cmd->SCp.this_residual; | 
 | 1054 | 		cmd->SCp.this_residual = read_3393_count(hostdata); | 
 | 1055 | 		cmd->SCp.ptr += (length - cmd->SCp.this_residual); | 
 | 1056 |  | 
 | 1057 | 		DB(DB_TRANSFER, printk("(%p,%d)", cmd->SCp.ptr, cmd->SCp.this_residual)) | 
 | 1058 |  | 
 | 1059 | 	} | 
 | 1060 |  | 
 | 1061 | /* Respond to the specific WD3393 interrupt - there are quite a few! */ | 
 | 1062 |  | 
 | 1063 | 	switch (sr) { | 
 | 1064 |  | 
 | 1065 | 	case CSR_TIMEOUT: | 
 | 1066 | 		DB(DB_INTR, printk("TIMEOUT")) | 
 | 1067 |  | 
 | 1068 | 		    if (hostdata->state == S_RUNNING_LEVEL2) | 
 | 1069 | 			hostdata->connected = NULL; | 
 | 1070 | 		else { | 
 | 1071 | 			cmd = (Scsi_Cmnd *) hostdata->selecting;	/* get a valid cmd */ | 
 | 1072 | 			CHECK_NULL(cmd, "csr_timeout") | 
 | 1073 | 			    hostdata->selecting = NULL; | 
 | 1074 | 		} | 
 | 1075 |  | 
 | 1076 | 		cmd->result = DID_NO_CONNECT << 16; | 
 | 1077 | 		hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun); | 
 | 1078 | 		hostdata->state = S_UNCONNECTED; | 
 | 1079 | 		cmd->scsi_done(cmd); | 
 | 1080 |  | 
 | 1081 | /* We are not connected to a target - check to see if there | 
 | 1082 |  * are commands waiting to be executed. | 
 | 1083 |  */ | 
 | 1084 |  | 
 | 1085 | 		in2000_execute(instance); | 
 | 1086 | 		break; | 
 | 1087 |  | 
 | 1088 |  | 
 | 1089 | /* Note: this interrupt should not occur in a LEVEL2 command */ | 
 | 1090 |  | 
 | 1091 | 	case CSR_SELECT: | 
 | 1092 | 		DB(DB_INTR, printk("SELECT")) | 
 | 1093 | 		    hostdata->connected = cmd = (Scsi_Cmnd *) hostdata->selecting; | 
 | 1094 | 		CHECK_NULL(cmd, "csr_select") | 
 | 1095 | 		    hostdata->selecting = NULL; | 
 | 1096 |  | 
 | 1097 | 		/* construct an IDENTIFY message with correct disconnect bit */ | 
 | 1098 |  | 
 | 1099 | 		hostdata->outgoing_msg[0] = (0x80 | 0x00 | cmd->device->lun); | 
 | 1100 | 		if (cmd->SCp.phase) | 
 | 1101 | 			hostdata->outgoing_msg[0] |= 0x40; | 
 | 1102 |  | 
 | 1103 | 		if (hostdata->sync_stat[cmd->device->id] == SS_FIRST) { | 
 | 1104 | #ifdef SYNC_DEBUG | 
 | 1105 | 			printk(" sending SDTR "); | 
 | 1106 | #endif | 
 | 1107 |  | 
 | 1108 | 			hostdata->sync_stat[cmd->device->id] = SS_WAITING; | 
 | 1109 |  | 
 | 1110 | 			/* tack on a 2nd message to ask about synchronous transfers */ | 
 | 1111 |  | 
 | 1112 | 			hostdata->outgoing_msg[1] = EXTENDED_MESSAGE; | 
 | 1113 | 			hostdata->outgoing_msg[2] = 3; | 
 | 1114 | 			hostdata->outgoing_msg[3] = EXTENDED_SDTR; | 
 | 1115 | 			hostdata->outgoing_msg[4] = OPTIMUM_SX_PER / 4; | 
 | 1116 | 			hostdata->outgoing_msg[5] = OPTIMUM_SX_OFF; | 
 | 1117 | 			hostdata->outgoing_len = 6; | 
 | 1118 | 		} else | 
 | 1119 | 			hostdata->outgoing_len = 1; | 
 | 1120 |  | 
 | 1121 | 		hostdata->state = S_CONNECTED; | 
 | 1122 | 		break; | 
 | 1123 |  | 
 | 1124 |  | 
 | 1125 | 	case CSR_XFER_DONE | PHS_DATA_IN: | 
 | 1126 | 	case CSR_UNEXP | PHS_DATA_IN: | 
 | 1127 | 	case CSR_SRV_REQ | PHS_DATA_IN: | 
 | 1128 | 		DB(DB_INTR, printk("IN-%d.%d", cmd->SCp.this_residual, cmd->SCp.buffers_residual)) | 
 | 1129 | 		    transfer_bytes(cmd, DATA_IN_DIR); | 
 | 1130 | 		if (hostdata->state != S_RUNNING_LEVEL2) | 
 | 1131 | 			hostdata->state = S_CONNECTED; | 
 | 1132 | 		break; | 
 | 1133 |  | 
 | 1134 |  | 
 | 1135 | 	case CSR_XFER_DONE | PHS_DATA_OUT: | 
 | 1136 | 	case CSR_UNEXP | PHS_DATA_OUT: | 
 | 1137 | 	case CSR_SRV_REQ | PHS_DATA_OUT: | 
 | 1138 | 		DB(DB_INTR, printk("OUT-%d.%d", cmd->SCp.this_residual, cmd->SCp.buffers_residual)) | 
 | 1139 | 		    transfer_bytes(cmd, DATA_OUT_DIR); | 
 | 1140 | 		if (hostdata->state != S_RUNNING_LEVEL2) | 
 | 1141 | 			hostdata->state = S_CONNECTED; | 
 | 1142 | 		break; | 
 | 1143 |  | 
 | 1144 |  | 
 | 1145 | /* Note: this interrupt should not occur in a LEVEL2 command */ | 
 | 1146 |  | 
 | 1147 | 	case CSR_XFER_DONE | PHS_COMMAND: | 
 | 1148 | 	case CSR_UNEXP | PHS_COMMAND: | 
 | 1149 | 	case CSR_SRV_REQ | PHS_COMMAND: | 
 | 1150 | 		DB(DB_INTR, printk("CMND-%02x,%ld", cmd->cmnd[0], cmd->pid)) | 
 | 1151 | 		    transfer_pio(cmd->cmnd, cmd->cmd_len, DATA_OUT_DIR, hostdata); | 
 | 1152 | 		hostdata->state = S_CONNECTED; | 
 | 1153 | 		break; | 
 | 1154 |  | 
 | 1155 |  | 
 | 1156 | 	case CSR_XFER_DONE | PHS_STATUS: | 
 | 1157 | 	case CSR_UNEXP | PHS_STATUS: | 
 | 1158 | 	case CSR_SRV_REQ | PHS_STATUS: | 
 | 1159 | 		DB(DB_INTR, printk("STATUS=")) | 
 | 1160 |  | 
 | 1161 | 		    cmd->SCp.Status = read_1_byte(hostdata); | 
 | 1162 | 		DB(DB_INTR, printk("%02x", cmd->SCp.Status)) | 
 | 1163 | 		    if (hostdata->level2 >= L2_BASIC) { | 
 | 1164 | 			sr = read_3393(hostdata, WD_SCSI_STATUS);	/* clear interrupt */ | 
 | 1165 | 			hostdata->state = S_RUNNING_LEVEL2; | 
 | 1166 | 			write_3393(hostdata, WD_COMMAND_PHASE, 0x50); | 
 | 1167 | 			write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER); | 
 | 1168 | 		} else { | 
 | 1169 | 			hostdata->state = S_CONNECTED; | 
 | 1170 | 		} | 
 | 1171 | 		break; | 
 | 1172 |  | 
 | 1173 |  | 
 | 1174 | 	case CSR_XFER_DONE | PHS_MESS_IN: | 
 | 1175 | 	case CSR_UNEXP | PHS_MESS_IN: | 
 | 1176 | 	case CSR_SRV_REQ | PHS_MESS_IN: | 
 | 1177 | 		DB(DB_INTR, printk("MSG_IN=")) | 
 | 1178 |  | 
 | 1179 | 		    msg = read_1_byte(hostdata); | 
 | 1180 | 		sr = read_3393(hostdata, WD_SCSI_STATUS);	/* clear interrupt */ | 
 | 1181 |  | 
 | 1182 | 		hostdata->incoming_msg[hostdata->incoming_ptr] = msg; | 
 | 1183 | 		if (hostdata->incoming_msg[0] == EXTENDED_MESSAGE) | 
 | 1184 | 			msg = EXTENDED_MESSAGE; | 
 | 1185 | 		else | 
 | 1186 | 			hostdata->incoming_ptr = 0; | 
 | 1187 |  | 
 | 1188 | 		cmd->SCp.Message = msg; | 
 | 1189 | 		switch (msg) { | 
 | 1190 |  | 
 | 1191 | 		case COMMAND_COMPLETE: | 
 | 1192 | 			DB(DB_INTR, printk("CCMP-%ld", cmd->pid)) | 
 | 1193 | 			    write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK); | 
 | 1194 | 			hostdata->state = S_PRE_CMP_DISC; | 
 | 1195 | 			break; | 
 | 1196 |  | 
 | 1197 | 		case SAVE_POINTERS: | 
 | 1198 | 			DB(DB_INTR, printk("SDP")) | 
 | 1199 | 			    write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK); | 
 | 1200 | 			hostdata->state = S_CONNECTED; | 
 | 1201 | 			break; | 
 | 1202 |  | 
 | 1203 | 		case RESTORE_POINTERS: | 
 | 1204 | 			DB(DB_INTR, printk("RDP")) | 
 | 1205 | 			    if (hostdata->level2 >= L2_BASIC) { | 
 | 1206 | 				write_3393(hostdata, WD_COMMAND_PHASE, 0x45); | 
 | 1207 | 				write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER); | 
 | 1208 | 				hostdata->state = S_RUNNING_LEVEL2; | 
 | 1209 | 			} else { | 
 | 1210 | 				write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK); | 
 | 1211 | 				hostdata->state = S_CONNECTED; | 
 | 1212 | 			} | 
 | 1213 | 			break; | 
 | 1214 |  | 
 | 1215 | 		case DISCONNECT: | 
 | 1216 | 			DB(DB_INTR, printk("DIS")) | 
 | 1217 | 			    cmd->device->disconnect = 1; | 
 | 1218 | 			write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK); | 
 | 1219 | 			hostdata->state = S_PRE_TMP_DISC; | 
 | 1220 | 			break; | 
 | 1221 |  | 
 | 1222 | 		case MESSAGE_REJECT: | 
 | 1223 | 			DB(DB_INTR, printk("REJ")) | 
 | 1224 | #ifdef SYNC_DEBUG | 
 | 1225 | 			    printk("-REJ-"); | 
 | 1226 | #endif | 
 | 1227 | 			if (hostdata->sync_stat[cmd->device->id] == SS_WAITING) | 
 | 1228 | 				hostdata->sync_stat[cmd->device->id] = SS_SET; | 
 | 1229 | 			write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK); | 
 | 1230 | 			hostdata->state = S_CONNECTED; | 
 | 1231 | 			break; | 
 | 1232 |  | 
 | 1233 | 		case EXTENDED_MESSAGE: | 
 | 1234 | 			DB(DB_INTR, printk("EXT")) | 
 | 1235 |  | 
 | 1236 | 			    ucp = hostdata->incoming_msg; | 
 | 1237 |  | 
 | 1238 | #ifdef SYNC_DEBUG | 
 | 1239 | 			printk("%02x", ucp[hostdata->incoming_ptr]); | 
 | 1240 | #endif | 
 | 1241 | 			/* Is this the last byte of the extended message? */ | 
 | 1242 |  | 
 | 1243 | 			if ((hostdata->incoming_ptr >= 2) && (hostdata->incoming_ptr == (ucp[1] + 1))) { | 
 | 1244 |  | 
 | 1245 | 				switch (ucp[2]) {	/* what's the EXTENDED code? */ | 
 | 1246 | 				case EXTENDED_SDTR: | 
 | 1247 | 					id = calc_sync_xfer(ucp[3], ucp[4]); | 
 | 1248 | 					if (hostdata->sync_stat[cmd->device->id] != SS_WAITING) { | 
 | 1249 |  | 
 | 1250 | /* A device has sent an unsolicited SDTR message; rather than go | 
 | 1251 |  * through the effort of decoding it and then figuring out what | 
 | 1252 |  * our reply should be, we're just gonna say that we have a | 
 | 1253 |  * synchronous fifo depth of 0. This will result in asynchronous | 
 | 1254 |  * transfers - not ideal but so much easier. | 
 | 1255 |  * Actually, this is OK because it assures us that if we don't | 
 | 1256 |  * specifically ask for sync transfers, we won't do any. | 
 | 1257 |  */ | 
 | 1258 |  | 
 | 1259 | 						write_3393_cmd(hostdata, WD_CMD_ASSERT_ATN);	/* want MESS_OUT */ | 
 | 1260 | 						hostdata->outgoing_msg[0] = EXTENDED_MESSAGE; | 
 | 1261 | 						hostdata->outgoing_msg[1] = 3; | 
 | 1262 | 						hostdata->outgoing_msg[2] = EXTENDED_SDTR; | 
 | 1263 | 						hostdata->outgoing_msg[3] = hostdata->default_sx_per / 4; | 
 | 1264 | 						hostdata->outgoing_msg[4] = 0; | 
 | 1265 | 						hostdata->outgoing_len = 5; | 
 | 1266 | 						hostdata->sync_xfer[cmd->device->id] = calc_sync_xfer(hostdata->default_sx_per / 4, 0); | 
 | 1267 | 					} else { | 
 | 1268 | 						hostdata->sync_xfer[cmd->device->id] = id; | 
 | 1269 | 					} | 
 | 1270 | #ifdef SYNC_DEBUG | 
 | 1271 | 					printk("sync_xfer=%02x", hostdata->sync_xfer[cmd->device->id]); | 
 | 1272 | #endif | 
 | 1273 | 					hostdata->sync_stat[cmd->device->id] = SS_SET; | 
 | 1274 | 					write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK); | 
 | 1275 | 					hostdata->state = S_CONNECTED; | 
 | 1276 | 					break; | 
 | 1277 | 				case EXTENDED_WDTR: | 
 | 1278 | 					write_3393_cmd(hostdata, WD_CMD_ASSERT_ATN);	/* want MESS_OUT */ | 
 | 1279 | 					printk("sending WDTR "); | 
 | 1280 | 					hostdata->outgoing_msg[0] = EXTENDED_MESSAGE; | 
 | 1281 | 					hostdata->outgoing_msg[1] = 2; | 
 | 1282 | 					hostdata->outgoing_msg[2] = EXTENDED_WDTR; | 
 | 1283 | 					hostdata->outgoing_msg[3] = 0;	/* 8 bit transfer width */ | 
 | 1284 | 					hostdata->outgoing_len = 4; | 
 | 1285 | 					write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK); | 
 | 1286 | 					hostdata->state = S_CONNECTED; | 
 | 1287 | 					break; | 
 | 1288 | 				default: | 
 | 1289 | 					write_3393_cmd(hostdata, WD_CMD_ASSERT_ATN);	/* want MESS_OUT */ | 
 | 1290 | 					printk("Rejecting Unknown Extended Message(%02x). ", ucp[2]); | 
 | 1291 | 					hostdata->outgoing_msg[0] = MESSAGE_REJECT; | 
 | 1292 | 					hostdata->outgoing_len = 1; | 
 | 1293 | 					write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK); | 
 | 1294 | 					hostdata->state = S_CONNECTED; | 
 | 1295 | 					break; | 
 | 1296 | 				} | 
 | 1297 | 				hostdata->incoming_ptr = 0; | 
 | 1298 | 			} | 
 | 1299 |  | 
 | 1300 | 			/* We need to read more MESS_IN bytes for the extended message */ | 
 | 1301 |  | 
 | 1302 | 			else { | 
 | 1303 | 				hostdata->incoming_ptr++; | 
 | 1304 | 				write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK); | 
 | 1305 | 				hostdata->state = S_CONNECTED; | 
 | 1306 | 			} | 
 | 1307 | 			break; | 
 | 1308 |  | 
 | 1309 | 		default: | 
 | 1310 | 			printk("Rejecting Unknown Message(%02x) ", msg); | 
 | 1311 | 			write_3393_cmd(hostdata, WD_CMD_ASSERT_ATN);	/* want MESS_OUT */ | 
 | 1312 | 			hostdata->outgoing_msg[0] = MESSAGE_REJECT; | 
 | 1313 | 			hostdata->outgoing_len = 1; | 
 | 1314 | 			write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK); | 
 | 1315 | 			hostdata->state = S_CONNECTED; | 
 | 1316 | 		} | 
 | 1317 | 		break; | 
 | 1318 |  | 
 | 1319 |  | 
 | 1320 | /* Note: this interrupt will occur only after a LEVEL2 command */ | 
 | 1321 |  | 
 | 1322 | 	case CSR_SEL_XFER_DONE: | 
 | 1323 |  | 
 | 1324 | /* Make sure that reselection is enabled at this point - it may | 
 | 1325 |  * have been turned off for the command that just completed. | 
 | 1326 |  */ | 
 | 1327 |  | 
 | 1328 | 		write_3393(hostdata, WD_SOURCE_ID, SRCID_ER); | 
 | 1329 | 		if (phs == 0x60) { | 
 | 1330 | 			DB(DB_INTR, printk("SX-DONE-%ld", cmd->pid)) | 
 | 1331 | 			    cmd->SCp.Message = COMMAND_COMPLETE; | 
 | 1332 | 			lun = read_3393(hostdata, WD_TARGET_LUN); | 
 | 1333 | 			DB(DB_INTR, printk(":%d.%d", cmd->SCp.Status, lun)) | 
 | 1334 | 			    hostdata->connected = NULL; | 
 | 1335 | 			hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun); | 
 | 1336 | 			hostdata->state = S_UNCONNECTED; | 
 | 1337 | 			if (cmd->SCp.Status == ILLEGAL_STATUS_BYTE) | 
 | 1338 | 				cmd->SCp.Status = lun; | 
 | 1339 | 			if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD) | 
 | 1340 | 				cmd->result = (cmd->result & 0x00ffff) | (DID_ERROR << 16); | 
 | 1341 | 			else | 
 | 1342 | 				cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8); | 
 | 1343 | 			cmd->scsi_done(cmd); | 
 | 1344 |  | 
 | 1345 | /* We are no longer connected to a target - check to see if | 
 | 1346 |  * there are commands waiting to be executed. | 
 | 1347 |  */ | 
 | 1348 |  | 
 | 1349 | 			in2000_execute(instance); | 
 | 1350 | 		} else { | 
 | 1351 | 			printk("%02x:%02x:%02x-%ld: Unknown SEL_XFER_DONE phase!!---", asr, sr, phs, cmd->pid); | 
 | 1352 | 		} | 
 | 1353 | 		break; | 
 | 1354 |  | 
 | 1355 |  | 
 | 1356 | /* Note: this interrupt will occur only after a LEVEL2 command */ | 
 | 1357 |  | 
 | 1358 | 	case CSR_SDP: | 
 | 1359 | 		DB(DB_INTR, printk("SDP")) | 
 | 1360 | 		    hostdata->state = S_RUNNING_LEVEL2; | 
 | 1361 | 		write_3393(hostdata, WD_COMMAND_PHASE, 0x41); | 
 | 1362 | 		write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER); | 
 | 1363 | 		break; | 
 | 1364 |  | 
 | 1365 |  | 
 | 1366 | 	case CSR_XFER_DONE | PHS_MESS_OUT: | 
 | 1367 | 	case CSR_UNEXP | PHS_MESS_OUT: | 
 | 1368 | 	case CSR_SRV_REQ | PHS_MESS_OUT: | 
 | 1369 | 		DB(DB_INTR, printk("MSG_OUT=")) | 
 | 1370 |  | 
 | 1371 | /* To get here, we've probably requested MESSAGE_OUT and have | 
 | 1372 |  * already put the correct bytes in outgoing_msg[] and filled | 
 | 1373 |  * in outgoing_len. We simply send them out to the SCSI bus. | 
 | 1374 |  * Sometimes we get MESSAGE_OUT phase when we're not expecting | 
 | 1375 |  * it - like when our SDTR message is rejected by a target. Some | 
 | 1376 |  * targets send the REJECT before receiving all of the extended | 
 | 1377 |  * message, and then seem to go back to MESSAGE_OUT for a byte | 
 | 1378 |  * or two. Not sure why, or if I'm doing something wrong to | 
 | 1379 |  * cause this to happen. Regardless, it seems that sending | 
 | 1380 |  * NOP messages in these situations results in no harm and | 
 | 1381 |  * makes everyone happy. | 
 | 1382 |  */ | 
 | 1383 | 		    if (hostdata->outgoing_len == 0) { | 
 | 1384 | 			hostdata->outgoing_len = 1; | 
 | 1385 | 			hostdata->outgoing_msg[0] = NOP; | 
 | 1386 | 		} | 
 | 1387 | 		transfer_pio(hostdata->outgoing_msg, hostdata->outgoing_len, DATA_OUT_DIR, hostdata); | 
 | 1388 | 		DB(DB_INTR, printk("%02x", hostdata->outgoing_msg[0])) | 
 | 1389 | 		    hostdata->outgoing_len = 0; | 
 | 1390 | 		hostdata->state = S_CONNECTED; | 
 | 1391 | 		break; | 
 | 1392 |  | 
 | 1393 |  | 
 | 1394 | 	case CSR_UNEXP_DISC: | 
 | 1395 |  | 
 | 1396 | /* I think I've seen this after a request-sense that was in response | 
 | 1397 |  * to an error condition, but not sure. We certainly need to do | 
 | 1398 |  * something when we get this interrupt - the question is 'what?'. | 
 | 1399 |  * Let's think positively, and assume some command has finished | 
 | 1400 |  * in a legal manner (like a command that provokes a request-sense), | 
 | 1401 |  * so we treat it as a normal command-complete-disconnect. | 
 | 1402 |  */ | 
 | 1403 |  | 
 | 1404 |  | 
 | 1405 | /* Make sure that reselection is enabled at this point - it may | 
 | 1406 |  * have been turned off for the command that just completed. | 
 | 1407 |  */ | 
 | 1408 |  | 
 | 1409 | 		write_3393(hostdata, WD_SOURCE_ID, SRCID_ER); | 
 | 1410 | 		if (cmd == NULL) { | 
 | 1411 | 			printk(" - Already disconnected! "); | 
 | 1412 | 			hostdata->state = S_UNCONNECTED; | 
 | 1413 |  | 
 | 1414 | /* release the SMP spin_lock and restore irq state */ | 
 | 1415 | 			spin_unlock_irqrestore(instance->host_lock, flags); | 
 | 1416 | 			return IRQ_HANDLED; | 
 | 1417 | 		} | 
 | 1418 | 		DB(DB_INTR, printk("UNEXP_DISC-%ld", cmd->pid)) | 
 | 1419 | 		    hostdata->connected = NULL; | 
 | 1420 | 		hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun); | 
 | 1421 | 		hostdata->state = S_UNCONNECTED; | 
 | 1422 | 		if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD) | 
 | 1423 | 			cmd->result = (cmd->result & 0x00ffff) | (DID_ERROR << 16); | 
 | 1424 | 		else | 
 | 1425 | 			cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8); | 
 | 1426 | 		cmd->scsi_done(cmd); | 
 | 1427 |  | 
 | 1428 | /* We are no longer connected to a target - check to see if | 
 | 1429 |  * there are commands waiting to be executed. | 
 | 1430 |  */ | 
 | 1431 |  | 
 | 1432 | 		in2000_execute(instance); | 
 | 1433 | 		break; | 
 | 1434 |  | 
 | 1435 |  | 
 | 1436 | 	case CSR_DISC: | 
 | 1437 |  | 
 | 1438 | /* Make sure that reselection is enabled at this point - it may | 
 | 1439 |  * have been turned off for the command that just completed. | 
 | 1440 |  */ | 
 | 1441 |  | 
 | 1442 | 		write_3393(hostdata, WD_SOURCE_ID, SRCID_ER); | 
 | 1443 | 		DB(DB_INTR, printk("DISC-%ld", cmd->pid)) | 
 | 1444 | 		    if (cmd == NULL) { | 
 | 1445 | 			printk(" - Already disconnected! "); | 
 | 1446 | 			hostdata->state = S_UNCONNECTED; | 
 | 1447 | 		} | 
 | 1448 | 		switch (hostdata->state) { | 
 | 1449 | 		case S_PRE_CMP_DISC: | 
 | 1450 | 			hostdata->connected = NULL; | 
 | 1451 | 			hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun); | 
 | 1452 | 			hostdata->state = S_UNCONNECTED; | 
 | 1453 | 			DB(DB_INTR, printk(":%d", cmd->SCp.Status)) | 
 | 1454 | 			    if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD) | 
 | 1455 | 				cmd->result = (cmd->result & 0x00ffff) | (DID_ERROR << 16); | 
 | 1456 | 			else | 
 | 1457 | 				cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8); | 
 | 1458 | 			cmd->scsi_done(cmd); | 
 | 1459 | 			break; | 
 | 1460 | 		case S_PRE_TMP_DISC: | 
 | 1461 | 		case S_RUNNING_LEVEL2: | 
 | 1462 | 			cmd->host_scribble = (uchar *) hostdata->disconnected_Q; | 
 | 1463 | 			hostdata->disconnected_Q = cmd; | 
 | 1464 | 			hostdata->connected = NULL; | 
 | 1465 | 			hostdata->state = S_UNCONNECTED; | 
 | 1466 |  | 
 | 1467 | #ifdef PROC_STATISTICS | 
 | 1468 | 			hostdata->disc_done_cnt[cmd->device->id]++; | 
 | 1469 | #endif | 
 | 1470 |  | 
 | 1471 | 			break; | 
 | 1472 | 		default: | 
 | 1473 | 			printk("*** Unexpected DISCONNECT interrupt! ***"); | 
 | 1474 | 			hostdata->state = S_UNCONNECTED; | 
 | 1475 | 		} | 
 | 1476 |  | 
 | 1477 | /* We are no longer connected to a target - check to see if | 
 | 1478 |  * there are commands waiting to be executed. | 
 | 1479 |  */ | 
 | 1480 |  | 
 | 1481 | 		in2000_execute(instance); | 
 | 1482 | 		break; | 
 | 1483 |  | 
 | 1484 |  | 
 | 1485 | 	case CSR_RESEL_AM: | 
 | 1486 | 		DB(DB_INTR, printk("RESEL")) | 
 | 1487 |  | 
 | 1488 | 		    /* First we have to make sure this reselection didn't */ | 
 | 1489 | 		    /* happen during Arbitration/Selection of some other device. */ | 
 | 1490 | 		    /* If yes, put losing command back on top of input_Q. */ | 
 | 1491 | 		    if (hostdata->level2 <= L2_NONE) { | 
 | 1492 |  | 
 | 1493 | 			if (hostdata->selecting) { | 
 | 1494 | 				cmd = (Scsi_Cmnd *) hostdata->selecting; | 
 | 1495 | 				hostdata->selecting = NULL; | 
 | 1496 | 				hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun); | 
 | 1497 | 				cmd->host_scribble = (uchar *) hostdata->input_Q; | 
 | 1498 | 				hostdata->input_Q = cmd; | 
 | 1499 | 			} | 
 | 1500 | 		} | 
 | 1501 |  | 
 | 1502 | 		else { | 
 | 1503 |  | 
 | 1504 | 			if (cmd) { | 
 | 1505 | 				if (phs == 0x00) { | 
 | 1506 | 					hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun); | 
 | 1507 | 					cmd->host_scribble = (uchar *) hostdata->input_Q; | 
 | 1508 | 					hostdata->input_Q = cmd; | 
 | 1509 | 				} else { | 
 | 1510 | 					printk("---%02x:%02x:%02x-TROUBLE: Intrusive ReSelect!---", asr, sr, phs); | 
 | 1511 | 					while (1) | 
 | 1512 | 						printk("\r"); | 
 | 1513 | 				} | 
 | 1514 | 			} | 
 | 1515 |  | 
 | 1516 | 		} | 
 | 1517 |  | 
 | 1518 | 		/* OK - find out which device reselected us. */ | 
 | 1519 |  | 
 | 1520 | 		id = read_3393(hostdata, WD_SOURCE_ID); | 
 | 1521 | 		id &= SRCID_MASK; | 
 | 1522 |  | 
 | 1523 | 		/* and extract the lun from the ID message. (Note that we don't | 
 | 1524 | 		 * bother to check for a valid message here - I guess this is | 
 | 1525 | 		 * not the right way to go, but....) | 
 | 1526 | 		 */ | 
 | 1527 |  | 
 | 1528 | 		lun = read_3393(hostdata, WD_DATA); | 
 | 1529 | 		if (hostdata->level2 < L2_RESELECT) | 
 | 1530 | 			write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK); | 
 | 1531 | 		lun &= 7; | 
 | 1532 |  | 
 | 1533 | 		/* Now we look for the command that's reconnecting. */ | 
 | 1534 |  | 
 | 1535 | 		cmd = (Scsi_Cmnd *) hostdata->disconnected_Q; | 
 | 1536 | 		patch = NULL; | 
 | 1537 | 		while (cmd) { | 
 | 1538 | 			if (id == cmd->device->id && lun == cmd->device->lun) | 
 | 1539 | 				break; | 
 | 1540 | 			patch = cmd; | 
 | 1541 | 			cmd = (Scsi_Cmnd *) cmd->host_scribble; | 
 | 1542 | 		} | 
 | 1543 |  | 
 | 1544 | 		/* Hmm. Couldn't find a valid command.... What to do? */ | 
 | 1545 |  | 
 | 1546 | 		if (!cmd) { | 
 | 1547 | 			printk("---TROUBLE: target %d.%d not in disconnect queue---", id, lun); | 
 | 1548 | 			break; | 
 | 1549 | 		} | 
 | 1550 |  | 
 | 1551 | 		/* Ok, found the command - now start it up again. */ | 
 | 1552 |  | 
 | 1553 | 		if (patch) | 
 | 1554 | 			patch->host_scribble = cmd->host_scribble; | 
 | 1555 | 		else | 
 | 1556 | 			hostdata->disconnected_Q = (Scsi_Cmnd *) cmd->host_scribble; | 
 | 1557 | 		hostdata->connected = cmd; | 
 | 1558 |  | 
 | 1559 | 		/* We don't need to worry about 'initialize_SCp()' or 'hostdata->busy[]' | 
 | 1560 | 		 * because these things are preserved over a disconnect. | 
 | 1561 | 		 * But we DO need to fix the DPD bit so it's correct for this command. | 
 | 1562 | 		 */ | 
 | 1563 |  | 
 | 1564 | 		if (is_dir_out(cmd)) | 
 | 1565 | 			write_3393(hostdata, WD_DESTINATION_ID, cmd->device->id); | 
 | 1566 | 		else | 
 | 1567 | 			write_3393(hostdata, WD_DESTINATION_ID, cmd->device->id | DSTID_DPD); | 
 | 1568 | 		if (hostdata->level2 >= L2_RESELECT) { | 
 | 1569 | 			write_3393_count(hostdata, 0);	/* we want a DATA_PHASE interrupt */ | 
 | 1570 | 			write_3393(hostdata, WD_COMMAND_PHASE, 0x45); | 
 | 1571 | 			write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER); | 
 | 1572 | 			hostdata->state = S_RUNNING_LEVEL2; | 
 | 1573 | 		} else | 
 | 1574 | 			hostdata->state = S_CONNECTED; | 
 | 1575 |  | 
 | 1576 | 		DB(DB_INTR, printk("-%ld", cmd->pid)) | 
 | 1577 | 		    break; | 
 | 1578 |  | 
 | 1579 | 	default: | 
 | 1580 | 		printk("--UNKNOWN INTERRUPT:%02x:%02x:%02x--", asr, sr, phs); | 
 | 1581 | 	} | 
 | 1582 |  | 
 | 1583 | 	write1_io(0, IO_LED_OFF); | 
 | 1584 |  | 
 | 1585 | 	DB(DB_INTR, printk("} ")) | 
 | 1586 |  | 
 | 1587 | /* release the SMP spin_lock and restore irq state */ | 
 | 1588 | 	    spin_unlock_irqrestore(instance->host_lock, flags); | 
 | 1589 | 	return IRQ_HANDLED; | 
 | 1590 | } | 
 | 1591 |  | 
 | 1592 |  | 
 | 1593 |  | 
 | 1594 | #define RESET_CARD         0 | 
 | 1595 | #define RESET_CARD_AND_BUS 1 | 
 | 1596 | #define B_FLAG 0x80 | 
 | 1597 |  | 
 | 1598 | /* | 
 | 1599 |  *	Caller must hold instance lock! | 
 | 1600 |  */ | 
 | 1601 |  | 
 | 1602 | static int reset_hardware(struct Scsi_Host *instance, int type) | 
 | 1603 | { | 
 | 1604 | 	struct IN2000_hostdata *hostdata; | 
 | 1605 | 	int qt, x; | 
 | 1606 |  | 
 | 1607 | 	hostdata = (struct IN2000_hostdata *) instance->hostdata; | 
 | 1608 |  | 
 | 1609 | 	write1_io(0, IO_LED_ON); | 
 | 1610 | 	if (type == RESET_CARD_AND_BUS) { | 
 | 1611 | 		write1_io(0, IO_CARD_RESET); | 
 | 1612 | 		x = read1_io(IO_HARDWARE); | 
 | 1613 | 	} | 
 | 1614 | 	x = read_3393(hostdata, WD_SCSI_STATUS);	/* clear any WD intrpt */ | 
 | 1615 | 	write_3393(hostdata, WD_OWN_ID, instance->this_id | OWNID_EAF | OWNID_RAF | OWNID_FS_8); | 
 | 1616 | 	write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED); | 
 | 1617 | 	write_3393(hostdata, WD_SYNCHRONOUS_TRANSFER, calc_sync_xfer(hostdata->default_sx_per / 4, DEFAULT_SX_OFF)); | 
 | 1618 |  | 
 | 1619 | 	write1_io(0, IO_FIFO_WRITE);	/* clear fifo counter */ | 
 | 1620 | 	write1_io(0, IO_FIFO_READ);	/* start fifo out in read mode */ | 
 | 1621 | 	write_3393(hostdata, WD_COMMAND, WD_CMD_RESET); | 
 | 1622 | 	/* FIXME: timeout ?? */ | 
 | 1623 | 	while (!(READ_AUX_STAT() & ASR_INT)) | 
 | 1624 | 		cpu_relax();	/* wait for RESET to complete */ | 
 | 1625 |  | 
 | 1626 | 	x = read_3393(hostdata, WD_SCSI_STATUS);	/* clear interrupt */ | 
 | 1627 |  | 
 | 1628 | 	write_3393(hostdata, WD_QUEUE_TAG, 0xa5);	/* any random number */ | 
 | 1629 | 	qt = read_3393(hostdata, WD_QUEUE_TAG); | 
 | 1630 | 	if (qt == 0xa5) { | 
 | 1631 | 		x |= B_FLAG; | 
 | 1632 | 		write_3393(hostdata, WD_QUEUE_TAG, 0); | 
 | 1633 | 	} | 
 | 1634 | 	write_3393(hostdata, WD_TIMEOUT_PERIOD, TIMEOUT_PERIOD_VALUE); | 
 | 1635 | 	write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED); | 
 | 1636 | 	write1_io(0, IO_LED_OFF); | 
 | 1637 | 	return x; | 
 | 1638 | } | 
 | 1639 |  | 
 | 1640 |  | 
 | 1641 |  | 
 | 1642 | static int in2000_bus_reset(Scsi_Cmnd * cmd) | 
 | 1643 | { | 
 | 1644 | 	struct Scsi_Host *instance; | 
 | 1645 | 	struct IN2000_hostdata *hostdata; | 
 | 1646 | 	int x; | 
 | 1647 |  | 
 | 1648 | 	instance = cmd->device->host; | 
 | 1649 | 	hostdata = (struct IN2000_hostdata *) instance->hostdata; | 
 | 1650 |  | 
 | 1651 | 	printk(KERN_WARNING "scsi%d: Reset. ", instance->host_no); | 
 | 1652 |  | 
 | 1653 | 	/* do scsi-reset here */ | 
 | 1654 |  | 
 | 1655 | 	reset_hardware(instance, RESET_CARD_AND_BUS); | 
 | 1656 | 	for (x = 0; x < 8; x++) { | 
 | 1657 | 		hostdata->busy[x] = 0; | 
 | 1658 | 		hostdata->sync_xfer[x] = calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF); | 
 | 1659 | 		hostdata->sync_stat[x] = SS_UNSET;	/* using default sync values */ | 
 | 1660 | 	} | 
 | 1661 | 	hostdata->input_Q = NULL; | 
 | 1662 | 	hostdata->selecting = NULL; | 
 | 1663 | 	hostdata->connected = NULL; | 
 | 1664 | 	hostdata->disconnected_Q = NULL; | 
 | 1665 | 	hostdata->state = S_UNCONNECTED; | 
 | 1666 | 	hostdata->fifo = FI_FIFO_UNUSED; | 
 | 1667 | 	hostdata->incoming_ptr = 0; | 
 | 1668 | 	hostdata->outgoing_len = 0; | 
 | 1669 |  | 
 | 1670 | 	cmd->result = DID_RESET << 16; | 
 | 1671 | 	return SUCCESS; | 
 | 1672 | } | 
 | 1673 |  | 
 | 1674 | static int in2000_host_reset(Scsi_Cmnd * cmd) | 
 | 1675 | { | 
 | 1676 | 	return FAILED; | 
 | 1677 | } | 
 | 1678 |  | 
 | 1679 | static int in2000_device_reset(Scsi_Cmnd * cmd) | 
 | 1680 | { | 
 | 1681 | 	return FAILED; | 
 | 1682 | } | 
 | 1683 |  | 
 | 1684 |  | 
 | 1685 | static int in2000_abort(Scsi_Cmnd * cmd) | 
 | 1686 | { | 
 | 1687 | 	struct Scsi_Host *instance; | 
 | 1688 | 	struct IN2000_hostdata *hostdata; | 
 | 1689 | 	Scsi_Cmnd *tmp, *prev; | 
 | 1690 | 	uchar sr, asr; | 
 | 1691 | 	unsigned long timeout; | 
 | 1692 |  | 
 | 1693 | 	instance = cmd->device->host; | 
 | 1694 | 	hostdata = (struct IN2000_hostdata *) instance->hostdata; | 
 | 1695 |  | 
 | 1696 | 	printk(KERN_DEBUG "scsi%d: Abort-", instance->host_no); | 
 | 1697 | 	printk("(asr=%02x,count=%ld,resid=%d,buf_resid=%d,have_data=%d,FC=%02x)- ", READ_AUX_STAT(), read_3393_count(hostdata), cmd->SCp.this_residual, cmd->SCp.buffers_residual, cmd->SCp.have_data_in, read1_io(IO_FIFO_COUNT)); | 
 | 1698 |  | 
 | 1699 | /* | 
 | 1700 |  * Case 1 : If the command hasn't been issued yet, we simply remove it | 
 | 1701 |  *     from the inout_Q. | 
 | 1702 |  */ | 
 | 1703 |  | 
 | 1704 | 	tmp = (Scsi_Cmnd *) hostdata->input_Q; | 
 | 1705 | 	prev = NULL; | 
 | 1706 | 	while (tmp) { | 
 | 1707 | 		if (tmp == cmd) { | 
 | 1708 | 			if (prev) | 
 | 1709 | 				prev->host_scribble = cmd->host_scribble; | 
 | 1710 | 			cmd->host_scribble = NULL; | 
 | 1711 | 			cmd->result = DID_ABORT << 16; | 
 | 1712 | 			printk(KERN_WARNING "scsi%d: Abort - removing command %ld from input_Q. ", instance->host_no, cmd->pid); | 
 | 1713 | 			cmd->scsi_done(cmd); | 
 | 1714 | 			return SUCCESS; | 
 | 1715 | 		} | 
 | 1716 | 		prev = tmp; | 
 | 1717 | 		tmp = (Scsi_Cmnd *) tmp->host_scribble; | 
 | 1718 | 	} | 
 | 1719 |  | 
 | 1720 | /* | 
 | 1721 |  * Case 2 : If the command is connected, we're going to fail the abort | 
 | 1722 |  *     and let the high level SCSI driver retry at a later time or | 
 | 1723 |  *     issue a reset. | 
 | 1724 |  * | 
 | 1725 |  *     Timeouts, and therefore aborted commands, will be highly unlikely | 
 | 1726 |  *     and handling them cleanly in this situation would make the common | 
 | 1727 |  *     case of noresets less efficient, and would pollute our code.  So, | 
 | 1728 |  *     we fail. | 
 | 1729 |  */ | 
 | 1730 |  | 
 | 1731 | 	if (hostdata->connected == cmd) { | 
 | 1732 |  | 
 | 1733 | 		printk(KERN_WARNING "scsi%d: Aborting connected command %ld - ", instance->host_no, cmd->pid); | 
 | 1734 |  | 
 | 1735 | 		printk("sending wd33c93 ABORT command - "); | 
 | 1736 | 		write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED); | 
 | 1737 | 		write_3393_cmd(hostdata, WD_CMD_ABORT); | 
 | 1738 |  | 
 | 1739 | /* Now we have to attempt to flush out the FIFO... */ | 
 | 1740 |  | 
 | 1741 | 		printk("flushing fifo - "); | 
 | 1742 | 		timeout = 1000000; | 
 | 1743 | 		do { | 
 | 1744 | 			asr = READ_AUX_STAT(); | 
 | 1745 | 			if (asr & ASR_DBR) | 
 | 1746 | 				read_3393(hostdata, WD_DATA); | 
 | 1747 | 		} while (!(asr & ASR_INT) && timeout-- > 0); | 
 | 1748 | 		sr = read_3393(hostdata, WD_SCSI_STATUS); | 
 | 1749 | 		printk("asr=%02x, sr=%02x, %ld bytes un-transferred (timeout=%ld) - ", asr, sr, read_3393_count(hostdata), timeout); | 
 | 1750 |  | 
 | 1751 | 		/* | 
 | 1752 | 		 * Abort command processed. | 
 | 1753 | 		 * Still connected. | 
 | 1754 | 		 * We must disconnect. | 
 | 1755 | 		 */ | 
 | 1756 |  | 
 | 1757 | 		printk("sending wd33c93 DISCONNECT command - "); | 
 | 1758 | 		write_3393_cmd(hostdata, WD_CMD_DISCONNECT); | 
 | 1759 |  | 
 | 1760 | 		timeout = 1000000; | 
 | 1761 | 		asr = READ_AUX_STAT(); | 
 | 1762 | 		while ((asr & ASR_CIP) && timeout-- > 0) | 
 | 1763 | 			asr = READ_AUX_STAT(); | 
 | 1764 | 		sr = read_3393(hostdata, WD_SCSI_STATUS); | 
 | 1765 | 		printk("asr=%02x, sr=%02x.", asr, sr); | 
 | 1766 |  | 
 | 1767 | 		hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun); | 
 | 1768 | 		hostdata->connected = NULL; | 
 | 1769 | 		hostdata->state = S_UNCONNECTED; | 
 | 1770 | 		cmd->result = DID_ABORT << 16; | 
 | 1771 | 		cmd->scsi_done(cmd); | 
 | 1772 |  | 
 | 1773 | 		in2000_execute(instance); | 
 | 1774 |  | 
 | 1775 | 		return SUCCESS; | 
 | 1776 | 	} | 
 | 1777 |  | 
 | 1778 | /* | 
 | 1779 |  * Case 3: If the command is currently disconnected from the bus, | 
 | 1780 |  * we're not going to expend much effort here: Let's just return | 
 | 1781 |  * an ABORT_SNOOZE and hope for the best... | 
 | 1782 |  */ | 
 | 1783 |  | 
 | 1784 | 	for (tmp = (Scsi_Cmnd *) hostdata->disconnected_Q; tmp; tmp = (Scsi_Cmnd *) tmp->host_scribble) | 
 | 1785 | 		if (cmd == tmp) { | 
 | 1786 | 			printk(KERN_DEBUG "scsi%d: unable to abort disconnected command.\n", instance->host_no); | 
 | 1787 | 			return FAILED; | 
 | 1788 | 		} | 
 | 1789 |  | 
 | 1790 | /* | 
 | 1791 |  * Case 4 : If we reached this point, the command was not found in any of | 
 | 1792 |  *     the queues. | 
 | 1793 |  * | 
 | 1794 |  * We probably reached this point because of an unlikely race condition | 
 | 1795 |  * between the command completing successfully and the abortion code, | 
 | 1796 |  * so we won't panic, but we will notify the user in case something really | 
 | 1797 |  * broke. | 
 | 1798 |  */ | 
 | 1799 |  | 
 | 1800 | 	in2000_execute(instance); | 
 | 1801 |  | 
 | 1802 | 	printk("scsi%d: warning : SCSI command probably completed successfully" "         before abortion. ", instance->host_no); | 
 | 1803 | 	return SUCCESS; | 
 | 1804 | } | 
 | 1805 |  | 
 | 1806 |  | 
 | 1807 |  | 
 | 1808 | #define MAX_IN2000_HOSTS 3 | 
 | 1809 | #define MAX_SETUP_ARGS (sizeof(setup_args) / sizeof(char *)) | 
 | 1810 | #define SETUP_BUFFER_SIZE 200 | 
 | 1811 | static char setup_buffer[SETUP_BUFFER_SIZE]; | 
 | 1812 | static char setup_used[MAX_SETUP_ARGS]; | 
 | 1813 | static int done_setup = 0; | 
 | 1814 |  | 
 | 1815 | static void __init in2000_setup(char *str, int *ints) | 
 | 1816 | { | 
 | 1817 | 	int i; | 
 | 1818 | 	char *p1, *p2; | 
 | 1819 |  | 
 | 1820 | 	strlcpy(setup_buffer, str, SETUP_BUFFER_SIZE); | 
 | 1821 | 	p1 = setup_buffer; | 
 | 1822 | 	i = 0; | 
 | 1823 | 	while (*p1 && (i < MAX_SETUP_ARGS)) { | 
 | 1824 | 		p2 = strchr(p1, ','); | 
 | 1825 | 		if (p2) { | 
 | 1826 | 			*p2 = '\0'; | 
 | 1827 | 			if (p1 != p2) | 
 | 1828 | 				setup_args[i] = p1; | 
 | 1829 | 			p1 = p2 + 1; | 
 | 1830 | 			i++; | 
 | 1831 | 		} else { | 
 | 1832 | 			setup_args[i] = p1; | 
 | 1833 | 			break; | 
 | 1834 | 		} | 
 | 1835 | 	} | 
 | 1836 | 	for (i = 0; i < MAX_SETUP_ARGS; i++) | 
 | 1837 | 		setup_used[i] = 0; | 
 | 1838 | 	done_setup = 1; | 
 | 1839 | } | 
 | 1840 |  | 
 | 1841 |  | 
 | 1842 | /* check_setup_args() returns index if key found, 0 if not | 
 | 1843 |  */ | 
 | 1844 |  | 
 | 1845 | static int __init check_setup_args(char *key, int *val, char *buf) | 
 | 1846 | { | 
 | 1847 | 	int x; | 
 | 1848 | 	char *cp; | 
 | 1849 |  | 
 | 1850 | 	for (x = 0; x < MAX_SETUP_ARGS; x++) { | 
 | 1851 | 		if (setup_used[x]) | 
 | 1852 | 			continue; | 
 | 1853 | 		if (!strncmp(setup_args[x], key, strlen(key))) | 
 | 1854 | 			break; | 
 | 1855 | 	} | 
 | 1856 | 	if (x == MAX_SETUP_ARGS) | 
 | 1857 | 		return 0; | 
 | 1858 | 	setup_used[x] = 1; | 
 | 1859 | 	cp = setup_args[x] + strlen(key); | 
 | 1860 | 	*val = -1; | 
 | 1861 | 	if (*cp != ':') | 
 | 1862 | 		return ++x; | 
 | 1863 | 	cp++; | 
 | 1864 | 	if ((*cp >= '0') && (*cp <= '9')) { | 
 | 1865 | 		*val = simple_strtoul(cp, NULL, 0); | 
 | 1866 | 	} | 
 | 1867 | 	return ++x; | 
 | 1868 | } | 
 | 1869 |  | 
 | 1870 |  | 
 | 1871 |  | 
 | 1872 | /* The "correct" (ie portable) way to access memory-mapped hardware | 
 | 1873 |  * such as the IN2000 EPROM and dip switch is through the use of | 
 | 1874 |  * special macros declared in 'asm/io.h'. We use readb() and readl() | 
 | 1875 |  * when reading from the card's BIOS area in in2000_detect(). | 
 | 1876 |  */ | 
 | 1877 | static u32 bios_tab[] in2000__INITDATA = { | 
 | 1878 | 	0xc8000, | 
 | 1879 | 	0xd0000, | 
 | 1880 | 	0xd8000, | 
 | 1881 | 	0 | 
 | 1882 | }; | 
 | 1883 |  | 
 | 1884 | static unsigned short base_tab[] in2000__INITDATA = { | 
 | 1885 | 	0x220, | 
 | 1886 | 	0x200, | 
 | 1887 | 	0x110, | 
 | 1888 | 	0x100, | 
 | 1889 | }; | 
 | 1890 |  | 
 | 1891 | static int int_tab[] in2000__INITDATA = { | 
 | 1892 | 	15, | 
 | 1893 | 	14, | 
 | 1894 | 	11, | 
 | 1895 | 	10 | 
 | 1896 | }; | 
 | 1897 |  | 
 | 1898 |  | 
 | 1899 | static int __init in2000_detect(Scsi_Host_Template * tpnt) | 
 | 1900 | { | 
 | 1901 | 	struct Scsi_Host *instance; | 
 | 1902 | 	struct IN2000_hostdata *hostdata; | 
 | 1903 | 	int detect_count; | 
 | 1904 | 	int bios; | 
 | 1905 | 	int x; | 
 | 1906 | 	unsigned short base; | 
 | 1907 | 	uchar switches; | 
 | 1908 | 	uchar hrev; | 
 | 1909 | 	unsigned long flags; | 
 | 1910 | 	int val; | 
 | 1911 | 	char buf[32]; | 
 | 1912 |  | 
 | 1913 | /* Thanks to help from Bill Earnest, probing for IN2000 cards is a | 
 | 1914 |  * pretty straightforward and fool-proof operation. There are 3 | 
 | 1915 |  * possible locations for the IN2000 EPROM in memory space - if we | 
 | 1916 |  * find a BIOS signature, we can read the dip switch settings from | 
 | 1917 |  * the byte at BIOS+32 (shadowed in by logic on the card). From 2 | 
 | 1918 |  * of the switch bits we get the card's address in IO space. There's | 
 | 1919 |  * an image of the dip switch there, also, so we have a way to back- | 
 | 1920 |  * check that this really is an IN2000 card. Very nifty. Use the | 
 | 1921 |  * 'ioport:xx' command-line parameter if your BIOS EPROM is absent | 
 | 1922 |  * or disabled. | 
 | 1923 |  */ | 
 | 1924 |  | 
 | 1925 | 	if (!done_setup && setup_strings) | 
 | 1926 | 		in2000_setup(setup_strings, NULL); | 
 | 1927 |  | 
 | 1928 | 	detect_count = 0; | 
 | 1929 | 	for (bios = 0; bios_tab[bios]; bios++) { | 
 | 1930 | 		if (check_setup_args("ioport", &val, buf)) { | 
 | 1931 | 			base = val; | 
 | 1932 | 			switches = ~inb(base + IO_SWITCHES) & 0xff; | 
 | 1933 | 			printk("Forcing IN2000 detection at IOport 0x%x ", base); | 
 | 1934 | 			bios = 2; | 
 | 1935 | 		} | 
 | 1936 | /* | 
 | 1937 |  * There have been a couple of BIOS versions with different layouts | 
 | 1938 |  * for the obvious ID strings. We look for the 2 most common ones and | 
 | 1939 |  * hope that they cover all the cases... | 
 | 1940 |  */ | 
 | 1941 | 		else if (isa_readl(bios_tab[bios] + 0x10) == 0x41564f4e || isa_readl(bios_tab[bios] + 0x30) == 0x61776c41) { | 
 | 1942 | 			printk("Found IN2000 BIOS at 0x%x ", (unsigned int) bios_tab[bios]); | 
 | 1943 |  | 
 | 1944 | /* Read the switch image that's mapped into EPROM space */ | 
 | 1945 |  | 
 | 1946 | 			switches = ~((isa_readb(bios_tab[bios] + 0x20) & 0xff)); | 
 | 1947 |  | 
 | 1948 | /* Find out where the IO space is */ | 
 | 1949 |  | 
 | 1950 | 			x = switches & (SW_ADDR0 | SW_ADDR1); | 
 | 1951 | 			base = base_tab[x]; | 
 | 1952 |  | 
 | 1953 | /* Check for the IN2000 signature in IO space. */ | 
 | 1954 |  | 
 | 1955 | 			x = ~inb(base + IO_SWITCHES) & 0xff; | 
 | 1956 | 			if (x != switches) { | 
 | 1957 | 				printk("Bad IO signature: %02x vs %02x.\n", x, switches); | 
 | 1958 | 				continue; | 
 | 1959 | 			} | 
 | 1960 | 		} else | 
 | 1961 | 			continue; | 
 | 1962 |  | 
 | 1963 | /* OK. We have a base address for the IO ports - run a few safety checks */ | 
 | 1964 |  | 
 | 1965 | 		if (!(switches & SW_BIT7)) {	/* I _think_ all cards do this */ | 
 | 1966 | 			printk("There is no IN-2000 SCSI card at IOport 0x%03x!\n", base); | 
 | 1967 | 			continue; | 
 | 1968 | 		} | 
 | 1969 |  | 
 | 1970 | /* Let's assume any hardware version will work, although the driver | 
 | 1971 |  * has only been tested on 0x21, 0x22, 0x25, 0x26, and 0x27. We'll | 
 | 1972 |  * print out the rev number for reference later, but accept them all. | 
 | 1973 |  */ | 
 | 1974 |  | 
 | 1975 | 		hrev = inb(base + IO_HARDWARE); | 
 | 1976 |  | 
 | 1977 | 		/* Bit 2 tells us if interrupts are disabled */ | 
 | 1978 | 		if (switches & SW_DISINT) { | 
 | 1979 | 			printk("The IN-2000 SCSI card at IOport 0x%03x ", base); | 
 | 1980 | 			printk("is not configured for interrupt operation!\n"); | 
 | 1981 | 			printk("This driver requires an interrupt: cancelling detection.\n"); | 
 | 1982 | 			continue; | 
 | 1983 | 		} | 
 | 1984 |  | 
 | 1985 | /* Ok. We accept that there's an IN2000 at ioaddr 'base'. Now | 
 | 1986 |  * initialize it. | 
 | 1987 |  */ | 
 | 1988 |  | 
 | 1989 | 		tpnt->proc_name = "in2000"; | 
 | 1990 | 		instance = scsi_register(tpnt, sizeof(struct IN2000_hostdata)); | 
 | 1991 | 		if (instance == NULL) | 
 | 1992 | 			continue; | 
 | 1993 | 		detect_count++; | 
 | 1994 | 		hostdata = (struct IN2000_hostdata *) instance->hostdata; | 
 | 1995 | 		instance->io_port = hostdata->io_base = base; | 
 | 1996 | 		hostdata->dip_switch = switches; | 
 | 1997 | 		hostdata->hrev = hrev; | 
 | 1998 |  | 
 | 1999 | 		write1_io(0, IO_FIFO_WRITE);	/* clear fifo counter */ | 
 | 2000 | 		write1_io(0, IO_FIFO_READ);	/* start fifo out in read mode */ | 
 | 2001 | 		write1_io(0, IO_INTR_MASK);	/* allow all ints */ | 
 | 2002 | 		x = int_tab[(switches & (SW_INT0 | SW_INT1)) >> SW_INT_SHIFT]; | 
 | 2003 | 		if (request_irq(x, in2000_intr, SA_INTERRUPT, "in2000", instance)) { | 
 | 2004 | 			printk("in2000_detect: Unable to allocate IRQ.\n"); | 
 | 2005 | 			detect_count--; | 
 | 2006 | 			continue; | 
 | 2007 | 		} | 
 | 2008 | 		instance->irq = x; | 
 | 2009 | 		instance->n_io_port = 13; | 
 | 2010 | 		request_region(base, 13, "in2000");	/* lock in this IO space for our use */ | 
 | 2011 |  | 
 | 2012 | 		for (x = 0; x < 8; x++) { | 
 | 2013 | 			hostdata->busy[x] = 0; | 
 | 2014 | 			hostdata->sync_xfer[x] = calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF); | 
 | 2015 | 			hostdata->sync_stat[x] = SS_UNSET;	/* using default sync values */ | 
 | 2016 | #ifdef PROC_STATISTICS | 
 | 2017 | 			hostdata->cmd_cnt[x] = 0; | 
 | 2018 | 			hostdata->disc_allowed_cnt[x] = 0; | 
 | 2019 | 			hostdata->disc_done_cnt[x] = 0; | 
 | 2020 | #endif | 
 | 2021 | 		} | 
 | 2022 | 		hostdata->input_Q = NULL; | 
 | 2023 | 		hostdata->selecting = NULL; | 
 | 2024 | 		hostdata->connected = NULL; | 
 | 2025 | 		hostdata->disconnected_Q = NULL; | 
 | 2026 | 		hostdata->state = S_UNCONNECTED; | 
 | 2027 | 		hostdata->fifo = FI_FIFO_UNUSED; | 
 | 2028 | 		hostdata->level2 = L2_BASIC; | 
 | 2029 | 		hostdata->disconnect = DIS_ADAPTIVE; | 
 | 2030 | 		hostdata->args = DEBUG_DEFAULTS; | 
 | 2031 | 		hostdata->incoming_ptr = 0; | 
 | 2032 | 		hostdata->outgoing_len = 0; | 
 | 2033 | 		hostdata->default_sx_per = DEFAULT_SX_PER; | 
 | 2034 |  | 
 | 2035 | /* Older BIOS's had a 'sync on/off' switch - use its setting */ | 
 | 2036 |  | 
 | 2037 | 		if (isa_readl(bios_tab[bios] + 0x10) == 0x41564f4e && (switches & SW_SYNC_DOS5)) | 
 | 2038 | 			hostdata->sync_off = 0x00;	/* sync defaults to on */ | 
 | 2039 | 		else | 
 | 2040 | 			hostdata->sync_off = 0xff;	/* sync defaults to off */ | 
 | 2041 |  | 
 | 2042 | #ifdef PROC_INTERFACE | 
 | 2043 | 		hostdata->proc = PR_VERSION | PR_INFO | PR_STATISTICS | PR_CONNECTED | PR_INPUTQ | PR_DISCQ | PR_STOP; | 
 | 2044 | #ifdef PROC_STATISTICS | 
 | 2045 | 		hostdata->int_cnt = 0; | 
 | 2046 | #endif | 
 | 2047 | #endif | 
 | 2048 |  | 
 | 2049 | 		if (check_setup_args("nosync", &val, buf)) | 
 | 2050 | 			hostdata->sync_off = val; | 
 | 2051 |  | 
 | 2052 | 		if (check_setup_args("period", &val, buf)) | 
 | 2053 | 			hostdata->default_sx_per = sx_table[round_period((unsigned int) val)].period_ns; | 
 | 2054 |  | 
 | 2055 | 		if (check_setup_args("disconnect", &val, buf)) { | 
 | 2056 | 			if ((val >= DIS_NEVER) && (val <= DIS_ALWAYS)) | 
 | 2057 | 				hostdata->disconnect = val; | 
 | 2058 | 			else | 
 | 2059 | 				hostdata->disconnect = DIS_ADAPTIVE; | 
 | 2060 | 		} | 
 | 2061 |  | 
 | 2062 | 		if (check_setup_args("noreset", &val, buf)) | 
 | 2063 | 			hostdata->args ^= A_NO_SCSI_RESET; | 
 | 2064 |  | 
 | 2065 | 		if (check_setup_args("level2", &val, buf)) | 
 | 2066 | 			hostdata->level2 = val; | 
 | 2067 |  | 
 | 2068 | 		if (check_setup_args("debug", &val, buf)) | 
 | 2069 | 			hostdata->args = (val & DB_MASK); | 
 | 2070 |  | 
 | 2071 | #ifdef PROC_INTERFACE | 
 | 2072 | 		if (check_setup_args("proc", &val, buf)) | 
 | 2073 | 			hostdata->proc = val; | 
 | 2074 | #endif | 
 | 2075 |  | 
 | 2076 |  | 
 | 2077 | 		/* FIXME: not strictly needed I think but the called code expects | 
 | 2078 | 		   to be locked */ | 
 | 2079 | 		spin_lock_irqsave(instance->host_lock, flags); | 
 | 2080 | 		x = reset_hardware(instance, (hostdata->args & A_NO_SCSI_RESET) ? RESET_CARD : RESET_CARD_AND_BUS); | 
 | 2081 | 		spin_unlock_irqrestore(instance->host_lock, flags); | 
 | 2082 |  | 
 | 2083 | 		hostdata->microcode = read_3393(hostdata, WD_CDB_1); | 
 | 2084 | 		if (x & 0x01) { | 
 | 2085 | 			if (x & B_FLAG) | 
 | 2086 | 				hostdata->chip = C_WD33C93B; | 
 | 2087 | 			else | 
 | 2088 | 				hostdata->chip = C_WD33C93A; | 
 | 2089 | 		} else | 
 | 2090 | 			hostdata->chip = C_WD33C93; | 
 | 2091 |  | 
 | 2092 | 		printk("dip_switch=%02x irq=%d ioport=%02x floppy=%s sync/DOS5=%s ", (switches & 0x7f), instance->irq, hostdata->io_base, (switches & SW_FLOPPY) ? "Yes" : "No", (switches & SW_SYNC_DOS5) ? "Yes" : "No"); | 
 | 2093 | 		printk("hardware_ver=%02x chip=%s microcode=%02x\n", hrev, (hostdata->chip == C_WD33C93) ? "WD33c93" : (hostdata->chip == C_WD33C93A) ? "WD33c93A" : (hostdata->chip == C_WD33C93B) ? "WD33c93B" : "unknown", hostdata->microcode); | 
 | 2094 | #ifdef DEBUGGING_ON | 
 | 2095 | 		printk("setup_args = "); | 
 | 2096 | 		for (x = 0; x < MAX_SETUP_ARGS; x++) | 
 | 2097 | 			printk("%s,", setup_args[x]); | 
 | 2098 | 		printk("\n"); | 
 | 2099 | #endif | 
 | 2100 | 		if (hostdata->sync_off == 0xff) | 
 | 2101 | 			printk("Sync-transfer DISABLED on all devices: ENABLE from command-line\n"); | 
 | 2102 | 		printk("IN2000 driver version %s - %s\n", IN2000_VERSION, IN2000_DATE); | 
 | 2103 | 	} | 
 | 2104 |  | 
 | 2105 | 	return detect_count; | 
 | 2106 | } | 
 | 2107 |  | 
 | 2108 | static int in2000_release(struct Scsi_Host *shost) | 
 | 2109 | { | 
 | 2110 | 	if (shost->irq) | 
 | 2111 | 		free_irq(shost->irq, shost); | 
 | 2112 | 	if (shost->io_port && shost->n_io_port) | 
 | 2113 | 		release_region(shost->io_port, shost->n_io_port); | 
 | 2114 | 	return 0; | 
 | 2115 | } | 
 | 2116 |  | 
 | 2117 | /* NOTE: I lifted this function straight out of the old driver, | 
 | 2118 |  *       and have not tested it. Presumably it does what it's | 
 | 2119 |  *       supposed to do... | 
 | 2120 |  */ | 
 | 2121 |  | 
 | 2122 | static int in2000_biosparam(struct scsi_device *sdev, struct block_device *bdev, sector_t capacity, int *iinfo) | 
 | 2123 | { | 
 | 2124 | 	int size; | 
 | 2125 |  | 
 | 2126 | 	size = capacity; | 
 | 2127 | 	iinfo[0] = 64; | 
 | 2128 | 	iinfo[1] = 32; | 
 | 2129 | 	iinfo[2] = size >> 11; | 
 | 2130 |  | 
 | 2131 | /* This should approximate the large drive handling that the DOS ASPI manager | 
 | 2132 |    uses.  Drives very near the boundaries may not be handled correctly (i.e. | 
 | 2133 |    near 2.0 Gb and 4.0 Gb) */ | 
 | 2134 |  | 
 | 2135 | 	if (iinfo[2] > 1024) { | 
 | 2136 | 		iinfo[0] = 64; | 
 | 2137 | 		iinfo[1] = 63; | 
 | 2138 | 		iinfo[2] = (unsigned long) capacity / (iinfo[0] * iinfo[1]); | 
 | 2139 | 	} | 
 | 2140 | 	if (iinfo[2] > 1024) { | 
 | 2141 | 		iinfo[0] = 128; | 
 | 2142 | 		iinfo[1] = 63; | 
 | 2143 | 		iinfo[2] = (unsigned long) capacity / (iinfo[0] * iinfo[1]); | 
 | 2144 | 	} | 
 | 2145 | 	if (iinfo[2] > 1024) { | 
 | 2146 | 		iinfo[0] = 255; | 
 | 2147 | 		iinfo[1] = 63; | 
 | 2148 | 		iinfo[2] = (unsigned long) capacity / (iinfo[0] * iinfo[1]); | 
 | 2149 | 	} | 
 | 2150 | 	return 0; | 
 | 2151 | } | 
 | 2152 |  | 
 | 2153 |  | 
 | 2154 | static int in2000_proc_info(struct Scsi_Host *instance, char *buf, char **start, off_t off, int len, int in) | 
 | 2155 | { | 
 | 2156 |  | 
 | 2157 | #ifdef PROC_INTERFACE | 
 | 2158 |  | 
 | 2159 | 	char *bp; | 
 | 2160 | 	char tbuf[128]; | 
 | 2161 | 	unsigned long flags; | 
 | 2162 | 	struct IN2000_hostdata *hd; | 
 | 2163 | 	Scsi_Cmnd *cmd; | 
 | 2164 | 	int x, i; | 
 | 2165 | 	static int stop = 0; | 
 | 2166 |  | 
 | 2167 | 	hd = (struct IN2000_hostdata *) instance->hostdata; | 
 | 2168 |  | 
 | 2169 | /* If 'in' is TRUE we need to _read_ the proc file. We accept the following | 
 | 2170 |  * keywords (same format as command-line, but only ONE per read): | 
 | 2171 |  *    debug | 
 | 2172 |  *    disconnect | 
 | 2173 |  *    period | 
 | 2174 |  *    resync | 
 | 2175 |  *    proc | 
 | 2176 |  */ | 
 | 2177 |  | 
 | 2178 | 	if (in) { | 
 | 2179 | 		buf[len] = '\0'; | 
 | 2180 | 		bp = buf; | 
 | 2181 | 		if (!strncmp(bp, "debug:", 6)) { | 
 | 2182 | 			bp += 6; | 
 | 2183 | 			hd->args = simple_strtoul(bp, NULL, 0) & DB_MASK; | 
 | 2184 | 		} else if (!strncmp(bp, "disconnect:", 11)) { | 
 | 2185 | 			bp += 11; | 
 | 2186 | 			x = simple_strtoul(bp, NULL, 0); | 
 | 2187 | 			if (x < DIS_NEVER || x > DIS_ALWAYS) | 
 | 2188 | 				x = DIS_ADAPTIVE; | 
 | 2189 | 			hd->disconnect = x; | 
 | 2190 | 		} else if (!strncmp(bp, "period:", 7)) { | 
 | 2191 | 			bp += 7; | 
 | 2192 | 			x = simple_strtoul(bp, NULL, 0); | 
 | 2193 | 			hd->default_sx_per = sx_table[round_period((unsigned int) x)].period_ns; | 
 | 2194 | 		} else if (!strncmp(bp, "resync:", 7)) { | 
 | 2195 | 			bp += 7; | 
 | 2196 | 			x = simple_strtoul(bp, NULL, 0); | 
 | 2197 | 			for (i = 0; i < 7; i++) | 
 | 2198 | 				if (x & (1 << i)) | 
 | 2199 | 					hd->sync_stat[i] = SS_UNSET; | 
 | 2200 | 		} else if (!strncmp(bp, "proc:", 5)) { | 
 | 2201 | 			bp += 5; | 
 | 2202 | 			hd->proc = simple_strtoul(bp, NULL, 0); | 
 | 2203 | 		} else if (!strncmp(bp, "level2:", 7)) { | 
 | 2204 | 			bp += 7; | 
 | 2205 | 			hd->level2 = simple_strtoul(bp, NULL, 0); | 
 | 2206 | 		} | 
 | 2207 | 		return len; | 
 | 2208 | 	} | 
 | 2209 |  | 
 | 2210 | 	spin_lock_irqsave(instance->host_lock, flags); | 
 | 2211 | 	bp = buf; | 
 | 2212 | 	*bp = '\0'; | 
 | 2213 | 	if (hd->proc & PR_VERSION) { | 
 | 2214 | 		sprintf(tbuf, "\nVersion %s - %s. Compiled %s %s", IN2000_VERSION, IN2000_DATE, __DATE__, __TIME__); | 
 | 2215 | 		strcat(bp, tbuf); | 
 | 2216 | 	} | 
 | 2217 | 	if (hd->proc & PR_INFO) { | 
 | 2218 | 		sprintf(tbuf, "\ndip_switch=%02x: irq=%d io=%02x floppy=%s sync/DOS5=%s", (hd->dip_switch & 0x7f), instance->irq, hd->io_base, (hd->dip_switch & 0x40) ? "Yes" : "No", (hd->dip_switch & 0x20) ? "Yes" : "No"); | 
 | 2219 | 		strcat(bp, tbuf); | 
 | 2220 | 		strcat(bp, "\nsync_xfer[] =       "); | 
 | 2221 | 		for (x = 0; x < 7; x++) { | 
 | 2222 | 			sprintf(tbuf, "\t%02x", hd->sync_xfer[x]); | 
 | 2223 | 			strcat(bp, tbuf); | 
 | 2224 | 		} | 
 | 2225 | 		strcat(bp, "\nsync_stat[] =       "); | 
 | 2226 | 		for (x = 0; x < 7; x++) { | 
 | 2227 | 			sprintf(tbuf, "\t%02x", hd->sync_stat[x]); | 
 | 2228 | 			strcat(bp, tbuf); | 
 | 2229 | 		} | 
 | 2230 | 	} | 
 | 2231 | #ifdef PROC_STATISTICS | 
 | 2232 | 	if (hd->proc & PR_STATISTICS) { | 
 | 2233 | 		strcat(bp, "\ncommands issued:    "); | 
 | 2234 | 		for (x = 0; x < 7; x++) { | 
 | 2235 | 			sprintf(tbuf, "\t%ld", hd->cmd_cnt[x]); | 
 | 2236 | 			strcat(bp, tbuf); | 
 | 2237 | 		} | 
 | 2238 | 		strcat(bp, "\ndisconnects allowed:"); | 
 | 2239 | 		for (x = 0; x < 7; x++) { | 
 | 2240 | 			sprintf(tbuf, "\t%ld", hd->disc_allowed_cnt[x]); | 
 | 2241 | 			strcat(bp, tbuf); | 
 | 2242 | 		} | 
 | 2243 | 		strcat(bp, "\ndisconnects done:   "); | 
 | 2244 | 		for (x = 0; x < 7; x++) { | 
 | 2245 | 			sprintf(tbuf, "\t%ld", hd->disc_done_cnt[x]); | 
 | 2246 | 			strcat(bp, tbuf); | 
 | 2247 | 		} | 
 | 2248 | 		sprintf(tbuf, "\ninterrupts:      \t%ld", hd->int_cnt); | 
 | 2249 | 		strcat(bp, tbuf); | 
 | 2250 | 	} | 
 | 2251 | #endif | 
 | 2252 | 	if (hd->proc & PR_CONNECTED) { | 
 | 2253 | 		strcat(bp, "\nconnected:     "); | 
 | 2254 | 		if (hd->connected) { | 
 | 2255 | 			cmd = (Scsi_Cmnd *) hd->connected; | 
 | 2256 | 			sprintf(tbuf, " %ld-%d:%d(%02x)", cmd->pid, cmd->device->id, cmd->device->lun, cmd->cmnd[0]); | 
 | 2257 | 			strcat(bp, tbuf); | 
 | 2258 | 		} | 
 | 2259 | 	} | 
 | 2260 | 	if (hd->proc & PR_INPUTQ) { | 
 | 2261 | 		strcat(bp, "\ninput_Q:       "); | 
 | 2262 | 		cmd = (Scsi_Cmnd *) hd->input_Q; | 
 | 2263 | 		while (cmd) { | 
 | 2264 | 			sprintf(tbuf, " %ld-%d:%d(%02x)", cmd->pid, cmd->device->id, cmd->device->lun, cmd->cmnd[0]); | 
 | 2265 | 			strcat(bp, tbuf); | 
 | 2266 | 			cmd = (Scsi_Cmnd *) cmd->host_scribble; | 
 | 2267 | 		} | 
 | 2268 | 	} | 
 | 2269 | 	if (hd->proc & PR_DISCQ) { | 
 | 2270 | 		strcat(bp, "\ndisconnected_Q:"); | 
 | 2271 | 		cmd = (Scsi_Cmnd *) hd->disconnected_Q; | 
 | 2272 | 		while (cmd) { | 
 | 2273 | 			sprintf(tbuf, " %ld-%d:%d(%02x)", cmd->pid, cmd->device->id, cmd->device->lun, cmd->cmnd[0]); | 
 | 2274 | 			strcat(bp, tbuf); | 
 | 2275 | 			cmd = (Scsi_Cmnd *) cmd->host_scribble; | 
 | 2276 | 		} | 
 | 2277 | 	} | 
 | 2278 | 	if (hd->proc & PR_TEST) { | 
 | 2279 | 		;		/* insert your own custom function here */ | 
 | 2280 | 	} | 
 | 2281 | 	strcat(bp, "\n"); | 
 | 2282 | 	spin_unlock_irqrestore(instance->host_lock, flags); | 
 | 2283 | 	*start = buf; | 
 | 2284 | 	if (stop) { | 
 | 2285 | 		stop = 0; | 
 | 2286 | 		return 0;	/* return 0 to signal end-of-file */ | 
 | 2287 | 	} | 
 | 2288 | 	if (off > 0x40000)	/* ALWAYS stop after 256k bytes have been read */ | 
 | 2289 | 		stop = 1; | 
 | 2290 | 	if (hd->proc & PR_STOP)	/* stop every other time */ | 
 | 2291 | 		stop = 1; | 
 | 2292 | 	return strlen(bp); | 
 | 2293 |  | 
 | 2294 | #else				/* PROC_INTERFACE */ | 
 | 2295 |  | 
 | 2296 | 	return 0; | 
 | 2297 |  | 
 | 2298 | #endif				/* PROC_INTERFACE */ | 
 | 2299 |  | 
 | 2300 | } | 
 | 2301 |  | 
 | 2302 | MODULE_LICENSE("GPL"); | 
 | 2303 |  | 
 | 2304 |  | 
 | 2305 | static Scsi_Host_Template driver_template = { | 
 | 2306 | 	.proc_name       		= "in2000", | 
 | 2307 | 	.proc_info       		= in2000_proc_info, | 
 | 2308 | 	.name            		= "Always IN2000", | 
 | 2309 | 	.detect          		= in2000_detect,  | 
 | 2310 | 	.release			= in2000_release, | 
 | 2311 | 	.queuecommand    		= in2000_queuecommand, | 
 | 2312 | 	.eh_abort_handler		= in2000_abort, | 
 | 2313 | 	.eh_bus_reset_handler		= in2000_bus_reset, | 
 | 2314 | 	.eh_device_reset_handler	= in2000_device_reset, | 
 | 2315 | 	.eh_host_reset_handler	= in2000_host_reset,  | 
 | 2316 | 	.bios_param      		= in2000_biosparam,  | 
 | 2317 | 	.can_queue       		= IN2000_CAN_Q, | 
 | 2318 | 	.this_id         		= IN2000_HOST_ID, | 
 | 2319 | 	.sg_tablesize    		= IN2000_SG, | 
 | 2320 | 	.cmd_per_lun     		= IN2000_CPL, | 
 | 2321 | 	.use_clustering  		= DISABLE_CLUSTERING, | 
 | 2322 | }; | 
 | 2323 | #include "scsi_module.c" |