| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * JFFS2 -- Journalling Flash File System, Version 2. | 
|  | 3 | * | 
|  | 4 | * Copyright (C) 2001-2003 Red Hat, Inc. | 
|  | 5 | * | 
|  | 6 | * Created by David Woodhouse <dwmw2@infradead.org> | 
|  | 7 | * | 
|  | 8 | * For licensing information, see the file 'LICENCE' in this directory. | 
|  | 9 | * | 
|  | 10 | * $Id: nodemgmt.c,v 1.115 2004/11/22 11:07:21 dwmw2 Exp $ | 
|  | 11 | * | 
|  | 12 | */ | 
|  | 13 |  | 
|  | 14 | #include <linux/kernel.h> | 
|  | 15 | #include <linux/slab.h> | 
|  | 16 | #include <linux/mtd/mtd.h> | 
|  | 17 | #include <linux/compiler.h> | 
|  | 18 | #include <linux/sched.h> /* For cond_resched() */ | 
|  | 19 | #include "nodelist.h" | 
|  | 20 |  | 
|  | 21 | /** | 
|  | 22 | *	jffs2_reserve_space - request physical space to write nodes to flash | 
|  | 23 | *	@c: superblock info | 
|  | 24 | *	@minsize: Minimum acceptable size of allocation | 
|  | 25 | *	@ofs: Returned value of node offset | 
|  | 26 | *	@len: Returned value of allocation length | 
|  | 27 | *	@prio: Allocation type - ALLOC_{NORMAL,DELETION} | 
|  | 28 | * | 
|  | 29 | *	Requests a block of physical space on the flash. Returns zero for success | 
|  | 30 | *	and puts 'ofs' and 'len' into the appriopriate place, or returns -ENOSPC | 
|  | 31 | *	or other error if appropriate. | 
|  | 32 | * | 
|  | 33 | *	If it returns zero, jffs2_reserve_space() also downs the per-filesystem | 
|  | 34 | *	allocation semaphore, to prevent more than one allocation from being | 
|  | 35 | *	active at any time. The semaphore is later released by jffs2_commit_allocation() | 
|  | 36 | * | 
|  | 37 | *	jffs2_reserve_space() may trigger garbage collection in order to make room | 
|  | 38 | *	for the requested allocation. | 
|  | 39 | */ | 
|  | 40 |  | 
|  | 41 | static int jffs2_do_reserve_space(struct jffs2_sb_info *c,  uint32_t minsize, uint32_t *ofs, uint32_t *len); | 
|  | 42 |  | 
|  | 43 | int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs, uint32_t *len, int prio) | 
|  | 44 | { | 
|  | 45 | int ret = -EAGAIN; | 
|  | 46 | int blocksneeded = c->resv_blocks_write; | 
|  | 47 | /* align it */ | 
|  | 48 | minsize = PAD(minsize); | 
|  | 49 |  | 
|  | 50 | D1(printk(KERN_DEBUG "jffs2_reserve_space(): Requested 0x%x bytes\n", minsize)); | 
|  | 51 | down(&c->alloc_sem); | 
|  | 52 |  | 
|  | 53 | D1(printk(KERN_DEBUG "jffs2_reserve_space(): alloc sem got\n")); | 
|  | 54 |  | 
|  | 55 | spin_lock(&c->erase_completion_lock); | 
|  | 56 |  | 
|  | 57 | /* this needs a little more thought (true <tglx> :)) */ | 
|  | 58 | while(ret == -EAGAIN) { | 
|  | 59 | while(c->nr_free_blocks + c->nr_erasing_blocks < blocksneeded) { | 
|  | 60 | int ret; | 
|  | 61 | uint32_t dirty, avail; | 
|  | 62 |  | 
|  | 63 | /* calculate real dirty size | 
|  | 64 | * dirty_size contains blocks on erase_pending_list | 
|  | 65 | * those blocks are counted in c->nr_erasing_blocks. | 
|  | 66 | * If one block is actually erased, it is not longer counted as dirty_space | 
|  | 67 | * but it is counted in c->nr_erasing_blocks, so we add it and subtract it | 
|  | 68 | * with c->nr_erasing_blocks * c->sector_size again. | 
|  | 69 | * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks | 
|  | 70 | * This helps us to force gc and pick eventually a clean block to spread the load. | 
|  | 71 | * We add unchecked_size here, as we hopefully will find some space to use. | 
|  | 72 | * This will affect the sum only once, as gc first finishes checking | 
|  | 73 | * of nodes. | 
|  | 74 | */ | 
|  | 75 | dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size + c->unchecked_size; | 
|  | 76 | if (dirty < c->nospc_dirty_size) { | 
|  | 77 | if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) { | 
|  | 78 | printk(KERN_NOTICE "jffs2_reserve_space(): Low on dirty space to GC, but it's a deletion. Allowing...\n"); | 
|  | 79 | break; | 
|  | 80 | } | 
|  | 81 | D1(printk(KERN_DEBUG "dirty size 0x%08x + unchecked_size 0x%08x < nospc_dirty_size 0x%08x, returning -ENOSPC\n", | 
|  | 82 | dirty, c->unchecked_size, c->sector_size)); | 
|  | 83 |  | 
|  | 84 | spin_unlock(&c->erase_completion_lock); | 
|  | 85 | up(&c->alloc_sem); | 
|  | 86 | return -ENOSPC; | 
|  | 87 | } | 
|  | 88 |  | 
|  | 89 | /* Calc possibly available space. Possibly available means that we | 
|  | 90 | * don't know, if unchecked size contains obsoleted nodes, which could give us some | 
|  | 91 | * more usable space. This will affect the sum only once, as gc first finishes checking | 
|  | 92 | * of nodes. | 
|  | 93 | + Return -ENOSPC, if the maximum possibly available space is less or equal than | 
|  | 94 | * blocksneeded * sector_size. | 
|  | 95 | * This blocks endless gc looping on a filesystem, which is nearly full, even if | 
|  | 96 | * the check above passes. | 
|  | 97 | */ | 
|  | 98 | avail = c->free_size + c->dirty_size + c->erasing_size + c->unchecked_size; | 
|  | 99 | if ( (avail / c->sector_size) <= blocksneeded) { | 
|  | 100 | if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) { | 
|  | 101 | printk(KERN_NOTICE "jffs2_reserve_space(): Low on possibly available space, but it's a deletion. Allowing...\n"); | 
|  | 102 | break; | 
|  | 103 | } | 
|  | 104 |  | 
|  | 105 | D1(printk(KERN_DEBUG "max. available size 0x%08x  < blocksneeded * sector_size 0x%08x, returning -ENOSPC\n", | 
|  | 106 | avail, blocksneeded * c->sector_size)); | 
|  | 107 | spin_unlock(&c->erase_completion_lock); | 
|  | 108 | up(&c->alloc_sem); | 
|  | 109 | return -ENOSPC; | 
|  | 110 | } | 
|  | 111 |  | 
|  | 112 | up(&c->alloc_sem); | 
|  | 113 |  | 
|  | 114 | D1(printk(KERN_DEBUG "Triggering GC pass. nr_free_blocks %d, nr_erasing_blocks %d, free_size 0x%08x, dirty_size 0x%08x, wasted_size 0x%08x, used_size 0x%08x, erasing_size 0x%08x, bad_size 0x%08x (total 0x%08x of 0x%08x)\n", | 
|  | 115 | c->nr_free_blocks, c->nr_erasing_blocks, c->free_size, c->dirty_size, c->wasted_size, c->used_size, c->erasing_size, c->bad_size, | 
|  | 116 | c->free_size + c->dirty_size + c->wasted_size + c->used_size + c->erasing_size + c->bad_size, c->flash_size)); | 
|  | 117 | spin_unlock(&c->erase_completion_lock); | 
|  | 118 |  | 
|  | 119 | ret = jffs2_garbage_collect_pass(c); | 
|  | 120 | if (ret) | 
|  | 121 | return ret; | 
|  | 122 |  | 
|  | 123 | cond_resched(); | 
|  | 124 |  | 
|  | 125 | if (signal_pending(current)) | 
|  | 126 | return -EINTR; | 
|  | 127 |  | 
|  | 128 | down(&c->alloc_sem); | 
|  | 129 | spin_lock(&c->erase_completion_lock); | 
|  | 130 | } | 
|  | 131 |  | 
|  | 132 | ret = jffs2_do_reserve_space(c, minsize, ofs, len); | 
|  | 133 | if (ret) { | 
|  | 134 | D1(printk(KERN_DEBUG "jffs2_reserve_space: ret is %d\n", ret)); | 
|  | 135 | } | 
|  | 136 | } | 
|  | 137 | spin_unlock(&c->erase_completion_lock); | 
|  | 138 | if (ret) | 
|  | 139 | up(&c->alloc_sem); | 
|  | 140 | return ret; | 
|  | 141 | } | 
|  | 142 |  | 
|  | 143 | int jffs2_reserve_space_gc(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs, uint32_t *len) | 
|  | 144 | { | 
|  | 145 | int ret = -EAGAIN; | 
|  | 146 | minsize = PAD(minsize); | 
|  | 147 |  | 
|  | 148 | D1(printk(KERN_DEBUG "jffs2_reserve_space_gc(): Requested 0x%x bytes\n", minsize)); | 
|  | 149 |  | 
|  | 150 | spin_lock(&c->erase_completion_lock); | 
|  | 151 | while(ret == -EAGAIN) { | 
|  | 152 | ret = jffs2_do_reserve_space(c, minsize, ofs, len); | 
|  | 153 | if (ret) { | 
|  | 154 | D1(printk(KERN_DEBUG "jffs2_reserve_space_gc: looping, ret is %d\n", ret)); | 
|  | 155 | } | 
|  | 156 | } | 
|  | 157 | spin_unlock(&c->erase_completion_lock); | 
|  | 158 | return ret; | 
|  | 159 | } | 
|  | 160 |  | 
|  | 161 | /* Called with alloc sem _and_ erase_completion_lock */ | 
|  | 162 | static int jffs2_do_reserve_space(struct jffs2_sb_info *c,  uint32_t minsize, uint32_t *ofs, uint32_t *len) | 
|  | 163 | { | 
|  | 164 | struct jffs2_eraseblock *jeb = c->nextblock; | 
|  | 165 |  | 
|  | 166 | restart: | 
|  | 167 | if (jeb && minsize > jeb->free_size) { | 
|  | 168 | /* Skip the end of this block and file it as having some dirty space */ | 
|  | 169 | /* If there's a pending write to it, flush now */ | 
|  | 170 | if (jffs2_wbuf_dirty(c)) { | 
|  | 171 | spin_unlock(&c->erase_completion_lock); | 
|  | 172 | D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Flushing write buffer\n")); | 
|  | 173 | jffs2_flush_wbuf_pad(c); | 
|  | 174 | spin_lock(&c->erase_completion_lock); | 
|  | 175 | jeb = c->nextblock; | 
|  | 176 | goto restart; | 
|  | 177 | } | 
|  | 178 | c->wasted_size += jeb->free_size; | 
|  | 179 | c->free_size -= jeb->free_size; | 
|  | 180 | jeb->wasted_size += jeb->free_size; | 
|  | 181 | jeb->free_size = 0; | 
|  | 182 |  | 
|  | 183 | /* Check, if we have a dirty block now, or if it was dirty already */ | 
|  | 184 | if (ISDIRTY (jeb->wasted_size + jeb->dirty_size)) { | 
|  | 185 | c->dirty_size += jeb->wasted_size; | 
|  | 186 | c->wasted_size -= jeb->wasted_size; | 
|  | 187 | jeb->dirty_size += jeb->wasted_size; | 
|  | 188 | jeb->wasted_size = 0; | 
|  | 189 | if (VERYDIRTY(c, jeb->dirty_size)) { | 
|  | 190 | D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to very_dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n", | 
|  | 191 | jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size)); | 
|  | 192 | list_add_tail(&jeb->list, &c->very_dirty_list); | 
|  | 193 | } else { | 
|  | 194 | D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n", | 
|  | 195 | jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size)); | 
|  | 196 | list_add_tail(&jeb->list, &c->dirty_list); | 
|  | 197 | } | 
|  | 198 | } else { | 
|  | 199 | D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n", | 
|  | 200 | jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size)); | 
|  | 201 | list_add_tail(&jeb->list, &c->clean_list); | 
|  | 202 | } | 
|  | 203 | c->nextblock = jeb = NULL; | 
|  | 204 | } | 
|  | 205 |  | 
|  | 206 | if (!jeb) { | 
|  | 207 | struct list_head *next; | 
|  | 208 | /* Take the next block off the 'free' list */ | 
|  | 209 |  | 
|  | 210 | if (list_empty(&c->free_list)) { | 
|  | 211 |  | 
|  | 212 | if (!c->nr_erasing_blocks && | 
|  | 213 | !list_empty(&c->erasable_list)) { | 
|  | 214 | struct jffs2_eraseblock *ejeb; | 
|  | 215 |  | 
|  | 216 | ejeb = list_entry(c->erasable_list.next, struct jffs2_eraseblock, list); | 
|  | 217 | list_del(&ejeb->list); | 
|  | 218 | list_add_tail(&ejeb->list, &c->erase_pending_list); | 
|  | 219 | c->nr_erasing_blocks++; | 
|  | 220 | jffs2_erase_pending_trigger(c); | 
|  | 221 | D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Triggering erase of erasable block at 0x%08x\n", | 
|  | 222 | ejeb->offset)); | 
|  | 223 | } | 
|  | 224 |  | 
|  | 225 | if (!c->nr_erasing_blocks && | 
|  | 226 | !list_empty(&c->erasable_pending_wbuf_list)) { | 
|  | 227 | D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Flushing write buffer\n")); | 
|  | 228 | /* c->nextblock is NULL, no update to c->nextblock allowed */ | 
|  | 229 | spin_unlock(&c->erase_completion_lock); | 
|  | 230 | jffs2_flush_wbuf_pad(c); | 
|  | 231 | spin_lock(&c->erase_completion_lock); | 
|  | 232 | /* Have another go. It'll be on the erasable_list now */ | 
|  | 233 | return -EAGAIN; | 
|  | 234 | } | 
|  | 235 |  | 
|  | 236 | if (!c->nr_erasing_blocks) { | 
|  | 237 | /* Ouch. We're in GC, or we wouldn't have got here. | 
|  | 238 | And there's no space left. At all. */ | 
|  | 239 | printk(KERN_CRIT "Argh. No free space left for GC. nr_erasing_blocks is %d. nr_free_blocks is %d. (erasableempty: %s, erasingempty: %s, erasependingempty: %s)\n", | 
|  | 240 | c->nr_erasing_blocks, c->nr_free_blocks, list_empty(&c->erasable_list)?"yes":"no", | 
|  | 241 | list_empty(&c->erasing_list)?"yes":"no", list_empty(&c->erase_pending_list)?"yes":"no"); | 
|  | 242 | return -ENOSPC; | 
|  | 243 | } | 
|  | 244 |  | 
|  | 245 | spin_unlock(&c->erase_completion_lock); | 
|  | 246 | /* Don't wait for it; just erase one right now */ | 
|  | 247 | jffs2_erase_pending_blocks(c, 1); | 
|  | 248 | spin_lock(&c->erase_completion_lock); | 
|  | 249 |  | 
|  | 250 | /* An erase may have failed, decreasing the | 
|  | 251 | amount of free space available. So we must | 
|  | 252 | restart from the beginning */ | 
|  | 253 | return -EAGAIN; | 
|  | 254 | } | 
|  | 255 |  | 
|  | 256 | next = c->free_list.next; | 
|  | 257 | list_del(next); | 
|  | 258 | c->nextblock = jeb = list_entry(next, struct jffs2_eraseblock, list); | 
|  | 259 | c->nr_free_blocks--; | 
|  | 260 |  | 
|  | 261 | if (jeb->free_size != c->sector_size - c->cleanmarker_size) { | 
|  | 262 | printk(KERN_WARNING "Eep. Block 0x%08x taken from free_list had free_size of 0x%08x!!\n", jeb->offset, jeb->free_size); | 
|  | 263 | goto restart; | 
|  | 264 | } | 
|  | 265 | } | 
|  | 266 | /* OK, jeb (==c->nextblock) is now pointing at a block which definitely has | 
|  | 267 | enough space */ | 
|  | 268 | *ofs = jeb->offset + (c->sector_size - jeb->free_size); | 
|  | 269 | *len = jeb->free_size; | 
|  | 270 |  | 
|  | 271 | if (c->cleanmarker_size && jeb->used_size == c->cleanmarker_size && | 
|  | 272 | !jeb->first_node->next_in_ino) { | 
|  | 273 | /* Only node in it beforehand was a CLEANMARKER node (we think). | 
|  | 274 | So mark it obsolete now that there's going to be another node | 
|  | 275 | in the block. This will reduce used_size to zero but We've | 
|  | 276 | already set c->nextblock so that jffs2_mark_node_obsolete() | 
|  | 277 | won't try to refile it to the dirty_list. | 
|  | 278 | */ | 
|  | 279 | spin_unlock(&c->erase_completion_lock); | 
|  | 280 | jffs2_mark_node_obsolete(c, jeb->first_node); | 
|  | 281 | spin_lock(&c->erase_completion_lock); | 
|  | 282 | } | 
|  | 283 |  | 
|  | 284 | D1(printk(KERN_DEBUG "jffs2_do_reserve_space(): Giving 0x%x bytes at 0x%x\n", *len, *ofs)); | 
|  | 285 | return 0; | 
|  | 286 | } | 
|  | 287 |  | 
|  | 288 | /** | 
|  | 289 | *	jffs2_add_physical_node_ref - add a physical node reference to the list | 
|  | 290 | *	@c: superblock info | 
|  | 291 | *	@new: new node reference to add | 
|  | 292 | *	@len: length of this physical node | 
|  | 293 | *	@dirty: dirty flag for new node | 
|  | 294 | * | 
|  | 295 | *	Should only be used to report nodes for which space has been allocated | 
|  | 296 | *	by jffs2_reserve_space. | 
|  | 297 | * | 
|  | 298 | *	Must be called with the alloc_sem held. | 
|  | 299 | */ | 
|  | 300 |  | 
|  | 301 | int jffs2_add_physical_node_ref(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *new) | 
|  | 302 | { | 
|  | 303 | struct jffs2_eraseblock *jeb; | 
|  | 304 | uint32_t len; | 
|  | 305 |  | 
|  | 306 | jeb = &c->blocks[new->flash_offset / c->sector_size]; | 
|  | 307 | len = ref_totlen(c, jeb, new); | 
|  | 308 |  | 
|  | 309 | D1(printk(KERN_DEBUG "jffs2_add_physical_node_ref(): Node at 0x%x(%d), size 0x%x\n", ref_offset(new), ref_flags(new), len)); | 
|  | 310 | #if 1 | 
|  | 311 | if (jeb != c->nextblock || (ref_offset(new)) != jeb->offset + (c->sector_size - jeb->free_size)) { | 
|  | 312 | printk(KERN_WARNING "argh. node added in wrong place\n"); | 
|  | 313 | jffs2_free_raw_node_ref(new); | 
|  | 314 | return -EINVAL; | 
|  | 315 | } | 
|  | 316 | #endif | 
|  | 317 | spin_lock(&c->erase_completion_lock); | 
|  | 318 |  | 
|  | 319 | if (!jeb->first_node) | 
|  | 320 | jeb->first_node = new; | 
|  | 321 | if (jeb->last_node) | 
|  | 322 | jeb->last_node->next_phys = new; | 
|  | 323 | jeb->last_node = new; | 
|  | 324 |  | 
|  | 325 | jeb->free_size -= len; | 
|  | 326 | c->free_size -= len; | 
|  | 327 | if (ref_obsolete(new)) { | 
|  | 328 | jeb->dirty_size += len; | 
|  | 329 | c->dirty_size += len; | 
|  | 330 | } else { | 
|  | 331 | jeb->used_size += len; | 
|  | 332 | c->used_size += len; | 
|  | 333 | } | 
|  | 334 |  | 
|  | 335 | if (!jeb->free_size && !jeb->dirty_size) { | 
|  | 336 | /* If it lives on the dirty_list, jffs2_reserve_space will put it there */ | 
|  | 337 | D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n", | 
|  | 338 | jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size)); | 
|  | 339 | if (jffs2_wbuf_dirty(c)) { | 
|  | 340 | /* Flush the last write in the block if it's outstanding */ | 
|  | 341 | spin_unlock(&c->erase_completion_lock); | 
|  | 342 | jffs2_flush_wbuf_pad(c); | 
|  | 343 | spin_lock(&c->erase_completion_lock); | 
|  | 344 | } | 
|  | 345 |  | 
|  | 346 | list_add_tail(&jeb->list, &c->clean_list); | 
|  | 347 | c->nextblock = NULL; | 
|  | 348 | } | 
|  | 349 | ACCT_SANITY_CHECK(c,jeb); | 
|  | 350 | D1(ACCT_PARANOIA_CHECK(jeb)); | 
|  | 351 |  | 
|  | 352 | spin_unlock(&c->erase_completion_lock); | 
|  | 353 |  | 
|  | 354 | return 0; | 
|  | 355 | } | 
|  | 356 |  | 
|  | 357 |  | 
|  | 358 | void jffs2_complete_reservation(struct jffs2_sb_info *c) | 
|  | 359 | { | 
|  | 360 | D1(printk(KERN_DEBUG "jffs2_complete_reservation()\n")); | 
|  | 361 | jffs2_garbage_collect_trigger(c); | 
|  | 362 | up(&c->alloc_sem); | 
|  | 363 | } | 
|  | 364 |  | 
|  | 365 | static inline int on_list(struct list_head *obj, struct list_head *head) | 
|  | 366 | { | 
|  | 367 | struct list_head *this; | 
|  | 368 |  | 
|  | 369 | list_for_each(this, head) { | 
|  | 370 | if (this == obj) { | 
|  | 371 | D1(printk("%p is on list at %p\n", obj, head)); | 
|  | 372 | return 1; | 
|  | 373 |  | 
|  | 374 | } | 
|  | 375 | } | 
|  | 376 | return 0; | 
|  | 377 | } | 
|  | 378 |  | 
|  | 379 | void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref) | 
|  | 380 | { | 
|  | 381 | struct jffs2_eraseblock *jeb; | 
|  | 382 | int blocknr; | 
|  | 383 | struct jffs2_unknown_node n; | 
|  | 384 | int ret, addedsize; | 
|  | 385 | size_t retlen; | 
|  | 386 |  | 
|  | 387 | if(!ref) { | 
|  | 388 | printk(KERN_NOTICE "EEEEEK. jffs2_mark_node_obsolete called with NULL node\n"); | 
|  | 389 | return; | 
|  | 390 | } | 
|  | 391 | if (ref_obsolete(ref)) { | 
|  | 392 | D1(printk(KERN_DEBUG "jffs2_mark_node_obsolete called with already obsolete node at 0x%08x\n", ref_offset(ref))); | 
|  | 393 | return; | 
|  | 394 | } | 
|  | 395 | blocknr = ref->flash_offset / c->sector_size; | 
|  | 396 | if (blocknr >= c->nr_blocks) { | 
|  | 397 | printk(KERN_NOTICE "raw node at 0x%08x is off the end of device!\n", ref->flash_offset); | 
|  | 398 | BUG(); | 
|  | 399 | } | 
|  | 400 | jeb = &c->blocks[blocknr]; | 
|  | 401 |  | 
|  | 402 | if (jffs2_can_mark_obsolete(c) && !jffs2_is_readonly(c) && | 
|  | 403 | !(c->flags & JFFS2_SB_FLAG_MOUNTING)) { | 
|  | 404 | /* Hm. This may confuse static lock analysis. If any of the above | 
|  | 405 | three conditions is false, we're going to return from this | 
|  | 406 | function without actually obliterating any nodes or freeing | 
|  | 407 | any jffs2_raw_node_refs. So we don't need to stop erases from | 
|  | 408 | happening, or protect against people holding an obsolete | 
|  | 409 | jffs2_raw_node_ref without the erase_completion_lock. */ | 
|  | 410 | down(&c->erase_free_sem); | 
|  | 411 | } | 
|  | 412 |  | 
|  | 413 | spin_lock(&c->erase_completion_lock); | 
|  | 414 |  | 
|  | 415 | if (ref_flags(ref) == REF_UNCHECKED) { | 
|  | 416 | D1(if (unlikely(jeb->unchecked_size < ref_totlen(c, jeb, ref))) { | 
|  | 417 | printk(KERN_NOTICE "raw unchecked node of size 0x%08x freed from erase block %d at 0x%08x, but unchecked_size was already 0x%08x\n", | 
|  | 418 | ref_totlen(c, jeb, ref), blocknr, ref->flash_offset, jeb->used_size); | 
|  | 419 | BUG(); | 
|  | 420 | }) | 
|  | 421 | D1(printk(KERN_DEBUG "Obsoleting previously unchecked node at 0x%08x of len %x: ", ref_offset(ref), ref_totlen(c, jeb, ref))); | 
|  | 422 | jeb->unchecked_size -= ref_totlen(c, jeb, ref); | 
|  | 423 | c->unchecked_size -= ref_totlen(c, jeb, ref); | 
|  | 424 | } else { | 
|  | 425 | D1(if (unlikely(jeb->used_size < ref_totlen(c, jeb, ref))) { | 
|  | 426 | printk(KERN_NOTICE "raw node of size 0x%08x freed from erase block %d at 0x%08x, but used_size was already 0x%08x\n", | 
|  | 427 | ref_totlen(c, jeb, ref), blocknr, ref->flash_offset, jeb->used_size); | 
|  | 428 | BUG(); | 
|  | 429 | }) | 
|  | 430 | D1(printk(KERN_DEBUG "Obsoleting node at 0x%08x of len %x: ", ref_offset(ref), ref_totlen(c, jeb, ref))); | 
|  | 431 | jeb->used_size -= ref_totlen(c, jeb, ref); | 
|  | 432 | c->used_size -= ref_totlen(c, jeb, ref); | 
|  | 433 | } | 
|  | 434 |  | 
|  | 435 | // Take care, that wasted size is taken into concern | 
|  | 436 | if ((jeb->dirty_size || ISDIRTY(jeb->wasted_size + ref_totlen(c, jeb, ref))) && jeb != c->nextblock) { | 
|  | 437 | D1(printk("Dirtying\n")); | 
|  | 438 | addedsize = ref_totlen(c, jeb, ref); | 
|  | 439 | jeb->dirty_size += ref_totlen(c, jeb, ref); | 
|  | 440 | c->dirty_size += ref_totlen(c, jeb, ref); | 
|  | 441 |  | 
|  | 442 | /* Convert wasted space to dirty, if not a bad block */ | 
|  | 443 | if (jeb->wasted_size) { | 
|  | 444 | if (on_list(&jeb->list, &c->bad_used_list)) { | 
|  | 445 | D1(printk(KERN_DEBUG "Leaving block at %08x on the bad_used_list\n", | 
|  | 446 | jeb->offset)); | 
|  | 447 | addedsize = 0; /* To fool the refiling code later */ | 
|  | 448 | } else { | 
|  | 449 | D1(printk(KERN_DEBUG "Converting %d bytes of wasted space to dirty in block at %08x\n", | 
|  | 450 | jeb->wasted_size, jeb->offset)); | 
|  | 451 | addedsize += jeb->wasted_size; | 
|  | 452 | jeb->dirty_size += jeb->wasted_size; | 
|  | 453 | c->dirty_size += jeb->wasted_size; | 
|  | 454 | c->wasted_size -= jeb->wasted_size; | 
|  | 455 | jeb->wasted_size = 0; | 
|  | 456 | } | 
|  | 457 | } | 
|  | 458 | } else { | 
|  | 459 | D1(printk("Wasting\n")); | 
|  | 460 | addedsize = 0; | 
|  | 461 | jeb->wasted_size += ref_totlen(c, jeb, ref); | 
|  | 462 | c->wasted_size += ref_totlen(c, jeb, ref); | 
|  | 463 | } | 
|  | 464 | ref->flash_offset = ref_offset(ref) | REF_OBSOLETE; | 
|  | 465 |  | 
|  | 466 | ACCT_SANITY_CHECK(c, jeb); | 
|  | 467 |  | 
|  | 468 | D1(ACCT_PARANOIA_CHECK(jeb)); | 
|  | 469 |  | 
|  | 470 | if (c->flags & JFFS2_SB_FLAG_MOUNTING) { | 
|  | 471 | /* Mount in progress. Don't muck about with the block | 
|  | 472 | lists because they're not ready yet, and don't actually | 
|  | 473 | obliterate nodes that look obsolete. If they weren't | 
|  | 474 | marked obsolete on the flash at the time they _became_ | 
|  | 475 | obsolete, there was probably a reason for that. */ | 
|  | 476 | spin_unlock(&c->erase_completion_lock); | 
|  | 477 | /* We didn't lock the erase_free_sem */ | 
|  | 478 | return; | 
|  | 479 | } | 
|  | 480 |  | 
|  | 481 | if (jeb == c->nextblock) { | 
|  | 482 | D2(printk(KERN_DEBUG "Not moving nextblock 0x%08x to dirty/erase_pending list\n", jeb->offset)); | 
|  | 483 | } else if (!jeb->used_size && !jeb->unchecked_size) { | 
|  | 484 | if (jeb == c->gcblock) { | 
|  | 485 | D1(printk(KERN_DEBUG "gcblock at 0x%08x completely dirtied. Clearing gcblock...\n", jeb->offset)); | 
|  | 486 | c->gcblock = NULL; | 
|  | 487 | } else { | 
|  | 488 | D1(printk(KERN_DEBUG "Eraseblock at 0x%08x completely dirtied. Removing from (dirty?) list...\n", jeb->offset)); | 
|  | 489 | list_del(&jeb->list); | 
|  | 490 | } | 
|  | 491 | if (jffs2_wbuf_dirty(c)) { | 
|  | 492 | D1(printk(KERN_DEBUG "...and adding to erasable_pending_wbuf_list\n")); | 
|  | 493 | list_add_tail(&jeb->list, &c->erasable_pending_wbuf_list); | 
|  | 494 | } else { | 
|  | 495 | if (jiffies & 127) { | 
|  | 496 | /* Most of the time, we just erase it immediately. Otherwise we | 
|  | 497 | spend ages scanning it on mount, etc. */ | 
|  | 498 | D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n")); | 
|  | 499 | list_add_tail(&jeb->list, &c->erase_pending_list); | 
|  | 500 | c->nr_erasing_blocks++; | 
|  | 501 | jffs2_erase_pending_trigger(c); | 
|  | 502 | } else { | 
|  | 503 | /* Sometimes, however, we leave it elsewhere so it doesn't get | 
|  | 504 | immediately reused, and we spread the load a bit. */ | 
|  | 505 | D1(printk(KERN_DEBUG "...and adding to erasable_list\n")); | 
|  | 506 | list_add_tail(&jeb->list, &c->erasable_list); | 
|  | 507 | } | 
|  | 508 | } | 
|  | 509 | D1(printk(KERN_DEBUG "Done OK\n")); | 
|  | 510 | } else if (jeb == c->gcblock) { | 
|  | 511 | D2(printk(KERN_DEBUG "Not moving gcblock 0x%08x to dirty_list\n", jeb->offset)); | 
|  | 512 | } else if (ISDIRTY(jeb->dirty_size) && !ISDIRTY(jeb->dirty_size - addedsize)) { | 
|  | 513 | D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is freshly dirtied. Removing from clean list...\n", jeb->offset)); | 
|  | 514 | list_del(&jeb->list); | 
|  | 515 | D1(printk(KERN_DEBUG "...and adding to dirty_list\n")); | 
|  | 516 | list_add_tail(&jeb->list, &c->dirty_list); | 
|  | 517 | } else if (VERYDIRTY(c, jeb->dirty_size) && | 
|  | 518 | !VERYDIRTY(c, jeb->dirty_size - addedsize)) { | 
|  | 519 | D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is now very dirty. Removing from dirty list...\n", jeb->offset)); | 
|  | 520 | list_del(&jeb->list); | 
|  | 521 | D1(printk(KERN_DEBUG "...and adding to very_dirty_list\n")); | 
|  | 522 | list_add_tail(&jeb->list, &c->very_dirty_list); | 
|  | 523 | } else { | 
|  | 524 | D1(printk(KERN_DEBUG "Eraseblock at 0x%08x not moved anywhere. (free 0x%08x, dirty 0x%08x, used 0x%08x)\n", | 
|  | 525 | jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size)); | 
|  | 526 | } | 
|  | 527 |  | 
|  | 528 | spin_unlock(&c->erase_completion_lock); | 
|  | 529 |  | 
|  | 530 | if (!jffs2_can_mark_obsolete(c) || jffs2_is_readonly(c)) { | 
|  | 531 | /* We didn't lock the erase_free_sem */ | 
|  | 532 | return; | 
|  | 533 | } | 
|  | 534 |  | 
|  | 535 | /* The erase_free_sem is locked, and has been since before we marked the node obsolete | 
|  | 536 | and potentially put its eraseblock onto the erase_pending_list. Thus, we know that | 
|  | 537 | the block hasn't _already_ been erased, and that 'ref' itself hasn't been freed yet | 
|  | 538 | by jffs2_free_all_node_refs() in erase.c. Which is nice. */ | 
|  | 539 |  | 
|  | 540 | D1(printk(KERN_DEBUG "obliterating obsoleted node at 0x%08x\n", ref_offset(ref))); | 
|  | 541 | ret = jffs2_flash_read(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n); | 
|  | 542 | if (ret) { | 
|  | 543 | printk(KERN_WARNING "Read error reading from obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret); | 
|  | 544 | goto out_erase_sem; | 
|  | 545 | } | 
|  | 546 | if (retlen != sizeof(n)) { | 
|  | 547 | printk(KERN_WARNING "Short read from obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen); | 
|  | 548 | goto out_erase_sem; | 
|  | 549 | } | 
|  | 550 | if (PAD(je32_to_cpu(n.totlen)) != PAD(ref_totlen(c, jeb, ref))) { | 
|  | 551 | printk(KERN_WARNING "Node totlen on flash (0x%08x) != totlen from node ref (0x%08x)\n", je32_to_cpu(n.totlen), ref_totlen(c, jeb, ref)); | 
|  | 552 | goto out_erase_sem; | 
|  | 553 | } | 
|  | 554 | if (!(je16_to_cpu(n.nodetype) & JFFS2_NODE_ACCURATE)) { | 
|  | 555 | D1(printk(KERN_DEBUG "Node at 0x%08x was already marked obsolete (nodetype 0x%04x)\n", ref_offset(ref), je16_to_cpu(n.nodetype))); | 
|  | 556 | goto out_erase_sem; | 
|  | 557 | } | 
|  | 558 | /* XXX FIXME: This is ugly now */ | 
|  | 559 | n.nodetype = cpu_to_je16(je16_to_cpu(n.nodetype) & ~JFFS2_NODE_ACCURATE); | 
|  | 560 | ret = jffs2_flash_write(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n); | 
|  | 561 | if (ret) { | 
|  | 562 | printk(KERN_WARNING "Write error in obliterating obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret); | 
|  | 563 | goto out_erase_sem; | 
|  | 564 | } | 
|  | 565 | if (retlen != sizeof(n)) { | 
|  | 566 | printk(KERN_WARNING "Short write in obliterating obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen); | 
|  | 567 | goto out_erase_sem; | 
|  | 568 | } | 
|  | 569 |  | 
|  | 570 | /* Nodes which have been marked obsolete no longer need to be | 
|  | 571 | associated with any inode. Remove them from the per-inode list. | 
|  | 572 |  | 
|  | 573 | Note we can't do this for NAND at the moment because we need | 
|  | 574 | obsolete dirent nodes to stay on the lists, because of the | 
|  | 575 | horridness in jffs2_garbage_collect_deletion_dirent(). Also | 
|  | 576 | because we delete the inocache, and on NAND we need that to | 
|  | 577 | stay around until all the nodes are actually erased, in order | 
|  | 578 | to stop us from giving the same inode number to another newly | 
|  | 579 | created inode. */ | 
|  | 580 | if (ref->next_in_ino) { | 
|  | 581 | struct jffs2_inode_cache *ic; | 
|  | 582 | struct jffs2_raw_node_ref **p; | 
|  | 583 |  | 
|  | 584 | spin_lock(&c->erase_completion_lock); | 
|  | 585 |  | 
|  | 586 | ic = jffs2_raw_ref_to_ic(ref); | 
|  | 587 | for (p = &ic->nodes; (*p) != ref; p = &((*p)->next_in_ino)) | 
|  | 588 | ; | 
|  | 589 |  | 
|  | 590 | *p = ref->next_in_ino; | 
|  | 591 | ref->next_in_ino = NULL; | 
|  | 592 |  | 
|  | 593 | if (ic->nodes == (void *)ic) { | 
|  | 594 | D1(printk(KERN_DEBUG "inocache for ino #%u is all gone now. Freeing\n", ic->ino)); | 
|  | 595 | jffs2_del_ino_cache(c, ic); | 
|  | 596 | jffs2_free_inode_cache(ic); | 
|  | 597 | } | 
|  | 598 |  | 
|  | 599 | spin_unlock(&c->erase_completion_lock); | 
|  | 600 | } | 
|  | 601 |  | 
|  | 602 |  | 
|  | 603 | /* Merge with the next node in the physical list, if there is one | 
|  | 604 | and if it's also obsolete and if it doesn't belong to any inode */ | 
|  | 605 | if (ref->next_phys && ref_obsolete(ref->next_phys) && | 
|  | 606 | !ref->next_phys->next_in_ino) { | 
|  | 607 | struct jffs2_raw_node_ref *n = ref->next_phys; | 
|  | 608 |  | 
|  | 609 | spin_lock(&c->erase_completion_lock); | 
|  | 610 |  | 
|  | 611 | ref->__totlen += n->__totlen; | 
|  | 612 | ref->next_phys = n->next_phys; | 
|  | 613 | if (jeb->last_node == n) jeb->last_node = ref; | 
|  | 614 | if (jeb->gc_node == n) { | 
|  | 615 | /* gc will be happy continuing gc on this node */ | 
|  | 616 | jeb->gc_node=ref; | 
|  | 617 | } | 
|  | 618 | spin_unlock(&c->erase_completion_lock); | 
|  | 619 |  | 
|  | 620 | jffs2_free_raw_node_ref(n); | 
|  | 621 | } | 
|  | 622 |  | 
|  | 623 | /* Also merge with the previous node in the list, if there is one | 
|  | 624 | and that one is obsolete */ | 
|  | 625 | if (ref != jeb->first_node ) { | 
|  | 626 | struct jffs2_raw_node_ref *p = jeb->first_node; | 
|  | 627 |  | 
|  | 628 | spin_lock(&c->erase_completion_lock); | 
|  | 629 |  | 
|  | 630 | while (p->next_phys != ref) | 
|  | 631 | p = p->next_phys; | 
|  | 632 |  | 
|  | 633 | if (ref_obsolete(p) && !ref->next_in_ino) { | 
|  | 634 | p->__totlen += ref->__totlen; | 
|  | 635 | if (jeb->last_node == ref) { | 
|  | 636 | jeb->last_node = p; | 
|  | 637 | } | 
|  | 638 | if (jeb->gc_node == ref) { | 
|  | 639 | /* gc will be happy continuing gc on this node */ | 
|  | 640 | jeb->gc_node=p; | 
|  | 641 | } | 
|  | 642 | p->next_phys = ref->next_phys; | 
|  | 643 | jffs2_free_raw_node_ref(ref); | 
|  | 644 | } | 
|  | 645 | spin_unlock(&c->erase_completion_lock); | 
|  | 646 | } | 
|  | 647 | out_erase_sem: | 
|  | 648 | up(&c->erase_free_sem); | 
|  | 649 | } | 
|  | 650 |  | 
|  | 651 | #if CONFIG_JFFS2_FS_DEBUG >= 2 | 
|  | 652 | void jffs2_dump_block_lists(struct jffs2_sb_info *c) | 
|  | 653 | { | 
|  | 654 |  | 
|  | 655 |  | 
|  | 656 | printk(KERN_DEBUG "jffs2_dump_block_lists:\n"); | 
|  | 657 | printk(KERN_DEBUG "flash_size: %08x\n", c->flash_size); | 
|  | 658 | printk(KERN_DEBUG "used_size: %08x\n", c->used_size); | 
|  | 659 | printk(KERN_DEBUG "dirty_size: %08x\n", c->dirty_size); | 
|  | 660 | printk(KERN_DEBUG "wasted_size: %08x\n", c->wasted_size); | 
|  | 661 | printk(KERN_DEBUG "unchecked_size: %08x\n", c->unchecked_size); | 
|  | 662 | printk(KERN_DEBUG "free_size: %08x\n", c->free_size); | 
|  | 663 | printk(KERN_DEBUG "erasing_size: %08x\n", c->erasing_size); | 
|  | 664 | printk(KERN_DEBUG "bad_size: %08x\n", c->bad_size); | 
|  | 665 | printk(KERN_DEBUG "sector_size: %08x\n", c->sector_size); | 
|  | 666 | printk(KERN_DEBUG "jffs2_reserved_blocks size: %08x\n",c->sector_size * c->resv_blocks_write); | 
|  | 667 |  | 
|  | 668 | if (c->nextblock) { | 
|  | 669 | printk(KERN_DEBUG "nextblock: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", | 
|  | 670 | c->nextblock->offset, c->nextblock->used_size, c->nextblock->dirty_size, c->nextblock->wasted_size, c->nextblock->unchecked_size, c->nextblock->free_size); | 
|  | 671 | } else { | 
|  | 672 | printk(KERN_DEBUG "nextblock: NULL\n"); | 
|  | 673 | } | 
|  | 674 | if (c->gcblock) { | 
|  | 675 | printk(KERN_DEBUG "gcblock: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", | 
|  | 676 | c->gcblock->offset, c->gcblock->used_size, c->gcblock->dirty_size, c->gcblock->wasted_size, c->gcblock->unchecked_size, c->gcblock->free_size); | 
|  | 677 | } else { | 
|  | 678 | printk(KERN_DEBUG "gcblock: NULL\n"); | 
|  | 679 | } | 
|  | 680 | if (list_empty(&c->clean_list)) { | 
|  | 681 | printk(KERN_DEBUG "clean_list: empty\n"); | 
|  | 682 | } else { | 
|  | 683 | struct list_head *this; | 
|  | 684 | int	numblocks = 0; | 
|  | 685 | uint32_t dirty = 0; | 
|  | 686 |  | 
|  | 687 | list_for_each(this, &c->clean_list) { | 
|  | 688 | struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); | 
|  | 689 | numblocks ++; | 
|  | 690 | dirty += jeb->wasted_size; | 
|  | 691 | printk(KERN_DEBUG "clean_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size); | 
|  | 692 | } | 
|  | 693 | printk (KERN_DEBUG "Contains %d blocks with total wasted size %u, average wasted size: %u\n", numblocks, dirty, dirty / numblocks); | 
|  | 694 | } | 
|  | 695 | if (list_empty(&c->very_dirty_list)) { | 
|  | 696 | printk(KERN_DEBUG "very_dirty_list: empty\n"); | 
|  | 697 | } else { | 
|  | 698 | struct list_head *this; | 
|  | 699 | int	numblocks = 0; | 
|  | 700 | uint32_t dirty = 0; | 
|  | 701 |  | 
|  | 702 | list_for_each(this, &c->very_dirty_list) { | 
|  | 703 | struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); | 
|  | 704 | numblocks ++; | 
|  | 705 | dirty += jeb->dirty_size; | 
|  | 706 | printk(KERN_DEBUG "very_dirty_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", | 
|  | 707 | jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size); | 
|  | 708 | } | 
|  | 709 | printk (KERN_DEBUG "Contains %d blocks with total dirty size %u, average dirty size: %u\n", | 
|  | 710 | numblocks, dirty, dirty / numblocks); | 
|  | 711 | } | 
|  | 712 | if (list_empty(&c->dirty_list)) { | 
|  | 713 | printk(KERN_DEBUG "dirty_list: empty\n"); | 
|  | 714 | } else { | 
|  | 715 | struct list_head *this; | 
|  | 716 | int	numblocks = 0; | 
|  | 717 | uint32_t dirty = 0; | 
|  | 718 |  | 
|  | 719 | list_for_each(this, &c->dirty_list) { | 
|  | 720 | struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); | 
|  | 721 | numblocks ++; | 
|  | 722 | dirty += jeb->dirty_size; | 
|  | 723 | printk(KERN_DEBUG "dirty_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", | 
|  | 724 | jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size); | 
|  | 725 | } | 
|  | 726 | printk (KERN_DEBUG "Contains %d blocks with total dirty size %u, average dirty size: %u\n", | 
|  | 727 | numblocks, dirty, dirty / numblocks); | 
|  | 728 | } | 
|  | 729 | if (list_empty(&c->erasable_list)) { | 
|  | 730 | printk(KERN_DEBUG "erasable_list: empty\n"); | 
|  | 731 | } else { | 
|  | 732 | struct list_head *this; | 
|  | 733 |  | 
|  | 734 | list_for_each(this, &c->erasable_list) { | 
|  | 735 | struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); | 
|  | 736 | printk(KERN_DEBUG "erasable_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", | 
|  | 737 | jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size); | 
|  | 738 | } | 
|  | 739 | } | 
|  | 740 | if (list_empty(&c->erasing_list)) { | 
|  | 741 | printk(KERN_DEBUG "erasing_list: empty\n"); | 
|  | 742 | } else { | 
|  | 743 | struct list_head *this; | 
|  | 744 |  | 
|  | 745 | list_for_each(this, &c->erasing_list) { | 
|  | 746 | struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); | 
|  | 747 | printk(KERN_DEBUG "erasing_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", | 
|  | 748 | jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size); | 
|  | 749 | } | 
|  | 750 | } | 
|  | 751 | if (list_empty(&c->erase_pending_list)) { | 
|  | 752 | printk(KERN_DEBUG "erase_pending_list: empty\n"); | 
|  | 753 | } else { | 
|  | 754 | struct list_head *this; | 
|  | 755 |  | 
|  | 756 | list_for_each(this, &c->erase_pending_list) { | 
|  | 757 | struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); | 
|  | 758 | printk(KERN_DEBUG "erase_pending_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", | 
|  | 759 | jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size); | 
|  | 760 | } | 
|  | 761 | } | 
|  | 762 | if (list_empty(&c->erasable_pending_wbuf_list)) { | 
|  | 763 | printk(KERN_DEBUG "erasable_pending_wbuf_list: empty\n"); | 
|  | 764 | } else { | 
|  | 765 | struct list_head *this; | 
|  | 766 |  | 
|  | 767 | list_for_each(this, &c->erasable_pending_wbuf_list) { | 
|  | 768 | struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); | 
|  | 769 | printk(KERN_DEBUG "erasable_pending_wbuf_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", | 
|  | 770 | jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size); | 
|  | 771 | } | 
|  | 772 | } | 
|  | 773 | if (list_empty(&c->free_list)) { | 
|  | 774 | printk(KERN_DEBUG "free_list: empty\n"); | 
|  | 775 | } else { | 
|  | 776 | struct list_head *this; | 
|  | 777 |  | 
|  | 778 | list_for_each(this, &c->free_list) { | 
|  | 779 | struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); | 
|  | 780 | printk(KERN_DEBUG "free_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", | 
|  | 781 | jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size); | 
|  | 782 | } | 
|  | 783 | } | 
|  | 784 | if (list_empty(&c->bad_list)) { | 
|  | 785 | printk(KERN_DEBUG "bad_list: empty\n"); | 
|  | 786 | } else { | 
|  | 787 | struct list_head *this; | 
|  | 788 |  | 
|  | 789 | list_for_each(this, &c->bad_list) { | 
|  | 790 | struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); | 
|  | 791 | printk(KERN_DEBUG "bad_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", | 
|  | 792 | jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size); | 
|  | 793 | } | 
|  | 794 | } | 
|  | 795 | if (list_empty(&c->bad_used_list)) { | 
|  | 796 | printk(KERN_DEBUG "bad_used_list: empty\n"); | 
|  | 797 | } else { | 
|  | 798 | struct list_head *this; | 
|  | 799 |  | 
|  | 800 | list_for_each(this, &c->bad_used_list) { | 
|  | 801 | struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); | 
|  | 802 | printk(KERN_DEBUG "bad_used_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", | 
|  | 803 | jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size); | 
|  | 804 | } | 
|  | 805 | } | 
|  | 806 | } | 
|  | 807 | #endif /* CONFIG_JFFS2_FS_DEBUG */ | 
|  | 808 |  | 
|  | 809 | int jffs2_thread_should_wake(struct jffs2_sb_info *c) | 
|  | 810 | { | 
|  | 811 | int ret = 0; | 
|  | 812 | uint32_t dirty; | 
|  | 813 |  | 
|  | 814 | if (c->unchecked_size) { | 
|  | 815 | D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): unchecked_size %d, checked_ino #%d\n", | 
|  | 816 | c->unchecked_size, c->checked_ino)); | 
|  | 817 | return 1; | 
|  | 818 | } | 
|  | 819 |  | 
|  | 820 | /* dirty_size contains blocks on erase_pending_list | 
|  | 821 | * those blocks are counted in c->nr_erasing_blocks. | 
|  | 822 | * If one block is actually erased, it is not longer counted as dirty_space | 
|  | 823 | * but it is counted in c->nr_erasing_blocks, so we add it and subtract it | 
|  | 824 | * with c->nr_erasing_blocks * c->sector_size again. | 
|  | 825 | * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks | 
|  | 826 | * This helps us to force gc and pick eventually a clean block to spread the load. | 
|  | 827 | */ | 
|  | 828 | dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size; | 
|  | 829 |  | 
|  | 830 | if (c->nr_free_blocks + c->nr_erasing_blocks < c->resv_blocks_gctrigger && | 
|  | 831 | (dirty > c->nospc_dirty_size)) | 
|  | 832 | ret = 1; | 
|  | 833 |  | 
|  | 834 | D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): nr_free_blocks %d, nr_erasing_blocks %d, dirty_size 0x%x: %s\n", | 
|  | 835 | c->nr_free_blocks, c->nr_erasing_blocks, c->dirty_size, ret?"yes":"no")); | 
|  | 836 |  | 
|  | 837 | return ret; | 
|  | 838 | } |