| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * JFFS2 -- Journalling Flash File System, Version 2. | 
|  | 3 | * | 
|  | 4 | * Copyright (C) 2001-2003 Red Hat, Inc. | 
|  | 5 | * Copyright (C) 2004 Thomas Gleixner <tglx@linutronix.de> | 
|  | 6 | * | 
|  | 7 | * Created by David Woodhouse <dwmw2@infradead.org> | 
|  | 8 | * Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de> | 
|  | 9 | * | 
|  | 10 | * For licensing information, see the file 'LICENCE' in this directory. | 
|  | 11 | * | 
|  | 12 | * $Id: wbuf.c,v 1.82 2004/11/20 22:08:31 dwmw2 Exp $ | 
|  | 13 | * | 
|  | 14 | */ | 
|  | 15 |  | 
|  | 16 | #include <linux/kernel.h> | 
|  | 17 | #include <linux/slab.h> | 
|  | 18 | #include <linux/mtd/mtd.h> | 
|  | 19 | #include <linux/crc32.h> | 
|  | 20 | #include <linux/mtd/nand.h> | 
|  | 21 | #include "nodelist.h" | 
|  | 22 |  | 
|  | 23 | /* For testing write failures */ | 
|  | 24 | #undef BREAKME | 
|  | 25 | #undef BREAKMEHEADER | 
|  | 26 |  | 
|  | 27 | #ifdef BREAKME | 
|  | 28 | static unsigned char *brokenbuf; | 
|  | 29 | #endif | 
|  | 30 |  | 
|  | 31 | /* max. erase failures before we mark a block bad */ | 
|  | 32 | #define MAX_ERASE_FAILURES 	2 | 
|  | 33 |  | 
|  | 34 | /* two seconds timeout for timed wbuf-flushing */ | 
|  | 35 | #define WBUF_FLUSH_TIMEOUT	2 * HZ | 
|  | 36 |  | 
|  | 37 | struct jffs2_inodirty { | 
|  | 38 | uint32_t ino; | 
|  | 39 | struct jffs2_inodirty *next; | 
|  | 40 | }; | 
|  | 41 |  | 
|  | 42 | static struct jffs2_inodirty inodirty_nomem; | 
|  | 43 |  | 
|  | 44 | static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino) | 
|  | 45 | { | 
|  | 46 | struct jffs2_inodirty *this = c->wbuf_inodes; | 
|  | 47 |  | 
|  | 48 | /* If a malloc failed, consider _everything_ dirty */ | 
|  | 49 | if (this == &inodirty_nomem) | 
|  | 50 | return 1; | 
|  | 51 |  | 
|  | 52 | /* If ino == 0, _any_ non-GC writes mean 'yes' */ | 
|  | 53 | if (this && !ino) | 
|  | 54 | return 1; | 
|  | 55 |  | 
|  | 56 | /* Look to see if the inode in question is pending in the wbuf */ | 
|  | 57 | while (this) { | 
|  | 58 | if (this->ino == ino) | 
|  | 59 | return 1; | 
|  | 60 | this = this->next; | 
|  | 61 | } | 
|  | 62 | return 0; | 
|  | 63 | } | 
|  | 64 |  | 
|  | 65 | static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c) | 
|  | 66 | { | 
|  | 67 | struct jffs2_inodirty *this; | 
|  | 68 |  | 
|  | 69 | this = c->wbuf_inodes; | 
|  | 70 |  | 
|  | 71 | if (this != &inodirty_nomem) { | 
|  | 72 | while (this) { | 
|  | 73 | struct jffs2_inodirty *next = this->next; | 
|  | 74 | kfree(this); | 
|  | 75 | this = next; | 
|  | 76 | } | 
|  | 77 | } | 
|  | 78 | c->wbuf_inodes = NULL; | 
|  | 79 | } | 
|  | 80 |  | 
|  | 81 | static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino) | 
|  | 82 | { | 
|  | 83 | struct jffs2_inodirty *new; | 
|  | 84 |  | 
|  | 85 | /* Mark the superblock dirty so that kupdated will flush... */ | 
|  | 86 | OFNI_BS_2SFFJ(c)->s_dirt = 1; | 
|  | 87 |  | 
|  | 88 | if (jffs2_wbuf_pending_for_ino(c, ino)) | 
|  | 89 | return; | 
|  | 90 |  | 
|  | 91 | new = kmalloc(sizeof(*new), GFP_KERNEL); | 
|  | 92 | if (!new) { | 
|  | 93 | D1(printk(KERN_DEBUG "No memory to allocate inodirty. Fallback to all considered dirty\n")); | 
|  | 94 | jffs2_clear_wbuf_ino_list(c); | 
|  | 95 | c->wbuf_inodes = &inodirty_nomem; | 
|  | 96 | return; | 
|  | 97 | } | 
|  | 98 | new->ino = ino; | 
|  | 99 | new->next = c->wbuf_inodes; | 
|  | 100 | c->wbuf_inodes = new; | 
|  | 101 | return; | 
|  | 102 | } | 
|  | 103 |  | 
|  | 104 | static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c) | 
|  | 105 | { | 
|  | 106 | struct list_head *this, *next; | 
|  | 107 | static int n; | 
|  | 108 |  | 
|  | 109 | if (list_empty(&c->erasable_pending_wbuf_list)) | 
|  | 110 | return; | 
|  | 111 |  | 
|  | 112 | list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) { | 
|  | 113 | struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); | 
|  | 114 |  | 
|  | 115 | D1(printk(KERN_DEBUG "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n", jeb->offset)); | 
|  | 116 | list_del(this); | 
|  | 117 | if ((jiffies + (n++)) & 127) { | 
|  | 118 | /* Most of the time, we just erase it immediately. Otherwise we | 
|  | 119 | spend ages scanning it on mount, etc. */ | 
|  | 120 | D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n")); | 
|  | 121 | list_add_tail(&jeb->list, &c->erase_pending_list); | 
|  | 122 | c->nr_erasing_blocks++; | 
|  | 123 | jffs2_erase_pending_trigger(c); | 
|  | 124 | } else { | 
|  | 125 | /* Sometimes, however, we leave it elsewhere so it doesn't get | 
|  | 126 | immediately reused, and we spread the load a bit. */ | 
|  | 127 | D1(printk(KERN_DEBUG "...and adding to erasable_list\n")); | 
|  | 128 | list_add_tail(&jeb->list, &c->erasable_list); | 
|  | 129 | } | 
|  | 130 | } | 
|  | 131 | } | 
|  | 132 |  | 
|  | 133 | static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb) | 
|  | 134 | { | 
|  | 135 | D1(printk("About to refile bad block at %08x\n", jeb->offset)); | 
|  | 136 |  | 
|  | 137 | D2(jffs2_dump_block_lists(c)); | 
|  | 138 | /* File the existing block on the bad_used_list.... */ | 
|  | 139 | if (c->nextblock == jeb) | 
|  | 140 | c->nextblock = NULL; | 
|  | 141 | else /* Not sure this should ever happen... need more coffee */ | 
|  | 142 | list_del(&jeb->list); | 
|  | 143 | if (jeb->first_node) { | 
|  | 144 | D1(printk("Refiling block at %08x to bad_used_list\n", jeb->offset)); | 
|  | 145 | list_add(&jeb->list, &c->bad_used_list); | 
|  | 146 | } else { | 
|  | 147 | BUG(); | 
|  | 148 | /* It has to have had some nodes or we couldn't be here */ | 
|  | 149 | D1(printk("Refiling block at %08x to erase_pending_list\n", jeb->offset)); | 
|  | 150 | list_add(&jeb->list, &c->erase_pending_list); | 
|  | 151 | c->nr_erasing_blocks++; | 
|  | 152 | jffs2_erase_pending_trigger(c); | 
|  | 153 | } | 
|  | 154 | D2(jffs2_dump_block_lists(c)); | 
|  | 155 |  | 
|  | 156 | /* Adjust its size counts accordingly */ | 
|  | 157 | c->wasted_size += jeb->free_size; | 
|  | 158 | c->free_size -= jeb->free_size; | 
|  | 159 | jeb->wasted_size += jeb->free_size; | 
|  | 160 | jeb->free_size = 0; | 
|  | 161 |  | 
|  | 162 | ACCT_SANITY_CHECK(c,jeb); | 
|  | 163 | D1(ACCT_PARANOIA_CHECK(jeb)); | 
|  | 164 | } | 
|  | 165 |  | 
|  | 166 | /* Recover from failure to write wbuf. Recover the nodes up to the | 
|  | 167 | * wbuf, not the one which we were starting to try to write. */ | 
|  | 168 |  | 
|  | 169 | static void jffs2_wbuf_recover(struct jffs2_sb_info *c) | 
|  | 170 | { | 
|  | 171 | struct jffs2_eraseblock *jeb, *new_jeb; | 
|  | 172 | struct jffs2_raw_node_ref **first_raw, **raw; | 
|  | 173 | size_t retlen; | 
|  | 174 | int ret; | 
|  | 175 | unsigned char *buf; | 
|  | 176 | uint32_t start, end, ofs, len; | 
|  | 177 |  | 
|  | 178 | spin_lock(&c->erase_completion_lock); | 
|  | 179 |  | 
|  | 180 | jeb = &c->blocks[c->wbuf_ofs / c->sector_size]; | 
|  | 181 |  | 
|  | 182 | jffs2_block_refile(c, jeb); | 
|  | 183 |  | 
|  | 184 | /* Find the first node to be recovered, by skipping over every | 
|  | 185 | node which ends before the wbuf starts, or which is obsolete. */ | 
|  | 186 | first_raw = &jeb->first_node; | 
|  | 187 | while (*first_raw && | 
|  | 188 | (ref_obsolete(*first_raw) || | 
|  | 189 | (ref_offset(*first_raw)+ref_totlen(c, jeb, *first_raw)) < c->wbuf_ofs)) { | 
|  | 190 | D1(printk(KERN_DEBUG "Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n", | 
|  | 191 | ref_offset(*first_raw), ref_flags(*first_raw), | 
|  | 192 | (ref_offset(*first_raw) + ref_totlen(c, jeb, *first_raw)), | 
|  | 193 | c->wbuf_ofs)); | 
|  | 194 | first_raw = &(*first_raw)->next_phys; | 
|  | 195 | } | 
|  | 196 |  | 
|  | 197 | if (!*first_raw) { | 
|  | 198 | /* All nodes were obsolete. Nothing to recover. */ | 
|  | 199 | D1(printk(KERN_DEBUG "No non-obsolete nodes to be recovered. Just filing block bad\n")); | 
|  | 200 | spin_unlock(&c->erase_completion_lock); | 
|  | 201 | return; | 
|  | 202 | } | 
|  | 203 |  | 
|  | 204 | start = ref_offset(*first_raw); | 
|  | 205 | end = ref_offset(*first_raw) + ref_totlen(c, jeb, *first_raw); | 
|  | 206 |  | 
|  | 207 | /* Find the last node to be recovered */ | 
|  | 208 | raw = first_raw; | 
|  | 209 | while ((*raw)) { | 
|  | 210 | if (!ref_obsolete(*raw)) | 
|  | 211 | end = ref_offset(*raw) + ref_totlen(c, jeb, *raw); | 
|  | 212 |  | 
|  | 213 | raw = &(*raw)->next_phys; | 
|  | 214 | } | 
|  | 215 | spin_unlock(&c->erase_completion_lock); | 
|  | 216 |  | 
|  | 217 | D1(printk(KERN_DEBUG "wbuf recover %08x-%08x\n", start, end)); | 
|  | 218 |  | 
|  | 219 | buf = NULL; | 
|  | 220 | if (start < c->wbuf_ofs) { | 
|  | 221 | /* First affected node was already partially written. | 
|  | 222 | * Attempt to reread the old data into our buffer. */ | 
|  | 223 |  | 
|  | 224 | buf = kmalloc(end - start, GFP_KERNEL); | 
|  | 225 | if (!buf) { | 
|  | 226 | printk(KERN_CRIT "Malloc failure in wbuf recovery. Data loss ensues.\n"); | 
|  | 227 |  | 
|  | 228 | goto read_failed; | 
|  | 229 | } | 
|  | 230 |  | 
|  | 231 | /* Do the read... */ | 
|  | 232 | if (jffs2_cleanmarker_oob(c)) | 
|  | 233 | ret = c->mtd->read_ecc(c->mtd, start, c->wbuf_ofs - start, &retlen, buf, NULL, c->oobinfo); | 
|  | 234 | else | 
|  | 235 | ret = c->mtd->read(c->mtd, start, c->wbuf_ofs - start, &retlen, buf); | 
|  | 236 |  | 
|  | 237 | if (ret == -EBADMSG && retlen == c->wbuf_ofs - start) { | 
|  | 238 | /* ECC recovered */ | 
|  | 239 | ret = 0; | 
|  | 240 | } | 
|  | 241 | if (ret || retlen != c->wbuf_ofs - start) { | 
|  | 242 | printk(KERN_CRIT "Old data are already lost in wbuf recovery. Data loss ensues.\n"); | 
|  | 243 |  | 
|  | 244 | kfree(buf); | 
|  | 245 | buf = NULL; | 
|  | 246 | read_failed: | 
|  | 247 | first_raw = &(*first_raw)->next_phys; | 
|  | 248 | /* If this was the only node to be recovered, give up */ | 
|  | 249 | if (!(*first_raw)) | 
|  | 250 | return; | 
|  | 251 |  | 
|  | 252 | /* It wasn't. Go on and try to recover nodes complete in the wbuf */ | 
|  | 253 | start = ref_offset(*first_raw); | 
|  | 254 | } else { | 
|  | 255 | /* Read succeeded. Copy the remaining data from the wbuf */ | 
|  | 256 | memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs); | 
|  | 257 | } | 
|  | 258 | } | 
|  | 259 | /* OK... we're to rewrite (end-start) bytes of data from first_raw onwards. | 
|  | 260 | Either 'buf' contains the data, or we find it in the wbuf */ | 
|  | 261 |  | 
|  | 262 |  | 
|  | 263 | /* ... and get an allocation of space from a shiny new block instead */ | 
|  | 264 | ret = jffs2_reserve_space_gc(c, end-start, &ofs, &len); | 
|  | 265 | if (ret) { | 
|  | 266 | printk(KERN_WARNING "Failed to allocate space for wbuf recovery. Data loss ensues.\n"); | 
|  | 267 | if (buf) | 
|  | 268 | kfree(buf); | 
|  | 269 | return; | 
|  | 270 | } | 
|  | 271 | if (end-start >= c->wbuf_pagesize) { | 
|  | 272 | /* Need to do another write immediately. This, btw, | 
|  | 273 | means that we'll be writing from 'buf' and not from | 
|  | 274 | the wbuf. Since if we're writing from the wbuf there | 
|  | 275 | won't be more than a wbuf full of data, now will | 
|  | 276 | there? :) */ | 
|  | 277 |  | 
|  | 278 | uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize); | 
|  | 279 |  | 
|  | 280 | D1(printk(KERN_DEBUG "Write 0x%x bytes at 0x%08x in wbuf recover\n", | 
|  | 281 | towrite, ofs)); | 
|  | 282 |  | 
|  | 283 | #ifdef BREAKMEHEADER | 
|  | 284 | static int breakme; | 
|  | 285 | if (breakme++ == 20) { | 
|  | 286 | printk(KERN_NOTICE "Faking write error at 0x%08x\n", ofs); | 
|  | 287 | breakme = 0; | 
|  | 288 | c->mtd->write_ecc(c->mtd, ofs, towrite, &retlen, | 
|  | 289 | brokenbuf, NULL, c->oobinfo); | 
|  | 290 | ret = -EIO; | 
|  | 291 | } else | 
|  | 292 | #endif | 
|  | 293 | if (jffs2_cleanmarker_oob(c)) | 
|  | 294 | ret = c->mtd->write_ecc(c->mtd, ofs, towrite, &retlen, | 
|  | 295 | buf, NULL, c->oobinfo); | 
|  | 296 | else | 
|  | 297 | ret = c->mtd->write(c->mtd, ofs, towrite, &retlen, buf); | 
|  | 298 |  | 
|  | 299 | if (ret || retlen != towrite) { | 
|  | 300 | /* Argh. We tried. Really we did. */ | 
|  | 301 | printk(KERN_CRIT "Recovery of wbuf failed due to a second write error\n"); | 
|  | 302 | kfree(buf); | 
|  | 303 |  | 
|  | 304 | if (retlen) { | 
|  | 305 | struct jffs2_raw_node_ref *raw2; | 
|  | 306 |  | 
|  | 307 | raw2 = jffs2_alloc_raw_node_ref(); | 
|  | 308 | if (!raw2) | 
|  | 309 | return; | 
|  | 310 |  | 
|  | 311 | raw2->flash_offset = ofs | REF_OBSOLETE; | 
|  | 312 | raw2->__totlen = ref_totlen(c, jeb, *first_raw); | 
|  | 313 | raw2->next_phys = NULL; | 
|  | 314 | raw2->next_in_ino = NULL; | 
|  | 315 |  | 
|  | 316 | jffs2_add_physical_node_ref(c, raw2); | 
|  | 317 | } | 
|  | 318 | return; | 
|  | 319 | } | 
|  | 320 | printk(KERN_NOTICE "Recovery of wbuf succeeded to %08x\n", ofs); | 
|  | 321 |  | 
|  | 322 | c->wbuf_len = (end - start) - towrite; | 
|  | 323 | c->wbuf_ofs = ofs + towrite; | 
|  | 324 | memcpy(c->wbuf, buf + towrite, c->wbuf_len); | 
|  | 325 | /* Don't muck about with c->wbuf_inodes. False positives are harmless. */ | 
|  | 326 |  | 
|  | 327 | kfree(buf); | 
|  | 328 | } else { | 
|  | 329 | /* OK, now we're left with the dregs in whichever buffer we're using */ | 
|  | 330 | if (buf) { | 
|  | 331 | memcpy(c->wbuf, buf, end-start); | 
|  | 332 | kfree(buf); | 
|  | 333 | } else { | 
|  | 334 | memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start); | 
|  | 335 | } | 
|  | 336 | c->wbuf_ofs = ofs; | 
|  | 337 | c->wbuf_len = end - start; | 
|  | 338 | } | 
|  | 339 |  | 
|  | 340 | /* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */ | 
|  | 341 | new_jeb = &c->blocks[ofs / c->sector_size]; | 
|  | 342 |  | 
|  | 343 | spin_lock(&c->erase_completion_lock); | 
|  | 344 | if (new_jeb->first_node) { | 
|  | 345 | /* Odd, but possible with ST flash later maybe */ | 
|  | 346 | new_jeb->last_node->next_phys = *first_raw; | 
|  | 347 | } else { | 
|  | 348 | new_jeb->first_node = *first_raw; | 
|  | 349 | } | 
|  | 350 |  | 
|  | 351 | raw = first_raw; | 
|  | 352 | while (*raw) { | 
|  | 353 | uint32_t rawlen = ref_totlen(c, jeb, *raw); | 
|  | 354 |  | 
|  | 355 | D1(printk(KERN_DEBUG "Refiling block of %08x at %08x(%d) to %08x\n", | 
|  | 356 | rawlen, ref_offset(*raw), ref_flags(*raw), ofs)); | 
|  | 357 |  | 
|  | 358 | if (ref_obsolete(*raw)) { | 
|  | 359 | /* Shouldn't really happen much */ | 
|  | 360 | new_jeb->dirty_size += rawlen; | 
|  | 361 | new_jeb->free_size -= rawlen; | 
|  | 362 | c->dirty_size += rawlen; | 
|  | 363 | } else { | 
|  | 364 | new_jeb->used_size += rawlen; | 
|  | 365 | new_jeb->free_size -= rawlen; | 
|  | 366 | jeb->dirty_size += rawlen; | 
|  | 367 | jeb->used_size  -= rawlen; | 
|  | 368 | c->dirty_size += rawlen; | 
|  | 369 | } | 
|  | 370 | c->free_size -= rawlen; | 
|  | 371 | (*raw)->flash_offset = ofs | ref_flags(*raw); | 
|  | 372 | ofs += rawlen; | 
|  | 373 | new_jeb->last_node = *raw; | 
|  | 374 |  | 
|  | 375 | raw = &(*raw)->next_phys; | 
|  | 376 | } | 
|  | 377 |  | 
|  | 378 | /* Fix up the original jeb now it's on the bad_list */ | 
|  | 379 | *first_raw = NULL; | 
|  | 380 | if (first_raw == &jeb->first_node) { | 
|  | 381 | jeb->last_node = NULL; | 
|  | 382 | D1(printk(KERN_DEBUG "Failing block at %08x is now empty. Moving to erase_pending_list\n", jeb->offset)); | 
|  | 383 | list_del(&jeb->list); | 
|  | 384 | list_add(&jeb->list, &c->erase_pending_list); | 
|  | 385 | c->nr_erasing_blocks++; | 
|  | 386 | jffs2_erase_pending_trigger(c); | 
|  | 387 | } | 
|  | 388 | else | 
|  | 389 | jeb->last_node = container_of(first_raw, struct jffs2_raw_node_ref, next_phys); | 
|  | 390 |  | 
|  | 391 | ACCT_SANITY_CHECK(c,jeb); | 
|  | 392 | D1(ACCT_PARANOIA_CHECK(jeb)); | 
|  | 393 |  | 
|  | 394 | ACCT_SANITY_CHECK(c,new_jeb); | 
|  | 395 | D1(ACCT_PARANOIA_CHECK(new_jeb)); | 
|  | 396 |  | 
|  | 397 | spin_unlock(&c->erase_completion_lock); | 
|  | 398 |  | 
|  | 399 | D1(printk(KERN_DEBUG "wbuf recovery completed OK\n")); | 
|  | 400 | } | 
|  | 401 |  | 
|  | 402 | /* Meaning of pad argument: | 
|  | 403 | 0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway. | 
|  | 404 | 1: Pad, do not adjust nextblock free_size | 
|  | 405 | 2: Pad, adjust nextblock free_size | 
|  | 406 | */ | 
|  | 407 | #define NOPAD		0 | 
|  | 408 | #define PAD_NOACCOUNT	1 | 
|  | 409 | #define PAD_ACCOUNTING	2 | 
|  | 410 |  | 
|  | 411 | static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad) | 
|  | 412 | { | 
|  | 413 | int ret; | 
|  | 414 | size_t retlen; | 
|  | 415 |  | 
|  | 416 | /* Nothing to do if not NAND flash. In particular, we shouldn't | 
|  | 417 | del_timer() the timer we never initialised. */ | 
|  | 418 | if (jffs2_can_mark_obsolete(c)) | 
|  | 419 | return 0; | 
|  | 420 |  | 
|  | 421 | if (!down_trylock(&c->alloc_sem)) { | 
|  | 422 | up(&c->alloc_sem); | 
|  | 423 | printk(KERN_CRIT "jffs2_flush_wbuf() called with alloc_sem not locked!\n"); | 
|  | 424 | BUG(); | 
|  | 425 | } | 
|  | 426 |  | 
|  | 427 | if(!c->wbuf || !c->wbuf_len) | 
|  | 428 | return 0; | 
|  | 429 |  | 
|  | 430 | /* claim remaining space on the page | 
|  | 431 | this happens, if we have a change to a new block, | 
|  | 432 | or if fsync forces us to flush the writebuffer. | 
|  | 433 | if we have a switch to next page, we will not have | 
|  | 434 | enough remaining space for this. | 
|  | 435 | */ | 
|  | 436 | if (pad) { | 
|  | 437 | c->wbuf_len = PAD(c->wbuf_len); | 
|  | 438 |  | 
|  | 439 | /* Pad with JFFS2_DIRTY_BITMASK initially.  this helps out ECC'd NOR | 
|  | 440 | with 8 byte page size */ | 
|  | 441 | memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len); | 
|  | 442 |  | 
|  | 443 | if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) { | 
|  | 444 | struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len); | 
|  | 445 | padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); | 
|  | 446 | padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING); | 
|  | 447 | padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len); | 
|  | 448 | padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4)); | 
|  | 449 | } | 
|  | 450 | } | 
|  | 451 | /* else jffs2_flash_writev has actually filled in the rest of the | 
|  | 452 | buffer for us, and will deal with the node refs etc. later. */ | 
|  | 453 |  | 
|  | 454 | #ifdef BREAKME | 
|  | 455 | static int breakme; | 
|  | 456 | if (breakme++ == 20) { | 
|  | 457 | printk(KERN_NOTICE "Faking write error at 0x%08x\n", c->wbuf_ofs); | 
|  | 458 | breakme = 0; | 
|  | 459 | c->mtd->write_ecc(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, | 
|  | 460 | &retlen, brokenbuf, NULL, c->oobinfo); | 
|  | 461 | ret = -EIO; | 
|  | 462 | } else | 
|  | 463 | #endif | 
|  | 464 |  | 
|  | 465 | if (jffs2_cleanmarker_oob(c)) | 
|  | 466 | ret = c->mtd->write_ecc(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf, NULL, c->oobinfo); | 
|  | 467 | else | 
|  | 468 | ret = c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf); | 
|  | 469 |  | 
|  | 470 | if (ret || retlen != c->wbuf_pagesize) { | 
|  | 471 | if (ret) | 
|  | 472 | printk(KERN_WARNING "jffs2_flush_wbuf(): Write failed with %d\n",ret); | 
|  | 473 | else { | 
|  | 474 | printk(KERN_WARNING "jffs2_flush_wbuf(): Write was short: %zd instead of %d\n", | 
|  | 475 | retlen, c->wbuf_pagesize); | 
|  | 476 | ret = -EIO; | 
|  | 477 | } | 
|  | 478 |  | 
|  | 479 | jffs2_wbuf_recover(c); | 
|  | 480 |  | 
|  | 481 | return ret; | 
|  | 482 | } | 
|  | 483 |  | 
|  | 484 | spin_lock(&c->erase_completion_lock); | 
|  | 485 |  | 
|  | 486 | /* Adjust free size of the block if we padded. */ | 
|  | 487 | if (pad) { | 
|  | 488 | struct jffs2_eraseblock *jeb; | 
|  | 489 |  | 
|  | 490 | jeb = &c->blocks[c->wbuf_ofs / c->sector_size]; | 
|  | 491 |  | 
|  | 492 | D1(printk(KERN_DEBUG "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n", | 
|  | 493 | (jeb==c->nextblock)?"next":"", jeb->offset)); | 
|  | 494 |  | 
|  | 495 | /* wbuf_pagesize - wbuf_len is the amount of space that's to be | 
|  | 496 | padded. If there is less free space in the block than that, | 
|  | 497 | something screwed up */ | 
|  | 498 | if (jeb->free_size < (c->wbuf_pagesize - c->wbuf_len)) { | 
|  | 499 | printk(KERN_CRIT "jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n", | 
|  | 500 | c->wbuf_ofs, c->wbuf_len, c->wbuf_pagesize-c->wbuf_len); | 
|  | 501 | printk(KERN_CRIT "jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n", | 
|  | 502 | jeb->offset, jeb->free_size); | 
|  | 503 | BUG(); | 
|  | 504 | } | 
|  | 505 | jeb->free_size -= (c->wbuf_pagesize - c->wbuf_len); | 
|  | 506 | c->free_size -= (c->wbuf_pagesize - c->wbuf_len); | 
|  | 507 | jeb->wasted_size += (c->wbuf_pagesize - c->wbuf_len); | 
|  | 508 | c->wasted_size += (c->wbuf_pagesize - c->wbuf_len); | 
|  | 509 | } | 
|  | 510 |  | 
|  | 511 | /* Stick any now-obsoleted blocks on the erase_pending_list */ | 
|  | 512 | jffs2_refile_wbuf_blocks(c); | 
|  | 513 | jffs2_clear_wbuf_ino_list(c); | 
|  | 514 | spin_unlock(&c->erase_completion_lock); | 
|  | 515 |  | 
|  | 516 | memset(c->wbuf,0xff,c->wbuf_pagesize); | 
|  | 517 | /* adjust write buffer offset, else we get a non contiguous write bug */ | 
|  | 518 | c->wbuf_ofs += c->wbuf_pagesize; | 
|  | 519 | c->wbuf_len = 0; | 
|  | 520 | return 0; | 
|  | 521 | } | 
|  | 522 |  | 
|  | 523 | /* Trigger garbage collection to flush the write-buffer. | 
|  | 524 | If ino arg is zero, do it if _any_ real (i.e. not GC) writes are | 
|  | 525 | outstanding. If ino arg non-zero, do it only if a write for the | 
|  | 526 | given inode is outstanding. */ | 
|  | 527 | int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino) | 
|  | 528 | { | 
|  | 529 | uint32_t old_wbuf_ofs; | 
|  | 530 | uint32_t old_wbuf_len; | 
|  | 531 | int ret = 0; | 
|  | 532 |  | 
|  | 533 | D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino)); | 
|  | 534 |  | 
|  | 535 | down(&c->alloc_sem); | 
|  | 536 | if (!jffs2_wbuf_pending_for_ino(c, ino)) { | 
|  | 537 | D1(printk(KERN_DEBUG "Ino #%d not pending in wbuf. Returning\n", ino)); | 
|  | 538 | up(&c->alloc_sem); | 
|  | 539 | return 0; | 
|  | 540 | } | 
|  | 541 |  | 
|  | 542 | old_wbuf_ofs = c->wbuf_ofs; | 
|  | 543 | old_wbuf_len = c->wbuf_len; | 
|  | 544 |  | 
|  | 545 | if (c->unchecked_size) { | 
|  | 546 | /* GC won't make any progress for a while */ | 
|  | 547 | D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() padding. Not finished checking\n")); | 
|  | 548 | down_write(&c->wbuf_sem); | 
|  | 549 | ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); | 
|  | 550 | up_write(&c->wbuf_sem); | 
|  | 551 | } else while (old_wbuf_len && | 
|  | 552 | old_wbuf_ofs == c->wbuf_ofs) { | 
|  | 553 |  | 
|  | 554 | up(&c->alloc_sem); | 
|  | 555 |  | 
|  | 556 | D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() calls gc pass\n")); | 
|  | 557 |  | 
|  | 558 | ret = jffs2_garbage_collect_pass(c); | 
|  | 559 | if (ret) { | 
|  | 560 | /* GC failed. Flush it with padding instead */ | 
|  | 561 | down(&c->alloc_sem); | 
|  | 562 | down_write(&c->wbuf_sem); | 
|  | 563 | ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); | 
|  | 564 | up_write(&c->wbuf_sem); | 
|  | 565 | break; | 
|  | 566 | } | 
|  | 567 | down(&c->alloc_sem); | 
|  | 568 | } | 
|  | 569 |  | 
|  | 570 | D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() ends...\n")); | 
|  | 571 |  | 
|  | 572 | up(&c->alloc_sem); | 
|  | 573 | return ret; | 
|  | 574 | } | 
|  | 575 |  | 
|  | 576 | /* Pad write-buffer to end and write it, wasting space. */ | 
|  | 577 | int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c) | 
|  | 578 | { | 
|  | 579 | int ret; | 
|  | 580 |  | 
|  | 581 | down_write(&c->wbuf_sem); | 
|  | 582 | ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT); | 
|  | 583 | up_write(&c->wbuf_sem); | 
|  | 584 |  | 
|  | 585 | return ret; | 
|  | 586 | } | 
|  | 587 |  | 
|  | 588 | #define PAGE_DIV(x) ( (x) & (~(c->wbuf_pagesize - 1)) ) | 
|  | 589 | #define PAGE_MOD(x) ( (x) & (c->wbuf_pagesize - 1) ) | 
|  | 590 | int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs, unsigned long count, loff_t to, size_t *retlen, uint32_t ino) | 
|  | 591 | { | 
|  | 592 | struct kvec outvecs[3]; | 
|  | 593 | uint32_t totlen = 0; | 
|  | 594 | uint32_t split_ofs = 0; | 
|  | 595 | uint32_t old_totlen; | 
|  | 596 | int ret, splitvec = -1; | 
|  | 597 | int invec, outvec; | 
|  | 598 | size_t wbuf_retlen; | 
|  | 599 | unsigned char *wbuf_ptr; | 
|  | 600 | size_t donelen = 0; | 
|  | 601 | uint32_t outvec_to = to; | 
|  | 602 |  | 
|  | 603 | /* If not NAND flash, don't bother */ | 
|  | 604 | if (!c->wbuf) | 
|  | 605 | return jffs2_flash_direct_writev(c, invecs, count, to, retlen); | 
|  | 606 |  | 
|  | 607 | down_write(&c->wbuf_sem); | 
|  | 608 |  | 
|  | 609 | /* If wbuf_ofs is not initialized, set it to target address */ | 
|  | 610 | if (c->wbuf_ofs == 0xFFFFFFFF) { | 
|  | 611 | c->wbuf_ofs = PAGE_DIV(to); | 
|  | 612 | c->wbuf_len = PAGE_MOD(to); | 
|  | 613 | memset(c->wbuf,0xff,c->wbuf_pagesize); | 
|  | 614 | } | 
|  | 615 |  | 
|  | 616 | /* Fixup the wbuf if we are moving to a new eraseblock.  The checks below | 
|  | 617 | fail for ECC'd NOR because cleanmarker == 16, so a block starts at | 
|  | 618 | xxx0010.  */ | 
|  | 619 | if (jffs2_nor_ecc(c)) { | 
|  | 620 | if (((c->wbuf_ofs % c->sector_size) == 0) && !c->wbuf_len) { | 
|  | 621 | c->wbuf_ofs = PAGE_DIV(to); | 
|  | 622 | c->wbuf_len = PAGE_MOD(to); | 
|  | 623 | memset(c->wbuf,0xff,c->wbuf_pagesize); | 
|  | 624 | } | 
|  | 625 | } | 
|  | 626 |  | 
|  | 627 | /* Sanity checks on target address. | 
|  | 628 | It's permitted to write at PAD(c->wbuf_len+c->wbuf_ofs), | 
|  | 629 | and it's permitted to write at the beginning of a new | 
|  | 630 | erase block. Anything else, and you die. | 
|  | 631 | New block starts at xxx000c (0-b = block header) | 
|  | 632 | */ | 
|  | 633 | if ( (to & ~(c->sector_size-1)) != (c->wbuf_ofs & ~(c->sector_size-1)) ) { | 
|  | 634 | /* It's a write to a new block */ | 
|  | 635 | if (c->wbuf_len) { | 
|  | 636 | D1(printk(KERN_DEBUG "jffs2_flash_writev() to 0x%lx causes flush of wbuf at 0x%08x\n", (unsigned long)to, c->wbuf_ofs)); | 
|  | 637 | ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT); | 
|  | 638 | if (ret) { | 
|  | 639 | /* the underlying layer has to check wbuf_len to do the cleanup */ | 
|  | 640 | D1(printk(KERN_WARNING "jffs2_flush_wbuf() called from jffs2_flash_writev() failed %d\n", ret)); | 
|  | 641 | *retlen = 0; | 
|  | 642 | goto exit; | 
|  | 643 | } | 
|  | 644 | } | 
|  | 645 | /* set pointer to new block */ | 
|  | 646 | c->wbuf_ofs = PAGE_DIV(to); | 
|  | 647 | c->wbuf_len = PAGE_MOD(to); | 
|  | 648 | } | 
|  | 649 |  | 
|  | 650 | if (to != PAD(c->wbuf_ofs + c->wbuf_len)) { | 
|  | 651 | /* We're not writing immediately after the writebuffer. Bad. */ | 
|  | 652 | printk(KERN_CRIT "jffs2_flash_writev(): Non-contiguous write to %08lx\n", (unsigned long)to); | 
|  | 653 | if (c->wbuf_len) | 
|  | 654 | printk(KERN_CRIT "wbuf was previously %08x-%08x\n", | 
|  | 655 | c->wbuf_ofs, c->wbuf_ofs+c->wbuf_len); | 
|  | 656 | BUG(); | 
|  | 657 | } | 
|  | 658 |  | 
|  | 659 | /* Note outvecs[3] above. We know count is never greater than 2 */ | 
|  | 660 | if (count > 2) { | 
|  | 661 | printk(KERN_CRIT "jffs2_flash_writev(): count is %ld\n", count); | 
|  | 662 | BUG(); | 
|  | 663 | } | 
|  | 664 |  | 
|  | 665 | invec = 0; | 
|  | 666 | outvec = 0; | 
|  | 667 |  | 
|  | 668 | /* Fill writebuffer first, if already in use */ | 
|  | 669 | if (c->wbuf_len) { | 
|  | 670 | uint32_t invec_ofs = 0; | 
|  | 671 |  | 
|  | 672 | /* adjust alignment offset */ | 
|  | 673 | if (c->wbuf_len != PAGE_MOD(to)) { | 
|  | 674 | c->wbuf_len = PAGE_MOD(to); | 
|  | 675 | /* take care of alignment to next page */ | 
|  | 676 | if (!c->wbuf_len) | 
|  | 677 | c->wbuf_len = c->wbuf_pagesize; | 
|  | 678 | } | 
|  | 679 |  | 
|  | 680 | while(c->wbuf_len < c->wbuf_pagesize) { | 
|  | 681 | uint32_t thislen; | 
|  | 682 |  | 
|  | 683 | if (invec == count) | 
|  | 684 | goto alldone; | 
|  | 685 |  | 
|  | 686 | thislen = c->wbuf_pagesize - c->wbuf_len; | 
|  | 687 |  | 
|  | 688 | if (thislen >= invecs[invec].iov_len) | 
|  | 689 | thislen = invecs[invec].iov_len; | 
|  | 690 |  | 
|  | 691 | invec_ofs = thislen; | 
|  | 692 |  | 
|  | 693 | memcpy(c->wbuf + c->wbuf_len, invecs[invec].iov_base, thislen); | 
|  | 694 | c->wbuf_len += thislen; | 
|  | 695 | donelen += thislen; | 
|  | 696 | /* Get next invec, if actual did not fill the buffer */ | 
|  | 697 | if (c->wbuf_len < c->wbuf_pagesize) | 
|  | 698 | invec++; | 
|  | 699 | } | 
|  | 700 |  | 
|  | 701 | /* write buffer is full, flush buffer */ | 
|  | 702 | ret = __jffs2_flush_wbuf(c, NOPAD); | 
|  | 703 | if (ret) { | 
|  | 704 | /* the underlying layer has to check wbuf_len to do the cleanup */ | 
|  | 705 | D1(printk(KERN_WARNING "jffs2_flush_wbuf() called from jffs2_flash_writev() failed %d\n", ret)); | 
|  | 706 | /* Retlen zero to make sure our caller doesn't mark the space dirty. | 
|  | 707 | We've already done everything that's necessary */ | 
|  | 708 | *retlen = 0; | 
|  | 709 | goto exit; | 
|  | 710 | } | 
|  | 711 | outvec_to += donelen; | 
|  | 712 | c->wbuf_ofs = outvec_to; | 
|  | 713 |  | 
|  | 714 | /* All invecs done ? */ | 
|  | 715 | if (invec == count) | 
|  | 716 | goto alldone; | 
|  | 717 |  | 
|  | 718 | /* Set up the first outvec, containing the remainder of the | 
|  | 719 | invec we partially used */ | 
|  | 720 | if (invecs[invec].iov_len > invec_ofs) { | 
|  | 721 | outvecs[0].iov_base = invecs[invec].iov_base+invec_ofs; | 
|  | 722 | totlen = outvecs[0].iov_len = invecs[invec].iov_len-invec_ofs; | 
|  | 723 | if (totlen > c->wbuf_pagesize) { | 
|  | 724 | splitvec = outvec; | 
|  | 725 | split_ofs = outvecs[0].iov_len - PAGE_MOD(totlen); | 
|  | 726 | } | 
|  | 727 | outvec++; | 
|  | 728 | } | 
|  | 729 | invec++; | 
|  | 730 | } | 
|  | 731 |  | 
|  | 732 | /* OK, now we've flushed the wbuf and the start of the bits | 
|  | 733 | we have been asked to write, now to write the rest.... */ | 
|  | 734 |  | 
|  | 735 | /* totlen holds the amount of data still to be written */ | 
|  | 736 | old_totlen = totlen; | 
|  | 737 | for ( ; invec < count; invec++,outvec++ ) { | 
|  | 738 | outvecs[outvec].iov_base = invecs[invec].iov_base; | 
|  | 739 | totlen += outvecs[outvec].iov_len = invecs[invec].iov_len; | 
|  | 740 | if (PAGE_DIV(totlen) != PAGE_DIV(old_totlen)) { | 
|  | 741 | splitvec = outvec; | 
|  | 742 | split_ofs = outvecs[outvec].iov_len - PAGE_MOD(totlen); | 
|  | 743 | old_totlen = totlen; | 
|  | 744 | } | 
|  | 745 | } | 
|  | 746 |  | 
|  | 747 | /* Now the outvecs array holds all the remaining data to write */ | 
|  | 748 | /* Up to splitvec,split_ofs is to be written immediately. The rest | 
|  | 749 | goes into the (now-empty) wbuf */ | 
|  | 750 |  | 
|  | 751 | if (splitvec != -1) { | 
|  | 752 | uint32_t remainder; | 
|  | 753 |  | 
|  | 754 | remainder = outvecs[splitvec].iov_len - split_ofs; | 
|  | 755 | outvecs[splitvec].iov_len = split_ofs; | 
|  | 756 |  | 
|  | 757 | /* We did cross a page boundary, so we write some now */ | 
|  | 758 | if (jffs2_cleanmarker_oob(c)) | 
|  | 759 | ret = c->mtd->writev_ecc(c->mtd, outvecs, splitvec+1, outvec_to, &wbuf_retlen, NULL, c->oobinfo); | 
|  | 760 | else | 
|  | 761 | ret = jffs2_flash_direct_writev(c, outvecs, splitvec+1, outvec_to, &wbuf_retlen); | 
|  | 762 |  | 
|  | 763 | if (ret < 0 || wbuf_retlen != PAGE_DIV(totlen)) { | 
|  | 764 | /* At this point we have no problem, | 
|  | 765 | c->wbuf is empty. | 
|  | 766 | */ | 
|  | 767 | *retlen = donelen; | 
|  | 768 | goto exit; | 
|  | 769 | } | 
|  | 770 |  | 
|  | 771 | donelen += wbuf_retlen; | 
|  | 772 | c->wbuf_ofs = PAGE_DIV(outvec_to) + PAGE_DIV(totlen); | 
|  | 773 |  | 
|  | 774 | if (remainder) { | 
|  | 775 | outvecs[splitvec].iov_base += split_ofs; | 
|  | 776 | outvecs[splitvec].iov_len = remainder; | 
|  | 777 | } else { | 
|  | 778 | splitvec++; | 
|  | 779 | } | 
|  | 780 |  | 
|  | 781 | } else { | 
|  | 782 | splitvec = 0; | 
|  | 783 | } | 
|  | 784 |  | 
|  | 785 | /* Now splitvec points to the start of the bits we have to copy | 
|  | 786 | into the wbuf */ | 
|  | 787 | wbuf_ptr = c->wbuf; | 
|  | 788 |  | 
|  | 789 | for ( ; splitvec < outvec; splitvec++) { | 
|  | 790 | /* Don't copy the wbuf into itself */ | 
|  | 791 | if (outvecs[splitvec].iov_base == c->wbuf) | 
|  | 792 | continue; | 
|  | 793 | memcpy(wbuf_ptr, outvecs[splitvec].iov_base, outvecs[splitvec].iov_len); | 
|  | 794 | wbuf_ptr += outvecs[splitvec].iov_len; | 
|  | 795 | donelen += outvecs[splitvec].iov_len; | 
|  | 796 | } | 
|  | 797 | c->wbuf_len = wbuf_ptr - c->wbuf; | 
|  | 798 |  | 
|  | 799 | /* If there's a remainder in the wbuf and it's a non-GC write, | 
|  | 800 | remember that the wbuf affects this ino */ | 
|  | 801 | alldone: | 
|  | 802 | *retlen = donelen; | 
|  | 803 |  | 
|  | 804 | if (c->wbuf_len && ino) | 
|  | 805 | jffs2_wbuf_dirties_inode(c, ino); | 
|  | 806 |  | 
|  | 807 | ret = 0; | 
|  | 808 |  | 
|  | 809 | exit: | 
|  | 810 | up_write(&c->wbuf_sem); | 
|  | 811 | return ret; | 
|  | 812 | } | 
|  | 813 |  | 
|  | 814 | /* | 
|  | 815 | *	This is the entry for flash write. | 
|  | 816 | *	Check, if we work on NAND FLASH, if so build an kvec and write it via vritev | 
|  | 817 | */ | 
|  | 818 | int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, const u_char *buf) | 
|  | 819 | { | 
|  | 820 | struct kvec vecs[1]; | 
|  | 821 |  | 
|  | 822 | if (jffs2_can_mark_obsolete(c)) | 
|  | 823 | return c->mtd->write(c->mtd, ofs, len, retlen, buf); | 
|  | 824 |  | 
|  | 825 | vecs[0].iov_base = (unsigned char *) buf; | 
|  | 826 | vecs[0].iov_len = len; | 
|  | 827 | return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0); | 
|  | 828 | } | 
|  | 829 |  | 
|  | 830 | /* | 
|  | 831 | Handle readback from writebuffer and ECC failure return | 
|  | 832 | */ | 
|  | 833 | int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf) | 
|  | 834 | { | 
|  | 835 | loff_t	orbf = 0, owbf = 0, lwbf = 0; | 
|  | 836 | int	ret; | 
|  | 837 |  | 
|  | 838 | /* Read flash */ | 
|  | 839 | if (!jffs2_can_mark_obsolete(c)) { | 
|  | 840 | down_read(&c->wbuf_sem); | 
|  | 841 |  | 
|  | 842 | if (jffs2_cleanmarker_oob(c)) | 
|  | 843 | ret = c->mtd->read_ecc(c->mtd, ofs, len, retlen, buf, NULL, c->oobinfo); | 
|  | 844 | else | 
|  | 845 | ret = c->mtd->read(c->mtd, ofs, len, retlen, buf); | 
|  | 846 |  | 
|  | 847 | if ( (ret == -EBADMSG) && (*retlen == len) ) { | 
|  | 848 | printk(KERN_WARNING "mtd->read(0x%zx bytes from 0x%llx) returned ECC error\n", | 
|  | 849 | len, ofs); | 
|  | 850 | /* | 
|  | 851 | * We have the raw data without ECC correction in the buffer, maybe | 
|  | 852 | * we are lucky and all data or parts are correct. We check the node. | 
|  | 853 | * If data are corrupted node check will sort it out. | 
|  | 854 | * We keep this block, it will fail on write or erase and the we | 
|  | 855 | * mark it bad. Or should we do that now? But we should give him a chance. | 
|  | 856 | * Maybe we had a system crash or power loss before the ecc write or | 
|  | 857 | * a erase was completed. | 
|  | 858 | * So we return success. :) | 
|  | 859 | */ | 
|  | 860 | ret = 0; | 
|  | 861 | } | 
|  | 862 | } else | 
|  | 863 | return c->mtd->read(c->mtd, ofs, len, retlen, buf); | 
|  | 864 |  | 
|  | 865 | /* if no writebuffer available or write buffer empty, return */ | 
|  | 866 | if (!c->wbuf_pagesize || !c->wbuf_len) | 
|  | 867 | goto exit; | 
|  | 868 |  | 
|  | 869 | /* if we read in a different block, return */ | 
|  | 870 | if ( (ofs & ~(c->sector_size-1)) != (c->wbuf_ofs & ~(c->sector_size-1)) ) | 
|  | 871 | goto exit; | 
|  | 872 |  | 
|  | 873 | if (ofs >= c->wbuf_ofs) { | 
|  | 874 | owbf = (ofs - c->wbuf_ofs);	/* offset in write buffer */ | 
|  | 875 | if (owbf > c->wbuf_len)		/* is read beyond write buffer ? */ | 
|  | 876 | goto exit; | 
|  | 877 | lwbf = c->wbuf_len - owbf;	/* number of bytes to copy */ | 
|  | 878 | if (lwbf > len) | 
|  | 879 | lwbf = len; | 
|  | 880 | } else { | 
|  | 881 | orbf = (c->wbuf_ofs - ofs);	/* offset in read buffer */ | 
|  | 882 | if (orbf > len)			/* is write beyond write buffer ? */ | 
|  | 883 | goto exit; | 
|  | 884 | lwbf = len - orbf; 		/* number of bytes to copy */ | 
|  | 885 | if (lwbf > c->wbuf_len) | 
|  | 886 | lwbf = c->wbuf_len; | 
|  | 887 | } | 
|  | 888 | if (lwbf > 0) | 
|  | 889 | memcpy(buf+orbf,c->wbuf+owbf,lwbf); | 
|  | 890 |  | 
|  | 891 | exit: | 
|  | 892 | up_read(&c->wbuf_sem); | 
|  | 893 | return ret; | 
|  | 894 | } | 
|  | 895 |  | 
|  | 896 | /* | 
|  | 897 | *	Check, if the out of band area is empty | 
|  | 898 | */ | 
|  | 899 | int jffs2_check_oob_empty( struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int mode) | 
|  | 900 | { | 
|  | 901 | unsigned char *buf; | 
|  | 902 | int 	ret = 0; | 
|  | 903 | int	i,len,page; | 
|  | 904 | size_t  retlen; | 
|  | 905 | int	oob_size; | 
|  | 906 |  | 
|  | 907 | /* allocate a buffer for all oob data in this sector */ | 
|  | 908 | oob_size = c->mtd->oobsize; | 
|  | 909 | len = 4 * oob_size; | 
|  | 910 | buf = kmalloc(len, GFP_KERNEL); | 
|  | 911 | if (!buf) { | 
|  | 912 | printk(KERN_NOTICE "jffs2_check_oob_empty(): allocation of temporary data buffer for oob check failed\n"); | 
|  | 913 | return -ENOMEM; | 
|  | 914 | } | 
|  | 915 | /* | 
|  | 916 | * if mode = 0, we scan for a total empty oob area, else we have | 
|  | 917 | * to take care of the cleanmarker in the first page of the block | 
|  | 918 | */ | 
|  | 919 | ret = jffs2_flash_read_oob(c, jeb->offset, len , &retlen, buf); | 
|  | 920 | if (ret) { | 
|  | 921 | D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB failed %d for block at %08x\n", ret, jeb->offset)); | 
|  | 922 | goto out; | 
|  | 923 | } | 
|  | 924 |  | 
|  | 925 | if (retlen < len) { | 
|  | 926 | D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB return short read " | 
|  | 927 | "(%zd bytes not %d) for block at %08x\n", retlen, len, jeb->offset)); | 
|  | 928 | ret = -EIO; | 
|  | 929 | goto out; | 
|  | 930 | } | 
|  | 931 |  | 
|  | 932 | /* Special check for first page */ | 
|  | 933 | for(i = 0; i < oob_size ; i++) { | 
|  | 934 | /* Yeah, we know about the cleanmarker. */ | 
|  | 935 | if (mode && i >= c->fsdata_pos && | 
|  | 936 | i < c->fsdata_pos + c->fsdata_len) | 
|  | 937 | continue; | 
|  | 938 |  | 
|  | 939 | if (buf[i] != 0xFF) { | 
|  | 940 | D2(printk(KERN_DEBUG "Found %02x at %x in OOB for %08x\n", | 
|  | 941 | buf[page+i], page+i, jeb->offset)); | 
|  | 942 | ret = 1; | 
|  | 943 | goto out; | 
|  | 944 | } | 
|  | 945 | } | 
|  | 946 |  | 
|  | 947 | /* we know, we are aligned :) */ | 
|  | 948 | for (page = oob_size; page < len; page += sizeof(long)) { | 
|  | 949 | unsigned long dat = *(unsigned long *)(&buf[page]); | 
|  | 950 | if(dat != -1) { | 
|  | 951 | ret = 1; | 
|  | 952 | goto out; | 
|  | 953 | } | 
|  | 954 | } | 
|  | 955 |  | 
|  | 956 | out: | 
|  | 957 | kfree(buf); | 
|  | 958 |  | 
|  | 959 | return ret; | 
|  | 960 | } | 
|  | 961 |  | 
|  | 962 | /* | 
|  | 963 | *	Scan for a valid cleanmarker and for bad blocks | 
|  | 964 | *	For virtual blocks (concatenated physical blocks) check the cleanmarker | 
|  | 965 | *	only in the first page of the first physical block, but scan for bad blocks in all | 
|  | 966 | *	physical blocks | 
|  | 967 | */ | 
|  | 968 | int jffs2_check_nand_cleanmarker (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb) | 
|  | 969 | { | 
|  | 970 | struct jffs2_unknown_node n; | 
|  | 971 | unsigned char buf[2 * NAND_MAX_OOBSIZE]; | 
|  | 972 | unsigned char *p; | 
|  | 973 | int ret, i, cnt, retval = 0; | 
|  | 974 | size_t retlen, offset; | 
|  | 975 | int oob_size; | 
|  | 976 |  | 
|  | 977 | offset = jeb->offset; | 
|  | 978 | oob_size = c->mtd->oobsize; | 
|  | 979 |  | 
|  | 980 | /* Loop through the physical blocks */ | 
|  | 981 | for (cnt = 0; cnt < (c->sector_size / c->mtd->erasesize); cnt++) { | 
|  | 982 | /* Check first if the block is bad. */ | 
|  | 983 | if (c->mtd->block_isbad (c->mtd, offset)) { | 
|  | 984 | D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Bad block at %08x\n", jeb->offset)); | 
|  | 985 | return 2; | 
|  | 986 | } | 
|  | 987 | /* | 
|  | 988 | *    We read oob data from page 0 and 1 of the block. | 
|  | 989 | *    page 0 contains cleanmarker and badblock info | 
|  | 990 | *    page 1 contains failure count of this block | 
|  | 991 | */ | 
|  | 992 | ret = c->mtd->read_oob (c->mtd, offset, oob_size << 1, &retlen, buf); | 
|  | 993 |  | 
|  | 994 | if (ret) { | 
|  | 995 | D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Read OOB failed %d for block at %08x\n", ret, jeb->offset)); | 
|  | 996 | return ret; | 
|  | 997 | } | 
|  | 998 | if (retlen < (oob_size << 1)) { | 
|  | 999 | D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Read OOB return short read (%zd bytes not %d) for block at %08x\n", retlen, oob_size << 1, jeb->offset)); | 
|  | 1000 | return -EIO; | 
|  | 1001 | } | 
|  | 1002 |  | 
|  | 1003 | /* Check cleanmarker only on the first physical block */ | 
|  | 1004 | if (!cnt) { | 
|  | 1005 | n.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK); | 
|  | 1006 | n.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER); | 
|  | 1007 | n.totlen = cpu_to_je32 (8); | 
|  | 1008 | p = (unsigned char *) &n; | 
|  | 1009 |  | 
|  | 1010 | for (i = 0; i < c->fsdata_len; i++) { | 
|  | 1011 | if (buf[c->fsdata_pos + i] != p[i]) { | 
|  | 1012 | retval = 1; | 
|  | 1013 | } | 
|  | 1014 | } | 
|  | 1015 | D1(if (retval == 1) { | 
|  | 1016 | printk(KERN_WARNING "jffs2_check_nand_cleanmarker(): Cleanmarker node not detected in block at %08x\n", jeb->offset); | 
|  | 1017 | printk(KERN_WARNING "OOB at %08x was ", offset); | 
|  | 1018 | for (i=0; i < oob_size; i++) { | 
|  | 1019 | printk("%02x ", buf[i]); | 
|  | 1020 | } | 
|  | 1021 | printk("\n"); | 
|  | 1022 | }) | 
|  | 1023 | } | 
|  | 1024 | offset += c->mtd->erasesize; | 
|  | 1025 | } | 
|  | 1026 | return retval; | 
|  | 1027 | } | 
|  | 1028 |  | 
|  | 1029 | int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb) | 
|  | 1030 | { | 
|  | 1031 | struct 	jffs2_unknown_node n; | 
|  | 1032 | int 	ret; | 
|  | 1033 | size_t 	retlen; | 
|  | 1034 |  | 
|  | 1035 | n.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); | 
|  | 1036 | n.nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER); | 
|  | 1037 | n.totlen = cpu_to_je32(8); | 
|  | 1038 |  | 
|  | 1039 | ret = jffs2_flash_write_oob(c, jeb->offset + c->fsdata_pos, c->fsdata_len, &retlen, (unsigned char *)&n); | 
|  | 1040 |  | 
|  | 1041 | if (ret) { | 
|  | 1042 | D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): Write failed for block at %08x: error %d\n", jeb->offset, ret)); | 
|  | 1043 | return ret; | 
|  | 1044 | } | 
|  | 1045 | if (retlen != c->fsdata_len) { | 
|  | 1046 | D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): Short write for block at %08x: %zd not %d\n", jeb->offset, retlen, c->fsdata_len)); | 
|  | 1047 | return ret; | 
|  | 1048 | } | 
|  | 1049 | return 0; | 
|  | 1050 | } | 
|  | 1051 |  | 
|  | 1052 | /* | 
|  | 1053 | * On NAND we try to mark this block bad. If the block was erased more | 
|  | 1054 | * than MAX_ERASE_FAILURES we mark it finaly bad. | 
|  | 1055 | * Don't care about failures. This block remains on the erase-pending | 
|  | 1056 | * or badblock list as long as nobody manipulates the flash with | 
|  | 1057 | * a bootloader or something like that. | 
|  | 1058 | */ | 
|  | 1059 |  | 
|  | 1060 | int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset) | 
|  | 1061 | { | 
|  | 1062 | int 	ret; | 
|  | 1063 |  | 
|  | 1064 | /* if the count is < max, we try to write the counter to the 2nd page oob area */ | 
|  | 1065 | if( ++jeb->bad_count < MAX_ERASE_FAILURES) | 
|  | 1066 | return 0; | 
|  | 1067 |  | 
|  | 1068 | if (!c->mtd->block_markbad) | 
|  | 1069 | return 1; // What else can we do? | 
|  | 1070 |  | 
|  | 1071 | D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Marking bad block at %08x\n", bad_offset)); | 
|  | 1072 | ret = c->mtd->block_markbad(c->mtd, bad_offset); | 
|  | 1073 |  | 
|  | 1074 | if (ret) { | 
|  | 1075 | D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Write failed for block at %08x: error %d\n", jeb->offset, ret)); | 
|  | 1076 | return ret; | 
|  | 1077 | } | 
|  | 1078 | return 1; | 
|  | 1079 | } | 
|  | 1080 |  | 
|  | 1081 | #define NAND_JFFS2_OOB16_FSDALEN	8 | 
|  | 1082 |  | 
|  | 1083 | static struct nand_oobinfo jffs2_oobinfo_docecc = { | 
|  | 1084 | .useecc = MTD_NANDECC_PLACE, | 
|  | 1085 | .eccbytes = 6, | 
|  | 1086 | .eccpos = {0,1,2,3,4,5} | 
|  | 1087 | }; | 
|  | 1088 |  | 
|  | 1089 |  | 
|  | 1090 | static int jffs2_nand_set_oobinfo(struct jffs2_sb_info *c) | 
|  | 1091 | { | 
|  | 1092 | struct nand_oobinfo *oinfo = &c->mtd->oobinfo; | 
|  | 1093 |  | 
|  | 1094 | /* Do this only, if we have an oob buffer */ | 
|  | 1095 | if (!c->mtd->oobsize) | 
|  | 1096 | return 0; | 
|  | 1097 |  | 
|  | 1098 | /* Cleanmarker is out-of-band, so inline size zero */ | 
|  | 1099 | c->cleanmarker_size = 0; | 
|  | 1100 |  | 
|  | 1101 | /* Should we use autoplacement ? */ | 
|  | 1102 | if (oinfo && oinfo->useecc == MTD_NANDECC_AUTOPLACE) { | 
|  | 1103 | D1(printk(KERN_DEBUG "JFFS2 using autoplace on NAND\n")); | 
|  | 1104 | /* Get the position of the free bytes */ | 
|  | 1105 | if (!oinfo->oobfree[0][1]) { | 
|  | 1106 | printk (KERN_WARNING "jffs2_nand_set_oobinfo(): Eeep. Autoplacement selected and no empty space in oob\n"); | 
|  | 1107 | return -ENOSPC; | 
|  | 1108 | } | 
|  | 1109 | c->fsdata_pos = oinfo->oobfree[0][0]; | 
|  | 1110 | c->fsdata_len = oinfo->oobfree[0][1]; | 
|  | 1111 | if (c->fsdata_len > 8) | 
|  | 1112 | c->fsdata_len = 8; | 
|  | 1113 | } else { | 
|  | 1114 | /* This is just a legacy fallback and should go away soon */ | 
|  | 1115 | switch(c->mtd->ecctype) { | 
|  | 1116 | case MTD_ECC_RS_DiskOnChip: | 
|  | 1117 | printk(KERN_WARNING "JFFS2 using DiskOnChip hardware ECC without autoplacement. Fix it!\n"); | 
|  | 1118 | c->oobinfo = &jffs2_oobinfo_docecc; | 
|  | 1119 | c->fsdata_pos = 6; | 
|  | 1120 | c->fsdata_len = NAND_JFFS2_OOB16_FSDALEN; | 
|  | 1121 | c->badblock_pos = 15; | 
|  | 1122 | break; | 
|  | 1123 |  | 
|  | 1124 | default: | 
|  | 1125 | D1(printk(KERN_DEBUG "JFFS2 on NAND. No autoplacment info found\n")); | 
|  | 1126 | return -EINVAL; | 
|  | 1127 | } | 
|  | 1128 | } | 
|  | 1129 | return 0; | 
|  | 1130 | } | 
|  | 1131 |  | 
|  | 1132 | int jffs2_nand_flash_setup(struct jffs2_sb_info *c) | 
|  | 1133 | { | 
|  | 1134 | int res; | 
|  | 1135 |  | 
|  | 1136 | /* Initialise write buffer */ | 
|  | 1137 | init_rwsem(&c->wbuf_sem); | 
|  | 1138 | c->wbuf_pagesize = c->mtd->oobblock; | 
|  | 1139 | c->wbuf_ofs = 0xFFFFFFFF; | 
|  | 1140 |  | 
|  | 1141 | c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); | 
|  | 1142 | if (!c->wbuf) | 
|  | 1143 | return -ENOMEM; | 
|  | 1144 |  | 
|  | 1145 | res = jffs2_nand_set_oobinfo(c); | 
|  | 1146 |  | 
|  | 1147 | #ifdef BREAKME | 
|  | 1148 | if (!brokenbuf) | 
|  | 1149 | brokenbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); | 
|  | 1150 | if (!brokenbuf) { | 
|  | 1151 | kfree(c->wbuf); | 
|  | 1152 | return -ENOMEM; | 
|  | 1153 | } | 
|  | 1154 | memset(brokenbuf, 0xdb, c->wbuf_pagesize); | 
|  | 1155 | #endif | 
|  | 1156 | return res; | 
|  | 1157 | } | 
|  | 1158 |  | 
|  | 1159 | void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c) | 
|  | 1160 | { | 
|  | 1161 | kfree(c->wbuf); | 
|  | 1162 | } | 
|  | 1163 |  | 
|  | 1164 | #ifdef CONFIG_JFFS2_FS_NOR_ECC | 
|  | 1165 | int jffs2_nor_ecc_flash_setup(struct jffs2_sb_info *c) { | 
|  | 1166 | /* Cleanmarker is actually larger on the flashes */ | 
|  | 1167 | c->cleanmarker_size = 16; | 
|  | 1168 |  | 
|  | 1169 | /* Initialize write buffer */ | 
|  | 1170 | init_rwsem(&c->wbuf_sem); | 
|  | 1171 | c->wbuf_pagesize = c->mtd->eccsize; | 
|  | 1172 | c->wbuf_ofs = 0xFFFFFFFF; | 
|  | 1173 |  | 
|  | 1174 | c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); | 
|  | 1175 | if (!c->wbuf) | 
|  | 1176 | return -ENOMEM; | 
|  | 1177 |  | 
|  | 1178 | return 0; | 
|  | 1179 | } | 
|  | 1180 |  | 
|  | 1181 | void jffs2_nor_ecc_flash_cleanup(struct jffs2_sb_info *c) { | 
|  | 1182 | kfree(c->wbuf); | 
|  | 1183 | } | 
|  | 1184 | #endif |