| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  * Oct 15, 2000 Matt Domsch <Matt_Domsch@dell.com> | 
 | 3 |  * Nicer crc32 functions/docs submitted by linux@horizon.com.  Thanks! | 
 | 4 |  * Code was from the public domain, copyright abandoned.  Code was | 
 | 5 |  * subsequently included in the kernel, thus was re-licensed under the | 
 | 6 |  * GNU GPL v2. | 
 | 7 |  * | 
 | 8 |  * Oct 12, 2000 Matt Domsch <Matt_Domsch@dell.com> | 
 | 9 |  * Same crc32 function was used in 5 other places in the kernel. | 
 | 10 |  * I made one version, and deleted the others. | 
 | 11 |  * There are various incantations of crc32().  Some use a seed of 0 or ~0. | 
 | 12 |  * Some xor at the end with ~0.  The generic crc32() function takes | 
 | 13 |  * seed as an argument, and doesn't xor at the end.  Then individual | 
 | 14 |  * users can do whatever they need. | 
 | 15 |  *   drivers/net/smc9194.c uses seed ~0, doesn't xor with ~0. | 
 | 16 |  *   fs/jffs2 uses seed 0, doesn't xor with ~0. | 
 | 17 |  *   fs/partitions/efi.c uses seed ~0, xor's with ~0. | 
 | 18 |  * | 
 | 19 |  * This source code is licensed under the GNU General Public License, | 
 | 20 |  * Version 2.  See the file COPYING for more details. | 
 | 21 |  */ | 
 | 22 |  | 
 | 23 | #include <linux/crc32.h> | 
 | 24 | #include <linux/kernel.h> | 
 | 25 | #include <linux/module.h> | 
 | 26 | #include <linux/compiler.h> | 
 | 27 | #include <linux/types.h> | 
 | 28 | #include <linux/slab.h> | 
 | 29 | #include <linux/init.h> | 
 | 30 | #include <asm/atomic.h> | 
 | 31 | #include "crc32defs.h" | 
 | 32 | #if CRC_LE_BITS == 8 | 
 | 33 | #define tole(x) __constant_cpu_to_le32(x) | 
 | 34 | #define tobe(x) __constant_cpu_to_be32(x) | 
 | 35 | #else | 
 | 36 | #define tole(x) (x) | 
 | 37 | #define tobe(x) (x) | 
 | 38 | #endif | 
 | 39 | #include "crc32table.h" | 
 | 40 |  | 
 | 41 | MODULE_AUTHOR("Matt Domsch <Matt_Domsch@dell.com>"); | 
 | 42 | MODULE_DESCRIPTION("Ethernet CRC32 calculations"); | 
 | 43 | MODULE_LICENSE("GPL"); | 
 | 44 |  | 
 | 45 | #if CRC_LE_BITS == 1 | 
 | 46 | /* | 
 | 47 |  * In fact, the table-based code will work in this case, but it can be | 
 | 48 |  * simplified by inlining the table in ?: form. | 
 | 49 |  */ | 
 | 50 |  | 
 | 51 | /** | 
 | 52 |  * crc32_le() - Calculate bitwise little-endian Ethernet AUTODIN II CRC32 | 
 | 53 |  * @crc - seed value for computation.  ~0 for Ethernet, sometimes 0 for | 
 | 54 |  *        other uses, or the previous crc32 value if computing incrementally. | 
 | 55 |  * @p   - pointer to buffer over which CRC is run | 
 | 56 |  * @len - length of buffer @p | 
 | 57 |  *  | 
 | 58 |  */ | 
 | 59 | u32 __attribute_pure__ crc32_le(u32 crc, unsigned char const *p, size_t len) | 
 | 60 | { | 
 | 61 | 	int i; | 
 | 62 | 	while (len--) { | 
 | 63 | 		crc ^= *p++; | 
 | 64 | 		for (i = 0; i < 8; i++) | 
 | 65 | 			crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0); | 
 | 66 | 	} | 
 | 67 | 	return crc; | 
 | 68 | } | 
 | 69 | #else				/* Table-based approach */ | 
 | 70 |  | 
 | 71 | /** | 
 | 72 |  * crc32_le() - Calculate bitwise little-endian Ethernet AUTODIN II CRC32 | 
 | 73 |  * @crc - seed value for computation.  ~0 for Ethernet, sometimes 0 for | 
 | 74 |  *        other uses, or the previous crc32 value if computing incrementally. | 
 | 75 |  * @p   - pointer to buffer over which CRC is run | 
 | 76 |  * @len - length of buffer @p | 
 | 77 |  *  | 
 | 78 |  */ | 
 | 79 | u32 __attribute_pure__ crc32_le(u32 crc, unsigned char const *p, size_t len) | 
 | 80 | { | 
 | 81 | # if CRC_LE_BITS == 8 | 
 | 82 | 	const u32      *b =(u32 *)p; | 
 | 83 | 	const u32      *tab = crc32table_le; | 
 | 84 |  | 
 | 85 | # ifdef __LITTLE_ENDIAN | 
 | 86 | #  define DO_CRC(x) crc = tab[ (crc ^ (x)) & 255 ] ^ (crc>>8) | 
 | 87 | # else | 
 | 88 | #  define DO_CRC(x) crc = tab[ ((crc >> 24) ^ (x)) & 255] ^ (crc<<8) | 
 | 89 | # endif | 
 | 90 |  | 
 | 91 | 	crc = __cpu_to_le32(crc); | 
 | 92 | 	/* Align it */ | 
 | 93 | 	if(unlikely(((long)b)&3 && len)){ | 
 | 94 | 		do { | 
 | 95 | 			u8 *p = (u8 *)b; | 
 | 96 | 			DO_CRC(*p++); | 
 | 97 | 			b = (void *)p; | 
 | 98 | 		} while ((--len) && ((long)b)&3 ); | 
 | 99 | 	} | 
 | 100 | 	if(likely(len >= 4)){ | 
 | 101 | 		/* load data 32 bits wide, xor data 32 bits wide. */ | 
 | 102 | 		size_t save_len = len & 3; | 
 | 103 | 	        len = len >> 2; | 
 | 104 | 		--b; /* use pre increment below(*++b) for speed */ | 
 | 105 | 		do { | 
 | 106 | 			crc ^= *++b; | 
 | 107 | 			DO_CRC(0); | 
 | 108 | 			DO_CRC(0); | 
 | 109 | 			DO_CRC(0); | 
 | 110 | 			DO_CRC(0); | 
 | 111 | 		} while (--len); | 
 | 112 | 		b++; /* point to next byte(s) */ | 
 | 113 | 		len = save_len; | 
 | 114 | 	} | 
 | 115 | 	/* And the last few bytes */ | 
 | 116 | 	if(len){ | 
 | 117 | 		do { | 
 | 118 | 			u8 *p = (u8 *)b; | 
 | 119 | 			DO_CRC(*p++); | 
 | 120 | 			b = (void *)p; | 
 | 121 | 		} while (--len); | 
 | 122 | 	} | 
 | 123 |  | 
 | 124 | 	return __le32_to_cpu(crc); | 
 | 125 | #undef ENDIAN_SHIFT | 
 | 126 | #undef DO_CRC | 
 | 127 |  | 
 | 128 | # elif CRC_LE_BITS == 4 | 
 | 129 | 	while (len--) { | 
 | 130 | 		crc ^= *p++; | 
 | 131 | 		crc = (crc >> 4) ^ crc32table_le[crc & 15]; | 
 | 132 | 		crc = (crc >> 4) ^ crc32table_le[crc & 15]; | 
 | 133 | 	} | 
 | 134 | 	return crc; | 
 | 135 | # elif CRC_LE_BITS == 2 | 
 | 136 | 	while (len--) { | 
 | 137 | 		crc ^= *p++; | 
 | 138 | 		crc = (crc >> 2) ^ crc32table_le[crc & 3]; | 
 | 139 | 		crc = (crc >> 2) ^ crc32table_le[crc & 3]; | 
 | 140 | 		crc = (crc >> 2) ^ crc32table_le[crc & 3]; | 
 | 141 | 		crc = (crc >> 2) ^ crc32table_le[crc & 3]; | 
 | 142 | 	} | 
 | 143 | 	return crc; | 
 | 144 | # endif | 
 | 145 | } | 
 | 146 | #endif | 
 | 147 |  | 
 | 148 | #if CRC_BE_BITS == 1 | 
 | 149 | /* | 
 | 150 |  * In fact, the table-based code will work in this case, but it can be | 
 | 151 |  * simplified by inlining the table in ?: form. | 
 | 152 |  */ | 
 | 153 |  | 
 | 154 | /** | 
 | 155 |  * crc32_be() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32 | 
 | 156 |  * @crc - seed value for computation.  ~0 for Ethernet, sometimes 0 for | 
 | 157 |  *        other uses, or the previous crc32 value if computing incrementally. | 
 | 158 |  * @p   - pointer to buffer over which CRC is run | 
 | 159 |  * @len - length of buffer @p | 
 | 160 |  *  | 
 | 161 |  */ | 
 | 162 | u32 __attribute_pure__ crc32_be(u32 crc, unsigned char const *p, size_t len) | 
 | 163 | { | 
 | 164 | 	int i; | 
 | 165 | 	while (len--) { | 
 | 166 | 		crc ^= *p++ << 24; | 
 | 167 | 		for (i = 0; i < 8; i++) | 
 | 168 | 			crc = | 
 | 169 | 			    (crc << 1) ^ ((crc & 0x80000000) ? CRCPOLY_BE : | 
 | 170 | 					  0); | 
 | 171 | 	} | 
 | 172 | 	return crc; | 
 | 173 | } | 
 | 174 |  | 
 | 175 | #else				/* Table-based approach */ | 
 | 176 | /** | 
 | 177 |  * crc32_be() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32 | 
 | 178 |  * @crc - seed value for computation.  ~0 for Ethernet, sometimes 0 for | 
 | 179 |  *        other uses, or the previous crc32 value if computing incrementally. | 
 | 180 |  * @p   - pointer to buffer over which CRC is run | 
 | 181 |  * @len - length of buffer @p | 
 | 182 |  *  | 
 | 183 |  */ | 
 | 184 | u32 __attribute_pure__ crc32_be(u32 crc, unsigned char const *p, size_t len) | 
 | 185 | { | 
 | 186 | # if CRC_BE_BITS == 8 | 
 | 187 | 	const u32      *b =(u32 *)p; | 
 | 188 | 	const u32      *tab = crc32table_be; | 
 | 189 |  | 
 | 190 | # ifdef __LITTLE_ENDIAN | 
 | 191 | #  define DO_CRC(x) crc = tab[ (crc ^ (x)) & 255 ] ^ (crc>>8) | 
 | 192 | # else | 
 | 193 | #  define DO_CRC(x) crc = tab[ ((crc >> 24) ^ (x)) & 255] ^ (crc<<8) | 
 | 194 | # endif | 
 | 195 |  | 
 | 196 | 	crc = __cpu_to_be32(crc); | 
 | 197 | 	/* Align it */ | 
 | 198 | 	if(unlikely(((long)b)&3 && len)){ | 
 | 199 | 		do { | 
 | 200 | 			u8 *p = (u8 *)b; | 
 | 201 | 			DO_CRC(*p++); | 
 | 202 | 			b = (u32 *)p; | 
 | 203 | 		} while ((--len) && ((long)b)&3 ); | 
 | 204 | 	} | 
 | 205 | 	if(likely(len >= 4)){ | 
 | 206 | 		/* load data 32 bits wide, xor data 32 bits wide. */ | 
 | 207 | 		size_t save_len = len & 3; | 
 | 208 | 	        len = len >> 2; | 
 | 209 | 		--b; /* use pre increment below(*++b) for speed */ | 
 | 210 | 		do { | 
 | 211 | 			crc ^= *++b; | 
 | 212 | 			DO_CRC(0); | 
 | 213 | 			DO_CRC(0); | 
 | 214 | 			DO_CRC(0); | 
 | 215 | 			DO_CRC(0); | 
 | 216 | 		} while (--len); | 
 | 217 | 		b++; /* point to next byte(s) */ | 
 | 218 | 		len = save_len; | 
 | 219 | 	} | 
 | 220 | 	/* And the last few bytes */ | 
 | 221 | 	if(len){ | 
 | 222 | 		do { | 
 | 223 | 			u8 *p = (u8 *)b; | 
 | 224 | 			DO_CRC(*p++); | 
 | 225 | 			b = (void *)p; | 
 | 226 | 		} while (--len); | 
 | 227 | 	} | 
 | 228 | 	return __be32_to_cpu(crc); | 
 | 229 | #undef ENDIAN_SHIFT | 
 | 230 | #undef DO_CRC | 
 | 231 |  | 
 | 232 | # elif CRC_BE_BITS == 4 | 
 | 233 | 	while (len--) { | 
 | 234 | 		crc ^= *p++ << 24; | 
 | 235 | 		crc = (crc << 4) ^ crc32table_be[crc >> 28]; | 
 | 236 | 		crc = (crc << 4) ^ crc32table_be[crc >> 28]; | 
 | 237 | 	} | 
 | 238 | 	return crc; | 
 | 239 | # elif CRC_BE_BITS == 2 | 
 | 240 | 	while (len--) { | 
 | 241 | 		crc ^= *p++ << 24; | 
 | 242 | 		crc = (crc << 2) ^ crc32table_be[crc >> 30]; | 
 | 243 | 		crc = (crc << 2) ^ crc32table_be[crc >> 30]; | 
 | 244 | 		crc = (crc << 2) ^ crc32table_be[crc >> 30]; | 
 | 245 | 		crc = (crc << 2) ^ crc32table_be[crc >> 30]; | 
 | 246 | 	} | 
 | 247 | 	return crc; | 
 | 248 | # endif | 
 | 249 | } | 
 | 250 | #endif | 
 | 251 |  | 
 | 252 | u32 bitreverse(u32 x) | 
 | 253 | { | 
 | 254 | 	x = (x >> 16) | (x << 16); | 
 | 255 | 	x = (x >> 8 & 0x00ff00ff) | (x << 8 & 0xff00ff00); | 
 | 256 | 	x = (x >> 4 & 0x0f0f0f0f) | (x << 4 & 0xf0f0f0f0); | 
 | 257 | 	x = (x >> 2 & 0x33333333) | (x << 2 & 0xcccccccc); | 
 | 258 | 	x = (x >> 1 & 0x55555555) | (x << 1 & 0xaaaaaaaa); | 
 | 259 | 	return x; | 
 | 260 | } | 
 | 261 |  | 
 | 262 | EXPORT_SYMBOL(crc32_le); | 
 | 263 | EXPORT_SYMBOL(crc32_be); | 
 | 264 | EXPORT_SYMBOL(bitreverse); | 
 | 265 |  | 
 | 266 | /* | 
 | 267 |  * A brief CRC tutorial. | 
 | 268 |  * | 
 | 269 |  * A CRC is a long-division remainder.  You add the CRC to the message, | 
 | 270 |  * and the whole thing (message+CRC) is a multiple of the given | 
 | 271 |  * CRC polynomial.  To check the CRC, you can either check that the | 
 | 272 |  * CRC matches the recomputed value, *or* you can check that the | 
 | 273 |  * remainder computed on the message+CRC is 0.  This latter approach | 
 | 274 |  * is used by a lot of hardware implementations, and is why so many | 
 | 275 |  * protocols put the end-of-frame flag after the CRC. | 
 | 276 |  * | 
 | 277 |  * It's actually the same long division you learned in school, except that | 
 | 278 |  * - We're working in binary, so the digits are only 0 and 1, and | 
 | 279 |  * - When dividing polynomials, there are no carries.  Rather than add and | 
 | 280 |  *   subtract, we just xor.  Thus, we tend to get a bit sloppy about | 
 | 281 |  *   the difference between adding and subtracting. | 
 | 282 |  * | 
 | 283 |  * A 32-bit CRC polynomial is actually 33 bits long.  But since it's | 
 | 284 |  * 33 bits long, bit 32 is always going to be set, so usually the CRC | 
 | 285 |  * is written in hex with the most significant bit omitted.  (If you're | 
 | 286 |  * familiar with the IEEE 754 floating-point format, it's the same idea.) | 
 | 287 |  * | 
 | 288 |  * Note that a CRC is computed over a string of *bits*, so you have | 
 | 289 |  * to decide on the endianness of the bits within each byte.  To get | 
 | 290 |  * the best error-detecting properties, this should correspond to the | 
 | 291 |  * order they're actually sent.  For example, standard RS-232 serial is | 
 | 292 |  * little-endian; the most significant bit (sometimes used for parity) | 
 | 293 |  * is sent last.  And when appending a CRC word to a message, you should | 
 | 294 |  * do it in the right order, matching the endianness. | 
 | 295 |  * | 
 | 296 |  * Just like with ordinary division, the remainder is always smaller than | 
 | 297 |  * the divisor (the CRC polynomial) you're dividing by.  Each step of the | 
 | 298 |  * division, you take one more digit (bit) of the dividend and append it | 
 | 299 |  * to the current remainder.  Then you figure out the appropriate multiple | 
 | 300 |  * of the divisor to subtract to being the remainder back into range. | 
 | 301 |  * In binary, it's easy - it has to be either 0 or 1, and to make the | 
 | 302 |  * XOR cancel, it's just a copy of bit 32 of the remainder. | 
 | 303 |  * | 
 | 304 |  * When computing a CRC, we don't care about the quotient, so we can | 
 | 305 |  * throw the quotient bit away, but subtract the appropriate multiple of | 
 | 306 |  * the polynomial from the remainder and we're back to where we started, | 
 | 307 |  * ready to process the next bit. | 
 | 308 |  * | 
 | 309 |  * A big-endian CRC written this way would be coded like: | 
 | 310 |  * for (i = 0; i < input_bits; i++) { | 
 | 311 |  * 	multiple = remainder & 0x80000000 ? CRCPOLY : 0; | 
 | 312 |  * 	remainder = (remainder << 1 | next_input_bit()) ^ multiple; | 
 | 313 |  * } | 
 | 314 |  * Notice how, to get at bit 32 of the shifted remainder, we look | 
 | 315 |  * at bit 31 of the remainder *before* shifting it. | 
 | 316 |  * | 
 | 317 |  * But also notice how the next_input_bit() bits we're shifting into | 
 | 318 |  * the remainder don't actually affect any decision-making until | 
 | 319 |  * 32 bits later.  Thus, the first 32 cycles of this are pretty boring. | 
 | 320 |  * Also, to add the CRC to a message, we need a 32-bit-long hole for it at | 
 | 321 |  * the end, so we have to add 32 extra cycles shifting in zeros at the | 
 | 322 |  * end of every message, | 
 | 323 |  * | 
 | 324 |  * So the standard trick is to rearrage merging in the next_input_bit() | 
 | 325 |  * until the moment it's needed.  Then the first 32 cycles can be precomputed, | 
 | 326 |  * and merging in the final 32 zero bits to make room for the CRC can be | 
 | 327 |  * skipped entirely. | 
 | 328 |  * This changes the code to: | 
 | 329 |  * for (i = 0; i < input_bits; i++) { | 
 | 330 |  *      remainder ^= next_input_bit() << 31; | 
 | 331 |  * 	multiple = (remainder & 0x80000000) ? CRCPOLY : 0; | 
 | 332 |  * 	remainder = (remainder << 1) ^ multiple; | 
 | 333 |  * } | 
 | 334 |  * With this optimization, the little-endian code is simpler: | 
 | 335 |  * for (i = 0; i < input_bits; i++) { | 
 | 336 |  *      remainder ^= next_input_bit(); | 
 | 337 |  * 	multiple = (remainder & 1) ? CRCPOLY : 0; | 
 | 338 |  * 	remainder = (remainder >> 1) ^ multiple; | 
 | 339 |  * } | 
 | 340 |  * | 
 | 341 |  * Note that the other details of endianness have been hidden in CRCPOLY | 
 | 342 |  * (which must be bit-reversed) and next_input_bit(). | 
 | 343 |  * | 
 | 344 |  * However, as long as next_input_bit is returning the bits in a sensible | 
 | 345 |  * order, we can actually do the merging 8 or more bits at a time rather | 
 | 346 |  * than one bit at a time: | 
 | 347 |  * for (i = 0; i < input_bytes; i++) { | 
 | 348 |  * 	remainder ^= next_input_byte() << 24; | 
 | 349 |  * 	for (j = 0; j < 8; j++) { | 
 | 350 |  * 		multiple = (remainder & 0x80000000) ? CRCPOLY : 0; | 
 | 351 |  * 		remainder = (remainder << 1) ^ multiple; | 
 | 352 |  * 	} | 
 | 353 |  * } | 
 | 354 |  * Or in little-endian: | 
 | 355 |  * for (i = 0; i < input_bytes; i++) { | 
 | 356 |  * 	remainder ^= next_input_byte(); | 
 | 357 |  * 	for (j = 0; j < 8; j++) { | 
 | 358 |  * 		multiple = (remainder & 1) ? CRCPOLY : 0; | 
 | 359 |  * 		remainder = (remainder << 1) ^ multiple; | 
 | 360 |  * 	} | 
 | 361 |  * } | 
 | 362 |  * If the input is a multiple of 32 bits, you can even XOR in a 32-bit | 
 | 363 |  * word at a time and increase the inner loop count to 32. | 
 | 364 |  * | 
 | 365 |  * You can also mix and match the two loop styles, for example doing the | 
 | 366 |  * bulk of a message byte-at-a-time and adding bit-at-a-time processing | 
 | 367 |  * for any fractional bytes at the end. | 
 | 368 |  * | 
 | 369 |  * The only remaining optimization is to the byte-at-a-time table method. | 
 | 370 |  * Here, rather than just shifting one bit of the remainder to decide | 
 | 371 |  * in the correct multiple to subtract, we can shift a byte at a time. | 
 | 372 |  * This produces a 40-bit (rather than a 33-bit) intermediate remainder, | 
 | 373 |  * but again the multiple of the polynomial to subtract depends only on | 
 | 374 |  * the high bits, the high 8 bits in this case.   | 
 | 375 |  * | 
 | 376 |  * The multile we need in that case is the low 32 bits of a 40-bit | 
 | 377 |  * value whose high 8 bits are given, and which is a multiple of the | 
 | 378 |  * generator polynomial.  This is simply the CRC-32 of the given | 
 | 379 |  * one-byte message. | 
 | 380 |  * | 
 | 381 |  * Two more details: normally, appending zero bits to a message which | 
 | 382 |  * is already a multiple of a polynomial produces a larger multiple of that | 
 | 383 |  * polynomial.  To enable a CRC to detect this condition, it's common to | 
 | 384 |  * invert the CRC before appending it.  This makes the remainder of the | 
 | 385 |  * message+crc come out not as zero, but some fixed non-zero value. | 
 | 386 |  * | 
 | 387 |  * The same problem applies to zero bits prepended to the message, and | 
 | 388 |  * a similar solution is used.  Instead of starting with a remainder of | 
 | 389 |  * 0, an initial remainder of all ones is used.  As long as you start | 
 | 390 |  * the same way on decoding, it doesn't make a difference. | 
 | 391 |  */ | 
 | 392 |  | 
 | 393 | #ifdef UNITTEST | 
 | 394 |  | 
 | 395 | #include <stdlib.h> | 
 | 396 | #include <stdio.h> | 
 | 397 |  | 
 | 398 | #if 0				/*Not used at present */ | 
 | 399 | static void | 
 | 400 | buf_dump(char const *prefix, unsigned char const *buf, size_t len) | 
 | 401 | { | 
 | 402 | 	fputs(prefix, stdout); | 
 | 403 | 	while (len--) | 
 | 404 | 		printf(" %02x", *buf++); | 
 | 405 | 	putchar('\n'); | 
 | 406 |  | 
 | 407 | } | 
 | 408 | #endif | 
 | 409 |  | 
 | 410 | static void bytereverse(unsigned char *buf, size_t len) | 
 | 411 | { | 
 | 412 | 	while (len--) { | 
 | 413 | 		unsigned char x = *buf; | 
 | 414 | 		x = (x >> 4) | (x << 4); | 
 | 415 | 		x = (x >> 2 & 0x33) | (x << 2 & 0xcc); | 
 | 416 | 		x = (x >> 1 & 0x55) | (x << 1 & 0xaa); | 
 | 417 | 		*buf++ = x; | 
 | 418 | 	} | 
 | 419 | } | 
 | 420 |  | 
 | 421 | static void random_garbage(unsigned char *buf, size_t len) | 
 | 422 | { | 
 | 423 | 	while (len--) | 
 | 424 | 		*buf++ = (unsigned char) random(); | 
 | 425 | } | 
 | 426 |  | 
 | 427 | #if 0				/* Not used at present */ | 
 | 428 | static void store_le(u32 x, unsigned char *buf) | 
 | 429 | { | 
 | 430 | 	buf[0] = (unsigned char) x; | 
 | 431 | 	buf[1] = (unsigned char) (x >> 8); | 
 | 432 | 	buf[2] = (unsigned char) (x >> 16); | 
 | 433 | 	buf[3] = (unsigned char) (x >> 24); | 
 | 434 | } | 
 | 435 | #endif | 
 | 436 |  | 
 | 437 | static void store_be(u32 x, unsigned char *buf) | 
 | 438 | { | 
 | 439 | 	buf[0] = (unsigned char) (x >> 24); | 
 | 440 | 	buf[1] = (unsigned char) (x >> 16); | 
 | 441 | 	buf[2] = (unsigned char) (x >> 8); | 
 | 442 | 	buf[3] = (unsigned char) x; | 
 | 443 | } | 
 | 444 |  | 
 | 445 | /* | 
 | 446 |  * This checks that CRC(buf + CRC(buf)) = 0, and that | 
 | 447 |  * CRC commutes with bit-reversal.  This has the side effect | 
 | 448 |  * of bytewise bit-reversing the input buffer, and returns | 
 | 449 |  * the CRC of the reversed buffer. | 
 | 450 |  */ | 
 | 451 | static u32 test_step(u32 init, unsigned char *buf, size_t len) | 
 | 452 | { | 
 | 453 | 	u32 crc1, crc2; | 
 | 454 | 	size_t i; | 
 | 455 |  | 
 | 456 | 	crc1 = crc32_be(init, buf, len); | 
 | 457 | 	store_be(crc1, buf + len); | 
 | 458 | 	crc2 = crc32_be(init, buf, len + 4); | 
 | 459 | 	if (crc2) | 
 | 460 | 		printf("\nCRC cancellation fail: 0x%08x should be 0\n", | 
 | 461 | 		       crc2); | 
 | 462 |  | 
 | 463 | 	for (i = 0; i <= len + 4; i++) { | 
 | 464 | 		crc2 = crc32_be(init, buf, i); | 
 | 465 | 		crc2 = crc32_be(crc2, buf + i, len + 4 - i); | 
 | 466 | 		if (crc2) | 
 | 467 | 			printf("\nCRC split fail: 0x%08x\n", crc2); | 
 | 468 | 	} | 
 | 469 |  | 
 | 470 | 	/* Now swap it around for the other test */ | 
 | 471 |  | 
 | 472 | 	bytereverse(buf, len + 4); | 
 | 473 | 	init = bitreverse(init); | 
 | 474 | 	crc2 = bitreverse(crc1); | 
 | 475 | 	if (crc1 != bitreverse(crc2)) | 
 | 476 | 		printf("\nBit reversal fail: 0x%08x -> %0x08x -> 0x%08x\n", | 
 | 477 | 		       crc1, crc2, bitreverse(crc2)); | 
 | 478 | 	crc1 = crc32_le(init, buf, len); | 
 | 479 | 	if (crc1 != crc2) | 
 | 480 | 		printf("\nCRC endianness fail: 0x%08x != 0x%08x\n", crc1, | 
 | 481 | 		       crc2); | 
 | 482 | 	crc2 = crc32_le(init, buf, len + 4); | 
 | 483 | 	if (crc2) | 
 | 484 | 		printf("\nCRC cancellation fail: 0x%08x should be 0\n", | 
 | 485 | 		       crc2); | 
 | 486 |  | 
 | 487 | 	for (i = 0; i <= len + 4; i++) { | 
 | 488 | 		crc2 = crc32_le(init, buf, i); | 
 | 489 | 		crc2 = crc32_le(crc2, buf + i, len + 4 - i); | 
 | 490 | 		if (crc2) | 
 | 491 | 			printf("\nCRC split fail: 0x%08x\n", crc2); | 
 | 492 | 	} | 
 | 493 |  | 
 | 494 | 	return crc1; | 
 | 495 | } | 
 | 496 |  | 
 | 497 | #define SIZE 64 | 
 | 498 | #define INIT1 0 | 
 | 499 | #define INIT2 0 | 
 | 500 |  | 
 | 501 | int main(void) | 
 | 502 | { | 
 | 503 | 	unsigned char buf1[SIZE + 4]; | 
 | 504 | 	unsigned char buf2[SIZE + 4]; | 
 | 505 | 	unsigned char buf3[SIZE + 4]; | 
 | 506 | 	int i, j; | 
 | 507 | 	u32 crc1, crc2, crc3; | 
 | 508 |  | 
 | 509 | 	for (i = 0; i <= SIZE; i++) { | 
 | 510 | 		printf("\rTesting length %d...", i); | 
 | 511 | 		fflush(stdout); | 
 | 512 | 		random_garbage(buf1, i); | 
 | 513 | 		random_garbage(buf2, i); | 
 | 514 | 		for (j = 0; j < i; j++) | 
 | 515 | 			buf3[j] = buf1[j] ^ buf2[j]; | 
 | 516 |  | 
 | 517 | 		crc1 = test_step(INIT1, buf1, i); | 
 | 518 | 		crc2 = test_step(INIT2, buf2, i); | 
 | 519 | 		/* Now check that CRC(buf1 ^ buf2) = CRC(buf1) ^ CRC(buf2) */ | 
 | 520 | 		crc3 = test_step(INIT1 ^ INIT2, buf3, i); | 
 | 521 | 		if (crc3 != (crc1 ^ crc2)) | 
 | 522 | 			printf("CRC XOR fail: 0x%08x != 0x%08x ^ 0x%08x\n", | 
 | 523 | 			       crc3, crc1, crc2); | 
 | 524 | 	} | 
 | 525 | 	printf("\nAll test complete.  No failures expected.\n"); | 
 | 526 | 	return 0; | 
 | 527 | } | 
 | 528 |  | 
 | 529 | #endif				/* UNITTEST */ |