| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * INET		An implementation of the TCP/IP protocol suite for the LINUX | 
|  | 3 | *		operating system.  INET is implemented using the  BSD Socket | 
|  | 4 | *		interface as the means of communication with the user level. | 
|  | 5 | * | 
|  | 6 | *		The IP fragmentation functionality. | 
|  | 7 | * | 
|  | 8 | * Version:	$Id: ip_fragment.c,v 1.59 2002/01/12 07:54:56 davem Exp $ | 
|  | 9 | * | 
|  | 10 | * Authors:	Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG> | 
|  | 11 | *		Alan Cox <Alan.Cox@linux.org> | 
|  | 12 | * | 
|  | 13 | * Fixes: | 
|  | 14 | *		Alan Cox	:	Split from ip.c , see ip_input.c for history. | 
|  | 15 | *		David S. Miller :	Begin massive cleanup... | 
|  | 16 | *		Andi Kleen	:	Add sysctls. | 
|  | 17 | *		xxxx		:	Overlapfrag bug. | 
|  | 18 | *		Ultima          :       ip_expire() kernel panic. | 
|  | 19 | *		Bill Hawes	:	Frag accounting and evictor fixes. | 
|  | 20 | *		John McDonald	:	0 length frag bug. | 
|  | 21 | *		Alexey Kuznetsov:	SMP races, threading, cleanup. | 
|  | 22 | *		Patrick McHardy :	LRU queue of frag heads for evictor. | 
|  | 23 | */ | 
|  | 24 |  | 
|  | 25 | #include <linux/config.h> | 
|  | 26 | #include <linux/module.h> | 
|  | 27 | #include <linux/types.h> | 
|  | 28 | #include <linux/mm.h> | 
|  | 29 | #include <linux/jiffies.h> | 
|  | 30 | #include <linux/skbuff.h> | 
|  | 31 | #include <linux/list.h> | 
|  | 32 | #include <linux/ip.h> | 
|  | 33 | #include <linux/icmp.h> | 
|  | 34 | #include <linux/netdevice.h> | 
|  | 35 | #include <linux/jhash.h> | 
|  | 36 | #include <linux/random.h> | 
|  | 37 | #include <net/sock.h> | 
|  | 38 | #include <net/ip.h> | 
|  | 39 | #include <net/icmp.h> | 
|  | 40 | #include <net/checksum.h> | 
|  | 41 | #include <linux/tcp.h> | 
|  | 42 | #include <linux/udp.h> | 
|  | 43 | #include <linux/inet.h> | 
|  | 44 | #include <linux/netfilter_ipv4.h> | 
|  | 45 |  | 
|  | 46 | /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6 | 
|  | 47 | * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c | 
|  | 48 | * as well. Or notify me, at least. --ANK | 
|  | 49 | */ | 
|  | 50 |  | 
|  | 51 | /* Fragment cache limits. We will commit 256K at one time. Should we | 
|  | 52 | * cross that limit we will prune down to 192K. This should cope with | 
|  | 53 | * even the most extreme cases without allowing an attacker to measurably | 
|  | 54 | * harm machine performance. | 
|  | 55 | */ | 
|  | 56 | int sysctl_ipfrag_high_thresh = 256*1024; | 
|  | 57 | int sysctl_ipfrag_low_thresh = 192*1024; | 
|  | 58 |  | 
|  | 59 | /* Important NOTE! Fragment queue must be destroyed before MSL expires. | 
|  | 60 | * RFC791 is wrong proposing to prolongate timer each fragment arrival by TTL. | 
|  | 61 | */ | 
|  | 62 | int sysctl_ipfrag_time = IP_FRAG_TIME; | 
|  | 63 |  | 
|  | 64 | struct ipfrag_skb_cb | 
|  | 65 | { | 
|  | 66 | struct inet_skb_parm	h; | 
|  | 67 | int			offset; | 
|  | 68 | }; | 
|  | 69 |  | 
|  | 70 | #define FRAG_CB(skb)	((struct ipfrag_skb_cb*)((skb)->cb)) | 
|  | 71 |  | 
|  | 72 | /* Describe an entry in the "incomplete datagrams" queue. */ | 
|  | 73 | struct ipq { | 
|  | 74 | struct ipq	*next;		/* linked list pointers			*/ | 
|  | 75 | struct list_head lru_list;	/* lru list member 			*/ | 
|  | 76 | u32		user; | 
|  | 77 | u32		saddr; | 
|  | 78 | u32		daddr; | 
|  | 79 | u16		id; | 
|  | 80 | u8		protocol; | 
|  | 81 | u8		last_in; | 
|  | 82 | #define COMPLETE		4 | 
|  | 83 | #define FIRST_IN		2 | 
|  | 84 | #define LAST_IN			1 | 
|  | 85 |  | 
|  | 86 | struct sk_buff	*fragments;	/* linked list of received fragments	*/ | 
|  | 87 | int		len;		/* total length of original datagram	*/ | 
|  | 88 | int		meat; | 
|  | 89 | spinlock_t	lock; | 
|  | 90 | atomic_t	refcnt; | 
|  | 91 | struct timer_list timer;	/* when will this queue expire?		*/ | 
|  | 92 | struct ipq	**pprev; | 
|  | 93 | int		iif; | 
|  | 94 | struct timeval	stamp; | 
|  | 95 | }; | 
|  | 96 |  | 
|  | 97 | /* Hash table. */ | 
|  | 98 |  | 
|  | 99 | #define IPQ_HASHSZ	64 | 
|  | 100 |  | 
|  | 101 | /* Per-bucket lock is easy to add now. */ | 
|  | 102 | static struct ipq *ipq_hash[IPQ_HASHSZ]; | 
|  | 103 | static DEFINE_RWLOCK(ipfrag_lock); | 
|  | 104 | static u32 ipfrag_hash_rnd; | 
|  | 105 | static LIST_HEAD(ipq_lru_list); | 
|  | 106 | int ip_frag_nqueues = 0; | 
|  | 107 |  | 
|  | 108 | static __inline__ void __ipq_unlink(struct ipq *qp) | 
|  | 109 | { | 
|  | 110 | if(qp->next) | 
|  | 111 | qp->next->pprev = qp->pprev; | 
|  | 112 | *qp->pprev = qp->next; | 
|  | 113 | list_del(&qp->lru_list); | 
|  | 114 | ip_frag_nqueues--; | 
|  | 115 | } | 
|  | 116 |  | 
|  | 117 | static __inline__ void ipq_unlink(struct ipq *ipq) | 
|  | 118 | { | 
|  | 119 | write_lock(&ipfrag_lock); | 
|  | 120 | __ipq_unlink(ipq); | 
|  | 121 | write_unlock(&ipfrag_lock); | 
|  | 122 | } | 
|  | 123 |  | 
|  | 124 | static unsigned int ipqhashfn(u16 id, u32 saddr, u32 daddr, u8 prot) | 
|  | 125 | { | 
|  | 126 | return jhash_3words((u32)id << 16 | prot, saddr, daddr, | 
|  | 127 | ipfrag_hash_rnd) & (IPQ_HASHSZ - 1); | 
|  | 128 | } | 
|  | 129 |  | 
|  | 130 | static struct timer_list ipfrag_secret_timer; | 
|  | 131 | int sysctl_ipfrag_secret_interval = 10 * 60 * HZ; | 
|  | 132 |  | 
|  | 133 | static void ipfrag_secret_rebuild(unsigned long dummy) | 
|  | 134 | { | 
|  | 135 | unsigned long now = jiffies; | 
|  | 136 | int i; | 
|  | 137 |  | 
|  | 138 | write_lock(&ipfrag_lock); | 
|  | 139 | get_random_bytes(&ipfrag_hash_rnd, sizeof(u32)); | 
|  | 140 | for (i = 0; i < IPQ_HASHSZ; i++) { | 
|  | 141 | struct ipq *q; | 
|  | 142 |  | 
|  | 143 | q = ipq_hash[i]; | 
|  | 144 | while (q) { | 
|  | 145 | struct ipq *next = q->next; | 
|  | 146 | unsigned int hval = ipqhashfn(q->id, q->saddr, | 
|  | 147 | q->daddr, q->protocol); | 
|  | 148 |  | 
|  | 149 | if (hval != i) { | 
|  | 150 | /* Unlink. */ | 
|  | 151 | if (q->next) | 
|  | 152 | q->next->pprev = q->pprev; | 
|  | 153 | *q->pprev = q->next; | 
|  | 154 |  | 
|  | 155 | /* Relink to new hash chain. */ | 
|  | 156 | if ((q->next = ipq_hash[hval]) != NULL) | 
|  | 157 | q->next->pprev = &q->next; | 
|  | 158 | ipq_hash[hval] = q; | 
|  | 159 | q->pprev = &ipq_hash[hval]; | 
|  | 160 | } | 
|  | 161 |  | 
|  | 162 | q = next; | 
|  | 163 | } | 
|  | 164 | } | 
|  | 165 | write_unlock(&ipfrag_lock); | 
|  | 166 |  | 
|  | 167 | mod_timer(&ipfrag_secret_timer, now + sysctl_ipfrag_secret_interval); | 
|  | 168 | } | 
|  | 169 |  | 
|  | 170 | atomic_t ip_frag_mem = ATOMIC_INIT(0);	/* Memory used for fragments */ | 
|  | 171 |  | 
|  | 172 | /* Memory Tracking Functions. */ | 
|  | 173 | static __inline__ void frag_kfree_skb(struct sk_buff *skb, int *work) | 
|  | 174 | { | 
|  | 175 | if (work) | 
|  | 176 | *work -= skb->truesize; | 
|  | 177 | atomic_sub(skb->truesize, &ip_frag_mem); | 
|  | 178 | kfree_skb(skb); | 
|  | 179 | } | 
|  | 180 |  | 
|  | 181 | static __inline__ void frag_free_queue(struct ipq *qp, int *work) | 
|  | 182 | { | 
|  | 183 | if (work) | 
|  | 184 | *work -= sizeof(struct ipq); | 
|  | 185 | atomic_sub(sizeof(struct ipq), &ip_frag_mem); | 
|  | 186 | kfree(qp); | 
|  | 187 | } | 
|  | 188 |  | 
|  | 189 | static __inline__ struct ipq *frag_alloc_queue(void) | 
|  | 190 | { | 
|  | 191 | struct ipq *qp = kmalloc(sizeof(struct ipq), GFP_ATOMIC); | 
|  | 192 |  | 
|  | 193 | if(!qp) | 
|  | 194 | return NULL; | 
|  | 195 | atomic_add(sizeof(struct ipq), &ip_frag_mem); | 
|  | 196 | return qp; | 
|  | 197 | } | 
|  | 198 |  | 
|  | 199 |  | 
|  | 200 | /* Destruction primitives. */ | 
|  | 201 |  | 
|  | 202 | /* Complete destruction of ipq. */ | 
|  | 203 | static void ip_frag_destroy(struct ipq *qp, int *work) | 
|  | 204 | { | 
|  | 205 | struct sk_buff *fp; | 
|  | 206 |  | 
|  | 207 | BUG_TRAP(qp->last_in&COMPLETE); | 
|  | 208 | BUG_TRAP(del_timer(&qp->timer) == 0); | 
|  | 209 |  | 
|  | 210 | /* Release all fragment data. */ | 
|  | 211 | fp = qp->fragments; | 
|  | 212 | while (fp) { | 
|  | 213 | struct sk_buff *xp = fp->next; | 
|  | 214 |  | 
|  | 215 | frag_kfree_skb(fp, work); | 
|  | 216 | fp = xp; | 
|  | 217 | } | 
|  | 218 |  | 
|  | 219 | /* Finally, release the queue descriptor itself. */ | 
|  | 220 | frag_free_queue(qp, work); | 
|  | 221 | } | 
|  | 222 |  | 
|  | 223 | static __inline__ void ipq_put(struct ipq *ipq, int *work) | 
|  | 224 | { | 
|  | 225 | if (atomic_dec_and_test(&ipq->refcnt)) | 
|  | 226 | ip_frag_destroy(ipq, work); | 
|  | 227 | } | 
|  | 228 |  | 
|  | 229 | /* Kill ipq entry. It is not destroyed immediately, | 
|  | 230 | * because caller (and someone more) holds reference count. | 
|  | 231 | */ | 
|  | 232 | static void ipq_kill(struct ipq *ipq) | 
|  | 233 | { | 
|  | 234 | if (del_timer(&ipq->timer)) | 
|  | 235 | atomic_dec(&ipq->refcnt); | 
|  | 236 |  | 
|  | 237 | if (!(ipq->last_in & COMPLETE)) { | 
|  | 238 | ipq_unlink(ipq); | 
|  | 239 | atomic_dec(&ipq->refcnt); | 
|  | 240 | ipq->last_in |= COMPLETE; | 
|  | 241 | } | 
|  | 242 | } | 
|  | 243 |  | 
|  | 244 | /* Memory limiting on fragments.  Evictor trashes the oldest | 
|  | 245 | * fragment queue until we are back under the threshold. | 
|  | 246 | */ | 
|  | 247 | static void ip_evictor(void) | 
|  | 248 | { | 
|  | 249 | struct ipq *qp; | 
|  | 250 | struct list_head *tmp; | 
|  | 251 | int work; | 
|  | 252 |  | 
|  | 253 | work = atomic_read(&ip_frag_mem) - sysctl_ipfrag_low_thresh; | 
|  | 254 | if (work <= 0) | 
|  | 255 | return; | 
|  | 256 |  | 
|  | 257 | while (work > 0) { | 
|  | 258 | read_lock(&ipfrag_lock); | 
|  | 259 | if (list_empty(&ipq_lru_list)) { | 
|  | 260 | read_unlock(&ipfrag_lock); | 
|  | 261 | return; | 
|  | 262 | } | 
|  | 263 | tmp = ipq_lru_list.next; | 
|  | 264 | qp = list_entry(tmp, struct ipq, lru_list); | 
|  | 265 | atomic_inc(&qp->refcnt); | 
|  | 266 | read_unlock(&ipfrag_lock); | 
|  | 267 |  | 
|  | 268 | spin_lock(&qp->lock); | 
|  | 269 | if (!(qp->last_in&COMPLETE)) | 
|  | 270 | ipq_kill(qp); | 
|  | 271 | spin_unlock(&qp->lock); | 
|  | 272 |  | 
|  | 273 | ipq_put(qp, &work); | 
|  | 274 | IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS); | 
|  | 275 | } | 
|  | 276 | } | 
|  | 277 |  | 
|  | 278 | /* | 
|  | 279 | * Oops, a fragment queue timed out.  Kill it and send an ICMP reply. | 
|  | 280 | */ | 
|  | 281 | static void ip_expire(unsigned long arg) | 
|  | 282 | { | 
|  | 283 | struct ipq *qp = (struct ipq *) arg; | 
|  | 284 |  | 
|  | 285 | spin_lock(&qp->lock); | 
|  | 286 |  | 
|  | 287 | if (qp->last_in & COMPLETE) | 
|  | 288 | goto out; | 
|  | 289 |  | 
|  | 290 | ipq_kill(qp); | 
|  | 291 |  | 
|  | 292 | IP_INC_STATS_BH(IPSTATS_MIB_REASMTIMEOUT); | 
|  | 293 | IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS); | 
|  | 294 |  | 
|  | 295 | if ((qp->last_in&FIRST_IN) && qp->fragments != NULL) { | 
|  | 296 | struct sk_buff *head = qp->fragments; | 
|  | 297 | /* Send an ICMP "Fragment Reassembly Timeout" message. */ | 
|  | 298 | if ((head->dev = dev_get_by_index(qp->iif)) != NULL) { | 
|  | 299 | icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0); | 
|  | 300 | dev_put(head->dev); | 
|  | 301 | } | 
|  | 302 | } | 
|  | 303 | out: | 
|  | 304 | spin_unlock(&qp->lock); | 
|  | 305 | ipq_put(qp, NULL); | 
|  | 306 | } | 
|  | 307 |  | 
|  | 308 | /* Creation primitives. */ | 
|  | 309 |  | 
|  | 310 | static struct ipq *ip_frag_intern(unsigned int hash, struct ipq *qp_in) | 
|  | 311 | { | 
|  | 312 | struct ipq *qp; | 
|  | 313 |  | 
|  | 314 | write_lock(&ipfrag_lock); | 
|  | 315 | #ifdef CONFIG_SMP | 
|  | 316 | /* With SMP race we have to recheck hash table, because | 
|  | 317 | * such entry could be created on other cpu, while we | 
|  | 318 | * promoted read lock to write lock. | 
|  | 319 | */ | 
|  | 320 | for(qp = ipq_hash[hash]; qp; qp = qp->next) { | 
|  | 321 | if(qp->id == qp_in->id		&& | 
|  | 322 | qp->saddr == qp_in->saddr	&& | 
|  | 323 | qp->daddr == qp_in->daddr	&& | 
|  | 324 | qp->protocol == qp_in->protocol && | 
|  | 325 | qp->user == qp_in->user) { | 
|  | 326 | atomic_inc(&qp->refcnt); | 
|  | 327 | write_unlock(&ipfrag_lock); | 
|  | 328 | qp_in->last_in |= COMPLETE; | 
|  | 329 | ipq_put(qp_in, NULL); | 
|  | 330 | return qp; | 
|  | 331 | } | 
|  | 332 | } | 
|  | 333 | #endif | 
|  | 334 | qp = qp_in; | 
|  | 335 |  | 
|  | 336 | if (!mod_timer(&qp->timer, jiffies + sysctl_ipfrag_time)) | 
|  | 337 | atomic_inc(&qp->refcnt); | 
|  | 338 |  | 
|  | 339 | atomic_inc(&qp->refcnt); | 
|  | 340 | if((qp->next = ipq_hash[hash]) != NULL) | 
|  | 341 | qp->next->pprev = &qp->next; | 
|  | 342 | ipq_hash[hash] = qp; | 
|  | 343 | qp->pprev = &ipq_hash[hash]; | 
|  | 344 | INIT_LIST_HEAD(&qp->lru_list); | 
|  | 345 | list_add_tail(&qp->lru_list, &ipq_lru_list); | 
|  | 346 | ip_frag_nqueues++; | 
|  | 347 | write_unlock(&ipfrag_lock); | 
|  | 348 | return qp; | 
|  | 349 | } | 
|  | 350 |  | 
|  | 351 | /* Add an entry to the 'ipq' queue for a newly received IP datagram. */ | 
|  | 352 | static struct ipq *ip_frag_create(unsigned hash, struct iphdr *iph, u32 user) | 
|  | 353 | { | 
|  | 354 | struct ipq *qp; | 
|  | 355 |  | 
|  | 356 | if ((qp = frag_alloc_queue()) == NULL) | 
|  | 357 | goto out_nomem; | 
|  | 358 |  | 
|  | 359 | qp->protocol = iph->protocol; | 
|  | 360 | qp->last_in = 0; | 
|  | 361 | qp->id = iph->id; | 
|  | 362 | qp->saddr = iph->saddr; | 
|  | 363 | qp->daddr = iph->daddr; | 
|  | 364 | qp->user = user; | 
|  | 365 | qp->len = 0; | 
|  | 366 | qp->meat = 0; | 
|  | 367 | qp->fragments = NULL; | 
|  | 368 | qp->iif = 0; | 
|  | 369 |  | 
|  | 370 | /* Initialize a timer for this entry. */ | 
|  | 371 | init_timer(&qp->timer); | 
|  | 372 | qp->timer.data = (unsigned long) qp;	/* pointer to queue	*/ | 
|  | 373 | qp->timer.function = ip_expire;		/* expire function	*/ | 
|  | 374 | spin_lock_init(&qp->lock); | 
|  | 375 | atomic_set(&qp->refcnt, 1); | 
|  | 376 |  | 
|  | 377 | return ip_frag_intern(hash, qp); | 
|  | 378 |  | 
|  | 379 | out_nomem: | 
|  | 380 | NETDEBUG(if (net_ratelimit()) printk(KERN_ERR "ip_frag_create: no memory left !\n")); | 
|  | 381 | return NULL; | 
|  | 382 | } | 
|  | 383 |  | 
|  | 384 | /* Find the correct entry in the "incomplete datagrams" queue for | 
|  | 385 | * this IP datagram, and create new one, if nothing is found. | 
|  | 386 | */ | 
|  | 387 | static inline struct ipq *ip_find(struct iphdr *iph, u32 user) | 
|  | 388 | { | 
|  | 389 | __u16 id = iph->id; | 
|  | 390 | __u32 saddr = iph->saddr; | 
|  | 391 | __u32 daddr = iph->daddr; | 
|  | 392 | __u8 protocol = iph->protocol; | 
|  | 393 | unsigned int hash = ipqhashfn(id, saddr, daddr, protocol); | 
|  | 394 | struct ipq *qp; | 
|  | 395 |  | 
|  | 396 | read_lock(&ipfrag_lock); | 
|  | 397 | for(qp = ipq_hash[hash]; qp; qp = qp->next) { | 
|  | 398 | if(qp->id == id		&& | 
|  | 399 | qp->saddr == saddr	&& | 
|  | 400 | qp->daddr == daddr	&& | 
|  | 401 | qp->protocol == protocol && | 
|  | 402 | qp->user == user) { | 
|  | 403 | atomic_inc(&qp->refcnt); | 
|  | 404 | read_unlock(&ipfrag_lock); | 
|  | 405 | return qp; | 
|  | 406 | } | 
|  | 407 | } | 
|  | 408 | read_unlock(&ipfrag_lock); | 
|  | 409 |  | 
|  | 410 | return ip_frag_create(hash, iph, user); | 
|  | 411 | } | 
|  | 412 |  | 
|  | 413 | /* Add new segment to existing queue. */ | 
|  | 414 | static void ip_frag_queue(struct ipq *qp, struct sk_buff *skb) | 
|  | 415 | { | 
|  | 416 | struct sk_buff *prev, *next; | 
|  | 417 | int flags, offset; | 
|  | 418 | int ihl, end; | 
|  | 419 |  | 
|  | 420 | if (qp->last_in & COMPLETE) | 
|  | 421 | goto err; | 
|  | 422 |  | 
|  | 423 | offset = ntohs(skb->nh.iph->frag_off); | 
|  | 424 | flags = offset & ~IP_OFFSET; | 
|  | 425 | offset &= IP_OFFSET; | 
|  | 426 | offset <<= 3;		/* offset is in 8-byte chunks */ | 
|  | 427 | ihl = skb->nh.iph->ihl * 4; | 
|  | 428 |  | 
|  | 429 | /* Determine the position of this fragment. */ | 
|  | 430 | end = offset + skb->len - ihl; | 
|  | 431 |  | 
|  | 432 | /* Is this the final fragment? */ | 
|  | 433 | if ((flags & IP_MF) == 0) { | 
|  | 434 | /* If we already have some bits beyond end | 
|  | 435 | * or have different end, the segment is corrrupted. | 
|  | 436 | */ | 
|  | 437 | if (end < qp->len || | 
|  | 438 | ((qp->last_in & LAST_IN) && end != qp->len)) | 
|  | 439 | goto err; | 
|  | 440 | qp->last_in |= LAST_IN; | 
|  | 441 | qp->len = end; | 
|  | 442 | } else { | 
|  | 443 | if (end&7) { | 
|  | 444 | end &= ~7; | 
|  | 445 | if (skb->ip_summed != CHECKSUM_UNNECESSARY) | 
|  | 446 | skb->ip_summed = CHECKSUM_NONE; | 
|  | 447 | } | 
|  | 448 | if (end > qp->len) { | 
|  | 449 | /* Some bits beyond end -> corruption. */ | 
|  | 450 | if (qp->last_in & LAST_IN) | 
|  | 451 | goto err; | 
|  | 452 | qp->len = end; | 
|  | 453 | } | 
|  | 454 | } | 
|  | 455 | if (end == offset) | 
|  | 456 | goto err; | 
|  | 457 |  | 
|  | 458 | if (pskb_pull(skb, ihl) == NULL) | 
|  | 459 | goto err; | 
|  | 460 | if (pskb_trim(skb, end-offset)) | 
|  | 461 | goto err; | 
|  | 462 |  | 
|  | 463 | /* Find out which fragments are in front and at the back of us | 
|  | 464 | * in the chain of fragments so far.  We must know where to put | 
|  | 465 | * this fragment, right? | 
|  | 466 | */ | 
|  | 467 | prev = NULL; | 
|  | 468 | for(next = qp->fragments; next != NULL; next = next->next) { | 
|  | 469 | if (FRAG_CB(next)->offset >= offset) | 
|  | 470 | break;	/* bingo! */ | 
|  | 471 | prev = next; | 
|  | 472 | } | 
|  | 473 |  | 
|  | 474 | /* We found where to put this one.  Check for overlap with | 
|  | 475 | * preceding fragment, and, if needed, align things so that | 
|  | 476 | * any overlaps are eliminated. | 
|  | 477 | */ | 
|  | 478 | if (prev) { | 
|  | 479 | int i = (FRAG_CB(prev)->offset + prev->len) - offset; | 
|  | 480 |  | 
|  | 481 | if (i > 0) { | 
|  | 482 | offset += i; | 
|  | 483 | if (end <= offset) | 
|  | 484 | goto err; | 
|  | 485 | if (!pskb_pull(skb, i)) | 
|  | 486 | goto err; | 
|  | 487 | if (skb->ip_summed != CHECKSUM_UNNECESSARY) | 
|  | 488 | skb->ip_summed = CHECKSUM_NONE; | 
|  | 489 | } | 
|  | 490 | } | 
|  | 491 |  | 
|  | 492 | while (next && FRAG_CB(next)->offset < end) { | 
|  | 493 | int i = end - FRAG_CB(next)->offset; /* overlap is 'i' bytes */ | 
|  | 494 |  | 
|  | 495 | if (i < next->len) { | 
|  | 496 | /* Eat head of the next overlapped fragment | 
|  | 497 | * and leave the loop. The next ones cannot overlap. | 
|  | 498 | */ | 
|  | 499 | if (!pskb_pull(next, i)) | 
|  | 500 | goto err; | 
|  | 501 | FRAG_CB(next)->offset += i; | 
|  | 502 | qp->meat -= i; | 
|  | 503 | if (next->ip_summed != CHECKSUM_UNNECESSARY) | 
|  | 504 | next->ip_summed = CHECKSUM_NONE; | 
|  | 505 | break; | 
|  | 506 | } else { | 
|  | 507 | struct sk_buff *free_it = next; | 
|  | 508 |  | 
|  | 509 | /* Old fragmnet is completely overridden with | 
|  | 510 | * new one drop it. | 
|  | 511 | */ | 
|  | 512 | next = next->next; | 
|  | 513 |  | 
|  | 514 | if (prev) | 
|  | 515 | prev->next = next; | 
|  | 516 | else | 
|  | 517 | qp->fragments = next; | 
|  | 518 |  | 
|  | 519 | qp->meat -= free_it->len; | 
|  | 520 | frag_kfree_skb(free_it, NULL); | 
|  | 521 | } | 
|  | 522 | } | 
|  | 523 |  | 
|  | 524 | FRAG_CB(skb)->offset = offset; | 
|  | 525 |  | 
|  | 526 | /* Insert this fragment in the chain of fragments. */ | 
|  | 527 | skb->next = next; | 
|  | 528 | if (prev) | 
|  | 529 | prev->next = skb; | 
|  | 530 | else | 
|  | 531 | qp->fragments = skb; | 
|  | 532 |  | 
|  | 533 | if (skb->dev) | 
|  | 534 | qp->iif = skb->dev->ifindex; | 
|  | 535 | skb->dev = NULL; | 
|  | 536 | qp->stamp = skb->stamp; | 
|  | 537 | qp->meat += skb->len; | 
|  | 538 | atomic_add(skb->truesize, &ip_frag_mem); | 
|  | 539 | if (offset == 0) | 
|  | 540 | qp->last_in |= FIRST_IN; | 
|  | 541 |  | 
|  | 542 | write_lock(&ipfrag_lock); | 
|  | 543 | list_move_tail(&qp->lru_list, &ipq_lru_list); | 
|  | 544 | write_unlock(&ipfrag_lock); | 
|  | 545 |  | 
|  | 546 | return; | 
|  | 547 |  | 
|  | 548 | err: | 
|  | 549 | kfree_skb(skb); | 
|  | 550 | } | 
|  | 551 |  | 
|  | 552 |  | 
|  | 553 | /* Build a new IP datagram from all its fragments. */ | 
|  | 554 |  | 
|  | 555 | static struct sk_buff *ip_frag_reasm(struct ipq *qp, struct net_device *dev) | 
|  | 556 | { | 
|  | 557 | struct iphdr *iph; | 
|  | 558 | struct sk_buff *fp, *head = qp->fragments; | 
|  | 559 | int len; | 
|  | 560 | int ihlen; | 
|  | 561 |  | 
|  | 562 | ipq_kill(qp); | 
|  | 563 |  | 
|  | 564 | BUG_TRAP(head != NULL); | 
|  | 565 | BUG_TRAP(FRAG_CB(head)->offset == 0); | 
|  | 566 |  | 
|  | 567 | /* Allocate a new buffer for the datagram. */ | 
|  | 568 | ihlen = head->nh.iph->ihl*4; | 
|  | 569 | len = ihlen + qp->len; | 
|  | 570 |  | 
|  | 571 | if(len > 65535) | 
|  | 572 | goto out_oversize; | 
|  | 573 |  | 
|  | 574 | /* Head of list must not be cloned. */ | 
|  | 575 | if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC)) | 
|  | 576 | goto out_nomem; | 
|  | 577 |  | 
|  | 578 | /* If the first fragment is fragmented itself, we split | 
|  | 579 | * it to two chunks: the first with data and paged part | 
|  | 580 | * and the second, holding only fragments. */ | 
|  | 581 | if (skb_shinfo(head)->frag_list) { | 
|  | 582 | struct sk_buff *clone; | 
|  | 583 | int i, plen = 0; | 
|  | 584 |  | 
|  | 585 | if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL) | 
|  | 586 | goto out_nomem; | 
|  | 587 | clone->next = head->next; | 
|  | 588 | head->next = clone; | 
|  | 589 | skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list; | 
|  | 590 | skb_shinfo(head)->frag_list = NULL; | 
|  | 591 | for (i=0; i<skb_shinfo(head)->nr_frags; i++) | 
|  | 592 | plen += skb_shinfo(head)->frags[i].size; | 
|  | 593 | clone->len = clone->data_len = head->data_len - plen; | 
|  | 594 | head->data_len -= clone->len; | 
|  | 595 | head->len -= clone->len; | 
|  | 596 | clone->csum = 0; | 
|  | 597 | clone->ip_summed = head->ip_summed; | 
|  | 598 | atomic_add(clone->truesize, &ip_frag_mem); | 
|  | 599 | } | 
|  | 600 |  | 
|  | 601 | skb_shinfo(head)->frag_list = head->next; | 
|  | 602 | skb_push(head, head->data - head->nh.raw); | 
|  | 603 | atomic_sub(head->truesize, &ip_frag_mem); | 
|  | 604 |  | 
|  | 605 | for (fp=head->next; fp; fp = fp->next) { | 
|  | 606 | head->data_len += fp->len; | 
|  | 607 | head->len += fp->len; | 
|  | 608 | if (head->ip_summed != fp->ip_summed) | 
|  | 609 | head->ip_summed = CHECKSUM_NONE; | 
|  | 610 | else if (head->ip_summed == CHECKSUM_HW) | 
|  | 611 | head->csum = csum_add(head->csum, fp->csum); | 
|  | 612 | head->truesize += fp->truesize; | 
|  | 613 | atomic_sub(fp->truesize, &ip_frag_mem); | 
|  | 614 | } | 
|  | 615 |  | 
|  | 616 | head->next = NULL; | 
|  | 617 | head->dev = dev; | 
|  | 618 | head->stamp = qp->stamp; | 
|  | 619 |  | 
|  | 620 | iph = head->nh.iph; | 
|  | 621 | iph->frag_off = 0; | 
|  | 622 | iph->tot_len = htons(len); | 
|  | 623 | IP_INC_STATS_BH(IPSTATS_MIB_REASMOKS); | 
|  | 624 | qp->fragments = NULL; | 
|  | 625 | return head; | 
|  | 626 |  | 
|  | 627 | out_nomem: | 
|  | 628 | NETDEBUG(if (net_ratelimit()) | 
|  | 629 | printk(KERN_ERR | 
|  | 630 | "IP: queue_glue: no memory for gluing queue %p\n", | 
|  | 631 | qp)); | 
|  | 632 | goto out_fail; | 
|  | 633 | out_oversize: | 
|  | 634 | if (net_ratelimit()) | 
|  | 635 | printk(KERN_INFO | 
|  | 636 | "Oversized IP packet from %d.%d.%d.%d.\n", | 
|  | 637 | NIPQUAD(qp->saddr)); | 
|  | 638 | out_fail: | 
|  | 639 | IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS); | 
|  | 640 | return NULL; | 
|  | 641 | } | 
|  | 642 |  | 
|  | 643 | /* Process an incoming IP datagram fragment. */ | 
|  | 644 | struct sk_buff *ip_defrag(struct sk_buff *skb, u32 user) | 
|  | 645 | { | 
|  | 646 | struct iphdr *iph = skb->nh.iph; | 
|  | 647 | struct ipq *qp; | 
|  | 648 | struct net_device *dev; | 
|  | 649 |  | 
|  | 650 | IP_INC_STATS_BH(IPSTATS_MIB_REASMREQDS); | 
|  | 651 |  | 
|  | 652 | /* Start by cleaning up the memory. */ | 
|  | 653 | if (atomic_read(&ip_frag_mem) > sysctl_ipfrag_high_thresh) | 
|  | 654 | ip_evictor(); | 
|  | 655 |  | 
|  | 656 | dev = skb->dev; | 
|  | 657 |  | 
|  | 658 | /* Lookup (or create) queue header */ | 
|  | 659 | if ((qp = ip_find(iph, user)) != NULL) { | 
|  | 660 | struct sk_buff *ret = NULL; | 
|  | 661 |  | 
|  | 662 | spin_lock(&qp->lock); | 
|  | 663 |  | 
|  | 664 | ip_frag_queue(qp, skb); | 
|  | 665 |  | 
|  | 666 | if (qp->last_in == (FIRST_IN|LAST_IN) && | 
|  | 667 | qp->meat == qp->len) | 
|  | 668 | ret = ip_frag_reasm(qp, dev); | 
|  | 669 |  | 
|  | 670 | spin_unlock(&qp->lock); | 
|  | 671 | ipq_put(qp, NULL); | 
|  | 672 | return ret; | 
|  | 673 | } | 
|  | 674 |  | 
|  | 675 | IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS); | 
|  | 676 | kfree_skb(skb); | 
|  | 677 | return NULL; | 
|  | 678 | } | 
|  | 679 |  | 
|  | 680 | void ipfrag_init(void) | 
|  | 681 | { | 
|  | 682 | ipfrag_hash_rnd = (u32) ((num_physpages ^ (num_physpages>>7)) ^ | 
|  | 683 | (jiffies ^ (jiffies >> 6))); | 
|  | 684 |  | 
|  | 685 | init_timer(&ipfrag_secret_timer); | 
|  | 686 | ipfrag_secret_timer.function = ipfrag_secret_rebuild; | 
|  | 687 | ipfrag_secret_timer.expires = jiffies + sysctl_ipfrag_secret_interval; | 
|  | 688 | add_timer(&ipfrag_secret_timer); | 
|  | 689 | } | 
|  | 690 |  | 
|  | 691 | EXPORT_SYMBOL(ip_defrag); |