| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * INET		An implementation of the TCP/IP protocol suite for the LINUX | 
|  | 3 | *		operating system.  INET is implemented using the  BSD Socket | 
|  | 4 | *		interface as the means of communication with the user level. | 
|  | 5 | * | 
|  | 6 | *		Implementation of the Transmission Control Protocol(TCP). | 
|  | 7 | * | 
|  | 8 | * Version:	$Id: tcp_output.c,v 1.146 2002/02/01 22:01:04 davem Exp $ | 
|  | 9 | * | 
|  | 10 | * Authors:	Ross Biro, <bir7@leland.Stanford.Edu> | 
|  | 11 | *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> | 
|  | 12 | *		Mark Evans, <evansmp@uhura.aston.ac.uk> | 
|  | 13 | *		Corey Minyard <wf-rch!minyard@relay.EU.net> | 
|  | 14 | *		Florian La Roche, <flla@stud.uni-sb.de> | 
|  | 15 | *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu> | 
|  | 16 | *		Linus Torvalds, <torvalds@cs.helsinki.fi> | 
|  | 17 | *		Alan Cox, <gw4pts@gw4pts.ampr.org> | 
|  | 18 | *		Matthew Dillon, <dillon@apollo.west.oic.com> | 
|  | 19 | *		Arnt Gulbrandsen, <agulbra@nvg.unit.no> | 
|  | 20 | *		Jorge Cwik, <jorge@laser.satlink.net> | 
|  | 21 | */ | 
|  | 22 |  | 
|  | 23 | /* | 
|  | 24 | * Changes:	Pedro Roque	:	Retransmit queue handled by TCP. | 
|  | 25 | *				:	Fragmentation on mtu decrease | 
|  | 26 | *				:	Segment collapse on retransmit | 
|  | 27 | *				:	AF independence | 
|  | 28 | * | 
|  | 29 | *		Linus Torvalds	:	send_delayed_ack | 
|  | 30 | *		David S. Miller	:	Charge memory using the right skb | 
|  | 31 | *					during syn/ack processing. | 
|  | 32 | *		David S. Miller :	Output engine completely rewritten. | 
|  | 33 | *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr. | 
|  | 34 | *		Cacophonix Gaul :	draft-minshall-nagle-01 | 
|  | 35 | *		J Hadi Salim	:	ECN support | 
|  | 36 | * | 
|  | 37 | */ | 
|  | 38 |  | 
|  | 39 | #include <net/tcp.h> | 
|  | 40 |  | 
|  | 41 | #include <linux/compiler.h> | 
|  | 42 | #include <linux/module.h> | 
|  | 43 | #include <linux/smp_lock.h> | 
|  | 44 |  | 
|  | 45 | /* People can turn this off for buggy TCP's found in printers etc. */ | 
|  | 46 | int sysctl_tcp_retrans_collapse = 1; | 
|  | 47 |  | 
|  | 48 | /* This limits the percentage of the congestion window which we | 
|  | 49 | * will allow a single TSO frame to consume.  Building TSO frames | 
|  | 50 | * which are too large can cause TCP streams to be bursty. | 
|  | 51 | */ | 
|  | 52 | int sysctl_tcp_tso_win_divisor = 8; | 
|  | 53 |  | 
|  | 54 | static inline void update_send_head(struct sock *sk, struct tcp_sock *tp, | 
|  | 55 | struct sk_buff *skb) | 
|  | 56 | { | 
|  | 57 | sk->sk_send_head = skb->next; | 
|  | 58 | if (sk->sk_send_head == (struct sk_buff *)&sk->sk_write_queue) | 
|  | 59 | sk->sk_send_head = NULL; | 
|  | 60 | tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; | 
|  | 61 | tcp_packets_out_inc(sk, tp, skb); | 
|  | 62 | } | 
|  | 63 |  | 
|  | 64 | /* SND.NXT, if window was not shrunk. | 
|  | 65 | * If window has been shrunk, what should we make? It is not clear at all. | 
|  | 66 | * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( | 
|  | 67 | * Anything in between SND.UNA...SND.UNA+SND.WND also can be already | 
|  | 68 | * invalid. OK, let's make this for now: | 
|  | 69 | */ | 
|  | 70 | static inline __u32 tcp_acceptable_seq(struct sock *sk, struct tcp_sock *tp) | 
|  | 71 | { | 
|  | 72 | if (!before(tp->snd_una+tp->snd_wnd, tp->snd_nxt)) | 
|  | 73 | return tp->snd_nxt; | 
|  | 74 | else | 
|  | 75 | return tp->snd_una+tp->snd_wnd; | 
|  | 76 | } | 
|  | 77 |  | 
|  | 78 | /* Calculate mss to advertise in SYN segment. | 
|  | 79 | * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: | 
|  | 80 | * | 
|  | 81 | * 1. It is independent of path mtu. | 
|  | 82 | * 2. Ideally, it is maximal possible segment size i.e. 65535-40. | 
|  | 83 | * 3. For IPv4 it is reasonable to calculate it from maximal MTU of | 
|  | 84 | *    attached devices, because some buggy hosts are confused by | 
|  | 85 | *    large MSS. | 
|  | 86 | * 4. We do not make 3, we advertise MSS, calculated from first | 
|  | 87 | *    hop device mtu, but allow to raise it to ip_rt_min_advmss. | 
|  | 88 | *    This may be overridden via information stored in routing table. | 
|  | 89 | * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, | 
|  | 90 | *    probably even Jumbo". | 
|  | 91 | */ | 
|  | 92 | static __u16 tcp_advertise_mss(struct sock *sk) | 
|  | 93 | { | 
|  | 94 | struct tcp_sock *tp = tcp_sk(sk); | 
|  | 95 | struct dst_entry *dst = __sk_dst_get(sk); | 
|  | 96 | int mss = tp->advmss; | 
|  | 97 |  | 
|  | 98 | if (dst && dst_metric(dst, RTAX_ADVMSS) < mss) { | 
|  | 99 | mss = dst_metric(dst, RTAX_ADVMSS); | 
|  | 100 | tp->advmss = mss; | 
|  | 101 | } | 
|  | 102 |  | 
|  | 103 | return (__u16)mss; | 
|  | 104 | } | 
|  | 105 |  | 
|  | 106 | /* RFC2861. Reset CWND after idle period longer RTO to "restart window". | 
|  | 107 | * This is the first part of cwnd validation mechanism. */ | 
|  | 108 | static void tcp_cwnd_restart(struct tcp_sock *tp, struct dst_entry *dst) | 
|  | 109 | { | 
|  | 110 | s32 delta = tcp_time_stamp - tp->lsndtime; | 
|  | 111 | u32 restart_cwnd = tcp_init_cwnd(tp, dst); | 
|  | 112 | u32 cwnd = tp->snd_cwnd; | 
|  | 113 |  | 
|  | 114 | if (tcp_is_vegas(tp)) | 
|  | 115 | tcp_vegas_enable(tp); | 
|  | 116 |  | 
|  | 117 | tp->snd_ssthresh = tcp_current_ssthresh(tp); | 
|  | 118 | restart_cwnd = min(restart_cwnd, cwnd); | 
|  | 119 |  | 
|  | 120 | while ((delta -= tp->rto) > 0 && cwnd > restart_cwnd) | 
|  | 121 | cwnd >>= 1; | 
|  | 122 | tp->snd_cwnd = max(cwnd, restart_cwnd); | 
|  | 123 | tp->snd_cwnd_stamp = tcp_time_stamp; | 
|  | 124 | tp->snd_cwnd_used = 0; | 
|  | 125 | } | 
|  | 126 |  | 
|  | 127 | static inline void tcp_event_data_sent(struct tcp_sock *tp, | 
|  | 128 | struct sk_buff *skb, struct sock *sk) | 
|  | 129 | { | 
|  | 130 | u32 now = tcp_time_stamp; | 
|  | 131 |  | 
|  | 132 | if (!tp->packets_out && (s32)(now - tp->lsndtime) > tp->rto) | 
|  | 133 | tcp_cwnd_restart(tp, __sk_dst_get(sk)); | 
|  | 134 |  | 
|  | 135 | tp->lsndtime = now; | 
|  | 136 |  | 
|  | 137 | /* If it is a reply for ato after last received | 
|  | 138 | * packet, enter pingpong mode. | 
|  | 139 | */ | 
|  | 140 | if ((u32)(now - tp->ack.lrcvtime) < tp->ack.ato) | 
|  | 141 | tp->ack.pingpong = 1; | 
|  | 142 | } | 
|  | 143 |  | 
|  | 144 | static __inline__ void tcp_event_ack_sent(struct sock *sk) | 
|  | 145 | { | 
|  | 146 | struct tcp_sock *tp = tcp_sk(sk); | 
|  | 147 |  | 
|  | 148 | tcp_dec_quickack_mode(tp); | 
|  | 149 | tcp_clear_xmit_timer(sk, TCP_TIME_DACK); | 
|  | 150 | } | 
|  | 151 |  | 
|  | 152 | /* Determine a window scaling and initial window to offer. | 
|  | 153 | * Based on the assumption that the given amount of space | 
|  | 154 | * will be offered. Store the results in the tp structure. | 
|  | 155 | * NOTE: for smooth operation initial space offering should | 
|  | 156 | * be a multiple of mss if possible. We assume here that mss >= 1. | 
|  | 157 | * This MUST be enforced by all callers. | 
|  | 158 | */ | 
|  | 159 | void tcp_select_initial_window(int __space, __u32 mss, | 
|  | 160 | __u32 *rcv_wnd, __u32 *window_clamp, | 
|  | 161 | int wscale_ok, __u8 *rcv_wscale) | 
|  | 162 | { | 
|  | 163 | unsigned int space = (__space < 0 ? 0 : __space); | 
|  | 164 |  | 
|  | 165 | /* If no clamp set the clamp to the max possible scaled window */ | 
|  | 166 | if (*window_clamp == 0) | 
|  | 167 | (*window_clamp) = (65535 << 14); | 
|  | 168 | space = min(*window_clamp, space); | 
|  | 169 |  | 
|  | 170 | /* Quantize space offering to a multiple of mss if possible. */ | 
|  | 171 | if (space > mss) | 
|  | 172 | space = (space / mss) * mss; | 
|  | 173 |  | 
|  | 174 | /* NOTE: offering an initial window larger than 32767 | 
|  | 175 | * will break some buggy TCP stacks. We try to be nice. | 
|  | 176 | * If we are not window scaling, then this truncates | 
|  | 177 | * our initial window offering to 32k. There should also | 
|  | 178 | * be a sysctl option to stop being nice. | 
|  | 179 | */ | 
|  | 180 | (*rcv_wnd) = min(space, MAX_TCP_WINDOW); | 
|  | 181 | (*rcv_wscale) = 0; | 
|  | 182 | if (wscale_ok) { | 
|  | 183 | /* Set window scaling on max possible window | 
|  | 184 | * See RFC1323 for an explanation of the limit to 14 | 
|  | 185 | */ | 
|  | 186 | space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max); | 
|  | 187 | while (space > 65535 && (*rcv_wscale) < 14) { | 
|  | 188 | space >>= 1; | 
|  | 189 | (*rcv_wscale)++; | 
|  | 190 | } | 
|  | 191 | } | 
|  | 192 |  | 
|  | 193 | /* Set initial window to value enough for senders, | 
|  | 194 | * following RFC1414. Senders, not following this RFC, | 
|  | 195 | * will be satisfied with 2. | 
|  | 196 | */ | 
|  | 197 | if (mss > (1<<*rcv_wscale)) { | 
|  | 198 | int init_cwnd = 4; | 
|  | 199 | if (mss > 1460*3) | 
|  | 200 | init_cwnd = 2; | 
|  | 201 | else if (mss > 1460) | 
|  | 202 | init_cwnd = 3; | 
|  | 203 | if (*rcv_wnd > init_cwnd*mss) | 
|  | 204 | *rcv_wnd = init_cwnd*mss; | 
|  | 205 | } | 
|  | 206 |  | 
|  | 207 | /* Set the clamp no higher than max representable value */ | 
|  | 208 | (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp); | 
|  | 209 | } | 
|  | 210 |  | 
|  | 211 | /* Chose a new window to advertise, update state in tcp_sock for the | 
|  | 212 | * socket, and return result with RFC1323 scaling applied.  The return | 
|  | 213 | * value can be stuffed directly into th->window for an outgoing | 
|  | 214 | * frame. | 
|  | 215 | */ | 
|  | 216 | static __inline__ u16 tcp_select_window(struct sock *sk) | 
|  | 217 | { | 
|  | 218 | struct tcp_sock *tp = tcp_sk(sk); | 
|  | 219 | u32 cur_win = tcp_receive_window(tp); | 
|  | 220 | u32 new_win = __tcp_select_window(sk); | 
|  | 221 |  | 
|  | 222 | /* Never shrink the offered window */ | 
|  | 223 | if(new_win < cur_win) { | 
|  | 224 | /* Danger Will Robinson! | 
|  | 225 | * Don't update rcv_wup/rcv_wnd here or else | 
|  | 226 | * we will not be able to advertise a zero | 
|  | 227 | * window in time.  --DaveM | 
|  | 228 | * | 
|  | 229 | * Relax Will Robinson. | 
|  | 230 | */ | 
|  | 231 | new_win = cur_win; | 
|  | 232 | } | 
|  | 233 | tp->rcv_wnd = new_win; | 
|  | 234 | tp->rcv_wup = tp->rcv_nxt; | 
|  | 235 |  | 
|  | 236 | /* Make sure we do not exceed the maximum possible | 
|  | 237 | * scaled window. | 
|  | 238 | */ | 
|  | 239 | if (!tp->rx_opt.rcv_wscale) | 
|  | 240 | new_win = min(new_win, MAX_TCP_WINDOW); | 
|  | 241 | else | 
|  | 242 | new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); | 
|  | 243 |  | 
|  | 244 | /* RFC1323 scaling applied */ | 
|  | 245 | new_win >>= tp->rx_opt.rcv_wscale; | 
|  | 246 |  | 
|  | 247 | /* If we advertise zero window, disable fast path. */ | 
|  | 248 | if (new_win == 0) | 
|  | 249 | tp->pred_flags = 0; | 
|  | 250 |  | 
|  | 251 | return new_win; | 
|  | 252 | } | 
|  | 253 |  | 
|  | 254 |  | 
|  | 255 | /* This routine actually transmits TCP packets queued in by | 
|  | 256 | * tcp_do_sendmsg().  This is used by both the initial | 
|  | 257 | * transmission and possible later retransmissions. | 
|  | 258 | * All SKB's seen here are completely headerless.  It is our | 
|  | 259 | * job to build the TCP header, and pass the packet down to | 
|  | 260 | * IP so it can do the same plus pass the packet off to the | 
|  | 261 | * device. | 
|  | 262 | * | 
|  | 263 | * We are working here with either a clone of the original | 
|  | 264 | * SKB, or a fresh unique copy made by the retransmit engine. | 
|  | 265 | */ | 
|  | 266 | static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb) | 
|  | 267 | { | 
|  | 268 | if (skb != NULL) { | 
|  | 269 | struct inet_sock *inet = inet_sk(sk); | 
|  | 270 | struct tcp_sock *tp = tcp_sk(sk); | 
|  | 271 | struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); | 
|  | 272 | int tcp_header_size = tp->tcp_header_len; | 
|  | 273 | struct tcphdr *th; | 
|  | 274 | int sysctl_flags; | 
|  | 275 | int err; | 
|  | 276 |  | 
|  | 277 | BUG_ON(!tcp_skb_pcount(skb)); | 
|  | 278 |  | 
|  | 279 | #define SYSCTL_FLAG_TSTAMPS	0x1 | 
|  | 280 | #define SYSCTL_FLAG_WSCALE	0x2 | 
|  | 281 | #define SYSCTL_FLAG_SACK	0x4 | 
|  | 282 |  | 
|  | 283 | sysctl_flags = 0; | 
|  | 284 | if (tcb->flags & TCPCB_FLAG_SYN) { | 
|  | 285 | tcp_header_size = sizeof(struct tcphdr) + TCPOLEN_MSS; | 
|  | 286 | if(sysctl_tcp_timestamps) { | 
|  | 287 | tcp_header_size += TCPOLEN_TSTAMP_ALIGNED; | 
|  | 288 | sysctl_flags |= SYSCTL_FLAG_TSTAMPS; | 
|  | 289 | } | 
|  | 290 | if(sysctl_tcp_window_scaling) { | 
|  | 291 | tcp_header_size += TCPOLEN_WSCALE_ALIGNED; | 
|  | 292 | sysctl_flags |= SYSCTL_FLAG_WSCALE; | 
|  | 293 | } | 
|  | 294 | if(sysctl_tcp_sack) { | 
|  | 295 | sysctl_flags |= SYSCTL_FLAG_SACK; | 
|  | 296 | if(!(sysctl_flags & SYSCTL_FLAG_TSTAMPS)) | 
|  | 297 | tcp_header_size += TCPOLEN_SACKPERM_ALIGNED; | 
|  | 298 | } | 
|  | 299 | } else if (tp->rx_opt.eff_sacks) { | 
|  | 300 | /* A SACK is 2 pad bytes, a 2 byte header, plus | 
|  | 301 | * 2 32-bit sequence numbers for each SACK block. | 
|  | 302 | */ | 
|  | 303 | tcp_header_size += (TCPOLEN_SACK_BASE_ALIGNED + | 
|  | 304 | (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK)); | 
|  | 305 | } | 
|  | 306 |  | 
|  | 307 | /* | 
|  | 308 | * If the connection is idle and we are restarting, | 
|  | 309 | * then we don't want to do any Vegas calculations | 
|  | 310 | * until we get fresh RTT samples.  So when we | 
|  | 311 | * restart, we reset our Vegas state to a clean | 
|  | 312 | * slate. After we get acks for this flight of | 
|  | 313 | * packets, _then_ we can make Vegas calculations | 
|  | 314 | * again. | 
|  | 315 | */ | 
|  | 316 | if (tcp_is_vegas(tp) && tcp_packets_in_flight(tp) == 0) | 
|  | 317 | tcp_vegas_enable(tp); | 
|  | 318 |  | 
|  | 319 | th = (struct tcphdr *) skb_push(skb, tcp_header_size); | 
|  | 320 | skb->h.th = th; | 
|  | 321 | skb_set_owner_w(skb, sk); | 
|  | 322 |  | 
|  | 323 | /* Build TCP header and checksum it. */ | 
|  | 324 | th->source		= inet->sport; | 
|  | 325 | th->dest		= inet->dport; | 
|  | 326 | th->seq			= htonl(tcb->seq); | 
|  | 327 | th->ack_seq		= htonl(tp->rcv_nxt); | 
|  | 328 | *(((__u16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) | tcb->flags); | 
|  | 329 | if (tcb->flags & TCPCB_FLAG_SYN) { | 
|  | 330 | /* RFC1323: The window in SYN & SYN/ACK segments | 
|  | 331 | * is never scaled. | 
|  | 332 | */ | 
|  | 333 | th->window	= htons(tp->rcv_wnd); | 
|  | 334 | } else { | 
|  | 335 | th->window	= htons(tcp_select_window(sk)); | 
|  | 336 | } | 
|  | 337 | th->check		= 0; | 
|  | 338 | th->urg_ptr		= 0; | 
|  | 339 |  | 
|  | 340 | if (tp->urg_mode && | 
|  | 341 | between(tp->snd_up, tcb->seq+1, tcb->seq+0xFFFF)) { | 
|  | 342 | th->urg_ptr		= htons(tp->snd_up-tcb->seq); | 
|  | 343 | th->urg			= 1; | 
|  | 344 | } | 
|  | 345 |  | 
|  | 346 | if (tcb->flags & TCPCB_FLAG_SYN) { | 
|  | 347 | tcp_syn_build_options((__u32 *)(th + 1), | 
|  | 348 | tcp_advertise_mss(sk), | 
|  | 349 | (sysctl_flags & SYSCTL_FLAG_TSTAMPS), | 
|  | 350 | (sysctl_flags & SYSCTL_FLAG_SACK), | 
|  | 351 | (sysctl_flags & SYSCTL_FLAG_WSCALE), | 
|  | 352 | tp->rx_opt.rcv_wscale, | 
|  | 353 | tcb->when, | 
|  | 354 | tp->rx_opt.ts_recent); | 
|  | 355 | } else { | 
|  | 356 | tcp_build_and_update_options((__u32 *)(th + 1), | 
|  | 357 | tp, tcb->when); | 
|  | 358 |  | 
|  | 359 | TCP_ECN_send(sk, tp, skb, tcp_header_size); | 
|  | 360 | } | 
|  | 361 | tp->af_specific->send_check(sk, th, skb->len, skb); | 
|  | 362 |  | 
|  | 363 | if (tcb->flags & TCPCB_FLAG_ACK) | 
|  | 364 | tcp_event_ack_sent(sk); | 
|  | 365 |  | 
|  | 366 | if (skb->len != tcp_header_size) | 
|  | 367 | tcp_event_data_sent(tp, skb, sk); | 
|  | 368 |  | 
|  | 369 | TCP_INC_STATS(TCP_MIB_OUTSEGS); | 
|  | 370 |  | 
|  | 371 | err = tp->af_specific->queue_xmit(skb, 0); | 
|  | 372 | if (err <= 0) | 
|  | 373 | return err; | 
|  | 374 |  | 
|  | 375 | tcp_enter_cwr(tp); | 
|  | 376 |  | 
|  | 377 | /* NET_XMIT_CN is special. It does not guarantee, | 
|  | 378 | * that this packet is lost. It tells that device | 
|  | 379 | * is about to start to drop packets or already | 
|  | 380 | * drops some packets of the same priority and | 
|  | 381 | * invokes us to send less aggressively. | 
|  | 382 | */ | 
|  | 383 | return err == NET_XMIT_CN ? 0 : err; | 
|  | 384 | } | 
|  | 385 | return -ENOBUFS; | 
|  | 386 | #undef SYSCTL_FLAG_TSTAMPS | 
|  | 387 | #undef SYSCTL_FLAG_WSCALE | 
|  | 388 | #undef SYSCTL_FLAG_SACK | 
|  | 389 | } | 
|  | 390 |  | 
|  | 391 |  | 
|  | 392 | /* This routine just queue's the buffer | 
|  | 393 | * | 
|  | 394 | * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, | 
|  | 395 | * otherwise socket can stall. | 
|  | 396 | */ | 
|  | 397 | static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) | 
|  | 398 | { | 
|  | 399 | struct tcp_sock *tp = tcp_sk(sk); | 
|  | 400 |  | 
|  | 401 | /* Advance write_seq and place onto the write_queue. */ | 
|  | 402 | tp->write_seq = TCP_SKB_CB(skb)->end_seq; | 
|  | 403 | skb_header_release(skb); | 
|  | 404 | __skb_queue_tail(&sk->sk_write_queue, skb); | 
|  | 405 | sk_charge_skb(sk, skb); | 
|  | 406 |  | 
|  | 407 | /* Queue it, remembering where we must start sending. */ | 
|  | 408 | if (sk->sk_send_head == NULL) | 
|  | 409 | sk->sk_send_head = skb; | 
|  | 410 | } | 
|  | 411 |  | 
|  | 412 | static inline void tcp_tso_set_push(struct sk_buff *skb) | 
|  | 413 | { | 
|  | 414 | /* Force push to be on for any TSO frames to workaround | 
|  | 415 | * problems with busted implementations like Mac OS-X that | 
|  | 416 | * hold off socket receive wakeups until push is seen. | 
|  | 417 | */ | 
|  | 418 | if (tcp_skb_pcount(skb) > 1) | 
|  | 419 | TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH; | 
|  | 420 | } | 
|  | 421 |  | 
|  | 422 | /* Send _single_ skb sitting at the send head. This function requires | 
|  | 423 | * true push pending frames to setup probe timer etc. | 
|  | 424 | */ | 
|  | 425 | void tcp_push_one(struct sock *sk, unsigned cur_mss) | 
|  | 426 | { | 
|  | 427 | struct tcp_sock *tp = tcp_sk(sk); | 
|  | 428 | struct sk_buff *skb = sk->sk_send_head; | 
|  | 429 |  | 
| David S. Miller | d5ac99a | 2005-04-24 19:12:33 -0700 | [diff] [blame] | 430 | if (tcp_snd_test(sk, skb, cur_mss, TCP_NAGLE_PUSH)) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 431 | /* Send it out now. */ | 
|  | 432 | TCP_SKB_CB(skb)->when = tcp_time_stamp; | 
|  | 433 | tcp_tso_set_push(skb); | 
|  | 434 | if (!tcp_transmit_skb(sk, skb_clone(skb, sk->sk_allocation))) { | 
|  | 435 | sk->sk_send_head = NULL; | 
|  | 436 | tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; | 
|  | 437 | tcp_packets_out_inc(sk, tp, skb); | 
|  | 438 | return; | 
|  | 439 | } | 
|  | 440 | } | 
|  | 441 | } | 
|  | 442 |  | 
| David S. Miller | d5ac99a | 2005-04-24 19:12:33 -0700 | [diff] [blame] | 443 | void tcp_set_skb_tso_segs(struct sock *sk, struct sk_buff *skb) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 444 | { | 
| David S. Miller | d5ac99a | 2005-04-24 19:12:33 -0700 | [diff] [blame] | 445 | struct tcp_sock *tp = tcp_sk(sk); | 
|  | 446 |  | 
|  | 447 | if (skb->len <= tp->mss_cache_std || | 
|  | 448 | !(sk->sk_route_caps & NETIF_F_TSO)) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 449 | /* Avoid the costly divide in the normal | 
|  | 450 | * non-TSO case. | 
|  | 451 | */ | 
|  | 452 | skb_shinfo(skb)->tso_segs = 1; | 
|  | 453 | skb_shinfo(skb)->tso_size = 0; | 
|  | 454 | } else { | 
|  | 455 | unsigned int factor; | 
|  | 456 |  | 
| David S. Miller | d5ac99a | 2005-04-24 19:12:33 -0700 | [diff] [blame] | 457 | factor = skb->len + (tp->mss_cache_std - 1); | 
|  | 458 | factor /= tp->mss_cache_std; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 459 | skb_shinfo(skb)->tso_segs = factor; | 
| David S. Miller | d5ac99a | 2005-04-24 19:12:33 -0700 | [diff] [blame] | 460 | skb_shinfo(skb)->tso_size = tp->mss_cache_std; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 461 | } | 
|  | 462 | } | 
|  | 463 |  | 
|  | 464 | /* Function to create two new TCP segments.  Shrinks the given segment | 
|  | 465 | * to the specified size and appends a new segment with the rest of the | 
|  | 466 | * packet to the list.  This won't be called frequently, I hope. | 
|  | 467 | * Remember, these are still headerless SKBs at this point. | 
|  | 468 | */ | 
|  | 469 | static int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len) | 
|  | 470 | { | 
|  | 471 | struct tcp_sock *tp = tcp_sk(sk); | 
|  | 472 | struct sk_buff *buff; | 
|  | 473 | int nsize; | 
|  | 474 | u16 flags; | 
|  | 475 |  | 
|  | 476 | nsize = skb_headlen(skb) - len; | 
|  | 477 | if (nsize < 0) | 
|  | 478 | nsize = 0; | 
|  | 479 |  | 
|  | 480 | if (skb_cloned(skb) && | 
|  | 481 | skb_is_nonlinear(skb) && | 
|  | 482 | pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) | 
|  | 483 | return -ENOMEM; | 
|  | 484 |  | 
|  | 485 | /* Get a new skb... force flag on. */ | 
|  | 486 | buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC); | 
|  | 487 | if (buff == NULL) | 
|  | 488 | return -ENOMEM; /* We'll just try again later. */ | 
|  | 489 | sk_charge_skb(sk, buff); | 
|  | 490 |  | 
|  | 491 | /* Correct the sequence numbers. */ | 
|  | 492 | TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; | 
|  | 493 | TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; | 
|  | 494 | TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; | 
|  | 495 |  | 
|  | 496 | /* PSH and FIN should only be set in the second packet. */ | 
|  | 497 | flags = TCP_SKB_CB(skb)->flags; | 
|  | 498 | TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH); | 
|  | 499 | TCP_SKB_CB(buff)->flags = flags; | 
|  | 500 | TCP_SKB_CB(buff)->sacked = | 
|  | 501 | (TCP_SKB_CB(skb)->sacked & | 
|  | 502 | (TCPCB_LOST | TCPCB_EVER_RETRANS | TCPCB_AT_TAIL)); | 
|  | 503 | TCP_SKB_CB(skb)->sacked &= ~TCPCB_AT_TAIL; | 
|  | 504 |  | 
|  | 505 | if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_HW) { | 
|  | 506 | /* Copy and checksum data tail into the new buffer. */ | 
|  | 507 | buff->csum = csum_partial_copy_nocheck(skb->data + len, skb_put(buff, nsize), | 
|  | 508 | nsize, 0); | 
|  | 509 |  | 
|  | 510 | skb_trim(skb, len); | 
|  | 511 |  | 
|  | 512 | skb->csum = csum_block_sub(skb->csum, buff->csum, len); | 
|  | 513 | } else { | 
|  | 514 | skb->ip_summed = CHECKSUM_HW; | 
|  | 515 | skb_split(skb, buff, len); | 
|  | 516 | } | 
|  | 517 |  | 
|  | 518 | buff->ip_summed = skb->ip_summed; | 
|  | 519 |  | 
|  | 520 | /* Looks stupid, but our code really uses when of | 
|  | 521 | * skbs, which it never sent before. --ANK | 
|  | 522 | */ | 
|  | 523 | TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when; | 
|  | 524 |  | 
|  | 525 | if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) { | 
|  | 526 | tp->lost_out -= tcp_skb_pcount(skb); | 
|  | 527 | tp->left_out -= tcp_skb_pcount(skb); | 
|  | 528 | } | 
|  | 529 |  | 
|  | 530 | /* Fix up tso_factor for both original and new SKB.  */ | 
| David S. Miller | d5ac99a | 2005-04-24 19:12:33 -0700 | [diff] [blame] | 531 | tcp_set_skb_tso_segs(sk, skb); | 
|  | 532 | tcp_set_skb_tso_segs(sk, buff); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 533 |  | 
|  | 534 | if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) { | 
|  | 535 | tp->lost_out += tcp_skb_pcount(skb); | 
|  | 536 | tp->left_out += tcp_skb_pcount(skb); | 
|  | 537 | } | 
|  | 538 |  | 
|  | 539 | if (TCP_SKB_CB(buff)->sacked&TCPCB_LOST) { | 
|  | 540 | tp->lost_out += tcp_skb_pcount(buff); | 
|  | 541 | tp->left_out += tcp_skb_pcount(buff); | 
|  | 542 | } | 
|  | 543 |  | 
|  | 544 | /* Link BUFF into the send queue. */ | 
|  | 545 | __skb_append(skb, buff); | 
|  | 546 |  | 
|  | 547 | return 0; | 
|  | 548 | } | 
|  | 549 |  | 
|  | 550 | /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c | 
|  | 551 | * eventually). The difference is that pulled data not copied, but | 
|  | 552 | * immediately discarded. | 
|  | 553 | */ | 
|  | 554 | static unsigned char *__pskb_trim_head(struct sk_buff *skb, int len) | 
|  | 555 | { | 
|  | 556 | int i, k, eat; | 
|  | 557 |  | 
|  | 558 | eat = len; | 
|  | 559 | k = 0; | 
|  | 560 | for (i=0; i<skb_shinfo(skb)->nr_frags; i++) { | 
|  | 561 | if (skb_shinfo(skb)->frags[i].size <= eat) { | 
|  | 562 | put_page(skb_shinfo(skb)->frags[i].page); | 
|  | 563 | eat -= skb_shinfo(skb)->frags[i].size; | 
|  | 564 | } else { | 
|  | 565 | skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; | 
|  | 566 | if (eat) { | 
|  | 567 | skb_shinfo(skb)->frags[k].page_offset += eat; | 
|  | 568 | skb_shinfo(skb)->frags[k].size -= eat; | 
|  | 569 | eat = 0; | 
|  | 570 | } | 
|  | 571 | k++; | 
|  | 572 | } | 
|  | 573 | } | 
|  | 574 | skb_shinfo(skb)->nr_frags = k; | 
|  | 575 |  | 
|  | 576 | skb->tail = skb->data; | 
|  | 577 | skb->data_len -= len; | 
|  | 578 | skb->len = skb->data_len; | 
|  | 579 | return skb->tail; | 
|  | 580 | } | 
|  | 581 |  | 
|  | 582 | int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) | 
|  | 583 | { | 
|  | 584 | if (skb_cloned(skb) && | 
|  | 585 | pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) | 
|  | 586 | return -ENOMEM; | 
|  | 587 |  | 
|  | 588 | if (len <= skb_headlen(skb)) { | 
|  | 589 | __skb_pull(skb, len); | 
|  | 590 | } else { | 
|  | 591 | if (__pskb_trim_head(skb, len-skb_headlen(skb)) == NULL) | 
|  | 592 | return -ENOMEM; | 
|  | 593 | } | 
|  | 594 |  | 
|  | 595 | TCP_SKB_CB(skb)->seq += len; | 
|  | 596 | skb->ip_summed = CHECKSUM_HW; | 
|  | 597 |  | 
|  | 598 | skb->truesize	     -= len; | 
|  | 599 | sk->sk_wmem_queued   -= len; | 
|  | 600 | sk->sk_forward_alloc += len; | 
|  | 601 | sock_set_flag(sk, SOCK_QUEUE_SHRUNK); | 
|  | 602 |  | 
|  | 603 | /* Any change of skb->len requires recalculation of tso | 
|  | 604 | * factor and mss. | 
|  | 605 | */ | 
|  | 606 | if (tcp_skb_pcount(skb) > 1) | 
| David S. Miller | d5ac99a | 2005-04-24 19:12:33 -0700 | [diff] [blame] | 607 | tcp_set_skb_tso_segs(sk, skb); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 608 |  | 
|  | 609 | return 0; | 
|  | 610 | } | 
|  | 611 |  | 
|  | 612 | /* This function synchronize snd mss to current pmtu/exthdr set. | 
|  | 613 |  | 
|  | 614 | tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts | 
|  | 615 | for TCP options, but includes only bare TCP header. | 
|  | 616 |  | 
|  | 617 | tp->rx_opt.mss_clamp is mss negotiated at connection setup. | 
|  | 618 | It is minumum of user_mss and mss received with SYN. | 
|  | 619 | It also does not include TCP options. | 
|  | 620 |  | 
|  | 621 | tp->pmtu_cookie is last pmtu, seen by this function. | 
|  | 622 |  | 
|  | 623 | tp->mss_cache is current effective sending mss, including | 
|  | 624 | all tcp options except for SACKs. It is evaluated, | 
|  | 625 | taking into account current pmtu, but never exceeds | 
|  | 626 | tp->rx_opt.mss_clamp. | 
|  | 627 |  | 
|  | 628 | NOTE1. rfc1122 clearly states that advertised MSS | 
|  | 629 | DOES NOT include either tcp or ip options. | 
|  | 630 |  | 
|  | 631 | NOTE2. tp->pmtu_cookie and tp->mss_cache are READ ONLY outside | 
|  | 632 | this function.			--ANK (980731) | 
|  | 633 | */ | 
|  | 634 |  | 
|  | 635 | unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) | 
|  | 636 | { | 
|  | 637 | struct tcp_sock *tp = tcp_sk(sk); | 
|  | 638 | int mss_now; | 
|  | 639 |  | 
|  | 640 | /* Calculate base mss without TCP options: | 
|  | 641 | It is MMS_S - sizeof(tcphdr) of rfc1122 | 
|  | 642 | */ | 
|  | 643 | mss_now = pmtu - tp->af_specific->net_header_len - sizeof(struct tcphdr); | 
|  | 644 |  | 
|  | 645 | /* Clamp it (mss_clamp does not include tcp options) */ | 
|  | 646 | if (mss_now > tp->rx_opt.mss_clamp) | 
|  | 647 | mss_now = tp->rx_opt.mss_clamp; | 
|  | 648 |  | 
|  | 649 | /* Now subtract optional transport overhead */ | 
|  | 650 | mss_now -= tp->ext_header_len; | 
|  | 651 |  | 
|  | 652 | /* Then reserve room for full set of TCP options and 8 bytes of data */ | 
|  | 653 | if (mss_now < 48) | 
|  | 654 | mss_now = 48; | 
|  | 655 |  | 
|  | 656 | /* Now subtract TCP options size, not including SACKs */ | 
|  | 657 | mss_now -= tp->tcp_header_len - sizeof(struct tcphdr); | 
|  | 658 |  | 
|  | 659 | /* Bound mss with half of window */ | 
|  | 660 | if (tp->max_window && mss_now > (tp->max_window>>1)) | 
|  | 661 | mss_now = max((tp->max_window>>1), 68U - tp->tcp_header_len); | 
|  | 662 |  | 
|  | 663 | /* And store cached results */ | 
|  | 664 | tp->pmtu_cookie = pmtu; | 
|  | 665 | tp->mss_cache = tp->mss_cache_std = mss_now; | 
|  | 666 |  | 
|  | 667 | return mss_now; | 
|  | 668 | } | 
|  | 669 |  | 
|  | 670 | /* Compute the current effective MSS, taking SACKs and IP options, | 
|  | 671 | * and even PMTU discovery events into account. | 
|  | 672 | * | 
|  | 673 | * LARGESEND note: !urg_mode is overkill, only frames up to snd_up | 
|  | 674 | * cannot be large. However, taking into account rare use of URG, this | 
|  | 675 | * is not a big flaw. | 
|  | 676 | */ | 
|  | 677 |  | 
|  | 678 | unsigned int tcp_current_mss(struct sock *sk, int large) | 
|  | 679 | { | 
|  | 680 | struct tcp_sock *tp = tcp_sk(sk); | 
|  | 681 | struct dst_entry *dst = __sk_dst_get(sk); | 
|  | 682 | unsigned int do_large, mss_now; | 
|  | 683 |  | 
|  | 684 | mss_now = tp->mss_cache_std; | 
|  | 685 | if (dst) { | 
|  | 686 | u32 mtu = dst_mtu(dst); | 
|  | 687 | if (mtu != tp->pmtu_cookie) | 
|  | 688 | mss_now = tcp_sync_mss(sk, mtu); | 
|  | 689 | } | 
|  | 690 |  | 
|  | 691 | do_large = (large && | 
|  | 692 | (sk->sk_route_caps & NETIF_F_TSO) && | 
|  | 693 | !tp->urg_mode); | 
|  | 694 |  | 
|  | 695 | if (do_large) { | 
|  | 696 | unsigned int large_mss, factor, limit; | 
|  | 697 |  | 
|  | 698 | large_mss = 65535 - tp->af_specific->net_header_len - | 
|  | 699 | tp->ext_header_len - tp->tcp_header_len; | 
|  | 700 |  | 
|  | 701 | if (tp->max_window && large_mss > (tp->max_window>>1)) | 
|  | 702 | large_mss = max((tp->max_window>>1), | 
|  | 703 | 68U - tp->tcp_header_len); | 
|  | 704 |  | 
|  | 705 | factor = large_mss / mss_now; | 
|  | 706 |  | 
|  | 707 | /* Always keep large mss multiple of real mss, but | 
|  | 708 | * do not exceed 1/tso_win_divisor of the congestion window | 
|  | 709 | * so we can keep the ACK clock ticking and minimize | 
|  | 710 | * bursting. | 
|  | 711 | */ | 
|  | 712 | limit = tp->snd_cwnd; | 
|  | 713 | if (sysctl_tcp_tso_win_divisor) | 
|  | 714 | limit /= sysctl_tcp_tso_win_divisor; | 
|  | 715 | limit = max(1U, limit); | 
|  | 716 | if (factor > limit) | 
|  | 717 | factor = limit; | 
|  | 718 |  | 
|  | 719 | tp->mss_cache = mss_now * factor; | 
|  | 720 |  | 
|  | 721 | mss_now = tp->mss_cache; | 
|  | 722 | } | 
|  | 723 |  | 
|  | 724 | if (tp->rx_opt.eff_sacks) | 
|  | 725 | mss_now -= (TCPOLEN_SACK_BASE_ALIGNED + | 
|  | 726 | (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK)); | 
|  | 727 | return mss_now; | 
|  | 728 | } | 
|  | 729 |  | 
|  | 730 | /* This routine writes packets to the network.  It advances the | 
|  | 731 | * send_head.  This happens as incoming acks open up the remote | 
|  | 732 | * window for us. | 
|  | 733 | * | 
|  | 734 | * Returns 1, if no segments are in flight and we have queued segments, but | 
|  | 735 | * cannot send anything now because of SWS or another problem. | 
|  | 736 | */ | 
|  | 737 | int tcp_write_xmit(struct sock *sk, int nonagle) | 
|  | 738 | { | 
|  | 739 | struct tcp_sock *tp = tcp_sk(sk); | 
|  | 740 | unsigned int mss_now; | 
|  | 741 |  | 
|  | 742 | /* If we are closed, the bytes will have to remain here. | 
|  | 743 | * In time closedown will finish, we empty the write queue and all | 
|  | 744 | * will be happy. | 
|  | 745 | */ | 
|  | 746 | if (sk->sk_state != TCP_CLOSE) { | 
|  | 747 | struct sk_buff *skb; | 
|  | 748 | int sent_pkts = 0; | 
|  | 749 |  | 
|  | 750 | /* Account for SACKS, we may need to fragment due to this. | 
|  | 751 | * It is just like the real MSS changing on us midstream. | 
|  | 752 | * We also handle things correctly when the user adds some | 
|  | 753 | * IP options mid-stream.  Silly to do, but cover it. | 
|  | 754 | */ | 
|  | 755 | mss_now = tcp_current_mss(sk, 1); | 
|  | 756 |  | 
|  | 757 | while ((skb = sk->sk_send_head) && | 
| David S. Miller | d5ac99a | 2005-04-24 19:12:33 -0700 | [diff] [blame] | 758 | tcp_snd_test(sk, skb, mss_now, | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 759 | tcp_skb_is_last(sk, skb) ? nonagle : | 
|  | 760 | TCP_NAGLE_PUSH)) { | 
|  | 761 | if (skb->len > mss_now) { | 
|  | 762 | if (tcp_fragment(sk, skb, mss_now)) | 
|  | 763 | break; | 
|  | 764 | } | 
|  | 765 |  | 
|  | 766 | TCP_SKB_CB(skb)->when = tcp_time_stamp; | 
|  | 767 | tcp_tso_set_push(skb); | 
|  | 768 | if (tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC))) | 
|  | 769 | break; | 
|  | 770 |  | 
|  | 771 | /* Advance the send_head.  This one is sent out. | 
|  | 772 | * This call will increment packets_out. | 
|  | 773 | */ | 
|  | 774 | update_send_head(sk, tp, skb); | 
|  | 775 |  | 
|  | 776 | tcp_minshall_update(tp, mss_now, skb); | 
|  | 777 | sent_pkts = 1; | 
|  | 778 | } | 
|  | 779 |  | 
|  | 780 | if (sent_pkts) { | 
|  | 781 | tcp_cwnd_validate(sk, tp); | 
|  | 782 | return 0; | 
|  | 783 | } | 
|  | 784 |  | 
|  | 785 | return !tp->packets_out && sk->sk_send_head; | 
|  | 786 | } | 
|  | 787 | return 0; | 
|  | 788 | } | 
|  | 789 |  | 
|  | 790 | /* This function returns the amount that we can raise the | 
|  | 791 | * usable window based on the following constraints | 
|  | 792 | * | 
|  | 793 | * 1. The window can never be shrunk once it is offered (RFC 793) | 
|  | 794 | * 2. We limit memory per socket | 
|  | 795 | * | 
|  | 796 | * RFC 1122: | 
|  | 797 | * "the suggested [SWS] avoidance algorithm for the receiver is to keep | 
|  | 798 | *  RECV.NEXT + RCV.WIN fixed until: | 
|  | 799 | *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" | 
|  | 800 | * | 
|  | 801 | * i.e. don't raise the right edge of the window until you can raise | 
|  | 802 | * it at least MSS bytes. | 
|  | 803 | * | 
|  | 804 | * Unfortunately, the recommended algorithm breaks header prediction, | 
|  | 805 | * since header prediction assumes th->window stays fixed. | 
|  | 806 | * | 
|  | 807 | * Strictly speaking, keeping th->window fixed violates the receiver | 
|  | 808 | * side SWS prevention criteria. The problem is that under this rule | 
|  | 809 | * a stream of single byte packets will cause the right side of the | 
|  | 810 | * window to always advance by a single byte. | 
|  | 811 | * | 
|  | 812 | * Of course, if the sender implements sender side SWS prevention | 
|  | 813 | * then this will not be a problem. | 
|  | 814 | * | 
|  | 815 | * BSD seems to make the following compromise: | 
|  | 816 | * | 
|  | 817 | *	If the free space is less than the 1/4 of the maximum | 
|  | 818 | *	space available and the free space is less than 1/2 mss, | 
|  | 819 | *	then set the window to 0. | 
|  | 820 | *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ] | 
|  | 821 | *	Otherwise, just prevent the window from shrinking | 
|  | 822 | *	and from being larger than the largest representable value. | 
|  | 823 | * | 
|  | 824 | * This prevents incremental opening of the window in the regime | 
|  | 825 | * where TCP is limited by the speed of the reader side taking | 
|  | 826 | * data out of the TCP receive queue. It does nothing about | 
|  | 827 | * those cases where the window is constrained on the sender side | 
|  | 828 | * because the pipeline is full. | 
|  | 829 | * | 
|  | 830 | * BSD also seems to "accidentally" limit itself to windows that are a | 
|  | 831 | * multiple of MSS, at least until the free space gets quite small. | 
|  | 832 | * This would appear to be a side effect of the mbuf implementation. | 
|  | 833 | * Combining these two algorithms results in the observed behavior | 
|  | 834 | * of having a fixed window size at almost all times. | 
|  | 835 | * | 
|  | 836 | * Below we obtain similar behavior by forcing the offered window to | 
|  | 837 | * a multiple of the mss when it is feasible to do so. | 
|  | 838 | * | 
|  | 839 | * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. | 
|  | 840 | * Regular options like TIMESTAMP are taken into account. | 
|  | 841 | */ | 
|  | 842 | u32 __tcp_select_window(struct sock *sk) | 
|  | 843 | { | 
|  | 844 | struct tcp_sock *tp = tcp_sk(sk); | 
|  | 845 | /* MSS for the peer's data.  Previous verions used mss_clamp | 
|  | 846 | * here.  I don't know if the value based on our guesses | 
|  | 847 | * of peer's MSS is better for the performance.  It's more correct | 
|  | 848 | * but may be worse for the performance because of rcv_mss | 
|  | 849 | * fluctuations.  --SAW  1998/11/1 | 
|  | 850 | */ | 
|  | 851 | int mss = tp->ack.rcv_mss; | 
|  | 852 | int free_space = tcp_space(sk); | 
|  | 853 | int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk)); | 
|  | 854 | int window; | 
|  | 855 |  | 
|  | 856 | if (mss > full_space) | 
|  | 857 | mss = full_space; | 
|  | 858 |  | 
|  | 859 | if (free_space < full_space/2) { | 
|  | 860 | tp->ack.quick = 0; | 
|  | 861 |  | 
|  | 862 | if (tcp_memory_pressure) | 
|  | 863 | tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U*tp->advmss); | 
|  | 864 |  | 
|  | 865 | if (free_space < mss) | 
|  | 866 | return 0; | 
|  | 867 | } | 
|  | 868 |  | 
|  | 869 | if (free_space > tp->rcv_ssthresh) | 
|  | 870 | free_space = tp->rcv_ssthresh; | 
|  | 871 |  | 
|  | 872 | /* Don't do rounding if we are using window scaling, since the | 
|  | 873 | * scaled window will not line up with the MSS boundary anyway. | 
|  | 874 | */ | 
|  | 875 | window = tp->rcv_wnd; | 
|  | 876 | if (tp->rx_opt.rcv_wscale) { | 
|  | 877 | window = free_space; | 
|  | 878 |  | 
|  | 879 | /* Advertise enough space so that it won't get scaled away. | 
|  | 880 | * Import case: prevent zero window announcement if | 
|  | 881 | * 1<<rcv_wscale > mss. | 
|  | 882 | */ | 
|  | 883 | if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window) | 
|  | 884 | window = (((window >> tp->rx_opt.rcv_wscale) + 1) | 
|  | 885 | << tp->rx_opt.rcv_wscale); | 
|  | 886 | } else { | 
|  | 887 | /* Get the largest window that is a nice multiple of mss. | 
|  | 888 | * Window clamp already applied above. | 
|  | 889 | * If our current window offering is within 1 mss of the | 
|  | 890 | * free space we just keep it. This prevents the divide | 
|  | 891 | * and multiply from happening most of the time. | 
|  | 892 | * We also don't do any window rounding when the free space | 
|  | 893 | * is too small. | 
|  | 894 | */ | 
|  | 895 | if (window <= free_space - mss || window > free_space) | 
|  | 896 | window = (free_space/mss)*mss; | 
|  | 897 | } | 
|  | 898 |  | 
|  | 899 | return window; | 
|  | 900 | } | 
|  | 901 |  | 
|  | 902 | /* Attempt to collapse two adjacent SKB's during retransmission. */ | 
|  | 903 | static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *skb, int mss_now) | 
|  | 904 | { | 
|  | 905 | struct tcp_sock *tp = tcp_sk(sk); | 
|  | 906 | struct sk_buff *next_skb = skb->next; | 
|  | 907 |  | 
|  | 908 | /* The first test we must make is that neither of these two | 
|  | 909 | * SKB's are still referenced by someone else. | 
|  | 910 | */ | 
|  | 911 | if (!skb_cloned(skb) && !skb_cloned(next_skb)) { | 
|  | 912 | int skb_size = skb->len, next_skb_size = next_skb->len; | 
|  | 913 | u16 flags = TCP_SKB_CB(skb)->flags; | 
|  | 914 |  | 
|  | 915 | /* Also punt if next skb has been SACK'd. */ | 
|  | 916 | if(TCP_SKB_CB(next_skb)->sacked & TCPCB_SACKED_ACKED) | 
|  | 917 | return; | 
|  | 918 |  | 
|  | 919 | /* Next skb is out of window. */ | 
|  | 920 | if (after(TCP_SKB_CB(next_skb)->end_seq, tp->snd_una+tp->snd_wnd)) | 
|  | 921 | return; | 
|  | 922 |  | 
|  | 923 | /* Punt if not enough space exists in the first SKB for | 
|  | 924 | * the data in the second, or the total combined payload | 
|  | 925 | * would exceed the MSS. | 
|  | 926 | */ | 
|  | 927 | if ((next_skb_size > skb_tailroom(skb)) || | 
|  | 928 | ((skb_size + next_skb_size) > mss_now)) | 
|  | 929 | return; | 
|  | 930 |  | 
|  | 931 | BUG_ON(tcp_skb_pcount(skb) != 1 || | 
|  | 932 | tcp_skb_pcount(next_skb) != 1); | 
|  | 933 |  | 
|  | 934 | /* Ok.  We will be able to collapse the packet. */ | 
|  | 935 | __skb_unlink(next_skb, next_skb->list); | 
|  | 936 |  | 
|  | 937 | memcpy(skb_put(skb, next_skb_size), next_skb->data, next_skb_size); | 
|  | 938 |  | 
|  | 939 | if (next_skb->ip_summed == CHECKSUM_HW) | 
|  | 940 | skb->ip_summed = CHECKSUM_HW; | 
|  | 941 |  | 
|  | 942 | if (skb->ip_summed != CHECKSUM_HW) | 
|  | 943 | skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); | 
|  | 944 |  | 
|  | 945 | /* Update sequence range on original skb. */ | 
|  | 946 | TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; | 
|  | 947 |  | 
|  | 948 | /* Merge over control information. */ | 
|  | 949 | flags |= TCP_SKB_CB(next_skb)->flags; /* This moves PSH/FIN etc. over */ | 
|  | 950 | TCP_SKB_CB(skb)->flags = flags; | 
|  | 951 |  | 
|  | 952 | /* All done, get rid of second SKB and account for it so | 
|  | 953 | * packet counting does not break. | 
|  | 954 | */ | 
|  | 955 | TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked&(TCPCB_EVER_RETRANS|TCPCB_AT_TAIL); | 
|  | 956 | if (TCP_SKB_CB(next_skb)->sacked&TCPCB_SACKED_RETRANS) | 
|  | 957 | tp->retrans_out -= tcp_skb_pcount(next_skb); | 
|  | 958 | if (TCP_SKB_CB(next_skb)->sacked&TCPCB_LOST) { | 
|  | 959 | tp->lost_out -= tcp_skb_pcount(next_skb); | 
|  | 960 | tp->left_out -= tcp_skb_pcount(next_skb); | 
|  | 961 | } | 
|  | 962 | /* Reno case is special. Sigh... */ | 
|  | 963 | if (!tp->rx_opt.sack_ok && tp->sacked_out) { | 
|  | 964 | tcp_dec_pcount_approx(&tp->sacked_out, next_skb); | 
|  | 965 | tp->left_out -= tcp_skb_pcount(next_skb); | 
|  | 966 | } | 
|  | 967 |  | 
|  | 968 | /* Not quite right: it can be > snd.fack, but | 
|  | 969 | * it is better to underestimate fackets. | 
|  | 970 | */ | 
|  | 971 | tcp_dec_pcount_approx(&tp->fackets_out, next_skb); | 
|  | 972 | tcp_packets_out_dec(tp, next_skb); | 
|  | 973 | sk_stream_free_skb(sk, next_skb); | 
|  | 974 | } | 
|  | 975 | } | 
|  | 976 |  | 
|  | 977 | /* Do a simple retransmit without using the backoff mechanisms in | 
|  | 978 | * tcp_timer. This is used for path mtu discovery. | 
|  | 979 | * The socket is already locked here. | 
|  | 980 | */ | 
|  | 981 | void tcp_simple_retransmit(struct sock *sk) | 
|  | 982 | { | 
|  | 983 | struct tcp_sock *tp = tcp_sk(sk); | 
|  | 984 | struct sk_buff *skb; | 
|  | 985 | unsigned int mss = tcp_current_mss(sk, 0); | 
|  | 986 | int lost = 0; | 
|  | 987 |  | 
|  | 988 | sk_stream_for_retrans_queue(skb, sk) { | 
|  | 989 | if (skb->len > mss && | 
|  | 990 | !(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) { | 
|  | 991 | if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) { | 
|  | 992 | TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; | 
|  | 993 | tp->retrans_out -= tcp_skb_pcount(skb); | 
|  | 994 | } | 
|  | 995 | if (!(TCP_SKB_CB(skb)->sacked&TCPCB_LOST)) { | 
|  | 996 | TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; | 
|  | 997 | tp->lost_out += tcp_skb_pcount(skb); | 
|  | 998 | lost = 1; | 
|  | 999 | } | 
|  | 1000 | } | 
|  | 1001 | } | 
|  | 1002 |  | 
|  | 1003 | if (!lost) | 
|  | 1004 | return; | 
|  | 1005 |  | 
|  | 1006 | tcp_sync_left_out(tp); | 
|  | 1007 |  | 
|  | 1008 | /* Don't muck with the congestion window here. | 
|  | 1009 | * Reason is that we do not increase amount of _data_ | 
|  | 1010 | * in network, but units changed and effective | 
|  | 1011 | * cwnd/ssthresh really reduced now. | 
|  | 1012 | */ | 
|  | 1013 | if (tp->ca_state != TCP_CA_Loss) { | 
|  | 1014 | tp->high_seq = tp->snd_nxt; | 
|  | 1015 | tp->snd_ssthresh = tcp_current_ssthresh(tp); | 
|  | 1016 | tp->prior_ssthresh = 0; | 
|  | 1017 | tp->undo_marker = 0; | 
|  | 1018 | tcp_set_ca_state(tp, TCP_CA_Loss); | 
|  | 1019 | } | 
|  | 1020 | tcp_xmit_retransmit_queue(sk); | 
|  | 1021 | } | 
|  | 1022 |  | 
|  | 1023 | /* This retransmits one SKB.  Policy decisions and retransmit queue | 
|  | 1024 | * state updates are done by the caller.  Returns non-zero if an | 
|  | 1025 | * error occurred which prevented the send. | 
|  | 1026 | */ | 
|  | 1027 | int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) | 
|  | 1028 | { | 
|  | 1029 | struct tcp_sock *tp = tcp_sk(sk); | 
|  | 1030 | unsigned int cur_mss = tcp_current_mss(sk, 0); | 
|  | 1031 | int err; | 
|  | 1032 |  | 
|  | 1033 | /* Do not sent more than we queued. 1/4 is reserved for possible | 
|  | 1034 | * copying overhead: frgagmentation, tunneling, mangling etc. | 
|  | 1035 | */ | 
|  | 1036 | if (atomic_read(&sk->sk_wmem_alloc) > | 
|  | 1037 | min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf)) | 
|  | 1038 | return -EAGAIN; | 
|  | 1039 |  | 
|  | 1040 | if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { | 
|  | 1041 | if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) | 
|  | 1042 | BUG(); | 
|  | 1043 |  | 
|  | 1044 | if (sk->sk_route_caps & NETIF_F_TSO) { | 
|  | 1045 | sk->sk_route_caps &= ~NETIF_F_TSO; | 
|  | 1046 | sock_set_flag(sk, SOCK_NO_LARGESEND); | 
|  | 1047 | tp->mss_cache = tp->mss_cache_std; | 
|  | 1048 | } | 
|  | 1049 |  | 
|  | 1050 | if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) | 
|  | 1051 | return -ENOMEM; | 
|  | 1052 | } | 
|  | 1053 |  | 
|  | 1054 | /* If receiver has shrunk his window, and skb is out of | 
|  | 1055 | * new window, do not retransmit it. The exception is the | 
|  | 1056 | * case, when window is shrunk to zero. In this case | 
|  | 1057 | * our retransmit serves as a zero window probe. | 
|  | 1058 | */ | 
|  | 1059 | if (!before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd) | 
|  | 1060 | && TCP_SKB_CB(skb)->seq != tp->snd_una) | 
|  | 1061 | return -EAGAIN; | 
|  | 1062 |  | 
|  | 1063 | if (skb->len > cur_mss) { | 
|  | 1064 | int old_factor = tcp_skb_pcount(skb); | 
|  | 1065 | int new_factor; | 
|  | 1066 |  | 
|  | 1067 | if (tcp_fragment(sk, skb, cur_mss)) | 
|  | 1068 | return -ENOMEM; /* We'll try again later. */ | 
|  | 1069 |  | 
|  | 1070 | /* New SKB created, account for it. */ | 
|  | 1071 | new_factor = tcp_skb_pcount(skb); | 
|  | 1072 | tp->packets_out -= old_factor - new_factor; | 
|  | 1073 | tp->packets_out += tcp_skb_pcount(skb->next); | 
|  | 1074 | } | 
|  | 1075 |  | 
|  | 1076 | /* Collapse two adjacent packets if worthwhile and we can. */ | 
|  | 1077 | if(!(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN) && | 
|  | 1078 | (skb->len < (cur_mss >> 1)) && | 
|  | 1079 | (skb->next != sk->sk_send_head) && | 
|  | 1080 | (skb->next != (struct sk_buff *)&sk->sk_write_queue) && | 
|  | 1081 | (skb_shinfo(skb)->nr_frags == 0 && skb_shinfo(skb->next)->nr_frags == 0) && | 
|  | 1082 | (tcp_skb_pcount(skb) == 1 && tcp_skb_pcount(skb->next) == 1) && | 
|  | 1083 | (sysctl_tcp_retrans_collapse != 0)) | 
|  | 1084 | tcp_retrans_try_collapse(sk, skb, cur_mss); | 
|  | 1085 |  | 
|  | 1086 | if(tp->af_specific->rebuild_header(sk)) | 
|  | 1087 | return -EHOSTUNREACH; /* Routing failure or similar. */ | 
|  | 1088 |  | 
|  | 1089 | /* Some Solaris stacks overoptimize and ignore the FIN on a | 
|  | 1090 | * retransmit when old data is attached.  So strip it off | 
|  | 1091 | * since it is cheap to do so and saves bytes on the network. | 
|  | 1092 | */ | 
|  | 1093 | if(skb->len > 0 && | 
|  | 1094 | (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) && | 
|  | 1095 | tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) { | 
|  | 1096 | if (!pskb_trim(skb, 0)) { | 
|  | 1097 | TCP_SKB_CB(skb)->seq = TCP_SKB_CB(skb)->end_seq - 1; | 
|  | 1098 | skb_shinfo(skb)->tso_segs = 1; | 
|  | 1099 | skb_shinfo(skb)->tso_size = 0; | 
|  | 1100 | skb->ip_summed = CHECKSUM_NONE; | 
|  | 1101 | skb->csum = 0; | 
|  | 1102 | } | 
|  | 1103 | } | 
|  | 1104 |  | 
|  | 1105 | /* Make a copy, if the first transmission SKB clone we made | 
|  | 1106 | * is still in somebody's hands, else make a clone. | 
|  | 1107 | */ | 
|  | 1108 | TCP_SKB_CB(skb)->when = tcp_time_stamp; | 
|  | 1109 | tcp_tso_set_push(skb); | 
|  | 1110 |  | 
|  | 1111 | err = tcp_transmit_skb(sk, (skb_cloned(skb) ? | 
|  | 1112 | pskb_copy(skb, GFP_ATOMIC): | 
|  | 1113 | skb_clone(skb, GFP_ATOMIC))); | 
|  | 1114 |  | 
|  | 1115 | if (err == 0) { | 
|  | 1116 | /* Update global TCP statistics. */ | 
|  | 1117 | TCP_INC_STATS(TCP_MIB_RETRANSSEGS); | 
|  | 1118 |  | 
|  | 1119 | tp->total_retrans++; | 
|  | 1120 |  | 
|  | 1121 | #if FASTRETRANS_DEBUG > 0 | 
|  | 1122 | if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) { | 
|  | 1123 | if (net_ratelimit()) | 
|  | 1124 | printk(KERN_DEBUG "retrans_out leaked.\n"); | 
|  | 1125 | } | 
|  | 1126 | #endif | 
|  | 1127 | TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; | 
|  | 1128 | tp->retrans_out += tcp_skb_pcount(skb); | 
|  | 1129 |  | 
|  | 1130 | /* Save stamp of the first retransmit. */ | 
|  | 1131 | if (!tp->retrans_stamp) | 
|  | 1132 | tp->retrans_stamp = TCP_SKB_CB(skb)->when; | 
|  | 1133 |  | 
|  | 1134 | tp->undo_retrans++; | 
|  | 1135 |  | 
|  | 1136 | /* snd_nxt is stored to detect loss of retransmitted segment, | 
|  | 1137 | * see tcp_input.c tcp_sacktag_write_queue(). | 
|  | 1138 | */ | 
|  | 1139 | TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt; | 
|  | 1140 | } | 
|  | 1141 | return err; | 
|  | 1142 | } | 
|  | 1143 |  | 
|  | 1144 | /* This gets called after a retransmit timeout, and the initially | 
|  | 1145 | * retransmitted data is acknowledged.  It tries to continue | 
|  | 1146 | * resending the rest of the retransmit queue, until either | 
|  | 1147 | * we've sent it all or the congestion window limit is reached. | 
|  | 1148 | * If doing SACK, the first ACK which comes back for a timeout | 
|  | 1149 | * based retransmit packet might feed us FACK information again. | 
|  | 1150 | * If so, we use it to avoid unnecessarily retransmissions. | 
|  | 1151 | */ | 
|  | 1152 | void tcp_xmit_retransmit_queue(struct sock *sk) | 
|  | 1153 | { | 
|  | 1154 | struct tcp_sock *tp = tcp_sk(sk); | 
|  | 1155 | struct sk_buff *skb; | 
|  | 1156 | int packet_cnt = tp->lost_out; | 
|  | 1157 |  | 
|  | 1158 | /* First pass: retransmit lost packets. */ | 
|  | 1159 | if (packet_cnt) { | 
|  | 1160 | sk_stream_for_retrans_queue(skb, sk) { | 
|  | 1161 | __u8 sacked = TCP_SKB_CB(skb)->sacked; | 
|  | 1162 |  | 
|  | 1163 | /* Assume this retransmit will generate | 
|  | 1164 | * only one packet for congestion window | 
|  | 1165 | * calculation purposes.  This works because | 
|  | 1166 | * tcp_retransmit_skb() will chop up the | 
|  | 1167 | * packet to be MSS sized and all the | 
|  | 1168 | * packet counting works out. | 
|  | 1169 | */ | 
|  | 1170 | if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) | 
|  | 1171 | return; | 
|  | 1172 |  | 
|  | 1173 | if (sacked&TCPCB_LOST) { | 
|  | 1174 | if (!(sacked&(TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))) { | 
|  | 1175 | if (tcp_retransmit_skb(sk, skb)) | 
|  | 1176 | return; | 
|  | 1177 | if (tp->ca_state != TCP_CA_Loss) | 
|  | 1178 | NET_INC_STATS_BH(LINUX_MIB_TCPFASTRETRANS); | 
|  | 1179 | else | 
|  | 1180 | NET_INC_STATS_BH(LINUX_MIB_TCPSLOWSTARTRETRANS); | 
|  | 1181 |  | 
|  | 1182 | if (skb == | 
|  | 1183 | skb_peek(&sk->sk_write_queue)) | 
|  | 1184 | tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto); | 
|  | 1185 | } | 
|  | 1186 |  | 
|  | 1187 | packet_cnt -= tcp_skb_pcount(skb); | 
|  | 1188 | if (packet_cnt <= 0) | 
|  | 1189 | break; | 
|  | 1190 | } | 
|  | 1191 | } | 
|  | 1192 | } | 
|  | 1193 |  | 
|  | 1194 | /* OK, demanded retransmission is finished. */ | 
|  | 1195 |  | 
|  | 1196 | /* Forward retransmissions are possible only during Recovery. */ | 
|  | 1197 | if (tp->ca_state != TCP_CA_Recovery) | 
|  | 1198 | return; | 
|  | 1199 |  | 
|  | 1200 | /* No forward retransmissions in Reno are possible. */ | 
|  | 1201 | if (!tp->rx_opt.sack_ok) | 
|  | 1202 | return; | 
|  | 1203 |  | 
|  | 1204 | /* Yeah, we have to make difficult choice between forward transmission | 
|  | 1205 | * and retransmission... Both ways have their merits... | 
|  | 1206 | * | 
|  | 1207 | * For now we do not retransmit anything, while we have some new | 
|  | 1208 | * segments to send. | 
|  | 1209 | */ | 
|  | 1210 |  | 
|  | 1211 | if (tcp_may_send_now(sk, tp)) | 
|  | 1212 | return; | 
|  | 1213 |  | 
|  | 1214 | packet_cnt = 0; | 
|  | 1215 |  | 
|  | 1216 | sk_stream_for_retrans_queue(skb, sk) { | 
|  | 1217 | /* Similar to the retransmit loop above we | 
|  | 1218 | * can pretend that the retransmitted SKB | 
|  | 1219 | * we send out here will be composed of one | 
|  | 1220 | * real MSS sized packet because tcp_retransmit_skb() | 
|  | 1221 | * will fragment it if necessary. | 
|  | 1222 | */ | 
|  | 1223 | if (++packet_cnt > tp->fackets_out) | 
|  | 1224 | break; | 
|  | 1225 |  | 
|  | 1226 | if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) | 
|  | 1227 | break; | 
|  | 1228 |  | 
|  | 1229 | if (TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) | 
|  | 1230 | continue; | 
|  | 1231 |  | 
|  | 1232 | /* Ok, retransmit it. */ | 
|  | 1233 | if (tcp_retransmit_skb(sk, skb)) | 
|  | 1234 | break; | 
|  | 1235 |  | 
|  | 1236 | if (skb == skb_peek(&sk->sk_write_queue)) | 
|  | 1237 | tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto); | 
|  | 1238 |  | 
|  | 1239 | NET_INC_STATS_BH(LINUX_MIB_TCPFORWARDRETRANS); | 
|  | 1240 | } | 
|  | 1241 | } | 
|  | 1242 |  | 
|  | 1243 |  | 
|  | 1244 | /* Send a fin.  The caller locks the socket for us.  This cannot be | 
|  | 1245 | * allowed to fail queueing a FIN frame under any circumstances. | 
|  | 1246 | */ | 
|  | 1247 | void tcp_send_fin(struct sock *sk) | 
|  | 1248 | { | 
|  | 1249 | struct tcp_sock *tp = tcp_sk(sk); | 
|  | 1250 | struct sk_buff *skb = skb_peek_tail(&sk->sk_write_queue); | 
|  | 1251 | int mss_now; | 
|  | 1252 |  | 
|  | 1253 | /* Optimization, tack on the FIN if we have a queue of | 
|  | 1254 | * unsent frames.  But be careful about outgoing SACKS | 
|  | 1255 | * and IP options. | 
|  | 1256 | */ | 
|  | 1257 | mss_now = tcp_current_mss(sk, 1); | 
|  | 1258 |  | 
|  | 1259 | if (sk->sk_send_head != NULL) { | 
|  | 1260 | TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_FIN; | 
|  | 1261 | TCP_SKB_CB(skb)->end_seq++; | 
|  | 1262 | tp->write_seq++; | 
|  | 1263 | } else { | 
|  | 1264 | /* Socket is locked, keep trying until memory is available. */ | 
|  | 1265 | for (;;) { | 
|  | 1266 | skb = alloc_skb(MAX_TCP_HEADER, GFP_KERNEL); | 
|  | 1267 | if (skb) | 
|  | 1268 | break; | 
|  | 1269 | yield(); | 
|  | 1270 | } | 
|  | 1271 |  | 
|  | 1272 | /* Reserve space for headers and prepare control bits. */ | 
|  | 1273 | skb_reserve(skb, MAX_TCP_HEADER); | 
|  | 1274 | skb->csum = 0; | 
|  | 1275 | TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_FIN); | 
|  | 1276 | TCP_SKB_CB(skb)->sacked = 0; | 
|  | 1277 | skb_shinfo(skb)->tso_segs = 1; | 
|  | 1278 | skb_shinfo(skb)->tso_size = 0; | 
|  | 1279 |  | 
|  | 1280 | /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ | 
|  | 1281 | TCP_SKB_CB(skb)->seq = tp->write_seq; | 
|  | 1282 | TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1; | 
|  | 1283 | tcp_queue_skb(sk, skb); | 
|  | 1284 | } | 
|  | 1285 | __tcp_push_pending_frames(sk, tp, mss_now, TCP_NAGLE_OFF); | 
|  | 1286 | } | 
|  | 1287 |  | 
|  | 1288 | /* We get here when a process closes a file descriptor (either due to | 
|  | 1289 | * an explicit close() or as a byproduct of exit()'ing) and there | 
|  | 1290 | * was unread data in the receive queue.  This behavior is recommended | 
|  | 1291 | * by draft-ietf-tcpimpl-prob-03.txt section 3.10.  -DaveM | 
|  | 1292 | */ | 
|  | 1293 | void tcp_send_active_reset(struct sock *sk, int priority) | 
|  | 1294 | { | 
|  | 1295 | struct tcp_sock *tp = tcp_sk(sk); | 
|  | 1296 | struct sk_buff *skb; | 
|  | 1297 |  | 
|  | 1298 | /* NOTE: No TCP options attached and we never retransmit this. */ | 
|  | 1299 | skb = alloc_skb(MAX_TCP_HEADER, priority); | 
|  | 1300 | if (!skb) { | 
|  | 1301 | NET_INC_STATS(LINUX_MIB_TCPABORTFAILED); | 
|  | 1302 | return; | 
|  | 1303 | } | 
|  | 1304 |  | 
|  | 1305 | /* Reserve space for headers and prepare control bits. */ | 
|  | 1306 | skb_reserve(skb, MAX_TCP_HEADER); | 
|  | 1307 | skb->csum = 0; | 
|  | 1308 | TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_RST); | 
|  | 1309 | TCP_SKB_CB(skb)->sacked = 0; | 
|  | 1310 | skb_shinfo(skb)->tso_segs = 1; | 
|  | 1311 | skb_shinfo(skb)->tso_size = 0; | 
|  | 1312 |  | 
|  | 1313 | /* Send it off. */ | 
|  | 1314 | TCP_SKB_CB(skb)->seq = tcp_acceptable_seq(sk, tp); | 
|  | 1315 | TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq; | 
|  | 1316 | TCP_SKB_CB(skb)->when = tcp_time_stamp; | 
|  | 1317 | if (tcp_transmit_skb(sk, skb)) | 
|  | 1318 | NET_INC_STATS(LINUX_MIB_TCPABORTFAILED); | 
|  | 1319 | } | 
|  | 1320 |  | 
|  | 1321 | /* WARNING: This routine must only be called when we have already sent | 
|  | 1322 | * a SYN packet that crossed the incoming SYN that caused this routine | 
|  | 1323 | * to get called. If this assumption fails then the initial rcv_wnd | 
|  | 1324 | * and rcv_wscale values will not be correct. | 
|  | 1325 | */ | 
|  | 1326 | int tcp_send_synack(struct sock *sk) | 
|  | 1327 | { | 
|  | 1328 | struct sk_buff* skb; | 
|  | 1329 |  | 
|  | 1330 | skb = skb_peek(&sk->sk_write_queue); | 
|  | 1331 | if (skb == NULL || !(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_SYN)) { | 
|  | 1332 | printk(KERN_DEBUG "tcp_send_synack: wrong queue state\n"); | 
|  | 1333 | return -EFAULT; | 
|  | 1334 | } | 
|  | 1335 | if (!(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_ACK)) { | 
|  | 1336 | if (skb_cloned(skb)) { | 
|  | 1337 | struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); | 
|  | 1338 | if (nskb == NULL) | 
|  | 1339 | return -ENOMEM; | 
|  | 1340 | __skb_unlink(skb, &sk->sk_write_queue); | 
|  | 1341 | skb_header_release(nskb); | 
|  | 1342 | __skb_queue_head(&sk->sk_write_queue, nskb); | 
|  | 1343 | sk_stream_free_skb(sk, skb); | 
|  | 1344 | sk_charge_skb(sk, nskb); | 
|  | 1345 | skb = nskb; | 
|  | 1346 | } | 
|  | 1347 |  | 
|  | 1348 | TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_ACK; | 
|  | 1349 | TCP_ECN_send_synack(tcp_sk(sk), skb); | 
|  | 1350 | } | 
|  | 1351 | TCP_SKB_CB(skb)->when = tcp_time_stamp; | 
|  | 1352 | return tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC)); | 
|  | 1353 | } | 
|  | 1354 |  | 
|  | 1355 | /* | 
|  | 1356 | * Prepare a SYN-ACK. | 
|  | 1357 | */ | 
|  | 1358 | struct sk_buff * tcp_make_synack(struct sock *sk, struct dst_entry *dst, | 
|  | 1359 | struct open_request *req) | 
|  | 1360 | { | 
|  | 1361 | struct tcp_sock *tp = tcp_sk(sk); | 
|  | 1362 | struct tcphdr *th; | 
|  | 1363 | int tcp_header_size; | 
|  | 1364 | struct sk_buff *skb; | 
|  | 1365 |  | 
|  | 1366 | skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15, 1, GFP_ATOMIC); | 
|  | 1367 | if (skb == NULL) | 
|  | 1368 | return NULL; | 
|  | 1369 |  | 
|  | 1370 | /* Reserve space for headers. */ | 
|  | 1371 | skb_reserve(skb, MAX_TCP_HEADER); | 
|  | 1372 |  | 
|  | 1373 | skb->dst = dst_clone(dst); | 
|  | 1374 |  | 
|  | 1375 | tcp_header_size = (sizeof(struct tcphdr) + TCPOLEN_MSS + | 
|  | 1376 | (req->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0) + | 
|  | 1377 | (req->wscale_ok ? TCPOLEN_WSCALE_ALIGNED : 0) + | 
|  | 1378 | /* SACK_PERM is in the place of NOP NOP of TS */ | 
|  | 1379 | ((req->sack_ok && !req->tstamp_ok) ? TCPOLEN_SACKPERM_ALIGNED : 0)); | 
|  | 1380 | skb->h.th = th = (struct tcphdr *) skb_push(skb, tcp_header_size); | 
|  | 1381 |  | 
|  | 1382 | memset(th, 0, sizeof(struct tcphdr)); | 
|  | 1383 | th->syn = 1; | 
|  | 1384 | th->ack = 1; | 
|  | 1385 | if (dst->dev->features&NETIF_F_TSO) | 
|  | 1386 | req->ecn_ok = 0; | 
|  | 1387 | TCP_ECN_make_synack(req, th); | 
|  | 1388 | th->source = inet_sk(sk)->sport; | 
|  | 1389 | th->dest = req->rmt_port; | 
|  | 1390 | TCP_SKB_CB(skb)->seq = req->snt_isn; | 
|  | 1391 | TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1; | 
|  | 1392 | TCP_SKB_CB(skb)->sacked = 0; | 
|  | 1393 | skb_shinfo(skb)->tso_segs = 1; | 
|  | 1394 | skb_shinfo(skb)->tso_size = 0; | 
|  | 1395 | th->seq = htonl(TCP_SKB_CB(skb)->seq); | 
|  | 1396 | th->ack_seq = htonl(req->rcv_isn + 1); | 
|  | 1397 | if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */ | 
|  | 1398 | __u8 rcv_wscale; | 
|  | 1399 | /* Set this up on the first call only */ | 
|  | 1400 | req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW); | 
|  | 1401 | /* tcp_full_space because it is guaranteed to be the first packet */ | 
|  | 1402 | tcp_select_initial_window(tcp_full_space(sk), | 
|  | 1403 | dst_metric(dst, RTAX_ADVMSS) - (req->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0), | 
|  | 1404 | &req->rcv_wnd, | 
|  | 1405 | &req->window_clamp, | 
|  | 1406 | req->wscale_ok, | 
|  | 1407 | &rcv_wscale); | 
|  | 1408 | req->rcv_wscale = rcv_wscale; | 
|  | 1409 | } | 
|  | 1410 |  | 
|  | 1411 | /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ | 
|  | 1412 | th->window = htons(req->rcv_wnd); | 
|  | 1413 |  | 
|  | 1414 | TCP_SKB_CB(skb)->when = tcp_time_stamp; | 
|  | 1415 | tcp_syn_build_options((__u32 *)(th + 1), dst_metric(dst, RTAX_ADVMSS), req->tstamp_ok, | 
|  | 1416 | req->sack_ok, req->wscale_ok, req->rcv_wscale, | 
|  | 1417 | TCP_SKB_CB(skb)->when, | 
|  | 1418 | req->ts_recent); | 
|  | 1419 |  | 
|  | 1420 | skb->csum = 0; | 
|  | 1421 | th->doff = (tcp_header_size >> 2); | 
|  | 1422 | TCP_INC_STATS(TCP_MIB_OUTSEGS); | 
|  | 1423 | return skb; | 
|  | 1424 | } | 
|  | 1425 |  | 
|  | 1426 | /* | 
|  | 1427 | * Do all connect socket setups that can be done AF independent. | 
|  | 1428 | */ | 
|  | 1429 | static inline void tcp_connect_init(struct sock *sk) | 
|  | 1430 | { | 
|  | 1431 | struct dst_entry *dst = __sk_dst_get(sk); | 
|  | 1432 | struct tcp_sock *tp = tcp_sk(sk); | 
|  | 1433 | __u8 rcv_wscale; | 
|  | 1434 |  | 
|  | 1435 | /* We'll fix this up when we get a response from the other end. | 
|  | 1436 | * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. | 
|  | 1437 | */ | 
|  | 1438 | tp->tcp_header_len = sizeof(struct tcphdr) + | 
|  | 1439 | (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0); | 
|  | 1440 |  | 
|  | 1441 | /* If user gave his TCP_MAXSEG, record it to clamp */ | 
|  | 1442 | if (tp->rx_opt.user_mss) | 
|  | 1443 | tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; | 
|  | 1444 | tp->max_window = 0; | 
|  | 1445 | tcp_sync_mss(sk, dst_mtu(dst)); | 
|  | 1446 |  | 
|  | 1447 | if (!tp->window_clamp) | 
|  | 1448 | tp->window_clamp = dst_metric(dst, RTAX_WINDOW); | 
|  | 1449 | tp->advmss = dst_metric(dst, RTAX_ADVMSS); | 
|  | 1450 | tcp_initialize_rcv_mss(sk); | 
|  | 1451 | tcp_ca_init(tp); | 
|  | 1452 |  | 
|  | 1453 | tcp_select_initial_window(tcp_full_space(sk), | 
|  | 1454 | tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), | 
|  | 1455 | &tp->rcv_wnd, | 
|  | 1456 | &tp->window_clamp, | 
|  | 1457 | sysctl_tcp_window_scaling, | 
|  | 1458 | &rcv_wscale); | 
|  | 1459 |  | 
|  | 1460 | tp->rx_opt.rcv_wscale = rcv_wscale; | 
|  | 1461 | tp->rcv_ssthresh = tp->rcv_wnd; | 
|  | 1462 |  | 
|  | 1463 | sk->sk_err = 0; | 
|  | 1464 | sock_reset_flag(sk, SOCK_DONE); | 
|  | 1465 | tp->snd_wnd = 0; | 
|  | 1466 | tcp_init_wl(tp, tp->write_seq, 0); | 
|  | 1467 | tp->snd_una = tp->write_seq; | 
|  | 1468 | tp->snd_sml = tp->write_seq; | 
|  | 1469 | tp->rcv_nxt = 0; | 
|  | 1470 | tp->rcv_wup = 0; | 
|  | 1471 | tp->copied_seq = 0; | 
|  | 1472 |  | 
|  | 1473 | tp->rto = TCP_TIMEOUT_INIT; | 
|  | 1474 | tp->retransmits = 0; | 
|  | 1475 | tcp_clear_retrans(tp); | 
|  | 1476 | } | 
|  | 1477 |  | 
|  | 1478 | /* | 
|  | 1479 | * Build a SYN and send it off. | 
|  | 1480 | */ | 
|  | 1481 | int tcp_connect(struct sock *sk) | 
|  | 1482 | { | 
|  | 1483 | struct tcp_sock *tp = tcp_sk(sk); | 
|  | 1484 | struct sk_buff *buff; | 
|  | 1485 |  | 
|  | 1486 | tcp_connect_init(sk); | 
|  | 1487 |  | 
|  | 1488 | buff = alloc_skb(MAX_TCP_HEADER + 15, sk->sk_allocation); | 
|  | 1489 | if (unlikely(buff == NULL)) | 
|  | 1490 | return -ENOBUFS; | 
|  | 1491 |  | 
|  | 1492 | /* Reserve space for headers. */ | 
|  | 1493 | skb_reserve(buff, MAX_TCP_HEADER); | 
|  | 1494 |  | 
|  | 1495 | TCP_SKB_CB(buff)->flags = TCPCB_FLAG_SYN; | 
|  | 1496 | TCP_ECN_send_syn(sk, tp, buff); | 
|  | 1497 | TCP_SKB_CB(buff)->sacked = 0; | 
|  | 1498 | skb_shinfo(buff)->tso_segs = 1; | 
|  | 1499 | skb_shinfo(buff)->tso_size = 0; | 
|  | 1500 | buff->csum = 0; | 
|  | 1501 | TCP_SKB_CB(buff)->seq = tp->write_seq++; | 
|  | 1502 | TCP_SKB_CB(buff)->end_seq = tp->write_seq; | 
|  | 1503 | tp->snd_nxt = tp->write_seq; | 
|  | 1504 | tp->pushed_seq = tp->write_seq; | 
|  | 1505 | tcp_ca_init(tp); | 
|  | 1506 |  | 
|  | 1507 | /* Send it off. */ | 
|  | 1508 | TCP_SKB_CB(buff)->when = tcp_time_stamp; | 
|  | 1509 | tp->retrans_stamp = TCP_SKB_CB(buff)->when; | 
|  | 1510 | skb_header_release(buff); | 
|  | 1511 | __skb_queue_tail(&sk->sk_write_queue, buff); | 
|  | 1512 | sk_charge_skb(sk, buff); | 
|  | 1513 | tp->packets_out += tcp_skb_pcount(buff); | 
|  | 1514 | tcp_transmit_skb(sk, skb_clone(buff, GFP_KERNEL)); | 
|  | 1515 | TCP_INC_STATS(TCP_MIB_ACTIVEOPENS); | 
|  | 1516 |  | 
|  | 1517 | /* Timer for repeating the SYN until an answer. */ | 
|  | 1518 | tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto); | 
|  | 1519 | return 0; | 
|  | 1520 | } | 
|  | 1521 |  | 
|  | 1522 | /* Send out a delayed ack, the caller does the policy checking | 
|  | 1523 | * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check() | 
|  | 1524 | * for details. | 
|  | 1525 | */ | 
|  | 1526 | void tcp_send_delayed_ack(struct sock *sk) | 
|  | 1527 | { | 
|  | 1528 | struct tcp_sock *tp = tcp_sk(sk); | 
|  | 1529 | int ato = tp->ack.ato; | 
|  | 1530 | unsigned long timeout; | 
|  | 1531 |  | 
|  | 1532 | if (ato > TCP_DELACK_MIN) { | 
|  | 1533 | int max_ato = HZ/2; | 
|  | 1534 |  | 
|  | 1535 | if (tp->ack.pingpong || (tp->ack.pending&TCP_ACK_PUSHED)) | 
|  | 1536 | max_ato = TCP_DELACK_MAX; | 
|  | 1537 |  | 
|  | 1538 | /* Slow path, intersegment interval is "high". */ | 
|  | 1539 |  | 
|  | 1540 | /* If some rtt estimate is known, use it to bound delayed ack. | 
|  | 1541 | * Do not use tp->rto here, use results of rtt measurements | 
|  | 1542 | * directly. | 
|  | 1543 | */ | 
|  | 1544 | if (tp->srtt) { | 
|  | 1545 | int rtt = max(tp->srtt>>3, TCP_DELACK_MIN); | 
|  | 1546 |  | 
|  | 1547 | if (rtt < max_ato) | 
|  | 1548 | max_ato = rtt; | 
|  | 1549 | } | 
|  | 1550 |  | 
|  | 1551 | ato = min(ato, max_ato); | 
|  | 1552 | } | 
|  | 1553 |  | 
|  | 1554 | /* Stay within the limit we were given */ | 
|  | 1555 | timeout = jiffies + ato; | 
|  | 1556 |  | 
|  | 1557 | /* Use new timeout only if there wasn't a older one earlier. */ | 
|  | 1558 | if (tp->ack.pending&TCP_ACK_TIMER) { | 
|  | 1559 | /* If delack timer was blocked or is about to expire, | 
|  | 1560 | * send ACK now. | 
|  | 1561 | */ | 
|  | 1562 | if (tp->ack.blocked || time_before_eq(tp->ack.timeout, jiffies+(ato>>2))) { | 
|  | 1563 | tcp_send_ack(sk); | 
|  | 1564 | return; | 
|  | 1565 | } | 
|  | 1566 |  | 
|  | 1567 | if (!time_before(timeout, tp->ack.timeout)) | 
|  | 1568 | timeout = tp->ack.timeout; | 
|  | 1569 | } | 
|  | 1570 | tp->ack.pending |= TCP_ACK_SCHED|TCP_ACK_TIMER; | 
|  | 1571 | tp->ack.timeout = timeout; | 
|  | 1572 | sk_reset_timer(sk, &tp->delack_timer, timeout); | 
|  | 1573 | } | 
|  | 1574 |  | 
|  | 1575 | /* This routine sends an ack and also updates the window. */ | 
|  | 1576 | void tcp_send_ack(struct sock *sk) | 
|  | 1577 | { | 
|  | 1578 | /* If we have been reset, we may not send again. */ | 
|  | 1579 | if (sk->sk_state != TCP_CLOSE) { | 
|  | 1580 | struct tcp_sock *tp = tcp_sk(sk); | 
|  | 1581 | struct sk_buff *buff; | 
|  | 1582 |  | 
|  | 1583 | /* We are not putting this on the write queue, so | 
|  | 1584 | * tcp_transmit_skb() will set the ownership to this | 
|  | 1585 | * sock. | 
|  | 1586 | */ | 
|  | 1587 | buff = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); | 
|  | 1588 | if (buff == NULL) { | 
|  | 1589 | tcp_schedule_ack(tp); | 
|  | 1590 | tp->ack.ato = TCP_ATO_MIN; | 
|  | 1591 | tcp_reset_xmit_timer(sk, TCP_TIME_DACK, TCP_DELACK_MAX); | 
|  | 1592 | return; | 
|  | 1593 | } | 
|  | 1594 |  | 
|  | 1595 | /* Reserve space for headers and prepare control bits. */ | 
|  | 1596 | skb_reserve(buff, MAX_TCP_HEADER); | 
|  | 1597 | buff->csum = 0; | 
|  | 1598 | TCP_SKB_CB(buff)->flags = TCPCB_FLAG_ACK; | 
|  | 1599 | TCP_SKB_CB(buff)->sacked = 0; | 
|  | 1600 | skb_shinfo(buff)->tso_segs = 1; | 
|  | 1601 | skb_shinfo(buff)->tso_size = 0; | 
|  | 1602 |  | 
|  | 1603 | /* Send it off, this clears delayed acks for us. */ | 
|  | 1604 | TCP_SKB_CB(buff)->seq = TCP_SKB_CB(buff)->end_seq = tcp_acceptable_seq(sk, tp); | 
|  | 1605 | TCP_SKB_CB(buff)->when = tcp_time_stamp; | 
|  | 1606 | tcp_transmit_skb(sk, buff); | 
|  | 1607 | } | 
|  | 1608 | } | 
|  | 1609 |  | 
|  | 1610 | /* This routine sends a packet with an out of date sequence | 
|  | 1611 | * number. It assumes the other end will try to ack it. | 
|  | 1612 | * | 
|  | 1613 | * Question: what should we make while urgent mode? | 
|  | 1614 | * 4.4BSD forces sending single byte of data. We cannot send | 
|  | 1615 | * out of window data, because we have SND.NXT==SND.MAX... | 
|  | 1616 | * | 
|  | 1617 | * Current solution: to send TWO zero-length segments in urgent mode: | 
|  | 1618 | * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is | 
|  | 1619 | * out-of-date with SND.UNA-1 to probe window. | 
|  | 1620 | */ | 
|  | 1621 | static int tcp_xmit_probe_skb(struct sock *sk, int urgent) | 
|  | 1622 | { | 
|  | 1623 | struct tcp_sock *tp = tcp_sk(sk); | 
|  | 1624 | struct sk_buff *skb; | 
|  | 1625 |  | 
|  | 1626 | /* We don't queue it, tcp_transmit_skb() sets ownership. */ | 
|  | 1627 | skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); | 
|  | 1628 | if (skb == NULL) | 
|  | 1629 | return -1; | 
|  | 1630 |  | 
|  | 1631 | /* Reserve space for headers and set control bits. */ | 
|  | 1632 | skb_reserve(skb, MAX_TCP_HEADER); | 
|  | 1633 | skb->csum = 0; | 
|  | 1634 | TCP_SKB_CB(skb)->flags = TCPCB_FLAG_ACK; | 
|  | 1635 | TCP_SKB_CB(skb)->sacked = urgent; | 
|  | 1636 | skb_shinfo(skb)->tso_segs = 1; | 
|  | 1637 | skb_shinfo(skb)->tso_size = 0; | 
|  | 1638 |  | 
|  | 1639 | /* Use a previous sequence.  This should cause the other | 
|  | 1640 | * end to send an ack.  Don't queue or clone SKB, just | 
|  | 1641 | * send it. | 
|  | 1642 | */ | 
|  | 1643 | TCP_SKB_CB(skb)->seq = urgent ? tp->snd_una : tp->snd_una - 1; | 
|  | 1644 | TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq; | 
|  | 1645 | TCP_SKB_CB(skb)->when = tcp_time_stamp; | 
|  | 1646 | return tcp_transmit_skb(sk, skb); | 
|  | 1647 | } | 
|  | 1648 |  | 
|  | 1649 | int tcp_write_wakeup(struct sock *sk) | 
|  | 1650 | { | 
|  | 1651 | if (sk->sk_state != TCP_CLOSE) { | 
|  | 1652 | struct tcp_sock *tp = tcp_sk(sk); | 
|  | 1653 | struct sk_buff *skb; | 
|  | 1654 |  | 
|  | 1655 | if ((skb = sk->sk_send_head) != NULL && | 
|  | 1656 | before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd)) { | 
|  | 1657 | int err; | 
|  | 1658 | unsigned int mss = tcp_current_mss(sk, 0); | 
|  | 1659 | unsigned int seg_size = tp->snd_una+tp->snd_wnd-TCP_SKB_CB(skb)->seq; | 
|  | 1660 |  | 
|  | 1661 | if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) | 
|  | 1662 | tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; | 
|  | 1663 |  | 
|  | 1664 | /* We are probing the opening of a window | 
|  | 1665 | * but the window size is != 0 | 
|  | 1666 | * must have been a result SWS avoidance ( sender ) | 
|  | 1667 | */ | 
|  | 1668 | if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || | 
|  | 1669 | skb->len > mss) { | 
|  | 1670 | seg_size = min(seg_size, mss); | 
|  | 1671 | TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH; | 
|  | 1672 | if (tcp_fragment(sk, skb, seg_size)) | 
|  | 1673 | return -1; | 
|  | 1674 | /* SWS override triggered forced fragmentation. | 
|  | 1675 | * Disable TSO, the connection is too sick. */ | 
|  | 1676 | if (sk->sk_route_caps & NETIF_F_TSO) { | 
|  | 1677 | sock_set_flag(sk, SOCK_NO_LARGESEND); | 
|  | 1678 | sk->sk_route_caps &= ~NETIF_F_TSO; | 
|  | 1679 | tp->mss_cache = tp->mss_cache_std; | 
|  | 1680 | } | 
|  | 1681 | } else if (!tcp_skb_pcount(skb)) | 
| David S. Miller | d5ac99a | 2005-04-24 19:12:33 -0700 | [diff] [blame] | 1682 | tcp_set_skb_tso_segs(sk, skb); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1683 |  | 
|  | 1684 | TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH; | 
|  | 1685 | TCP_SKB_CB(skb)->when = tcp_time_stamp; | 
|  | 1686 | tcp_tso_set_push(skb); | 
|  | 1687 | err = tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC)); | 
|  | 1688 | if (!err) { | 
|  | 1689 | update_send_head(sk, tp, skb); | 
|  | 1690 | } | 
|  | 1691 | return err; | 
|  | 1692 | } else { | 
|  | 1693 | if (tp->urg_mode && | 
|  | 1694 | between(tp->snd_up, tp->snd_una+1, tp->snd_una+0xFFFF)) | 
|  | 1695 | tcp_xmit_probe_skb(sk, TCPCB_URG); | 
|  | 1696 | return tcp_xmit_probe_skb(sk, 0); | 
|  | 1697 | } | 
|  | 1698 | } | 
|  | 1699 | return -1; | 
|  | 1700 | } | 
|  | 1701 |  | 
|  | 1702 | /* A window probe timeout has occurred.  If window is not closed send | 
|  | 1703 | * a partial packet else a zero probe. | 
|  | 1704 | */ | 
|  | 1705 | void tcp_send_probe0(struct sock *sk) | 
|  | 1706 | { | 
|  | 1707 | struct tcp_sock *tp = tcp_sk(sk); | 
|  | 1708 | int err; | 
|  | 1709 |  | 
|  | 1710 | err = tcp_write_wakeup(sk); | 
|  | 1711 |  | 
|  | 1712 | if (tp->packets_out || !sk->sk_send_head) { | 
|  | 1713 | /* Cancel probe timer, if it is not required. */ | 
|  | 1714 | tp->probes_out = 0; | 
|  | 1715 | tp->backoff = 0; | 
|  | 1716 | return; | 
|  | 1717 | } | 
|  | 1718 |  | 
|  | 1719 | if (err <= 0) { | 
|  | 1720 | if (tp->backoff < sysctl_tcp_retries2) | 
|  | 1721 | tp->backoff++; | 
|  | 1722 | tp->probes_out++; | 
|  | 1723 | tcp_reset_xmit_timer (sk, TCP_TIME_PROBE0, | 
|  | 1724 | min(tp->rto << tp->backoff, TCP_RTO_MAX)); | 
|  | 1725 | } else { | 
|  | 1726 | /* If packet was not sent due to local congestion, | 
|  | 1727 | * do not backoff and do not remember probes_out. | 
|  | 1728 | * Let local senders to fight for local resources. | 
|  | 1729 | * | 
|  | 1730 | * Use accumulated backoff yet. | 
|  | 1731 | */ | 
|  | 1732 | if (!tp->probes_out) | 
|  | 1733 | tp->probes_out=1; | 
|  | 1734 | tcp_reset_xmit_timer (sk, TCP_TIME_PROBE0, | 
|  | 1735 | min(tp->rto << tp->backoff, TCP_RESOURCE_PROBE_INTERVAL)); | 
|  | 1736 | } | 
|  | 1737 | } | 
|  | 1738 |  | 
|  | 1739 | EXPORT_SYMBOL(tcp_connect); | 
|  | 1740 | EXPORT_SYMBOL(tcp_make_synack); | 
|  | 1741 | EXPORT_SYMBOL(tcp_simple_retransmit); | 
|  | 1742 | EXPORT_SYMBOL(tcp_sync_mss); |