| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  | 
 | 3 |    fp_arith.c: floating-point math routines for the Linux-m68k | 
 | 4 |    floating point emulator. | 
 | 5 |  | 
 | 6 |    Copyright (c) 1998-1999 David Huggins-Daines. | 
 | 7 |  | 
 | 8 |    Somewhat based on the AlphaLinux floating point emulator, by David | 
 | 9 |    Mosberger-Tang. | 
 | 10 |  | 
 | 11 |    You may copy, modify, and redistribute this file under the terms of | 
 | 12 |    the GNU General Public License, version 2, or any later version, at | 
 | 13 |    your convenience. | 
 | 14 |  */ | 
 | 15 |  | 
 | 16 | #include "fp_emu.h" | 
 | 17 | #include "multi_arith.h" | 
 | 18 | #include "fp_arith.h" | 
 | 19 |  | 
 | 20 | const struct fp_ext fp_QNaN = | 
 | 21 | { | 
 | 22 | 	.exp = 0x7fff, | 
 | 23 | 	.mant = { .m64 = ~0 } | 
 | 24 | }; | 
 | 25 |  | 
 | 26 | const struct fp_ext fp_Inf = | 
 | 27 | { | 
 | 28 | 	.exp = 0x7fff, | 
 | 29 | }; | 
 | 30 |  | 
 | 31 | /* let's start with the easy ones */ | 
 | 32 |  | 
 | 33 | struct fp_ext * | 
 | 34 | fp_fabs(struct fp_ext *dest, struct fp_ext *src) | 
 | 35 | { | 
 | 36 | 	dprint(PINSTR, "fabs\n"); | 
 | 37 |  | 
 | 38 | 	fp_monadic_check(dest, src); | 
 | 39 |  | 
 | 40 | 	dest->sign = 0; | 
 | 41 |  | 
 | 42 | 	return dest; | 
 | 43 | } | 
 | 44 |  | 
 | 45 | struct fp_ext * | 
 | 46 | fp_fneg(struct fp_ext *dest, struct fp_ext *src) | 
 | 47 | { | 
 | 48 | 	dprint(PINSTR, "fneg\n"); | 
 | 49 |  | 
 | 50 | 	fp_monadic_check(dest, src); | 
 | 51 |  | 
 | 52 | 	dest->sign = !dest->sign; | 
 | 53 |  | 
 | 54 | 	return dest; | 
 | 55 | } | 
 | 56 |  | 
 | 57 | /* Now, the slightly harder ones */ | 
 | 58 |  | 
 | 59 | /* fp_fadd: Implements the kernel of the FADD, FSADD, FDADD, FSUB, | 
 | 60 |    FDSUB, and FCMP instructions. */ | 
 | 61 |  | 
 | 62 | struct fp_ext * | 
 | 63 | fp_fadd(struct fp_ext *dest, struct fp_ext *src) | 
 | 64 | { | 
 | 65 | 	int diff; | 
 | 66 |  | 
 | 67 | 	dprint(PINSTR, "fadd\n"); | 
 | 68 |  | 
 | 69 | 	fp_dyadic_check(dest, src); | 
 | 70 |  | 
 | 71 | 	if (IS_INF(dest)) { | 
 | 72 | 		/* infinity - infinity == NaN */ | 
 | 73 | 		if (IS_INF(src) && (src->sign != dest->sign)) | 
 | 74 | 			fp_set_nan(dest); | 
 | 75 | 		return dest; | 
 | 76 | 	} | 
 | 77 | 	if (IS_INF(src)) { | 
 | 78 | 		fp_copy_ext(dest, src); | 
 | 79 | 		return dest; | 
 | 80 | 	} | 
 | 81 |  | 
 | 82 | 	if (IS_ZERO(dest)) { | 
 | 83 | 		if (IS_ZERO(src)) { | 
 | 84 | 			if (src->sign != dest->sign) { | 
 | 85 | 				if (FPDATA->rnd == FPCR_ROUND_RM) | 
 | 86 | 					dest->sign = 1; | 
 | 87 | 				else | 
 | 88 | 					dest->sign = 0; | 
 | 89 | 			} | 
 | 90 | 		} else | 
 | 91 | 			fp_copy_ext(dest, src); | 
 | 92 | 		return dest; | 
 | 93 | 	} | 
 | 94 |  | 
 | 95 | 	dest->lowmant = src->lowmant = 0; | 
 | 96 |  | 
 | 97 | 	if ((diff = dest->exp - src->exp) > 0) | 
 | 98 | 		fp_denormalize(src, diff); | 
 | 99 | 	else if ((diff = -diff) > 0) | 
 | 100 | 		fp_denormalize(dest, diff); | 
 | 101 |  | 
 | 102 | 	if (dest->sign == src->sign) { | 
 | 103 | 		if (fp_addmant(dest, src)) | 
 | 104 | 			if (!fp_addcarry(dest)) | 
 | 105 | 				return dest; | 
 | 106 | 	} else { | 
 | 107 | 		if (dest->mant.m64 < src->mant.m64) { | 
 | 108 | 			fp_submant(dest, src, dest); | 
 | 109 | 			dest->sign = !dest->sign; | 
 | 110 | 		} else | 
 | 111 | 			fp_submant(dest, dest, src); | 
 | 112 | 	} | 
 | 113 |  | 
 | 114 | 	return dest; | 
 | 115 | } | 
 | 116 |  | 
 | 117 | /* fp_fsub: Implements the kernel of the FSUB, FSSUB, and FDSUB | 
 | 118 |    instructions. | 
 | 119 |  | 
 | 120 |    Remember that the arguments are in assembler-syntax order! */ | 
 | 121 |  | 
 | 122 | struct fp_ext * | 
 | 123 | fp_fsub(struct fp_ext *dest, struct fp_ext *src) | 
 | 124 | { | 
 | 125 | 	dprint(PINSTR, "fsub "); | 
 | 126 |  | 
 | 127 | 	src->sign = !src->sign; | 
 | 128 | 	return fp_fadd(dest, src); | 
 | 129 | } | 
 | 130 |  | 
 | 131 |  | 
 | 132 | struct fp_ext * | 
 | 133 | fp_fcmp(struct fp_ext *dest, struct fp_ext *src) | 
 | 134 | { | 
 | 135 | 	dprint(PINSTR, "fcmp "); | 
 | 136 |  | 
 | 137 | 	FPDATA->temp[1] = *dest; | 
 | 138 | 	src->sign = !src->sign; | 
 | 139 | 	return fp_fadd(&FPDATA->temp[1], src); | 
 | 140 | } | 
 | 141 |  | 
 | 142 | struct fp_ext * | 
 | 143 | fp_ftst(struct fp_ext *dest, struct fp_ext *src) | 
 | 144 | { | 
 | 145 | 	dprint(PINSTR, "ftst\n"); | 
 | 146 |  | 
 | 147 | 	(void)dest; | 
 | 148 |  | 
 | 149 | 	return src; | 
 | 150 | } | 
 | 151 |  | 
 | 152 | struct fp_ext * | 
 | 153 | fp_fmul(struct fp_ext *dest, struct fp_ext *src) | 
 | 154 | { | 
 | 155 | 	union fp_mant128 temp; | 
 | 156 | 	int exp; | 
 | 157 |  | 
 | 158 | 	dprint(PINSTR, "fmul\n"); | 
 | 159 |  | 
 | 160 | 	fp_dyadic_check(dest, src); | 
 | 161 |  | 
 | 162 | 	/* calculate the correct sign now, as it's necessary for infinities */ | 
 | 163 | 	dest->sign = src->sign ^ dest->sign; | 
 | 164 |  | 
 | 165 | 	/* Handle infinities */ | 
 | 166 | 	if (IS_INF(dest)) { | 
 | 167 | 		if (IS_ZERO(src)) | 
 | 168 | 			fp_set_nan(dest); | 
 | 169 | 		return dest; | 
 | 170 | 	} | 
 | 171 | 	if (IS_INF(src)) { | 
 | 172 | 		if (IS_ZERO(dest)) | 
 | 173 | 			fp_set_nan(dest); | 
 | 174 | 		else | 
 | 175 | 			fp_copy_ext(dest, src); | 
 | 176 | 		return dest; | 
 | 177 | 	} | 
 | 178 |  | 
 | 179 | 	/* Of course, as we all know, zero * anything = zero.  You may | 
 | 180 | 	   not have known that it might be a positive or negative | 
 | 181 | 	   zero... */ | 
 | 182 | 	if (IS_ZERO(dest) || IS_ZERO(src)) { | 
 | 183 | 		dest->exp = 0; | 
 | 184 | 		dest->mant.m64 = 0; | 
 | 185 | 		dest->lowmant = 0; | 
 | 186 |  | 
 | 187 | 		return dest; | 
 | 188 | 	} | 
 | 189 |  | 
 | 190 | 	exp = dest->exp + src->exp - 0x3ffe; | 
 | 191 |  | 
 | 192 | 	/* shift up the mantissa for denormalized numbers, | 
 | 193 | 	   so that the highest bit is set, this makes the | 
 | 194 | 	   shift of the result below easier */ | 
 | 195 | 	if ((long)dest->mant.m32[0] >= 0) | 
 | 196 | 		exp -= fp_overnormalize(dest); | 
 | 197 | 	if ((long)src->mant.m32[0] >= 0) | 
 | 198 | 		exp -= fp_overnormalize(src); | 
 | 199 |  | 
 | 200 | 	/* now, do a 64-bit multiply with expansion */ | 
 | 201 | 	fp_multiplymant(&temp, dest, src); | 
 | 202 |  | 
 | 203 | 	/* normalize it back to 64 bits and stuff it back into the | 
 | 204 | 	   destination struct */ | 
 | 205 | 	if ((long)temp.m32[0] > 0) { | 
 | 206 | 		exp--; | 
 | 207 | 		fp_putmant128(dest, &temp, 1); | 
 | 208 | 	} else | 
 | 209 | 		fp_putmant128(dest, &temp, 0); | 
 | 210 |  | 
 | 211 | 	if (exp >= 0x7fff) { | 
 | 212 | 		fp_set_ovrflw(dest); | 
 | 213 | 		return dest; | 
 | 214 | 	} | 
 | 215 | 	dest->exp = exp; | 
 | 216 | 	if (exp < 0) { | 
 | 217 | 		fp_set_sr(FPSR_EXC_UNFL); | 
 | 218 | 		fp_denormalize(dest, -exp); | 
 | 219 | 	} | 
 | 220 |  | 
 | 221 | 	return dest; | 
 | 222 | } | 
 | 223 |  | 
 | 224 | /* fp_fdiv: Implements the "kernel" of the FDIV, FSDIV, FDDIV and | 
 | 225 |    FSGLDIV instructions. | 
 | 226 |  | 
 | 227 |    Note that the order of the operands is counter-intuitive: instead | 
 | 228 |    of src / dest, the result is actually dest / src. */ | 
 | 229 |  | 
 | 230 | struct fp_ext * | 
 | 231 | fp_fdiv(struct fp_ext *dest, struct fp_ext *src) | 
 | 232 | { | 
 | 233 | 	union fp_mant128 temp; | 
 | 234 | 	int exp; | 
 | 235 |  | 
 | 236 | 	dprint(PINSTR, "fdiv\n"); | 
 | 237 |  | 
 | 238 | 	fp_dyadic_check(dest, src); | 
 | 239 |  | 
 | 240 | 	/* calculate the correct sign now, as it's necessary for infinities */ | 
 | 241 | 	dest->sign = src->sign ^ dest->sign; | 
 | 242 |  | 
 | 243 | 	/* Handle infinities */ | 
 | 244 | 	if (IS_INF(dest)) { | 
 | 245 | 		/* infinity / infinity = NaN (quiet, as always) */ | 
 | 246 | 		if (IS_INF(src)) | 
 | 247 | 			fp_set_nan(dest); | 
 | 248 | 		/* infinity / anything else = infinity (with approprate sign) */ | 
 | 249 | 		return dest; | 
 | 250 | 	} | 
 | 251 | 	if (IS_INF(src)) { | 
 | 252 | 		/* anything / infinity = zero (with appropriate sign) */ | 
 | 253 | 		dest->exp = 0; | 
 | 254 | 		dest->mant.m64 = 0; | 
 | 255 | 		dest->lowmant = 0; | 
 | 256 |  | 
 | 257 | 		return dest; | 
 | 258 | 	} | 
 | 259 |  | 
 | 260 | 	/* zeroes */ | 
 | 261 | 	if (IS_ZERO(dest)) { | 
 | 262 | 		/* zero / zero = NaN */ | 
 | 263 | 		if (IS_ZERO(src)) | 
 | 264 | 			fp_set_nan(dest); | 
 | 265 | 		/* zero / anything else = zero */ | 
 | 266 | 		return dest; | 
 | 267 | 	} | 
 | 268 | 	if (IS_ZERO(src)) { | 
 | 269 | 		/* anything / zero = infinity (with appropriate sign) */ | 
 | 270 | 		fp_set_sr(FPSR_EXC_DZ); | 
 | 271 | 		dest->exp = 0x7fff; | 
 | 272 | 		dest->mant.m64 = 0; | 
 | 273 |  | 
 | 274 | 		return dest; | 
 | 275 | 	} | 
 | 276 |  | 
 | 277 | 	exp = dest->exp - src->exp + 0x3fff; | 
 | 278 |  | 
 | 279 | 	/* shift up the mantissa for denormalized numbers, | 
 | 280 | 	   so that the highest bit is set, this makes lots | 
 | 281 | 	   of things below easier */ | 
 | 282 | 	if ((long)dest->mant.m32[0] >= 0) | 
 | 283 | 		exp -= fp_overnormalize(dest); | 
 | 284 | 	if ((long)src->mant.m32[0] >= 0) | 
 | 285 | 		exp -= fp_overnormalize(src); | 
 | 286 |  | 
 | 287 | 	/* now, do the 64-bit divide */ | 
 | 288 | 	fp_dividemant(&temp, dest, src); | 
 | 289 |  | 
 | 290 | 	/* normalize it back to 64 bits and stuff it back into the | 
 | 291 | 	   destination struct */ | 
 | 292 | 	if (!temp.m32[0]) { | 
 | 293 | 		exp--; | 
 | 294 | 		fp_putmant128(dest, &temp, 32); | 
 | 295 | 	} else | 
 | 296 | 		fp_putmant128(dest, &temp, 31); | 
 | 297 |  | 
 | 298 | 	if (exp >= 0x7fff) { | 
 | 299 | 		fp_set_ovrflw(dest); | 
 | 300 | 		return dest; | 
 | 301 | 	} | 
 | 302 | 	dest->exp = exp; | 
 | 303 | 	if (exp < 0) { | 
 | 304 | 		fp_set_sr(FPSR_EXC_UNFL); | 
 | 305 | 		fp_denormalize(dest, -exp); | 
 | 306 | 	} | 
 | 307 |  | 
 | 308 | 	return dest; | 
 | 309 | } | 
 | 310 |  | 
 | 311 | struct fp_ext * | 
 | 312 | fp_fsglmul(struct fp_ext *dest, struct fp_ext *src) | 
 | 313 | { | 
 | 314 | 	int exp; | 
 | 315 |  | 
 | 316 | 	dprint(PINSTR, "fsglmul\n"); | 
 | 317 |  | 
 | 318 | 	fp_dyadic_check(dest, src); | 
 | 319 |  | 
 | 320 | 	/* calculate the correct sign now, as it's necessary for infinities */ | 
 | 321 | 	dest->sign = src->sign ^ dest->sign; | 
 | 322 |  | 
 | 323 | 	/* Handle infinities */ | 
 | 324 | 	if (IS_INF(dest)) { | 
 | 325 | 		if (IS_ZERO(src)) | 
 | 326 | 			fp_set_nan(dest); | 
 | 327 | 		return dest; | 
 | 328 | 	} | 
 | 329 | 	if (IS_INF(src)) { | 
 | 330 | 		if (IS_ZERO(dest)) | 
 | 331 | 			fp_set_nan(dest); | 
 | 332 | 		else | 
 | 333 | 			fp_copy_ext(dest, src); | 
 | 334 | 		return dest; | 
 | 335 | 	} | 
 | 336 |  | 
 | 337 | 	/* Of course, as we all know, zero * anything = zero.  You may | 
 | 338 | 	   not have known that it might be a positive or negative | 
 | 339 | 	   zero... */ | 
 | 340 | 	if (IS_ZERO(dest) || IS_ZERO(src)) { | 
 | 341 | 		dest->exp = 0; | 
 | 342 | 		dest->mant.m64 = 0; | 
 | 343 | 		dest->lowmant = 0; | 
 | 344 |  | 
 | 345 | 		return dest; | 
 | 346 | 	} | 
 | 347 |  | 
 | 348 | 	exp = dest->exp + src->exp - 0x3ffe; | 
 | 349 |  | 
 | 350 | 	/* do a 32-bit multiply */ | 
 | 351 | 	fp_mul64(dest->mant.m32[0], dest->mant.m32[1], | 
 | 352 | 		 dest->mant.m32[0] & 0xffffff00, | 
 | 353 | 		 src->mant.m32[0] & 0xffffff00); | 
 | 354 |  | 
 | 355 | 	if (exp >= 0x7fff) { | 
 | 356 | 		fp_set_ovrflw(dest); | 
 | 357 | 		return dest; | 
 | 358 | 	} | 
 | 359 | 	dest->exp = exp; | 
 | 360 | 	if (exp < 0) { | 
 | 361 | 		fp_set_sr(FPSR_EXC_UNFL); | 
 | 362 | 		fp_denormalize(dest, -exp); | 
 | 363 | 	} | 
 | 364 |  | 
 | 365 | 	return dest; | 
 | 366 | } | 
 | 367 |  | 
 | 368 | struct fp_ext * | 
 | 369 | fp_fsgldiv(struct fp_ext *dest, struct fp_ext *src) | 
 | 370 | { | 
 | 371 | 	int exp; | 
 | 372 | 	unsigned long quot, rem; | 
 | 373 |  | 
 | 374 | 	dprint(PINSTR, "fsgldiv\n"); | 
 | 375 |  | 
 | 376 | 	fp_dyadic_check(dest, src); | 
 | 377 |  | 
 | 378 | 	/* calculate the correct sign now, as it's necessary for infinities */ | 
 | 379 | 	dest->sign = src->sign ^ dest->sign; | 
 | 380 |  | 
 | 381 | 	/* Handle infinities */ | 
 | 382 | 	if (IS_INF(dest)) { | 
 | 383 | 		/* infinity / infinity = NaN (quiet, as always) */ | 
 | 384 | 		if (IS_INF(src)) | 
 | 385 | 			fp_set_nan(dest); | 
 | 386 | 		/* infinity / anything else = infinity (with approprate sign) */ | 
 | 387 | 		return dest; | 
 | 388 | 	} | 
 | 389 | 	if (IS_INF(src)) { | 
 | 390 | 		/* anything / infinity = zero (with appropriate sign) */ | 
 | 391 | 		dest->exp = 0; | 
 | 392 | 		dest->mant.m64 = 0; | 
 | 393 | 		dest->lowmant = 0; | 
 | 394 |  | 
 | 395 | 		return dest; | 
 | 396 | 	} | 
 | 397 |  | 
 | 398 | 	/* zeroes */ | 
 | 399 | 	if (IS_ZERO(dest)) { | 
 | 400 | 		/* zero / zero = NaN */ | 
 | 401 | 		if (IS_ZERO(src)) | 
 | 402 | 			fp_set_nan(dest); | 
 | 403 | 		/* zero / anything else = zero */ | 
 | 404 | 		return dest; | 
 | 405 | 	} | 
 | 406 | 	if (IS_ZERO(src)) { | 
 | 407 | 		/* anything / zero = infinity (with appropriate sign) */ | 
 | 408 | 		fp_set_sr(FPSR_EXC_DZ); | 
 | 409 | 		dest->exp = 0x7fff; | 
 | 410 | 		dest->mant.m64 = 0; | 
 | 411 |  | 
 | 412 | 		return dest; | 
 | 413 | 	} | 
 | 414 |  | 
 | 415 | 	exp = dest->exp - src->exp + 0x3fff; | 
 | 416 |  | 
 | 417 | 	dest->mant.m32[0] &= 0xffffff00; | 
 | 418 | 	src->mant.m32[0] &= 0xffffff00; | 
 | 419 |  | 
 | 420 | 	/* do the 32-bit divide */ | 
 | 421 | 	if (dest->mant.m32[0] >= src->mant.m32[0]) { | 
 | 422 | 		fp_sub64(dest->mant, src->mant); | 
 | 423 | 		fp_div64(quot, rem, dest->mant.m32[0], 0, src->mant.m32[0]); | 
 | 424 | 		dest->mant.m32[0] = 0x80000000 | (quot >> 1); | 
 | 425 | 		dest->mant.m32[1] = (quot & 1) | rem;	/* only for rounding */ | 
 | 426 | 	} else { | 
 | 427 | 		fp_div64(quot, rem, dest->mant.m32[0], 0, src->mant.m32[0]); | 
 | 428 | 		dest->mant.m32[0] = quot; | 
 | 429 | 		dest->mant.m32[1] = rem;		/* only for rounding */ | 
 | 430 | 		exp--; | 
 | 431 | 	} | 
 | 432 |  | 
 | 433 | 	if (exp >= 0x7fff) { | 
 | 434 | 		fp_set_ovrflw(dest); | 
 | 435 | 		return dest; | 
 | 436 | 	} | 
 | 437 | 	dest->exp = exp; | 
 | 438 | 	if (exp < 0) { | 
 | 439 | 		fp_set_sr(FPSR_EXC_UNFL); | 
 | 440 | 		fp_denormalize(dest, -exp); | 
 | 441 | 	} | 
 | 442 |  | 
 | 443 | 	return dest; | 
 | 444 | } | 
 | 445 |  | 
 | 446 | /* fp_roundint: Internal rounding function for use by several of these | 
 | 447 |    emulated instructions. | 
 | 448 |  | 
 | 449 |    This one rounds off the fractional part using the rounding mode | 
 | 450 |    specified. */ | 
 | 451 |  | 
 | 452 | static void fp_roundint(struct fp_ext *dest, int mode) | 
 | 453 | { | 
 | 454 | 	union fp_mant64 oldmant; | 
 | 455 | 	unsigned long mask; | 
 | 456 |  | 
 | 457 | 	if (!fp_normalize_ext(dest)) | 
 | 458 | 		return; | 
 | 459 |  | 
 | 460 | 	/* infinities and zeroes */ | 
 | 461 | 	if (IS_INF(dest) || IS_ZERO(dest)) | 
 | 462 | 		return; | 
 | 463 |  | 
 | 464 | 	/* first truncate the lower bits */ | 
 | 465 | 	oldmant = dest->mant; | 
 | 466 | 	switch (dest->exp) { | 
 | 467 | 	case 0 ... 0x3ffe: | 
 | 468 | 		dest->mant.m64 = 0; | 
 | 469 | 		break; | 
 | 470 | 	case 0x3fff ... 0x401e: | 
 | 471 | 		dest->mant.m32[0] &= 0xffffffffU << (0x401e - dest->exp); | 
 | 472 | 		dest->mant.m32[1] = 0; | 
 | 473 | 		if (oldmant.m64 == dest->mant.m64) | 
 | 474 | 			return; | 
 | 475 | 		break; | 
 | 476 | 	case 0x401f ... 0x403e: | 
 | 477 | 		dest->mant.m32[1] &= 0xffffffffU << (0x403e - dest->exp); | 
 | 478 | 		if (oldmant.m32[1] == dest->mant.m32[1]) | 
 | 479 | 			return; | 
 | 480 | 		break; | 
 | 481 | 	default: | 
 | 482 | 		return; | 
 | 483 | 	} | 
 | 484 | 	fp_set_sr(FPSR_EXC_INEX2); | 
 | 485 |  | 
 | 486 | 	/* We might want to normalize upwards here... however, since | 
 | 487 | 	   we know that this is only called on the output of fp_fdiv, | 
 | 488 | 	   or with the input to fp_fint or fp_fintrz, and the inputs | 
 | 489 | 	   to all these functions are either normal or denormalized | 
 | 490 | 	   (no subnormals allowed!), there's really no need. | 
 | 491 |  | 
 | 492 | 	   In the case of fp_fdiv, observe that 0x80000000 / 0xffff = | 
 | 493 | 	   0xffff8000, and the same holds for 128-bit / 64-bit. (i.e. the | 
 | 494 | 	   smallest possible normal dividend and the largest possible normal | 
 | 495 | 	   divisor will still produce a normal quotient, therefore, (normal | 
 | 496 | 	   << 64) / normal is normal in all cases) */ | 
 | 497 |  | 
 | 498 | 	switch (mode) { | 
 | 499 | 	case FPCR_ROUND_RN: | 
 | 500 | 		switch (dest->exp) { | 
 | 501 | 		case 0 ... 0x3ffd: | 
 | 502 | 			return; | 
 | 503 | 		case 0x3ffe: | 
 | 504 | 			/* As noted above, the input is always normal, so the | 
 | 505 | 			   guard bit (bit 63) is always set.  therefore, the | 
 | 506 | 			   only case in which we will NOT round to 1.0 is when | 
 | 507 | 			   the input is exactly 0.5. */ | 
 | 508 | 			if (oldmant.m64 == (1ULL << 63)) | 
 | 509 | 				return; | 
 | 510 | 			break; | 
 | 511 | 		case 0x3fff ... 0x401d: | 
 | 512 | 			mask = 1 << (0x401d - dest->exp); | 
 | 513 | 			if (!(oldmant.m32[0] & mask)) | 
 | 514 | 				return; | 
 | 515 | 			if (oldmant.m32[0] & (mask << 1)) | 
 | 516 | 				break; | 
 | 517 | 			if (!(oldmant.m32[0] << (dest->exp - 0x3ffd)) && | 
 | 518 | 					!oldmant.m32[1]) | 
 | 519 | 				return; | 
 | 520 | 			break; | 
 | 521 | 		case 0x401e: | 
 | 522 | 			if (!(oldmant.m32[1] >= 0)) | 
 | 523 | 				return; | 
 | 524 | 			if (oldmant.m32[0] & 1) | 
 | 525 | 				break; | 
 | 526 | 			if (!(oldmant.m32[1] << 1)) | 
 | 527 | 				return; | 
 | 528 | 			break; | 
 | 529 | 		case 0x401f ... 0x403d: | 
 | 530 | 			mask = 1 << (0x403d - dest->exp); | 
 | 531 | 			if (!(oldmant.m32[1] & mask)) | 
 | 532 | 				return; | 
 | 533 | 			if (oldmant.m32[1] & (mask << 1)) | 
 | 534 | 				break; | 
 | 535 | 			if (!(oldmant.m32[1] << (dest->exp - 0x401d))) | 
 | 536 | 				return; | 
 | 537 | 			break; | 
 | 538 | 		default: | 
 | 539 | 			return; | 
 | 540 | 		} | 
 | 541 | 		break; | 
 | 542 | 	case FPCR_ROUND_RZ: | 
 | 543 | 		return; | 
 | 544 | 	default: | 
 | 545 | 		if (dest->sign ^ (mode - FPCR_ROUND_RM)) | 
 | 546 | 			break; | 
 | 547 | 		return; | 
 | 548 | 	} | 
 | 549 |  | 
 | 550 | 	switch (dest->exp) { | 
 | 551 | 	case 0 ... 0x3ffe: | 
 | 552 | 		dest->exp = 0x3fff; | 
 | 553 | 		dest->mant.m64 = 1ULL << 63; | 
 | 554 | 		break; | 
 | 555 | 	case 0x3fff ... 0x401e: | 
 | 556 | 		mask = 1 << (0x401e - dest->exp); | 
 | 557 | 		if (dest->mant.m32[0] += mask) | 
 | 558 | 			break; | 
 | 559 | 		dest->mant.m32[0] = 0x80000000; | 
 | 560 | 		dest->exp++; | 
 | 561 | 		break; | 
 | 562 | 	case 0x401f ... 0x403e: | 
 | 563 | 		mask = 1 << (0x403e - dest->exp); | 
 | 564 | 		if (dest->mant.m32[1] += mask) | 
 | 565 | 			break; | 
 | 566 | 		if (dest->mant.m32[0] += 1) | 
 | 567 |                         break; | 
 | 568 | 		dest->mant.m32[0] = 0x80000000; | 
 | 569 |                 dest->exp++; | 
 | 570 | 		break; | 
 | 571 | 	} | 
 | 572 | } | 
 | 573 |  | 
 | 574 | /* modrem_kernel: Implementation of the FREM and FMOD instructions | 
 | 575 |    (which are exactly the same, except for the rounding used on the | 
 | 576 |    intermediate value) */ | 
 | 577 |  | 
 | 578 | static struct fp_ext * | 
 | 579 | modrem_kernel(struct fp_ext *dest, struct fp_ext *src, int mode) | 
 | 580 | { | 
 | 581 | 	struct fp_ext tmp; | 
 | 582 |  | 
 | 583 | 	fp_dyadic_check(dest, src); | 
 | 584 |  | 
 | 585 | 	/* Infinities and zeros */ | 
 | 586 | 	if (IS_INF(dest) || IS_ZERO(src)) { | 
 | 587 | 		fp_set_nan(dest); | 
 | 588 | 		return dest; | 
 | 589 | 	} | 
 | 590 | 	if (IS_ZERO(dest) || IS_INF(src)) | 
 | 591 | 		return dest; | 
 | 592 |  | 
 | 593 | 	/* FIXME: there is almost certainly a smarter way to do this */ | 
 | 594 | 	fp_copy_ext(&tmp, dest); | 
 | 595 | 	fp_fdiv(&tmp, src);		/* NOTE: src might be modified */ | 
 | 596 | 	fp_roundint(&tmp, mode); | 
 | 597 | 	fp_fmul(&tmp, src); | 
 | 598 | 	fp_fsub(dest, &tmp); | 
 | 599 |  | 
 | 600 | 	/* set the quotient byte */ | 
 | 601 | 	fp_set_quotient((dest->mant.m64 & 0x7f) | (dest->sign << 7)); | 
 | 602 | 	return dest; | 
 | 603 | } | 
 | 604 |  | 
 | 605 | /* fp_fmod: Implements the kernel of the FMOD instruction. | 
 | 606 |  | 
 | 607 |    Again, the argument order is backwards.  The result, as defined in | 
 | 608 |    the Motorola manuals, is: | 
 | 609 |  | 
 | 610 |    fmod(src,dest) = (dest - (src * floor(dest / src))) */ | 
 | 611 |  | 
 | 612 | struct fp_ext * | 
 | 613 | fp_fmod(struct fp_ext *dest, struct fp_ext *src) | 
 | 614 | { | 
 | 615 | 	dprint(PINSTR, "fmod\n"); | 
 | 616 | 	return modrem_kernel(dest, src, FPCR_ROUND_RZ); | 
 | 617 | } | 
 | 618 |  | 
 | 619 | /* fp_frem: Implements the kernel of the FREM instruction. | 
 | 620 |  | 
 | 621 |    frem(src,dest) = (dest - (src * round(dest / src))) | 
 | 622 |  */ | 
 | 623 |  | 
 | 624 | struct fp_ext * | 
 | 625 | fp_frem(struct fp_ext *dest, struct fp_ext *src) | 
 | 626 | { | 
 | 627 | 	dprint(PINSTR, "frem\n"); | 
 | 628 | 	return modrem_kernel(dest, src, FPCR_ROUND_RN); | 
 | 629 | } | 
 | 630 |  | 
 | 631 | struct fp_ext * | 
 | 632 | fp_fint(struct fp_ext *dest, struct fp_ext *src) | 
 | 633 | { | 
 | 634 | 	dprint(PINSTR, "fint\n"); | 
 | 635 |  | 
 | 636 | 	fp_copy_ext(dest, src); | 
 | 637 |  | 
 | 638 | 	fp_roundint(dest, FPDATA->rnd); | 
 | 639 |  | 
 | 640 | 	return dest; | 
 | 641 | } | 
 | 642 |  | 
 | 643 | struct fp_ext * | 
 | 644 | fp_fintrz(struct fp_ext *dest, struct fp_ext *src) | 
 | 645 | { | 
 | 646 | 	dprint(PINSTR, "fintrz\n"); | 
 | 647 |  | 
 | 648 | 	fp_copy_ext(dest, src); | 
 | 649 |  | 
 | 650 | 	fp_roundint(dest, FPCR_ROUND_RZ); | 
 | 651 |  | 
 | 652 | 	return dest; | 
 | 653 | } | 
 | 654 |  | 
 | 655 | struct fp_ext * | 
 | 656 | fp_fscale(struct fp_ext *dest, struct fp_ext *src) | 
 | 657 | { | 
 | 658 | 	int scale, oldround; | 
 | 659 |  | 
 | 660 | 	dprint(PINSTR, "fscale\n"); | 
 | 661 |  | 
 | 662 | 	fp_dyadic_check(dest, src); | 
 | 663 |  | 
 | 664 | 	/* Infinities */ | 
 | 665 | 	if (IS_INF(src)) { | 
 | 666 | 		fp_set_nan(dest); | 
 | 667 | 		return dest; | 
 | 668 | 	} | 
 | 669 | 	if (IS_INF(dest)) | 
 | 670 | 		return dest; | 
 | 671 |  | 
 | 672 | 	/* zeroes */ | 
 | 673 | 	if (IS_ZERO(src) || IS_ZERO(dest)) | 
 | 674 | 		return dest; | 
 | 675 |  | 
 | 676 | 	/* Source exponent out of range */ | 
 | 677 | 	if (src->exp >= 0x400c) { | 
 | 678 | 		fp_set_ovrflw(dest); | 
 | 679 | 		return dest; | 
 | 680 | 	} | 
 | 681 |  | 
 | 682 | 	/* src must be rounded with round to zero. */ | 
 | 683 | 	oldround = FPDATA->rnd; | 
 | 684 | 	FPDATA->rnd = FPCR_ROUND_RZ; | 
 | 685 | 	scale = fp_conv_ext2long(src); | 
 | 686 | 	FPDATA->rnd = oldround; | 
 | 687 |  | 
 | 688 | 	/* new exponent */ | 
 | 689 | 	scale += dest->exp; | 
 | 690 |  | 
 | 691 | 	if (scale >= 0x7fff) { | 
 | 692 | 		fp_set_ovrflw(dest); | 
 | 693 | 	} else if (scale <= 0) { | 
 | 694 | 		fp_set_sr(FPSR_EXC_UNFL); | 
 | 695 | 		fp_denormalize(dest, -scale); | 
 | 696 | 	} else | 
 | 697 | 		dest->exp = scale; | 
 | 698 |  | 
 | 699 | 	return dest; | 
 | 700 | } | 
 | 701 |  |