blob: 5aca01ddd81ff44272b896849dbc128d7d2bbb0a [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 *
3 *
4 * Procedures for interfacing to Open Firmware.
5 *
6 * Paul Mackerras August 1996.
7 * Copyright (C) 1996 Paul Mackerras.
8 *
9 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
10 * {engebret|bergner}@us.ibm.com
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
16 */
17
18#undef DEBUG
19
20#include <stdarg.h>
21#include <linux/config.h>
22#include <linux/kernel.h>
23#include <linux/string.h>
24#include <linux/init.h>
25#include <linux/version.h>
26#include <linux/threads.h>
27#include <linux/spinlock.h>
28#include <linux/types.h>
29#include <linux/pci.h>
30#include <linux/stringify.h>
31#include <linux/delay.h>
32#include <linux/initrd.h>
33#include <linux/bitops.h>
34#include <linux/module.h>
35
36#include <asm/prom.h>
37#include <asm/rtas.h>
38#include <asm/lmb.h>
39#include <asm/abs_addr.h>
40#include <asm/page.h>
41#include <asm/processor.h>
42#include <asm/irq.h>
43#include <asm/io.h>
44#include <asm/smp.h>
45#include <asm/system.h>
46#include <asm/mmu.h>
47#include <asm/pgtable.h>
48#include <asm/pci.h>
49#include <asm/iommu.h>
50#include <asm/bootinfo.h>
51#include <asm/ppcdebug.h>
52#include <asm/btext.h>
53#include <asm/sections.h>
54#include <asm/machdep.h>
55#include <asm/pSeries_reconfig.h>
56
57#ifdef DEBUG
58#define DBG(fmt...) udbg_printf(fmt)
59#else
60#define DBG(fmt...)
61#endif
62
63struct pci_reg_property {
64 struct pci_address addr;
65 u32 size_hi;
66 u32 size_lo;
67};
68
69struct isa_reg_property {
70 u32 space;
71 u32 address;
72 u32 size;
73};
74
75
76typedef int interpret_func(struct device_node *, unsigned long *,
77 int, int, int);
78
79extern struct rtas_t rtas;
80extern struct lmb lmb;
81extern unsigned long klimit;
82
83static int __initdata dt_root_addr_cells;
84static int __initdata dt_root_size_cells;
85static int __initdata iommu_is_off;
86int __initdata iommu_force_on;
87typedef u32 cell_t;
88
89#if 0
90static struct boot_param_header *initial_boot_params __initdata;
91#else
92struct boot_param_header *initial_boot_params;
93#endif
94
95static struct device_node *allnodes = NULL;
96
97/* use when traversing tree through the allnext, child, sibling,
98 * or parent members of struct device_node.
99 */
100static DEFINE_RWLOCK(devtree_lock);
101
102/* export that to outside world */
103struct device_node *of_chosen;
104
105/*
106 * Wrapper for allocating memory for various data that needs to be
107 * attached to device nodes as they are processed at boot or when
108 * added to the device tree later (e.g. DLPAR). At boot there is
109 * already a region reserved so we just increment *mem_start by size;
110 * otherwise we call kmalloc.
111 */
112static void * prom_alloc(unsigned long size, unsigned long *mem_start)
113{
114 unsigned long tmp;
115
116 if (!mem_start)
117 return kmalloc(size, GFP_KERNEL);
118
119 tmp = *mem_start;
120 *mem_start += size;
121 return (void *)tmp;
122}
123
124/*
125 * Find the device_node with a given phandle.
126 */
127static struct device_node * find_phandle(phandle ph)
128{
129 struct device_node *np;
130
131 for (np = allnodes; np != 0; np = np->allnext)
132 if (np->linux_phandle == ph)
133 return np;
134 return NULL;
135}
136
137/*
138 * Find the interrupt parent of a node.
139 */
140static struct device_node * __devinit intr_parent(struct device_node *p)
141{
142 phandle *parp;
143
144 parp = (phandle *) get_property(p, "interrupt-parent", NULL);
145 if (parp == NULL)
146 return p->parent;
147 return find_phandle(*parp);
148}
149
150/*
151 * Find out the size of each entry of the interrupts property
152 * for a node.
153 */
154int __devinit prom_n_intr_cells(struct device_node *np)
155{
156 struct device_node *p;
157 unsigned int *icp;
158
159 for (p = np; (p = intr_parent(p)) != NULL; ) {
160 icp = (unsigned int *)
161 get_property(p, "#interrupt-cells", NULL);
162 if (icp != NULL)
163 return *icp;
164 if (get_property(p, "interrupt-controller", NULL) != NULL
165 || get_property(p, "interrupt-map", NULL) != NULL) {
166 printk("oops, node %s doesn't have #interrupt-cells\n",
167 p->full_name);
168 return 1;
169 }
170 }
171#ifdef DEBUG_IRQ
172 printk("prom_n_intr_cells failed for %s\n", np->full_name);
173#endif
174 return 1;
175}
176
177/*
178 * Map an interrupt from a device up to the platform interrupt
179 * descriptor.
180 */
181static int __devinit map_interrupt(unsigned int **irq, struct device_node **ictrler,
182 struct device_node *np, unsigned int *ints,
183 int nintrc)
184{
185 struct device_node *p, *ipar;
186 unsigned int *imap, *imask, *ip;
187 int i, imaplen, match;
188 int newintrc = 0, newaddrc = 0;
189 unsigned int *reg;
190 int naddrc;
191
192 reg = (unsigned int *) get_property(np, "reg", NULL);
193 naddrc = prom_n_addr_cells(np);
194 p = intr_parent(np);
195 while (p != NULL) {
196 if (get_property(p, "interrupt-controller", NULL) != NULL)
197 /* this node is an interrupt controller, stop here */
198 break;
199 imap = (unsigned int *)
200 get_property(p, "interrupt-map", &imaplen);
201 if (imap == NULL) {
202 p = intr_parent(p);
203 continue;
204 }
205 imask = (unsigned int *)
206 get_property(p, "interrupt-map-mask", NULL);
207 if (imask == NULL) {
208 printk("oops, %s has interrupt-map but no mask\n",
209 p->full_name);
210 return 0;
211 }
212 imaplen /= sizeof(unsigned int);
213 match = 0;
214 ipar = NULL;
215 while (imaplen > 0 && !match) {
216 /* check the child-interrupt field */
217 match = 1;
218 for (i = 0; i < naddrc && match; ++i)
219 match = ((reg[i] ^ imap[i]) & imask[i]) == 0;
220 for (; i < naddrc + nintrc && match; ++i)
221 match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0;
222 imap += naddrc + nintrc;
223 imaplen -= naddrc + nintrc;
224 /* grab the interrupt parent */
225 ipar = find_phandle((phandle) *imap++);
226 --imaplen;
227 if (ipar == NULL) {
228 printk("oops, no int parent %x in map of %s\n",
229 imap[-1], p->full_name);
230 return 0;
231 }
232 /* find the parent's # addr and intr cells */
233 ip = (unsigned int *)
234 get_property(ipar, "#interrupt-cells", NULL);
235 if (ip == NULL) {
236 printk("oops, no #interrupt-cells on %s\n",
237 ipar->full_name);
238 return 0;
239 }
240 newintrc = *ip;
241 ip = (unsigned int *)
242 get_property(ipar, "#address-cells", NULL);
243 newaddrc = (ip == NULL)? 0: *ip;
244 imap += newaddrc + newintrc;
245 imaplen -= newaddrc + newintrc;
246 }
247 if (imaplen < 0) {
248 printk("oops, error decoding int-map on %s, len=%d\n",
249 p->full_name, imaplen);
250 return 0;
251 }
252 if (!match) {
253#ifdef DEBUG_IRQ
254 printk("oops, no match in %s int-map for %s\n",
255 p->full_name, np->full_name);
256#endif
257 return 0;
258 }
259 p = ipar;
260 naddrc = newaddrc;
261 nintrc = newintrc;
262 ints = imap - nintrc;
263 reg = ints - naddrc;
264 }
265 if (p == NULL) {
266#ifdef DEBUG_IRQ
267 printk("hmmm, int tree for %s doesn't have ctrler\n",
268 np->full_name);
269#endif
270 return 0;
271 }
272 *irq = ints;
273 *ictrler = p;
274 return nintrc;
275}
276
277static int __devinit finish_node_interrupts(struct device_node *np,
278 unsigned long *mem_start,
279 int measure_only)
280{
281 unsigned int *ints;
282 int intlen, intrcells, intrcount;
283 int i, j, n;
284 unsigned int *irq, virq;
285 struct device_node *ic;
286
287 ints = (unsigned int *) get_property(np, "interrupts", &intlen);
288 if (ints == NULL)
289 return 0;
290 intrcells = prom_n_intr_cells(np);
291 intlen /= intrcells * sizeof(unsigned int);
292
293 np->intrs = prom_alloc(intlen * sizeof(*(np->intrs)), mem_start);
294 if (!np->intrs)
295 return -ENOMEM;
296
297 if (measure_only)
298 return 0;
299
300 intrcount = 0;
301 for (i = 0; i < intlen; ++i, ints += intrcells) {
302 n = map_interrupt(&irq, &ic, np, ints, intrcells);
303 if (n <= 0)
304 continue;
305
306 /* don't map IRQ numbers under a cascaded 8259 controller */
307 if (ic && device_is_compatible(ic, "chrp,iic")) {
308 np->intrs[intrcount].line = irq[0];
309 } else {
310 virq = virt_irq_create_mapping(irq[0]);
311 if (virq == NO_IRQ) {
312 printk(KERN_CRIT "Could not allocate interrupt"
313 " number for %s\n", np->full_name);
314 continue;
315 }
316 np->intrs[intrcount].line = irq_offset_up(virq);
317 }
318
319 /* We offset irq numbers for the u3 MPIC by 128 in PowerMac */
320 if (systemcfg->platform == PLATFORM_POWERMAC && ic && ic->parent) {
321 char *name = get_property(ic->parent, "name", NULL);
322 if (name && !strcmp(name, "u3"))
323 np->intrs[intrcount].line += 128;
Paul Mackerrasdc3ec752005-05-01 08:58:44 -0700324 else if (!(name && !strcmp(name, "mac-io")))
325 /* ignore other cascaded controllers, such as
326 the k2-sata-root */
327 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700328 }
329 np->intrs[intrcount].sense = 1;
330 if (n > 1)
331 np->intrs[intrcount].sense = irq[1];
332 if (n > 2) {
333 printk("hmmm, got %d intr cells for %s:", n,
334 np->full_name);
335 for (j = 0; j < n; ++j)
336 printk(" %d", irq[j]);
337 printk("\n");
338 }
339 ++intrcount;
340 }
341 np->n_intrs = intrcount;
342
343 return 0;
344}
345
346static int __devinit interpret_pci_props(struct device_node *np,
347 unsigned long *mem_start,
348 int naddrc, int nsizec,
349 int measure_only)
350{
351 struct address_range *adr;
352 struct pci_reg_property *pci_addrs;
353 int i, l, n_addrs;
354
355 pci_addrs = (struct pci_reg_property *)
356 get_property(np, "assigned-addresses", &l);
357 if (!pci_addrs)
358 return 0;
359
360 n_addrs = l / sizeof(*pci_addrs);
361
362 adr = prom_alloc(n_addrs * sizeof(*adr), mem_start);
363 if (!adr)
364 return -ENOMEM;
365
366 if (measure_only)
367 return 0;
368
369 np->addrs = adr;
370 np->n_addrs = n_addrs;
371
372 for (i = 0; i < n_addrs; i++) {
373 adr[i].space = pci_addrs[i].addr.a_hi;
374 adr[i].address = pci_addrs[i].addr.a_lo |
375 ((u64)pci_addrs[i].addr.a_mid << 32);
376 adr[i].size = pci_addrs[i].size_lo;
377 }
378
379 return 0;
380}
381
382static int __init interpret_dbdma_props(struct device_node *np,
383 unsigned long *mem_start,
384 int naddrc, int nsizec,
385 int measure_only)
386{
387 struct reg_property32 *rp;
388 struct address_range *adr;
389 unsigned long base_address;
390 int i, l;
391 struct device_node *db;
392
393 base_address = 0;
394 if (!measure_only) {
395 for (db = np->parent; db != NULL; db = db->parent) {
396 if (!strcmp(db->type, "dbdma") && db->n_addrs != 0) {
397 base_address = db->addrs[0].address;
398 break;
399 }
400 }
401 }
402
403 rp = (struct reg_property32 *) get_property(np, "reg", &l);
404 if (rp != 0 && l >= sizeof(struct reg_property32)) {
405 i = 0;
406 adr = (struct address_range *) (*mem_start);
407 while ((l -= sizeof(struct reg_property32)) >= 0) {
408 if (!measure_only) {
409 adr[i].space = 2;
410 adr[i].address = rp[i].address + base_address;
411 adr[i].size = rp[i].size;
412 }
413 ++i;
414 }
415 np->addrs = adr;
416 np->n_addrs = i;
417 (*mem_start) += i * sizeof(struct address_range);
418 }
419
420 return 0;
421}
422
423static int __init interpret_macio_props(struct device_node *np,
424 unsigned long *mem_start,
425 int naddrc, int nsizec,
426 int measure_only)
427{
428 struct reg_property32 *rp;
429 struct address_range *adr;
430 unsigned long base_address;
431 int i, l;
432 struct device_node *db;
433
434 base_address = 0;
435 if (!measure_only) {
436 for (db = np->parent; db != NULL; db = db->parent) {
437 if (!strcmp(db->type, "mac-io") && db->n_addrs != 0) {
438 base_address = db->addrs[0].address;
439 break;
440 }
441 }
442 }
443
444 rp = (struct reg_property32 *) get_property(np, "reg", &l);
445 if (rp != 0 && l >= sizeof(struct reg_property32)) {
446 i = 0;
447 adr = (struct address_range *) (*mem_start);
448 while ((l -= sizeof(struct reg_property32)) >= 0) {
449 if (!measure_only) {
450 adr[i].space = 2;
451 adr[i].address = rp[i].address + base_address;
452 adr[i].size = rp[i].size;
453 }
454 ++i;
455 }
456 np->addrs = adr;
457 np->n_addrs = i;
458 (*mem_start) += i * sizeof(struct address_range);
459 }
460
461 return 0;
462}
463
464static int __init interpret_isa_props(struct device_node *np,
465 unsigned long *mem_start,
466 int naddrc, int nsizec,
467 int measure_only)
468{
469 struct isa_reg_property *rp;
470 struct address_range *adr;
471 int i, l;
472
473 rp = (struct isa_reg_property *) get_property(np, "reg", &l);
474 if (rp != 0 && l >= sizeof(struct isa_reg_property)) {
475 i = 0;
476 adr = (struct address_range *) (*mem_start);
477 while ((l -= sizeof(struct isa_reg_property)) >= 0) {
478 if (!measure_only) {
479 adr[i].space = rp[i].space;
480 adr[i].address = rp[i].address;
481 adr[i].size = rp[i].size;
482 }
483 ++i;
484 }
485 np->addrs = adr;
486 np->n_addrs = i;
487 (*mem_start) += i * sizeof(struct address_range);
488 }
489
490 return 0;
491}
492
493static int __init interpret_root_props(struct device_node *np,
494 unsigned long *mem_start,
495 int naddrc, int nsizec,
496 int measure_only)
497{
498 struct address_range *adr;
499 int i, l;
500 unsigned int *rp;
501 int rpsize = (naddrc + nsizec) * sizeof(unsigned int);
502
503 rp = (unsigned int *) get_property(np, "reg", &l);
504 if (rp != 0 && l >= rpsize) {
505 i = 0;
506 adr = (struct address_range *) (*mem_start);
507 while ((l -= rpsize) >= 0) {
508 if (!measure_only) {
509 adr[i].space = 0;
510 adr[i].address = rp[naddrc - 1];
511 adr[i].size = rp[naddrc + nsizec - 1];
512 }
513 ++i;
514 rp += naddrc + nsizec;
515 }
516 np->addrs = adr;
517 np->n_addrs = i;
518 (*mem_start) += i * sizeof(struct address_range);
519 }
520
521 return 0;
522}
523
524static int __devinit finish_node(struct device_node *np,
525 unsigned long *mem_start,
526 interpret_func *ifunc,
527 int naddrc, int nsizec,
528 int measure_only)
529{
530 struct device_node *child;
531 int *ip, rc = 0;
532
533 /* get the device addresses and interrupts */
534 if (ifunc != NULL)
535 rc = ifunc(np, mem_start, naddrc, nsizec, measure_only);
536 if (rc)
537 goto out;
538
539 rc = finish_node_interrupts(np, mem_start, measure_only);
540 if (rc)
541 goto out;
542
543 /* Look for #address-cells and #size-cells properties. */
544 ip = (int *) get_property(np, "#address-cells", NULL);
545 if (ip != NULL)
546 naddrc = *ip;
547 ip = (int *) get_property(np, "#size-cells", NULL);
548 if (ip != NULL)
549 nsizec = *ip;
550
Linus Torvalds1da177e2005-04-16 15:20:36 -0700551 if (!strcmp(np->name, "device-tree") || np->parent == NULL)
552 ifunc = interpret_root_props;
553 else if (np->type == 0)
554 ifunc = NULL;
555 else if (!strcmp(np->type, "pci") || !strcmp(np->type, "vci"))
556 ifunc = interpret_pci_props;
557 else if (!strcmp(np->type, "dbdma"))
558 ifunc = interpret_dbdma_props;
559 else if (!strcmp(np->type, "mac-io") || ifunc == interpret_macio_props)
560 ifunc = interpret_macio_props;
561 else if (!strcmp(np->type, "isa"))
562 ifunc = interpret_isa_props;
563 else if (!strcmp(np->name, "uni-n") || !strcmp(np->name, "u3"))
564 ifunc = interpret_root_props;
565 else if (!((ifunc == interpret_dbdma_props
566 || ifunc == interpret_macio_props)
567 && (!strcmp(np->type, "escc")
568 || !strcmp(np->type, "media-bay"))))
569 ifunc = NULL;
570
571 for (child = np->child; child != NULL; child = child->sibling) {
572 rc = finish_node(child, mem_start, ifunc,
573 naddrc, nsizec, measure_only);
574 if (rc)
575 goto out;
576 }
577out:
578 return rc;
579}
580
581/**
582 * finish_device_tree is called once things are running normally
583 * (i.e. with text and data mapped to the address they were linked at).
584 * It traverses the device tree and fills in some of the additional,
585 * fields in each node like {n_}addrs and {n_}intrs, the virt interrupt
586 * mapping is also initialized at this point.
587 */
588void __init finish_device_tree(void)
589{
590 unsigned long start, end, size = 0;
591
592 DBG(" -> finish_device_tree\n");
593
594 if (ppc64_interrupt_controller == IC_INVALID) {
595 DBG("failed to configure interrupt controller type\n");
596 panic("failed to configure interrupt controller type\n");
597 }
598
599 /* Initialize virtual IRQ map */
600 virt_irq_init();
601
602 /*
603 * Finish device-tree (pre-parsing some properties etc...)
604 * We do this in 2 passes. One with "measure_only" set, which
605 * will only measure the amount of memory needed, then we can
606 * allocate that memory, and call finish_node again. However,
607 * we must be careful as most routines will fail nowadays when
608 * prom_alloc() returns 0, so we must make sure our first pass
609 * doesn't start at 0. We pre-initialize size to 16 for that
610 * reason and then remove those additional 16 bytes
611 */
612 size = 16;
613 finish_node(allnodes, &size, NULL, 0, 0, 1);
614 size -= 16;
615 end = start = (unsigned long)abs_to_virt(lmb_alloc(size, 128));
616 finish_node(allnodes, &end, NULL, 0, 0, 0);
617 BUG_ON(end != start + size);
618
619 DBG(" <- finish_device_tree\n");
620}
621
622#ifdef DEBUG
623#define printk udbg_printf
624#endif
625
626static inline char *find_flat_dt_string(u32 offset)
627{
628 return ((char *)initial_boot_params) + initial_boot_params->off_dt_strings
629 + offset;
630}
631
632/**
633 * This function is used to scan the flattened device-tree, it is
634 * used to extract the memory informations at boot before we can
635 * unflatten the tree
636 */
637static int __init scan_flat_dt(int (*it)(unsigned long node,
638 const char *full_path, void *data),
639 void *data)
640{
641 unsigned long p = ((unsigned long)initial_boot_params) +
642 initial_boot_params->off_dt_struct;
643 int rc = 0;
644
645 do {
646 u32 tag = *((u32 *)p);
647 char *pathp;
648
649 p += 4;
650 if (tag == OF_DT_END_NODE)
651 continue;
652 if (tag == OF_DT_END)
653 break;
654 if (tag == OF_DT_PROP) {
655 u32 sz = *((u32 *)p);
656 p += 8;
657 p = _ALIGN(p, sz >= 8 ? 8 : 4);
658 p += sz;
659 p = _ALIGN(p, 4);
660 continue;
661 }
662 if (tag != OF_DT_BEGIN_NODE) {
663 printk(KERN_WARNING "Invalid tag %x scanning flattened"
664 " device tree !\n", tag);
665 return -EINVAL;
666 }
667 pathp = (char *)p;
668 p = _ALIGN(p + strlen(pathp) + 1, 4);
669 rc = it(p, pathp, data);
670 if (rc != 0)
671 break;
672 } while(1);
673
674 return rc;
675}
676
677/**
678 * This function can be used within scan_flattened_dt callback to get
679 * access to properties
680 */
681static void* __init get_flat_dt_prop(unsigned long node, const char *name,
682 unsigned long *size)
683{
684 unsigned long p = node;
685
686 do {
687 u32 tag = *((u32 *)p);
688 u32 sz, noff;
689 const char *nstr;
690
691 p += 4;
692 if (tag != OF_DT_PROP)
693 return NULL;
694
695 sz = *((u32 *)p);
696 noff = *((u32 *)(p + 4));
697 p += 8;
698 p = _ALIGN(p, sz >= 8 ? 8 : 4);
699
700 nstr = find_flat_dt_string(noff);
701 if (nstr == NULL) {
702 printk(KERN_WARNING "Can't find property index name !\n");
703 return NULL;
704 }
705 if (strcmp(name, nstr) == 0) {
706 if (size)
707 *size = sz;
708 return (void *)p;
709 }
710 p += sz;
711 p = _ALIGN(p, 4);
712 } while(1);
713}
714
715static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
716 unsigned long align)
717{
718 void *res;
719
720 *mem = _ALIGN(*mem, align);
721 res = (void *)*mem;
722 *mem += size;
723
724 return res;
725}
726
727static unsigned long __init unflatten_dt_node(unsigned long mem,
728 unsigned long *p,
729 struct device_node *dad,
730 struct device_node ***allnextpp)
731{
732 struct device_node *np;
733 struct property *pp, **prev_pp = NULL;
734 char *pathp;
735 u32 tag;
736 unsigned int l;
737
738 tag = *((u32 *)(*p));
739 if (tag != OF_DT_BEGIN_NODE) {
740 printk("Weird tag at start of node: %x\n", tag);
741 return mem;
742 }
743 *p += 4;
744 pathp = (char *)*p;
745 l = strlen(pathp) + 1;
746 *p = _ALIGN(*p + l, 4);
747
748 np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + l,
749 __alignof__(struct device_node));
750 if (allnextpp) {
751 memset(np, 0, sizeof(*np));
752 np->full_name = ((char*)np) + sizeof(struct device_node);
753 memcpy(np->full_name, pathp, l);
754 prev_pp = &np->properties;
755 **allnextpp = np;
756 *allnextpp = &np->allnext;
757 if (dad != NULL) {
758 np->parent = dad;
759 /* we temporarily use the `next' field as `last_child'. */
760 if (dad->next == 0)
761 dad->child = np;
762 else
763 dad->next->sibling = np;
764 dad->next = np;
765 }
766 kref_init(&np->kref);
767 }
768 while(1) {
769 u32 sz, noff;
770 char *pname;
771
772 tag = *((u32 *)(*p));
773 if (tag != OF_DT_PROP)
774 break;
775 *p += 4;
776 sz = *((u32 *)(*p));
777 noff = *((u32 *)((*p) + 4));
778 *p = _ALIGN((*p) + 8, sz >= 8 ? 8 : 4);
779
780 pname = find_flat_dt_string(noff);
781 if (pname == NULL) {
782 printk("Can't find property name in list !\n");
783 break;
784 }
785 l = strlen(pname) + 1;
786 pp = unflatten_dt_alloc(&mem, sizeof(struct property),
787 __alignof__(struct property));
788 if (allnextpp) {
789 if (strcmp(pname, "linux,phandle") == 0) {
790 np->node = *((u32 *)*p);
791 if (np->linux_phandle == 0)
792 np->linux_phandle = np->node;
793 }
794 if (strcmp(pname, "ibm,phandle") == 0)
795 np->linux_phandle = *((u32 *)*p);
796 pp->name = pname;
797 pp->length = sz;
798 pp->value = (void *)*p;
799 *prev_pp = pp;
800 prev_pp = &pp->next;
801 }
802 *p = _ALIGN((*p) + sz, 4);
803 }
804 if (allnextpp) {
805 *prev_pp = NULL;
806 np->name = get_property(np, "name", NULL);
807 np->type = get_property(np, "device_type", NULL);
808
809 if (!np->name)
810 np->name = "<NULL>";
811 if (!np->type)
812 np->type = "<NULL>";
813 }
814 while (tag == OF_DT_BEGIN_NODE) {
815 mem = unflatten_dt_node(mem, p, np, allnextpp);
816 tag = *((u32 *)(*p));
817 }
818 if (tag != OF_DT_END_NODE) {
819 printk("Weird tag at start of node: %x\n", tag);
820 return mem;
821 }
822 *p += 4;
823 return mem;
824}
825
826
827/**
828 * unflattens the device-tree passed by the firmware, creating the
829 * tree of struct device_node. It also fills the "name" and "type"
830 * pointers of the nodes so the normal device-tree walking functions
831 * can be used (this used to be done by finish_device_tree)
832 */
833void __init unflatten_device_tree(void)
834{
835 unsigned long start, mem, size;
836 struct device_node **allnextp = &allnodes;
Paul Mackerras3892c5f2005-05-06 13:29:34 +1000837 char *p = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700838 int l = 0;
839
840 DBG(" -> unflatten_device_tree()\n");
841
842 /* First pass, scan for size */
843 start = ((unsigned long)initial_boot_params) +
844 initial_boot_params->off_dt_struct;
845 size = unflatten_dt_node(0, &start, NULL, NULL);
846
847 DBG(" size is %lx, allocating...\n", size);
848
849 /* Allocate memory for the expanded device tree */
850 mem = (unsigned long)abs_to_virt(lmb_alloc(size,
851 __alignof__(struct device_node)));
852 DBG(" unflattening...\n", mem);
853
854 /* Second pass, do actual unflattening */
855 start = ((unsigned long)initial_boot_params) +
856 initial_boot_params->off_dt_struct;
857 unflatten_dt_node(mem, &start, NULL, &allnextp);
858 if (*((u32 *)start) != OF_DT_END)
859 printk(KERN_WARNING "Weird tag at end of tree: %x\n", *((u32 *)start));
860 *allnextp = NULL;
861
862 /* Get pointer to OF "/chosen" node for use everywhere */
863 of_chosen = of_find_node_by_path("/chosen");
864
865 /* Retreive command line */
866 if (of_chosen != NULL) {
867 p = (char *)get_property(of_chosen, "bootargs", &l);
868 if (p != NULL && l > 0)
869 strlcpy(cmd_line, p, min(l, COMMAND_LINE_SIZE));
870 }
871#ifdef CONFIG_CMDLINE
872 if (l == 0 || (l == 1 && (*p) == 0))
873 strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
874#endif /* CONFIG_CMDLINE */
875
876 DBG("Command line is: %s\n", cmd_line);
877
878 DBG(" <- unflatten_device_tree()\n");
879}
880
881
882static int __init early_init_dt_scan_cpus(unsigned long node,
883 const char *full_path, void *data)
884{
885 char *type = get_flat_dt_prop(node, "device_type", NULL);
Benjamin Herrenschmidt187335a2005-04-16 15:24:36 -0700886 u32 *prop;
Anton Blanchard9b843cd2005-06-21 17:15:55 -0700887 unsigned long size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700888
889 /* We are scanning "cpu" nodes only */
890 if (type == NULL || strcmp(type, "cpu") != 0)
891 return 0;
892
893 /* On LPAR, look for the first ibm,pft-size property for the hash table size
894 */
895 if (systemcfg->platform == PLATFORM_PSERIES_LPAR && ppc64_pft_size == 0) {
896 u32 *pft_size;
897 pft_size = (u32 *)get_flat_dt_prop(node, "ibm,pft-size", NULL);
898 if (pft_size != NULL) {
899 /* pft_size[0] is the NUMA CEC cookie */
900 ppc64_pft_size = pft_size[1];
901 }
902 }
903
904 if (initial_boot_params && initial_boot_params->version >= 2) {
905 /* version 2 of the kexec param format adds the phys cpuid
906 * of booted proc.
907 */
908 boot_cpuid_phys = initial_boot_params->boot_cpuid_phys;
909 boot_cpuid = 0;
910 } else {
911 /* Check if it's the boot-cpu, set it's hw index in paca now */
912 if (get_flat_dt_prop(node, "linux,boot-cpu", NULL) != NULL) {
913 u32 *prop = get_flat_dt_prop(node, "reg", NULL);
914 set_hard_smp_processor_id(0, prop == NULL ? 0 : *prop);
915 boot_cpuid_phys = get_hard_smp_processor_id(0);
916 }
917 }
918
Benjamin Herrenschmidt57ee67a2005-07-31 22:34:49 -0700919#ifdef CONFIG_ALTIVEC
Benjamin Herrenschmidt187335a2005-04-16 15:24:36 -0700920 /* Check if we have a VMX and eventually update CPU features */
921 prop = (u32 *)get_flat_dt_prop(node, "ibm,vmx", NULL);
922 if (prop && (*prop) > 0) {
923 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
924 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
925 }
926
927 /* Same goes for Apple's "altivec" property */
928 prop = (u32 *)get_flat_dt_prop(node, "altivec", NULL);
929 if (prop) {
930 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
931 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
932 }
Benjamin Herrenschmidt57ee67a2005-07-31 22:34:49 -0700933#endif /* CONFIG_ALTIVEC */
Benjamin Herrenschmidt187335a2005-04-16 15:24:36 -0700934
Anton Blanchard9b843cd2005-06-21 17:15:55 -0700935 /*
936 * Check for an SMT capable CPU and set the CPU feature. We do
937 * this by looking at the size of the ibm,ppc-interrupt-server#s
938 * property
939 */
940 prop = (u32 *)get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s",
941 &size);
942 cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
943 if (prop && ((size / sizeof(u32)) > 1))
944 cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
945
Linus Torvalds1da177e2005-04-16 15:20:36 -0700946 return 0;
947}
948
949static int __init early_init_dt_scan_chosen(unsigned long node,
950 const char *full_path, void *data)
951{
952 u32 *prop;
953 u64 *prop64;
954 extern unsigned long memory_limit, tce_alloc_start, tce_alloc_end;
955
956 if (strcmp(full_path, "/chosen") != 0)
957 return 0;
958
959 /* get platform type */
960 prop = (u32 *)get_flat_dt_prop(node, "linux,platform", NULL);
961 if (prop == NULL)
962 return 0;
963 systemcfg->platform = *prop;
964
965 /* check if iommu is forced on or off */
966 if (get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
967 iommu_is_off = 1;
968 if (get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
969 iommu_force_on = 1;
970
971 prop64 = (u64*)get_flat_dt_prop(node, "linux,memory-limit", NULL);
972 if (prop64)
973 memory_limit = *prop64;
974
975 prop64 = (u64*)get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
976 if (prop64)
977 tce_alloc_start = *prop64;
978
979 prop64 = (u64*)get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
980 if (prop64)
981 tce_alloc_end = *prop64;
982
983#ifdef CONFIG_PPC_RTAS
984 /* To help early debugging via the front panel, we retreive a minimal
985 * set of RTAS infos now if available
986 */
987 {
988 u64 *basep, *entryp;
989
990 basep = (u64*)get_flat_dt_prop(node, "linux,rtas-base", NULL);
991 entryp = (u64*)get_flat_dt_prop(node, "linux,rtas-entry", NULL);
992 prop = (u32*)get_flat_dt_prop(node, "linux,rtas-size", NULL);
993 if (basep && entryp && prop) {
994 rtas.base = *basep;
995 rtas.entry = *entryp;
996 rtas.size = *prop;
997 }
998 }
999#endif /* CONFIG_PPC_RTAS */
1000
1001 /* break now */
1002 return 1;
1003}
1004
1005static int __init early_init_dt_scan_root(unsigned long node,
1006 const char *full_path, void *data)
1007{
1008 u32 *prop;
1009
1010 if (strcmp(full_path, "/") != 0)
1011 return 0;
1012
1013 prop = (u32 *)get_flat_dt_prop(node, "#size-cells", NULL);
1014 dt_root_size_cells = (prop == NULL) ? 1 : *prop;
1015
1016 prop = (u32 *)get_flat_dt_prop(node, "#address-cells", NULL);
1017 dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
1018
1019 /* break now */
1020 return 1;
1021}
1022
1023static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
1024{
1025 cell_t *p = *cellp;
1026 unsigned long r = 0;
1027
1028 /* Ignore more than 2 cells */
1029 while (s > 2) {
1030 p++;
1031 s--;
1032 }
1033 while (s) {
1034 r <<= 32;
1035 r |= *(p++);
1036 s--;
1037 }
1038
1039 *cellp = p;
1040 return r;
1041}
1042
1043
1044static int __init early_init_dt_scan_memory(unsigned long node,
1045 const char *full_path, void *data)
1046{
1047 char *type = get_flat_dt_prop(node, "device_type", NULL);
1048 cell_t *reg, *endp;
1049 unsigned long l;
1050
1051 /* We are scanning "memory" nodes only */
1052 if (type == NULL || strcmp(type, "memory") != 0)
1053 return 0;
1054
1055 reg = (cell_t *)get_flat_dt_prop(node, "reg", &l);
1056 if (reg == NULL)
1057 return 0;
1058
1059 endp = reg + (l / sizeof(cell_t));
1060
1061 DBG("memory scan node %s ...\n", full_path);
1062 while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1063 unsigned long base, size;
1064
1065 base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1066 size = dt_mem_next_cell(dt_root_size_cells, &reg);
1067
1068 if (size == 0)
1069 continue;
1070 DBG(" - %lx , %lx\n", base, size);
1071 if (iommu_is_off) {
1072 if (base >= 0x80000000ul)
1073 continue;
1074 if ((base + size) > 0x80000000ul)
1075 size = 0x80000000ul - base;
1076 }
1077 lmb_add(base, size);
1078 }
1079 return 0;
1080}
1081
1082static void __init early_reserve_mem(void)
1083{
1084 u64 base, size;
1085 u64 *reserve_map = (u64 *)(((unsigned long)initial_boot_params) +
1086 initial_boot_params->off_mem_rsvmap);
1087 while (1) {
1088 base = *(reserve_map++);
1089 size = *(reserve_map++);
1090 if (size == 0)
1091 break;
1092 DBG("reserving: %lx -> %lx\n", base, size);
1093 lmb_reserve(base, size);
1094 }
1095
1096#if 0
1097 DBG("memory reserved, lmbs :\n");
1098 lmb_dump_all();
1099#endif
1100}
1101
1102void __init early_init_devtree(void *params)
1103{
1104 DBG(" -> early_init_devtree()\n");
1105
1106 /* Setup flat device-tree pointer */
1107 initial_boot_params = params;
1108
1109 /* By default, hash size is not set */
1110 ppc64_pft_size = 0;
1111
1112 /* Retreive various informations from the /chosen node of the
1113 * device-tree, including the platform type, initrd location and
1114 * size, TCE reserve, and more ...
1115 */
1116 scan_flat_dt(early_init_dt_scan_chosen, NULL);
1117
1118 /* Scan memory nodes and rebuild LMBs */
1119 lmb_init();
1120 scan_flat_dt(early_init_dt_scan_root, NULL);
1121 scan_flat_dt(early_init_dt_scan_memory, NULL);
1122 lmb_enforce_memory_limit();
1123 lmb_analyze();
1124 systemcfg->physicalMemorySize = lmb_phys_mem_size();
1125 lmb_reserve(0, __pa(klimit));
1126
1127 DBG("Phys. mem: %lx\n", systemcfg->physicalMemorySize);
1128
1129 /* Reserve LMB regions used by kernel, initrd, dt, etc... */
1130 early_reserve_mem();
1131
1132 DBG("Scanning CPUs ...\n");
1133
Benjamin Herrenschmidt187335a2005-04-16 15:24:36 -07001134 /* Retreive hash table size from flattened tree plus other
1135 * CPU related informations (altivec support, boot CPU ID, ...)
1136 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001137 scan_flat_dt(early_init_dt_scan_cpus, NULL);
1138
1139 /* If hash size wasn't obtained above, we calculate it now based on
1140 * the total RAM size
1141 */
1142 if (ppc64_pft_size == 0) {
1143 unsigned long rnd_mem_size, pteg_count;
1144
1145 /* round mem_size up to next power of 2 */
1146 rnd_mem_size = 1UL << __ilog2(systemcfg->physicalMemorySize);
1147 if (rnd_mem_size < systemcfg->physicalMemorySize)
1148 rnd_mem_size <<= 1;
1149
1150 /* # pages / 2 */
1151 pteg_count = max(rnd_mem_size >> (12 + 1), 1UL << 11);
1152
1153 ppc64_pft_size = __ilog2(pteg_count << 7);
1154 }
1155
1156 DBG("Hash pftSize: %x\n", (int)ppc64_pft_size);
1157 DBG(" <- early_init_devtree()\n");
1158}
1159
1160#undef printk
1161
1162int
1163prom_n_addr_cells(struct device_node* np)
1164{
1165 int* ip;
1166 do {
1167 if (np->parent)
1168 np = np->parent;
1169 ip = (int *) get_property(np, "#address-cells", NULL);
1170 if (ip != NULL)
1171 return *ip;
1172 } while (np->parent);
1173 /* No #address-cells property for the root node, default to 1 */
1174 return 1;
1175}
1176
1177int
1178prom_n_size_cells(struct device_node* np)
1179{
1180 int* ip;
1181 do {
1182 if (np->parent)
1183 np = np->parent;
1184 ip = (int *) get_property(np, "#size-cells", NULL);
1185 if (ip != NULL)
1186 return *ip;
1187 } while (np->parent);
1188 /* No #size-cells property for the root node, default to 1 */
1189 return 1;
1190}
1191
1192/**
1193 * Work out the sense (active-low level / active-high edge)
1194 * of each interrupt from the device tree.
1195 */
1196void __init prom_get_irq_senses(unsigned char *senses, int off, int max)
1197{
1198 struct device_node *np;
1199 int i, j;
1200
1201 /* default to level-triggered */
1202 memset(senses, 1, max - off);
1203
1204 for (np = allnodes; np != 0; np = np->allnext) {
1205 for (j = 0; j < np->n_intrs; j++) {
1206 i = np->intrs[j].line;
1207 if (i >= off && i < max)
1208 senses[i-off] = np->intrs[j].sense ?
1209 IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE :
1210 IRQ_SENSE_EDGE | IRQ_POLARITY_POSITIVE;
1211 }
1212 }
1213}
1214
1215/**
1216 * Construct and return a list of the device_nodes with a given name.
1217 */
1218struct device_node *
1219find_devices(const char *name)
1220{
1221 struct device_node *head, **prevp, *np;
1222
1223 prevp = &head;
1224 for (np = allnodes; np != 0; np = np->allnext) {
1225 if (np->name != 0 && strcasecmp(np->name, name) == 0) {
1226 *prevp = np;
1227 prevp = &np->next;
1228 }
1229 }
1230 *prevp = NULL;
1231 return head;
1232}
1233EXPORT_SYMBOL(find_devices);
1234
1235/**
1236 * Construct and return a list of the device_nodes with a given type.
1237 */
1238struct device_node *
1239find_type_devices(const char *type)
1240{
1241 struct device_node *head, **prevp, *np;
1242
1243 prevp = &head;
1244 for (np = allnodes; np != 0; np = np->allnext) {
1245 if (np->type != 0 && strcasecmp(np->type, type) == 0) {
1246 *prevp = np;
1247 prevp = &np->next;
1248 }
1249 }
1250 *prevp = NULL;
1251 return head;
1252}
1253EXPORT_SYMBOL(find_type_devices);
1254
1255/**
1256 * Returns all nodes linked together
1257 */
1258struct device_node *
1259find_all_nodes(void)
1260{
1261 struct device_node *head, **prevp, *np;
1262
1263 prevp = &head;
1264 for (np = allnodes; np != 0; np = np->allnext) {
1265 *prevp = np;
1266 prevp = &np->next;
1267 }
1268 *prevp = NULL;
1269 return head;
1270}
1271EXPORT_SYMBOL(find_all_nodes);
1272
1273/** Checks if the given "compat" string matches one of the strings in
1274 * the device's "compatible" property
1275 */
1276int
1277device_is_compatible(struct device_node *device, const char *compat)
1278{
1279 const char* cp;
1280 int cplen, l;
1281
1282 cp = (char *) get_property(device, "compatible", &cplen);
1283 if (cp == NULL)
1284 return 0;
1285 while (cplen > 0) {
1286 if (strncasecmp(cp, compat, strlen(compat)) == 0)
1287 return 1;
1288 l = strlen(cp) + 1;
1289 cp += l;
1290 cplen -= l;
1291 }
1292
1293 return 0;
1294}
1295EXPORT_SYMBOL(device_is_compatible);
1296
1297
1298/**
1299 * Indicates whether the root node has a given value in its
1300 * compatible property.
1301 */
1302int
1303machine_is_compatible(const char *compat)
1304{
1305 struct device_node *root;
1306 int rc = 0;
1307
1308 root = of_find_node_by_path("/");
1309 if (root) {
1310 rc = device_is_compatible(root, compat);
1311 of_node_put(root);
1312 }
1313 return rc;
1314}
1315EXPORT_SYMBOL(machine_is_compatible);
1316
1317/**
1318 * Construct and return a list of the device_nodes with a given type
1319 * and compatible property.
1320 */
1321struct device_node *
1322find_compatible_devices(const char *type, const char *compat)
1323{
1324 struct device_node *head, **prevp, *np;
1325
1326 prevp = &head;
1327 for (np = allnodes; np != 0; np = np->allnext) {
1328 if (type != NULL
1329 && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1330 continue;
1331 if (device_is_compatible(np, compat)) {
1332 *prevp = np;
1333 prevp = &np->next;
1334 }
1335 }
1336 *prevp = NULL;
1337 return head;
1338}
1339EXPORT_SYMBOL(find_compatible_devices);
1340
1341/**
1342 * Find the device_node with a given full_name.
1343 */
1344struct device_node *
1345find_path_device(const char *path)
1346{
1347 struct device_node *np;
1348
1349 for (np = allnodes; np != 0; np = np->allnext)
1350 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
1351 return np;
1352 return NULL;
1353}
1354EXPORT_SYMBOL(find_path_device);
1355
1356/*******
1357 *
1358 * New implementation of the OF "find" APIs, return a refcounted
1359 * object, call of_node_put() when done. The device tree and list
1360 * are protected by a rw_lock.
1361 *
1362 * Note that property management will need some locking as well,
1363 * this isn't dealt with yet.
1364 *
1365 *******/
1366
1367/**
1368 * of_find_node_by_name - Find a node by its "name" property
1369 * @from: The node to start searching from or NULL, the node
1370 * you pass will not be searched, only the next one
1371 * will; typically, you pass what the previous call
1372 * returned. of_node_put() will be called on it
1373 * @name: The name string to match against
1374 *
1375 * Returns a node pointer with refcount incremented, use
1376 * of_node_put() on it when done.
1377 */
1378struct device_node *of_find_node_by_name(struct device_node *from,
1379 const char *name)
1380{
1381 struct device_node *np;
1382
1383 read_lock(&devtree_lock);
1384 np = from ? from->allnext : allnodes;
1385 for (; np != 0; np = np->allnext)
1386 if (np->name != 0 && strcasecmp(np->name, name) == 0
1387 && of_node_get(np))
1388 break;
1389 if (from)
1390 of_node_put(from);
1391 read_unlock(&devtree_lock);
1392 return np;
1393}
1394EXPORT_SYMBOL(of_find_node_by_name);
1395
1396/**
1397 * of_find_node_by_type - Find a node by its "device_type" property
1398 * @from: The node to start searching from or NULL, the node
1399 * you pass will not be searched, only the next one
1400 * will; typically, you pass what the previous call
1401 * returned. of_node_put() will be called on it
1402 * @name: The type string to match against
1403 *
1404 * Returns a node pointer with refcount incremented, use
1405 * of_node_put() on it when done.
1406 */
1407struct device_node *of_find_node_by_type(struct device_node *from,
1408 const char *type)
1409{
1410 struct device_node *np;
1411
1412 read_lock(&devtree_lock);
1413 np = from ? from->allnext : allnodes;
1414 for (; np != 0; np = np->allnext)
1415 if (np->type != 0 && strcasecmp(np->type, type) == 0
1416 && of_node_get(np))
1417 break;
1418 if (from)
1419 of_node_put(from);
1420 read_unlock(&devtree_lock);
1421 return np;
1422}
1423EXPORT_SYMBOL(of_find_node_by_type);
1424
1425/**
1426 * of_find_compatible_node - Find a node based on type and one of the
1427 * tokens in its "compatible" property
1428 * @from: The node to start searching from or NULL, the node
1429 * you pass will not be searched, only the next one
1430 * will; typically, you pass what the previous call
1431 * returned. of_node_put() will be called on it
1432 * @type: The type string to match "device_type" or NULL to ignore
1433 * @compatible: The string to match to one of the tokens in the device
1434 * "compatible" list.
1435 *
1436 * Returns a node pointer with refcount incremented, use
1437 * of_node_put() on it when done.
1438 */
1439struct device_node *of_find_compatible_node(struct device_node *from,
1440 const char *type, const char *compatible)
1441{
1442 struct device_node *np;
1443
1444 read_lock(&devtree_lock);
1445 np = from ? from->allnext : allnodes;
1446 for (; np != 0; np = np->allnext) {
1447 if (type != NULL
1448 && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1449 continue;
1450 if (device_is_compatible(np, compatible) && of_node_get(np))
1451 break;
1452 }
1453 if (from)
1454 of_node_put(from);
1455 read_unlock(&devtree_lock);
1456 return np;
1457}
1458EXPORT_SYMBOL(of_find_compatible_node);
1459
1460/**
1461 * of_find_node_by_path - Find a node matching a full OF path
1462 * @path: The full path to match
1463 *
1464 * Returns a node pointer with refcount incremented, use
1465 * of_node_put() on it when done.
1466 */
1467struct device_node *of_find_node_by_path(const char *path)
1468{
1469 struct device_node *np = allnodes;
1470
1471 read_lock(&devtree_lock);
1472 for (; np != 0; np = np->allnext)
1473 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
1474 && of_node_get(np))
1475 break;
1476 read_unlock(&devtree_lock);
1477 return np;
1478}
1479EXPORT_SYMBOL(of_find_node_by_path);
1480
1481/**
1482 * of_find_node_by_phandle - Find a node given a phandle
1483 * @handle: phandle of the node to find
1484 *
1485 * Returns a node pointer with refcount incremented, use
1486 * of_node_put() on it when done.
1487 */
1488struct device_node *of_find_node_by_phandle(phandle handle)
1489{
1490 struct device_node *np;
1491
1492 read_lock(&devtree_lock);
1493 for (np = allnodes; np != 0; np = np->allnext)
1494 if (np->linux_phandle == handle)
1495 break;
1496 if (np)
1497 of_node_get(np);
1498 read_unlock(&devtree_lock);
1499 return np;
1500}
1501EXPORT_SYMBOL(of_find_node_by_phandle);
1502
1503/**
1504 * of_find_all_nodes - Get next node in global list
1505 * @prev: Previous node or NULL to start iteration
1506 * of_node_put() will be called on it
1507 *
1508 * Returns a node pointer with refcount incremented, use
1509 * of_node_put() on it when done.
1510 */
1511struct device_node *of_find_all_nodes(struct device_node *prev)
1512{
1513 struct device_node *np;
1514
1515 read_lock(&devtree_lock);
1516 np = prev ? prev->allnext : allnodes;
1517 for (; np != 0; np = np->allnext)
1518 if (of_node_get(np))
1519 break;
1520 if (prev)
1521 of_node_put(prev);
1522 read_unlock(&devtree_lock);
1523 return np;
1524}
1525EXPORT_SYMBOL(of_find_all_nodes);
1526
1527/**
1528 * of_get_parent - Get a node's parent if any
1529 * @node: Node to get parent
1530 *
1531 * Returns a node pointer with refcount incremented, use
1532 * of_node_put() on it when done.
1533 */
1534struct device_node *of_get_parent(const struct device_node *node)
1535{
1536 struct device_node *np;
1537
1538 if (!node)
1539 return NULL;
1540
1541 read_lock(&devtree_lock);
1542 np = of_node_get(node->parent);
1543 read_unlock(&devtree_lock);
1544 return np;
1545}
1546EXPORT_SYMBOL(of_get_parent);
1547
1548/**
1549 * of_get_next_child - Iterate a node childs
1550 * @node: parent node
1551 * @prev: previous child of the parent node, or NULL to get first
1552 *
1553 * Returns a node pointer with refcount incremented, use
1554 * of_node_put() on it when done.
1555 */
1556struct device_node *of_get_next_child(const struct device_node *node,
1557 struct device_node *prev)
1558{
1559 struct device_node *next;
1560
1561 read_lock(&devtree_lock);
1562 next = prev ? prev->sibling : node->child;
1563 for (; next != 0; next = next->sibling)
1564 if (of_node_get(next))
1565 break;
1566 if (prev)
1567 of_node_put(prev);
1568 read_unlock(&devtree_lock);
1569 return next;
1570}
1571EXPORT_SYMBOL(of_get_next_child);
1572
1573/**
1574 * of_node_get - Increment refcount of a node
1575 * @node: Node to inc refcount, NULL is supported to
1576 * simplify writing of callers
1577 *
1578 * Returns node.
1579 */
1580struct device_node *of_node_get(struct device_node *node)
1581{
1582 if (node)
1583 kref_get(&node->kref);
1584 return node;
1585}
1586EXPORT_SYMBOL(of_node_get);
1587
1588static inline struct device_node * kref_to_device_node(struct kref *kref)
1589{
1590 return container_of(kref, struct device_node, kref);
1591}
1592
1593/**
1594 * of_node_release - release a dynamically allocated node
1595 * @kref: kref element of the node to be released
1596 *
1597 * In of_node_put() this function is passed to kref_put()
1598 * as the destructor.
1599 */
1600static void of_node_release(struct kref *kref)
1601{
1602 struct device_node *node = kref_to_device_node(kref);
1603 struct property *prop = node->properties;
1604
1605 if (!OF_IS_DYNAMIC(node))
1606 return;
1607 while (prop) {
1608 struct property *next = prop->next;
1609 kfree(prop->name);
1610 kfree(prop->value);
1611 kfree(prop);
1612 prop = next;
1613 }
1614 kfree(node->intrs);
1615 kfree(node->addrs);
1616 kfree(node->full_name);
1617 kfree(node);
1618}
1619
1620/**
1621 * of_node_put - Decrement refcount of a node
1622 * @node: Node to dec refcount, NULL is supported to
1623 * simplify writing of callers
1624 *
1625 */
1626void of_node_put(struct device_node *node)
1627{
1628 if (node)
1629 kref_put(&node->kref, of_node_release);
1630}
1631EXPORT_SYMBOL(of_node_put);
1632
1633/*
1634 * Fix up the uninitialized fields in a new device node:
1635 * name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields
1636 *
1637 * A lot of boot-time code is duplicated here, because functions such
1638 * as finish_node_interrupts, interpret_pci_props, etc. cannot use the
1639 * slab allocator.
1640 *
1641 * This should probably be split up into smaller chunks.
1642 */
1643
1644static int of_finish_dynamic_node(struct device_node *node,
1645 unsigned long *unused1, int unused2,
1646 int unused3, int unused4)
1647{
1648 struct device_node *parent = of_get_parent(node);
1649 int err = 0;
1650 phandle *ibm_phandle;
1651
1652 node->name = get_property(node, "name", NULL);
1653 node->type = get_property(node, "device_type", NULL);
1654
1655 if (!parent) {
1656 err = -ENODEV;
1657 goto out;
1658 }
1659
1660 /* We don't support that function on PowerMac, at least
1661 * not yet
1662 */
1663 if (systemcfg->platform == PLATFORM_POWERMAC)
1664 return -ENODEV;
1665
1666 /* fix up new node's linux_phandle field */
1667 if ((ibm_phandle = (unsigned int *)get_property(node, "ibm,phandle", NULL)))
1668 node->linux_phandle = *ibm_phandle;
1669
1670out:
1671 of_node_put(parent);
1672 return err;
1673}
1674
1675/*
1676 * Plug a device node into the tree and global list.
1677 */
1678void of_attach_node(struct device_node *np)
1679{
1680 write_lock(&devtree_lock);
1681 np->sibling = np->parent->child;
1682 np->allnext = allnodes;
1683 np->parent->child = np;
1684 allnodes = np;
1685 write_unlock(&devtree_lock);
1686}
1687
1688/*
1689 * "Unplug" a node from the device tree. The caller must hold
1690 * a reference to the node. The memory associated with the node
1691 * is not freed until its refcount goes to zero.
1692 */
1693void of_detach_node(const struct device_node *np)
1694{
1695 struct device_node *parent;
1696
1697 write_lock(&devtree_lock);
1698
1699 parent = np->parent;
1700
1701 if (allnodes == np)
1702 allnodes = np->allnext;
1703 else {
1704 struct device_node *prev;
1705 for (prev = allnodes;
1706 prev->allnext != np;
1707 prev = prev->allnext)
1708 ;
1709 prev->allnext = np->allnext;
1710 }
1711
1712 if (parent->child == np)
1713 parent->child = np->sibling;
1714 else {
1715 struct device_node *prevsib;
1716 for (prevsib = np->parent->child;
1717 prevsib->sibling != np;
1718 prevsib = prevsib->sibling)
1719 ;
1720 prevsib->sibling = np->sibling;
1721 }
1722
1723 write_unlock(&devtree_lock);
1724}
1725
1726static int prom_reconfig_notifier(struct notifier_block *nb, unsigned long action, void *node)
1727{
1728 int err;
1729
1730 switch (action) {
1731 case PSERIES_RECONFIG_ADD:
1732 err = finish_node(node, NULL, of_finish_dynamic_node, 0, 0, 0);
1733 if (err < 0) {
1734 printk(KERN_ERR "finish_node returned %d\n", err);
1735 err = NOTIFY_BAD;
1736 }
1737 break;
1738 default:
1739 err = NOTIFY_DONE;
1740 break;
1741 }
1742 return err;
1743}
1744
1745static struct notifier_block prom_reconfig_nb = {
1746 .notifier_call = prom_reconfig_notifier,
1747 .priority = 10, /* This one needs to run first */
1748};
1749
1750static int __init prom_reconfig_setup(void)
1751{
1752 return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
1753}
1754__initcall(prom_reconfig_setup);
1755
1756/*
1757 * Find a property with a given name for a given node
1758 * and return the value.
1759 */
1760unsigned char *
1761get_property(struct device_node *np, const char *name, int *lenp)
1762{
1763 struct property *pp;
1764
1765 for (pp = np->properties; pp != 0; pp = pp->next)
1766 if (strcmp(pp->name, name) == 0) {
1767 if (lenp != 0)
1768 *lenp = pp->length;
1769 return pp->value;
1770 }
1771 return NULL;
1772}
1773EXPORT_SYMBOL(get_property);
1774
1775/*
1776 * Add a property to a node
1777 */
1778void
1779prom_add_property(struct device_node* np, struct property* prop)
1780{
1781 struct property **next = &np->properties;
1782
1783 prop->next = NULL;
1784 while (*next)
1785 next = &(*next)->next;
1786 *next = prop;
1787}
1788
1789#if 0
1790void
1791print_properties(struct device_node *np)
1792{
1793 struct property *pp;
1794 char *cp;
1795 int i, n;
1796
1797 for (pp = np->properties; pp != 0; pp = pp->next) {
1798 printk(KERN_INFO "%s", pp->name);
1799 for (i = strlen(pp->name); i < 16; ++i)
1800 printk(" ");
1801 cp = (char *) pp->value;
1802 for (i = pp->length; i > 0; --i, ++cp)
1803 if ((i > 1 && (*cp < 0x20 || *cp > 0x7e))
1804 || (i == 1 && *cp != 0))
1805 break;
1806 if (i == 0 && pp->length > 1) {
1807 /* looks like a string */
1808 printk(" %s\n", (char *) pp->value);
1809 } else {
1810 /* dump it in hex */
1811 n = pp->length;
1812 if (n > 64)
1813 n = 64;
1814 if (pp->length % 4 == 0) {
1815 unsigned int *p = (unsigned int *) pp->value;
1816
1817 n /= 4;
1818 for (i = 0; i < n; ++i) {
1819 if (i != 0 && (i % 4) == 0)
1820 printk("\n ");
1821 printk(" %08x", *p++);
1822 }
1823 } else {
1824 unsigned char *bp = pp->value;
1825
1826 for (i = 0; i < n; ++i) {
1827 if (i != 0 && (i % 16) == 0)
1828 printk("\n ");
1829 printk(" %02x", *bp++);
1830 }
1831 }
1832 printk("\n");
1833 if (pp->length > 64)
1834 printk(" ... (length = %d)\n",
1835 pp->length);
1836 }
1837 }
1838}
1839#endif
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849