blob: 80f40da9a01e1a6f1335ee2748f3ef2eaba2f71f [file] [log] [blame]
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001/*
Ingo Molnar57c0c152009-09-21 12:20:38 +02002 * Performance events core code:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
Ingo Molnar57c0c152009-09-21 12:20:38 +02009 * For licensing details see kernel-base/COPYING
Ingo Molnarcdd6c482009-09-21 12:02:48 +020010 */
11
12#include <linux/fs.h>
13#include <linux/mm.h>
14#include <linux/cpu.h>
15#include <linux/smp.h>
16#include <linux/file.h>
17#include <linux/poll.h>
18#include <linux/sysfs.h>
19#include <linux/dcache.h>
20#include <linux/percpu.h>
21#include <linux/ptrace.h>
22#include <linux/vmstat.h>
Peter Zijlstra906010b2009-09-21 16:08:49 +020023#include <linux/vmalloc.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020024#include <linux/hardirq.h>
25#include <linux/rculist.h>
26#include <linux/uaccess.h>
27#include <linux/syscalls.h>
28#include <linux/anon_inodes.h>
29#include <linux/kernel_stat.h>
30#include <linux/perf_event.h>
Li Zefan6fb29152009-10-15 11:21:42 +080031#include <linux/ftrace_event.h>
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +020032#include <linux/hw_breakpoint.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020033
34#include <asm/irq_regs.h>
35
36/*
37 * Each CPU has a list of per CPU events:
38 */
39DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
40
41int perf_max_events __read_mostly = 1;
42static int perf_reserved_percpu __read_mostly;
43static int perf_overcommit __read_mostly = 1;
44
45static atomic_t nr_events __read_mostly;
46static atomic_t nr_mmap_events __read_mostly;
47static atomic_t nr_comm_events __read_mostly;
48static atomic_t nr_task_events __read_mostly;
49
50/*
51 * perf event paranoia level:
52 * -1 - not paranoid at all
53 * 0 - disallow raw tracepoint access for unpriv
54 * 1 - disallow cpu events for unpriv
55 * 2 - disallow kernel profiling for unpriv
56 */
57int sysctl_perf_event_paranoid __read_mostly = 1;
58
59static inline bool perf_paranoid_tracepoint_raw(void)
60{
61 return sysctl_perf_event_paranoid > -1;
62}
63
64static inline bool perf_paranoid_cpu(void)
65{
66 return sysctl_perf_event_paranoid > 0;
67}
68
69static inline bool perf_paranoid_kernel(void)
70{
71 return sysctl_perf_event_paranoid > 1;
72}
73
74int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
75
76/*
77 * max perf event sample rate
78 */
79int sysctl_perf_event_sample_rate __read_mostly = 100000;
80
81static atomic64_t perf_event_id;
82
83/*
84 * Lock for (sysadmin-configurable) event reservations:
85 */
86static DEFINE_SPINLOCK(perf_resource_lock);
87
88/*
89 * Architecture provided APIs - weak aliases:
90 */
91extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
92{
93 return NULL;
94}
95
96void __weak hw_perf_disable(void) { barrier(); }
97void __weak hw_perf_enable(void) { barrier(); }
98
99void __weak hw_perf_event_setup(int cpu) { barrier(); }
100void __weak hw_perf_event_setup_online(int cpu) { barrier(); }
101
102int __weak
103hw_perf_group_sched_in(struct perf_event *group_leader,
104 struct perf_cpu_context *cpuctx,
105 struct perf_event_context *ctx, int cpu)
106{
107 return 0;
108}
109
110void __weak perf_event_print_debug(void) { }
111
112static DEFINE_PER_CPU(int, perf_disable_count);
113
114void __perf_disable(void)
115{
116 __get_cpu_var(perf_disable_count)++;
117}
118
119bool __perf_enable(void)
120{
121 return !--__get_cpu_var(perf_disable_count);
122}
123
124void perf_disable(void)
125{
126 __perf_disable();
127 hw_perf_disable();
128}
129
130void perf_enable(void)
131{
132 if (__perf_enable())
133 hw_perf_enable();
134}
135
136static void get_ctx(struct perf_event_context *ctx)
137{
138 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
139}
140
141static void free_ctx(struct rcu_head *head)
142{
143 struct perf_event_context *ctx;
144
145 ctx = container_of(head, struct perf_event_context, rcu_head);
146 kfree(ctx);
147}
148
149static void put_ctx(struct perf_event_context *ctx)
150{
151 if (atomic_dec_and_test(&ctx->refcount)) {
152 if (ctx->parent_ctx)
153 put_ctx(ctx->parent_ctx);
154 if (ctx->task)
155 put_task_struct(ctx->task);
156 call_rcu(&ctx->rcu_head, free_ctx);
157 }
158}
159
160static void unclone_ctx(struct perf_event_context *ctx)
161{
162 if (ctx->parent_ctx) {
163 put_ctx(ctx->parent_ctx);
164 ctx->parent_ctx = NULL;
165 }
166}
167
168/*
169 * If we inherit events we want to return the parent event id
170 * to userspace.
171 */
172static u64 primary_event_id(struct perf_event *event)
173{
174 u64 id = event->id;
175
176 if (event->parent)
177 id = event->parent->id;
178
179 return id;
180}
181
182/*
183 * Get the perf_event_context for a task and lock it.
184 * This has to cope with with the fact that until it is locked,
185 * the context could get moved to another task.
186 */
187static struct perf_event_context *
188perf_lock_task_context(struct task_struct *task, unsigned long *flags)
189{
190 struct perf_event_context *ctx;
191
192 rcu_read_lock();
193 retry:
194 ctx = rcu_dereference(task->perf_event_ctxp);
195 if (ctx) {
196 /*
197 * If this context is a clone of another, it might
198 * get swapped for another underneath us by
199 * perf_event_task_sched_out, though the
200 * rcu_read_lock() protects us from any context
201 * getting freed. Lock the context and check if it
202 * got swapped before we could get the lock, and retry
203 * if so. If we locked the right context, then it
204 * can't get swapped on us any more.
205 */
206 spin_lock_irqsave(&ctx->lock, *flags);
207 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
208 spin_unlock_irqrestore(&ctx->lock, *flags);
209 goto retry;
210 }
211
212 if (!atomic_inc_not_zero(&ctx->refcount)) {
213 spin_unlock_irqrestore(&ctx->lock, *flags);
214 ctx = NULL;
215 }
216 }
217 rcu_read_unlock();
218 return ctx;
219}
220
221/*
222 * Get the context for a task and increment its pin_count so it
223 * can't get swapped to another task. This also increments its
224 * reference count so that the context can't get freed.
225 */
226static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
227{
228 struct perf_event_context *ctx;
229 unsigned long flags;
230
231 ctx = perf_lock_task_context(task, &flags);
232 if (ctx) {
233 ++ctx->pin_count;
234 spin_unlock_irqrestore(&ctx->lock, flags);
235 }
236 return ctx;
237}
238
239static void perf_unpin_context(struct perf_event_context *ctx)
240{
241 unsigned long flags;
242
243 spin_lock_irqsave(&ctx->lock, flags);
244 --ctx->pin_count;
245 spin_unlock_irqrestore(&ctx->lock, flags);
246 put_ctx(ctx);
247}
248
249/*
250 * Add a event from the lists for its context.
251 * Must be called with ctx->mutex and ctx->lock held.
252 */
253static void
254list_add_event(struct perf_event *event, struct perf_event_context *ctx)
255{
256 struct perf_event *group_leader = event->group_leader;
257
258 /*
259 * Depending on whether it is a standalone or sibling event,
260 * add it straight to the context's event list, or to the group
261 * leader's sibling list:
262 */
263 if (group_leader == event)
264 list_add_tail(&event->group_entry, &ctx->group_list);
265 else {
266 list_add_tail(&event->group_entry, &group_leader->sibling_list);
267 group_leader->nr_siblings++;
268 }
269
270 list_add_rcu(&event->event_entry, &ctx->event_list);
271 ctx->nr_events++;
272 if (event->attr.inherit_stat)
273 ctx->nr_stat++;
274}
275
276/*
277 * Remove a event from the lists for its context.
278 * Must be called with ctx->mutex and ctx->lock held.
279 */
280static void
281list_del_event(struct perf_event *event, struct perf_event_context *ctx)
282{
283 struct perf_event *sibling, *tmp;
284
285 if (list_empty(&event->group_entry))
286 return;
287 ctx->nr_events--;
288 if (event->attr.inherit_stat)
289 ctx->nr_stat--;
290
291 list_del_init(&event->group_entry);
292 list_del_rcu(&event->event_entry);
293
294 if (event->group_leader != event)
295 event->group_leader->nr_siblings--;
296
297 /*
298 * If this was a group event with sibling events then
299 * upgrade the siblings to singleton events by adding them
300 * to the context list directly:
301 */
302 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
303
304 list_move_tail(&sibling->group_entry, &ctx->group_list);
305 sibling->group_leader = sibling;
306 }
307}
308
309static void
310event_sched_out(struct perf_event *event,
311 struct perf_cpu_context *cpuctx,
312 struct perf_event_context *ctx)
313{
314 if (event->state != PERF_EVENT_STATE_ACTIVE)
315 return;
316
317 event->state = PERF_EVENT_STATE_INACTIVE;
318 if (event->pending_disable) {
319 event->pending_disable = 0;
320 event->state = PERF_EVENT_STATE_OFF;
321 }
322 event->tstamp_stopped = ctx->time;
323 event->pmu->disable(event);
324 event->oncpu = -1;
325
326 if (!is_software_event(event))
327 cpuctx->active_oncpu--;
328 ctx->nr_active--;
329 if (event->attr.exclusive || !cpuctx->active_oncpu)
330 cpuctx->exclusive = 0;
331}
332
333static void
334group_sched_out(struct perf_event *group_event,
335 struct perf_cpu_context *cpuctx,
336 struct perf_event_context *ctx)
337{
338 struct perf_event *event;
339
340 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
341 return;
342
343 event_sched_out(group_event, cpuctx, ctx);
344
345 /*
346 * Schedule out siblings (if any):
347 */
348 list_for_each_entry(event, &group_event->sibling_list, group_entry)
349 event_sched_out(event, cpuctx, ctx);
350
351 if (group_event->attr.exclusive)
352 cpuctx->exclusive = 0;
353}
354
355/*
356 * Cross CPU call to remove a performance event
357 *
358 * We disable the event on the hardware level first. After that we
359 * remove it from the context list.
360 */
361static void __perf_event_remove_from_context(void *info)
362{
363 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
364 struct perf_event *event = info;
365 struct perf_event_context *ctx = event->ctx;
366
367 /*
368 * If this is a task context, we need to check whether it is
369 * the current task context of this cpu. If not it has been
370 * scheduled out before the smp call arrived.
371 */
372 if (ctx->task && cpuctx->task_ctx != ctx)
373 return;
374
375 spin_lock(&ctx->lock);
376 /*
377 * Protect the list operation against NMI by disabling the
378 * events on a global level.
379 */
380 perf_disable();
381
382 event_sched_out(event, cpuctx, ctx);
383
384 list_del_event(event, ctx);
385
386 if (!ctx->task) {
387 /*
388 * Allow more per task events with respect to the
389 * reservation:
390 */
391 cpuctx->max_pertask =
392 min(perf_max_events - ctx->nr_events,
393 perf_max_events - perf_reserved_percpu);
394 }
395
396 perf_enable();
397 spin_unlock(&ctx->lock);
398}
399
400
401/*
402 * Remove the event from a task's (or a CPU's) list of events.
403 *
404 * Must be called with ctx->mutex held.
405 *
406 * CPU events are removed with a smp call. For task events we only
407 * call when the task is on a CPU.
408 *
409 * If event->ctx is a cloned context, callers must make sure that
410 * every task struct that event->ctx->task could possibly point to
411 * remains valid. This is OK when called from perf_release since
412 * that only calls us on the top-level context, which can't be a clone.
413 * When called from perf_event_exit_task, it's OK because the
414 * context has been detached from its task.
415 */
416static void perf_event_remove_from_context(struct perf_event *event)
417{
418 struct perf_event_context *ctx = event->ctx;
419 struct task_struct *task = ctx->task;
420
421 if (!task) {
422 /*
423 * Per cpu events are removed via an smp call and
424 * the removal is always sucessful.
425 */
426 smp_call_function_single(event->cpu,
427 __perf_event_remove_from_context,
428 event, 1);
429 return;
430 }
431
432retry:
433 task_oncpu_function_call(task, __perf_event_remove_from_context,
434 event);
435
436 spin_lock_irq(&ctx->lock);
437 /*
438 * If the context is active we need to retry the smp call.
439 */
440 if (ctx->nr_active && !list_empty(&event->group_entry)) {
441 spin_unlock_irq(&ctx->lock);
442 goto retry;
443 }
444
445 /*
446 * The lock prevents that this context is scheduled in so we
447 * can remove the event safely, if the call above did not
448 * succeed.
449 */
450 if (!list_empty(&event->group_entry)) {
451 list_del_event(event, ctx);
452 }
453 spin_unlock_irq(&ctx->lock);
454}
455
456static inline u64 perf_clock(void)
457{
458 return cpu_clock(smp_processor_id());
459}
460
461/*
462 * Update the record of the current time in a context.
463 */
464static void update_context_time(struct perf_event_context *ctx)
465{
466 u64 now = perf_clock();
467
468 ctx->time += now - ctx->timestamp;
469 ctx->timestamp = now;
470}
471
472/*
473 * Update the total_time_enabled and total_time_running fields for a event.
474 */
475static void update_event_times(struct perf_event *event)
476{
477 struct perf_event_context *ctx = event->ctx;
478 u64 run_end;
479
480 if (event->state < PERF_EVENT_STATE_INACTIVE ||
481 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
482 return;
483
484 event->total_time_enabled = ctx->time - event->tstamp_enabled;
485
486 if (event->state == PERF_EVENT_STATE_INACTIVE)
487 run_end = event->tstamp_stopped;
488 else
489 run_end = ctx->time;
490
491 event->total_time_running = run_end - event->tstamp_running;
492}
493
494/*
495 * Update total_time_enabled and total_time_running for all events in a group.
496 */
497static void update_group_times(struct perf_event *leader)
498{
499 struct perf_event *event;
500
501 update_event_times(leader);
502 list_for_each_entry(event, &leader->sibling_list, group_entry)
503 update_event_times(event);
504}
505
506/*
507 * Cross CPU call to disable a performance event
508 */
509static void __perf_event_disable(void *info)
510{
511 struct perf_event *event = info;
512 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
513 struct perf_event_context *ctx = event->ctx;
514
515 /*
516 * If this is a per-task event, need to check whether this
517 * event's task is the current task on this cpu.
518 */
519 if (ctx->task && cpuctx->task_ctx != ctx)
520 return;
521
522 spin_lock(&ctx->lock);
523
524 /*
525 * If the event is on, turn it off.
526 * If it is in error state, leave it in error state.
527 */
528 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
529 update_context_time(ctx);
530 update_group_times(event);
531 if (event == event->group_leader)
532 group_sched_out(event, cpuctx, ctx);
533 else
534 event_sched_out(event, cpuctx, ctx);
535 event->state = PERF_EVENT_STATE_OFF;
536 }
537
538 spin_unlock(&ctx->lock);
539}
540
541/*
542 * Disable a event.
543 *
544 * If event->ctx is a cloned context, callers must make sure that
545 * every task struct that event->ctx->task could possibly point to
546 * remains valid. This condition is satisifed when called through
547 * perf_event_for_each_child or perf_event_for_each because they
548 * hold the top-level event's child_mutex, so any descendant that
549 * goes to exit will block in sync_child_event.
550 * When called from perf_pending_event it's OK because event->ctx
551 * is the current context on this CPU and preemption is disabled,
552 * hence we can't get into perf_event_task_sched_out for this context.
553 */
554static void perf_event_disable(struct perf_event *event)
555{
556 struct perf_event_context *ctx = event->ctx;
557 struct task_struct *task = ctx->task;
558
559 if (!task) {
560 /*
561 * Disable the event on the cpu that it's on
562 */
563 smp_call_function_single(event->cpu, __perf_event_disable,
564 event, 1);
565 return;
566 }
567
568 retry:
569 task_oncpu_function_call(task, __perf_event_disable, event);
570
571 spin_lock_irq(&ctx->lock);
572 /*
573 * If the event is still active, we need to retry the cross-call.
574 */
575 if (event->state == PERF_EVENT_STATE_ACTIVE) {
576 spin_unlock_irq(&ctx->lock);
577 goto retry;
578 }
579
580 /*
581 * Since we have the lock this context can't be scheduled
582 * in, so we can change the state safely.
583 */
584 if (event->state == PERF_EVENT_STATE_INACTIVE) {
585 update_group_times(event);
586 event->state = PERF_EVENT_STATE_OFF;
587 }
588
589 spin_unlock_irq(&ctx->lock);
590}
591
592static int
593event_sched_in(struct perf_event *event,
594 struct perf_cpu_context *cpuctx,
595 struct perf_event_context *ctx,
596 int cpu)
597{
598 if (event->state <= PERF_EVENT_STATE_OFF)
599 return 0;
600
601 event->state = PERF_EVENT_STATE_ACTIVE;
602 event->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
603 /*
604 * The new state must be visible before we turn it on in the hardware:
605 */
606 smp_wmb();
607
608 if (event->pmu->enable(event)) {
609 event->state = PERF_EVENT_STATE_INACTIVE;
610 event->oncpu = -1;
611 return -EAGAIN;
612 }
613
614 event->tstamp_running += ctx->time - event->tstamp_stopped;
615
616 if (!is_software_event(event))
617 cpuctx->active_oncpu++;
618 ctx->nr_active++;
619
620 if (event->attr.exclusive)
621 cpuctx->exclusive = 1;
622
623 return 0;
624}
625
626static int
627group_sched_in(struct perf_event *group_event,
628 struct perf_cpu_context *cpuctx,
629 struct perf_event_context *ctx,
630 int cpu)
631{
632 struct perf_event *event, *partial_group;
633 int ret;
634
635 if (group_event->state == PERF_EVENT_STATE_OFF)
636 return 0;
637
638 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
639 if (ret)
640 return ret < 0 ? ret : 0;
641
642 if (event_sched_in(group_event, cpuctx, ctx, cpu))
643 return -EAGAIN;
644
645 /*
646 * Schedule in siblings as one group (if any):
647 */
648 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
649 if (event_sched_in(event, cpuctx, ctx, cpu)) {
650 partial_group = event;
651 goto group_error;
652 }
653 }
654
655 return 0;
656
657group_error:
658 /*
659 * Groups can be scheduled in as one unit only, so undo any
660 * partial group before returning:
661 */
662 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
663 if (event == partial_group)
664 break;
665 event_sched_out(event, cpuctx, ctx);
666 }
667 event_sched_out(group_event, cpuctx, ctx);
668
669 return -EAGAIN;
670}
671
672/*
673 * Return 1 for a group consisting entirely of software events,
674 * 0 if the group contains any hardware events.
675 */
676static int is_software_only_group(struct perf_event *leader)
677{
678 struct perf_event *event;
679
680 if (!is_software_event(leader))
681 return 0;
682
683 list_for_each_entry(event, &leader->sibling_list, group_entry)
684 if (!is_software_event(event))
685 return 0;
686
687 return 1;
688}
689
690/*
691 * Work out whether we can put this event group on the CPU now.
692 */
693static int group_can_go_on(struct perf_event *event,
694 struct perf_cpu_context *cpuctx,
695 int can_add_hw)
696{
697 /*
698 * Groups consisting entirely of software events can always go on.
699 */
700 if (is_software_only_group(event))
701 return 1;
702 /*
703 * If an exclusive group is already on, no other hardware
704 * events can go on.
705 */
706 if (cpuctx->exclusive)
707 return 0;
708 /*
709 * If this group is exclusive and there are already
710 * events on the CPU, it can't go on.
711 */
712 if (event->attr.exclusive && cpuctx->active_oncpu)
713 return 0;
714 /*
715 * Otherwise, try to add it if all previous groups were able
716 * to go on.
717 */
718 return can_add_hw;
719}
720
721static void add_event_to_ctx(struct perf_event *event,
722 struct perf_event_context *ctx)
723{
724 list_add_event(event, ctx);
725 event->tstamp_enabled = ctx->time;
726 event->tstamp_running = ctx->time;
727 event->tstamp_stopped = ctx->time;
728}
729
730/*
731 * Cross CPU call to install and enable a performance event
732 *
733 * Must be called with ctx->mutex held
734 */
735static void __perf_install_in_context(void *info)
736{
737 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
738 struct perf_event *event = info;
739 struct perf_event_context *ctx = event->ctx;
740 struct perf_event *leader = event->group_leader;
741 int cpu = smp_processor_id();
742 int err;
743
744 /*
745 * If this is a task context, we need to check whether it is
746 * the current task context of this cpu. If not it has been
747 * scheduled out before the smp call arrived.
748 * Or possibly this is the right context but it isn't
749 * on this cpu because it had no events.
750 */
751 if (ctx->task && cpuctx->task_ctx != ctx) {
752 if (cpuctx->task_ctx || ctx->task != current)
753 return;
754 cpuctx->task_ctx = ctx;
755 }
756
757 spin_lock(&ctx->lock);
758 ctx->is_active = 1;
759 update_context_time(ctx);
760
761 /*
762 * Protect the list operation against NMI by disabling the
763 * events on a global level. NOP for non NMI based events.
764 */
765 perf_disable();
766
767 add_event_to_ctx(event, ctx);
768
769 /*
770 * Don't put the event on if it is disabled or if
771 * it is in a group and the group isn't on.
772 */
773 if (event->state != PERF_EVENT_STATE_INACTIVE ||
774 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
775 goto unlock;
776
777 /*
778 * An exclusive event can't go on if there are already active
779 * hardware events, and no hardware event can go on if there
780 * is already an exclusive event on.
781 */
782 if (!group_can_go_on(event, cpuctx, 1))
783 err = -EEXIST;
784 else
785 err = event_sched_in(event, cpuctx, ctx, cpu);
786
787 if (err) {
788 /*
789 * This event couldn't go on. If it is in a group
790 * then we have to pull the whole group off.
791 * If the event group is pinned then put it in error state.
792 */
793 if (leader != event)
794 group_sched_out(leader, cpuctx, ctx);
795 if (leader->attr.pinned) {
796 update_group_times(leader);
797 leader->state = PERF_EVENT_STATE_ERROR;
798 }
799 }
800
801 if (!err && !ctx->task && cpuctx->max_pertask)
802 cpuctx->max_pertask--;
803
804 unlock:
805 perf_enable();
806
807 spin_unlock(&ctx->lock);
808}
809
810/*
811 * Attach a performance event to a context
812 *
813 * First we add the event to the list with the hardware enable bit
814 * in event->hw_config cleared.
815 *
816 * If the event is attached to a task which is on a CPU we use a smp
817 * call to enable it in the task context. The task might have been
818 * scheduled away, but we check this in the smp call again.
819 *
820 * Must be called with ctx->mutex held.
821 */
822static void
823perf_install_in_context(struct perf_event_context *ctx,
824 struct perf_event *event,
825 int cpu)
826{
827 struct task_struct *task = ctx->task;
828
829 if (!task) {
830 /*
831 * Per cpu events are installed via an smp call and
832 * the install is always sucessful.
833 */
834 smp_call_function_single(cpu, __perf_install_in_context,
835 event, 1);
836 return;
837 }
838
839retry:
840 task_oncpu_function_call(task, __perf_install_in_context,
841 event);
842
843 spin_lock_irq(&ctx->lock);
844 /*
845 * we need to retry the smp call.
846 */
847 if (ctx->is_active && list_empty(&event->group_entry)) {
848 spin_unlock_irq(&ctx->lock);
849 goto retry;
850 }
851
852 /*
853 * The lock prevents that this context is scheduled in so we
854 * can add the event safely, if it the call above did not
855 * succeed.
856 */
857 if (list_empty(&event->group_entry))
858 add_event_to_ctx(event, ctx);
859 spin_unlock_irq(&ctx->lock);
860}
861
862/*
863 * Put a event into inactive state and update time fields.
864 * Enabling the leader of a group effectively enables all
865 * the group members that aren't explicitly disabled, so we
866 * have to update their ->tstamp_enabled also.
867 * Note: this works for group members as well as group leaders
868 * since the non-leader members' sibling_lists will be empty.
869 */
870static void __perf_event_mark_enabled(struct perf_event *event,
871 struct perf_event_context *ctx)
872{
873 struct perf_event *sub;
874
875 event->state = PERF_EVENT_STATE_INACTIVE;
876 event->tstamp_enabled = ctx->time - event->total_time_enabled;
877 list_for_each_entry(sub, &event->sibling_list, group_entry)
878 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
879 sub->tstamp_enabled =
880 ctx->time - sub->total_time_enabled;
881}
882
883/*
884 * Cross CPU call to enable a performance event
885 */
886static void __perf_event_enable(void *info)
887{
888 struct perf_event *event = info;
889 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
890 struct perf_event_context *ctx = event->ctx;
891 struct perf_event *leader = event->group_leader;
892 int err;
893
894 /*
895 * If this is a per-task event, need to check whether this
896 * event's task is the current task on this cpu.
897 */
898 if (ctx->task && cpuctx->task_ctx != ctx) {
899 if (cpuctx->task_ctx || ctx->task != current)
900 return;
901 cpuctx->task_ctx = ctx;
902 }
903
904 spin_lock(&ctx->lock);
905 ctx->is_active = 1;
906 update_context_time(ctx);
907
908 if (event->state >= PERF_EVENT_STATE_INACTIVE)
909 goto unlock;
910 __perf_event_mark_enabled(event, ctx);
911
912 /*
913 * If the event is in a group and isn't the group leader,
914 * then don't put it on unless the group is on.
915 */
916 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
917 goto unlock;
918
919 if (!group_can_go_on(event, cpuctx, 1)) {
920 err = -EEXIST;
921 } else {
922 perf_disable();
923 if (event == leader)
924 err = group_sched_in(event, cpuctx, ctx,
925 smp_processor_id());
926 else
927 err = event_sched_in(event, cpuctx, ctx,
928 smp_processor_id());
929 perf_enable();
930 }
931
932 if (err) {
933 /*
934 * If this event can't go on and it's part of a
935 * group, then the whole group has to come off.
936 */
937 if (leader != event)
938 group_sched_out(leader, cpuctx, ctx);
939 if (leader->attr.pinned) {
940 update_group_times(leader);
941 leader->state = PERF_EVENT_STATE_ERROR;
942 }
943 }
944
945 unlock:
946 spin_unlock(&ctx->lock);
947}
948
949/*
950 * Enable a event.
951 *
952 * If event->ctx is a cloned context, callers must make sure that
953 * every task struct that event->ctx->task could possibly point to
954 * remains valid. This condition is satisfied when called through
955 * perf_event_for_each_child or perf_event_for_each as described
956 * for perf_event_disable.
957 */
958static void perf_event_enable(struct perf_event *event)
959{
960 struct perf_event_context *ctx = event->ctx;
961 struct task_struct *task = ctx->task;
962
963 if (!task) {
964 /*
965 * Enable the event on the cpu that it's on
966 */
967 smp_call_function_single(event->cpu, __perf_event_enable,
968 event, 1);
969 return;
970 }
971
972 spin_lock_irq(&ctx->lock);
973 if (event->state >= PERF_EVENT_STATE_INACTIVE)
974 goto out;
975
976 /*
977 * If the event is in error state, clear that first.
978 * That way, if we see the event in error state below, we
979 * know that it has gone back into error state, as distinct
980 * from the task having been scheduled away before the
981 * cross-call arrived.
982 */
983 if (event->state == PERF_EVENT_STATE_ERROR)
984 event->state = PERF_EVENT_STATE_OFF;
985
986 retry:
987 spin_unlock_irq(&ctx->lock);
988 task_oncpu_function_call(task, __perf_event_enable, event);
989
990 spin_lock_irq(&ctx->lock);
991
992 /*
993 * If the context is active and the event is still off,
994 * we need to retry the cross-call.
995 */
996 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
997 goto retry;
998
999 /*
1000 * Since we have the lock this context can't be scheduled
1001 * in, so we can change the state safely.
1002 */
1003 if (event->state == PERF_EVENT_STATE_OFF)
1004 __perf_event_mark_enabled(event, ctx);
1005
1006 out:
1007 spin_unlock_irq(&ctx->lock);
1008}
1009
1010static int perf_event_refresh(struct perf_event *event, int refresh)
1011{
1012 /*
1013 * not supported on inherited events
1014 */
1015 if (event->attr.inherit)
1016 return -EINVAL;
1017
1018 atomic_add(refresh, &event->event_limit);
1019 perf_event_enable(event);
1020
1021 return 0;
1022}
1023
1024void __perf_event_sched_out(struct perf_event_context *ctx,
1025 struct perf_cpu_context *cpuctx)
1026{
1027 struct perf_event *event;
1028
1029 spin_lock(&ctx->lock);
1030 ctx->is_active = 0;
1031 if (likely(!ctx->nr_events))
1032 goto out;
1033 update_context_time(ctx);
1034
1035 perf_disable();
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001036 if (ctx->nr_active)
1037 list_for_each_entry(event, &ctx->group_list, group_entry)
1038 group_sched_out(event, cpuctx, ctx);
1039
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001040 perf_enable();
1041 out:
1042 spin_unlock(&ctx->lock);
1043}
1044
1045/*
1046 * Test whether two contexts are equivalent, i.e. whether they
1047 * have both been cloned from the same version of the same context
1048 * and they both have the same number of enabled events.
1049 * If the number of enabled events is the same, then the set
1050 * of enabled events should be the same, because these are both
1051 * inherited contexts, therefore we can't access individual events
1052 * in them directly with an fd; we can only enable/disable all
1053 * events via prctl, or enable/disable all events in a family
1054 * via ioctl, which will have the same effect on both contexts.
1055 */
1056static int context_equiv(struct perf_event_context *ctx1,
1057 struct perf_event_context *ctx2)
1058{
1059 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1060 && ctx1->parent_gen == ctx2->parent_gen
1061 && !ctx1->pin_count && !ctx2->pin_count;
1062}
1063
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001064static void __perf_event_sync_stat(struct perf_event *event,
1065 struct perf_event *next_event)
1066{
1067 u64 value;
1068
1069 if (!event->attr.inherit_stat)
1070 return;
1071
1072 /*
1073 * Update the event value, we cannot use perf_event_read()
1074 * because we're in the middle of a context switch and have IRQs
1075 * disabled, which upsets smp_call_function_single(), however
1076 * we know the event must be on the current CPU, therefore we
1077 * don't need to use it.
1078 */
1079 switch (event->state) {
1080 case PERF_EVENT_STATE_ACTIVE:
Peter Zijlstra3dbebf12009-11-20 22:19:52 +01001081 event->pmu->read(event);
1082 /* fall-through */
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001083
1084 case PERF_EVENT_STATE_INACTIVE:
1085 update_event_times(event);
1086 break;
1087
1088 default:
1089 break;
1090 }
1091
1092 /*
1093 * In order to keep per-task stats reliable we need to flip the event
1094 * values when we flip the contexts.
1095 */
1096 value = atomic64_read(&next_event->count);
1097 value = atomic64_xchg(&event->count, value);
1098 atomic64_set(&next_event->count, value);
1099
1100 swap(event->total_time_enabled, next_event->total_time_enabled);
1101 swap(event->total_time_running, next_event->total_time_running);
1102
1103 /*
1104 * Since we swizzled the values, update the user visible data too.
1105 */
1106 perf_event_update_userpage(event);
1107 perf_event_update_userpage(next_event);
1108}
1109
1110#define list_next_entry(pos, member) \
1111 list_entry(pos->member.next, typeof(*pos), member)
1112
1113static void perf_event_sync_stat(struct perf_event_context *ctx,
1114 struct perf_event_context *next_ctx)
1115{
1116 struct perf_event *event, *next_event;
1117
1118 if (!ctx->nr_stat)
1119 return;
1120
Peter Zijlstra02ffdbc2009-11-20 22:19:50 +01001121 update_context_time(ctx);
1122
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001123 event = list_first_entry(&ctx->event_list,
1124 struct perf_event, event_entry);
1125
1126 next_event = list_first_entry(&next_ctx->event_list,
1127 struct perf_event, event_entry);
1128
1129 while (&event->event_entry != &ctx->event_list &&
1130 &next_event->event_entry != &next_ctx->event_list) {
1131
1132 __perf_event_sync_stat(event, next_event);
1133
1134 event = list_next_entry(event, event_entry);
1135 next_event = list_next_entry(next_event, event_entry);
1136 }
1137}
1138
1139/*
1140 * Called from scheduler to remove the events of the current task,
1141 * with interrupts disabled.
1142 *
1143 * We stop each event and update the event value in event->count.
1144 *
1145 * This does not protect us against NMI, but disable()
1146 * sets the disabled bit in the control field of event _before_
1147 * accessing the event control register. If a NMI hits, then it will
1148 * not restart the event.
1149 */
1150void perf_event_task_sched_out(struct task_struct *task,
1151 struct task_struct *next, int cpu)
1152{
1153 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1154 struct perf_event_context *ctx = task->perf_event_ctxp;
1155 struct perf_event_context *next_ctx;
1156 struct perf_event_context *parent;
1157 struct pt_regs *regs;
1158 int do_switch = 1;
1159
1160 regs = task_pt_regs(task);
1161 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1162
1163 if (likely(!ctx || !cpuctx->task_ctx))
1164 return;
1165
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001166 rcu_read_lock();
1167 parent = rcu_dereference(ctx->parent_ctx);
1168 next_ctx = next->perf_event_ctxp;
1169 if (parent && next_ctx &&
1170 rcu_dereference(next_ctx->parent_ctx) == parent) {
1171 /*
1172 * Looks like the two contexts are clones, so we might be
1173 * able to optimize the context switch. We lock both
1174 * contexts and check that they are clones under the
1175 * lock (including re-checking that neither has been
1176 * uncloned in the meantime). It doesn't matter which
1177 * order we take the locks because no other cpu could
1178 * be trying to lock both of these tasks.
1179 */
1180 spin_lock(&ctx->lock);
1181 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1182 if (context_equiv(ctx, next_ctx)) {
1183 /*
1184 * XXX do we need a memory barrier of sorts
1185 * wrt to rcu_dereference() of perf_event_ctxp
1186 */
1187 task->perf_event_ctxp = next_ctx;
1188 next->perf_event_ctxp = ctx;
1189 ctx->task = next;
1190 next_ctx->task = task;
1191 do_switch = 0;
1192
1193 perf_event_sync_stat(ctx, next_ctx);
1194 }
1195 spin_unlock(&next_ctx->lock);
1196 spin_unlock(&ctx->lock);
1197 }
1198 rcu_read_unlock();
1199
1200 if (do_switch) {
1201 __perf_event_sched_out(ctx, cpuctx);
1202 cpuctx->task_ctx = NULL;
1203 }
1204}
1205
1206/*
1207 * Called with IRQs disabled
1208 */
1209static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1210{
1211 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1212
1213 if (!cpuctx->task_ctx)
1214 return;
1215
1216 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1217 return;
1218
1219 __perf_event_sched_out(ctx, cpuctx);
1220 cpuctx->task_ctx = NULL;
1221}
1222
1223/*
1224 * Called with IRQs disabled
1225 */
1226static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx)
1227{
1228 __perf_event_sched_out(&cpuctx->ctx, cpuctx);
1229}
1230
1231static void
1232__perf_event_sched_in(struct perf_event_context *ctx,
1233 struct perf_cpu_context *cpuctx, int cpu)
1234{
1235 struct perf_event *event;
1236 int can_add_hw = 1;
1237
1238 spin_lock(&ctx->lock);
1239 ctx->is_active = 1;
1240 if (likely(!ctx->nr_events))
1241 goto out;
1242
1243 ctx->timestamp = perf_clock();
1244
1245 perf_disable();
1246
1247 /*
1248 * First go through the list and put on any pinned groups
1249 * in order to give them the best chance of going on.
1250 */
1251 list_for_each_entry(event, &ctx->group_list, group_entry) {
1252 if (event->state <= PERF_EVENT_STATE_OFF ||
1253 !event->attr.pinned)
1254 continue;
1255 if (event->cpu != -1 && event->cpu != cpu)
1256 continue;
1257
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001258 if (group_can_go_on(event, cpuctx, 1))
1259 group_sched_in(event, cpuctx, ctx, cpu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001260
1261 /*
1262 * If this pinned group hasn't been scheduled,
1263 * put it in error state.
1264 */
1265 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1266 update_group_times(event);
1267 event->state = PERF_EVENT_STATE_ERROR;
1268 }
1269 }
1270
1271 list_for_each_entry(event, &ctx->group_list, group_entry) {
1272 /*
1273 * Ignore events in OFF or ERROR state, and
1274 * ignore pinned events since we did them already.
1275 */
1276 if (event->state <= PERF_EVENT_STATE_OFF ||
1277 event->attr.pinned)
1278 continue;
1279
1280 /*
1281 * Listen to the 'cpu' scheduling filter constraint
1282 * of events:
1283 */
1284 if (event->cpu != -1 && event->cpu != cpu)
1285 continue;
1286
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001287 if (group_can_go_on(event, cpuctx, can_add_hw))
1288 if (group_sched_in(event, cpuctx, ctx, cpu))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001289 can_add_hw = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001290 }
1291 perf_enable();
1292 out:
1293 spin_unlock(&ctx->lock);
1294}
1295
1296/*
1297 * Called from scheduler to add the events of the current task
1298 * with interrupts disabled.
1299 *
1300 * We restore the event value and then enable it.
1301 *
1302 * This does not protect us against NMI, but enable()
1303 * sets the enabled bit in the control field of event _before_
1304 * accessing the event control register. If a NMI hits, then it will
1305 * keep the event running.
1306 */
1307void perf_event_task_sched_in(struct task_struct *task, int cpu)
1308{
1309 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1310 struct perf_event_context *ctx = task->perf_event_ctxp;
1311
1312 if (likely(!ctx))
1313 return;
1314 if (cpuctx->task_ctx == ctx)
1315 return;
1316 __perf_event_sched_in(ctx, cpuctx, cpu);
1317 cpuctx->task_ctx = ctx;
1318}
1319
1320static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1321{
1322 struct perf_event_context *ctx = &cpuctx->ctx;
1323
1324 __perf_event_sched_in(ctx, cpuctx, cpu);
1325}
1326
1327#define MAX_INTERRUPTS (~0ULL)
1328
1329static void perf_log_throttle(struct perf_event *event, int enable);
1330
1331static void perf_adjust_period(struct perf_event *event, u64 events)
1332{
1333 struct hw_perf_event *hwc = &event->hw;
1334 u64 period, sample_period;
1335 s64 delta;
1336
1337 events *= hwc->sample_period;
1338 period = div64_u64(events, event->attr.sample_freq);
1339
1340 delta = (s64)(period - hwc->sample_period);
1341 delta = (delta + 7) / 8; /* low pass filter */
1342
1343 sample_period = hwc->sample_period + delta;
1344
1345 if (!sample_period)
1346 sample_period = 1;
1347
1348 hwc->sample_period = sample_period;
1349}
1350
1351static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1352{
1353 struct perf_event *event;
1354 struct hw_perf_event *hwc;
1355 u64 interrupts, freq;
1356
1357 spin_lock(&ctx->lock);
Paul Mackerras03541f82009-10-14 16:58:03 +11001358 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001359 if (event->state != PERF_EVENT_STATE_ACTIVE)
1360 continue;
1361
1362 hwc = &event->hw;
1363
1364 interrupts = hwc->interrupts;
1365 hwc->interrupts = 0;
1366
1367 /*
1368 * unthrottle events on the tick
1369 */
1370 if (interrupts == MAX_INTERRUPTS) {
1371 perf_log_throttle(event, 1);
1372 event->pmu->unthrottle(event);
1373 interrupts = 2*sysctl_perf_event_sample_rate/HZ;
1374 }
1375
1376 if (!event->attr.freq || !event->attr.sample_freq)
1377 continue;
1378
1379 /*
1380 * if the specified freq < HZ then we need to skip ticks
1381 */
1382 if (event->attr.sample_freq < HZ) {
1383 freq = event->attr.sample_freq;
1384
1385 hwc->freq_count += freq;
1386 hwc->freq_interrupts += interrupts;
1387
1388 if (hwc->freq_count < HZ)
1389 continue;
1390
1391 interrupts = hwc->freq_interrupts;
1392 hwc->freq_interrupts = 0;
1393 hwc->freq_count -= HZ;
1394 } else
1395 freq = HZ;
1396
1397 perf_adjust_period(event, freq * interrupts);
1398
1399 /*
1400 * In order to avoid being stalled by an (accidental) huge
1401 * sample period, force reset the sample period if we didn't
1402 * get any events in this freq period.
1403 */
1404 if (!interrupts) {
1405 perf_disable();
1406 event->pmu->disable(event);
1407 atomic64_set(&hwc->period_left, 0);
1408 event->pmu->enable(event);
1409 perf_enable();
1410 }
1411 }
1412 spin_unlock(&ctx->lock);
1413}
1414
1415/*
1416 * Round-robin a context's events:
1417 */
1418static void rotate_ctx(struct perf_event_context *ctx)
1419{
1420 struct perf_event *event;
1421
1422 if (!ctx->nr_events)
1423 return;
1424
1425 spin_lock(&ctx->lock);
1426 /*
1427 * Rotate the first entry last (works just fine for group events too):
1428 */
1429 perf_disable();
1430 list_for_each_entry(event, &ctx->group_list, group_entry) {
1431 list_move_tail(&event->group_entry, &ctx->group_list);
1432 break;
1433 }
1434 perf_enable();
1435
1436 spin_unlock(&ctx->lock);
1437}
1438
1439void perf_event_task_tick(struct task_struct *curr, int cpu)
1440{
1441 struct perf_cpu_context *cpuctx;
1442 struct perf_event_context *ctx;
1443
1444 if (!atomic_read(&nr_events))
1445 return;
1446
1447 cpuctx = &per_cpu(perf_cpu_context, cpu);
1448 ctx = curr->perf_event_ctxp;
1449
1450 perf_ctx_adjust_freq(&cpuctx->ctx);
1451 if (ctx)
1452 perf_ctx_adjust_freq(ctx);
1453
1454 perf_event_cpu_sched_out(cpuctx);
1455 if (ctx)
1456 __perf_event_task_sched_out(ctx);
1457
1458 rotate_ctx(&cpuctx->ctx);
1459 if (ctx)
1460 rotate_ctx(ctx);
1461
1462 perf_event_cpu_sched_in(cpuctx, cpu);
1463 if (ctx)
1464 perf_event_task_sched_in(curr, cpu);
1465}
1466
1467/*
1468 * Enable all of a task's events that have been marked enable-on-exec.
1469 * This expects task == current.
1470 */
1471static void perf_event_enable_on_exec(struct task_struct *task)
1472{
1473 struct perf_event_context *ctx;
1474 struct perf_event *event;
1475 unsigned long flags;
1476 int enabled = 0;
1477
1478 local_irq_save(flags);
1479 ctx = task->perf_event_ctxp;
1480 if (!ctx || !ctx->nr_events)
1481 goto out;
1482
1483 __perf_event_task_sched_out(ctx);
1484
1485 spin_lock(&ctx->lock);
1486
1487 list_for_each_entry(event, &ctx->group_list, group_entry) {
1488 if (!event->attr.enable_on_exec)
1489 continue;
1490 event->attr.enable_on_exec = 0;
1491 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1492 continue;
1493 __perf_event_mark_enabled(event, ctx);
1494 enabled = 1;
1495 }
1496
1497 /*
1498 * Unclone this context if we enabled any event.
1499 */
1500 if (enabled)
1501 unclone_ctx(ctx);
1502
1503 spin_unlock(&ctx->lock);
1504
1505 perf_event_task_sched_in(task, smp_processor_id());
1506 out:
1507 local_irq_restore(flags);
1508}
1509
1510/*
1511 * Cross CPU call to read the hardware event
1512 */
1513static void __perf_event_read(void *info)
1514{
1515 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1516 struct perf_event *event = info;
1517 struct perf_event_context *ctx = event->ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001518
1519 /*
1520 * If this is a task context, we need to check whether it is
1521 * the current task context of this cpu. If not it has been
1522 * scheduled out before the smp call arrived. In that case
1523 * event->count would have been updated to a recent sample
1524 * when the event was scheduled out.
1525 */
1526 if (ctx->task && cpuctx->task_ctx != ctx)
1527 return;
1528
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001529 spin_lock(&ctx->lock);
Peter Zijlstra58e5ad12009-11-20 22:19:53 +01001530 update_context_time(ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001531 update_event_times(event);
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001532 spin_unlock(&ctx->lock);
1533
Peter Zijlstra58e5ad12009-11-20 22:19:53 +01001534 event->pmu->read(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001535}
1536
1537static u64 perf_event_read(struct perf_event *event)
1538{
1539 /*
1540 * If event is enabled and currently active on a CPU, update the
1541 * value in the event structure:
1542 */
1543 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1544 smp_call_function_single(event->oncpu,
1545 __perf_event_read, event, 1);
1546 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001547 struct perf_event_context *ctx = event->ctx;
1548 unsigned long flags;
1549
1550 spin_lock_irqsave(&ctx->lock, flags);
1551 update_context_time(ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001552 update_event_times(event);
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001553 spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001554 }
1555
1556 return atomic64_read(&event->count);
1557}
1558
1559/*
1560 * Initialize the perf_event context in a task_struct:
1561 */
1562static void
1563__perf_event_init_context(struct perf_event_context *ctx,
1564 struct task_struct *task)
1565{
1566 memset(ctx, 0, sizeof(*ctx));
1567 spin_lock_init(&ctx->lock);
1568 mutex_init(&ctx->mutex);
1569 INIT_LIST_HEAD(&ctx->group_list);
1570 INIT_LIST_HEAD(&ctx->event_list);
1571 atomic_set(&ctx->refcount, 1);
1572 ctx->task = task;
1573}
1574
1575static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1576{
1577 struct perf_event_context *ctx;
1578 struct perf_cpu_context *cpuctx;
1579 struct task_struct *task;
1580 unsigned long flags;
1581 int err;
1582
1583 /*
1584 * If cpu is not a wildcard then this is a percpu event:
1585 */
1586 if (cpu != -1) {
1587 /* Must be root to operate on a CPU event: */
1588 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1589 return ERR_PTR(-EACCES);
1590
1591 if (cpu < 0 || cpu > num_possible_cpus())
1592 return ERR_PTR(-EINVAL);
1593
1594 /*
1595 * We could be clever and allow to attach a event to an
1596 * offline CPU and activate it when the CPU comes up, but
1597 * that's for later.
1598 */
1599 if (!cpu_isset(cpu, cpu_online_map))
1600 return ERR_PTR(-ENODEV);
1601
1602 cpuctx = &per_cpu(perf_cpu_context, cpu);
1603 ctx = &cpuctx->ctx;
1604 get_ctx(ctx);
1605
1606 return ctx;
1607 }
1608
1609 rcu_read_lock();
1610 if (!pid)
1611 task = current;
1612 else
1613 task = find_task_by_vpid(pid);
1614 if (task)
1615 get_task_struct(task);
1616 rcu_read_unlock();
1617
1618 if (!task)
1619 return ERR_PTR(-ESRCH);
1620
1621 /*
1622 * Can't attach events to a dying task.
1623 */
1624 err = -ESRCH;
1625 if (task->flags & PF_EXITING)
1626 goto errout;
1627
1628 /* Reuse ptrace permission checks for now. */
1629 err = -EACCES;
1630 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1631 goto errout;
1632
1633 retry:
1634 ctx = perf_lock_task_context(task, &flags);
1635 if (ctx) {
1636 unclone_ctx(ctx);
1637 spin_unlock_irqrestore(&ctx->lock, flags);
1638 }
1639
1640 if (!ctx) {
1641 ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1642 err = -ENOMEM;
1643 if (!ctx)
1644 goto errout;
1645 __perf_event_init_context(ctx, task);
1646 get_ctx(ctx);
1647 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1648 /*
1649 * We raced with some other task; use
1650 * the context they set.
1651 */
1652 kfree(ctx);
1653 goto retry;
1654 }
1655 get_task_struct(task);
1656 }
1657
1658 put_task_struct(task);
1659 return ctx;
1660
1661 errout:
1662 put_task_struct(task);
1663 return ERR_PTR(err);
1664}
1665
Li Zefan6fb29152009-10-15 11:21:42 +08001666static void perf_event_free_filter(struct perf_event *event);
1667
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001668static void free_event_rcu(struct rcu_head *head)
1669{
1670 struct perf_event *event;
1671
1672 event = container_of(head, struct perf_event, rcu_head);
1673 if (event->ns)
1674 put_pid_ns(event->ns);
Li Zefan6fb29152009-10-15 11:21:42 +08001675 perf_event_free_filter(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001676 kfree(event);
1677}
1678
1679static void perf_pending_sync(struct perf_event *event);
1680
1681static void free_event(struct perf_event *event)
1682{
1683 perf_pending_sync(event);
1684
1685 if (!event->parent) {
1686 atomic_dec(&nr_events);
1687 if (event->attr.mmap)
1688 atomic_dec(&nr_mmap_events);
1689 if (event->attr.comm)
1690 atomic_dec(&nr_comm_events);
1691 if (event->attr.task)
1692 atomic_dec(&nr_task_events);
1693 }
1694
1695 if (event->output) {
1696 fput(event->output->filp);
1697 event->output = NULL;
1698 }
1699
1700 if (event->destroy)
1701 event->destroy(event);
1702
1703 put_ctx(event->ctx);
1704 call_rcu(&event->rcu_head, free_event_rcu);
1705}
1706
1707/*
1708 * Called when the last reference to the file is gone.
1709 */
1710static int perf_release(struct inode *inode, struct file *file)
1711{
1712 struct perf_event *event = file->private_data;
1713 struct perf_event_context *ctx = event->ctx;
1714
1715 file->private_data = NULL;
1716
1717 WARN_ON_ONCE(ctx->parent_ctx);
1718 mutex_lock(&ctx->mutex);
1719 perf_event_remove_from_context(event);
1720 mutex_unlock(&ctx->mutex);
1721
1722 mutex_lock(&event->owner->perf_event_mutex);
1723 list_del_init(&event->owner_entry);
1724 mutex_unlock(&event->owner->perf_event_mutex);
1725 put_task_struct(event->owner);
1726
1727 free_event(event);
1728
1729 return 0;
1730}
1731
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001732int perf_event_release_kernel(struct perf_event *event)
1733{
1734 struct perf_event_context *ctx = event->ctx;
1735
1736 WARN_ON_ONCE(ctx->parent_ctx);
1737 mutex_lock(&ctx->mutex);
1738 perf_event_remove_from_context(event);
1739 mutex_unlock(&ctx->mutex);
1740
1741 mutex_lock(&event->owner->perf_event_mutex);
1742 list_del_init(&event->owner_entry);
1743 mutex_unlock(&event->owner->perf_event_mutex);
1744 put_task_struct(event->owner);
1745
1746 free_event(event);
1747
1748 return 0;
1749}
1750EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1751
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001752static int perf_event_read_size(struct perf_event *event)
1753{
1754 int entry = sizeof(u64); /* value */
1755 int size = 0;
1756 int nr = 1;
1757
1758 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1759 size += sizeof(u64);
1760
1761 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1762 size += sizeof(u64);
1763
1764 if (event->attr.read_format & PERF_FORMAT_ID)
1765 entry += sizeof(u64);
1766
1767 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1768 nr += event->group_leader->nr_siblings;
1769 size += sizeof(u64);
1770 }
1771
1772 size += entry * nr;
1773
1774 return size;
1775}
1776
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001777u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001778{
1779 struct perf_event *child;
1780 u64 total = 0;
1781
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001782 *enabled = 0;
1783 *running = 0;
1784
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001785 total += perf_event_read(event);
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001786 *enabled += event->total_time_enabled +
1787 atomic64_read(&event->child_total_time_enabled);
1788 *running += event->total_time_running +
1789 atomic64_read(&event->child_total_time_running);
1790
1791 list_for_each_entry(child, &event->child_list, child_list) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001792 total += perf_event_read(child);
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001793 *enabled += child->total_time_enabled;
1794 *running += child->total_time_running;
1795 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001796
1797 return total;
1798}
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001799EXPORT_SYMBOL_GPL(perf_event_read_value);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001800
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001801static int perf_event_read_group(struct perf_event *event,
1802 u64 read_format, char __user *buf)
1803{
1804 struct perf_event *leader = event->group_leader, *sub;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001805 int n = 0, size = 0, ret = 0;
1806 u64 values[5];
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001807 u64 count, enabled, running;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001808
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001809 count = perf_event_read_value(leader, &enabled, &running);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001810
1811 values[n++] = 1 + leader->nr_siblings;
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001812 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1813 values[n++] = enabled;
1814 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1815 values[n++] = running;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001816 values[n++] = count;
1817 if (read_format & PERF_FORMAT_ID)
1818 values[n++] = primary_event_id(leader);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001819
1820 size = n * sizeof(u64);
1821
1822 if (copy_to_user(buf, values, size))
1823 return -EFAULT;
1824
Peter Zijlstraabf48682009-11-20 22:19:49 +01001825 ret += size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001826
1827 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
Peter Zijlstraabf48682009-11-20 22:19:49 +01001828 n = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001829
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001830 values[n++] = perf_event_read_value(sub, &enabled, &running);
Peter Zijlstraabf48682009-11-20 22:19:49 +01001831 if (read_format & PERF_FORMAT_ID)
1832 values[n++] = primary_event_id(sub);
1833
1834 size = n * sizeof(u64);
1835
1836 if (copy_to_user(buf + size, values, size))
1837 return -EFAULT;
1838
1839 ret += size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001840 }
1841
Peter Zijlstraabf48682009-11-20 22:19:49 +01001842 return ret;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001843}
1844
1845static int perf_event_read_one(struct perf_event *event,
1846 u64 read_format, char __user *buf)
1847{
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001848 u64 enabled, running;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001849 u64 values[4];
1850 int n = 0;
1851
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001852 values[n++] = perf_event_read_value(event, &enabled, &running);
1853 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1854 values[n++] = enabled;
1855 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1856 values[n++] = running;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001857 if (read_format & PERF_FORMAT_ID)
1858 values[n++] = primary_event_id(event);
1859
1860 if (copy_to_user(buf, values, n * sizeof(u64)))
1861 return -EFAULT;
1862
1863 return n * sizeof(u64);
1864}
1865
1866/*
1867 * Read the performance event - simple non blocking version for now
1868 */
1869static ssize_t
1870perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
1871{
1872 u64 read_format = event->attr.read_format;
1873 int ret;
1874
1875 /*
1876 * Return end-of-file for a read on a event that is in
1877 * error state (i.e. because it was pinned but it couldn't be
1878 * scheduled on to the CPU at some point).
1879 */
1880 if (event->state == PERF_EVENT_STATE_ERROR)
1881 return 0;
1882
1883 if (count < perf_event_read_size(event))
1884 return -ENOSPC;
1885
1886 WARN_ON_ONCE(event->ctx->parent_ctx);
1887 mutex_lock(&event->child_mutex);
1888 if (read_format & PERF_FORMAT_GROUP)
1889 ret = perf_event_read_group(event, read_format, buf);
1890 else
1891 ret = perf_event_read_one(event, read_format, buf);
1892 mutex_unlock(&event->child_mutex);
1893
1894 return ret;
1895}
1896
1897static ssize_t
1898perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1899{
1900 struct perf_event *event = file->private_data;
1901
1902 return perf_read_hw(event, buf, count);
1903}
1904
1905static unsigned int perf_poll(struct file *file, poll_table *wait)
1906{
1907 struct perf_event *event = file->private_data;
1908 struct perf_mmap_data *data;
1909 unsigned int events = POLL_HUP;
1910
1911 rcu_read_lock();
1912 data = rcu_dereference(event->data);
1913 if (data)
1914 events = atomic_xchg(&data->poll, 0);
1915 rcu_read_unlock();
1916
1917 poll_wait(file, &event->waitq, wait);
1918
1919 return events;
1920}
1921
1922static void perf_event_reset(struct perf_event *event)
1923{
1924 (void)perf_event_read(event);
1925 atomic64_set(&event->count, 0);
1926 perf_event_update_userpage(event);
1927}
1928
1929/*
1930 * Holding the top-level event's child_mutex means that any
1931 * descendant process that has inherited this event will block
1932 * in sync_child_event if it goes to exit, thus satisfying the
1933 * task existence requirements of perf_event_enable/disable.
1934 */
1935static void perf_event_for_each_child(struct perf_event *event,
1936 void (*func)(struct perf_event *))
1937{
1938 struct perf_event *child;
1939
1940 WARN_ON_ONCE(event->ctx->parent_ctx);
1941 mutex_lock(&event->child_mutex);
1942 func(event);
1943 list_for_each_entry(child, &event->child_list, child_list)
1944 func(child);
1945 mutex_unlock(&event->child_mutex);
1946}
1947
1948static void perf_event_for_each(struct perf_event *event,
1949 void (*func)(struct perf_event *))
1950{
1951 struct perf_event_context *ctx = event->ctx;
1952 struct perf_event *sibling;
1953
1954 WARN_ON_ONCE(ctx->parent_ctx);
1955 mutex_lock(&ctx->mutex);
1956 event = event->group_leader;
1957
1958 perf_event_for_each_child(event, func);
1959 func(event);
1960 list_for_each_entry(sibling, &event->sibling_list, group_entry)
1961 perf_event_for_each_child(event, func);
1962 mutex_unlock(&ctx->mutex);
1963}
1964
1965static int perf_event_period(struct perf_event *event, u64 __user *arg)
1966{
1967 struct perf_event_context *ctx = event->ctx;
1968 unsigned long size;
1969 int ret = 0;
1970 u64 value;
1971
1972 if (!event->attr.sample_period)
1973 return -EINVAL;
1974
1975 size = copy_from_user(&value, arg, sizeof(value));
1976 if (size != sizeof(value))
1977 return -EFAULT;
1978
1979 if (!value)
1980 return -EINVAL;
1981
1982 spin_lock_irq(&ctx->lock);
1983 if (event->attr.freq) {
1984 if (value > sysctl_perf_event_sample_rate) {
1985 ret = -EINVAL;
1986 goto unlock;
1987 }
1988
1989 event->attr.sample_freq = value;
1990 } else {
1991 event->attr.sample_period = value;
1992 event->hw.sample_period = value;
1993 }
1994unlock:
1995 spin_unlock_irq(&ctx->lock);
1996
1997 return ret;
1998}
1999
Li Zefan6fb29152009-10-15 11:21:42 +08002000static int perf_event_set_output(struct perf_event *event, int output_fd);
2001static int perf_event_set_filter(struct perf_event *event, void __user *arg);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002002
2003static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2004{
2005 struct perf_event *event = file->private_data;
2006 void (*func)(struct perf_event *);
2007 u32 flags = arg;
2008
2009 switch (cmd) {
2010 case PERF_EVENT_IOC_ENABLE:
2011 func = perf_event_enable;
2012 break;
2013 case PERF_EVENT_IOC_DISABLE:
2014 func = perf_event_disable;
2015 break;
2016 case PERF_EVENT_IOC_RESET:
2017 func = perf_event_reset;
2018 break;
2019
2020 case PERF_EVENT_IOC_REFRESH:
2021 return perf_event_refresh(event, arg);
2022
2023 case PERF_EVENT_IOC_PERIOD:
2024 return perf_event_period(event, (u64 __user *)arg);
2025
2026 case PERF_EVENT_IOC_SET_OUTPUT:
2027 return perf_event_set_output(event, arg);
2028
Li Zefan6fb29152009-10-15 11:21:42 +08002029 case PERF_EVENT_IOC_SET_FILTER:
2030 return perf_event_set_filter(event, (void __user *)arg);
2031
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002032 default:
2033 return -ENOTTY;
2034 }
2035
2036 if (flags & PERF_IOC_FLAG_GROUP)
2037 perf_event_for_each(event, func);
2038 else
2039 perf_event_for_each_child(event, func);
2040
2041 return 0;
2042}
2043
2044int perf_event_task_enable(void)
2045{
2046 struct perf_event *event;
2047
2048 mutex_lock(&current->perf_event_mutex);
2049 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2050 perf_event_for_each_child(event, perf_event_enable);
2051 mutex_unlock(&current->perf_event_mutex);
2052
2053 return 0;
2054}
2055
2056int perf_event_task_disable(void)
2057{
2058 struct perf_event *event;
2059
2060 mutex_lock(&current->perf_event_mutex);
2061 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2062 perf_event_for_each_child(event, perf_event_disable);
2063 mutex_unlock(&current->perf_event_mutex);
2064
2065 return 0;
2066}
2067
2068#ifndef PERF_EVENT_INDEX_OFFSET
2069# define PERF_EVENT_INDEX_OFFSET 0
2070#endif
2071
2072static int perf_event_index(struct perf_event *event)
2073{
2074 if (event->state != PERF_EVENT_STATE_ACTIVE)
2075 return 0;
2076
2077 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2078}
2079
2080/*
2081 * Callers need to ensure there can be no nesting of this function, otherwise
2082 * the seqlock logic goes bad. We can not serialize this because the arch
2083 * code calls this from NMI context.
2084 */
2085void perf_event_update_userpage(struct perf_event *event)
2086{
2087 struct perf_event_mmap_page *userpg;
2088 struct perf_mmap_data *data;
2089
2090 rcu_read_lock();
2091 data = rcu_dereference(event->data);
2092 if (!data)
2093 goto unlock;
2094
2095 userpg = data->user_page;
2096
2097 /*
2098 * Disable preemption so as to not let the corresponding user-space
2099 * spin too long if we get preempted.
2100 */
2101 preempt_disable();
2102 ++userpg->lock;
2103 barrier();
2104 userpg->index = perf_event_index(event);
2105 userpg->offset = atomic64_read(&event->count);
2106 if (event->state == PERF_EVENT_STATE_ACTIVE)
2107 userpg->offset -= atomic64_read(&event->hw.prev_count);
2108
2109 userpg->time_enabled = event->total_time_enabled +
2110 atomic64_read(&event->child_total_time_enabled);
2111
2112 userpg->time_running = event->total_time_running +
2113 atomic64_read(&event->child_total_time_running);
2114
2115 barrier();
2116 ++userpg->lock;
2117 preempt_enable();
2118unlock:
2119 rcu_read_unlock();
2120}
2121
Peter Zijlstra906010b2009-09-21 16:08:49 +02002122static unsigned long perf_data_size(struct perf_mmap_data *data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002123{
Peter Zijlstra906010b2009-09-21 16:08:49 +02002124 return data->nr_pages << (PAGE_SHIFT + data->data_order);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002125}
2126
Peter Zijlstra906010b2009-09-21 16:08:49 +02002127#ifndef CONFIG_PERF_USE_VMALLOC
2128
2129/*
2130 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2131 */
2132
2133static struct page *
2134perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2135{
2136 if (pgoff > data->nr_pages)
2137 return NULL;
2138
2139 if (pgoff == 0)
2140 return virt_to_page(data->user_page);
2141
2142 return virt_to_page(data->data_pages[pgoff - 1]);
2143}
2144
2145static struct perf_mmap_data *
2146perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002147{
2148 struct perf_mmap_data *data;
2149 unsigned long size;
2150 int i;
2151
2152 WARN_ON(atomic_read(&event->mmap_count));
2153
2154 size = sizeof(struct perf_mmap_data);
2155 size += nr_pages * sizeof(void *);
2156
2157 data = kzalloc(size, GFP_KERNEL);
2158 if (!data)
2159 goto fail;
2160
2161 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2162 if (!data->user_page)
2163 goto fail_user_page;
2164
2165 for (i = 0; i < nr_pages; i++) {
2166 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2167 if (!data->data_pages[i])
2168 goto fail_data_pages;
2169 }
2170
Peter Zijlstra906010b2009-09-21 16:08:49 +02002171 data->data_order = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002172 data->nr_pages = nr_pages;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002173
Peter Zijlstra906010b2009-09-21 16:08:49 +02002174 return data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002175
2176fail_data_pages:
2177 for (i--; i >= 0; i--)
2178 free_page((unsigned long)data->data_pages[i]);
2179
2180 free_page((unsigned long)data->user_page);
2181
2182fail_user_page:
2183 kfree(data);
2184
2185fail:
Peter Zijlstra906010b2009-09-21 16:08:49 +02002186 return NULL;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002187}
2188
2189static void perf_mmap_free_page(unsigned long addr)
2190{
2191 struct page *page = virt_to_page((void *)addr);
2192
2193 page->mapping = NULL;
2194 __free_page(page);
2195}
2196
Peter Zijlstra906010b2009-09-21 16:08:49 +02002197static void perf_mmap_data_free(struct perf_mmap_data *data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002198{
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002199 int i;
2200
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002201 perf_mmap_free_page((unsigned long)data->user_page);
2202 for (i = 0; i < data->nr_pages; i++)
2203 perf_mmap_free_page((unsigned long)data->data_pages[i]);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002204}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002205
Peter Zijlstra906010b2009-09-21 16:08:49 +02002206#else
2207
2208/*
2209 * Back perf_mmap() with vmalloc memory.
2210 *
2211 * Required for architectures that have d-cache aliasing issues.
2212 */
2213
2214static struct page *
2215perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2216{
2217 if (pgoff > (1UL << data->data_order))
2218 return NULL;
2219
2220 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2221}
2222
2223static void perf_mmap_unmark_page(void *addr)
2224{
2225 struct page *page = vmalloc_to_page(addr);
2226
2227 page->mapping = NULL;
2228}
2229
2230static void perf_mmap_data_free_work(struct work_struct *work)
2231{
2232 struct perf_mmap_data *data;
2233 void *base;
2234 int i, nr;
2235
2236 data = container_of(work, struct perf_mmap_data, work);
2237 nr = 1 << data->data_order;
2238
2239 base = data->user_page;
2240 for (i = 0; i < nr + 1; i++)
2241 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2242
2243 vfree(base);
2244}
2245
2246static void perf_mmap_data_free(struct perf_mmap_data *data)
2247{
2248 schedule_work(&data->work);
2249}
2250
2251static struct perf_mmap_data *
2252perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2253{
2254 struct perf_mmap_data *data;
2255 unsigned long size;
2256 void *all_buf;
2257
2258 WARN_ON(atomic_read(&event->mmap_count));
2259
2260 size = sizeof(struct perf_mmap_data);
2261 size += sizeof(void *);
2262
2263 data = kzalloc(size, GFP_KERNEL);
2264 if (!data)
2265 goto fail;
2266
2267 INIT_WORK(&data->work, perf_mmap_data_free_work);
2268
2269 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2270 if (!all_buf)
2271 goto fail_all_buf;
2272
2273 data->user_page = all_buf;
2274 data->data_pages[0] = all_buf + PAGE_SIZE;
2275 data->data_order = ilog2(nr_pages);
2276 data->nr_pages = 1;
2277
2278 return data;
2279
2280fail_all_buf:
2281 kfree(data);
2282
2283fail:
2284 return NULL;
2285}
2286
2287#endif
2288
2289static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2290{
2291 struct perf_event *event = vma->vm_file->private_data;
2292 struct perf_mmap_data *data;
2293 int ret = VM_FAULT_SIGBUS;
2294
2295 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2296 if (vmf->pgoff == 0)
2297 ret = 0;
2298 return ret;
2299 }
2300
2301 rcu_read_lock();
2302 data = rcu_dereference(event->data);
2303 if (!data)
2304 goto unlock;
2305
2306 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2307 goto unlock;
2308
2309 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2310 if (!vmf->page)
2311 goto unlock;
2312
2313 get_page(vmf->page);
2314 vmf->page->mapping = vma->vm_file->f_mapping;
2315 vmf->page->index = vmf->pgoff;
2316
2317 ret = 0;
2318unlock:
2319 rcu_read_unlock();
2320
2321 return ret;
2322}
2323
2324static void
2325perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2326{
2327 long max_size = perf_data_size(data);
2328
2329 atomic_set(&data->lock, -1);
2330
2331 if (event->attr.watermark) {
2332 data->watermark = min_t(long, max_size,
2333 event->attr.wakeup_watermark);
2334 }
2335
2336 if (!data->watermark)
2337 data->watermark = max_t(long, PAGE_SIZE, max_size / 2);
2338
2339
2340 rcu_assign_pointer(event->data, data);
2341}
2342
2343static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2344{
2345 struct perf_mmap_data *data;
2346
2347 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2348 perf_mmap_data_free(data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002349 kfree(data);
2350}
2351
Peter Zijlstra906010b2009-09-21 16:08:49 +02002352static void perf_mmap_data_release(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002353{
2354 struct perf_mmap_data *data = event->data;
2355
2356 WARN_ON(atomic_read(&event->mmap_count));
2357
2358 rcu_assign_pointer(event->data, NULL);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002359 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002360}
2361
2362static void perf_mmap_open(struct vm_area_struct *vma)
2363{
2364 struct perf_event *event = vma->vm_file->private_data;
2365
2366 atomic_inc(&event->mmap_count);
2367}
2368
2369static void perf_mmap_close(struct vm_area_struct *vma)
2370{
2371 struct perf_event *event = vma->vm_file->private_data;
2372
2373 WARN_ON_ONCE(event->ctx->parent_ctx);
2374 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
Peter Zijlstra906010b2009-09-21 16:08:49 +02002375 unsigned long size = perf_data_size(event->data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002376 struct user_struct *user = current_user();
2377
Peter Zijlstra906010b2009-09-21 16:08:49 +02002378 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002379 vma->vm_mm->locked_vm -= event->data->nr_locked;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002380 perf_mmap_data_release(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002381 mutex_unlock(&event->mmap_mutex);
2382 }
2383}
2384
Alexey Dobriyanf0f37e22009-09-27 22:29:37 +04002385static const struct vm_operations_struct perf_mmap_vmops = {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002386 .open = perf_mmap_open,
2387 .close = perf_mmap_close,
2388 .fault = perf_mmap_fault,
2389 .page_mkwrite = perf_mmap_fault,
2390};
2391
2392static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2393{
2394 struct perf_event *event = file->private_data;
2395 unsigned long user_locked, user_lock_limit;
2396 struct user_struct *user = current_user();
2397 unsigned long locked, lock_limit;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002398 struct perf_mmap_data *data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002399 unsigned long vma_size;
2400 unsigned long nr_pages;
2401 long user_extra, extra;
2402 int ret = 0;
2403
2404 if (!(vma->vm_flags & VM_SHARED))
2405 return -EINVAL;
2406
2407 vma_size = vma->vm_end - vma->vm_start;
2408 nr_pages = (vma_size / PAGE_SIZE) - 1;
2409
2410 /*
2411 * If we have data pages ensure they're a power-of-two number, so we
2412 * can do bitmasks instead of modulo.
2413 */
2414 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2415 return -EINVAL;
2416
2417 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2418 return -EINVAL;
2419
2420 if (vma->vm_pgoff != 0)
2421 return -EINVAL;
2422
2423 WARN_ON_ONCE(event->ctx->parent_ctx);
2424 mutex_lock(&event->mmap_mutex);
2425 if (event->output) {
2426 ret = -EINVAL;
2427 goto unlock;
2428 }
2429
2430 if (atomic_inc_not_zero(&event->mmap_count)) {
2431 if (nr_pages != event->data->nr_pages)
2432 ret = -EINVAL;
2433 goto unlock;
2434 }
2435
2436 user_extra = nr_pages + 1;
2437 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2438
2439 /*
2440 * Increase the limit linearly with more CPUs:
2441 */
2442 user_lock_limit *= num_online_cpus();
2443
2444 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2445
2446 extra = 0;
2447 if (user_locked > user_lock_limit)
2448 extra = user_locked - user_lock_limit;
2449
2450 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2451 lock_limit >>= PAGE_SHIFT;
2452 locked = vma->vm_mm->locked_vm + extra;
2453
2454 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2455 !capable(CAP_IPC_LOCK)) {
2456 ret = -EPERM;
2457 goto unlock;
2458 }
2459
2460 WARN_ON(event->data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002461
2462 data = perf_mmap_data_alloc(event, nr_pages);
2463 ret = -ENOMEM;
2464 if (!data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002465 goto unlock;
2466
Peter Zijlstra906010b2009-09-21 16:08:49 +02002467 ret = 0;
2468 perf_mmap_data_init(event, data);
2469
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002470 atomic_set(&event->mmap_count, 1);
2471 atomic_long_add(user_extra, &user->locked_vm);
2472 vma->vm_mm->locked_vm += extra;
2473 event->data->nr_locked = extra;
2474 if (vma->vm_flags & VM_WRITE)
2475 event->data->writable = 1;
2476
2477unlock:
2478 mutex_unlock(&event->mmap_mutex);
2479
2480 vma->vm_flags |= VM_RESERVED;
2481 vma->vm_ops = &perf_mmap_vmops;
2482
2483 return ret;
2484}
2485
2486static int perf_fasync(int fd, struct file *filp, int on)
2487{
2488 struct inode *inode = filp->f_path.dentry->d_inode;
2489 struct perf_event *event = filp->private_data;
2490 int retval;
2491
2492 mutex_lock(&inode->i_mutex);
2493 retval = fasync_helper(fd, filp, on, &event->fasync);
2494 mutex_unlock(&inode->i_mutex);
2495
2496 if (retval < 0)
2497 return retval;
2498
2499 return 0;
2500}
2501
2502static const struct file_operations perf_fops = {
2503 .release = perf_release,
2504 .read = perf_read,
2505 .poll = perf_poll,
2506 .unlocked_ioctl = perf_ioctl,
2507 .compat_ioctl = perf_ioctl,
2508 .mmap = perf_mmap,
2509 .fasync = perf_fasync,
2510};
2511
2512/*
2513 * Perf event wakeup
2514 *
2515 * If there's data, ensure we set the poll() state and publish everything
2516 * to user-space before waking everybody up.
2517 */
2518
2519void perf_event_wakeup(struct perf_event *event)
2520{
2521 wake_up_all(&event->waitq);
2522
2523 if (event->pending_kill) {
2524 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2525 event->pending_kill = 0;
2526 }
2527}
2528
2529/*
2530 * Pending wakeups
2531 *
2532 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2533 *
2534 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2535 * single linked list and use cmpxchg() to add entries lockless.
2536 */
2537
2538static void perf_pending_event(struct perf_pending_entry *entry)
2539{
2540 struct perf_event *event = container_of(entry,
2541 struct perf_event, pending);
2542
2543 if (event->pending_disable) {
2544 event->pending_disable = 0;
2545 __perf_event_disable(event);
2546 }
2547
2548 if (event->pending_wakeup) {
2549 event->pending_wakeup = 0;
2550 perf_event_wakeup(event);
2551 }
2552}
2553
2554#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2555
2556static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2557 PENDING_TAIL,
2558};
2559
2560static void perf_pending_queue(struct perf_pending_entry *entry,
2561 void (*func)(struct perf_pending_entry *))
2562{
2563 struct perf_pending_entry **head;
2564
2565 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2566 return;
2567
2568 entry->func = func;
2569
2570 head = &get_cpu_var(perf_pending_head);
2571
2572 do {
2573 entry->next = *head;
2574 } while (cmpxchg(head, entry->next, entry) != entry->next);
2575
2576 set_perf_event_pending();
2577
2578 put_cpu_var(perf_pending_head);
2579}
2580
2581static int __perf_pending_run(void)
2582{
2583 struct perf_pending_entry *list;
2584 int nr = 0;
2585
2586 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2587 while (list != PENDING_TAIL) {
2588 void (*func)(struct perf_pending_entry *);
2589 struct perf_pending_entry *entry = list;
2590
2591 list = list->next;
2592
2593 func = entry->func;
2594 entry->next = NULL;
2595 /*
2596 * Ensure we observe the unqueue before we issue the wakeup,
2597 * so that we won't be waiting forever.
2598 * -- see perf_not_pending().
2599 */
2600 smp_wmb();
2601
2602 func(entry);
2603 nr++;
2604 }
2605
2606 return nr;
2607}
2608
2609static inline int perf_not_pending(struct perf_event *event)
2610{
2611 /*
2612 * If we flush on whatever cpu we run, there is a chance we don't
2613 * need to wait.
2614 */
2615 get_cpu();
2616 __perf_pending_run();
2617 put_cpu();
2618
2619 /*
2620 * Ensure we see the proper queue state before going to sleep
2621 * so that we do not miss the wakeup. -- see perf_pending_handle()
2622 */
2623 smp_rmb();
2624 return event->pending.next == NULL;
2625}
2626
2627static void perf_pending_sync(struct perf_event *event)
2628{
2629 wait_event(event->waitq, perf_not_pending(event));
2630}
2631
2632void perf_event_do_pending(void)
2633{
2634 __perf_pending_run();
2635}
2636
2637/*
2638 * Callchain support -- arch specific
2639 */
2640
2641__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2642{
2643 return NULL;
2644}
2645
2646/*
2647 * Output
2648 */
2649static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2650 unsigned long offset, unsigned long head)
2651{
2652 unsigned long mask;
2653
2654 if (!data->writable)
2655 return true;
2656
Peter Zijlstra906010b2009-09-21 16:08:49 +02002657 mask = perf_data_size(data) - 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002658
2659 offset = (offset - tail) & mask;
2660 head = (head - tail) & mask;
2661
2662 if ((int)(head - offset) < 0)
2663 return false;
2664
2665 return true;
2666}
2667
2668static void perf_output_wakeup(struct perf_output_handle *handle)
2669{
2670 atomic_set(&handle->data->poll, POLL_IN);
2671
2672 if (handle->nmi) {
2673 handle->event->pending_wakeup = 1;
2674 perf_pending_queue(&handle->event->pending,
2675 perf_pending_event);
2676 } else
2677 perf_event_wakeup(handle->event);
2678}
2679
2680/*
2681 * Curious locking construct.
2682 *
2683 * We need to ensure a later event_id doesn't publish a head when a former
2684 * event_id isn't done writing. However since we need to deal with NMIs we
2685 * cannot fully serialize things.
2686 *
2687 * What we do is serialize between CPUs so we only have to deal with NMI
2688 * nesting on a single CPU.
2689 *
2690 * We only publish the head (and generate a wakeup) when the outer-most
2691 * event_id completes.
2692 */
2693static void perf_output_lock(struct perf_output_handle *handle)
2694{
2695 struct perf_mmap_data *data = handle->data;
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002696 int cur, cpu = get_cpu();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002697
2698 handle->locked = 0;
2699
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002700 for (;;) {
2701 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2702 if (cur == -1) {
2703 handle->locked = 1;
2704 break;
2705 }
2706 if (cur == cpu)
2707 break;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002708
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002709 cpu_relax();
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002710 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002711}
2712
2713static void perf_output_unlock(struct perf_output_handle *handle)
2714{
2715 struct perf_mmap_data *data = handle->data;
2716 unsigned long head;
2717 int cpu;
2718
2719 data->done_head = data->head;
2720
2721 if (!handle->locked)
2722 goto out;
2723
2724again:
2725 /*
2726 * The xchg implies a full barrier that ensures all writes are done
2727 * before we publish the new head, matched by a rmb() in userspace when
2728 * reading this position.
2729 */
2730 while ((head = atomic_long_xchg(&data->done_head, 0)))
2731 data->user_page->data_head = head;
2732
2733 /*
2734 * NMI can happen here, which means we can miss a done_head update.
2735 */
2736
2737 cpu = atomic_xchg(&data->lock, -1);
2738 WARN_ON_ONCE(cpu != smp_processor_id());
2739
2740 /*
2741 * Therefore we have to validate we did not indeed do so.
2742 */
2743 if (unlikely(atomic_long_read(&data->done_head))) {
2744 /*
2745 * Since we had it locked, we can lock it again.
2746 */
2747 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2748 cpu_relax();
2749
2750 goto again;
2751 }
2752
2753 if (atomic_xchg(&data->wakeup, 0))
2754 perf_output_wakeup(handle);
2755out:
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002756 put_cpu();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002757}
2758
2759void perf_output_copy(struct perf_output_handle *handle,
2760 const void *buf, unsigned int len)
2761{
2762 unsigned int pages_mask;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002763 unsigned long offset;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002764 unsigned int size;
2765 void **pages;
2766
2767 offset = handle->offset;
2768 pages_mask = handle->data->nr_pages - 1;
2769 pages = handle->data->data_pages;
2770
2771 do {
Peter Zijlstra906010b2009-09-21 16:08:49 +02002772 unsigned long page_offset;
2773 unsigned long page_size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002774 int nr;
2775
2776 nr = (offset >> PAGE_SHIFT) & pages_mask;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002777 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
2778 page_offset = offset & (page_size - 1);
2779 size = min_t(unsigned int, page_size - page_offset, len);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002780
2781 memcpy(pages[nr] + page_offset, buf, size);
2782
2783 len -= size;
2784 buf += size;
2785 offset += size;
2786 } while (len);
2787
2788 handle->offset = offset;
2789
2790 /*
2791 * Check we didn't copy past our reservation window, taking the
2792 * possible unsigned int wrap into account.
2793 */
2794 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2795}
2796
2797int perf_output_begin(struct perf_output_handle *handle,
2798 struct perf_event *event, unsigned int size,
2799 int nmi, int sample)
2800{
2801 struct perf_event *output_event;
2802 struct perf_mmap_data *data;
2803 unsigned long tail, offset, head;
2804 int have_lost;
2805 struct {
2806 struct perf_event_header header;
2807 u64 id;
2808 u64 lost;
2809 } lost_event;
2810
2811 rcu_read_lock();
2812 /*
2813 * For inherited events we send all the output towards the parent.
2814 */
2815 if (event->parent)
2816 event = event->parent;
2817
2818 output_event = rcu_dereference(event->output);
2819 if (output_event)
2820 event = output_event;
2821
2822 data = rcu_dereference(event->data);
2823 if (!data)
2824 goto out;
2825
2826 handle->data = data;
2827 handle->event = event;
2828 handle->nmi = nmi;
2829 handle->sample = sample;
2830
2831 if (!data->nr_pages)
2832 goto fail;
2833
2834 have_lost = atomic_read(&data->lost);
2835 if (have_lost)
2836 size += sizeof(lost_event);
2837
2838 perf_output_lock(handle);
2839
2840 do {
2841 /*
2842 * Userspace could choose to issue a mb() before updating the
2843 * tail pointer. So that all reads will be completed before the
2844 * write is issued.
2845 */
2846 tail = ACCESS_ONCE(data->user_page->data_tail);
2847 smp_rmb();
2848 offset = head = atomic_long_read(&data->head);
2849 head += size;
2850 if (unlikely(!perf_output_space(data, tail, offset, head)))
2851 goto fail;
2852 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2853
2854 handle->offset = offset;
2855 handle->head = head;
2856
2857 if (head - tail > data->watermark)
2858 atomic_set(&data->wakeup, 1);
2859
2860 if (have_lost) {
2861 lost_event.header.type = PERF_RECORD_LOST;
2862 lost_event.header.misc = 0;
2863 lost_event.header.size = sizeof(lost_event);
2864 lost_event.id = event->id;
2865 lost_event.lost = atomic_xchg(&data->lost, 0);
2866
2867 perf_output_put(handle, lost_event);
2868 }
2869
2870 return 0;
2871
2872fail:
2873 atomic_inc(&data->lost);
2874 perf_output_unlock(handle);
2875out:
2876 rcu_read_unlock();
2877
2878 return -ENOSPC;
2879}
2880
2881void perf_output_end(struct perf_output_handle *handle)
2882{
2883 struct perf_event *event = handle->event;
2884 struct perf_mmap_data *data = handle->data;
2885
2886 int wakeup_events = event->attr.wakeup_events;
2887
2888 if (handle->sample && wakeup_events) {
2889 int events = atomic_inc_return(&data->events);
2890 if (events >= wakeup_events) {
2891 atomic_sub(wakeup_events, &data->events);
2892 atomic_set(&data->wakeup, 1);
2893 }
2894 }
2895
2896 perf_output_unlock(handle);
2897 rcu_read_unlock();
2898}
2899
2900static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
2901{
2902 /*
2903 * only top level events have the pid namespace they were created in
2904 */
2905 if (event->parent)
2906 event = event->parent;
2907
2908 return task_tgid_nr_ns(p, event->ns);
2909}
2910
2911static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
2912{
2913 /*
2914 * only top level events have the pid namespace they were created in
2915 */
2916 if (event->parent)
2917 event = event->parent;
2918
2919 return task_pid_nr_ns(p, event->ns);
2920}
2921
2922static void perf_output_read_one(struct perf_output_handle *handle,
2923 struct perf_event *event)
2924{
2925 u64 read_format = event->attr.read_format;
2926 u64 values[4];
2927 int n = 0;
2928
2929 values[n++] = atomic64_read(&event->count);
2930 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2931 values[n++] = event->total_time_enabled +
2932 atomic64_read(&event->child_total_time_enabled);
2933 }
2934 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2935 values[n++] = event->total_time_running +
2936 atomic64_read(&event->child_total_time_running);
2937 }
2938 if (read_format & PERF_FORMAT_ID)
2939 values[n++] = primary_event_id(event);
2940
2941 perf_output_copy(handle, values, n * sizeof(u64));
2942}
2943
2944/*
2945 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2946 */
2947static void perf_output_read_group(struct perf_output_handle *handle,
2948 struct perf_event *event)
2949{
2950 struct perf_event *leader = event->group_leader, *sub;
2951 u64 read_format = event->attr.read_format;
2952 u64 values[5];
2953 int n = 0;
2954
2955 values[n++] = 1 + leader->nr_siblings;
2956
2957 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2958 values[n++] = leader->total_time_enabled;
2959
2960 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2961 values[n++] = leader->total_time_running;
2962
2963 if (leader != event)
2964 leader->pmu->read(leader);
2965
2966 values[n++] = atomic64_read(&leader->count);
2967 if (read_format & PERF_FORMAT_ID)
2968 values[n++] = primary_event_id(leader);
2969
2970 perf_output_copy(handle, values, n * sizeof(u64));
2971
2972 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2973 n = 0;
2974
2975 if (sub != event)
2976 sub->pmu->read(sub);
2977
2978 values[n++] = atomic64_read(&sub->count);
2979 if (read_format & PERF_FORMAT_ID)
2980 values[n++] = primary_event_id(sub);
2981
2982 perf_output_copy(handle, values, n * sizeof(u64));
2983 }
2984}
2985
2986static void perf_output_read(struct perf_output_handle *handle,
2987 struct perf_event *event)
2988{
2989 if (event->attr.read_format & PERF_FORMAT_GROUP)
2990 perf_output_read_group(handle, event);
2991 else
2992 perf_output_read_one(handle, event);
2993}
2994
2995void perf_output_sample(struct perf_output_handle *handle,
2996 struct perf_event_header *header,
2997 struct perf_sample_data *data,
2998 struct perf_event *event)
2999{
3000 u64 sample_type = data->type;
3001
3002 perf_output_put(handle, *header);
3003
3004 if (sample_type & PERF_SAMPLE_IP)
3005 perf_output_put(handle, data->ip);
3006
3007 if (sample_type & PERF_SAMPLE_TID)
3008 perf_output_put(handle, data->tid_entry);
3009
3010 if (sample_type & PERF_SAMPLE_TIME)
3011 perf_output_put(handle, data->time);
3012
3013 if (sample_type & PERF_SAMPLE_ADDR)
3014 perf_output_put(handle, data->addr);
3015
3016 if (sample_type & PERF_SAMPLE_ID)
3017 perf_output_put(handle, data->id);
3018
3019 if (sample_type & PERF_SAMPLE_STREAM_ID)
3020 perf_output_put(handle, data->stream_id);
3021
3022 if (sample_type & PERF_SAMPLE_CPU)
3023 perf_output_put(handle, data->cpu_entry);
3024
3025 if (sample_type & PERF_SAMPLE_PERIOD)
3026 perf_output_put(handle, data->period);
3027
3028 if (sample_type & PERF_SAMPLE_READ)
3029 perf_output_read(handle, event);
3030
3031 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3032 if (data->callchain) {
3033 int size = 1;
3034
3035 if (data->callchain)
3036 size += data->callchain->nr;
3037
3038 size *= sizeof(u64);
3039
3040 perf_output_copy(handle, data->callchain, size);
3041 } else {
3042 u64 nr = 0;
3043 perf_output_put(handle, nr);
3044 }
3045 }
3046
3047 if (sample_type & PERF_SAMPLE_RAW) {
3048 if (data->raw) {
3049 perf_output_put(handle, data->raw->size);
3050 perf_output_copy(handle, data->raw->data,
3051 data->raw->size);
3052 } else {
3053 struct {
3054 u32 size;
3055 u32 data;
3056 } raw = {
3057 .size = sizeof(u32),
3058 .data = 0,
3059 };
3060 perf_output_put(handle, raw);
3061 }
3062 }
3063}
3064
3065void perf_prepare_sample(struct perf_event_header *header,
3066 struct perf_sample_data *data,
3067 struct perf_event *event,
3068 struct pt_regs *regs)
3069{
3070 u64 sample_type = event->attr.sample_type;
3071
3072 data->type = sample_type;
3073
3074 header->type = PERF_RECORD_SAMPLE;
3075 header->size = sizeof(*header);
3076
3077 header->misc = 0;
3078 header->misc |= perf_misc_flags(regs);
3079
3080 if (sample_type & PERF_SAMPLE_IP) {
3081 data->ip = perf_instruction_pointer(regs);
3082
3083 header->size += sizeof(data->ip);
3084 }
3085
3086 if (sample_type & PERF_SAMPLE_TID) {
3087 /* namespace issues */
3088 data->tid_entry.pid = perf_event_pid(event, current);
3089 data->tid_entry.tid = perf_event_tid(event, current);
3090
3091 header->size += sizeof(data->tid_entry);
3092 }
3093
3094 if (sample_type & PERF_SAMPLE_TIME) {
3095 data->time = perf_clock();
3096
3097 header->size += sizeof(data->time);
3098 }
3099
3100 if (sample_type & PERF_SAMPLE_ADDR)
3101 header->size += sizeof(data->addr);
3102
3103 if (sample_type & PERF_SAMPLE_ID) {
3104 data->id = primary_event_id(event);
3105
3106 header->size += sizeof(data->id);
3107 }
3108
3109 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3110 data->stream_id = event->id;
3111
3112 header->size += sizeof(data->stream_id);
3113 }
3114
3115 if (sample_type & PERF_SAMPLE_CPU) {
3116 data->cpu_entry.cpu = raw_smp_processor_id();
3117 data->cpu_entry.reserved = 0;
3118
3119 header->size += sizeof(data->cpu_entry);
3120 }
3121
3122 if (sample_type & PERF_SAMPLE_PERIOD)
3123 header->size += sizeof(data->period);
3124
3125 if (sample_type & PERF_SAMPLE_READ)
3126 header->size += perf_event_read_size(event);
3127
3128 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3129 int size = 1;
3130
3131 data->callchain = perf_callchain(regs);
3132
3133 if (data->callchain)
3134 size += data->callchain->nr;
3135
3136 header->size += size * sizeof(u64);
3137 }
3138
3139 if (sample_type & PERF_SAMPLE_RAW) {
3140 int size = sizeof(u32);
3141
3142 if (data->raw)
3143 size += data->raw->size;
3144 else
3145 size += sizeof(u32);
3146
3147 WARN_ON_ONCE(size & (sizeof(u64)-1));
3148 header->size += size;
3149 }
3150}
3151
3152static void perf_event_output(struct perf_event *event, int nmi,
3153 struct perf_sample_data *data,
3154 struct pt_regs *regs)
3155{
3156 struct perf_output_handle handle;
3157 struct perf_event_header header;
3158
3159 perf_prepare_sample(&header, data, event, regs);
3160
3161 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3162 return;
3163
3164 perf_output_sample(&handle, &header, data, event);
3165
3166 perf_output_end(&handle);
3167}
3168
3169/*
3170 * read event_id
3171 */
3172
3173struct perf_read_event {
3174 struct perf_event_header header;
3175
3176 u32 pid;
3177 u32 tid;
3178};
3179
3180static void
3181perf_event_read_event(struct perf_event *event,
3182 struct task_struct *task)
3183{
3184 struct perf_output_handle handle;
3185 struct perf_read_event read_event = {
3186 .header = {
3187 .type = PERF_RECORD_READ,
3188 .misc = 0,
3189 .size = sizeof(read_event) + perf_event_read_size(event),
3190 },
3191 .pid = perf_event_pid(event, task),
3192 .tid = perf_event_tid(event, task),
3193 };
3194 int ret;
3195
3196 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3197 if (ret)
3198 return;
3199
3200 perf_output_put(&handle, read_event);
3201 perf_output_read(&handle, event);
3202
3203 perf_output_end(&handle);
3204}
3205
3206/*
3207 * task tracking -- fork/exit
3208 *
3209 * enabled by: attr.comm | attr.mmap | attr.task
3210 */
3211
3212struct perf_task_event {
3213 struct task_struct *task;
3214 struct perf_event_context *task_ctx;
3215
3216 struct {
3217 struct perf_event_header header;
3218
3219 u32 pid;
3220 u32 ppid;
3221 u32 tid;
3222 u32 ptid;
3223 u64 time;
3224 } event_id;
3225};
3226
3227static void perf_event_task_output(struct perf_event *event,
3228 struct perf_task_event *task_event)
3229{
3230 struct perf_output_handle handle;
3231 int size;
3232 struct task_struct *task = task_event->task;
3233 int ret;
3234
3235 size = task_event->event_id.header.size;
3236 ret = perf_output_begin(&handle, event, size, 0, 0);
3237
3238 if (ret)
3239 return;
3240
3241 task_event->event_id.pid = perf_event_pid(event, task);
3242 task_event->event_id.ppid = perf_event_pid(event, current);
3243
3244 task_event->event_id.tid = perf_event_tid(event, task);
3245 task_event->event_id.ptid = perf_event_tid(event, current);
3246
3247 task_event->event_id.time = perf_clock();
3248
3249 perf_output_put(&handle, task_event->event_id);
3250
3251 perf_output_end(&handle);
3252}
3253
3254static int perf_event_task_match(struct perf_event *event)
3255{
3256 if (event->attr.comm || event->attr.mmap || event->attr.task)
3257 return 1;
3258
3259 return 0;
3260}
3261
3262static void perf_event_task_ctx(struct perf_event_context *ctx,
3263 struct perf_task_event *task_event)
3264{
3265 struct perf_event *event;
3266
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003267 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3268 if (perf_event_task_match(event))
3269 perf_event_task_output(event, task_event);
3270 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003271}
3272
3273static void perf_event_task_event(struct perf_task_event *task_event)
3274{
3275 struct perf_cpu_context *cpuctx;
3276 struct perf_event_context *ctx = task_event->task_ctx;
3277
Peter Zijlstrad6ff86c2009-11-20 22:19:46 +01003278 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003279 cpuctx = &get_cpu_var(perf_cpu_context);
3280 perf_event_task_ctx(&cpuctx->ctx, task_event);
3281 put_cpu_var(perf_cpu_context);
3282
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003283 if (!ctx)
3284 ctx = rcu_dereference(task_event->task->perf_event_ctxp);
3285 if (ctx)
3286 perf_event_task_ctx(ctx, task_event);
3287 rcu_read_unlock();
3288}
3289
3290static void perf_event_task(struct task_struct *task,
3291 struct perf_event_context *task_ctx,
3292 int new)
3293{
3294 struct perf_task_event task_event;
3295
3296 if (!atomic_read(&nr_comm_events) &&
3297 !atomic_read(&nr_mmap_events) &&
3298 !atomic_read(&nr_task_events))
3299 return;
3300
3301 task_event = (struct perf_task_event){
3302 .task = task,
3303 .task_ctx = task_ctx,
3304 .event_id = {
3305 .header = {
3306 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3307 .misc = 0,
3308 .size = sizeof(task_event.event_id),
3309 },
3310 /* .pid */
3311 /* .ppid */
3312 /* .tid */
3313 /* .ptid */
3314 },
3315 };
3316
3317 perf_event_task_event(&task_event);
3318}
3319
3320void perf_event_fork(struct task_struct *task)
3321{
3322 perf_event_task(task, NULL, 1);
3323}
3324
3325/*
3326 * comm tracking
3327 */
3328
3329struct perf_comm_event {
3330 struct task_struct *task;
3331 char *comm;
3332 int comm_size;
3333
3334 struct {
3335 struct perf_event_header header;
3336
3337 u32 pid;
3338 u32 tid;
3339 } event_id;
3340};
3341
3342static void perf_event_comm_output(struct perf_event *event,
3343 struct perf_comm_event *comm_event)
3344{
3345 struct perf_output_handle handle;
3346 int size = comm_event->event_id.header.size;
3347 int ret = perf_output_begin(&handle, event, size, 0, 0);
3348
3349 if (ret)
3350 return;
3351
3352 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3353 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3354
3355 perf_output_put(&handle, comm_event->event_id);
3356 perf_output_copy(&handle, comm_event->comm,
3357 comm_event->comm_size);
3358 perf_output_end(&handle);
3359}
3360
3361static int perf_event_comm_match(struct perf_event *event)
3362{
3363 if (event->attr.comm)
3364 return 1;
3365
3366 return 0;
3367}
3368
3369static void perf_event_comm_ctx(struct perf_event_context *ctx,
3370 struct perf_comm_event *comm_event)
3371{
3372 struct perf_event *event;
3373
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003374 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3375 if (perf_event_comm_match(event))
3376 perf_event_comm_output(event, comm_event);
3377 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003378}
3379
3380static void perf_event_comm_event(struct perf_comm_event *comm_event)
3381{
3382 struct perf_cpu_context *cpuctx;
3383 struct perf_event_context *ctx;
3384 unsigned int size;
3385 char comm[TASK_COMM_LEN];
3386
3387 memset(comm, 0, sizeof(comm));
3388 strncpy(comm, comm_event->task->comm, sizeof(comm));
3389 size = ALIGN(strlen(comm)+1, sizeof(u64));
3390
3391 comm_event->comm = comm;
3392 comm_event->comm_size = size;
3393
3394 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3395
Peter Zijlstraf6595f32009-11-20 22:19:47 +01003396 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003397 cpuctx = &get_cpu_var(perf_cpu_context);
3398 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3399 put_cpu_var(perf_cpu_context);
3400
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003401 /*
3402 * doesn't really matter which of the child contexts the
3403 * events ends up in.
3404 */
3405 ctx = rcu_dereference(current->perf_event_ctxp);
3406 if (ctx)
3407 perf_event_comm_ctx(ctx, comm_event);
3408 rcu_read_unlock();
3409}
3410
3411void perf_event_comm(struct task_struct *task)
3412{
3413 struct perf_comm_event comm_event;
3414
3415 if (task->perf_event_ctxp)
3416 perf_event_enable_on_exec(task);
3417
3418 if (!atomic_read(&nr_comm_events))
3419 return;
3420
3421 comm_event = (struct perf_comm_event){
3422 .task = task,
3423 /* .comm */
3424 /* .comm_size */
3425 .event_id = {
3426 .header = {
3427 .type = PERF_RECORD_COMM,
3428 .misc = 0,
3429 /* .size */
3430 },
3431 /* .pid */
3432 /* .tid */
3433 },
3434 };
3435
3436 perf_event_comm_event(&comm_event);
3437}
3438
3439/*
3440 * mmap tracking
3441 */
3442
3443struct perf_mmap_event {
3444 struct vm_area_struct *vma;
3445
3446 const char *file_name;
3447 int file_size;
3448
3449 struct {
3450 struct perf_event_header header;
3451
3452 u32 pid;
3453 u32 tid;
3454 u64 start;
3455 u64 len;
3456 u64 pgoff;
3457 } event_id;
3458};
3459
3460static void perf_event_mmap_output(struct perf_event *event,
3461 struct perf_mmap_event *mmap_event)
3462{
3463 struct perf_output_handle handle;
3464 int size = mmap_event->event_id.header.size;
3465 int ret = perf_output_begin(&handle, event, size, 0, 0);
3466
3467 if (ret)
3468 return;
3469
3470 mmap_event->event_id.pid = perf_event_pid(event, current);
3471 mmap_event->event_id.tid = perf_event_tid(event, current);
3472
3473 perf_output_put(&handle, mmap_event->event_id);
3474 perf_output_copy(&handle, mmap_event->file_name,
3475 mmap_event->file_size);
3476 perf_output_end(&handle);
3477}
3478
3479static int perf_event_mmap_match(struct perf_event *event,
3480 struct perf_mmap_event *mmap_event)
3481{
3482 if (event->attr.mmap)
3483 return 1;
3484
3485 return 0;
3486}
3487
3488static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3489 struct perf_mmap_event *mmap_event)
3490{
3491 struct perf_event *event;
3492
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003493 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3494 if (perf_event_mmap_match(event, mmap_event))
3495 perf_event_mmap_output(event, mmap_event);
3496 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003497}
3498
3499static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3500{
3501 struct perf_cpu_context *cpuctx;
3502 struct perf_event_context *ctx;
3503 struct vm_area_struct *vma = mmap_event->vma;
3504 struct file *file = vma->vm_file;
3505 unsigned int size;
3506 char tmp[16];
3507 char *buf = NULL;
3508 const char *name;
3509
3510 memset(tmp, 0, sizeof(tmp));
3511
3512 if (file) {
3513 /*
3514 * d_path works from the end of the buffer backwards, so we
3515 * need to add enough zero bytes after the string to handle
3516 * the 64bit alignment we do later.
3517 */
3518 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3519 if (!buf) {
3520 name = strncpy(tmp, "//enomem", sizeof(tmp));
3521 goto got_name;
3522 }
3523 name = d_path(&file->f_path, buf, PATH_MAX);
3524 if (IS_ERR(name)) {
3525 name = strncpy(tmp, "//toolong", sizeof(tmp));
3526 goto got_name;
3527 }
3528 } else {
3529 if (arch_vma_name(mmap_event->vma)) {
3530 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3531 sizeof(tmp));
3532 goto got_name;
3533 }
3534
3535 if (!vma->vm_mm) {
3536 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3537 goto got_name;
3538 }
3539
3540 name = strncpy(tmp, "//anon", sizeof(tmp));
3541 goto got_name;
3542 }
3543
3544got_name:
3545 size = ALIGN(strlen(name)+1, sizeof(u64));
3546
3547 mmap_event->file_name = name;
3548 mmap_event->file_size = size;
3549
3550 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3551
Peter Zijlstraf6d9dd22009-11-20 22:19:48 +01003552 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003553 cpuctx = &get_cpu_var(perf_cpu_context);
3554 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3555 put_cpu_var(perf_cpu_context);
3556
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003557 /*
3558 * doesn't really matter which of the child contexts the
3559 * events ends up in.
3560 */
3561 ctx = rcu_dereference(current->perf_event_ctxp);
3562 if (ctx)
3563 perf_event_mmap_ctx(ctx, mmap_event);
3564 rcu_read_unlock();
3565
3566 kfree(buf);
3567}
3568
3569void __perf_event_mmap(struct vm_area_struct *vma)
3570{
3571 struct perf_mmap_event mmap_event;
3572
3573 if (!atomic_read(&nr_mmap_events))
3574 return;
3575
3576 mmap_event = (struct perf_mmap_event){
3577 .vma = vma,
3578 /* .file_name */
3579 /* .file_size */
3580 .event_id = {
3581 .header = {
3582 .type = PERF_RECORD_MMAP,
3583 .misc = 0,
3584 /* .size */
3585 },
3586 /* .pid */
3587 /* .tid */
3588 .start = vma->vm_start,
3589 .len = vma->vm_end - vma->vm_start,
3590 .pgoff = vma->vm_pgoff,
3591 },
3592 };
3593
3594 perf_event_mmap_event(&mmap_event);
3595}
3596
3597/*
3598 * IRQ throttle logging
3599 */
3600
3601static void perf_log_throttle(struct perf_event *event, int enable)
3602{
3603 struct perf_output_handle handle;
3604 int ret;
3605
3606 struct {
3607 struct perf_event_header header;
3608 u64 time;
3609 u64 id;
3610 u64 stream_id;
3611 } throttle_event = {
3612 .header = {
3613 .type = PERF_RECORD_THROTTLE,
3614 .misc = 0,
3615 .size = sizeof(throttle_event),
3616 },
3617 .time = perf_clock(),
3618 .id = primary_event_id(event),
3619 .stream_id = event->id,
3620 };
3621
3622 if (enable)
3623 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3624
3625 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3626 if (ret)
3627 return;
3628
3629 perf_output_put(&handle, throttle_event);
3630 perf_output_end(&handle);
3631}
3632
3633/*
3634 * Generic event overflow handling, sampling.
3635 */
3636
3637static int __perf_event_overflow(struct perf_event *event, int nmi,
3638 int throttle, struct perf_sample_data *data,
3639 struct pt_regs *regs)
3640{
3641 int events = atomic_read(&event->event_limit);
3642 struct hw_perf_event *hwc = &event->hw;
3643 int ret = 0;
3644
3645 throttle = (throttle && event->pmu->unthrottle != NULL);
3646
3647 if (!throttle) {
3648 hwc->interrupts++;
3649 } else {
3650 if (hwc->interrupts != MAX_INTERRUPTS) {
3651 hwc->interrupts++;
3652 if (HZ * hwc->interrupts >
3653 (u64)sysctl_perf_event_sample_rate) {
3654 hwc->interrupts = MAX_INTERRUPTS;
3655 perf_log_throttle(event, 0);
3656 ret = 1;
3657 }
3658 } else {
3659 /*
3660 * Keep re-disabling events even though on the previous
3661 * pass we disabled it - just in case we raced with a
3662 * sched-in and the event got enabled again:
3663 */
3664 ret = 1;
3665 }
3666 }
3667
3668 if (event->attr.freq) {
3669 u64 now = perf_clock();
3670 s64 delta = now - hwc->freq_stamp;
3671
3672 hwc->freq_stamp = now;
3673
3674 if (delta > 0 && delta < TICK_NSEC)
3675 perf_adjust_period(event, NSEC_PER_SEC / (int)delta);
3676 }
3677
3678 /*
3679 * XXX event_limit might not quite work as expected on inherited
3680 * events
3681 */
3682
3683 event->pending_kill = POLL_IN;
3684 if (events && atomic_dec_and_test(&event->event_limit)) {
3685 ret = 1;
3686 event->pending_kill = POLL_HUP;
3687 if (nmi) {
3688 event->pending_disable = 1;
3689 perf_pending_queue(&event->pending,
3690 perf_pending_event);
3691 } else
3692 perf_event_disable(event);
3693 }
3694
Peter Zijlstra453f19e2009-11-20 22:19:43 +01003695 if (event->overflow_handler)
3696 event->overflow_handler(event, nmi, data, regs);
3697 else
3698 perf_event_output(event, nmi, data, regs);
3699
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003700 return ret;
3701}
3702
3703int perf_event_overflow(struct perf_event *event, int nmi,
3704 struct perf_sample_data *data,
3705 struct pt_regs *regs)
3706{
3707 return __perf_event_overflow(event, nmi, 1, data, regs);
3708}
3709
3710/*
3711 * Generic software event infrastructure
3712 */
3713
3714/*
3715 * We directly increment event->count and keep a second value in
3716 * event->hw.period_left to count intervals. This period event
3717 * is kept in the range [-sample_period, 0] so that we can use the
3718 * sign as trigger.
3719 */
3720
3721static u64 perf_swevent_set_period(struct perf_event *event)
3722{
3723 struct hw_perf_event *hwc = &event->hw;
3724 u64 period = hwc->last_period;
3725 u64 nr, offset;
3726 s64 old, val;
3727
3728 hwc->last_period = hwc->sample_period;
3729
3730again:
3731 old = val = atomic64_read(&hwc->period_left);
3732 if (val < 0)
3733 return 0;
3734
3735 nr = div64_u64(period + val, period);
3736 offset = nr * period;
3737 val -= offset;
3738 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3739 goto again;
3740
3741 return nr;
3742}
3743
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003744static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003745 int nmi, struct perf_sample_data *data,
3746 struct pt_regs *regs)
3747{
3748 struct hw_perf_event *hwc = &event->hw;
3749 int throttle = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003750
3751 data->period = event->hw.last_period;
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003752 if (!overflow)
3753 overflow = perf_swevent_set_period(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003754
3755 if (hwc->interrupts == MAX_INTERRUPTS)
3756 return;
3757
3758 for (; overflow; overflow--) {
3759 if (__perf_event_overflow(event, nmi, throttle,
3760 data, regs)) {
3761 /*
3762 * We inhibit the overflow from happening when
3763 * hwc->interrupts == MAX_INTERRUPTS.
3764 */
3765 break;
3766 }
3767 throttle = 1;
3768 }
3769}
3770
3771static void perf_swevent_unthrottle(struct perf_event *event)
3772{
3773 /*
3774 * Nothing to do, we already reset hwc->interrupts.
3775 */
3776}
3777
3778static void perf_swevent_add(struct perf_event *event, u64 nr,
3779 int nmi, struct perf_sample_data *data,
3780 struct pt_regs *regs)
3781{
3782 struct hw_perf_event *hwc = &event->hw;
3783
3784 atomic64_add(nr, &event->count);
3785
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003786 if (!regs)
3787 return;
3788
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003789 if (!hwc->sample_period)
3790 return;
3791
3792 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3793 return perf_swevent_overflow(event, 1, nmi, data, regs);
3794
3795 if (atomic64_add_negative(nr, &hwc->period_left))
3796 return;
3797
3798 perf_swevent_overflow(event, 0, nmi, data, regs);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003799}
3800
3801static int perf_swevent_is_counting(struct perf_event *event)
3802{
3803 /*
3804 * The event is active, we're good!
3805 */
3806 if (event->state == PERF_EVENT_STATE_ACTIVE)
3807 return 1;
3808
3809 /*
3810 * The event is off/error, not counting.
3811 */
3812 if (event->state != PERF_EVENT_STATE_INACTIVE)
3813 return 0;
3814
3815 /*
3816 * The event is inactive, if the context is active
3817 * we're part of a group that didn't make it on the 'pmu',
3818 * not counting.
3819 */
3820 if (event->ctx->is_active)
3821 return 0;
3822
3823 /*
3824 * We're inactive and the context is too, this means the
3825 * task is scheduled out, we're counting events that happen
3826 * to us, like migration events.
3827 */
3828 return 1;
3829}
3830
Li Zefan6fb29152009-10-15 11:21:42 +08003831static int perf_tp_event_match(struct perf_event *event,
3832 struct perf_sample_data *data);
3833
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003834static int perf_swevent_match(struct perf_event *event,
3835 enum perf_type_id type,
Li Zefan6fb29152009-10-15 11:21:42 +08003836 u32 event_id,
3837 struct perf_sample_data *data,
3838 struct pt_regs *regs)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003839{
3840 if (!perf_swevent_is_counting(event))
3841 return 0;
3842
3843 if (event->attr.type != type)
3844 return 0;
3845 if (event->attr.config != event_id)
3846 return 0;
3847
3848 if (regs) {
3849 if (event->attr.exclude_user && user_mode(regs))
3850 return 0;
3851
3852 if (event->attr.exclude_kernel && !user_mode(regs))
3853 return 0;
3854 }
3855
Li Zefan6fb29152009-10-15 11:21:42 +08003856 if (event->attr.type == PERF_TYPE_TRACEPOINT &&
3857 !perf_tp_event_match(event, data))
3858 return 0;
3859
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003860 return 1;
3861}
3862
3863static void perf_swevent_ctx_event(struct perf_event_context *ctx,
3864 enum perf_type_id type,
3865 u32 event_id, u64 nr, int nmi,
3866 struct perf_sample_data *data,
3867 struct pt_regs *regs)
3868{
3869 struct perf_event *event;
3870
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003871 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
Li Zefan6fb29152009-10-15 11:21:42 +08003872 if (perf_swevent_match(event, type, event_id, data, regs))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003873 perf_swevent_add(event, nr, nmi, data, regs);
3874 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003875}
3876
3877static int *perf_swevent_recursion_context(struct perf_cpu_context *cpuctx)
3878{
3879 if (in_nmi())
3880 return &cpuctx->recursion[3];
3881
3882 if (in_irq())
3883 return &cpuctx->recursion[2];
3884
3885 if (in_softirq())
3886 return &cpuctx->recursion[1];
3887
3888 return &cpuctx->recursion[0];
3889}
3890
3891static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
3892 u64 nr, int nmi,
3893 struct perf_sample_data *data,
3894 struct pt_regs *regs)
3895{
3896 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3897 int *recursion = perf_swevent_recursion_context(cpuctx);
3898 struct perf_event_context *ctx;
3899
3900 if (*recursion)
3901 goto out;
3902
3903 (*recursion)++;
3904 barrier();
3905
Peter Zijlstra81520182009-11-20 22:19:45 +01003906 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003907 perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
3908 nr, nmi, data, regs);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003909 /*
3910 * doesn't really matter which of the child contexts the
3911 * events ends up in.
3912 */
3913 ctx = rcu_dereference(current->perf_event_ctxp);
3914 if (ctx)
3915 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
3916 rcu_read_unlock();
3917
3918 barrier();
3919 (*recursion)--;
3920
3921out:
3922 put_cpu_var(perf_cpu_context);
3923}
3924
3925void __perf_sw_event(u32 event_id, u64 nr, int nmi,
3926 struct pt_regs *regs, u64 addr)
3927{
3928 struct perf_sample_data data = {
3929 .addr = addr,
3930 };
3931
3932 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi,
3933 &data, regs);
3934}
3935
3936static void perf_swevent_read(struct perf_event *event)
3937{
3938}
3939
3940static int perf_swevent_enable(struct perf_event *event)
3941{
3942 struct hw_perf_event *hwc = &event->hw;
3943
3944 if (hwc->sample_period) {
3945 hwc->last_period = hwc->sample_period;
3946 perf_swevent_set_period(event);
3947 }
3948 return 0;
3949}
3950
3951static void perf_swevent_disable(struct perf_event *event)
3952{
3953}
3954
3955static const struct pmu perf_ops_generic = {
3956 .enable = perf_swevent_enable,
3957 .disable = perf_swevent_disable,
3958 .read = perf_swevent_read,
3959 .unthrottle = perf_swevent_unthrottle,
3960};
3961
3962/*
3963 * hrtimer based swevent callback
3964 */
3965
3966static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
3967{
3968 enum hrtimer_restart ret = HRTIMER_RESTART;
3969 struct perf_sample_data data;
3970 struct pt_regs *regs;
3971 struct perf_event *event;
3972 u64 period;
3973
3974 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
3975 event->pmu->read(event);
3976
3977 data.addr = 0;
3978 regs = get_irq_regs();
3979 /*
3980 * In case we exclude kernel IPs or are somehow not in interrupt
3981 * context, provide the next best thing, the user IP.
3982 */
3983 if ((event->attr.exclude_kernel || !regs) &&
3984 !event->attr.exclude_user)
3985 regs = task_pt_regs(current);
3986
3987 if (regs) {
Soeren Sandmann54f44072009-10-22 18:34:08 +02003988 if (!(event->attr.exclude_idle && current->pid == 0))
3989 if (perf_event_overflow(event, 0, &data, regs))
3990 ret = HRTIMER_NORESTART;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003991 }
3992
3993 period = max_t(u64, 10000, event->hw.sample_period);
3994 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
3995
3996 return ret;
3997}
3998
Soeren Sandmann721a6692009-09-15 14:33:08 +02003999static void perf_swevent_start_hrtimer(struct perf_event *event)
4000{
4001 struct hw_perf_event *hwc = &event->hw;
4002
4003 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4004 hwc->hrtimer.function = perf_swevent_hrtimer;
4005 if (hwc->sample_period) {
4006 u64 period;
4007
4008 if (hwc->remaining) {
4009 if (hwc->remaining < 0)
4010 period = 10000;
4011 else
4012 period = hwc->remaining;
4013 hwc->remaining = 0;
4014 } else {
4015 period = max_t(u64, 10000, hwc->sample_period);
4016 }
4017 __hrtimer_start_range_ns(&hwc->hrtimer,
4018 ns_to_ktime(period), 0,
4019 HRTIMER_MODE_REL, 0);
4020 }
4021}
4022
4023static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4024{
4025 struct hw_perf_event *hwc = &event->hw;
4026
4027 if (hwc->sample_period) {
4028 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4029 hwc->remaining = ktime_to_ns(remaining);
4030
4031 hrtimer_cancel(&hwc->hrtimer);
4032 }
4033}
4034
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004035/*
4036 * Software event: cpu wall time clock
4037 */
4038
4039static void cpu_clock_perf_event_update(struct perf_event *event)
4040{
4041 int cpu = raw_smp_processor_id();
4042 s64 prev;
4043 u64 now;
4044
4045 now = cpu_clock(cpu);
4046 prev = atomic64_read(&event->hw.prev_count);
4047 atomic64_set(&event->hw.prev_count, now);
4048 atomic64_add(now - prev, &event->count);
4049}
4050
4051static int cpu_clock_perf_event_enable(struct perf_event *event)
4052{
4053 struct hw_perf_event *hwc = &event->hw;
4054 int cpu = raw_smp_processor_id();
4055
4056 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
Soeren Sandmann721a6692009-09-15 14:33:08 +02004057 perf_swevent_start_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004058
4059 return 0;
4060}
4061
4062static void cpu_clock_perf_event_disable(struct perf_event *event)
4063{
Soeren Sandmann721a6692009-09-15 14:33:08 +02004064 perf_swevent_cancel_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004065 cpu_clock_perf_event_update(event);
4066}
4067
4068static void cpu_clock_perf_event_read(struct perf_event *event)
4069{
4070 cpu_clock_perf_event_update(event);
4071}
4072
4073static const struct pmu perf_ops_cpu_clock = {
4074 .enable = cpu_clock_perf_event_enable,
4075 .disable = cpu_clock_perf_event_disable,
4076 .read = cpu_clock_perf_event_read,
4077};
4078
4079/*
4080 * Software event: task time clock
4081 */
4082
4083static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4084{
4085 u64 prev;
4086 s64 delta;
4087
4088 prev = atomic64_xchg(&event->hw.prev_count, now);
4089 delta = now - prev;
4090 atomic64_add(delta, &event->count);
4091}
4092
4093static int task_clock_perf_event_enable(struct perf_event *event)
4094{
4095 struct hw_perf_event *hwc = &event->hw;
4096 u64 now;
4097
4098 now = event->ctx->time;
4099
4100 atomic64_set(&hwc->prev_count, now);
Soeren Sandmann721a6692009-09-15 14:33:08 +02004101
4102 perf_swevent_start_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004103
4104 return 0;
4105}
4106
4107static void task_clock_perf_event_disable(struct perf_event *event)
4108{
Soeren Sandmann721a6692009-09-15 14:33:08 +02004109 perf_swevent_cancel_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004110 task_clock_perf_event_update(event, event->ctx->time);
4111
4112}
4113
4114static void task_clock_perf_event_read(struct perf_event *event)
4115{
4116 u64 time;
4117
4118 if (!in_nmi()) {
4119 update_context_time(event->ctx);
4120 time = event->ctx->time;
4121 } else {
4122 u64 now = perf_clock();
4123 u64 delta = now - event->ctx->timestamp;
4124 time = event->ctx->time + delta;
4125 }
4126
4127 task_clock_perf_event_update(event, time);
4128}
4129
4130static const struct pmu perf_ops_task_clock = {
4131 .enable = task_clock_perf_event_enable,
4132 .disable = task_clock_perf_event_disable,
4133 .read = task_clock_perf_event_read,
4134};
4135
4136#ifdef CONFIG_EVENT_PROFILE
Li Zefan6fb29152009-10-15 11:21:42 +08004137
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004138void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4139 int entry_size)
4140{
4141 struct perf_raw_record raw = {
4142 .size = entry_size,
4143 .data = record,
4144 };
4145
4146 struct perf_sample_data data = {
4147 .addr = addr,
4148 .raw = &raw,
4149 };
4150
4151 struct pt_regs *regs = get_irq_regs();
4152
4153 if (!regs)
4154 regs = task_pt_regs(current);
4155
4156 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4157 &data, regs);
4158}
4159EXPORT_SYMBOL_GPL(perf_tp_event);
4160
Li Zefan6fb29152009-10-15 11:21:42 +08004161static int perf_tp_event_match(struct perf_event *event,
4162 struct perf_sample_data *data)
4163{
4164 void *record = data->raw->data;
4165
4166 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4167 return 1;
4168 return 0;
4169}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004170
4171static void tp_perf_event_destroy(struct perf_event *event)
4172{
4173 ftrace_profile_disable(event->attr.config);
4174}
4175
4176static const struct pmu *tp_perf_event_init(struct perf_event *event)
4177{
4178 /*
4179 * Raw tracepoint data is a severe data leak, only allow root to
4180 * have these.
4181 */
4182 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4183 perf_paranoid_tracepoint_raw() &&
4184 !capable(CAP_SYS_ADMIN))
4185 return ERR_PTR(-EPERM);
4186
4187 if (ftrace_profile_enable(event->attr.config))
4188 return NULL;
4189
4190 event->destroy = tp_perf_event_destroy;
4191
4192 return &perf_ops_generic;
4193}
Li Zefan6fb29152009-10-15 11:21:42 +08004194
4195static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4196{
4197 char *filter_str;
4198 int ret;
4199
4200 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4201 return -EINVAL;
4202
4203 filter_str = strndup_user(arg, PAGE_SIZE);
4204 if (IS_ERR(filter_str))
4205 return PTR_ERR(filter_str);
4206
4207 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4208
4209 kfree(filter_str);
4210 return ret;
4211}
4212
4213static void perf_event_free_filter(struct perf_event *event)
4214{
4215 ftrace_profile_free_filter(event);
4216}
4217
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004218#else
Li Zefan6fb29152009-10-15 11:21:42 +08004219
4220static int perf_tp_event_match(struct perf_event *event,
4221 struct perf_sample_data *data)
4222{
4223 return 1;
4224}
4225
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004226static const struct pmu *tp_perf_event_init(struct perf_event *event)
4227{
4228 return NULL;
4229}
Li Zefan6fb29152009-10-15 11:21:42 +08004230
4231static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4232{
4233 return -ENOENT;
4234}
4235
4236static void perf_event_free_filter(struct perf_event *event)
4237{
4238}
4239
4240#endif /* CONFIG_EVENT_PROFILE */
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004241
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004242#ifdef CONFIG_HAVE_HW_BREAKPOINT
4243static void bp_perf_event_destroy(struct perf_event *event)
4244{
4245 release_bp_slot(event);
4246}
4247
4248static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4249{
4250 int err;
4251 /*
4252 * The breakpoint is already filled if we haven't created the counter
4253 * through perf syscall
4254 * FIXME: manage to get trigerred to NULL if it comes from syscalls
4255 */
4256 if (!bp->callback)
4257 err = register_perf_hw_breakpoint(bp);
4258 else
4259 err = __register_perf_hw_breakpoint(bp);
4260 if (err)
4261 return ERR_PTR(err);
4262
4263 bp->destroy = bp_perf_event_destroy;
4264
4265 return &perf_ops_bp;
4266}
4267
4268void perf_bp_event(struct perf_event *bp, void *regs)
4269{
4270 /* TODO */
4271}
4272#else
4273static void bp_perf_event_destroy(struct perf_event *event)
4274{
4275}
4276
4277static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4278{
4279 return NULL;
4280}
4281
4282void perf_bp_event(struct perf_event *bp, void *regs)
4283{
4284}
4285#endif
4286
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004287atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4288
4289static void sw_perf_event_destroy(struct perf_event *event)
4290{
4291 u64 event_id = event->attr.config;
4292
4293 WARN_ON(event->parent);
4294
4295 atomic_dec(&perf_swevent_enabled[event_id]);
4296}
4297
4298static const struct pmu *sw_perf_event_init(struct perf_event *event)
4299{
4300 const struct pmu *pmu = NULL;
4301 u64 event_id = event->attr.config;
4302
4303 /*
4304 * Software events (currently) can't in general distinguish
4305 * between user, kernel and hypervisor events.
4306 * However, context switches and cpu migrations are considered
4307 * to be kernel events, and page faults are never hypervisor
4308 * events.
4309 */
4310 switch (event_id) {
4311 case PERF_COUNT_SW_CPU_CLOCK:
4312 pmu = &perf_ops_cpu_clock;
4313
4314 break;
4315 case PERF_COUNT_SW_TASK_CLOCK:
4316 /*
4317 * If the user instantiates this as a per-cpu event,
4318 * use the cpu_clock event instead.
4319 */
4320 if (event->ctx->task)
4321 pmu = &perf_ops_task_clock;
4322 else
4323 pmu = &perf_ops_cpu_clock;
4324
4325 break;
4326 case PERF_COUNT_SW_PAGE_FAULTS:
4327 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4328 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4329 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4330 case PERF_COUNT_SW_CPU_MIGRATIONS:
Anton Blanchardf7d79862009-10-18 01:09:29 +00004331 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4332 case PERF_COUNT_SW_EMULATION_FAULTS:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004333 if (!event->parent) {
4334 atomic_inc(&perf_swevent_enabled[event_id]);
4335 event->destroy = sw_perf_event_destroy;
4336 }
4337 pmu = &perf_ops_generic;
4338 break;
4339 }
4340
4341 return pmu;
4342}
4343
4344/*
4345 * Allocate and initialize a event structure
4346 */
4347static struct perf_event *
4348perf_event_alloc(struct perf_event_attr *attr,
4349 int cpu,
4350 struct perf_event_context *ctx,
4351 struct perf_event *group_leader,
4352 struct perf_event *parent_event,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004353 perf_callback_t callback,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004354 gfp_t gfpflags)
4355{
4356 const struct pmu *pmu;
4357 struct perf_event *event;
4358 struct hw_perf_event *hwc;
4359 long err;
4360
4361 event = kzalloc(sizeof(*event), gfpflags);
4362 if (!event)
4363 return ERR_PTR(-ENOMEM);
4364
4365 /*
4366 * Single events are their own group leaders, with an
4367 * empty sibling list:
4368 */
4369 if (!group_leader)
4370 group_leader = event;
4371
4372 mutex_init(&event->child_mutex);
4373 INIT_LIST_HEAD(&event->child_list);
4374
4375 INIT_LIST_HEAD(&event->group_entry);
4376 INIT_LIST_HEAD(&event->event_entry);
4377 INIT_LIST_HEAD(&event->sibling_list);
4378 init_waitqueue_head(&event->waitq);
4379
4380 mutex_init(&event->mmap_mutex);
4381
4382 event->cpu = cpu;
4383 event->attr = *attr;
4384 event->group_leader = group_leader;
4385 event->pmu = NULL;
4386 event->ctx = ctx;
4387 event->oncpu = -1;
4388
4389 event->parent = parent_event;
4390
4391 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4392 event->id = atomic64_inc_return(&perf_event_id);
4393
4394 event->state = PERF_EVENT_STATE_INACTIVE;
4395
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004396 if (!callback && parent_event)
4397 callback = parent_event->callback;
4398
4399 event->callback = callback;
4400
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004401 if (attr->disabled)
4402 event->state = PERF_EVENT_STATE_OFF;
4403
4404 pmu = NULL;
4405
4406 hwc = &event->hw;
4407 hwc->sample_period = attr->sample_period;
4408 if (attr->freq && attr->sample_freq)
4409 hwc->sample_period = 1;
4410 hwc->last_period = hwc->sample_period;
4411
4412 atomic64_set(&hwc->period_left, hwc->sample_period);
4413
4414 /*
4415 * we currently do not support PERF_FORMAT_GROUP on inherited events
4416 */
4417 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4418 goto done;
4419
4420 switch (attr->type) {
4421 case PERF_TYPE_RAW:
4422 case PERF_TYPE_HARDWARE:
4423 case PERF_TYPE_HW_CACHE:
4424 pmu = hw_perf_event_init(event);
4425 break;
4426
4427 case PERF_TYPE_SOFTWARE:
4428 pmu = sw_perf_event_init(event);
4429 break;
4430
4431 case PERF_TYPE_TRACEPOINT:
4432 pmu = tp_perf_event_init(event);
4433 break;
4434
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004435 case PERF_TYPE_BREAKPOINT:
4436 pmu = bp_perf_event_init(event);
4437 break;
4438
4439
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004440 default:
4441 break;
4442 }
4443done:
4444 err = 0;
4445 if (!pmu)
4446 err = -EINVAL;
4447 else if (IS_ERR(pmu))
4448 err = PTR_ERR(pmu);
4449
4450 if (err) {
4451 if (event->ns)
4452 put_pid_ns(event->ns);
4453 kfree(event);
4454 return ERR_PTR(err);
4455 }
4456
4457 event->pmu = pmu;
4458
4459 if (!event->parent) {
4460 atomic_inc(&nr_events);
4461 if (event->attr.mmap)
4462 atomic_inc(&nr_mmap_events);
4463 if (event->attr.comm)
4464 atomic_inc(&nr_comm_events);
4465 if (event->attr.task)
4466 atomic_inc(&nr_task_events);
4467 }
4468
4469 return event;
4470}
4471
4472static int perf_copy_attr(struct perf_event_attr __user *uattr,
4473 struct perf_event_attr *attr)
4474{
4475 u32 size;
4476 int ret;
4477
4478 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4479 return -EFAULT;
4480
4481 /*
4482 * zero the full structure, so that a short copy will be nice.
4483 */
4484 memset(attr, 0, sizeof(*attr));
4485
4486 ret = get_user(size, &uattr->size);
4487 if (ret)
4488 return ret;
4489
4490 if (size > PAGE_SIZE) /* silly large */
4491 goto err_size;
4492
4493 if (!size) /* abi compat */
4494 size = PERF_ATTR_SIZE_VER0;
4495
4496 if (size < PERF_ATTR_SIZE_VER0)
4497 goto err_size;
4498
4499 /*
4500 * If we're handed a bigger struct than we know of,
4501 * ensure all the unknown bits are 0 - i.e. new
4502 * user-space does not rely on any kernel feature
4503 * extensions we dont know about yet.
4504 */
4505 if (size > sizeof(*attr)) {
4506 unsigned char __user *addr;
4507 unsigned char __user *end;
4508 unsigned char val;
4509
4510 addr = (void __user *)uattr + sizeof(*attr);
4511 end = (void __user *)uattr + size;
4512
4513 for (; addr < end; addr++) {
4514 ret = get_user(val, addr);
4515 if (ret)
4516 return ret;
4517 if (val)
4518 goto err_size;
4519 }
4520 size = sizeof(*attr);
4521 }
4522
4523 ret = copy_from_user(attr, uattr, size);
4524 if (ret)
4525 return -EFAULT;
4526
4527 /*
4528 * If the type exists, the corresponding creation will verify
4529 * the attr->config.
4530 */
4531 if (attr->type >= PERF_TYPE_MAX)
4532 return -EINVAL;
4533
4534 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
4535 return -EINVAL;
4536
4537 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4538 return -EINVAL;
4539
4540 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4541 return -EINVAL;
4542
4543out:
4544 return ret;
4545
4546err_size:
4547 put_user(sizeof(*attr), &uattr->size);
4548 ret = -E2BIG;
4549 goto out;
4550}
4551
Li Zefan6fb29152009-10-15 11:21:42 +08004552static int perf_event_set_output(struct perf_event *event, int output_fd)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004553{
4554 struct perf_event *output_event = NULL;
4555 struct file *output_file = NULL;
4556 struct perf_event *old_output;
4557 int fput_needed = 0;
4558 int ret = -EINVAL;
4559
4560 if (!output_fd)
4561 goto set;
4562
4563 output_file = fget_light(output_fd, &fput_needed);
4564 if (!output_file)
4565 return -EBADF;
4566
4567 if (output_file->f_op != &perf_fops)
4568 goto out;
4569
4570 output_event = output_file->private_data;
4571
4572 /* Don't chain output fds */
4573 if (output_event->output)
4574 goto out;
4575
4576 /* Don't set an output fd when we already have an output channel */
4577 if (event->data)
4578 goto out;
4579
4580 atomic_long_inc(&output_file->f_count);
4581
4582set:
4583 mutex_lock(&event->mmap_mutex);
4584 old_output = event->output;
4585 rcu_assign_pointer(event->output, output_event);
4586 mutex_unlock(&event->mmap_mutex);
4587
4588 if (old_output) {
4589 /*
4590 * we need to make sure no existing perf_output_*()
4591 * is still referencing this event.
4592 */
4593 synchronize_rcu();
4594 fput(old_output->filp);
4595 }
4596
4597 ret = 0;
4598out:
4599 fput_light(output_file, fput_needed);
4600 return ret;
4601}
4602
4603/**
4604 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4605 *
4606 * @attr_uptr: event_id type attributes for monitoring/sampling
4607 * @pid: target pid
4608 * @cpu: target cpu
4609 * @group_fd: group leader event fd
4610 */
4611SYSCALL_DEFINE5(perf_event_open,
4612 struct perf_event_attr __user *, attr_uptr,
4613 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4614{
4615 struct perf_event *event, *group_leader;
4616 struct perf_event_attr attr;
4617 struct perf_event_context *ctx;
4618 struct file *event_file = NULL;
4619 struct file *group_file = NULL;
4620 int fput_needed = 0;
4621 int fput_needed2 = 0;
4622 int err;
4623
4624 /* for future expandability... */
4625 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4626 return -EINVAL;
4627
4628 err = perf_copy_attr(attr_uptr, &attr);
4629 if (err)
4630 return err;
4631
4632 if (!attr.exclude_kernel) {
4633 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4634 return -EACCES;
4635 }
4636
4637 if (attr.freq) {
4638 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4639 return -EINVAL;
4640 }
4641
4642 /*
4643 * Get the target context (task or percpu):
4644 */
4645 ctx = find_get_context(pid, cpu);
4646 if (IS_ERR(ctx))
4647 return PTR_ERR(ctx);
4648
4649 /*
4650 * Look up the group leader (we will attach this event to it):
4651 */
4652 group_leader = NULL;
4653 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4654 err = -EINVAL;
4655 group_file = fget_light(group_fd, &fput_needed);
4656 if (!group_file)
4657 goto err_put_context;
4658 if (group_file->f_op != &perf_fops)
4659 goto err_put_context;
4660
4661 group_leader = group_file->private_data;
4662 /*
4663 * Do not allow a recursive hierarchy (this new sibling
4664 * becoming part of another group-sibling):
4665 */
4666 if (group_leader->group_leader != group_leader)
4667 goto err_put_context;
4668 /*
4669 * Do not allow to attach to a group in a different
4670 * task or CPU context:
4671 */
4672 if (group_leader->ctx != ctx)
4673 goto err_put_context;
4674 /*
4675 * Only a group leader can be exclusive or pinned
4676 */
4677 if (attr.exclusive || attr.pinned)
4678 goto err_put_context;
4679 }
4680
4681 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004682 NULL, NULL, GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004683 err = PTR_ERR(event);
4684 if (IS_ERR(event))
4685 goto err_put_context;
4686
4687 err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0);
4688 if (err < 0)
4689 goto err_free_put_context;
4690
4691 event_file = fget_light(err, &fput_needed2);
4692 if (!event_file)
4693 goto err_free_put_context;
4694
4695 if (flags & PERF_FLAG_FD_OUTPUT) {
4696 err = perf_event_set_output(event, group_fd);
4697 if (err)
4698 goto err_fput_free_put_context;
4699 }
4700
4701 event->filp = event_file;
4702 WARN_ON_ONCE(ctx->parent_ctx);
4703 mutex_lock(&ctx->mutex);
4704 perf_install_in_context(ctx, event, cpu);
4705 ++ctx->generation;
4706 mutex_unlock(&ctx->mutex);
4707
4708 event->owner = current;
4709 get_task_struct(current);
4710 mutex_lock(&current->perf_event_mutex);
4711 list_add_tail(&event->owner_entry, &current->perf_event_list);
4712 mutex_unlock(&current->perf_event_mutex);
4713
4714err_fput_free_put_context:
4715 fput_light(event_file, fput_needed2);
4716
4717err_free_put_context:
4718 if (err < 0)
4719 kfree(event);
4720
4721err_put_context:
4722 if (err < 0)
4723 put_ctx(ctx);
4724
4725 fput_light(group_file, fput_needed);
4726
4727 return err;
4728}
4729
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004730/**
4731 * perf_event_create_kernel_counter
4732 *
4733 * @attr: attributes of the counter to create
4734 * @cpu: cpu in which the counter is bound
4735 * @pid: task to profile
4736 */
4737struct perf_event *
4738perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004739 pid_t pid, perf_callback_t callback)
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004740{
4741 struct perf_event *event;
4742 struct perf_event_context *ctx;
4743 int err;
4744
4745 /*
4746 * Get the target context (task or percpu):
4747 */
4748
4749 ctx = find_get_context(pid, cpu);
4750 if (IS_ERR(ctx))
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004751 return NULL;
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004752
4753 event = perf_event_alloc(attr, cpu, ctx, NULL,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004754 NULL, callback, GFP_KERNEL);
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004755 err = PTR_ERR(event);
4756 if (IS_ERR(event))
4757 goto err_put_context;
4758
4759 event->filp = NULL;
4760 WARN_ON_ONCE(ctx->parent_ctx);
4761 mutex_lock(&ctx->mutex);
4762 perf_install_in_context(ctx, event, cpu);
4763 ++ctx->generation;
4764 mutex_unlock(&ctx->mutex);
4765
4766 event->owner = current;
4767 get_task_struct(current);
4768 mutex_lock(&current->perf_event_mutex);
4769 list_add_tail(&event->owner_entry, &current->perf_event_list);
4770 mutex_unlock(&current->perf_event_mutex);
4771
4772 return event;
4773
4774err_put_context:
4775 if (err < 0)
4776 put_ctx(ctx);
4777
4778 return NULL;
4779}
4780EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
4781
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004782/*
4783 * inherit a event from parent task to child task:
4784 */
4785static struct perf_event *
4786inherit_event(struct perf_event *parent_event,
4787 struct task_struct *parent,
4788 struct perf_event_context *parent_ctx,
4789 struct task_struct *child,
4790 struct perf_event *group_leader,
4791 struct perf_event_context *child_ctx)
4792{
4793 struct perf_event *child_event;
4794
4795 /*
4796 * Instead of creating recursive hierarchies of events,
4797 * we link inherited events back to the original parent,
4798 * which has a filp for sure, which we use as the reference
4799 * count:
4800 */
4801 if (parent_event->parent)
4802 parent_event = parent_event->parent;
4803
4804 child_event = perf_event_alloc(&parent_event->attr,
4805 parent_event->cpu, child_ctx,
4806 group_leader, parent_event,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004807 NULL, GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004808 if (IS_ERR(child_event))
4809 return child_event;
4810 get_ctx(child_ctx);
4811
4812 /*
4813 * Make the child state follow the state of the parent event,
4814 * not its attr.disabled bit. We hold the parent's mutex,
4815 * so we won't race with perf_event_{en, dis}able_family.
4816 */
4817 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
4818 child_event->state = PERF_EVENT_STATE_INACTIVE;
4819 else
4820 child_event->state = PERF_EVENT_STATE_OFF;
4821
4822 if (parent_event->attr.freq)
4823 child_event->hw.sample_period = parent_event->hw.sample_period;
4824
Peter Zijlstra453f19e2009-11-20 22:19:43 +01004825 child_event->overflow_handler = parent_event->overflow_handler;
4826
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004827 /*
4828 * Link it up in the child's context:
4829 */
4830 add_event_to_ctx(child_event, child_ctx);
4831
4832 /*
4833 * Get a reference to the parent filp - we will fput it
4834 * when the child event exits. This is safe to do because
4835 * we are in the parent and we know that the filp still
4836 * exists and has a nonzero count:
4837 */
4838 atomic_long_inc(&parent_event->filp->f_count);
4839
4840 /*
4841 * Link this into the parent event's child list
4842 */
4843 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4844 mutex_lock(&parent_event->child_mutex);
4845 list_add_tail(&child_event->child_list, &parent_event->child_list);
4846 mutex_unlock(&parent_event->child_mutex);
4847
4848 return child_event;
4849}
4850
4851static int inherit_group(struct perf_event *parent_event,
4852 struct task_struct *parent,
4853 struct perf_event_context *parent_ctx,
4854 struct task_struct *child,
4855 struct perf_event_context *child_ctx)
4856{
4857 struct perf_event *leader;
4858 struct perf_event *sub;
4859 struct perf_event *child_ctr;
4860
4861 leader = inherit_event(parent_event, parent, parent_ctx,
4862 child, NULL, child_ctx);
4863 if (IS_ERR(leader))
4864 return PTR_ERR(leader);
4865 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
4866 child_ctr = inherit_event(sub, parent, parent_ctx,
4867 child, leader, child_ctx);
4868 if (IS_ERR(child_ctr))
4869 return PTR_ERR(child_ctr);
4870 }
4871 return 0;
4872}
4873
4874static void sync_child_event(struct perf_event *child_event,
4875 struct task_struct *child)
4876{
4877 struct perf_event *parent_event = child_event->parent;
4878 u64 child_val;
4879
4880 if (child_event->attr.inherit_stat)
4881 perf_event_read_event(child_event, child);
4882
4883 child_val = atomic64_read(&child_event->count);
4884
4885 /*
4886 * Add back the child's count to the parent's count:
4887 */
4888 atomic64_add(child_val, &parent_event->count);
4889 atomic64_add(child_event->total_time_enabled,
4890 &parent_event->child_total_time_enabled);
4891 atomic64_add(child_event->total_time_running,
4892 &parent_event->child_total_time_running);
4893
4894 /*
4895 * Remove this event from the parent's list
4896 */
4897 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4898 mutex_lock(&parent_event->child_mutex);
4899 list_del_init(&child_event->child_list);
4900 mutex_unlock(&parent_event->child_mutex);
4901
4902 /*
4903 * Release the parent event, if this was the last
4904 * reference to it.
4905 */
4906 fput(parent_event->filp);
4907}
4908
4909static void
4910__perf_event_exit_task(struct perf_event *child_event,
4911 struct perf_event_context *child_ctx,
4912 struct task_struct *child)
4913{
4914 struct perf_event *parent_event;
4915
4916 update_event_times(child_event);
4917 perf_event_remove_from_context(child_event);
4918
4919 parent_event = child_event->parent;
4920 /*
4921 * It can happen that parent exits first, and has events
4922 * that are still around due to the child reference. These
4923 * events need to be zapped - but otherwise linger.
4924 */
4925 if (parent_event) {
4926 sync_child_event(child_event, child);
4927 free_event(child_event);
4928 }
4929}
4930
4931/*
4932 * When a child task exits, feed back event values to parent events.
4933 */
4934void perf_event_exit_task(struct task_struct *child)
4935{
4936 struct perf_event *child_event, *tmp;
4937 struct perf_event_context *child_ctx;
4938 unsigned long flags;
4939
4940 if (likely(!child->perf_event_ctxp)) {
4941 perf_event_task(child, NULL, 0);
4942 return;
4943 }
4944
4945 local_irq_save(flags);
4946 /*
4947 * We can't reschedule here because interrupts are disabled,
4948 * and either child is current or it is a task that can't be
4949 * scheduled, so we are now safe from rescheduling changing
4950 * our context.
4951 */
4952 child_ctx = child->perf_event_ctxp;
4953 __perf_event_task_sched_out(child_ctx);
4954
4955 /*
4956 * Take the context lock here so that if find_get_context is
4957 * reading child->perf_event_ctxp, we wait until it has
4958 * incremented the context's refcount before we do put_ctx below.
4959 */
4960 spin_lock(&child_ctx->lock);
4961 child->perf_event_ctxp = NULL;
4962 /*
4963 * If this context is a clone; unclone it so it can't get
4964 * swapped to another process while we're removing all
4965 * the events from it.
4966 */
4967 unclone_ctx(child_ctx);
4968 spin_unlock_irqrestore(&child_ctx->lock, flags);
4969
4970 /*
4971 * Report the task dead after unscheduling the events so that we
4972 * won't get any samples after PERF_RECORD_EXIT. We can however still
4973 * get a few PERF_RECORD_READ events.
4974 */
4975 perf_event_task(child, child_ctx, 0);
4976
4977 /*
4978 * We can recurse on the same lock type through:
4979 *
4980 * __perf_event_exit_task()
4981 * sync_child_event()
4982 * fput(parent_event->filp)
4983 * perf_release()
4984 * mutex_lock(&ctx->mutex)
4985 *
4986 * But since its the parent context it won't be the same instance.
4987 */
4988 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
4989
4990again:
4991 list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list,
4992 group_entry)
4993 __perf_event_exit_task(child_event, child_ctx, child);
4994
4995 /*
4996 * If the last event was a group event, it will have appended all
4997 * its siblings to the list, but we obtained 'tmp' before that which
4998 * will still point to the list head terminating the iteration.
4999 */
5000 if (!list_empty(&child_ctx->group_list))
5001 goto again;
5002
5003 mutex_unlock(&child_ctx->mutex);
5004
5005 put_ctx(child_ctx);
5006}
5007
5008/*
5009 * free an unexposed, unused context as created by inheritance by
5010 * init_task below, used by fork() in case of fail.
5011 */
5012void perf_event_free_task(struct task_struct *task)
5013{
5014 struct perf_event_context *ctx = task->perf_event_ctxp;
5015 struct perf_event *event, *tmp;
5016
5017 if (!ctx)
5018 return;
5019
5020 mutex_lock(&ctx->mutex);
5021again:
5022 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) {
5023 struct perf_event *parent = event->parent;
5024
5025 if (WARN_ON_ONCE(!parent))
5026 continue;
5027
5028 mutex_lock(&parent->child_mutex);
5029 list_del_init(&event->child_list);
5030 mutex_unlock(&parent->child_mutex);
5031
5032 fput(parent->filp);
5033
5034 list_del_event(event, ctx);
5035 free_event(event);
5036 }
5037
5038 if (!list_empty(&ctx->group_list))
5039 goto again;
5040
5041 mutex_unlock(&ctx->mutex);
5042
5043 put_ctx(ctx);
5044}
5045
5046/*
5047 * Initialize the perf_event context in task_struct
5048 */
5049int perf_event_init_task(struct task_struct *child)
5050{
5051 struct perf_event_context *child_ctx, *parent_ctx;
5052 struct perf_event_context *cloned_ctx;
5053 struct perf_event *event;
5054 struct task_struct *parent = current;
5055 int inherited_all = 1;
5056 int ret = 0;
5057
5058 child->perf_event_ctxp = NULL;
5059
5060 mutex_init(&child->perf_event_mutex);
5061 INIT_LIST_HEAD(&child->perf_event_list);
5062
5063 if (likely(!parent->perf_event_ctxp))
5064 return 0;
5065
5066 /*
5067 * This is executed from the parent task context, so inherit
5068 * events that have been marked for cloning.
5069 * First allocate and initialize a context for the child.
5070 */
5071
5072 child_ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
5073 if (!child_ctx)
5074 return -ENOMEM;
5075
5076 __perf_event_init_context(child_ctx, child);
5077 child->perf_event_ctxp = child_ctx;
5078 get_task_struct(child);
5079
5080 /*
5081 * If the parent's context is a clone, pin it so it won't get
5082 * swapped under us.
5083 */
5084 parent_ctx = perf_pin_task_context(parent);
5085
5086 /*
5087 * No need to check if parent_ctx != NULL here; since we saw
5088 * it non-NULL earlier, the only reason for it to become NULL
5089 * is if we exit, and since we're currently in the middle of
5090 * a fork we can't be exiting at the same time.
5091 */
5092
5093 /*
5094 * Lock the parent list. No need to lock the child - not PID
5095 * hashed yet and not running, so nobody can access it.
5096 */
5097 mutex_lock(&parent_ctx->mutex);
5098
5099 /*
5100 * We dont have to disable NMIs - we are only looking at
5101 * the list, not manipulating it:
5102 */
Xiao Guangrong27f99942009-09-25 13:54:01 +08005103 list_for_each_entry(event, &parent_ctx->group_list, group_entry) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005104
5105 if (!event->attr.inherit) {
5106 inherited_all = 0;
5107 continue;
5108 }
5109
5110 ret = inherit_group(event, parent, parent_ctx,
5111 child, child_ctx);
5112 if (ret) {
5113 inherited_all = 0;
5114 break;
5115 }
5116 }
5117
5118 if (inherited_all) {
5119 /*
5120 * Mark the child context as a clone of the parent
5121 * context, or of whatever the parent is a clone of.
5122 * Note that if the parent is a clone, it could get
5123 * uncloned at any point, but that doesn't matter
5124 * because the list of events and the generation
5125 * count can't have changed since we took the mutex.
5126 */
5127 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5128 if (cloned_ctx) {
5129 child_ctx->parent_ctx = cloned_ctx;
5130 child_ctx->parent_gen = parent_ctx->parent_gen;
5131 } else {
5132 child_ctx->parent_ctx = parent_ctx;
5133 child_ctx->parent_gen = parent_ctx->generation;
5134 }
5135 get_ctx(child_ctx->parent_ctx);
5136 }
5137
5138 mutex_unlock(&parent_ctx->mutex);
5139
5140 perf_unpin_context(parent_ctx);
5141
5142 return ret;
5143}
5144
5145static void __cpuinit perf_event_init_cpu(int cpu)
5146{
5147 struct perf_cpu_context *cpuctx;
5148
5149 cpuctx = &per_cpu(perf_cpu_context, cpu);
5150 __perf_event_init_context(&cpuctx->ctx, NULL);
5151
5152 spin_lock(&perf_resource_lock);
5153 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5154 spin_unlock(&perf_resource_lock);
5155
5156 hw_perf_event_setup(cpu);
5157}
5158
5159#ifdef CONFIG_HOTPLUG_CPU
5160static void __perf_event_exit_cpu(void *info)
5161{
5162 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5163 struct perf_event_context *ctx = &cpuctx->ctx;
5164 struct perf_event *event, *tmp;
5165
5166 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry)
5167 __perf_event_remove_from_context(event);
5168}
5169static void perf_event_exit_cpu(int cpu)
5170{
5171 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5172 struct perf_event_context *ctx = &cpuctx->ctx;
5173
5174 mutex_lock(&ctx->mutex);
5175 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5176 mutex_unlock(&ctx->mutex);
5177}
5178#else
5179static inline void perf_event_exit_cpu(int cpu) { }
5180#endif
5181
5182static int __cpuinit
5183perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5184{
5185 unsigned int cpu = (long)hcpu;
5186
5187 switch (action) {
5188
5189 case CPU_UP_PREPARE:
5190 case CPU_UP_PREPARE_FROZEN:
5191 perf_event_init_cpu(cpu);
5192 break;
5193
5194 case CPU_ONLINE:
5195 case CPU_ONLINE_FROZEN:
5196 hw_perf_event_setup_online(cpu);
5197 break;
5198
5199 case CPU_DOWN_PREPARE:
5200 case CPU_DOWN_PREPARE_FROZEN:
5201 perf_event_exit_cpu(cpu);
5202 break;
5203
5204 default:
5205 break;
5206 }
5207
5208 return NOTIFY_OK;
5209}
5210
5211/*
5212 * This has to have a higher priority than migration_notifier in sched.c.
5213 */
5214static struct notifier_block __cpuinitdata perf_cpu_nb = {
5215 .notifier_call = perf_cpu_notify,
5216 .priority = 20,
5217};
5218
5219void __init perf_event_init(void)
5220{
5221 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5222 (void *)(long)smp_processor_id());
5223 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5224 (void *)(long)smp_processor_id());
5225 register_cpu_notifier(&perf_cpu_nb);
5226}
5227
5228static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
5229{
5230 return sprintf(buf, "%d\n", perf_reserved_percpu);
5231}
5232
5233static ssize_t
5234perf_set_reserve_percpu(struct sysdev_class *class,
5235 const char *buf,
5236 size_t count)
5237{
5238 struct perf_cpu_context *cpuctx;
5239 unsigned long val;
5240 int err, cpu, mpt;
5241
5242 err = strict_strtoul(buf, 10, &val);
5243 if (err)
5244 return err;
5245 if (val > perf_max_events)
5246 return -EINVAL;
5247
5248 spin_lock(&perf_resource_lock);
5249 perf_reserved_percpu = val;
5250 for_each_online_cpu(cpu) {
5251 cpuctx = &per_cpu(perf_cpu_context, cpu);
5252 spin_lock_irq(&cpuctx->ctx.lock);
5253 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5254 perf_max_events - perf_reserved_percpu);
5255 cpuctx->max_pertask = mpt;
5256 spin_unlock_irq(&cpuctx->ctx.lock);
5257 }
5258 spin_unlock(&perf_resource_lock);
5259
5260 return count;
5261}
5262
5263static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
5264{
5265 return sprintf(buf, "%d\n", perf_overcommit);
5266}
5267
5268static ssize_t
5269perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
5270{
5271 unsigned long val;
5272 int err;
5273
5274 err = strict_strtoul(buf, 10, &val);
5275 if (err)
5276 return err;
5277 if (val > 1)
5278 return -EINVAL;
5279
5280 spin_lock(&perf_resource_lock);
5281 perf_overcommit = val;
5282 spin_unlock(&perf_resource_lock);
5283
5284 return count;
5285}
5286
5287static SYSDEV_CLASS_ATTR(
5288 reserve_percpu,
5289 0644,
5290 perf_show_reserve_percpu,
5291 perf_set_reserve_percpu
5292 );
5293
5294static SYSDEV_CLASS_ATTR(
5295 overcommit,
5296 0644,
5297 perf_show_overcommit,
5298 perf_set_overcommit
5299 );
5300
5301static struct attribute *perfclass_attrs[] = {
5302 &attr_reserve_percpu.attr,
5303 &attr_overcommit.attr,
5304 NULL
5305};
5306
5307static struct attribute_group perfclass_attr_group = {
5308 .attrs = perfclass_attrs,
5309 .name = "perf_events",
5310};
5311
5312static int __init perf_event_sysfs_init(void)
5313{
5314 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5315 &perfclass_attr_group);
5316}
5317device_initcall(perf_event_sysfs_init);