| Paul Walmsley | 0b96af6 | 2010-01-26 20:13:03 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * OMAP2/3/4 DPLL clock functions | 
|  | 3 | * | 
|  | 4 | * Copyright (C) 2005-2008 Texas Instruments, Inc. | 
|  | 5 | * Copyright (C) 2004-2010 Nokia Corporation | 
|  | 6 | * | 
|  | 7 | * Contacts: | 
|  | 8 | * Richard Woodruff <r-woodruff2@ti.com> | 
|  | 9 | * Paul Walmsley | 
|  | 10 | * | 
|  | 11 | * This program is free software; you can redistribute it and/or modify | 
|  | 12 | * it under the terms of the GNU General Public License version 2 as | 
|  | 13 | * published by the Free Software Foundation. | 
|  | 14 | */ | 
|  | 15 | #undef DEBUG | 
|  | 16 |  | 
|  | 17 | #include <linux/kernel.h> | 
|  | 18 | #include <linux/errno.h> | 
|  | 19 | #include <linux/clk.h> | 
|  | 20 | #include <linux/io.h> | 
|  | 21 |  | 
|  | 22 | #include <asm/div64.h> | 
|  | 23 |  | 
|  | 24 | #include <plat/clock.h> | 
|  | 25 |  | 
|  | 26 | #include "clock.h" | 
|  | 27 | #include "cm.h" | 
|  | 28 | #include "cm-regbits-24xx.h" | 
|  | 29 | #include "cm-regbits-34xx.h" | 
|  | 30 |  | 
|  | 31 | /* DPLL rate rounding: minimum DPLL multiplier, divider values */ | 
| Paul Walmsley | 93340a2 | 2010-02-22 22:09:12 -0700 | [diff] [blame] | 32 | #define DPLL_MIN_MULTIPLIER		2 | 
| Paul Walmsley | 0b96af6 | 2010-01-26 20:13:03 -0700 | [diff] [blame] | 33 | #define DPLL_MIN_DIVIDER		1 | 
|  | 34 |  | 
|  | 35 | /* Possible error results from _dpll_test_mult */ | 
|  | 36 | #define DPLL_MULT_UNDERFLOW		-1 | 
|  | 37 |  | 
|  | 38 | /* | 
|  | 39 | * Scale factor to mitigate roundoff errors in DPLL rate rounding. | 
|  | 40 | * The higher the scale factor, the greater the risk of arithmetic overflow, | 
|  | 41 | * but the closer the rounded rate to the target rate.  DPLL_SCALE_FACTOR | 
|  | 42 | * must be a power of DPLL_SCALE_BASE. | 
|  | 43 | */ | 
|  | 44 | #define DPLL_SCALE_FACTOR		64 | 
|  | 45 | #define DPLL_SCALE_BASE			2 | 
|  | 46 | #define DPLL_ROUNDING_VAL		((DPLL_SCALE_BASE / 2) * \ | 
|  | 47 | (DPLL_SCALE_FACTOR / DPLL_SCALE_BASE)) | 
|  | 48 |  | 
|  | 49 | /* DPLL valid Fint frequency band limits - from 34xx TRM Section 4.7.6.2 */ | 
|  | 50 | #define DPLL_FINT_BAND1_MIN		750000 | 
|  | 51 | #define DPLL_FINT_BAND1_MAX		2100000 | 
|  | 52 | #define DPLL_FINT_BAND2_MIN		7500000 | 
|  | 53 | #define DPLL_FINT_BAND2_MAX		21000000 | 
|  | 54 |  | 
|  | 55 | /* _dpll_test_fint() return codes */ | 
|  | 56 | #define DPLL_FINT_UNDERFLOW		-1 | 
|  | 57 | #define DPLL_FINT_INVALID		-2 | 
|  | 58 |  | 
|  | 59 | /* Private functions */ | 
|  | 60 |  | 
|  | 61 | /* | 
|  | 62 | * _dpll_test_fint - test whether an Fint value is valid for the DPLL | 
|  | 63 | * @clk: DPLL struct clk to test | 
|  | 64 | * @n: divider value (N) to test | 
|  | 65 | * | 
|  | 66 | * Tests whether a particular divider @n will result in a valid DPLL | 
|  | 67 | * internal clock frequency Fint. See the 34xx TRM 4.7.6.2 "DPLL Jitter | 
|  | 68 | * Correction".  Returns 0 if OK, -1 if the enclosing loop can terminate | 
|  | 69 | * (assuming that it is counting N upwards), or -2 if the enclosing loop | 
|  | 70 | * should skip to the next iteration (again assuming N is increasing). | 
|  | 71 | */ | 
|  | 72 | static int _dpll_test_fint(struct clk *clk, u8 n) | 
|  | 73 | { | 
|  | 74 | struct dpll_data *dd; | 
|  | 75 | long fint; | 
|  | 76 | int ret = 0; | 
|  | 77 |  | 
|  | 78 | dd = clk->dpll_data; | 
|  | 79 |  | 
|  | 80 | /* DPLL divider must result in a valid jitter correction val */ | 
|  | 81 | fint = clk->parent->rate / (n + 1); | 
|  | 82 | if (fint < DPLL_FINT_BAND1_MIN) { | 
|  | 83 |  | 
|  | 84 | pr_debug("rejecting n=%d due to Fint failure, " | 
|  | 85 | "lowering max_divider\n", n); | 
|  | 86 | dd->max_divider = n; | 
|  | 87 | ret = DPLL_FINT_UNDERFLOW; | 
|  | 88 |  | 
|  | 89 | } else if (fint > DPLL_FINT_BAND1_MAX && | 
|  | 90 | fint < DPLL_FINT_BAND2_MIN) { | 
|  | 91 |  | 
|  | 92 | pr_debug("rejecting n=%d due to Fint failure\n", n); | 
|  | 93 | ret = DPLL_FINT_INVALID; | 
|  | 94 |  | 
|  | 95 | } else if (fint > DPLL_FINT_BAND2_MAX) { | 
|  | 96 |  | 
|  | 97 | pr_debug("rejecting n=%d due to Fint failure, " | 
|  | 98 | "boosting min_divider\n", n); | 
|  | 99 | dd->min_divider = n; | 
|  | 100 | ret = DPLL_FINT_INVALID; | 
|  | 101 |  | 
|  | 102 | } | 
|  | 103 |  | 
|  | 104 | return ret; | 
|  | 105 | } | 
|  | 106 |  | 
|  | 107 | static unsigned long _dpll_compute_new_rate(unsigned long parent_rate, | 
|  | 108 | unsigned int m, unsigned int n) | 
|  | 109 | { | 
|  | 110 | unsigned long long num; | 
|  | 111 |  | 
|  | 112 | num = (unsigned long long)parent_rate * m; | 
|  | 113 | do_div(num, n); | 
|  | 114 | return num; | 
|  | 115 | } | 
|  | 116 |  | 
|  | 117 | /* | 
|  | 118 | * _dpll_test_mult - test a DPLL multiplier value | 
|  | 119 | * @m: pointer to the DPLL m (multiplier) value under test | 
|  | 120 | * @n: current DPLL n (divider) value under test | 
|  | 121 | * @new_rate: pointer to storage for the resulting rounded rate | 
|  | 122 | * @target_rate: the desired DPLL rate | 
|  | 123 | * @parent_rate: the DPLL's parent clock rate | 
|  | 124 | * | 
|  | 125 | * This code tests a DPLL multiplier value, ensuring that the | 
|  | 126 | * resulting rate will not be higher than the target_rate, and that | 
|  | 127 | * the multiplier value itself is valid for the DPLL.  Initially, the | 
|  | 128 | * integer pointed to by the m argument should be prescaled by | 
|  | 129 | * multiplying by DPLL_SCALE_FACTOR.  The code will replace this with | 
|  | 130 | * a non-scaled m upon return.  This non-scaled m will result in a | 
|  | 131 | * new_rate as close as possible to target_rate (but not greater than | 
|  | 132 | * target_rate) given the current (parent_rate, n, prescaled m) | 
|  | 133 | * triple. Returns DPLL_MULT_UNDERFLOW in the event that the | 
|  | 134 | * non-scaled m attempted to underflow, which can allow the calling | 
|  | 135 | * function to bail out early; or 0 upon success. | 
|  | 136 | */ | 
|  | 137 | static int _dpll_test_mult(int *m, int n, unsigned long *new_rate, | 
|  | 138 | unsigned long target_rate, | 
|  | 139 | unsigned long parent_rate) | 
|  | 140 | { | 
|  | 141 | int r = 0, carry = 0; | 
|  | 142 |  | 
|  | 143 | /* Unscale m and round if necessary */ | 
|  | 144 | if (*m % DPLL_SCALE_FACTOR >= DPLL_ROUNDING_VAL) | 
|  | 145 | carry = 1; | 
|  | 146 | *m = (*m / DPLL_SCALE_FACTOR) + carry; | 
|  | 147 |  | 
|  | 148 | /* | 
|  | 149 | * The new rate must be <= the target rate to avoid programming | 
|  | 150 | * a rate that is impossible for the hardware to handle | 
|  | 151 | */ | 
|  | 152 | *new_rate = _dpll_compute_new_rate(parent_rate, *m, n); | 
|  | 153 | if (*new_rate > target_rate) { | 
|  | 154 | (*m)--; | 
|  | 155 | *new_rate = 0; | 
|  | 156 | } | 
|  | 157 |  | 
|  | 158 | /* Guard against m underflow */ | 
|  | 159 | if (*m < DPLL_MIN_MULTIPLIER) { | 
|  | 160 | *m = DPLL_MIN_MULTIPLIER; | 
|  | 161 | *new_rate = 0; | 
|  | 162 | r = DPLL_MULT_UNDERFLOW; | 
|  | 163 | } | 
|  | 164 |  | 
|  | 165 | if (*new_rate == 0) | 
|  | 166 | *new_rate = _dpll_compute_new_rate(parent_rate, *m, n); | 
|  | 167 |  | 
|  | 168 | return r; | 
|  | 169 | } | 
|  | 170 |  | 
|  | 171 | /* Public functions */ | 
|  | 172 |  | 
|  | 173 | void omap2_init_dpll_parent(struct clk *clk) | 
|  | 174 | { | 
|  | 175 | u32 v; | 
|  | 176 | struct dpll_data *dd; | 
|  | 177 |  | 
|  | 178 | dd = clk->dpll_data; | 
|  | 179 | if (!dd) | 
|  | 180 | return; | 
|  | 181 |  | 
|  | 182 | /* Return bypass rate if DPLL is bypassed */ | 
|  | 183 | v = __raw_readl(dd->control_reg); | 
|  | 184 | v &= dd->enable_mask; | 
|  | 185 | v >>= __ffs(dd->enable_mask); | 
|  | 186 |  | 
|  | 187 | /* Reparent in case the dpll is in bypass */ | 
|  | 188 | if (cpu_is_omap24xx()) { | 
|  | 189 | if (v == OMAP2XXX_EN_DPLL_LPBYPASS || | 
|  | 190 | v == OMAP2XXX_EN_DPLL_FRBYPASS) | 
|  | 191 | clk_reparent(clk, dd->clk_bypass); | 
|  | 192 | } else if (cpu_is_omap34xx()) { | 
|  | 193 | if (v == OMAP3XXX_EN_DPLL_LPBYPASS || | 
|  | 194 | v == OMAP3XXX_EN_DPLL_FRBYPASS) | 
|  | 195 | clk_reparent(clk, dd->clk_bypass); | 
|  | 196 | } else if (cpu_is_omap44xx()) { | 
|  | 197 | if (v == OMAP4XXX_EN_DPLL_LPBYPASS || | 
|  | 198 | v == OMAP4XXX_EN_DPLL_FRBYPASS || | 
|  | 199 | v == OMAP4XXX_EN_DPLL_MNBYPASS) | 
|  | 200 | clk_reparent(clk, dd->clk_bypass); | 
|  | 201 | } | 
|  | 202 | return; | 
|  | 203 | } | 
|  | 204 |  | 
|  | 205 | /** | 
|  | 206 | * omap2_get_dpll_rate - returns the current DPLL CLKOUT rate | 
|  | 207 | * @clk: struct clk * of a DPLL | 
|  | 208 | * | 
|  | 209 | * DPLLs can be locked or bypassed - basically, enabled or disabled. | 
|  | 210 | * When locked, the DPLL output depends on the M and N values.  When | 
|  | 211 | * bypassed, on OMAP2xxx, the output rate is either the 32KiHz clock | 
|  | 212 | * or sys_clk.  Bypass rates on OMAP3 depend on the DPLL: DPLLs 1 and | 
|  | 213 | * 2 are bypassed with dpll1_fclk and dpll2_fclk respectively | 
|  | 214 | * (generated by DPLL3), while DPLL 3, 4, and 5 bypass rates are sys_clk. | 
|  | 215 | * Returns the current DPLL CLKOUT rate (*not* CLKOUTX2) if the DPLL is | 
|  | 216 | * locked, or the appropriate bypass rate if the DPLL is bypassed, or 0 | 
|  | 217 | * if the clock @clk is not a DPLL. | 
|  | 218 | */ | 
|  | 219 | u32 omap2_get_dpll_rate(struct clk *clk) | 
|  | 220 | { | 
|  | 221 | long long dpll_clk; | 
|  | 222 | u32 dpll_mult, dpll_div, v; | 
|  | 223 | struct dpll_data *dd; | 
|  | 224 |  | 
|  | 225 | dd = clk->dpll_data; | 
|  | 226 | if (!dd) | 
|  | 227 | return 0; | 
|  | 228 |  | 
|  | 229 | /* Return bypass rate if DPLL is bypassed */ | 
|  | 230 | v = __raw_readl(dd->control_reg); | 
|  | 231 | v &= dd->enable_mask; | 
|  | 232 | v >>= __ffs(dd->enable_mask); | 
|  | 233 |  | 
|  | 234 | if (cpu_is_omap24xx()) { | 
|  | 235 | if (v == OMAP2XXX_EN_DPLL_LPBYPASS || | 
|  | 236 | v == OMAP2XXX_EN_DPLL_FRBYPASS) | 
|  | 237 | return dd->clk_bypass->rate; | 
|  | 238 | } else if (cpu_is_omap34xx()) { | 
|  | 239 | if (v == OMAP3XXX_EN_DPLL_LPBYPASS || | 
|  | 240 | v == OMAP3XXX_EN_DPLL_FRBYPASS) | 
|  | 241 | return dd->clk_bypass->rate; | 
|  | 242 | } else if (cpu_is_omap44xx()) { | 
|  | 243 | if (v == OMAP4XXX_EN_DPLL_LPBYPASS || | 
|  | 244 | v == OMAP4XXX_EN_DPLL_FRBYPASS || | 
|  | 245 | v == OMAP4XXX_EN_DPLL_MNBYPASS) | 
|  | 246 | return dd->clk_bypass->rate; | 
|  | 247 | } | 
|  | 248 |  | 
|  | 249 | v = __raw_readl(dd->mult_div1_reg); | 
|  | 250 | dpll_mult = v & dd->mult_mask; | 
|  | 251 | dpll_mult >>= __ffs(dd->mult_mask); | 
|  | 252 | dpll_div = v & dd->div1_mask; | 
|  | 253 | dpll_div >>= __ffs(dd->div1_mask); | 
|  | 254 |  | 
|  | 255 | dpll_clk = (long long)dd->clk_ref->rate * dpll_mult; | 
|  | 256 | do_div(dpll_clk, dpll_div + 1); | 
|  | 257 |  | 
|  | 258 | return dpll_clk; | 
|  | 259 | } | 
|  | 260 |  | 
|  | 261 | /* DPLL rate rounding code */ | 
|  | 262 |  | 
|  | 263 | /** | 
|  | 264 | * omap2_dpll_set_rate_tolerance: set the error tolerance during rate rounding | 
|  | 265 | * @clk: struct clk * of the DPLL | 
|  | 266 | * @tolerance: maximum rate error tolerance | 
|  | 267 | * | 
|  | 268 | * Set the maximum DPLL rate error tolerance for the rate rounding | 
|  | 269 | * algorithm.  The rate tolerance is an attempt to balance DPLL power | 
|  | 270 | * saving (the least divider value "n") vs. rate fidelity (the least | 
|  | 271 | * difference between the desired DPLL target rate and the rounded | 
|  | 272 | * rate out of the algorithm).  So, increasing the tolerance is likely | 
|  | 273 | * to decrease DPLL power consumption and increase DPLL rate error. | 
|  | 274 | * Returns -EINVAL if provided a null clock ptr or a clk that is not a | 
|  | 275 | * DPLL; or 0 upon success. | 
|  | 276 | */ | 
|  | 277 | int omap2_dpll_set_rate_tolerance(struct clk *clk, unsigned int tolerance) | 
|  | 278 | { | 
|  | 279 | if (!clk || !clk->dpll_data) | 
|  | 280 | return -EINVAL; | 
|  | 281 |  | 
|  | 282 | clk->dpll_data->rate_tolerance = tolerance; | 
|  | 283 |  | 
|  | 284 | return 0; | 
|  | 285 | } | 
|  | 286 |  | 
|  | 287 | /** | 
|  | 288 | * omap2_dpll_round_rate - round a target rate for an OMAP DPLL | 
|  | 289 | * @clk: struct clk * for a DPLL | 
|  | 290 | * @target_rate: desired DPLL clock rate | 
|  | 291 | * | 
|  | 292 | * Given a DPLL, a desired target rate, and a rate tolerance, round | 
|  | 293 | * the target rate to a possible, programmable rate for this DPLL. | 
|  | 294 | * Rate tolerance is assumed to be set by the caller before this | 
|  | 295 | * function is called.  Attempts to select the minimum possible n | 
|  | 296 | * within the tolerance to reduce power consumption.  Stores the | 
|  | 297 | * computed (m, n) in the DPLL's dpll_data structure so set_rate() | 
|  | 298 | * will not need to call this (expensive) function again.  Returns ~0 | 
|  | 299 | * if the target rate cannot be rounded, either because the rate is | 
|  | 300 | * too low or because the rate tolerance is set too tightly; or the | 
|  | 301 | * rounded rate upon success. | 
|  | 302 | */ | 
|  | 303 | long omap2_dpll_round_rate(struct clk *clk, unsigned long target_rate) | 
|  | 304 | { | 
|  | 305 | int m, n, r, e, scaled_max_m; | 
|  | 306 | unsigned long scaled_rt_rp, new_rate; | 
|  | 307 | int min_e = -1, min_e_m = -1, min_e_n = -1; | 
|  | 308 | struct dpll_data *dd; | 
|  | 309 |  | 
|  | 310 | if (!clk || !clk->dpll_data) | 
|  | 311 | return ~0; | 
|  | 312 |  | 
|  | 313 | dd = clk->dpll_data; | 
|  | 314 |  | 
|  | 315 | pr_debug("clock: starting DPLL round_rate for clock %s, target rate " | 
|  | 316 | "%ld\n", clk->name, target_rate); | 
|  | 317 |  | 
|  | 318 | scaled_rt_rp = target_rate / (dd->clk_ref->rate / DPLL_SCALE_FACTOR); | 
|  | 319 | scaled_max_m = dd->max_multiplier * DPLL_SCALE_FACTOR; | 
|  | 320 |  | 
|  | 321 | dd->last_rounded_rate = 0; | 
|  | 322 |  | 
|  | 323 | for (n = dd->min_divider; n <= dd->max_divider; n++) { | 
|  | 324 |  | 
|  | 325 | /* Is the (input clk, divider) pair valid for the DPLL? */ | 
|  | 326 | r = _dpll_test_fint(clk, n); | 
|  | 327 | if (r == DPLL_FINT_UNDERFLOW) | 
|  | 328 | break; | 
|  | 329 | else if (r == DPLL_FINT_INVALID) | 
|  | 330 | continue; | 
|  | 331 |  | 
|  | 332 | /* Compute the scaled DPLL multiplier, based on the divider */ | 
|  | 333 | m = scaled_rt_rp * n; | 
|  | 334 |  | 
|  | 335 | /* | 
|  | 336 | * Since we're counting n up, a m overflow means we | 
|  | 337 | * can bail out completely (since as n increases in | 
|  | 338 | * the next iteration, there's no way that m can | 
|  | 339 | * increase beyond the current m) | 
|  | 340 | */ | 
|  | 341 | if (m > scaled_max_m) | 
|  | 342 | break; | 
|  | 343 |  | 
|  | 344 | r = _dpll_test_mult(&m, n, &new_rate, target_rate, | 
|  | 345 | dd->clk_ref->rate); | 
|  | 346 |  | 
|  | 347 | /* m can't be set low enough for this n - try with a larger n */ | 
|  | 348 | if (r == DPLL_MULT_UNDERFLOW) | 
|  | 349 | continue; | 
|  | 350 |  | 
|  | 351 | e = target_rate - new_rate; | 
|  | 352 | pr_debug("clock: n = %d: m = %d: rate error is %d " | 
|  | 353 | "(new_rate = %ld)\n", n, m, e, new_rate); | 
|  | 354 |  | 
|  | 355 | if (min_e == -1 || | 
|  | 356 | min_e >= (int)(abs(e) - dd->rate_tolerance)) { | 
|  | 357 | min_e = e; | 
|  | 358 | min_e_m = m; | 
|  | 359 | min_e_n = n; | 
|  | 360 |  | 
|  | 361 | pr_debug("clock: found new least error %d\n", min_e); | 
|  | 362 |  | 
|  | 363 | /* We found good settings -- bail out now */ | 
|  | 364 | if (min_e <= dd->rate_tolerance) | 
|  | 365 | break; | 
|  | 366 | } | 
|  | 367 | } | 
|  | 368 |  | 
|  | 369 | if (min_e < 0) { | 
|  | 370 | pr_debug("clock: error: target rate or tolerance too low\n"); | 
|  | 371 | return ~0; | 
|  | 372 | } | 
|  | 373 |  | 
|  | 374 | dd->last_rounded_m = min_e_m; | 
|  | 375 | dd->last_rounded_n = min_e_n; | 
|  | 376 | dd->last_rounded_rate = _dpll_compute_new_rate(dd->clk_ref->rate, | 
|  | 377 | min_e_m,  min_e_n); | 
|  | 378 |  | 
|  | 379 | pr_debug("clock: final least error: e = %d, m = %d, n = %d\n", | 
|  | 380 | min_e, min_e_m, min_e_n); | 
|  | 381 | pr_debug("clock: final rate: %ld  (target rate: %ld)\n", | 
|  | 382 | dd->last_rounded_rate, target_rate); | 
|  | 383 |  | 
|  | 384 | return dd->last_rounded_rate; | 
|  | 385 | } | 
|  | 386 |  |