Bryan Huntsman | 3f2bc4d | 2011-08-16 17:27:22 -0700 | [diff] [blame] | 1 | /* Qualcomm Crypto Engine driver. |
| 2 | * |
| 3 | * Copyright (c) 2010-2011, Code Aurora Forum. All rights reserved. |
| 4 | * |
| 5 | * This program is free software; you can redistribute it and/or modify |
| 6 | * it under the terms of the GNU General Public License version 2 and |
| 7 | * only version 2 as published by the Free Software Foundation. |
| 8 | * |
| 9 | * This program is distributed in the hope that it will be useful, |
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 12 | * GNU General Public License for more details. |
| 13 | */ |
| 14 | #include <linux/types.h> |
| 15 | #include <linux/kernel.h> |
| 16 | #include <linux/module.h> |
| 17 | #include <linux/mod_devicetable.h> |
| 18 | #include <linux/device.h> |
| 19 | #include <linux/clk.h> |
| 20 | #include <linux/err.h> |
| 21 | #include <linux/dma-mapping.h> |
| 22 | #include <linux/io.h> |
| 23 | #include <linux/platform_device.h> |
| 24 | #include <linux/spinlock.h> |
| 25 | #include <linux/delay.h> |
| 26 | #include <linux/crypto.h> |
| 27 | #include <crypto/hash.h> |
| 28 | #include <crypto/sha.h> |
Mona Hossain | 5c8ea1f | 2011-07-28 15:11:29 -0700 | [diff] [blame^] | 29 | #include <linux/qcedev.h> |
Bryan Huntsman | 3f2bc4d | 2011-08-16 17:27:22 -0700 | [diff] [blame] | 30 | #include <linux/qcota.h> |
| 31 | #include <mach/dma.h> |
| 32 | |
Mona Hossain | 5c8ea1f | 2011-07-28 15:11:29 -0700 | [diff] [blame^] | 33 | #include "qce.h" |
| 34 | #include "qcryptohw_30.h" |
| 35 | #include "qce_ota.h" |
Bryan Huntsman | 3f2bc4d | 2011-08-16 17:27:22 -0700 | [diff] [blame] | 36 | |
| 37 | /* ADM definitions */ |
| 38 | #define LI_SG_CMD (1 << 31) /* last index in the scatter gather cmd */ |
| 39 | #define SRC_INDEX_SG_CMD(index) ((index & 0x3fff) << 16) |
| 40 | #define DST_INDEX_SG_CMD(index) (index & 0x3fff) |
| 41 | #define ADM_DESC_LAST (1 << 31) |
| 42 | |
| 43 | /* Data xfer between DM and CE in blocks of 16 bytes */ |
| 44 | #define ADM_CE_BLOCK_SIZE 16 |
| 45 | |
| 46 | /* Data xfer between DM and CE in blocks of 64 bytes */ |
| 47 | #define ADM_SHA_BLOCK_SIZE 64 |
| 48 | |
| 49 | #define ADM_DESC_LENGTH_MASK 0xffff |
| 50 | #define ADM_DESC_LENGTH(x) (x & ADM_DESC_LENGTH_MASK) |
| 51 | |
| 52 | struct dmov_desc { |
| 53 | uint32_t addr; |
| 54 | uint32_t len; |
| 55 | }; |
| 56 | |
| 57 | #define ADM_STATUS_OK 0x80000002 |
| 58 | |
| 59 | /* Misc definitions */ |
| 60 | |
| 61 | /* QCE max number of descriptor in a descriptor list */ |
| 62 | #define QCE_MAX_NUM_DESC 128 |
| 63 | |
| 64 | /* State of DM channel */ |
| 65 | enum qce_chan_st_enum { |
| 66 | QCE_CHAN_STATE_IDLE = 0, |
| 67 | QCE_CHAN_STATE_IN_PROG = 1, |
| 68 | QCE_CHAN_STATE_COMP = 2, |
| 69 | QCE_CHAN_STATE_LAST |
| 70 | }; |
| 71 | |
| 72 | /* |
| 73 | * CE HW device structure. |
| 74 | * Each engine has an instance of the structure. |
| 75 | * Each engine can only handle one crypto operation at one time. It is up to |
| 76 | * the sw above to ensure single threading of operation on an engine. |
| 77 | */ |
| 78 | struct qce_device { |
| 79 | struct device *pdev; /* Handle to platform_device structure */ |
| 80 | unsigned char *coh_vmem; /* Allocated coherent virtual memory */ |
| 81 | dma_addr_t coh_pmem; /* Allocated coherent physical memory */ |
| 82 | void __iomem *iobase; /* Virtual io base of CE HW */ |
| 83 | unsigned int phy_iobase; /* Physical io base of CE HW */ |
| 84 | struct clk *ce_clk; /* Handle to CE clk */ |
| 85 | unsigned int crci_in; /* CRCI for CE DM IN Channel */ |
| 86 | unsigned int crci_out; /* CRCI for CE DM OUT Channel */ |
| 87 | unsigned int crci_hash; /* CRCI for CE HASH */ |
| 88 | unsigned int chan_ce_in; /* ADM channel used for CE input |
| 89 | * and auth result if authentication |
| 90 | * only operation. */ |
| 91 | unsigned int chan_ce_out; /* ADM channel used for CE output, |
| 92 | and icv for esp */ |
| 93 | |
| 94 | |
| 95 | unsigned int *cmd_pointer_list_ce_in; |
| 96 | dma_addr_t phy_cmd_pointer_list_ce_in; |
| 97 | |
| 98 | unsigned int *cmd_pointer_list_ce_out; |
| 99 | dma_addr_t phy_cmd_pointer_list_ce_out; |
| 100 | |
| 101 | unsigned char *cmd_list_ce_in; |
| 102 | dma_addr_t phy_cmd_list_ce_in; |
| 103 | |
| 104 | unsigned char *cmd_list_ce_out; |
| 105 | dma_addr_t phy_cmd_list_ce_out; |
| 106 | |
| 107 | struct dmov_desc *ce_out_src_desc; |
| 108 | dma_addr_t phy_ce_out_src_desc; |
| 109 | |
| 110 | struct dmov_desc *ce_out_dst_desc; |
| 111 | dma_addr_t phy_ce_out_dst_desc; |
| 112 | |
| 113 | struct dmov_desc *ce_in_src_desc; |
| 114 | dma_addr_t phy_ce_in_src_desc; |
| 115 | |
| 116 | struct dmov_desc *ce_in_dst_desc; |
| 117 | dma_addr_t phy_ce_in_dst_desc; |
| 118 | |
| 119 | unsigned char *ce_out_ignore; |
| 120 | dma_addr_t phy_ce_out_ignore; |
| 121 | |
| 122 | unsigned char *ce_pad; |
| 123 | dma_addr_t phy_ce_pad; |
| 124 | |
| 125 | struct msm_dmov_cmd *chan_ce_in_cmd; |
| 126 | struct msm_dmov_cmd *chan_ce_out_cmd; |
| 127 | |
| 128 | uint32_t ce_out_ignore_size; |
| 129 | |
| 130 | int ce_out_dst_desc_index; |
| 131 | int ce_in_src_desc_index; |
| 132 | |
| 133 | enum qce_chan_st_enum chan_ce_in_state; /* chan ce_in state */ |
| 134 | enum qce_chan_st_enum chan_ce_out_state; /* chan ce_out state */ |
| 135 | |
| 136 | int chan_ce_in_status; /* chan ce_in status */ |
| 137 | int chan_ce_out_status; /* chan ce_out status */ |
| 138 | |
| 139 | |
| 140 | unsigned char *dig_result; |
| 141 | dma_addr_t phy_dig_result; |
| 142 | |
| 143 | /* cached aes key */ |
| 144 | uint32_t aeskey[AES256_KEY_SIZE/sizeof(uint32_t)]; |
| 145 | |
| 146 | uint32_t aes_key_size; /* cached aes key size in bytes */ |
| 147 | int fastaes; /* ce supports fast aes */ |
| 148 | int hmac; /* ce support hmac-sha1 */ |
| 149 | bool ota; /* ce support ota */ |
| 150 | |
| 151 | qce_comp_func_ptr_t qce_cb; /* qce callback function pointer */ |
| 152 | |
| 153 | int assoc_nents; |
| 154 | int src_nents; |
| 155 | int dst_nents; |
| 156 | |
| 157 | void *areq; |
| 158 | enum qce_cipher_mode_enum mode; |
| 159 | |
| 160 | dma_addr_t phy_iv_in; |
| 161 | dma_addr_t phy_ota_src; |
| 162 | dma_addr_t phy_ota_dst; |
| 163 | unsigned int ota_size; |
| 164 | int err; |
| 165 | }; |
| 166 | |
| 167 | /* Standard initialization vector for SHA-1, source: FIPS 180-2 */ |
| 168 | static uint32_t _std_init_vector_sha1[] = { |
| 169 | 0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0 |
| 170 | }; |
| 171 | /* Standard initialization vector for SHA-256, source: FIPS 180-2 */ |
| 172 | static uint32_t _std_init_vector_sha256[] = { |
| 173 | 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, |
| 174 | 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19 |
| 175 | }; |
| 176 | |
| 177 | /* Source: FIPS 197, Figure 7. S-box: substitution values for the byte xy */ |
| 178 | static const uint32_t _s_box[256] = { |
| 179 | 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, |
| 180 | 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, |
| 181 | |
| 182 | 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, |
| 183 | 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, |
| 184 | |
| 185 | 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, |
| 186 | 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, |
| 187 | |
| 188 | 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, |
| 189 | 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, |
| 190 | |
| 191 | 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, |
| 192 | 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, |
| 193 | |
| 194 | 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, |
| 195 | 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, |
| 196 | |
| 197 | 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, |
| 198 | 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, |
| 199 | |
| 200 | 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, |
| 201 | 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, |
| 202 | |
| 203 | 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, |
| 204 | 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, |
| 205 | |
| 206 | 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, |
| 207 | 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, |
| 208 | |
| 209 | 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, |
| 210 | 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, |
| 211 | |
| 212 | 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, |
| 213 | 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, |
| 214 | |
| 215 | 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, |
| 216 | 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, |
| 217 | |
| 218 | 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, |
| 219 | 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, |
| 220 | |
| 221 | 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, |
| 222 | 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, |
| 223 | |
| 224 | 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, |
| 225 | 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 }; |
| 226 | |
| 227 | |
| 228 | /* |
| 229 | * Source: FIPS 197, Sec 5.2 Key Expansion, Figure 11. Pseudo Code for Key |
| 230 | * Expansion. |
| 231 | */ |
| 232 | static void _aes_expand_key_schedule(uint32_t keysize, uint32_t *AES_KEY, |
| 233 | uint32_t *AES_RND_KEY) |
| 234 | { |
| 235 | uint32_t i; |
| 236 | uint32_t Nk; |
| 237 | uint32_t Nr, rot_data; |
| 238 | uint32_t Rcon = 0x01000000; |
| 239 | uint32_t temp; |
| 240 | uint32_t data_in; |
| 241 | uint32_t MSB_store; |
| 242 | uint32_t byte_for_sub; |
| 243 | uint32_t word_sub[4]; |
| 244 | |
| 245 | switch (keysize) { |
| 246 | case 192: |
| 247 | Nk = 6; |
| 248 | Nr = 12; |
| 249 | break; |
| 250 | |
| 251 | case 256: |
| 252 | Nk = 8; |
| 253 | Nr = 14; |
| 254 | break; |
| 255 | |
| 256 | case 128: |
| 257 | default: /* default to AES128 */ |
| 258 | Nk = 4; |
| 259 | Nr = 10; |
| 260 | break; |
| 261 | } |
| 262 | |
| 263 | /* key expansion */ |
| 264 | i = 0; |
| 265 | while (i < Nk) { |
| 266 | AES_RND_KEY[i] = AES_KEY[i]; |
| 267 | i = i + 1; |
| 268 | } |
| 269 | |
| 270 | i = Nk; |
| 271 | while (i < (4 * (Nr + 1))) { |
| 272 | temp = AES_RND_KEY[i-1]; |
| 273 | if (Nr == 14) { |
| 274 | switch (i) { |
| 275 | case 8: |
| 276 | Rcon = 0x01000000; |
| 277 | break; |
| 278 | |
| 279 | case 16: |
| 280 | Rcon = 0x02000000; |
| 281 | break; |
| 282 | |
| 283 | case 24: |
| 284 | Rcon = 0x04000000; |
| 285 | break; |
| 286 | |
| 287 | case 32: |
| 288 | Rcon = 0x08000000; |
| 289 | break; |
| 290 | |
| 291 | case 40: |
| 292 | Rcon = 0x10000000; |
| 293 | break; |
| 294 | |
| 295 | case 48: |
| 296 | Rcon = 0x20000000; |
| 297 | break; |
| 298 | |
| 299 | case 56: |
| 300 | Rcon = 0x40000000; |
| 301 | break; |
| 302 | } |
| 303 | } else if (Nr == 12) { |
| 304 | switch (i) { |
| 305 | case 6: |
| 306 | Rcon = 0x01000000; |
| 307 | break; |
| 308 | |
| 309 | case 12: |
| 310 | Rcon = 0x02000000; |
| 311 | break; |
| 312 | |
| 313 | case 18: |
| 314 | Rcon = 0x04000000; |
| 315 | break; |
| 316 | |
| 317 | case 24: |
| 318 | Rcon = 0x08000000; |
| 319 | break; |
| 320 | |
| 321 | case 30: |
| 322 | Rcon = 0x10000000; |
| 323 | break; |
| 324 | |
| 325 | case 36: |
| 326 | Rcon = 0x20000000; |
| 327 | break; |
| 328 | |
| 329 | case 42: |
| 330 | Rcon = 0x40000000; |
| 331 | break; |
| 332 | |
| 333 | case 48: |
| 334 | Rcon = 0x80000000; |
| 335 | break; |
| 336 | } |
| 337 | } else if (Nr == 10) { |
| 338 | switch (i) { |
| 339 | case 4: |
| 340 | Rcon = 0x01000000; |
| 341 | break; |
| 342 | |
| 343 | case 8: |
| 344 | Rcon = 0x02000000; |
| 345 | break; |
| 346 | |
| 347 | case 12: |
| 348 | Rcon = 0x04000000; |
| 349 | break; |
| 350 | |
| 351 | case 16: |
| 352 | Rcon = 0x08000000; |
| 353 | break; |
| 354 | |
| 355 | case 20: |
| 356 | Rcon = 0x10000000; |
| 357 | break; |
| 358 | |
| 359 | case 24: |
| 360 | Rcon = 0x20000000; |
| 361 | break; |
| 362 | |
| 363 | case 28: |
| 364 | Rcon = 0x40000000; |
| 365 | break; |
| 366 | |
| 367 | case 32: |
| 368 | Rcon = 0x80000000; |
| 369 | break; |
| 370 | |
| 371 | case 36: |
| 372 | Rcon = 0x1b000000; |
| 373 | break; |
| 374 | |
| 375 | case 40: |
| 376 | Rcon = 0x36000000; |
| 377 | break; |
| 378 | } |
| 379 | } |
| 380 | |
| 381 | if ((i % Nk) == 0) { |
| 382 | data_in = temp; |
| 383 | MSB_store = (data_in >> 24 & 0xff); |
| 384 | rot_data = (data_in << 8) | MSB_store; |
| 385 | byte_for_sub = rot_data; |
| 386 | word_sub[0] = _s_box[(byte_for_sub & 0xff)]; |
| 387 | word_sub[1] = (_s_box[((byte_for_sub & 0xff00) >> 8)] |
| 388 | << 8); |
| 389 | word_sub[2] = (_s_box[((byte_for_sub & 0xff0000) >> 16)] |
| 390 | << 16); |
| 391 | word_sub[3] = (_s_box[((byte_for_sub & 0xff000000) |
| 392 | >> 24)] << 24); |
| 393 | word_sub[0] = word_sub[0] | word_sub[1] | word_sub[2] | |
| 394 | word_sub[3]; |
| 395 | temp = word_sub[0] ^ Rcon; |
| 396 | } else if ((Nk > 6) && ((i % Nk) == 4)) { |
| 397 | byte_for_sub = temp; |
| 398 | word_sub[0] = _s_box[(byte_for_sub & 0xff)]; |
| 399 | word_sub[1] = (_s_box[((byte_for_sub & 0xff00) >> 8)] |
| 400 | << 8); |
| 401 | word_sub[2] = (_s_box[((byte_for_sub & 0xff0000) >> 16)] |
| 402 | << 16); |
| 403 | word_sub[3] = (_s_box[((byte_for_sub & 0xff000000) >> |
| 404 | 24)] << 24); |
| 405 | word_sub[0] = word_sub[0] | word_sub[1] | word_sub[2] | |
| 406 | word_sub[3]; |
| 407 | temp = word_sub[0]; |
| 408 | } |
| 409 | |
| 410 | AES_RND_KEY[i] = AES_RND_KEY[i-Nk]^temp; |
| 411 | i = i+1; |
| 412 | } |
| 413 | } |
| 414 | |
| 415 | static void _byte_stream_to_net_words(uint32_t *iv, unsigned char *b, |
| 416 | unsigned int len) |
| 417 | { |
| 418 | unsigned n; |
| 419 | |
| 420 | n = len / sizeof(uint32_t) ; |
| 421 | for (; n > 0; n--) { |
| 422 | *iv = ((*b << 24) & 0xff000000) | |
| 423 | (((*(b+1)) << 16) & 0xff0000) | |
| 424 | (((*(b+2)) << 8) & 0xff00) | |
| 425 | (*(b+3) & 0xff); |
| 426 | b += sizeof(uint32_t); |
| 427 | iv++; |
| 428 | } |
| 429 | |
| 430 | n = len % sizeof(uint32_t); |
| 431 | if (n == 3) { |
| 432 | *iv = ((*b << 24) & 0xff000000) | |
| 433 | (((*(b+1)) << 16) & 0xff0000) | |
| 434 | (((*(b+2)) << 8) & 0xff00) ; |
| 435 | } else if (n == 2) { |
| 436 | *iv = ((*b << 24) & 0xff000000) | |
| 437 | (((*(b+1)) << 16) & 0xff0000) ; |
| 438 | } else if (n == 1) { |
| 439 | *iv = ((*b << 24) & 0xff000000) ; |
| 440 | } |
| 441 | } |
| 442 | |
| 443 | static void _net_words_to_byte_stream(uint32_t *iv, unsigned char *b, |
| 444 | unsigned int len) |
| 445 | { |
| 446 | unsigned n = len / sizeof(uint32_t); |
| 447 | |
| 448 | for (; n > 0; n--) { |
| 449 | *b++ = (unsigned char) ((*iv >> 24) & 0xff); |
| 450 | *b++ = (unsigned char) ((*iv >> 16) & 0xff); |
| 451 | *b++ = (unsigned char) ((*iv >> 8) & 0xff); |
| 452 | *b++ = (unsigned char) (*iv & 0xff); |
| 453 | iv++; |
| 454 | } |
| 455 | n = len % sizeof(uint32_t); |
| 456 | if (n == 3) { |
| 457 | *b++ = (unsigned char) ((*iv >> 24) & 0xff); |
| 458 | *b++ = (unsigned char) ((*iv >> 16) & 0xff); |
| 459 | *b = (unsigned char) ((*iv >> 8) & 0xff); |
| 460 | } else if (n == 2) { |
| 461 | *b++ = (unsigned char) ((*iv >> 24) & 0xff); |
| 462 | *b = (unsigned char) ((*iv >> 16) & 0xff); |
| 463 | } else if (n == 1) { |
| 464 | *b = (unsigned char) ((*iv >> 24) & 0xff); |
| 465 | } |
| 466 | } |
| 467 | |
| 468 | static int count_sg(struct scatterlist *sg, int nbytes) |
| 469 | { |
| 470 | int i; |
| 471 | |
| 472 | for (i = 0; nbytes > 0; i++, sg = sg_next(sg)) |
| 473 | nbytes -= sg->length; |
| 474 | return i; |
| 475 | } |
| 476 | |
| 477 | static int dma_map_pmem_sg(struct buf_info *pmem, unsigned entries, |
| 478 | struct scatterlist *sg) |
| 479 | { |
| 480 | int i = 0; |
| 481 | for (i = 0; i < entries; i++) { |
| 482 | |
| 483 | sg->dma_address = (dma_addr_t)pmem->offset; |
| 484 | sg++; |
| 485 | pmem++; |
| 486 | } |
| 487 | return 0; |
| 488 | } |
| 489 | |
| 490 | static int _probe_ce_engine(struct qce_device *pce_dev) |
| 491 | { |
| 492 | unsigned int val; |
| 493 | unsigned int rev; |
| 494 | unsigned int eng_availability; /* engine available functions */ |
| 495 | |
| 496 | val = readl_relaxed(pce_dev->iobase + CRYPTO_STATUS_REG); |
| 497 | if ((val & 0xfffffff) != 0x0200004) { |
| 498 | dev_err(pce_dev->pdev, |
| 499 | "unknown Qualcomm crypto device at 0x%x 0x%x\n", |
| 500 | pce_dev->phy_iobase, val); |
| 501 | return -EIO; |
| 502 | }; |
| 503 | rev = (val & CRYPTO_CORE_REV_MASK) >> CRYPTO_CORE_REV; |
| 504 | if (rev == 0x2) { |
| 505 | dev_info(pce_dev->pdev, |
| 506 | "Qualcomm Crypto 3e device found at 0x%x\n", |
| 507 | pce_dev->phy_iobase); |
| 508 | } else if (rev == 0x1) { |
| 509 | dev_info(pce_dev->pdev, |
| 510 | "Qualcomm Crypto 3 device found at 0x%x\n", |
| 511 | pce_dev->phy_iobase); |
| 512 | } else if (rev == 0x0) { |
| 513 | dev_info(pce_dev->pdev, |
| 514 | "Qualcomm Crypto 2 device found at 0x%x\n", |
| 515 | pce_dev->phy_iobase); |
| 516 | } else { |
| 517 | dev_err(pce_dev->pdev, |
| 518 | "unknown Qualcomm crypto device at 0x%x\n", |
| 519 | pce_dev->phy_iobase); |
| 520 | return -EIO; |
| 521 | } |
| 522 | |
| 523 | eng_availability = readl_relaxed(pce_dev->iobase + |
| 524 | CRYPTO_ENGINES_AVAIL); |
| 525 | |
| 526 | if (((eng_availability & CRYPTO_AES_SEL_MASK) >> CRYPTO_AES_SEL) |
| 527 | == CRYPTO_AES_SEL_FAST) |
| 528 | pce_dev->fastaes = 1; |
| 529 | else |
| 530 | pce_dev->fastaes = 0; |
| 531 | |
| 532 | if (eng_availability & (1 << CRYPTO_HMAC_SEL)) |
| 533 | pce_dev->hmac = 1; |
| 534 | else |
| 535 | pce_dev->hmac = 0; |
| 536 | |
| 537 | if ((eng_availability & (1 << CRYPTO_F9_SEL)) && |
| 538 | (eng_availability & (1 << CRYPTO_F8_SEL))) |
| 539 | pce_dev->ota = true; |
| 540 | else |
| 541 | pce_dev->ota = false; |
| 542 | |
| 543 | pce_dev->aes_key_size = 0; |
| 544 | |
| 545 | return 0; |
| 546 | }; |
| 547 | |
| 548 | static int _init_ce_engine(struct qce_device *pce_dev) |
| 549 | { |
| 550 | unsigned int val; |
| 551 | |
| 552 | /* reset qce */ |
| 553 | writel_relaxed(1 << CRYPTO_SW_RST, pce_dev->iobase + CRYPTO_CONFIG_REG); |
| 554 | |
| 555 | /* Ensure previous instruction (write to reset bit) |
| 556 | * was completed. |
| 557 | */ |
| 558 | mb(); |
| 559 | /* configure ce */ |
| 560 | val = (1 << CRYPTO_MASK_DOUT_INTR) | (1 << CRYPTO_MASK_DIN_INTR) | |
| 561 | (1 << CRYPTO_MASK_AUTH_DONE_INTR) | |
| 562 | (1 << CRYPTO_MASK_ERR_INTR); |
| 563 | writel_relaxed(val, pce_dev->iobase + CRYPTO_CONFIG_REG); |
| 564 | |
| 565 | if (_probe_ce_engine(pce_dev) < 0) |
| 566 | return -EIO; |
| 567 | if (readl_relaxed(pce_dev->iobase + CRYPTO_CONFIG_REG) != val) { |
| 568 | dev_err(pce_dev->pdev, |
| 569 | "unknown Qualcomm crypto device at 0x%x\n", |
| 570 | pce_dev->phy_iobase); |
| 571 | return -EIO; |
| 572 | }; |
| 573 | return 0; |
| 574 | }; |
| 575 | |
| 576 | static int _sha_ce_setup(struct qce_device *pce_dev, struct qce_sha_req *sreq) |
| 577 | { |
| 578 | uint32_t auth32[SHA256_DIGEST_SIZE / sizeof(uint32_t)]; |
| 579 | uint32_t diglen; |
| 580 | int rc; |
| 581 | int i; |
| 582 | uint32_t cfg = 0; |
| 583 | |
| 584 | /* if not the last, the size has to be on the block boundary */ |
| 585 | if (sreq->last_blk == 0 && (sreq->size % SHA256_BLOCK_SIZE)) |
| 586 | return -EIO; |
| 587 | |
| 588 | switch (sreq->alg) { |
| 589 | case QCE_HASH_SHA1: |
| 590 | diglen = SHA1_DIGEST_SIZE; |
| 591 | break; |
| 592 | case QCE_HASH_SHA256: |
| 593 | diglen = SHA256_DIGEST_SIZE; |
| 594 | break; |
| 595 | default: |
| 596 | return -EINVAL; |
| 597 | } |
| 598 | /* |
| 599 | * write 20/32 bytes, 5/8 words into auth_iv |
| 600 | * for SHA1/SHA256 |
| 601 | */ |
| 602 | |
| 603 | if (sreq->first_blk) { |
| 604 | if (sreq->alg == QCE_HASH_SHA1) { |
| 605 | for (i = 0; i < 5; i++) |
| 606 | auth32[i] = _std_init_vector_sha1[i]; |
| 607 | } else { |
| 608 | for (i = 0; i < 8; i++) |
| 609 | auth32[i] = _std_init_vector_sha256[i]; |
| 610 | } |
| 611 | } else |
| 612 | _byte_stream_to_net_words(auth32, sreq->digest, diglen); |
| 613 | |
| 614 | rc = clk_enable(pce_dev->ce_clk); |
| 615 | if (rc) |
| 616 | return rc; |
| 617 | |
| 618 | writel_relaxed(auth32[0], pce_dev->iobase + CRYPTO_AUTH_IV0_REG); |
| 619 | writel_relaxed(auth32[1], pce_dev->iobase + CRYPTO_AUTH_IV1_REG); |
| 620 | writel_relaxed(auth32[2], pce_dev->iobase + CRYPTO_AUTH_IV2_REG); |
| 621 | writel_relaxed(auth32[3], pce_dev->iobase + CRYPTO_AUTH_IV3_REG); |
| 622 | writel_relaxed(auth32[4], pce_dev->iobase + CRYPTO_AUTH_IV4_REG); |
| 623 | |
| 624 | if (sreq->alg == QCE_HASH_SHA256) { |
| 625 | writel_relaxed(auth32[5], pce_dev->iobase + |
| 626 | CRYPTO_AUTH_IV5_REG); |
| 627 | writel_relaxed(auth32[6], pce_dev->iobase + |
| 628 | CRYPTO_AUTH_IV6_REG); |
| 629 | writel_relaxed(auth32[7], pce_dev->iobase + |
| 630 | CRYPTO_AUTH_IV7_REG); |
| 631 | } |
| 632 | /* write auth_bytecnt 0/1, start with 0 */ |
| 633 | writel_relaxed(sreq->auth_data[0], pce_dev->iobase + |
| 634 | CRYPTO_AUTH_BYTECNT0_REG); |
| 635 | writel_relaxed(sreq->auth_data[1], pce_dev->iobase + |
| 636 | CRYPTO_AUTH_BYTECNT1_REG); |
| 637 | |
| 638 | /* write auth_seg_cfg */ |
| 639 | writel_relaxed(sreq->size << CRYPTO_AUTH_SEG_SIZE, |
| 640 | pce_dev->iobase + CRYPTO_AUTH_SEG_CFG_REG); |
| 641 | |
| 642 | /* |
| 643 | * write seg_cfg |
| 644 | */ |
| 645 | |
| 646 | if (sreq->alg == QCE_HASH_SHA1) |
| 647 | cfg |= (CRYPTO_AUTH_SIZE_SHA1 << CRYPTO_AUTH_SIZE); |
| 648 | else |
| 649 | cfg = (CRYPTO_AUTH_SIZE_SHA256 << CRYPTO_AUTH_SIZE); |
| 650 | |
| 651 | if (sreq->first_blk) |
| 652 | cfg |= 1 << CRYPTO_FIRST; |
| 653 | if (sreq->last_blk) |
| 654 | cfg |= 1 << CRYPTO_LAST; |
| 655 | cfg |= CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG; |
| 656 | writel_relaxed(cfg, pce_dev->iobase + CRYPTO_SEG_CFG_REG); |
| 657 | |
| 658 | /* write seg_size */ |
| 659 | writel_relaxed(sreq->size, pce_dev->iobase + CRYPTO_SEG_SIZE_REG); |
| 660 | |
| 661 | /* issue go to crypto */ |
| 662 | writel_relaxed(1 << CRYPTO_GO, pce_dev->iobase + CRYPTO_GOPROC_REG); |
| 663 | /* Ensure previous instructions (setting the GO register) |
| 664 | * was completed before issuing a DMA transfer request |
| 665 | */ |
| 666 | mb(); |
| 667 | |
| 668 | return 0; |
| 669 | } |
| 670 | |
| 671 | static int _ce_setup(struct qce_device *pce_dev, struct qce_req *q_req, |
| 672 | uint32_t totallen, uint32_t coffset) |
| 673 | { |
| 674 | uint32_t hmackey[HMAC_KEY_SIZE/sizeof(uint32_t)] = { |
| 675 | 0, 0, 0, 0, 0}; |
| 676 | uint32_t enckey32[MAX_CIPHER_KEY_SIZE/sizeof(uint32_t)] = { |
| 677 | 0, 0, 0, 0, 0, 0, 0, 0}; |
| 678 | uint32_t enciv32[MAX_IV_LENGTH / sizeof(uint32_t)] = { |
| 679 | 0, 0, 0, 0}; |
| 680 | uint32_t enck_size_in_word = q_req->encklen / sizeof(uint32_t); |
| 681 | int aes_key_chg; |
| 682 | int i, rc; |
| 683 | uint32_t aes_round_key[CRYPTO_AES_RNDKEYS]; |
| 684 | uint32_t cfg; |
| 685 | uint32_t ivsize = q_req->ivsize; |
| 686 | |
| 687 | rc = clk_enable(pce_dev->ce_clk); |
| 688 | if (rc) |
| 689 | return rc; |
| 690 | |
| 691 | cfg = (1 << CRYPTO_FIRST) | (1 << CRYPTO_LAST); |
| 692 | if (q_req->op == QCE_REQ_AEAD) { |
| 693 | |
| 694 | /* do authentication setup */ |
| 695 | |
| 696 | cfg |= (CRYPTO_AUTH_SIZE_HMAC_SHA1 << CRYPTO_AUTH_SIZE)| |
| 697 | (CRYPTO_AUTH_ALG_SHA << CRYPTO_AUTH_ALG); |
| 698 | |
| 699 | /* write sha1 init vector */ |
| 700 | writel_relaxed(_std_init_vector_sha1[0], |
| 701 | pce_dev->iobase + CRYPTO_AUTH_IV0_REG); |
| 702 | writel_relaxed(_std_init_vector_sha1[1], |
| 703 | pce_dev->iobase + CRYPTO_AUTH_IV1_REG); |
| 704 | writel_relaxed(_std_init_vector_sha1[2], |
| 705 | pce_dev->iobase + CRYPTO_AUTH_IV2_REG); |
| 706 | writel_relaxed(_std_init_vector_sha1[3], |
| 707 | pce_dev->iobase + CRYPTO_AUTH_IV3_REG); |
| 708 | writel_relaxed(_std_init_vector_sha1[4], |
| 709 | pce_dev->iobase + CRYPTO_AUTH_IV4_REG); |
| 710 | /* write hmac key */ |
| 711 | _byte_stream_to_net_words(hmackey, q_req->authkey, |
| 712 | q_req->authklen); |
| 713 | writel_relaxed(hmackey[0], pce_dev->iobase + |
| 714 | CRYPTO_AUTH_IV5_REG); |
| 715 | writel_relaxed(hmackey[1], pce_dev->iobase + |
| 716 | CRYPTO_AUTH_IV6_REG); |
| 717 | writel_relaxed(hmackey[2], pce_dev->iobase + |
| 718 | CRYPTO_AUTH_IV7_REG); |
| 719 | writel_relaxed(hmackey[3], pce_dev->iobase + |
| 720 | CRYPTO_AUTH_IV8_REG); |
| 721 | writel_relaxed(hmackey[4], pce_dev->iobase + |
| 722 | CRYPTO_AUTH_IV9_REG); |
| 723 | writel_relaxed(0, pce_dev->iobase + CRYPTO_AUTH_BYTECNT0_REG); |
| 724 | writel_relaxed(0, pce_dev->iobase + CRYPTO_AUTH_BYTECNT1_REG); |
| 725 | |
| 726 | /* write auth_seg_cfg */ |
| 727 | writel_relaxed((totallen << CRYPTO_AUTH_SEG_SIZE) & 0xffff0000, |
| 728 | pce_dev->iobase + CRYPTO_AUTH_SEG_CFG_REG); |
| 729 | |
| 730 | } |
| 731 | |
| 732 | _byte_stream_to_net_words(enckey32, q_req->enckey, q_req->encklen); |
| 733 | |
| 734 | switch (q_req->mode) { |
| 735 | case QCE_MODE_ECB: |
| 736 | cfg |= (CRYPTO_ENCR_MODE_ECB << CRYPTO_ENCR_MODE); |
| 737 | break; |
| 738 | |
| 739 | case QCE_MODE_CBC: |
| 740 | cfg |= (CRYPTO_ENCR_MODE_CBC << CRYPTO_ENCR_MODE); |
| 741 | break; |
| 742 | |
| 743 | case QCE_MODE_CTR: |
| 744 | default: |
| 745 | cfg |= (CRYPTO_ENCR_MODE_CTR << CRYPTO_ENCR_MODE); |
| 746 | break; |
| 747 | } |
| 748 | pce_dev->mode = q_req->mode; |
| 749 | |
| 750 | switch (q_req->alg) { |
| 751 | case CIPHER_ALG_DES: |
| 752 | if (q_req->mode != QCE_MODE_ECB) { |
| 753 | _byte_stream_to_net_words(enciv32, q_req->iv, ivsize); |
| 754 | writel_relaxed(enciv32[0], pce_dev->iobase + |
| 755 | CRYPTO_CNTR0_IV0_REG); |
| 756 | writel_relaxed(enciv32[1], pce_dev->iobase + |
| 757 | CRYPTO_CNTR1_IV1_REG); |
| 758 | } |
| 759 | writel_relaxed(enckey32[0], pce_dev->iobase + |
| 760 | CRYPTO_DES_KEY0_REG); |
| 761 | writel_relaxed(enckey32[1], pce_dev->iobase + |
| 762 | CRYPTO_DES_KEY1_REG); |
| 763 | cfg |= ((CRYPTO_ENCR_KEY_SZ_DES << CRYPTO_ENCR_KEY_SZ) | |
| 764 | (CRYPTO_ENCR_ALG_DES << CRYPTO_ENCR_ALG)); |
| 765 | break; |
| 766 | |
| 767 | case CIPHER_ALG_3DES: |
| 768 | if (q_req->mode != QCE_MODE_ECB) { |
| 769 | _byte_stream_to_net_words(enciv32, q_req->iv, ivsize); |
| 770 | writel_relaxed(enciv32[0], pce_dev->iobase + |
| 771 | CRYPTO_CNTR0_IV0_REG); |
| 772 | writel_relaxed(enciv32[1], pce_dev->iobase + |
| 773 | CRYPTO_CNTR1_IV1_REG); |
| 774 | } |
| 775 | writel_relaxed(enckey32[0], pce_dev->iobase + |
| 776 | CRYPTO_DES_KEY0_REG); |
| 777 | writel_relaxed(enckey32[1], pce_dev->iobase + |
| 778 | CRYPTO_DES_KEY1_REG); |
| 779 | writel_relaxed(enckey32[2], pce_dev->iobase + |
| 780 | CRYPTO_DES_KEY2_REG); |
| 781 | writel_relaxed(enckey32[3], pce_dev->iobase + |
| 782 | CRYPTO_DES_KEY3_REG); |
| 783 | writel_relaxed(enckey32[4], pce_dev->iobase + |
| 784 | CRYPTO_DES_KEY4_REG); |
| 785 | writel_relaxed(enckey32[5], pce_dev->iobase + |
| 786 | CRYPTO_DES_KEY5_REG); |
| 787 | cfg |= ((CRYPTO_ENCR_KEY_SZ_3DES << CRYPTO_ENCR_KEY_SZ) | |
| 788 | (CRYPTO_ENCR_ALG_DES << CRYPTO_ENCR_ALG)); |
| 789 | break; |
| 790 | |
| 791 | case CIPHER_ALG_AES: |
| 792 | default: |
| 793 | if (q_req->mode != QCE_MODE_ECB) { |
| 794 | _byte_stream_to_net_words(enciv32, q_req->iv, ivsize); |
| 795 | writel_relaxed(enciv32[0], pce_dev->iobase + |
| 796 | CRYPTO_CNTR0_IV0_REG); |
| 797 | writel_relaxed(enciv32[1], pce_dev->iobase + |
| 798 | CRYPTO_CNTR1_IV1_REG); |
| 799 | writel_relaxed(enciv32[2], pce_dev->iobase + |
| 800 | CRYPTO_CNTR2_IV2_REG); |
| 801 | writel_relaxed(enciv32[3], pce_dev->iobase + |
| 802 | CRYPTO_CNTR3_IV3_REG); |
| 803 | } |
| 804 | /* set number of counter bits */ |
| 805 | writel_relaxed(0xffff, pce_dev->iobase + CRYPTO_CNTR_MASK_REG); |
| 806 | |
| 807 | if (q_req->op == QCE_REQ_ABLK_CIPHER_NO_KEY) { |
| 808 | cfg |= (CRYPTO_ENCR_KEY_SZ_AES128 << |
| 809 | CRYPTO_ENCR_KEY_SZ); |
| 810 | cfg |= CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG; |
| 811 | } else { |
| 812 | switch (q_req->encklen) { |
| 813 | case AES128_KEY_SIZE: |
| 814 | cfg |= (CRYPTO_ENCR_KEY_SZ_AES128 << |
| 815 | CRYPTO_ENCR_KEY_SZ); |
| 816 | break; |
| 817 | case AES192_KEY_SIZE: |
| 818 | cfg |= (CRYPTO_ENCR_KEY_SZ_AES192 << |
| 819 | CRYPTO_ENCR_KEY_SZ); |
| 820 | break; |
| 821 | case AES256_KEY_SIZE: |
| 822 | default: |
| 823 | cfg |= (CRYPTO_ENCR_KEY_SZ_AES256 << |
| 824 | CRYPTO_ENCR_KEY_SZ); |
| 825 | |
| 826 | /* check for null key. If null, use hw key*/ |
| 827 | for (i = 0; i < enck_size_in_word; i++) { |
| 828 | if (enckey32[i] != 0) |
| 829 | break; |
| 830 | } |
| 831 | if (i == enck_size_in_word) |
| 832 | cfg |= 1 << CRYPTO_USE_HW_KEY; |
| 833 | break; |
| 834 | } /* end of switch (q_req->encklen) */ |
| 835 | |
| 836 | cfg |= CRYPTO_ENCR_ALG_AES << CRYPTO_ENCR_ALG; |
| 837 | if (pce_dev->aes_key_size != q_req->encklen) |
| 838 | aes_key_chg = 1; |
| 839 | else { |
| 840 | for (i = 0; i < enck_size_in_word; i++) { |
| 841 | if (enckey32[i] != pce_dev->aeskey[i]) |
| 842 | break; |
| 843 | } |
| 844 | aes_key_chg = (i == enck_size_in_word) ? 0 : 1; |
| 845 | } |
| 846 | |
| 847 | if (aes_key_chg) { |
| 848 | if (pce_dev->fastaes) { |
| 849 | for (i = 0; i < enck_size_in_word; |
| 850 | i++) { |
| 851 | writel_relaxed(enckey32[i], |
| 852 | pce_dev->iobase + |
| 853 | CRYPTO_AES_RNDKEY0 + |
| 854 | (i * sizeof(uint32_t))); |
| 855 | } |
| 856 | } else { |
| 857 | /* size in bit */ |
| 858 | _aes_expand_key_schedule( |
| 859 | q_req->encklen * 8, |
| 860 | enckey32, aes_round_key); |
| 861 | |
| 862 | for (i = 0; i < CRYPTO_AES_RNDKEYS; |
| 863 | i++) { |
| 864 | writel_relaxed(aes_round_key[i], |
| 865 | pce_dev->iobase + |
| 866 | CRYPTO_AES_RNDKEY0 + |
| 867 | (i * sizeof(uint32_t))); |
| 868 | } |
| 869 | } |
| 870 | |
| 871 | pce_dev->aes_key_size = q_req->encklen; |
| 872 | for (i = 0; i < enck_size_in_word; i++) |
| 873 | pce_dev->aeskey[i] = enckey32[i]; |
| 874 | } /*if (aes_key_chg) { */ |
| 875 | } /* else of if (q_req->op == QCE_REQ_ABLK_CIPHER_NO_KEY) */ |
| 876 | break; |
| 877 | } /* end of switch (q_req->mode) */ |
| 878 | |
| 879 | if (q_req->dir == QCE_ENCRYPT) |
| 880 | cfg |= (1 << CRYPTO_AUTH_POS); |
| 881 | cfg |= ((q_req->dir == QCE_ENCRYPT) ? 1 : 0) << CRYPTO_ENCODE; |
| 882 | |
| 883 | /* write encr seg cfg */ |
| 884 | writel_relaxed((q_req->cryptlen << CRYPTO_ENCR_SEG_SIZE) | |
| 885 | (coffset & 0xffff), /* cipher offset */ |
| 886 | pce_dev->iobase + CRYPTO_ENCR_SEG_CFG_REG); |
| 887 | |
| 888 | /* write seg cfg and size */ |
| 889 | writel_relaxed(cfg, pce_dev->iobase + CRYPTO_SEG_CFG_REG); |
| 890 | writel_relaxed(totallen, pce_dev->iobase + CRYPTO_SEG_SIZE_REG); |
| 891 | |
| 892 | /* issue go to crypto */ |
| 893 | writel_relaxed(1 << CRYPTO_GO, pce_dev->iobase + CRYPTO_GOPROC_REG); |
| 894 | /* Ensure previous instructions (setting the GO register) |
| 895 | * was completed before issuing a DMA transfer request |
| 896 | */ |
| 897 | mb(); |
| 898 | return 0; |
| 899 | }; |
| 900 | |
| 901 | static int _aead_complete(struct qce_device *pce_dev) |
| 902 | { |
| 903 | struct aead_request *areq; |
| 904 | struct crypto_aead *aead; |
| 905 | uint32_t ivsize; |
| 906 | uint32_t iv_out[4]; |
| 907 | unsigned char iv[4 * sizeof(uint32_t)]; |
| 908 | uint32_t status; |
| 909 | |
| 910 | areq = (struct aead_request *) pce_dev->areq; |
| 911 | aead = crypto_aead_reqtfm(areq); |
| 912 | ivsize = crypto_aead_ivsize(aead); |
| 913 | |
| 914 | if (areq->src != areq->dst) { |
| 915 | dma_unmap_sg(pce_dev->pdev, areq->dst, pce_dev->dst_nents, |
| 916 | DMA_FROM_DEVICE); |
| 917 | } |
| 918 | dma_unmap_sg(pce_dev->pdev, areq->src, pce_dev->src_nents, |
| 919 | (areq->src == areq->dst) ? DMA_BIDIRECTIONAL : |
| 920 | DMA_TO_DEVICE); |
| 921 | dma_unmap_single(pce_dev->pdev, pce_dev->phy_iv_in, |
| 922 | ivsize, DMA_TO_DEVICE); |
| 923 | dma_unmap_sg(pce_dev->pdev, areq->assoc, pce_dev->assoc_nents, |
| 924 | DMA_TO_DEVICE); |
| 925 | |
| 926 | /* check ce error status */ |
| 927 | status = readl_relaxed(pce_dev->iobase + CRYPTO_STATUS_REG); |
| 928 | if (status & (1 << CRYPTO_SW_ERR)) { |
| 929 | pce_dev->err++; |
| 930 | dev_err(pce_dev->pdev, |
| 931 | "Qualcomm Crypto Error at 0x%x, status%x\n", |
| 932 | pce_dev->phy_iobase, status); |
| 933 | _init_ce_engine(pce_dev); |
| 934 | clk_disable(pce_dev->ce_clk); |
| 935 | pce_dev->qce_cb(areq, pce_dev->dig_result, NULL, -ENXIO); |
| 936 | return 0; |
| 937 | }; |
| 938 | |
| 939 | /* get iv out */ |
| 940 | if (pce_dev->mode == QCE_MODE_ECB) { |
| 941 | clk_disable(pce_dev->ce_clk); |
| 942 | pce_dev->qce_cb(areq, pce_dev->dig_result, NULL, |
| 943 | pce_dev->chan_ce_in_status | |
| 944 | pce_dev->chan_ce_out_status); |
| 945 | } else { |
| 946 | |
| 947 | iv_out[0] = readl_relaxed(pce_dev->iobase + |
| 948 | CRYPTO_CNTR0_IV0_REG); |
| 949 | iv_out[1] = readl_relaxed(pce_dev->iobase + |
| 950 | CRYPTO_CNTR1_IV1_REG); |
| 951 | iv_out[2] = readl_relaxed(pce_dev->iobase + |
| 952 | CRYPTO_CNTR2_IV2_REG); |
| 953 | iv_out[3] = readl_relaxed(pce_dev->iobase + |
| 954 | CRYPTO_CNTR3_IV3_REG); |
| 955 | |
| 956 | _net_words_to_byte_stream(iv_out, iv, sizeof(iv)); |
| 957 | clk_disable(pce_dev->ce_clk); |
| 958 | pce_dev->qce_cb(areq, pce_dev->dig_result, iv, |
| 959 | pce_dev->chan_ce_in_status | |
| 960 | pce_dev->chan_ce_out_status); |
| 961 | }; |
| 962 | return 0; |
| 963 | }; |
| 964 | |
| 965 | static void _sha_complete(struct qce_device *pce_dev) |
| 966 | { |
| 967 | |
| 968 | struct ahash_request *areq; |
| 969 | uint32_t auth_data[2]; |
| 970 | uint32_t status; |
| 971 | |
| 972 | areq = (struct ahash_request *) pce_dev->areq; |
| 973 | dma_unmap_sg(pce_dev->pdev, areq->src, pce_dev->src_nents, |
| 974 | DMA_TO_DEVICE); |
| 975 | |
| 976 | /* check ce error status */ |
| 977 | status = readl_relaxed(pce_dev->iobase + CRYPTO_STATUS_REG); |
| 978 | if (status & (1 << CRYPTO_SW_ERR)) { |
| 979 | pce_dev->err++; |
| 980 | dev_err(pce_dev->pdev, |
| 981 | "Qualcomm Crypto Error at 0x%x, status%x\n", |
| 982 | pce_dev->phy_iobase, status); |
| 983 | _init_ce_engine(pce_dev); |
| 984 | clk_disable(pce_dev->ce_clk); |
| 985 | pce_dev->qce_cb(areq, pce_dev->dig_result, NULL, -ENXIO); |
| 986 | return; |
| 987 | }; |
| 988 | |
| 989 | auth_data[0] = readl_relaxed(pce_dev->iobase + |
| 990 | CRYPTO_AUTH_BYTECNT0_REG); |
| 991 | auth_data[1] = readl_relaxed(pce_dev->iobase + |
| 992 | CRYPTO_AUTH_BYTECNT1_REG); |
| 993 | /* Ensure previous instruction (retriving byte count information) |
| 994 | * was completed before disabling the clk. |
| 995 | */ |
| 996 | mb(); |
| 997 | clk_disable(pce_dev->ce_clk); |
| 998 | pce_dev->qce_cb(areq, pce_dev->dig_result, (unsigned char *)auth_data, |
| 999 | pce_dev->chan_ce_in_status); |
| 1000 | }; |
| 1001 | |
| 1002 | static int _ablk_cipher_complete(struct qce_device *pce_dev) |
| 1003 | { |
| 1004 | struct ablkcipher_request *areq; |
| 1005 | uint32_t iv_out[4]; |
| 1006 | unsigned char iv[4 * sizeof(uint32_t)]; |
| 1007 | uint32_t status; |
| 1008 | |
| 1009 | areq = (struct ablkcipher_request *) pce_dev->areq; |
| 1010 | |
| 1011 | if (areq->src != areq->dst) { |
| 1012 | dma_unmap_sg(pce_dev->pdev, areq->dst, |
| 1013 | pce_dev->dst_nents, DMA_FROM_DEVICE); |
| 1014 | } |
| 1015 | dma_unmap_sg(pce_dev->pdev, areq->src, pce_dev->src_nents, |
| 1016 | (areq->src == areq->dst) ? DMA_BIDIRECTIONAL : |
| 1017 | DMA_TO_DEVICE); |
| 1018 | |
| 1019 | /* check ce error status */ |
| 1020 | status = readl_relaxed(pce_dev->iobase + CRYPTO_STATUS_REG); |
| 1021 | if (status & (1 << CRYPTO_SW_ERR)) { |
| 1022 | pce_dev->err++; |
| 1023 | dev_err(pce_dev->pdev, |
| 1024 | "Qualcomm Crypto Error at 0x%x, status%x\n", |
| 1025 | pce_dev->phy_iobase, status); |
| 1026 | _init_ce_engine(pce_dev); |
| 1027 | clk_disable(pce_dev->ce_clk); |
| 1028 | pce_dev->qce_cb(areq, NULL, NULL, -ENXIO); |
| 1029 | return 0; |
| 1030 | }; |
| 1031 | |
| 1032 | /* get iv out */ |
| 1033 | if (pce_dev->mode == QCE_MODE_ECB) { |
| 1034 | clk_disable(pce_dev->ce_clk); |
| 1035 | pce_dev->qce_cb(areq, NULL, NULL, pce_dev->chan_ce_in_status | |
| 1036 | pce_dev->chan_ce_out_status); |
| 1037 | } else { |
| 1038 | iv_out[0] = readl_relaxed(pce_dev->iobase + |
| 1039 | CRYPTO_CNTR0_IV0_REG); |
| 1040 | iv_out[1] = readl_relaxed(pce_dev->iobase + |
| 1041 | CRYPTO_CNTR1_IV1_REG); |
| 1042 | iv_out[2] = readl_relaxed(pce_dev->iobase + |
| 1043 | CRYPTO_CNTR2_IV2_REG); |
| 1044 | iv_out[3] = readl_relaxed(pce_dev->iobase + |
| 1045 | CRYPTO_CNTR3_IV3_REG); |
| 1046 | |
| 1047 | _net_words_to_byte_stream(iv_out, iv, sizeof(iv)); |
| 1048 | clk_disable(pce_dev->ce_clk); |
| 1049 | pce_dev->qce_cb(areq, NULL, iv, pce_dev->chan_ce_in_status | |
| 1050 | pce_dev->chan_ce_out_status); |
| 1051 | } |
| 1052 | |
| 1053 | return 0; |
| 1054 | }; |
| 1055 | |
| 1056 | static int _ablk_cipher_use_pmem_complete(struct qce_device *pce_dev) |
| 1057 | { |
| 1058 | struct ablkcipher_request *areq; |
| 1059 | uint32_t iv_out[4]; |
| 1060 | unsigned char iv[4 * sizeof(uint32_t)]; |
| 1061 | uint32_t status; |
| 1062 | |
| 1063 | areq = (struct ablkcipher_request *) pce_dev->areq; |
| 1064 | |
| 1065 | /* check ce error status */ |
| 1066 | status = readl_relaxed(pce_dev->iobase + CRYPTO_STATUS_REG); |
| 1067 | if (status & (1 << CRYPTO_SW_ERR)) { |
| 1068 | pce_dev->err++; |
| 1069 | dev_err(pce_dev->pdev, |
| 1070 | "Qualcomm Crypto Error at 0x%x, status%x\n", |
| 1071 | pce_dev->phy_iobase, status); |
| 1072 | _init_ce_engine(pce_dev); |
| 1073 | clk_disable(pce_dev->ce_clk); |
| 1074 | pce_dev->qce_cb(areq, NULL, NULL, -ENXIO); |
| 1075 | return 0; |
| 1076 | }; |
| 1077 | |
| 1078 | /* get iv out */ |
| 1079 | if (pce_dev->mode == QCE_MODE_ECB) { |
| 1080 | clk_disable(pce_dev->ce_clk); |
| 1081 | pce_dev->qce_cb(areq, NULL, NULL, pce_dev->chan_ce_in_status | |
| 1082 | pce_dev->chan_ce_out_status); |
| 1083 | } else { |
| 1084 | iv_out[0] = readl_relaxed(pce_dev->iobase + |
| 1085 | CRYPTO_CNTR0_IV0_REG); |
| 1086 | iv_out[1] = readl_relaxed(pce_dev->iobase + |
| 1087 | CRYPTO_CNTR1_IV1_REG); |
| 1088 | iv_out[2] = readl_relaxed(pce_dev->iobase + |
| 1089 | CRYPTO_CNTR2_IV2_REG); |
| 1090 | iv_out[3] = readl_relaxed(pce_dev->iobase + |
| 1091 | CRYPTO_CNTR3_IV3_REG); |
| 1092 | |
| 1093 | _net_words_to_byte_stream(iv_out, iv, sizeof(iv)); |
| 1094 | clk_disable(pce_dev->ce_clk); |
| 1095 | pce_dev->qce_cb(areq, NULL, iv, pce_dev->chan_ce_in_status | |
| 1096 | pce_dev->chan_ce_out_status); |
| 1097 | } |
| 1098 | |
| 1099 | return 0; |
| 1100 | }; |
| 1101 | |
| 1102 | |
| 1103 | |
| 1104 | static int _chain_sg_buffer_in(struct qce_device *pce_dev, |
| 1105 | struct scatterlist *sg, unsigned int nbytes) |
| 1106 | { |
| 1107 | unsigned int len; |
| 1108 | unsigned int dlen; |
| 1109 | struct dmov_desc *pdesc; |
| 1110 | |
| 1111 | pdesc = pce_dev->ce_in_src_desc + pce_dev->ce_in_src_desc_index; |
| 1112 | /* |
| 1113 | * Two consective chunks may be handled by the old |
| 1114 | * buffer descriptor. |
| 1115 | */ |
| 1116 | while (nbytes > 0) { |
| 1117 | len = min(nbytes, sg_dma_len(sg)); |
| 1118 | dlen = pdesc->len & ADM_DESC_LENGTH_MASK; |
| 1119 | nbytes -= len; |
| 1120 | if (dlen == 0) { |
| 1121 | pdesc->addr = sg_dma_address(sg); |
| 1122 | pdesc->len = len; |
| 1123 | } else if (sg_dma_address(sg) == (pdesc->addr + dlen)) |
| 1124 | pdesc->len = dlen + len; |
| 1125 | else { |
| 1126 | pce_dev->ce_in_src_desc_index++; |
| 1127 | if (pce_dev->ce_in_src_desc_index >= QCE_MAX_NUM_DESC) |
| 1128 | return -ENOMEM; |
| 1129 | pdesc++; |
| 1130 | pdesc->len = len; |
| 1131 | pdesc->addr = sg_dma_address(sg); |
| 1132 | } |
| 1133 | if (nbytes > 0) |
| 1134 | sg = sg_next(sg); |
| 1135 | } |
| 1136 | return 0; |
| 1137 | } |
| 1138 | |
| 1139 | static int _chain_pm_buffer_in(struct qce_device *pce_dev, |
| 1140 | unsigned int pmem, unsigned int nbytes) |
| 1141 | { |
| 1142 | unsigned int dlen; |
| 1143 | struct dmov_desc *pdesc; |
| 1144 | |
| 1145 | pdesc = pce_dev->ce_in_src_desc + pce_dev->ce_in_src_desc_index; |
| 1146 | dlen = pdesc->len & ADM_DESC_LENGTH_MASK; |
| 1147 | if (dlen == 0) { |
| 1148 | pdesc->addr = pmem; |
| 1149 | pdesc->len = nbytes; |
| 1150 | } else if (pmem == (pdesc->addr + dlen)) { |
| 1151 | pdesc->len = dlen + nbytes; |
| 1152 | } else { |
| 1153 | pce_dev->ce_in_src_desc_index++; |
| 1154 | if (pce_dev->ce_in_src_desc_index >= QCE_MAX_NUM_DESC) |
| 1155 | return -ENOMEM; |
| 1156 | pdesc++; |
| 1157 | pdesc->len = nbytes; |
| 1158 | pdesc->addr = pmem; |
| 1159 | } |
| 1160 | return 0; |
| 1161 | } |
| 1162 | |
| 1163 | static void _chain_buffer_in_init(struct qce_device *pce_dev) |
| 1164 | { |
| 1165 | struct dmov_desc *pdesc; |
| 1166 | |
| 1167 | pce_dev->ce_in_src_desc_index = 0; |
| 1168 | pdesc = pce_dev->ce_in_src_desc; |
| 1169 | pdesc->len = 0; |
| 1170 | } |
| 1171 | |
| 1172 | static void _ce_in_final(struct qce_device *pce_dev, int ncmd, unsigned total) |
| 1173 | { |
| 1174 | struct dmov_desc *pdesc; |
| 1175 | dmov_sg *pcmd; |
| 1176 | |
| 1177 | pdesc = pce_dev->ce_in_src_desc + pce_dev->ce_in_src_desc_index; |
| 1178 | pdesc->len |= ADM_DESC_LAST; |
| 1179 | pdesc = pce_dev->ce_in_dst_desc; |
| 1180 | pdesc->len = ADM_DESC_LAST | total; |
| 1181 | |
| 1182 | pcmd = (dmov_sg *) pce_dev->cmd_list_ce_in; |
| 1183 | if (ncmd == 1) |
| 1184 | pcmd->cmd |= CMD_LC; |
| 1185 | else { |
| 1186 | dmov_s *pscmd; |
| 1187 | |
| 1188 | pcmd->cmd &= ~CMD_LC; |
| 1189 | pcmd++; |
| 1190 | pscmd = (dmov_s *)pcmd; |
| 1191 | pscmd->cmd |= CMD_LC; |
| 1192 | } |
| 1193 | |
| 1194 | #ifdef QCE_DEBUG |
| 1195 | dev_info(pce_dev->pdev, "_ce_in_final %d\n", |
| 1196 | pce_dev->ce_in_src_desc_index); |
| 1197 | #endif |
| 1198 | } |
| 1199 | |
| 1200 | #ifdef QCE_DEBUG |
| 1201 | static void _ce_in_dump(struct qce_device *pce_dev) |
| 1202 | { |
| 1203 | int i; |
| 1204 | struct dmov_desc *pdesc; |
| 1205 | |
| 1206 | dev_info(pce_dev->pdev, "_ce_in_dump\n"); |
| 1207 | for (i = 0; i <= pce_dev->ce_in_src_desc_index; i++) { |
| 1208 | pdesc = pce_dev->ce_in_src_desc + i; |
| 1209 | dev_info(pce_dev->pdev, "%x , %x\n", pdesc->addr, |
| 1210 | pdesc->len); |
| 1211 | } |
| 1212 | pdesc = pce_dev->ce_in_dst_desc; |
| 1213 | dev_info(pce_dev->pdev, "dst - %x , %x\n", pdesc->addr, |
| 1214 | pdesc->len); |
| 1215 | }; |
| 1216 | |
| 1217 | static void _ce_out_dump(struct qce_device *pce_dev) |
| 1218 | { |
| 1219 | int i; |
| 1220 | struct dmov_desc *pdesc; |
| 1221 | |
| 1222 | dev_info(pce_dev->pdev, "_ce_out_dump\n"); |
| 1223 | for (i = 0; i <= pce_dev->ce_out_dst_desc_index; i++) { |
| 1224 | pdesc = pce_dev->ce_out_dst_desc + i; |
| 1225 | dev_info(pce_dev->pdev, "%x , %x\n", pdesc->addr, |
| 1226 | pdesc->len); |
| 1227 | } |
| 1228 | pdesc = pce_dev->ce_out_src_desc; |
| 1229 | dev_info(pce_dev->pdev, "src - %x , %x\n", pdesc->addr, |
| 1230 | pdesc->len); |
| 1231 | }; |
| 1232 | #endif |
| 1233 | |
| 1234 | static int _chain_sg_buffer_out(struct qce_device *pce_dev, |
| 1235 | struct scatterlist *sg, unsigned int nbytes) |
| 1236 | { |
| 1237 | unsigned int len; |
| 1238 | unsigned int dlen; |
| 1239 | struct dmov_desc *pdesc; |
| 1240 | |
| 1241 | pdesc = pce_dev->ce_out_dst_desc + pce_dev->ce_out_dst_desc_index; |
| 1242 | /* |
| 1243 | * Two consective chunks may be handled by the old |
| 1244 | * buffer descriptor. |
| 1245 | */ |
| 1246 | while (nbytes > 0) { |
| 1247 | len = min(nbytes, sg_dma_len(sg)); |
| 1248 | dlen = pdesc->len & ADM_DESC_LENGTH_MASK; |
| 1249 | nbytes -= len; |
| 1250 | if (dlen == 0) { |
| 1251 | pdesc->addr = sg_dma_address(sg); |
| 1252 | pdesc->len = len; |
| 1253 | } else if (sg_dma_address(sg) == (pdesc->addr + dlen)) { |
| 1254 | pdesc->len = dlen + len; |
| 1255 | } else { |
| 1256 | pce_dev->ce_out_dst_desc_index++; |
| 1257 | if (pce_dev->ce_out_dst_desc_index >= QCE_MAX_NUM_DESC) |
| 1258 | return -EIO; |
| 1259 | pdesc++; |
| 1260 | pdesc->len = len; |
| 1261 | pdesc->addr = sg_dma_address(sg); |
| 1262 | } |
| 1263 | if (nbytes > 0) |
| 1264 | sg = sg_next(sg); |
| 1265 | } |
| 1266 | return 0; |
| 1267 | } |
| 1268 | |
| 1269 | static int _chain_pm_buffer_out(struct qce_device *pce_dev, |
| 1270 | unsigned int pmem, unsigned int nbytes) |
| 1271 | { |
| 1272 | unsigned int dlen; |
| 1273 | struct dmov_desc *pdesc; |
| 1274 | |
| 1275 | pdesc = pce_dev->ce_out_dst_desc + pce_dev->ce_out_dst_desc_index; |
| 1276 | dlen = pdesc->len & ADM_DESC_LENGTH_MASK; |
| 1277 | |
| 1278 | if (dlen == 0) { |
| 1279 | pdesc->addr = pmem; |
| 1280 | pdesc->len = nbytes; |
| 1281 | } else if (pmem == (pdesc->addr + dlen)) { |
| 1282 | pdesc->len = dlen + nbytes; |
| 1283 | } else { |
| 1284 | pce_dev->ce_out_dst_desc_index++; |
| 1285 | if (pce_dev->ce_out_dst_desc_index >= QCE_MAX_NUM_DESC) |
| 1286 | return -EIO; |
| 1287 | pdesc++; |
| 1288 | pdesc->len = nbytes; |
| 1289 | pdesc->addr = pmem; |
| 1290 | } |
| 1291 | return 0; |
| 1292 | }; |
| 1293 | |
| 1294 | static void _chain_buffer_out_init(struct qce_device *pce_dev) |
| 1295 | { |
| 1296 | struct dmov_desc *pdesc; |
| 1297 | |
| 1298 | pce_dev->ce_out_dst_desc_index = 0; |
| 1299 | pdesc = pce_dev->ce_out_dst_desc; |
| 1300 | pdesc->len = 0; |
| 1301 | }; |
| 1302 | |
| 1303 | static void _ce_out_final(struct qce_device *pce_dev, int ncmd, unsigned total) |
| 1304 | { |
| 1305 | struct dmov_desc *pdesc; |
| 1306 | dmov_sg *pcmd; |
| 1307 | |
| 1308 | pdesc = pce_dev->ce_out_dst_desc + pce_dev->ce_out_dst_desc_index; |
| 1309 | pdesc->len |= ADM_DESC_LAST; |
| 1310 | pdesc = pce_dev->ce_out_src_desc; |
| 1311 | pdesc->len = ADM_DESC_LAST | total; |
| 1312 | pcmd = (dmov_sg *) pce_dev->cmd_list_ce_out; |
| 1313 | if (ncmd == 1) |
| 1314 | pcmd->cmd |= CMD_LC; |
| 1315 | else { |
| 1316 | dmov_s *pscmd; |
| 1317 | |
| 1318 | pcmd->cmd &= ~CMD_LC; |
| 1319 | pcmd++; |
| 1320 | pscmd = (dmov_s *)pcmd; |
| 1321 | pscmd->cmd |= CMD_LC; |
| 1322 | } |
| 1323 | #ifdef QCE_DEBUG |
| 1324 | dev_info(pce_dev->pdev, "_ce_out_final %d\n", |
| 1325 | pce_dev->ce_out_dst_desc_index); |
| 1326 | #endif |
| 1327 | |
| 1328 | }; |
| 1329 | |
| 1330 | static void _aead_ce_in_call_back(struct msm_dmov_cmd *cmd_ptr, |
| 1331 | unsigned int result, struct msm_dmov_errdata *err) |
| 1332 | { |
| 1333 | struct qce_device *pce_dev; |
| 1334 | |
| 1335 | pce_dev = (struct qce_device *) cmd_ptr->user; |
| 1336 | if (result != ADM_STATUS_OK) { |
| 1337 | dev_err(pce_dev->pdev, "Qualcomm ADM status error %x\n", |
| 1338 | result); |
| 1339 | pce_dev->chan_ce_in_status = -1; |
| 1340 | } else |
| 1341 | pce_dev->chan_ce_in_status = 0; |
| 1342 | |
| 1343 | pce_dev->chan_ce_in_state = QCE_CHAN_STATE_COMP; |
| 1344 | if (pce_dev->chan_ce_out_state == QCE_CHAN_STATE_COMP) { |
| 1345 | pce_dev->chan_ce_in_state = QCE_CHAN_STATE_IDLE; |
| 1346 | pce_dev->chan_ce_out_state = QCE_CHAN_STATE_IDLE; |
| 1347 | |
| 1348 | /* done */ |
| 1349 | _aead_complete(pce_dev); |
| 1350 | } |
| 1351 | }; |
| 1352 | |
| 1353 | static void _aead_ce_out_call_back(struct msm_dmov_cmd *cmd_ptr, |
| 1354 | unsigned int result, struct msm_dmov_errdata *err) |
| 1355 | { |
| 1356 | struct qce_device *pce_dev; |
| 1357 | |
| 1358 | pce_dev = (struct qce_device *) cmd_ptr->user; |
| 1359 | if (result != ADM_STATUS_OK) { |
| 1360 | dev_err(pce_dev->pdev, "Qualcomm ADM status error %x\n", |
| 1361 | result); |
| 1362 | pce_dev->chan_ce_out_status = -1; |
| 1363 | } else { |
| 1364 | pce_dev->chan_ce_out_status = 0; |
| 1365 | }; |
| 1366 | |
| 1367 | pce_dev->chan_ce_out_state = QCE_CHAN_STATE_COMP; |
| 1368 | if (pce_dev->chan_ce_in_state == QCE_CHAN_STATE_COMP) { |
| 1369 | pce_dev->chan_ce_in_state = QCE_CHAN_STATE_IDLE; |
| 1370 | pce_dev->chan_ce_out_state = QCE_CHAN_STATE_IDLE; |
| 1371 | |
| 1372 | /* done */ |
| 1373 | _aead_complete(pce_dev); |
| 1374 | } |
| 1375 | |
| 1376 | }; |
| 1377 | |
| 1378 | static void _sha_ce_in_call_back(struct msm_dmov_cmd *cmd_ptr, |
| 1379 | unsigned int result, struct msm_dmov_errdata *err) |
| 1380 | { |
| 1381 | struct qce_device *pce_dev; |
| 1382 | |
| 1383 | pce_dev = (struct qce_device *) cmd_ptr->user; |
| 1384 | if (result != ADM_STATUS_OK) { |
| 1385 | dev_err(pce_dev->pdev, "Qualcomm ADM status error %x\n", |
| 1386 | result); |
| 1387 | pce_dev->chan_ce_in_status = -1; |
| 1388 | } else |
| 1389 | pce_dev->chan_ce_in_status = 0; |
| 1390 | pce_dev->chan_ce_in_state = QCE_CHAN_STATE_IDLE; |
| 1391 | _sha_complete(pce_dev); |
| 1392 | }; |
| 1393 | |
| 1394 | static void _ablk_cipher_ce_in_call_back(struct msm_dmov_cmd *cmd_ptr, |
| 1395 | unsigned int result, struct msm_dmov_errdata *err) |
| 1396 | { |
| 1397 | struct qce_device *pce_dev; |
| 1398 | |
| 1399 | pce_dev = (struct qce_device *) cmd_ptr->user; |
| 1400 | if (result != ADM_STATUS_OK) { |
| 1401 | dev_err(pce_dev->pdev, "Qualcomm ADM status error %x\n", |
| 1402 | result); |
| 1403 | pce_dev->chan_ce_in_status = -1; |
| 1404 | } else |
| 1405 | pce_dev->chan_ce_in_status = 0; |
| 1406 | |
| 1407 | pce_dev->chan_ce_in_state = QCE_CHAN_STATE_COMP; |
| 1408 | if (pce_dev->chan_ce_out_state == QCE_CHAN_STATE_COMP) { |
| 1409 | pce_dev->chan_ce_in_state = QCE_CHAN_STATE_IDLE; |
| 1410 | pce_dev->chan_ce_out_state = QCE_CHAN_STATE_IDLE; |
| 1411 | |
| 1412 | /* done */ |
| 1413 | _ablk_cipher_complete(pce_dev); |
| 1414 | } |
| 1415 | }; |
| 1416 | |
| 1417 | static void _ablk_cipher_ce_out_call_back(struct msm_dmov_cmd *cmd_ptr, |
| 1418 | unsigned int result, struct msm_dmov_errdata *err) |
| 1419 | { |
| 1420 | struct qce_device *pce_dev; |
| 1421 | |
| 1422 | pce_dev = (struct qce_device *) cmd_ptr->user; |
| 1423 | if (result != ADM_STATUS_OK) { |
| 1424 | dev_err(pce_dev->pdev, "Qualcomm ADM status error %x\n", |
| 1425 | result); |
| 1426 | pce_dev->chan_ce_out_status = -1; |
| 1427 | } else { |
| 1428 | pce_dev->chan_ce_out_status = 0; |
| 1429 | }; |
| 1430 | |
| 1431 | pce_dev->chan_ce_out_state = QCE_CHAN_STATE_COMP; |
| 1432 | if (pce_dev->chan_ce_in_state == QCE_CHAN_STATE_COMP) { |
| 1433 | pce_dev->chan_ce_in_state = QCE_CHAN_STATE_IDLE; |
| 1434 | pce_dev->chan_ce_out_state = QCE_CHAN_STATE_IDLE; |
| 1435 | |
| 1436 | /* done */ |
| 1437 | _ablk_cipher_complete(pce_dev); |
| 1438 | } |
| 1439 | }; |
| 1440 | |
| 1441 | |
| 1442 | static void _ablk_cipher_ce_in_call_back_pmem(struct msm_dmov_cmd *cmd_ptr, |
| 1443 | unsigned int result, struct msm_dmov_errdata *err) |
| 1444 | { |
| 1445 | struct qce_device *pce_dev; |
| 1446 | |
| 1447 | pce_dev = (struct qce_device *) cmd_ptr->user; |
| 1448 | if (result != ADM_STATUS_OK) { |
| 1449 | dev_err(pce_dev->pdev, "Qualcomm ADM status error %x\n", |
| 1450 | result); |
| 1451 | pce_dev->chan_ce_in_status = -1; |
| 1452 | } else |
| 1453 | pce_dev->chan_ce_in_status = 0; |
| 1454 | |
| 1455 | pce_dev->chan_ce_in_state = QCE_CHAN_STATE_COMP; |
| 1456 | if (pce_dev->chan_ce_out_state == QCE_CHAN_STATE_COMP) { |
| 1457 | pce_dev->chan_ce_in_state = QCE_CHAN_STATE_IDLE; |
| 1458 | pce_dev->chan_ce_out_state = QCE_CHAN_STATE_IDLE; |
| 1459 | |
| 1460 | /* done */ |
| 1461 | _ablk_cipher_use_pmem_complete(pce_dev); |
| 1462 | } |
| 1463 | }; |
| 1464 | |
| 1465 | static void _ablk_cipher_ce_out_call_back_pmem(struct msm_dmov_cmd *cmd_ptr, |
| 1466 | unsigned int result, struct msm_dmov_errdata *err) |
| 1467 | { |
| 1468 | struct qce_device *pce_dev; |
| 1469 | |
| 1470 | pce_dev = (struct qce_device *) cmd_ptr->user; |
| 1471 | if (result != ADM_STATUS_OK) { |
| 1472 | dev_err(pce_dev->pdev, "Qualcomm ADM status error %x\n", |
| 1473 | result); |
| 1474 | pce_dev->chan_ce_out_status = -1; |
| 1475 | } else { |
| 1476 | pce_dev->chan_ce_out_status = 0; |
| 1477 | }; |
| 1478 | |
| 1479 | pce_dev->chan_ce_out_state = QCE_CHAN_STATE_COMP; |
| 1480 | if (pce_dev->chan_ce_in_state == QCE_CHAN_STATE_COMP) { |
| 1481 | pce_dev->chan_ce_in_state = QCE_CHAN_STATE_IDLE; |
| 1482 | pce_dev->chan_ce_out_state = QCE_CHAN_STATE_IDLE; |
| 1483 | |
| 1484 | /* done */ |
| 1485 | _ablk_cipher_use_pmem_complete(pce_dev); |
| 1486 | } |
| 1487 | }; |
| 1488 | |
| 1489 | static int _setup_cmd_template(struct qce_device *pce_dev) |
| 1490 | { |
| 1491 | dmov_sg *pcmd; |
| 1492 | dmov_s *pscmd; |
| 1493 | struct dmov_desc *pdesc; |
| 1494 | unsigned char *vaddr; |
| 1495 | |
| 1496 | /* Divide up the 4K coherent memory */ |
| 1497 | /* 1. ce_in channel 1st command src descriptors, 128 entries */ |
| 1498 | vaddr = pce_dev->coh_vmem; |
| 1499 | vaddr = (unsigned char *) ALIGN(((unsigned int)vaddr), 16); |
| 1500 | pce_dev->ce_in_src_desc = (struct dmov_desc *) vaddr; |
| 1501 | pce_dev->phy_ce_in_src_desc = pce_dev->coh_pmem + |
| 1502 | (vaddr - pce_dev->coh_vmem); |
| 1503 | vaddr = vaddr + (sizeof(struct dmov_desc) * QCE_MAX_NUM_DESC); |
| 1504 | |
| 1505 | /* 2. ce_in channel 1st command dst descriptor, 1 entry */ |
| 1506 | pce_dev->ce_in_dst_desc = (struct dmov_desc *) vaddr; |
| 1507 | pce_dev->phy_ce_in_dst_desc = pce_dev->coh_pmem + |
| 1508 | (vaddr - pce_dev->coh_vmem); |
| 1509 | vaddr = vaddr + sizeof(struct dmov_desc) ; |
| 1510 | |
| 1511 | /* |
| 1512 | * 3. ce_in channel command list of one scatter gather command |
| 1513 | * and one simple command. |
| 1514 | */ |
| 1515 | pce_dev->cmd_list_ce_in = vaddr; |
| 1516 | pce_dev->phy_cmd_list_ce_in = pce_dev->coh_pmem |
| 1517 | + (vaddr - pce_dev->coh_vmem); |
| 1518 | vaddr = vaddr + sizeof(dmov_s) + sizeof(dmov_sg); |
| 1519 | |
| 1520 | /* 4. authentication result. */ |
| 1521 | pce_dev->dig_result = vaddr; |
| 1522 | pce_dev->phy_dig_result = pce_dev->coh_pmem + |
| 1523 | (vaddr - pce_dev->coh_vmem); |
| 1524 | vaddr = vaddr + SHA256_DIGESTSIZE; |
| 1525 | |
| 1526 | /* |
| 1527 | * 5. ce_out channel command list of one scatter gather command |
| 1528 | * and one simple command. |
| 1529 | */ |
| 1530 | pce_dev->cmd_list_ce_out = vaddr; |
| 1531 | pce_dev->phy_cmd_list_ce_out = pce_dev->coh_pmem |
| 1532 | + (vaddr - pce_dev->coh_vmem); |
| 1533 | vaddr = vaddr + sizeof(dmov_s) + sizeof(dmov_sg); |
| 1534 | |
| 1535 | /* 6. ce_out channel command src descriptors, 1 entry */ |
| 1536 | pce_dev->ce_out_src_desc = (struct dmov_desc *) vaddr; |
| 1537 | pce_dev->phy_ce_out_src_desc = pce_dev->coh_pmem |
| 1538 | + (vaddr - pce_dev->coh_vmem); |
| 1539 | vaddr = vaddr + sizeof(struct dmov_desc) ; |
| 1540 | |
| 1541 | /* 7. ce_out channel command dst descriptors, 128 entries. */ |
| 1542 | pce_dev->ce_out_dst_desc = (struct dmov_desc *) vaddr; |
| 1543 | pce_dev->phy_ce_out_dst_desc = pce_dev->coh_pmem |
| 1544 | + (vaddr - pce_dev->coh_vmem); |
| 1545 | vaddr = vaddr + (sizeof(struct dmov_desc) * QCE_MAX_NUM_DESC); |
| 1546 | |
| 1547 | /* 8. pad area. */ |
| 1548 | pce_dev->ce_pad = vaddr; |
| 1549 | pce_dev->phy_ce_pad = pce_dev->coh_pmem + |
| 1550 | (vaddr - pce_dev->coh_vmem); |
| 1551 | vaddr = vaddr + ADM_CE_BLOCK_SIZE; |
| 1552 | |
| 1553 | /* 9. ce_in channel command pointer list. */ |
| 1554 | pce_dev->cmd_pointer_list_ce_in = (unsigned int *) vaddr; |
| 1555 | pce_dev->phy_cmd_pointer_list_ce_in = pce_dev->coh_pmem + |
| 1556 | (vaddr - pce_dev->coh_vmem); |
| 1557 | vaddr = vaddr + sizeof(unsigned char *); |
| 1558 | vaddr = (unsigned char *) ALIGN(((unsigned int) vaddr), 8); |
| 1559 | |
| 1560 | /* 10. ce_ou channel command pointer list. */ |
| 1561 | pce_dev->cmd_pointer_list_ce_out = (unsigned int *) vaddr; |
| 1562 | pce_dev->phy_cmd_pointer_list_ce_out = pce_dev->coh_pmem + |
| 1563 | (vaddr - pce_dev->coh_vmem); |
| 1564 | vaddr = vaddr + sizeof(unsigned char *); |
| 1565 | |
| 1566 | /* 11. throw away area to store by-pass data from ce_out. */ |
| 1567 | pce_dev->ce_out_ignore = (unsigned char *) vaddr; |
| 1568 | pce_dev->phy_ce_out_ignore = pce_dev->coh_pmem |
| 1569 | + (vaddr - pce_dev->coh_vmem); |
| 1570 | pce_dev->ce_out_ignore_size = PAGE_SIZE - (vaddr - |
| 1571 | pce_dev->coh_vmem); /* at least 1.5 K of space */ |
| 1572 | /* |
| 1573 | * The first command of command list ce_in is for the input of |
| 1574 | * concurrent operation of encrypt/decrypt or for the input |
| 1575 | * of authentication. |
| 1576 | */ |
| 1577 | pcmd = (dmov_sg *) pce_dev->cmd_list_ce_in; |
| 1578 | /* swap byte and half word , dst crci , scatter gather */ |
| 1579 | pcmd->cmd = CMD_DST_SWAP_BYTES | CMD_DST_SWAP_SHORTS | |
| 1580 | CMD_DST_CRCI(pce_dev->crci_in) | CMD_MODE_SG; |
| 1581 | pdesc = pce_dev->ce_in_src_desc; |
| 1582 | pdesc->addr = 0; /* to be filled in each operation */ |
| 1583 | pdesc->len = 0; /* to be filled in each operation */ |
| 1584 | pcmd->src_dscr = (unsigned) pce_dev->phy_ce_in_src_desc; |
| 1585 | pdesc = pce_dev->ce_in_dst_desc; |
| 1586 | pdesc->addr = (CRYPTO_DATA_SHADOW0 + pce_dev->phy_iobase); |
| 1587 | pdesc->len = 0 | ADM_DESC_LAST; /* to be filled in each operation */ |
| 1588 | pcmd->dst_dscr = (unsigned) pce_dev->phy_ce_in_dst_desc; |
| 1589 | pcmd->_reserved = LI_SG_CMD | SRC_INDEX_SG_CMD(0) | |
| 1590 | DST_INDEX_SG_CMD(0); |
| 1591 | pcmd++; |
| 1592 | /* |
| 1593 | * The second command is for the digested data of |
| 1594 | * hashing operation only. For others, this command is not used. |
| 1595 | */ |
| 1596 | pscmd = (dmov_s *) pcmd; |
| 1597 | /* last command, swap byte, half word, src crci, single */ |
| 1598 | pscmd->cmd = CMD_LC | CMD_SRC_SWAP_BYTES | CMD_SRC_SWAP_SHORTS | |
| 1599 | CMD_SRC_CRCI(pce_dev->crci_hash) | CMD_MODE_SINGLE; |
| 1600 | pscmd->src = (unsigned) (CRYPTO_AUTH_IV0_REG + pce_dev->phy_iobase); |
| 1601 | pscmd->len = SHA256_DIGESTSIZE; /* to be filled. */ |
| 1602 | pscmd->dst = (unsigned) pce_dev->phy_dig_result; |
| 1603 | /* setup command pointer list */ |
| 1604 | *(pce_dev->cmd_pointer_list_ce_in) = (CMD_PTR_LP | DMOV_CMD_LIST | |
| 1605 | DMOV_CMD_ADDR((unsigned int) |
| 1606 | pce_dev->phy_cmd_list_ce_in)); |
| 1607 | pce_dev->chan_ce_in_cmd->user = (void *) pce_dev; |
| 1608 | pce_dev->chan_ce_in_cmd->exec_func = NULL; |
| 1609 | pce_dev->chan_ce_in_cmd->cmdptr = DMOV_CMD_ADDR( |
| 1610 | (unsigned int) pce_dev->phy_cmd_pointer_list_ce_in); |
| 1611 | pce_dev->chan_ce_in_cmd->crci_mask = msm_dmov_build_crci_mask(2, |
| 1612 | pce_dev->crci_in, pce_dev->crci_hash); |
| 1613 | /* |
| 1614 | * The first command in the command list ce_out. |
| 1615 | * It is for encry/decryp output. |
| 1616 | * If hashing only, ce_out is not used. |
| 1617 | */ |
| 1618 | pcmd = (dmov_sg *) pce_dev->cmd_list_ce_out; |
| 1619 | /* swap byte, half word, source crci, scatter gather */ |
| 1620 | pcmd->cmd = CMD_SRC_SWAP_BYTES | CMD_SRC_SWAP_SHORTS | |
| 1621 | CMD_SRC_CRCI(pce_dev->crci_out) | CMD_MODE_SG; |
| 1622 | pdesc = pce_dev->ce_out_src_desc; |
| 1623 | pdesc->addr = (CRYPTO_DATA_SHADOW0 + pce_dev->phy_iobase); |
| 1624 | pdesc->len = 0; /* to be filled in each opeation */ |
| 1625 | pcmd->src_dscr = (unsigned) pce_dev->phy_ce_out_src_desc; |
| 1626 | pdesc = pce_dev->ce_out_dst_desc; |
| 1627 | pdesc->addr = 0; /* to be filled in each opeation */ |
| 1628 | pdesc->len = 0; /* to be filled in each opeation */ |
| 1629 | pcmd->dst_dscr = (unsigned) pce_dev->phy_ce_out_dst_desc; |
| 1630 | pcmd->_reserved = LI_SG_CMD | SRC_INDEX_SG_CMD(0) | |
| 1631 | DST_INDEX_SG_CMD(0); |
| 1632 | pcmd++; |
| 1633 | /* |
| 1634 | * The second command is for digested data of esp operation. |
| 1635 | * For ciphering, this command is not used. |
| 1636 | */ |
| 1637 | pscmd = (dmov_s *) pcmd; |
| 1638 | /* last command, swap byte, half word, src crci, single */ |
| 1639 | pscmd->cmd = CMD_LC | CMD_SRC_SWAP_BYTES | CMD_SRC_SWAP_SHORTS | |
| 1640 | CMD_SRC_CRCI(pce_dev->crci_hash) | CMD_MODE_SINGLE; |
| 1641 | pscmd->src = (CRYPTO_AUTH_IV0_REG + pce_dev->phy_iobase); |
| 1642 | pscmd->len = SHA1_DIGESTSIZE; /* we only support hmac(sha1) */ |
| 1643 | pscmd->dst = (unsigned) pce_dev->phy_dig_result; |
| 1644 | /* setup command pointer list */ |
| 1645 | *(pce_dev->cmd_pointer_list_ce_out) = (CMD_PTR_LP | DMOV_CMD_LIST | |
| 1646 | DMOV_CMD_ADDR((unsigned int)pce_dev-> |
| 1647 | phy_cmd_list_ce_out)); |
| 1648 | |
| 1649 | pce_dev->chan_ce_out_cmd->user = pce_dev; |
| 1650 | pce_dev->chan_ce_out_cmd->exec_func = NULL; |
| 1651 | pce_dev->chan_ce_out_cmd->cmdptr = DMOV_CMD_ADDR( |
| 1652 | (unsigned int) pce_dev->phy_cmd_pointer_list_ce_out); |
| 1653 | pce_dev->chan_ce_out_cmd->crci_mask = msm_dmov_build_crci_mask(2, |
| 1654 | pce_dev->crci_out, pce_dev->crci_hash); |
| 1655 | |
| 1656 | |
| 1657 | return 0; |
| 1658 | }; |
| 1659 | |
| 1660 | static int _qce_start_dma(struct qce_device *pce_dev, bool ce_in, bool ce_out) |
| 1661 | { |
| 1662 | |
| 1663 | if (ce_in) |
| 1664 | pce_dev->chan_ce_in_state = QCE_CHAN_STATE_IN_PROG; |
| 1665 | else |
| 1666 | pce_dev->chan_ce_in_state = QCE_CHAN_STATE_COMP; |
| 1667 | |
| 1668 | if (ce_out) |
| 1669 | pce_dev->chan_ce_out_state = QCE_CHAN_STATE_IN_PROG; |
| 1670 | else |
| 1671 | pce_dev->chan_ce_out_state = QCE_CHAN_STATE_COMP; |
| 1672 | |
| 1673 | if (ce_in) |
| 1674 | msm_dmov_enqueue_cmd(pce_dev->chan_ce_in, |
| 1675 | pce_dev->chan_ce_in_cmd); |
| 1676 | if (ce_out) |
| 1677 | msm_dmov_enqueue_cmd(pce_dev->chan_ce_out, |
| 1678 | pce_dev->chan_ce_out_cmd); |
| 1679 | |
| 1680 | return 0; |
| 1681 | }; |
| 1682 | |
| 1683 | static void _f9_complete(struct qce_device *pce_dev) |
| 1684 | { |
| 1685 | uint32_t mac_i; |
| 1686 | uint32_t status; |
| 1687 | |
| 1688 | dma_unmap_single(pce_dev->pdev, pce_dev->phy_ota_src, |
| 1689 | pce_dev->ota_size, DMA_TO_DEVICE); |
| 1690 | |
| 1691 | /* check ce error status */ |
| 1692 | status = readl_relaxed(pce_dev->iobase + CRYPTO_STATUS_REG); |
| 1693 | if (status & (1 << CRYPTO_SW_ERR)) { |
| 1694 | pce_dev->err++; |
| 1695 | dev_err(pce_dev->pdev, |
| 1696 | "Qualcomm Crypto Error at 0x%x, status%x\n", |
| 1697 | pce_dev->phy_iobase, status); |
| 1698 | _init_ce_engine(pce_dev); |
| 1699 | pce_dev->qce_cb(pce_dev->areq, NULL, NULL, -ENXIO); |
| 1700 | return; |
| 1701 | }; |
| 1702 | |
| 1703 | mac_i = readl_relaxed(pce_dev->iobase + CRYPTO_AUTH_IV0_REG); |
| 1704 | pce_dev->qce_cb(pce_dev->areq, (void *) mac_i, NULL, |
| 1705 | pce_dev->chan_ce_in_status); |
| 1706 | }; |
| 1707 | |
| 1708 | static void _f8_complete(struct qce_device *pce_dev) |
| 1709 | { |
| 1710 | uint32_t status; |
| 1711 | |
| 1712 | if (pce_dev->phy_ota_dst != 0) |
| 1713 | dma_unmap_single(pce_dev->pdev, pce_dev->phy_ota_dst, |
| 1714 | pce_dev->ota_size, DMA_FROM_DEVICE); |
| 1715 | if (pce_dev->phy_ota_src != 0) |
| 1716 | dma_unmap_single(pce_dev->pdev, pce_dev->phy_ota_src, |
| 1717 | pce_dev->ota_size, (pce_dev->phy_ota_dst) ? |
| 1718 | DMA_TO_DEVICE : DMA_BIDIRECTIONAL); |
| 1719 | |
| 1720 | /* check ce error status */ |
| 1721 | status = readl_relaxed(pce_dev->iobase + CRYPTO_STATUS_REG); |
| 1722 | if (status & (1 << CRYPTO_SW_ERR)) { |
| 1723 | pce_dev->err++; |
| 1724 | dev_err(pce_dev->pdev, |
| 1725 | "Qualcomm Crypto Error at 0x%x, status%x\n", |
| 1726 | pce_dev->phy_iobase, status); |
| 1727 | _init_ce_engine(pce_dev); |
| 1728 | pce_dev->qce_cb(pce_dev->areq, NULL, NULL, -ENXIO); |
| 1729 | return; |
| 1730 | }; |
| 1731 | |
| 1732 | pce_dev->qce_cb(pce_dev->areq, NULL, NULL, |
| 1733 | pce_dev->chan_ce_in_status | |
| 1734 | pce_dev->chan_ce_out_status); |
| 1735 | }; |
| 1736 | |
| 1737 | |
| 1738 | static void _f9_ce_in_call_back(struct msm_dmov_cmd *cmd_ptr, |
| 1739 | unsigned int result, struct msm_dmov_errdata *err) |
| 1740 | { |
| 1741 | struct qce_device *pce_dev; |
| 1742 | |
| 1743 | pce_dev = (struct qce_device *) cmd_ptr->user; |
| 1744 | if (result != ADM_STATUS_OK) { |
| 1745 | dev_err(pce_dev->pdev, "Qualcomm ADM status error %x\n", |
| 1746 | result); |
| 1747 | pce_dev->chan_ce_in_status = -1; |
| 1748 | } else |
| 1749 | pce_dev->chan_ce_in_status = 0; |
| 1750 | pce_dev->chan_ce_in_state = QCE_CHAN_STATE_IDLE; |
| 1751 | _f9_complete(pce_dev); |
| 1752 | }; |
| 1753 | |
| 1754 | static void _f8_ce_in_call_back(struct msm_dmov_cmd *cmd_ptr, |
| 1755 | unsigned int result, struct msm_dmov_errdata *err) |
| 1756 | { |
| 1757 | struct qce_device *pce_dev; |
| 1758 | |
| 1759 | pce_dev = (struct qce_device *) cmd_ptr->user; |
| 1760 | if (result != ADM_STATUS_OK) { |
| 1761 | dev_err(pce_dev->pdev, "Qualcomm ADM status error %x\n", |
| 1762 | result); |
| 1763 | pce_dev->chan_ce_in_status = -1; |
| 1764 | } else |
| 1765 | pce_dev->chan_ce_in_status = 0; |
| 1766 | |
| 1767 | pce_dev->chan_ce_in_state = QCE_CHAN_STATE_COMP; |
| 1768 | if (pce_dev->chan_ce_out_state == QCE_CHAN_STATE_COMP) { |
| 1769 | pce_dev->chan_ce_in_state = QCE_CHAN_STATE_IDLE; |
| 1770 | pce_dev->chan_ce_out_state = QCE_CHAN_STATE_IDLE; |
| 1771 | |
| 1772 | /* done */ |
| 1773 | _f8_complete(pce_dev); |
| 1774 | } |
| 1775 | }; |
| 1776 | |
| 1777 | static void _f8_ce_out_call_back(struct msm_dmov_cmd *cmd_ptr, |
| 1778 | unsigned int result, struct msm_dmov_errdata *err) |
| 1779 | { |
| 1780 | struct qce_device *pce_dev; |
| 1781 | |
| 1782 | pce_dev = (struct qce_device *) cmd_ptr->user; |
| 1783 | if (result != ADM_STATUS_OK) { |
| 1784 | dev_err(pce_dev->pdev, "Qualcomm ADM status error %x\n", |
| 1785 | result); |
| 1786 | pce_dev->chan_ce_out_status = -1; |
| 1787 | } else { |
| 1788 | pce_dev->chan_ce_out_status = 0; |
| 1789 | }; |
| 1790 | |
| 1791 | pce_dev->chan_ce_out_state = QCE_CHAN_STATE_COMP; |
| 1792 | if (pce_dev->chan_ce_in_state == QCE_CHAN_STATE_COMP) { |
| 1793 | pce_dev->chan_ce_in_state = QCE_CHAN_STATE_IDLE; |
| 1794 | pce_dev->chan_ce_out_state = QCE_CHAN_STATE_IDLE; |
| 1795 | |
| 1796 | /* done */ |
| 1797 | _f8_complete(pce_dev); |
| 1798 | } |
| 1799 | }; |
| 1800 | |
| 1801 | static int _ce_f9_setup(struct qce_device *pce_dev, struct qce_f9_req * req) |
| 1802 | { |
| 1803 | uint32_t cfg; |
| 1804 | uint32_t ikey[OTA_KEY_SIZE/sizeof(uint32_t)]; |
| 1805 | |
| 1806 | _byte_stream_to_net_words(ikey, &req->ikey[0], OTA_KEY_SIZE); |
| 1807 | writel_relaxed(ikey[0], pce_dev->iobase + CRYPTO_AUTH_IV0_REG); |
| 1808 | writel_relaxed(ikey[1], pce_dev->iobase + CRYPTO_AUTH_IV1_REG); |
| 1809 | writel_relaxed(ikey[2], pce_dev->iobase + CRYPTO_AUTH_IV2_REG); |
| 1810 | writel_relaxed(ikey[3], pce_dev->iobase + CRYPTO_AUTH_IV3_REG); |
| 1811 | writel_relaxed(req->last_bits, pce_dev->iobase + CRYPTO_AUTH_IV4_REG); |
| 1812 | |
| 1813 | writel_relaxed(req->fresh, pce_dev->iobase + CRYPTO_AUTH_BYTECNT0_REG); |
| 1814 | writel_relaxed(req->count_i, pce_dev->iobase + |
| 1815 | CRYPTO_AUTH_BYTECNT1_REG); |
| 1816 | |
| 1817 | /* write auth_seg_cfg */ |
| 1818 | writel_relaxed((uint32_t)req->msize << CRYPTO_AUTH_SEG_SIZE, |
| 1819 | pce_dev->iobase + CRYPTO_AUTH_SEG_CFG_REG); |
| 1820 | |
| 1821 | /* write seg_cfg */ |
| 1822 | cfg = (CRYPTO_AUTH_ALG_F9 << CRYPTO_AUTH_ALG) | (1 << CRYPTO_FIRST) | |
| 1823 | (1 << CRYPTO_LAST); |
| 1824 | |
| 1825 | if (req->algorithm == QCE_OTA_ALGO_KASUMI) |
| 1826 | cfg |= (CRYPTO_AUTH_SIZE_UIA1 << CRYPTO_AUTH_SIZE); |
| 1827 | else |
| 1828 | cfg |= (CRYPTO_AUTH_SIZE_UIA2 << CRYPTO_AUTH_SIZE) ; |
| 1829 | |
| 1830 | if (req->direction == QCE_OTA_DIR_DOWNLINK) |
| 1831 | cfg |= 1 << CRYPTO_F9_DIRECTION; |
| 1832 | |
| 1833 | writel_relaxed(cfg, pce_dev->iobase + CRYPTO_SEG_CFG_REG); |
| 1834 | |
| 1835 | /* write seg_size */ |
| 1836 | writel_relaxed(req->msize, pce_dev->iobase + CRYPTO_SEG_SIZE_REG); |
| 1837 | |
| 1838 | /* issue go to crypto */ |
| 1839 | writel_relaxed(1 << CRYPTO_GO, pce_dev->iobase + CRYPTO_GOPROC_REG); |
| 1840 | |
| 1841 | /* |
| 1842 | * barrier to ensure previous instructions |
| 1843 | * (including GO) to CE finish before issue DMA transfer |
| 1844 | * request. |
| 1845 | */ |
| 1846 | mb(); |
| 1847 | return 0; |
| 1848 | }; |
| 1849 | |
| 1850 | static int _ce_f8_setup(struct qce_device *pce_dev, struct qce_f8_req *req, |
| 1851 | bool key_stream_mode, uint16_t npkts, uint16_t cipher_offset, |
| 1852 | uint16_t cipher_size) |
| 1853 | { |
| 1854 | uint32_t cfg; |
| 1855 | uint32_t ckey[OTA_KEY_SIZE/sizeof(uint32_t)]; |
| 1856 | |
| 1857 | if ((key_stream_mode && (req->data_len & 0xf || npkts > 1)) || |
| 1858 | (req->bearer >= QCE_OTA_MAX_BEARER)) |
| 1859 | return -EINVAL; |
| 1860 | |
| 1861 | /* write seg_cfg */ |
| 1862 | cfg = (CRYPTO_ENCR_ALG_F8 << CRYPTO_ENCR_ALG) | (1 << CRYPTO_FIRST) | |
| 1863 | (1 << CRYPTO_LAST); |
| 1864 | if (req->algorithm == QCE_OTA_ALGO_KASUMI) |
| 1865 | cfg |= (CRYPTO_ENCR_KEY_SZ_UEA1 << CRYPTO_ENCR_KEY_SZ); |
| 1866 | else |
| 1867 | cfg |= (CRYPTO_ENCR_KEY_SZ_UEA2 << CRYPTO_ENCR_KEY_SZ) ; |
| 1868 | if (key_stream_mode) |
| 1869 | cfg |= 1 << CRYPTO_F8_KEYSTREAM_ENABLE; |
| 1870 | if (req->direction == QCE_OTA_DIR_DOWNLINK) |
| 1871 | cfg |= 1 << CRYPTO_F8_DIRECTION; |
| 1872 | writel_relaxed(cfg, pce_dev->iobase + CRYPTO_SEG_CFG_REG); |
| 1873 | |
| 1874 | /* write seg_size */ |
| 1875 | writel_relaxed(req->data_len, pce_dev->iobase + CRYPTO_SEG_SIZE_REG); |
| 1876 | |
| 1877 | /* write 0 to auth_size, auth_offset */ |
| 1878 | writel_relaxed(0, pce_dev->iobase + CRYPTO_AUTH_SEG_CFG_REG); |
| 1879 | |
| 1880 | /* write encr_seg_cfg seg_size, seg_offset */ |
| 1881 | writel_relaxed((((uint32_t) cipher_size) << CRYPTO_ENCR_SEG_SIZE) | |
| 1882 | (cipher_offset & 0xffff), |
| 1883 | pce_dev->iobase + CRYPTO_ENCR_SEG_CFG_REG); |
| 1884 | |
| 1885 | /* write keys */ |
| 1886 | _byte_stream_to_net_words(ckey, &req->ckey[0], OTA_KEY_SIZE); |
| 1887 | writel_relaxed(ckey[0], pce_dev->iobase + CRYPTO_DES_KEY0_REG); |
| 1888 | writel_relaxed(ckey[1], pce_dev->iobase + CRYPTO_DES_KEY1_REG); |
| 1889 | writel_relaxed(ckey[2], pce_dev->iobase + CRYPTO_DES_KEY2_REG); |
| 1890 | writel_relaxed(ckey[3], pce_dev->iobase + CRYPTO_DES_KEY3_REG); |
| 1891 | |
| 1892 | /* write cntr0_iv0 for countC */ |
| 1893 | writel_relaxed(req->count_c, pce_dev->iobase + CRYPTO_CNTR0_IV0_REG); |
| 1894 | |
| 1895 | /* write cntr1_iv1 for nPkts, and bearer */ |
| 1896 | if (npkts == 1) |
| 1897 | npkts = 0; |
| 1898 | writel_relaxed(req->bearer << CRYPTO_CNTR1_IV1_REG_F8_BEARER | |
| 1899 | npkts << CRYPTO_CNTR1_IV1_REG_F8_PKT_CNT, |
| 1900 | pce_dev->iobase + CRYPTO_CNTR1_IV1_REG); |
| 1901 | |
| 1902 | /* issue go to crypto */ |
| 1903 | writel_relaxed(1 << CRYPTO_GO, pce_dev->iobase + CRYPTO_GOPROC_REG); |
| 1904 | |
| 1905 | /* |
| 1906 | * barrier to ensure previous instructions |
| 1907 | * (including GO) to CE finish before issue DMA transfer |
| 1908 | * request. |
| 1909 | */ |
| 1910 | mb(); |
| 1911 | return 0; |
| 1912 | }; |
| 1913 | |
| 1914 | int qce_aead_req(void *handle, struct qce_req *q_req) |
| 1915 | { |
| 1916 | struct qce_device *pce_dev = (struct qce_device *) handle; |
| 1917 | struct aead_request *areq = (struct aead_request *) q_req->areq; |
| 1918 | struct crypto_aead *aead = crypto_aead_reqtfm(areq); |
| 1919 | uint32_t ivsize = crypto_aead_ivsize(aead); |
| 1920 | uint32_t totallen; |
| 1921 | uint32_t pad_len; |
| 1922 | uint32_t authsize = crypto_aead_authsize(aead); |
| 1923 | int rc = 0; |
| 1924 | |
| 1925 | q_req->ivsize = ivsize; |
| 1926 | if (q_req->dir == QCE_ENCRYPT) |
| 1927 | q_req->cryptlen = areq->cryptlen; |
| 1928 | else |
| 1929 | q_req->cryptlen = areq->cryptlen - authsize; |
| 1930 | |
| 1931 | totallen = q_req->cryptlen + ivsize + areq->assoclen; |
| 1932 | pad_len = ALIGN(totallen, ADM_CE_BLOCK_SIZE) - totallen; |
| 1933 | |
| 1934 | _chain_buffer_in_init(pce_dev); |
| 1935 | _chain_buffer_out_init(pce_dev); |
| 1936 | |
| 1937 | pce_dev->assoc_nents = 0; |
| 1938 | pce_dev->phy_iv_in = 0; |
| 1939 | pce_dev->src_nents = 0; |
| 1940 | pce_dev->dst_nents = 0; |
| 1941 | |
| 1942 | pce_dev->assoc_nents = count_sg(areq->assoc, areq->assoclen); |
| 1943 | dma_map_sg(pce_dev->pdev, areq->assoc, pce_dev->assoc_nents, |
| 1944 | DMA_TO_DEVICE); |
| 1945 | if (_chain_sg_buffer_in(pce_dev, areq->assoc, areq->assoclen) < 0) { |
| 1946 | rc = -ENOMEM; |
| 1947 | goto bad; |
| 1948 | } |
| 1949 | |
| 1950 | /* cipher iv for input */ |
| 1951 | pce_dev->phy_iv_in = dma_map_single(pce_dev->pdev, q_req->iv, |
| 1952 | ivsize, DMA_TO_DEVICE); |
| 1953 | if (_chain_pm_buffer_in(pce_dev, pce_dev->phy_iv_in, ivsize) < 0) { |
| 1954 | rc = -ENOMEM; |
| 1955 | goto bad; |
| 1956 | } |
| 1957 | |
| 1958 | /* for output, ignore associated data and cipher iv */ |
| 1959 | if (_chain_pm_buffer_out(pce_dev, pce_dev->phy_ce_out_ignore, |
| 1960 | ivsize + areq->assoclen) < 0) { |
| 1961 | rc = -ENOMEM; |
| 1962 | goto bad; |
| 1963 | } |
| 1964 | |
| 1965 | /* cipher input */ |
| 1966 | pce_dev->src_nents = count_sg(areq->src, q_req->cryptlen); |
| 1967 | dma_map_sg(pce_dev->pdev, areq->src, pce_dev->src_nents, |
| 1968 | (areq->src == areq->dst) ? DMA_BIDIRECTIONAL : |
| 1969 | DMA_TO_DEVICE); |
| 1970 | if (_chain_sg_buffer_in(pce_dev, areq->src, q_req->cryptlen) < 0) { |
| 1971 | rc = -ENOMEM; |
| 1972 | goto bad; |
| 1973 | } |
| 1974 | |
| 1975 | /* cipher output */ |
| 1976 | if (areq->src != areq->dst) { |
| 1977 | pce_dev->dst_nents = count_sg(areq->dst, q_req->cryptlen); |
| 1978 | dma_map_sg(pce_dev->pdev, areq->dst, pce_dev->dst_nents, |
| 1979 | DMA_FROM_DEVICE); |
| 1980 | }; |
| 1981 | if (_chain_sg_buffer_out(pce_dev, areq->dst, q_req->cryptlen) < 0) { |
| 1982 | rc = -ENOMEM; |
| 1983 | goto bad; |
| 1984 | } |
| 1985 | |
| 1986 | /* pad data */ |
| 1987 | if (pad_len) { |
| 1988 | if (_chain_pm_buffer_in(pce_dev, pce_dev->phy_ce_pad, |
| 1989 | pad_len) < 0) { |
| 1990 | rc = -ENOMEM; |
| 1991 | goto bad; |
| 1992 | } |
| 1993 | if (_chain_pm_buffer_out(pce_dev, pce_dev->phy_ce_pad, |
| 1994 | pad_len) < 0) { |
| 1995 | rc = -ENOMEM; |
| 1996 | goto bad; |
| 1997 | } |
| 1998 | } |
| 1999 | |
| 2000 | /* finalize the ce_in and ce_out channels command lists */ |
| 2001 | _ce_in_final(pce_dev, 1, ALIGN(totallen, ADM_CE_BLOCK_SIZE)); |
| 2002 | _ce_out_final(pce_dev, 2, ALIGN(totallen, ADM_CE_BLOCK_SIZE)); |
| 2003 | |
| 2004 | /* set up crypto device */ |
| 2005 | rc = _ce_setup(pce_dev, q_req, totallen, ivsize + areq->assoclen); |
| 2006 | if (rc < 0) |
| 2007 | goto bad; |
| 2008 | |
| 2009 | /* setup for callback, and issue command to adm */ |
| 2010 | pce_dev->areq = q_req->areq; |
| 2011 | pce_dev->qce_cb = q_req->qce_cb; |
| 2012 | |
| 2013 | pce_dev->chan_ce_in_cmd->complete_func = _aead_ce_in_call_back; |
| 2014 | pce_dev->chan_ce_out_cmd->complete_func = _aead_ce_out_call_back; |
| 2015 | |
| 2016 | rc = _qce_start_dma(pce_dev, true, true); |
| 2017 | if (rc == 0) |
| 2018 | return 0; |
| 2019 | bad: |
| 2020 | if (pce_dev->assoc_nents) { |
| 2021 | dma_unmap_sg(pce_dev->pdev, areq->assoc, pce_dev->assoc_nents, |
| 2022 | DMA_TO_DEVICE); |
| 2023 | } |
| 2024 | if (pce_dev->phy_iv_in) { |
| 2025 | dma_unmap_single(pce_dev->pdev, pce_dev->phy_iv_in, |
| 2026 | ivsize, DMA_TO_DEVICE); |
| 2027 | } |
| 2028 | if (pce_dev->src_nents) { |
| 2029 | dma_unmap_sg(pce_dev->pdev, areq->src, pce_dev->src_nents, |
| 2030 | (areq->src == areq->dst) ? DMA_BIDIRECTIONAL : |
| 2031 | DMA_TO_DEVICE); |
| 2032 | } |
| 2033 | if (pce_dev->dst_nents) { |
| 2034 | dma_unmap_sg(pce_dev->pdev, areq->dst, pce_dev->dst_nents, |
| 2035 | DMA_FROM_DEVICE); |
| 2036 | } |
| 2037 | return rc; |
| 2038 | } |
| 2039 | EXPORT_SYMBOL(qce_aead_req); |
| 2040 | |
| 2041 | int qce_ablk_cipher_req(void *handle, struct qce_req *c_req) |
| 2042 | { |
| 2043 | int rc = 0; |
| 2044 | struct qce_device *pce_dev = (struct qce_device *) handle; |
| 2045 | struct ablkcipher_request *areq = (struct ablkcipher_request *) |
| 2046 | c_req->areq; |
| 2047 | |
| 2048 | uint32_t pad_len = ALIGN(areq->nbytes, ADM_CE_BLOCK_SIZE) |
| 2049 | - areq->nbytes; |
| 2050 | |
| 2051 | _chain_buffer_in_init(pce_dev); |
| 2052 | _chain_buffer_out_init(pce_dev); |
| 2053 | |
| 2054 | pce_dev->src_nents = 0; |
| 2055 | pce_dev->dst_nents = 0; |
| 2056 | /* cipher input */ |
| 2057 | pce_dev->src_nents = count_sg(areq->src, areq->nbytes); |
| 2058 | |
| 2059 | if (c_req->use_pmem != 1) |
| 2060 | dma_map_sg(pce_dev->pdev, areq->src, pce_dev->src_nents, |
| 2061 | (areq->src == areq->dst) ? DMA_BIDIRECTIONAL : |
| 2062 | DMA_TO_DEVICE); |
| 2063 | else |
| 2064 | dma_map_pmem_sg(&c_req->pmem->src[0], pce_dev->src_nents, |
| 2065 | areq->src); |
| 2066 | |
| 2067 | if (_chain_sg_buffer_in(pce_dev, areq->src, areq->nbytes) < 0) { |
| 2068 | rc = -ENOMEM; |
| 2069 | goto bad; |
| 2070 | } |
| 2071 | |
| 2072 | /* cipher output */ |
| 2073 | if (areq->src != areq->dst) { |
| 2074 | pce_dev->dst_nents = count_sg(areq->dst, areq->nbytes); |
| 2075 | if (c_req->use_pmem != 1) |
| 2076 | dma_map_sg(pce_dev->pdev, areq->dst, pce_dev->dst_nents, |
| 2077 | DMA_FROM_DEVICE); |
| 2078 | else |
| 2079 | dma_map_pmem_sg(&c_req->pmem->dst[0], |
| 2080 | pce_dev->dst_nents, areq->dst); |
| 2081 | }; |
| 2082 | if (_chain_sg_buffer_out(pce_dev, areq->dst, areq->nbytes) < 0) { |
| 2083 | rc = -ENOMEM; |
| 2084 | goto bad; |
| 2085 | } |
| 2086 | |
| 2087 | /* pad data */ |
| 2088 | if (pad_len) { |
| 2089 | if (_chain_pm_buffer_in(pce_dev, pce_dev->phy_ce_pad, |
| 2090 | pad_len) < 0) { |
| 2091 | rc = -ENOMEM; |
| 2092 | goto bad; |
| 2093 | } |
| 2094 | if (_chain_pm_buffer_out(pce_dev, pce_dev->phy_ce_pad, |
| 2095 | pad_len) < 0) { |
| 2096 | rc = -ENOMEM; |
| 2097 | goto bad; |
| 2098 | } |
| 2099 | } |
| 2100 | |
| 2101 | /* finalize the ce_in and ce_out channels command lists */ |
| 2102 | _ce_in_final(pce_dev, 1, areq->nbytes + pad_len); |
| 2103 | _ce_out_final(pce_dev, 1, areq->nbytes + pad_len); |
| 2104 | |
| 2105 | #ifdef QCE_DEBUG |
| 2106 | _ce_in_dump(pce_dev); |
| 2107 | _ce_out_dump(pce_dev); |
| 2108 | #endif |
| 2109 | /* set up crypto device */ |
| 2110 | rc = _ce_setup(pce_dev, c_req, areq->nbytes, 0); |
| 2111 | if (rc < 0) |
| 2112 | goto bad; |
| 2113 | |
| 2114 | /* setup for callback, and issue command to adm */ |
| 2115 | pce_dev->areq = areq; |
| 2116 | pce_dev->qce_cb = c_req->qce_cb; |
| 2117 | if (c_req->use_pmem == 1) { |
| 2118 | pce_dev->chan_ce_in_cmd->complete_func = |
| 2119 | _ablk_cipher_ce_in_call_back_pmem; |
| 2120 | pce_dev->chan_ce_out_cmd->complete_func = |
| 2121 | _ablk_cipher_ce_out_call_back_pmem; |
| 2122 | } else { |
| 2123 | pce_dev->chan_ce_in_cmd->complete_func = |
| 2124 | _ablk_cipher_ce_in_call_back; |
| 2125 | pce_dev->chan_ce_out_cmd->complete_func = |
| 2126 | _ablk_cipher_ce_out_call_back; |
| 2127 | } |
| 2128 | rc = _qce_start_dma(pce_dev, true, true); |
| 2129 | |
| 2130 | if (rc == 0) |
| 2131 | return 0; |
| 2132 | bad: |
| 2133 | if (c_req->use_pmem != 1) { |
| 2134 | if (pce_dev->dst_nents) { |
| 2135 | dma_unmap_sg(pce_dev->pdev, areq->dst, |
| 2136 | pce_dev->dst_nents, DMA_FROM_DEVICE); |
| 2137 | } |
| 2138 | if (pce_dev->src_nents) { |
| 2139 | dma_unmap_sg(pce_dev->pdev, areq->src, |
| 2140 | pce_dev->src_nents, |
| 2141 | (areq->src == areq->dst) ? |
| 2142 | DMA_BIDIRECTIONAL : |
| 2143 | DMA_TO_DEVICE); |
| 2144 | } |
| 2145 | } |
| 2146 | return rc; |
| 2147 | } |
| 2148 | EXPORT_SYMBOL(qce_ablk_cipher_req); |
| 2149 | |
| 2150 | int qce_process_sha_req(void *handle, struct qce_sha_req *sreq) |
| 2151 | { |
| 2152 | struct qce_device *pce_dev = (struct qce_device *) handle; |
| 2153 | int rc; |
| 2154 | uint32_t pad_len = ALIGN(sreq->size, ADM_CE_BLOCK_SIZE) - sreq->size; |
| 2155 | struct ahash_request *areq = (struct ahash_request *)sreq->areq; |
| 2156 | |
| 2157 | _chain_buffer_in_init(pce_dev); |
| 2158 | pce_dev->src_nents = count_sg(sreq->src, sreq->size); |
| 2159 | dma_map_sg(pce_dev->pdev, sreq->src, pce_dev->src_nents, |
| 2160 | DMA_TO_DEVICE); |
| 2161 | |
| 2162 | if (_chain_sg_buffer_in(pce_dev, sreq->src, sreq->size) < 0) { |
| 2163 | rc = -ENOMEM; |
| 2164 | goto bad; |
| 2165 | } |
| 2166 | |
| 2167 | if (pad_len) { |
| 2168 | if (_chain_pm_buffer_in(pce_dev, pce_dev->phy_ce_pad, |
| 2169 | pad_len) < 0) { |
| 2170 | rc = -ENOMEM; |
| 2171 | goto bad; |
| 2172 | } |
| 2173 | } |
| 2174 | _ce_in_final(pce_dev, 2, sreq->size + pad_len); |
| 2175 | |
| 2176 | #ifdef QCE_DEBUG |
| 2177 | _ce_in_dump(pce_dev); |
| 2178 | #endif |
| 2179 | |
| 2180 | rc = _sha_ce_setup(pce_dev, sreq); |
| 2181 | |
| 2182 | if (rc < 0) |
| 2183 | goto bad; |
| 2184 | |
| 2185 | pce_dev->areq = areq; |
| 2186 | pce_dev->qce_cb = sreq->qce_cb; |
| 2187 | pce_dev->chan_ce_in_cmd->complete_func = _sha_ce_in_call_back; |
| 2188 | |
| 2189 | rc = _qce_start_dma(pce_dev, true, false); |
| 2190 | |
| 2191 | if (rc == 0) |
| 2192 | return 0; |
| 2193 | bad: |
| 2194 | if (pce_dev->src_nents) { |
| 2195 | dma_unmap_sg(pce_dev->pdev, sreq->src, |
| 2196 | pce_dev->src_nents, DMA_TO_DEVICE); |
| 2197 | } |
| 2198 | |
| 2199 | return rc; |
| 2200 | } |
| 2201 | EXPORT_SYMBOL(qce_process_sha_req); |
| 2202 | |
| 2203 | /* |
| 2204 | * crypto engine open function. |
| 2205 | */ |
| 2206 | void *qce_open(struct platform_device *pdev, int *rc) |
| 2207 | { |
| 2208 | struct qce_device *pce_dev; |
| 2209 | struct resource *resource; |
| 2210 | struct clk *ce_clk; |
| 2211 | |
| 2212 | pce_dev = kzalloc(sizeof(struct qce_device), GFP_KERNEL); |
| 2213 | if (!pce_dev) { |
| 2214 | *rc = -ENOMEM; |
| 2215 | dev_err(&pdev->dev, "Can not allocate memory\n"); |
| 2216 | return NULL; |
| 2217 | } |
| 2218 | pce_dev->pdev = &pdev->dev; |
| 2219 | ce_clk = clk_get(pce_dev->pdev, "ce_clk"); |
| 2220 | if (IS_ERR(ce_clk)) { |
Mona Hossain | a8657d8 | 2011-07-11 16:30:08 -0700 | [diff] [blame] | 2221 | kfree(pce_dev); |
Bryan Huntsman | 3f2bc4d | 2011-08-16 17:27:22 -0700 | [diff] [blame] | 2222 | *rc = PTR_ERR(ce_clk); |
| 2223 | return NULL; |
| 2224 | } |
| 2225 | pce_dev->ce_clk = ce_clk; |
Mona Hossain | a8657d8 | 2011-07-11 16:30:08 -0700 | [diff] [blame] | 2226 | *rc = clk_enable(pce_dev->ce_clk); |
| 2227 | if (*rc) { |
| 2228 | kfree(pce_dev); |
| 2229 | return NULL; |
| 2230 | } |
Bryan Huntsman | 3f2bc4d | 2011-08-16 17:27:22 -0700 | [diff] [blame] | 2231 | |
| 2232 | resource = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| 2233 | if (!resource) { |
| 2234 | *rc = -ENXIO; |
| 2235 | dev_err(pce_dev->pdev, "Missing MEM resource\n"); |
| 2236 | goto err; |
| 2237 | }; |
| 2238 | pce_dev->phy_iobase = resource->start; |
| 2239 | pce_dev->iobase = ioremap_nocache(resource->start, |
| 2240 | resource->end - resource->start + 1); |
| 2241 | if (!pce_dev->iobase) { |
| 2242 | *rc = -ENOMEM; |
| 2243 | dev_err(pce_dev->pdev, "Can not map io memory\n"); |
| 2244 | goto err; |
| 2245 | } |
| 2246 | |
| 2247 | pce_dev->chan_ce_in_cmd = kzalloc(sizeof(struct msm_dmov_cmd), |
| 2248 | GFP_KERNEL); |
| 2249 | pce_dev->chan_ce_out_cmd = kzalloc(sizeof(struct msm_dmov_cmd), |
| 2250 | GFP_KERNEL); |
| 2251 | if (pce_dev->chan_ce_in_cmd == NULL || |
| 2252 | pce_dev->chan_ce_out_cmd == NULL) { |
| 2253 | dev_err(pce_dev->pdev, "Can not allocate memory\n"); |
| 2254 | *rc = -ENOMEM; |
| 2255 | goto err; |
| 2256 | } |
| 2257 | |
| 2258 | resource = platform_get_resource_byname(pdev, IORESOURCE_DMA, |
| 2259 | "crypto_channels"); |
| 2260 | if (!resource) { |
| 2261 | *rc = -ENXIO; |
| 2262 | dev_err(pce_dev->pdev, "Missing DMA channel resource\n"); |
| 2263 | goto err; |
| 2264 | }; |
| 2265 | pce_dev->chan_ce_in = resource->start; |
| 2266 | pce_dev->chan_ce_out = resource->end; |
| 2267 | resource = platform_get_resource_byname(pdev, IORESOURCE_DMA, |
| 2268 | "crypto_crci_in"); |
| 2269 | if (!resource) { |
| 2270 | *rc = -ENXIO; |
| 2271 | dev_err(pce_dev->pdev, "Missing DMA crci in resource\n"); |
| 2272 | goto err; |
| 2273 | }; |
| 2274 | pce_dev->crci_in = resource->start; |
| 2275 | resource = platform_get_resource_byname(pdev, IORESOURCE_DMA, |
| 2276 | "crypto_crci_out"); |
| 2277 | if (!resource) { |
| 2278 | *rc = -ENXIO; |
| 2279 | dev_err(pce_dev->pdev, "Missing DMA crci out resource\n"); |
| 2280 | goto err; |
| 2281 | }; |
| 2282 | pce_dev->crci_out = resource->start; |
| 2283 | resource = platform_get_resource_byname(pdev, IORESOURCE_DMA, |
| 2284 | "crypto_crci_hash"); |
| 2285 | if (!resource) { |
| 2286 | *rc = -ENXIO; |
| 2287 | dev_err(pce_dev->pdev, "Missing DMA crci hash resource\n"); |
| 2288 | goto err; |
| 2289 | }; |
| 2290 | pce_dev->crci_hash = resource->start; |
| 2291 | pce_dev->coh_vmem = dma_alloc_coherent(pce_dev->pdev, |
| 2292 | PAGE_SIZE, &pce_dev->coh_pmem, GFP_KERNEL); |
| 2293 | |
| 2294 | if (pce_dev->coh_vmem == NULL) { |
| 2295 | *rc = -ENOMEM; |
| 2296 | dev_err(pce_dev->pdev, "Can not allocate coherent memory.\n"); |
| 2297 | goto err; |
| 2298 | } |
| 2299 | _setup_cmd_template(pce_dev); |
| 2300 | |
| 2301 | pce_dev->chan_ce_in_state = QCE_CHAN_STATE_IDLE; |
| 2302 | pce_dev->chan_ce_out_state = QCE_CHAN_STATE_IDLE; |
| 2303 | |
Bryan Huntsman | 3f2bc4d | 2011-08-16 17:27:22 -0700 | [diff] [blame] | 2304 | if (_init_ce_engine(pce_dev)) { |
| 2305 | *rc = -ENXIO; |
| 2306 | clk_disable(pce_dev->ce_clk); |
| 2307 | goto err; |
| 2308 | } |
| 2309 | *rc = 0; |
| 2310 | clk_disable(pce_dev->ce_clk); |
| 2311 | |
| 2312 | pce_dev->err = 0; |
| 2313 | |
| 2314 | return pce_dev; |
| 2315 | err: |
| 2316 | if (pce_dev) |
| 2317 | qce_close(pce_dev); |
| 2318 | return NULL; |
| 2319 | } |
| 2320 | EXPORT_SYMBOL(qce_open); |
| 2321 | |
| 2322 | /* |
| 2323 | * crypto engine close function. |
| 2324 | */ |
| 2325 | int qce_close(void *handle) |
| 2326 | { |
| 2327 | struct qce_device *pce_dev = (struct qce_device *) handle; |
| 2328 | |
| 2329 | if (handle == NULL) |
| 2330 | return -ENODEV; |
| 2331 | if (pce_dev->iobase) |
| 2332 | iounmap(pce_dev->iobase); |
| 2333 | |
| 2334 | if (pce_dev->coh_vmem) |
| 2335 | dma_free_coherent(pce_dev->pdev, PAGE_SIZE, pce_dev->coh_vmem, |
| 2336 | pce_dev->coh_pmem); |
| 2337 | kfree(pce_dev->chan_ce_in_cmd); |
| 2338 | kfree(pce_dev->chan_ce_out_cmd); |
| 2339 | |
Bryan Huntsman | 3f2bc4d | 2011-08-16 17:27:22 -0700 | [diff] [blame] | 2340 | clk_put(pce_dev->ce_clk); |
Mona Hossain | 451cf98 | 2011-07-13 11:48:14 -0700 | [diff] [blame] | 2341 | kfree(handle); |
Bryan Huntsman | 3f2bc4d | 2011-08-16 17:27:22 -0700 | [diff] [blame] | 2342 | return 0; |
| 2343 | } |
| 2344 | EXPORT_SYMBOL(qce_close); |
| 2345 | |
| 2346 | int qce_hw_support(void *handle, struct ce_hw_support *ce_support) |
| 2347 | { |
| 2348 | struct qce_device *pce_dev = (struct qce_device *) handle; |
| 2349 | |
| 2350 | if (ce_support == NULL) |
| 2351 | return -EINVAL; |
| 2352 | |
| 2353 | if (pce_dev->hmac == 1) |
| 2354 | ce_support->sha1_hmac_20 = true; |
| 2355 | else |
| 2356 | ce_support->sha1_hmac_20 = false; |
| 2357 | ce_support->sha1_hmac = false; |
| 2358 | ce_support->sha256_hmac = false; |
| 2359 | ce_support->sha_hmac = false; |
| 2360 | ce_support->cmac = false; |
| 2361 | ce_support->aes_key_192 = true; |
| 2362 | ce_support->aes_xts = false; |
| 2363 | ce_support->aes_ccm = false; |
| 2364 | ce_support->ota = pce_dev->ota; |
| 2365 | return 0; |
| 2366 | } |
| 2367 | EXPORT_SYMBOL(qce_hw_support); |
| 2368 | |
| 2369 | int qce_f8_req(void *handle, struct qce_f8_req *req, |
| 2370 | void *cookie, qce_comp_func_ptr_t qce_cb) |
| 2371 | { |
| 2372 | struct qce_device *pce_dev = (struct qce_device *) handle; |
| 2373 | bool key_stream_mode; |
| 2374 | dma_addr_t dst; |
| 2375 | int rc; |
| 2376 | uint32_t pad_len = ALIGN(req->data_len, ADM_CE_BLOCK_SIZE) - |
| 2377 | req->data_len; |
| 2378 | |
| 2379 | _chain_buffer_in_init(pce_dev); |
| 2380 | _chain_buffer_out_init(pce_dev); |
| 2381 | |
| 2382 | key_stream_mode = (req->data_in == NULL); |
| 2383 | |
| 2384 | /* F8 cipher input */ |
| 2385 | if (key_stream_mode) |
| 2386 | pce_dev->phy_ota_src = 0; |
| 2387 | else { |
| 2388 | pce_dev->phy_ota_src = dma_map_single(pce_dev->pdev, |
| 2389 | req->data_in, req->data_len, |
| 2390 | (req->data_in == req->data_out) ? |
| 2391 | DMA_BIDIRECTIONAL : DMA_TO_DEVICE); |
| 2392 | if (_chain_pm_buffer_in(pce_dev, pce_dev->phy_ota_src, |
| 2393 | req->data_len) < 0) { |
| 2394 | pce_dev->phy_ota_dst = 0; |
| 2395 | rc = -ENOMEM; |
| 2396 | goto bad; |
| 2397 | } |
| 2398 | } |
| 2399 | |
| 2400 | /* F8 cipher output */ |
| 2401 | if (req->data_in != req->data_out) { |
| 2402 | dst = dma_map_single(pce_dev->pdev, req->data_out, |
| 2403 | req->data_len, DMA_FROM_DEVICE); |
| 2404 | pce_dev->phy_ota_dst = dst; |
| 2405 | } else { |
| 2406 | dst = pce_dev->phy_ota_src; |
| 2407 | pce_dev->phy_ota_dst = 0; |
| 2408 | } |
| 2409 | if (_chain_pm_buffer_out(pce_dev, dst, req->data_len) < 0) { |
| 2410 | rc = -ENOMEM; |
| 2411 | goto bad; |
| 2412 | } |
| 2413 | |
| 2414 | pce_dev->ota_size = req->data_len; |
| 2415 | |
| 2416 | /* pad data */ |
| 2417 | if (pad_len) { |
| 2418 | if (!key_stream_mode && _chain_pm_buffer_in(pce_dev, |
| 2419 | pce_dev->phy_ce_pad, pad_len) < 0) { |
| 2420 | rc = -ENOMEM; |
| 2421 | goto bad; |
| 2422 | } |
| 2423 | if (_chain_pm_buffer_out(pce_dev, pce_dev->phy_ce_pad, |
| 2424 | pad_len) < 0) { |
| 2425 | rc = -ENOMEM; |
| 2426 | goto bad; |
| 2427 | } |
| 2428 | } |
| 2429 | |
| 2430 | /* finalize the ce_in and ce_out channels command lists */ |
| 2431 | if (!key_stream_mode) |
| 2432 | _ce_in_final(pce_dev, 1, req->data_len + pad_len); |
| 2433 | _ce_out_final(pce_dev, 1, req->data_len + pad_len); |
| 2434 | |
| 2435 | /* set up crypto device */ |
| 2436 | rc = _ce_f8_setup(pce_dev, req, key_stream_mode, 1, 0, req->data_len); |
| 2437 | if (rc < 0) |
| 2438 | goto bad; |
| 2439 | |
| 2440 | /* setup for callback, and issue command to adm */ |
| 2441 | pce_dev->areq = cookie; |
| 2442 | pce_dev->qce_cb = qce_cb; |
| 2443 | |
| 2444 | if (!key_stream_mode) |
| 2445 | pce_dev->chan_ce_in_cmd->complete_func = _f8_ce_in_call_back; |
| 2446 | |
| 2447 | pce_dev->chan_ce_out_cmd->complete_func = _f8_ce_out_call_back; |
| 2448 | |
| 2449 | rc = _qce_start_dma(pce_dev, !(key_stream_mode), true); |
| 2450 | if (rc == 0) |
| 2451 | return 0; |
| 2452 | bad: |
| 2453 | if (pce_dev->phy_ota_dst != 0) |
| 2454 | dma_unmap_single(pce_dev->pdev, pce_dev->phy_ota_dst, |
| 2455 | req->data_len, DMA_FROM_DEVICE); |
| 2456 | if (pce_dev->phy_ota_src != 0) |
| 2457 | dma_unmap_single(pce_dev->pdev, pce_dev->phy_ota_src, |
| 2458 | req->data_len, |
| 2459 | (req->data_in == req->data_out) ? |
| 2460 | DMA_BIDIRECTIONAL : DMA_TO_DEVICE); |
| 2461 | return rc; |
| 2462 | } |
| 2463 | EXPORT_SYMBOL(qce_f8_req); |
| 2464 | |
| 2465 | int qce_f8_multi_pkt_req(void *handle, struct qce_f8_multi_pkt_req *mreq, |
| 2466 | void *cookie, qce_comp_func_ptr_t qce_cb) |
| 2467 | { |
| 2468 | struct qce_device *pce_dev = (struct qce_device *) handle; |
| 2469 | uint16_t num_pkt = mreq->num_pkt; |
| 2470 | uint16_t cipher_start = mreq->cipher_start; |
| 2471 | uint16_t cipher_size = mreq->cipher_size; |
| 2472 | struct qce_f8_req *req = &mreq->qce_f8_req; |
| 2473 | uint32_t total; |
| 2474 | uint32_t pad_len; |
| 2475 | dma_addr_t dst = 0; |
| 2476 | int rc = 0; |
| 2477 | |
| 2478 | total = num_pkt * req->data_len; |
| 2479 | pad_len = ALIGN(total, ADM_CE_BLOCK_SIZE) - total; |
| 2480 | |
| 2481 | _chain_buffer_in_init(pce_dev); |
| 2482 | _chain_buffer_out_init(pce_dev); |
| 2483 | |
| 2484 | /* F8 cipher input */ |
| 2485 | pce_dev->phy_ota_src = dma_map_single(pce_dev->pdev, |
| 2486 | req->data_in, total, |
| 2487 | (req->data_in == req->data_out) ? |
| 2488 | DMA_BIDIRECTIONAL : DMA_TO_DEVICE); |
| 2489 | if (_chain_pm_buffer_in(pce_dev, pce_dev->phy_ota_src, |
| 2490 | total) < 0) { |
| 2491 | pce_dev->phy_ota_dst = 0; |
| 2492 | rc = -ENOMEM; |
| 2493 | goto bad; |
| 2494 | } |
| 2495 | /* F8 cipher output */ |
| 2496 | if (req->data_in != req->data_out) { |
| 2497 | dst = dma_map_single(pce_dev->pdev, req->data_out, total, |
| 2498 | DMA_FROM_DEVICE); |
| 2499 | pce_dev->phy_ota_dst = dst; |
| 2500 | } else { |
| 2501 | dst = pce_dev->phy_ota_src; |
| 2502 | pce_dev->phy_ota_dst = 0; |
| 2503 | } |
| 2504 | if (_chain_pm_buffer_out(pce_dev, dst, total) < 0) { |
| 2505 | rc = -ENOMEM; |
| 2506 | goto bad; |
| 2507 | } |
| 2508 | |
| 2509 | pce_dev->ota_size = total; |
| 2510 | |
| 2511 | /* pad data */ |
| 2512 | if (pad_len) { |
| 2513 | if (_chain_pm_buffer_in(pce_dev, pce_dev->phy_ce_pad, |
| 2514 | pad_len) < 0) { |
| 2515 | rc = -ENOMEM; |
| 2516 | goto bad; |
| 2517 | } |
| 2518 | if (_chain_pm_buffer_out(pce_dev, pce_dev->phy_ce_pad, |
| 2519 | pad_len) < 0) { |
| 2520 | rc = -ENOMEM; |
| 2521 | goto bad; |
| 2522 | } |
| 2523 | } |
| 2524 | |
| 2525 | /* finalize the ce_in and ce_out channels command lists */ |
| 2526 | _ce_in_final(pce_dev, 1, total + pad_len); |
| 2527 | _ce_out_final(pce_dev, 1, total + pad_len); |
| 2528 | |
| 2529 | |
| 2530 | /* set up crypto device */ |
| 2531 | rc = _ce_f8_setup(pce_dev, req, false, num_pkt, cipher_start, |
| 2532 | cipher_size); |
| 2533 | if (rc) |
| 2534 | goto bad ; |
| 2535 | |
| 2536 | /* setup for callback, and issue command to adm */ |
| 2537 | pce_dev->areq = cookie; |
| 2538 | pce_dev->qce_cb = qce_cb; |
| 2539 | |
| 2540 | pce_dev->chan_ce_in_cmd->complete_func = _f8_ce_in_call_back; |
| 2541 | pce_dev->chan_ce_out_cmd->complete_func = _f8_ce_out_call_back; |
| 2542 | |
| 2543 | rc = _qce_start_dma(pce_dev, true, true); |
| 2544 | if (rc == 0) |
| 2545 | return 0; |
| 2546 | bad: |
| 2547 | if (pce_dev->phy_ota_dst) |
| 2548 | dma_unmap_single(pce_dev->pdev, pce_dev->phy_ota_dst, total, |
| 2549 | DMA_FROM_DEVICE); |
| 2550 | dma_unmap_single(pce_dev->pdev, pce_dev->phy_ota_src, total, |
| 2551 | (req->data_in == req->data_out) ? |
| 2552 | DMA_BIDIRECTIONAL : DMA_TO_DEVICE); |
| 2553 | return rc; |
| 2554 | } |
| 2555 | EXPORT_SYMBOL(qce_f8_multi_pkt_req); |
| 2556 | |
| 2557 | int qce_f9_req(void *handle, struct qce_f9_req *req, void *cookie, |
| 2558 | qce_comp_func_ptr_t qce_cb) |
| 2559 | { |
| 2560 | struct qce_device *pce_dev = (struct qce_device *) handle; |
| 2561 | int rc; |
| 2562 | uint32_t pad_len = ALIGN(req->msize, ADM_CE_BLOCK_SIZE) - req->msize; |
| 2563 | |
| 2564 | pce_dev->phy_ota_src = dma_map_single(pce_dev->pdev, req->message, |
| 2565 | req->msize, DMA_TO_DEVICE); |
| 2566 | |
| 2567 | _chain_buffer_in_init(pce_dev); |
| 2568 | rc = _chain_pm_buffer_in(pce_dev, pce_dev->phy_ota_src, req->msize); |
| 2569 | if (rc < 0) { |
| 2570 | rc = -ENOMEM; |
| 2571 | goto bad; |
| 2572 | } |
| 2573 | |
| 2574 | pce_dev->ota_size = req->msize; |
| 2575 | if (pad_len) { |
| 2576 | rc = _chain_pm_buffer_in(pce_dev, pce_dev->phy_ce_pad, |
| 2577 | pad_len); |
| 2578 | if (rc < 0) { |
| 2579 | rc = -ENOMEM; |
| 2580 | goto bad; |
| 2581 | } |
| 2582 | } |
| 2583 | _ce_in_final(pce_dev, 2, req->msize + pad_len); |
| 2584 | rc = _ce_f9_setup(pce_dev, req); |
| 2585 | if (rc < 0) |
| 2586 | goto bad; |
| 2587 | |
| 2588 | /* setup for callback, and issue command to adm */ |
| 2589 | pce_dev->areq = cookie; |
| 2590 | pce_dev->qce_cb = qce_cb; |
| 2591 | |
| 2592 | pce_dev->chan_ce_in_cmd->complete_func = _f9_ce_in_call_back; |
| 2593 | |
| 2594 | rc = _qce_start_dma(pce_dev, true, false); |
| 2595 | if (rc == 0) |
| 2596 | return 0; |
| 2597 | bad: |
| 2598 | dma_unmap_single(pce_dev->pdev, pce_dev->phy_ota_src, |
| 2599 | req->msize, DMA_TO_DEVICE); |
| 2600 | return rc; |
| 2601 | } |
| 2602 | EXPORT_SYMBOL(qce_f9_req); |
| 2603 | |
| 2604 | MODULE_LICENSE("GPL v2"); |
| 2605 | MODULE_AUTHOR("Mona Hossain <mhossain@codeaurora.org>"); |
| 2606 | MODULE_DESCRIPTION("Crypto Engine driver"); |
Mona Hossain | 451cf98 | 2011-07-13 11:48:14 -0700 | [diff] [blame] | 2607 | MODULE_VERSION("1.13"); |
Bryan Huntsman | 3f2bc4d | 2011-08-16 17:27:22 -0700 | [diff] [blame] | 2608 | |