blob: 839070ba8465bc589aea211946755d695fb0c78d [file] [log] [blame]
Alok Katariabfc0f592008-07-01 11:43:24 -07001#include <linux/kernel.h>
Alok Kataria0ef95532008-07-01 11:43:18 -07002#include <linux/sched.h>
3#include <linux/init.h>
4#include <linux/module.h>
5#include <linux/timer.h>
Alok Katariabfc0f592008-07-01 11:43:24 -07006#include <linux/acpi_pmtmr.h>
Alok Kataria2dbe06f2008-07-01 11:43:31 -07007#include <linux/cpufreq.h>
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07008#include <linux/dmi.h>
9#include <linux/delay.h>
10#include <linux/clocksource.h>
11#include <linux/percpu.h>
Alok Katariabfc0f592008-07-01 11:43:24 -070012
13#include <asm/hpet.h>
Alok Kataria8fbbc4b2008-07-01 11:43:34 -070014#include <asm/timer.h>
15#include <asm/vgtod.h>
16#include <asm/time.h>
17#include <asm/delay.h>
Alok Kataria0ef95532008-07-01 11:43:18 -070018
19unsigned int cpu_khz; /* TSC clocks / usec, not used here */
20EXPORT_SYMBOL(cpu_khz);
21unsigned int tsc_khz;
22EXPORT_SYMBOL(tsc_khz);
23
24/*
25 * TSC can be unstable due to cpufreq or due to unsynced TSCs
26 */
Alok Kataria8fbbc4b2008-07-01 11:43:34 -070027static int tsc_unstable;
Alok Kataria0ef95532008-07-01 11:43:18 -070028
29/* native_sched_clock() is called before tsc_init(), so
30 we must start with the TSC soft disabled to prevent
31 erroneous rdtsc usage on !cpu_has_tsc processors */
Alok Kataria8fbbc4b2008-07-01 11:43:34 -070032static int tsc_disabled = -1;
Alok Kataria0ef95532008-07-01 11:43:18 -070033
34/*
35 * Scheduler clock - returns current time in nanosec units.
36 */
37u64 native_sched_clock(void)
38{
39 u64 this_offset;
40
41 /*
42 * Fall back to jiffies if there's no TSC available:
43 * ( But note that we still use it if the TSC is marked
44 * unstable. We do this because unlike Time Of Day,
45 * the scheduler clock tolerates small errors and it's
46 * very important for it to be as fast as the platform
47 * can achive it. )
48 */
49 if (unlikely(tsc_disabled)) {
50 /* No locking but a rare wrong value is not a big deal: */
51 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
52 }
53
54 /* read the Time Stamp Counter: */
55 rdtscll(this_offset);
56
57 /* return the value in ns */
58 return cycles_2_ns(this_offset);
59}
60
61/* We need to define a real function for sched_clock, to override the
62 weak default version */
63#ifdef CONFIG_PARAVIRT
64unsigned long long sched_clock(void)
65{
66 return paravirt_sched_clock();
67}
68#else
69unsigned long long
70sched_clock(void) __attribute__((alias("native_sched_clock")));
71#endif
72
73int check_tsc_unstable(void)
74{
75 return tsc_unstable;
76}
77EXPORT_SYMBOL_GPL(check_tsc_unstable);
78
79#ifdef CONFIG_X86_TSC
80int __init notsc_setup(char *str)
81{
82 printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
83 "cannot disable TSC completely.\n");
84 tsc_disabled = 1;
85 return 1;
86}
87#else
88/*
89 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
90 * in cpu/common.c
91 */
92int __init notsc_setup(char *str)
93{
94 setup_clear_cpu_cap(X86_FEATURE_TSC);
95 return 1;
96}
97#endif
98
99__setup("notsc", notsc_setup);
Alok Katariabfc0f592008-07-01 11:43:24 -0700100
101#define MAX_RETRIES 5
102#define SMI_TRESHOLD 50000
103
104/*
105 * Read TSC and the reference counters. Take care of SMI disturbance
106 */
Thomas Gleixner827014b2008-09-04 15:18:53 +0000107static u64 tsc_read_refs(u64 *p, int hpet)
Alok Katariabfc0f592008-07-01 11:43:24 -0700108{
109 u64 t1, t2;
110 int i;
111
112 for (i = 0; i < MAX_RETRIES; i++) {
113 t1 = get_cycles();
114 if (hpet)
Thomas Gleixner827014b2008-09-04 15:18:53 +0000115 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
Alok Katariabfc0f592008-07-01 11:43:24 -0700116 else
Thomas Gleixner827014b2008-09-04 15:18:53 +0000117 *p = acpi_pm_read_early();
Alok Katariabfc0f592008-07-01 11:43:24 -0700118 t2 = get_cycles();
119 if ((t2 - t1) < SMI_TRESHOLD)
120 return t2;
121 }
122 return ULLONG_MAX;
123}
124
Thomas Gleixnerd683ef72008-09-04 15:18:48 +0000125/*
126 * Calculate the TSC frequency from HPET reference
127 */
128static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
129{
130 u64 tmp;
131
132 if (hpet2 < hpet1)
133 hpet2 += 0x100000000ULL;
134 hpet2 -= hpet1;
135 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
136 do_div(tmp, 1000000);
137 do_div(deltatsc, tmp);
138
139 return (unsigned long) deltatsc;
140}
141
142/*
143 * Calculate the TSC frequency from PMTimer reference
144 */
145static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
146{
147 u64 tmp;
148
149 if (!pm1 && !pm2)
150 return ULONG_MAX;
151
152 if (pm2 < pm1)
153 pm2 += (u64)ACPI_PM_OVRRUN;
154 pm2 -= pm1;
155 tmp = pm2 * 1000000000LL;
156 do_div(tmp, PMTMR_TICKS_PER_SEC);
157 do_div(deltatsc, tmp);
158
159 return (unsigned long) deltatsc;
160}
161
Thomas Gleixnera977c402008-09-04 15:18:59 +0000162#define CAL_MS 10
Thomas Gleixnercce3e052008-09-04 15:18:44 +0000163#define CAL_LATCH (CLOCK_TICK_RATE / (1000 / CAL_MS))
Thomas Gleixnera977c402008-09-04 15:18:59 +0000164#define CAL_PIT_LOOPS 1000
165
166#define CAL2_MS 50
167#define CAL2_LATCH (CLOCK_TICK_RATE / (1000 / CAL2_MS))
168#define CAL2_PIT_LOOPS 5000
169
Thomas Gleixnercce3e052008-09-04 15:18:44 +0000170
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700171/*
172 * Try to calibrate the TSC against the Programmable
173 * Interrupt Timer and return the frequency of the TSC
174 * in kHz.
175 *
176 * Return ULONG_MAX on failure to calibrate.
177 */
Thomas Gleixnera977c402008-09-04 15:18:59 +0000178static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700179{
180 u64 tsc, t1, t2, delta;
181 unsigned long tscmin, tscmax;
182 int pitcnt;
183
184 /* Set the Gate high, disable speaker */
185 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
186
187 /*
188 * Setup CTC channel 2* for mode 0, (interrupt on terminal
189 * count mode), binary count. Set the latch register to 50ms
190 * (LSB then MSB) to begin countdown.
191 */
192 outb(0xb0, 0x43);
Thomas Gleixnera977c402008-09-04 15:18:59 +0000193 outb(latch & 0xff, 0x42);
194 outb(latch >> 8, 0x42);
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700195
196 tsc = t1 = t2 = get_cycles();
197
198 pitcnt = 0;
199 tscmax = 0;
200 tscmin = ULONG_MAX;
201 while ((inb(0x61) & 0x20) == 0) {
202 t2 = get_cycles();
203 delta = t2 - tsc;
204 tsc = t2;
205 if ((unsigned long) delta < tscmin)
206 tscmin = (unsigned int) delta;
207 if ((unsigned long) delta > tscmax)
208 tscmax = (unsigned int) delta;
209 pitcnt++;
210 }
211
212 /*
213 * Sanity checks:
214 *
Thomas Gleixnera977c402008-09-04 15:18:59 +0000215 * If we were not able to read the PIT more than loopmin
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700216 * times, then we have been hit by a massive SMI
217 *
218 * If the maximum is 10 times larger than the minimum,
219 * then we got hit by an SMI as well.
220 */
Thomas Gleixnera977c402008-09-04 15:18:59 +0000221 if (pitcnt < loopmin || tscmax > 10 * tscmin)
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700222 return ULONG_MAX;
223
224 /* Calculate the PIT value */
225 delta = t2 - t1;
Thomas Gleixnera977c402008-09-04 15:18:59 +0000226 do_div(delta, ms);
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700227 return delta;
228}
229
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700230/*
231 * This reads the current MSB of the PIT counter, and
232 * checks if we are running on sufficiently fast and
233 * non-virtualized hardware.
234 *
235 * Our expectations are:
236 *
237 * - the PIT is running at roughly 1.19MHz
238 *
239 * - each IO is going to take about 1us on real hardware,
240 * but we allow it to be much faster (by a factor of 10) or
241 * _slightly_ slower (ie we allow up to a 2us read+counter
242 * update - anything else implies a unacceptably slow CPU
243 * or PIT for the fast calibration to work.
244 *
245 * - with 256 PIT ticks to read the value, we have 214us to
246 * see the same MSB (and overhead like doing a single TSC
247 * read per MSB value etc).
248 *
249 * - We're doing 2 reads per loop (LSB, MSB), and we expect
250 * them each to take about a microsecond on real hardware.
251 * So we expect a count value of around 100. But we'll be
252 * generous, and accept anything over 50.
253 *
254 * - if the PIT is stuck, and we see *many* more reads, we
255 * return early (and the next caller of pit_expect_msb()
256 * then consider it a failure when they don't see the
257 * next expected value).
258 *
259 * These expectations mean that we know that we have seen the
260 * transition from one expected value to another with a fairly
261 * high accuracy, and we didn't miss any events. We can thus
262 * use the TSC value at the transitions to calculate a pretty
263 * good value for the TSC frequencty.
264 */
265static inline int pit_expect_msb(unsigned char val)
266{
267 int count = 0;
268
269 for (count = 0; count < 50000; count++) {
270 /* Ignore LSB */
271 inb(0x42);
272 if (inb(0x42) != val)
273 break;
274 }
275 return count > 50;
276}
277
278/*
279 * How many MSB values do we want to see? We aim for a
280 * 15ms calibration, which assuming a 2us counter read
281 * error should give us roughly 150 ppm precision for
282 * the calibration.
283 */
284#define QUICK_PIT_MS 15
285#define QUICK_PIT_ITERATIONS (QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
286
287static unsigned long quick_pit_calibrate(void)
288{
289 /* Set the Gate high, disable speaker */
290 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
291
292 /*
293 * Counter 2, mode 0 (one-shot), binary count
294 *
295 * NOTE! Mode 2 decrements by two (and then the
296 * output is flipped each time, giving the same
297 * final output frequency as a decrement-by-one),
298 * so mode 0 is much better when looking at the
299 * individual counts.
300 */
301 outb(0xb0, 0x43);
302
303 /* Start at 0xffff */
304 outb(0xff, 0x42);
305 outb(0xff, 0x42);
306
307 if (pit_expect_msb(0xff)) {
308 int i;
309 u64 t1, t2, delta;
310 unsigned char expect = 0xfe;
311
312 t1 = get_cycles();
313 for (i = 0; i < QUICK_PIT_ITERATIONS; i++, expect--) {
314 if (!pit_expect_msb(expect))
315 goto failed;
316 }
317 t2 = get_cycles();
318
319 /*
320 * Ok, if we get here, then we've seen the
321 * MSB of the PIT decrement QUICK_PIT_ITERATIONS
322 * times, and each MSB had many hits, so we never
323 * had any sudden jumps.
324 *
325 * As a result, we can depend on there not being
326 * any odd delays anywhere, and the TSC reads are
327 * reliable.
328 *
329 * kHz = ticks / time-in-seconds / 1000;
330 * kHz = (t2 - t1) / (QPI * 256 / PIT_TICK_RATE) / 1000
331 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (QPI * 256 * 1000)
332 */
333 delta = (t2 - t1)*PIT_TICK_RATE;
334 do_div(delta, QUICK_PIT_ITERATIONS*256*1000);
335 printk("Fast TSC calibration using PIT\n");
336 return delta;
337 }
338failed:
339 return 0;
340}
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700341
Alok Katariabfc0f592008-07-01 11:43:24 -0700342/**
Alok Katariae93ef942008-07-01 11:43:36 -0700343 * native_calibrate_tsc - calibrate the tsc on boot
Alok Katariabfc0f592008-07-01 11:43:24 -0700344 */
Alok Katariae93ef942008-07-01 11:43:36 -0700345unsigned long native_calibrate_tsc(void)
Alok Katariabfc0f592008-07-01 11:43:24 -0700346{
Thomas Gleixner827014b2008-09-04 15:18:53 +0000347 u64 tsc1, tsc2, delta, ref1, ref2;
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200348 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700349 unsigned long flags, latch, ms, fast_calibrate;
Thomas Gleixnera977c402008-09-04 15:18:59 +0000350 int hpet = is_hpet_enabled(), i, loopmin;
Alok Katariabfc0f592008-07-01 11:43:24 -0700351
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700352 local_irq_save(flags);
353 fast_calibrate = quick_pit_calibrate();
354 local_irq_restore(flags);
355 if (fast_calibrate)
356 return fast_calibrate;
357
Alok Katariabfc0f592008-07-01 11:43:24 -0700358 /*
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200359 * Run 5 calibration loops to get the lowest frequency value
360 * (the best estimate). We use two different calibration modes
361 * here:
362 *
363 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
364 * load a timeout of 50ms. We read the time right after we
365 * started the timer and wait until the PIT count down reaches
366 * zero. In each wait loop iteration we read the TSC and check
367 * the delta to the previous read. We keep track of the min
368 * and max values of that delta. The delta is mostly defined
369 * by the IO time of the PIT access, so we can detect when a
370 * SMI/SMM disturbance happend between the two reads. If the
371 * maximum time is significantly larger than the minimum time,
372 * then we discard the result and have another try.
373 *
374 * 2) Reference counter. If available we use the HPET or the
375 * PMTIMER as a reference to check the sanity of that value.
376 * We use separate TSC readouts and check inside of the
377 * reference read for a SMI/SMM disturbance. We dicard
378 * disturbed values here as well. We do that around the PIT
379 * calibration delay loop as we have to wait for a certain
380 * amount of time anyway.
Alok Katariabfc0f592008-07-01 11:43:24 -0700381 */
Thomas Gleixnera977c402008-09-04 15:18:59 +0000382
383 /* Preset PIT loop values */
384 latch = CAL_LATCH;
385 ms = CAL_MS;
386 loopmin = CAL_PIT_LOOPS;
387
388 for (i = 0; i < 3; i++) {
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700389 unsigned long tsc_pit_khz;
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200390
391 /*
392 * Read the start value and the reference count of
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700393 * hpet/pmtimer when available. Then do the PIT
394 * calibration, which will take at least 50ms, and
395 * read the end value.
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200396 */
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700397 local_irq_save(flags);
Thomas Gleixner827014b2008-09-04 15:18:53 +0000398 tsc1 = tsc_read_refs(&ref1, hpet);
Thomas Gleixnera977c402008-09-04 15:18:59 +0000399 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
Thomas Gleixner827014b2008-09-04 15:18:53 +0000400 tsc2 = tsc_read_refs(&ref2, hpet);
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200401 local_irq_restore(flags);
402
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700403 /* Pick the lowest PIT TSC calibration so far */
404 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200405
406 /* hpet or pmtimer available ? */
Thomas Gleixner827014b2008-09-04 15:18:53 +0000407 if (!hpet && !ref1 && !ref2)
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200408 continue;
409
410 /* Check, whether the sampling was disturbed by an SMI */
411 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
412 continue;
413
414 tsc2 = (tsc2 - tsc1) * 1000000LL;
Thomas Gleixnerd683ef72008-09-04 15:18:48 +0000415 if (hpet)
Thomas Gleixner827014b2008-09-04 15:18:53 +0000416 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
Thomas Gleixnerd683ef72008-09-04 15:18:48 +0000417 else
Thomas Gleixner827014b2008-09-04 15:18:53 +0000418 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200419
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200420 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
Thomas Gleixnera977c402008-09-04 15:18:59 +0000421
422 /* Check the reference deviation */
423 delta = ((u64) tsc_pit_min) * 100;
424 do_div(delta, tsc_ref_min);
425
426 /*
427 * If both calibration results are inside a 10% window
428 * then we can be sure, that the calibration
429 * succeeded. We break out of the loop right away. We
430 * use the reference value, as it is more precise.
431 */
432 if (delta >= 90 && delta <= 110) {
433 printk(KERN_INFO
434 "TSC: PIT calibration matches %s. %d loops\n",
435 hpet ? "HPET" : "PMTIMER", i + 1);
436 return tsc_ref_min;
437 }
438
439 /*
440 * Check whether PIT failed more than once. This
441 * happens in virtualized environments. We need to
442 * give the virtual PC a slightly longer timeframe for
443 * the HPET/PMTIMER to make the result precise.
444 */
445 if (i == 1 && tsc_pit_min == ULONG_MAX) {
446 latch = CAL2_LATCH;
447 ms = CAL2_MS;
448 loopmin = CAL2_PIT_LOOPS;
449 }
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200450 }
451
452 /*
453 * Now check the results.
454 */
455 if (tsc_pit_min == ULONG_MAX) {
456 /* PIT gave no useful value */
457 printk(KERN_WARNING "TSC: PIT calibration failed due to "
458 "SMI disturbance.\n");
459
460 /* We don't have an alternative source, disable TSC */
Thomas Gleixner827014b2008-09-04 15:18:53 +0000461 if (!hpet && !ref1 && !ref2) {
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200462 printk("TSC: No reference (HPET/PMTIMER) available\n");
463 return 0;
464 }
465
466 /* The alternative source failed as well, disable TSC */
467 if (tsc_ref_min == ULONG_MAX) {
468 printk(KERN_WARNING "TSC: HPET/PMTIMER calibration "
Thomas Gleixnera977c402008-09-04 15:18:59 +0000469 "failed.\n");
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200470 return 0;
471 }
472
473 /* Use the alternative source */
474 printk(KERN_INFO "TSC: using %s reference calibration\n",
475 hpet ? "HPET" : "PMTIMER");
476
477 return tsc_ref_min;
478 }
479
480 /* We don't have an alternative source, use the PIT calibration value */
Thomas Gleixner827014b2008-09-04 15:18:53 +0000481 if (!hpet && !ref1 && !ref2) {
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200482 printk(KERN_INFO "TSC: Using PIT calibration value\n");
483 return tsc_pit_min;
Alok Katariabfc0f592008-07-01 11:43:24 -0700484 }
485
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200486 /* The alternative source failed, use the PIT calibration value */
487 if (tsc_ref_min == ULONG_MAX) {
Thomas Gleixnera977c402008-09-04 15:18:59 +0000488 printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed. "
489 "Using PIT calibration\n");
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200490 return tsc_pit_min;
Alok Katariabfc0f592008-07-01 11:43:24 -0700491 }
492
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200493 /*
494 * The calibration values differ too much. In doubt, we use
495 * the PIT value as we know that there are PMTIMERs around
Thomas Gleixnera977c402008-09-04 15:18:59 +0000496 * running at double speed. At least we let the user know:
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200497 */
Thomas Gleixnera977c402008-09-04 15:18:59 +0000498 printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n",
499 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200500 printk(KERN_INFO "TSC: Using PIT calibration value\n");
501 return tsc_pit_min;
Alok Katariabfc0f592008-07-01 11:43:24 -0700502}
503
Alok Katariabfc0f592008-07-01 11:43:24 -0700504#ifdef CONFIG_X86_32
505/* Only called from the Powernow K7 cpu freq driver */
506int recalibrate_cpu_khz(void)
507{
508#ifndef CONFIG_SMP
509 unsigned long cpu_khz_old = cpu_khz;
510
511 if (cpu_has_tsc) {
Alok Katariae93ef942008-07-01 11:43:36 -0700512 tsc_khz = calibrate_tsc();
513 cpu_khz = tsc_khz;
Alok Katariabfc0f592008-07-01 11:43:24 -0700514 cpu_data(0).loops_per_jiffy =
515 cpufreq_scale(cpu_data(0).loops_per_jiffy,
516 cpu_khz_old, cpu_khz);
517 return 0;
518 } else
519 return -ENODEV;
520#else
521 return -ENODEV;
522#endif
523}
524
525EXPORT_SYMBOL(recalibrate_cpu_khz);
526
527#endif /* CONFIG_X86_32 */
Alok Kataria2dbe06f2008-07-01 11:43:31 -0700528
529/* Accelerators for sched_clock()
530 * convert from cycles(64bits) => nanoseconds (64bits)
531 * basic equation:
532 * ns = cycles / (freq / ns_per_sec)
533 * ns = cycles * (ns_per_sec / freq)
534 * ns = cycles * (10^9 / (cpu_khz * 10^3))
535 * ns = cycles * (10^6 / cpu_khz)
536 *
537 * Then we use scaling math (suggested by george@mvista.com) to get:
538 * ns = cycles * (10^6 * SC / cpu_khz) / SC
539 * ns = cycles * cyc2ns_scale / SC
540 *
541 * And since SC is a constant power of two, we can convert the div
542 * into a shift.
543 *
544 * We can use khz divisor instead of mhz to keep a better precision, since
545 * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
546 * (mathieu.desnoyers@polymtl.ca)
547 *
548 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
549 */
550
551DEFINE_PER_CPU(unsigned long, cyc2ns);
552
Alok Kataria8fbbc4b2008-07-01 11:43:34 -0700553static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
Alok Kataria2dbe06f2008-07-01 11:43:31 -0700554{
555 unsigned long long tsc_now, ns_now;
556 unsigned long flags, *scale;
557
558 local_irq_save(flags);
559 sched_clock_idle_sleep_event();
560
561 scale = &per_cpu(cyc2ns, cpu);
562
563 rdtscll(tsc_now);
564 ns_now = __cycles_2_ns(tsc_now);
565
566 if (cpu_khz)
567 *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
568
569 sched_clock_idle_wakeup_event(0);
570 local_irq_restore(flags);
571}
572
573#ifdef CONFIG_CPU_FREQ
574
575/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
576 * changes.
577 *
578 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
579 * not that important because current Opteron setups do not support
580 * scaling on SMP anyroads.
581 *
582 * Should fix up last_tsc too. Currently gettimeofday in the
583 * first tick after the change will be slightly wrong.
584 */
585
586static unsigned int ref_freq;
587static unsigned long loops_per_jiffy_ref;
588static unsigned long tsc_khz_ref;
589
590static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
591 void *data)
592{
593 struct cpufreq_freqs *freq = data;
594 unsigned long *lpj, dummy;
595
596 if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
597 return 0;
598
599 lpj = &dummy;
600 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
601#ifdef CONFIG_SMP
602 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
603#else
604 lpj = &boot_cpu_data.loops_per_jiffy;
605#endif
606
607 if (!ref_freq) {
608 ref_freq = freq->old;
609 loops_per_jiffy_ref = *lpj;
610 tsc_khz_ref = tsc_khz;
611 }
612 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
613 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
614 (val == CPUFREQ_RESUMECHANGE)) {
615 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
616
617 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
618 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
619 mark_tsc_unstable("cpufreq changes");
620 }
621
Peter Zijlstra52a89682008-08-25 13:35:06 +0200622 set_cyc2ns_scale(tsc_khz, freq->cpu);
Alok Kataria2dbe06f2008-07-01 11:43:31 -0700623
624 return 0;
625}
626
627static struct notifier_block time_cpufreq_notifier_block = {
628 .notifier_call = time_cpufreq_notifier
629};
630
631static int __init cpufreq_tsc(void)
632{
Linus Torvalds060700b2008-08-24 11:52:06 -0700633 if (!cpu_has_tsc)
634 return 0;
635 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
636 return 0;
Alok Kataria2dbe06f2008-07-01 11:43:31 -0700637 cpufreq_register_notifier(&time_cpufreq_notifier_block,
638 CPUFREQ_TRANSITION_NOTIFIER);
639 return 0;
640}
641
642core_initcall(cpufreq_tsc);
643
644#endif /* CONFIG_CPU_FREQ */
Alok Kataria8fbbc4b2008-07-01 11:43:34 -0700645
646/* clocksource code */
647
648static struct clocksource clocksource_tsc;
649
650/*
651 * We compare the TSC to the cycle_last value in the clocksource
652 * structure to avoid a nasty time-warp. This can be observed in a
653 * very small window right after one CPU updated cycle_last under
654 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
655 * is smaller than the cycle_last reference value due to a TSC which
656 * is slighty behind. This delta is nowhere else observable, but in
657 * that case it results in a forward time jump in the range of hours
658 * due to the unsigned delta calculation of the time keeping core
659 * code, which is necessary to support wrapping clocksources like pm
660 * timer.
661 */
662static cycle_t read_tsc(void)
663{
664 cycle_t ret = (cycle_t)get_cycles();
665
666 return ret >= clocksource_tsc.cycle_last ?
667 ret : clocksource_tsc.cycle_last;
668}
669
Thomas Gleixner431ceb82008-07-15 22:08:04 +0200670#ifdef CONFIG_X86_64
Alok Kataria8fbbc4b2008-07-01 11:43:34 -0700671static cycle_t __vsyscall_fn vread_tsc(void)
672{
673 cycle_t ret = (cycle_t)vget_cycles();
674
675 return ret >= __vsyscall_gtod_data.clock.cycle_last ?
676 ret : __vsyscall_gtod_data.clock.cycle_last;
677}
Thomas Gleixner431ceb82008-07-15 22:08:04 +0200678#endif
Alok Kataria8fbbc4b2008-07-01 11:43:34 -0700679
680static struct clocksource clocksource_tsc = {
681 .name = "tsc",
682 .rating = 300,
683 .read = read_tsc,
684 .mask = CLOCKSOURCE_MASK(64),
685 .shift = 22,
686 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
687 CLOCK_SOURCE_MUST_VERIFY,
688#ifdef CONFIG_X86_64
689 .vread = vread_tsc,
690#endif
691};
692
693void mark_tsc_unstable(char *reason)
694{
695 if (!tsc_unstable) {
696 tsc_unstable = 1;
697 printk("Marking TSC unstable due to %s\n", reason);
698 /* Change only the rating, when not registered */
699 if (clocksource_tsc.mult)
700 clocksource_change_rating(&clocksource_tsc, 0);
701 else
702 clocksource_tsc.rating = 0;
703 }
704}
705
706EXPORT_SYMBOL_GPL(mark_tsc_unstable);
707
708static int __init dmi_mark_tsc_unstable(const struct dmi_system_id *d)
709{
710 printk(KERN_NOTICE "%s detected: marking TSC unstable.\n",
711 d->ident);
712 tsc_unstable = 1;
713 return 0;
714}
715
716/* List of systems that have known TSC problems */
717static struct dmi_system_id __initdata bad_tsc_dmi_table[] = {
718 {
719 .callback = dmi_mark_tsc_unstable,
720 .ident = "IBM Thinkpad 380XD",
721 .matches = {
722 DMI_MATCH(DMI_BOARD_VENDOR, "IBM"),
723 DMI_MATCH(DMI_BOARD_NAME, "2635FA0"),
724 },
725 },
726 {}
727};
728
729/*
730 * Geode_LX - the OLPC CPU has a possibly a very reliable TSC
731 */
732#ifdef CONFIG_MGEODE_LX
733/* RTSC counts during suspend */
734#define RTSC_SUSP 0x100
735
736static void __init check_geode_tsc_reliable(void)
737{
738 unsigned long res_low, res_high;
739
740 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
741 if (res_low & RTSC_SUSP)
742 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
743}
744#else
745static inline void check_geode_tsc_reliable(void) { }
746#endif
747
748/*
749 * Make an educated guess if the TSC is trustworthy and synchronized
750 * over all CPUs.
751 */
752__cpuinit int unsynchronized_tsc(void)
753{
754 if (!cpu_has_tsc || tsc_unstable)
755 return 1;
756
757#ifdef CONFIG_SMP
758 if (apic_is_clustered_box())
759 return 1;
760#endif
761
762 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
763 return 0;
764 /*
765 * Intel systems are normally all synchronized.
766 * Exceptions must mark TSC as unstable:
767 */
768 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
769 /* assume multi socket systems are not synchronized: */
770 if (num_possible_cpus() > 1)
771 tsc_unstable = 1;
772 }
773
774 return tsc_unstable;
775}
776
777static void __init init_tsc_clocksource(void)
778{
779 clocksource_tsc.mult = clocksource_khz2mult(tsc_khz,
780 clocksource_tsc.shift);
781 /* lower the rating if we already know its unstable: */
782 if (check_tsc_unstable()) {
783 clocksource_tsc.rating = 0;
784 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
785 }
786 clocksource_register(&clocksource_tsc);
787}
788
789void __init tsc_init(void)
790{
791 u64 lpj;
792 int cpu;
793
794 if (!cpu_has_tsc)
795 return;
796
Alok Katariae93ef942008-07-01 11:43:36 -0700797 tsc_khz = calibrate_tsc();
798 cpu_khz = tsc_khz;
Alok Kataria8fbbc4b2008-07-01 11:43:34 -0700799
Alok Katariae93ef942008-07-01 11:43:36 -0700800 if (!tsc_khz) {
Alok Kataria8fbbc4b2008-07-01 11:43:34 -0700801 mark_tsc_unstable("could not calculate TSC khz");
802 return;
803 }
804
805#ifdef CONFIG_X86_64
806 if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) &&
807 (boot_cpu_data.x86_vendor == X86_VENDOR_AMD))
808 cpu_khz = calibrate_cpu();
809#endif
810
811 lpj = ((u64)tsc_khz * 1000);
812 do_div(lpj, HZ);
813 lpj_fine = lpj;
814
815 printk("Detected %lu.%03lu MHz processor.\n",
816 (unsigned long)cpu_khz / 1000,
817 (unsigned long)cpu_khz % 1000);
818
819 /*
820 * Secondary CPUs do not run through tsc_init(), so set up
821 * all the scale factors for all CPUs, assuming the same
822 * speed as the bootup CPU. (cpufreq notifiers will fix this
823 * up if their speed diverges)
824 */
825 for_each_possible_cpu(cpu)
826 set_cyc2ns_scale(cpu_khz, cpu);
827
828 if (tsc_disabled > 0)
829 return;
830
831 /* now allow native_sched_clock() to use rdtsc */
832 tsc_disabled = 0;
833
834 use_tsc_delay();
835 /* Check and install the TSC clocksource */
836 dmi_check_system(bad_tsc_dmi_table);
837
838 if (unsynchronized_tsc())
839 mark_tsc_unstable("TSCs unsynchronized");
840
841 check_geode_tsc_reliable();
842 init_tsc_clocksource();
843}
844