blob: 8cf0b8a13778ae0e497ffd228fb24f9eef8d163d [file] [log] [blame]
john stultzc37e7bb2007-02-16 01:28:19 -08001#include <linux/kernel.h>
2#include <linux/sched.h>
3#include <linux/init.h>
4#include <linux/mc146818rtc.h>
5#include <linux/time.h>
6#include <linux/clocksource.h>
7#include <linux/ioport.h>
8#include <linux/acpi.h>
9#include <linux/hpet.h>
10#include <asm/pgtable.h>
11#include <asm/vsyscall.h>
12#include <asm/timex.h>
13#include <asm/hpet.h>
14
john stultz6bb74df2007-03-05 00:30:50 -080015#define HPET_MASK 0xFFFFFFFF
16#define HPET_SHIFT 22
17
18/* FSEC = 10^-15 NSEC = 10^-9 */
19#define FSEC_PER_NSEC 1000000
20
john stultzc37e7bb2007-02-16 01:28:19 -080021int nohpet __initdata;
22
23unsigned long hpet_address;
24unsigned long hpet_period; /* fsecs / HPET clock */
25unsigned long hpet_tick; /* HPET clocks / interrupt */
26
27int hpet_use_timer; /* Use counter of hpet for time keeping,
28 * otherwise PIT
29 */
john stultzc37e7bb2007-02-16 01:28:19 -080030
31#ifdef CONFIG_HPET
32static __init int late_hpet_init(void)
33{
34 struct hpet_data hd;
35 unsigned int ntimer;
36
37 if (!hpet_address)
38 return 0;
39
40 memset(&hd, 0, sizeof(hd));
41
42 ntimer = hpet_readl(HPET_ID);
43 ntimer = (ntimer & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
44 ntimer++;
45
46 /*
47 * Register with driver.
48 * Timer0 and Timer1 is used by platform.
49 */
50 hd.hd_phys_address = hpet_address;
51 hd.hd_address = (void __iomem *)fix_to_virt(FIX_HPET_BASE);
52 hd.hd_nirqs = ntimer;
53 hd.hd_flags = HPET_DATA_PLATFORM;
54 hpet_reserve_timer(&hd, 0);
55#ifdef CONFIG_HPET_EMULATE_RTC
56 hpet_reserve_timer(&hd, 1);
57#endif
58 hd.hd_irq[0] = HPET_LEGACY_8254;
59 hd.hd_irq[1] = HPET_LEGACY_RTC;
60 if (ntimer > 2) {
61 struct hpet *hpet;
62 struct hpet_timer *timer;
63 int i;
64
65 hpet = (struct hpet *) fix_to_virt(FIX_HPET_BASE);
66 timer = &hpet->hpet_timers[2];
67 for (i = 2; i < ntimer; timer++, i++)
68 hd.hd_irq[i] = (timer->hpet_config &
69 Tn_INT_ROUTE_CNF_MASK) >>
70 Tn_INT_ROUTE_CNF_SHIFT;
71
72 }
73
74 hpet_alloc(&hd);
75 return 0;
76}
77fs_initcall(late_hpet_init);
78#endif
79
80int hpet_timer_stop_set_go(unsigned long tick)
81{
82 unsigned int cfg;
83
84/*
85 * Stop the timers and reset the main counter.
86 */
87
88 cfg = hpet_readl(HPET_CFG);
89 cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
90 hpet_writel(cfg, HPET_CFG);
91 hpet_writel(0, HPET_COUNTER);
92 hpet_writel(0, HPET_COUNTER + 4);
93
94/*
95 * Set up timer 0, as periodic with first interrupt to happen at hpet_tick,
96 * and period also hpet_tick.
97 */
98 if (hpet_use_timer) {
99 hpet_writel(HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
100 HPET_TN_32BIT, HPET_T0_CFG);
101 hpet_writel(hpet_tick, HPET_T0_CMP); /* next interrupt */
102 hpet_writel(hpet_tick, HPET_T0_CMP); /* period */
103 cfg |= HPET_CFG_LEGACY;
104 }
105/*
106 * Go!
107 */
108
109 cfg |= HPET_CFG_ENABLE;
110 hpet_writel(cfg, HPET_CFG);
111
112 return 0;
113}
114
john stultz6bb74df2007-03-05 00:30:50 -0800115static cycle_t read_hpet(void)
116{
117 return (cycle_t)hpet_readl(HPET_COUNTER);
118}
119
120static cycle_t __vsyscall_fn vread_hpet(void)
121{
122 return readl((void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
123}
124
125struct clocksource clocksource_hpet = {
126 .name = "hpet",
127 .rating = 250,
128 .read = read_hpet,
129 .mask = (cycle_t)HPET_MASK,
130 .mult = 0, /* set below */
131 .shift = HPET_SHIFT,
132 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
133 .vread = vread_hpet,
134};
135
john stultzc37e7bb2007-02-16 01:28:19 -0800136int hpet_arch_init(void)
137{
138 unsigned int id;
john stultz6bb74df2007-03-05 00:30:50 -0800139 u64 tmp;
john stultzc37e7bb2007-02-16 01:28:19 -0800140
141 if (!hpet_address)
142 return -1;
143 set_fixmap_nocache(FIX_HPET_BASE, hpet_address);
144 __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
145
146/*
147 * Read the period, compute tick and quotient.
148 */
149
150 id = hpet_readl(HPET_ID);
151
152 if (!(id & HPET_ID_VENDOR) || !(id & HPET_ID_NUMBER))
153 return -1;
154
155 hpet_period = hpet_readl(HPET_PERIOD);
156 if (hpet_period < 100000 || hpet_period > 100000000)
157 return -1;
158
159 hpet_tick = (FSEC_PER_TICK + hpet_period / 2) / hpet_period;
160
161 hpet_use_timer = (id & HPET_ID_LEGSUP);
162
john stultz6bb74df2007-03-05 00:30:50 -0800163 /*
164 * hpet period is in femto seconds per cycle
165 * so we need to convert this to ns/cyc units
166 * aproximated by mult/2^shift
167 *
168 * fsec/cyc * 1nsec/1000000fsec = nsec/cyc = mult/2^shift
169 * fsec/cyc * 1ns/1000000fsec * 2^shift = mult
170 * fsec/cyc * 2^shift * 1nsec/1000000fsec = mult
171 * (fsec/cyc << shift)/1000000 = mult
172 * (hpet_period << shift)/FSEC_PER_NSEC = mult
173 */
174 tmp = (u64)hpet_period << HPET_SHIFT;
175 do_div(tmp, FSEC_PER_NSEC);
176 clocksource_hpet.mult = (u32)tmp;
177 clocksource_register(&clocksource_hpet);
178
john stultzc37e7bb2007-02-16 01:28:19 -0800179 return hpet_timer_stop_set_go(hpet_tick);
180}
181
182int hpet_reenable(void)
183{
184 return hpet_timer_stop_set_go(hpet_tick);
185}
186
187/*
188 * calibrate_tsc() calibrates the processor TSC in a very simple way, comparing
189 * it to the HPET timer of known frequency.
190 */
191
192#define TICK_COUNT 100000000
193#define TICK_MIN 5000
194
195/*
196 * Some platforms take periodic SMI interrupts with 5ms duration. Make sure none
197 * occurs between the reads of the hpet & TSC.
198 */
199static void __init read_hpet_tsc(int *hpet, int *tsc)
200{
201 int tsc1, tsc2, hpet1;
202
203 do {
204 tsc1 = get_cycles_sync();
205 hpet1 = hpet_readl(HPET_COUNTER);
206 tsc2 = get_cycles_sync();
207 } while (tsc2 - tsc1 > TICK_MIN);
208 *hpet = hpet1;
209 *tsc = tsc2;
210}
211
212unsigned int __init hpet_calibrate_tsc(void)
213{
214 int tsc_start, hpet_start;
215 int tsc_now, hpet_now;
216 unsigned long flags;
217
218 local_irq_save(flags);
219
220 read_hpet_tsc(&hpet_start, &tsc_start);
221
222 do {
223 local_irq_disable();
224 read_hpet_tsc(&hpet_now, &tsc_now);
225 local_irq_restore(flags);
226 } while ((tsc_now - tsc_start) < TICK_COUNT &&
227 (hpet_now - hpet_start) < TICK_COUNT);
228
229 return (tsc_now - tsc_start) * 1000000000L
230 / ((hpet_now - hpet_start) * hpet_period / 1000);
231}
232
233#ifdef CONFIG_HPET_EMULATE_RTC
234/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
235 * is enabled, we support RTC interrupt functionality in software.
236 * RTC has 3 kinds of interrupts:
237 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
238 * is updated
239 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
240 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
241 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
242 * (1) and (2) above are implemented using polling at a frequency of
243 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
244 * overhead. (DEFAULT_RTC_INT_FREQ)
245 * For (3), we use interrupts at 64Hz or user specified periodic
246 * frequency, whichever is higher.
247 */
248#include <linux/rtc.h>
249
250#define DEFAULT_RTC_INT_FREQ 64
251#define RTC_NUM_INTS 1
252
253static unsigned long UIE_on;
254static unsigned long prev_update_sec;
255
256static unsigned long AIE_on;
257static struct rtc_time alarm_time;
258
259static unsigned long PIE_on;
260static unsigned long PIE_freq = DEFAULT_RTC_INT_FREQ;
261static unsigned long PIE_count;
262
263static unsigned long hpet_rtc_int_freq; /* RTC interrupt frequency */
264static unsigned int hpet_t1_cmp; /* cached comparator register */
265
266int is_hpet_enabled(void)
267{
268 return hpet_address != 0;
269}
270
271/*
272 * Timer 1 for RTC, we do not use periodic interrupt feature,
273 * even if HPET supports periodic interrupts on Timer 1.
274 * The reason being, to set up a periodic interrupt in HPET, we need to
275 * stop the main counter. And if we do that everytime someone diables/enables
276 * RTC, we will have adverse effect on main kernel timer running on Timer 0.
277 * So, for the time being, simulate the periodic interrupt in software.
278 *
279 * hpet_rtc_timer_init() is called for the first time and during subsequent
280 * interuppts reinit happens through hpet_rtc_timer_reinit().
281 */
282int hpet_rtc_timer_init(void)
283{
284 unsigned int cfg, cnt;
285 unsigned long flags;
286
287 if (!is_hpet_enabled())
288 return 0;
289 /*
290 * Set the counter 1 and enable the interrupts.
291 */
292 if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
293 hpet_rtc_int_freq = PIE_freq;
294 else
295 hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;
296
297 local_irq_save(flags);
298
299 cnt = hpet_readl(HPET_COUNTER);
300 cnt += ((hpet_tick*HZ)/hpet_rtc_int_freq);
301 hpet_writel(cnt, HPET_T1_CMP);
302 hpet_t1_cmp = cnt;
303
304 cfg = hpet_readl(HPET_T1_CFG);
305 cfg &= ~HPET_TN_PERIODIC;
306 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
307 hpet_writel(cfg, HPET_T1_CFG);
308
309 local_irq_restore(flags);
310
311 return 1;
312}
313
314static void hpet_rtc_timer_reinit(void)
315{
316 unsigned int cfg, cnt, ticks_per_int, lost_ints;
317
318 if (unlikely(!(PIE_on | AIE_on | UIE_on))) {
319 cfg = hpet_readl(HPET_T1_CFG);
320 cfg &= ~HPET_TN_ENABLE;
321 hpet_writel(cfg, HPET_T1_CFG);
322 return;
323 }
324
325 if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
326 hpet_rtc_int_freq = PIE_freq;
327 else
328 hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;
329
330 /* It is more accurate to use the comparator value than current count.*/
331 ticks_per_int = hpet_tick * HZ / hpet_rtc_int_freq;
332 hpet_t1_cmp += ticks_per_int;
333 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
334
335 /*
336 * If the interrupt handler was delayed too long, the write above tries
337 * to schedule the next interrupt in the past and the hardware would
338 * not interrupt until the counter had wrapped around.
339 * So we have to check that the comparator wasn't set to a past time.
340 */
341 cnt = hpet_readl(HPET_COUNTER);
342 if (unlikely((int)(cnt - hpet_t1_cmp) > 0)) {
343 lost_ints = (cnt - hpet_t1_cmp) / ticks_per_int + 1;
344 /* Make sure that, even with the time needed to execute
345 * this code, the next scheduled interrupt has been moved
346 * back to the future: */
347 lost_ints++;
348
349 hpet_t1_cmp += lost_ints * ticks_per_int;
350 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
351
352 if (PIE_on)
353 PIE_count += lost_ints;
354
355 if (printk_ratelimit())
356 printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n",
357 hpet_rtc_int_freq);
358 }
359}
360
361/*
362 * The functions below are called from rtc driver.
363 * Return 0 if HPET is not being used.
364 * Otherwise do the necessary changes and return 1.
365 */
366int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
367{
368 if (!is_hpet_enabled())
369 return 0;
370
371 if (bit_mask & RTC_UIE)
372 UIE_on = 0;
373 if (bit_mask & RTC_PIE)
374 PIE_on = 0;
375 if (bit_mask & RTC_AIE)
376 AIE_on = 0;
377
378 return 1;
379}
380
381int hpet_set_rtc_irq_bit(unsigned long bit_mask)
382{
383 int timer_init_reqd = 0;
384
385 if (!is_hpet_enabled())
386 return 0;
387
388 if (!(PIE_on | AIE_on | UIE_on))
389 timer_init_reqd = 1;
390
391 if (bit_mask & RTC_UIE) {
392 UIE_on = 1;
393 }
394 if (bit_mask & RTC_PIE) {
395 PIE_on = 1;
396 PIE_count = 0;
397 }
398 if (bit_mask & RTC_AIE) {
399 AIE_on = 1;
400 }
401
402 if (timer_init_reqd)
403 hpet_rtc_timer_init();
404
405 return 1;
406}
407
408int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
409{
410 if (!is_hpet_enabled())
411 return 0;
412
413 alarm_time.tm_hour = hrs;
414 alarm_time.tm_min = min;
415 alarm_time.tm_sec = sec;
416
417 return 1;
418}
419
420int hpet_set_periodic_freq(unsigned long freq)
421{
422 if (!is_hpet_enabled())
423 return 0;
424
425 PIE_freq = freq;
426 PIE_count = 0;
427
428 return 1;
429}
430
431int hpet_rtc_dropped_irq(void)
432{
433 if (!is_hpet_enabled())
434 return 0;
435
436 return 1;
437}
438
439irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs)
440{
441 struct rtc_time curr_time;
442 unsigned long rtc_int_flag = 0;
443 int call_rtc_interrupt = 0;
444
445 hpet_rtc_timer_reinit();
446
447 if (UIE_on | AIE_on) {
448 rtc_get_rtc_time(&curr_time);
449 }
450 if (UIE_on) {
451 if (curr_time.tm_sec != prev_update_sec) {
452 /* Set update int info, call real rtc int routine */
453 call_rtc_interrupt = 1;
454 rtc_int_flag = RTC_UF;
455 prev_update_sec = curr_time.tm_sec;
456 }
457 }
458 if (PIE_on) {
459 PIE_count++;
460 if (PIE_count >= hpet_rtc_int_freq/PIE_freq) {
461 /* Set periodic int info, call real rtc int routine */
462 call_rtc_interrupt = 1;
463 rtc_int_flag |= RTC_PF;
464 PIE_count = 0;
465 }
466 }
467 if (AIE_on) {
468 if ((curr_time.tm_sec == alarm_time.tm_sec) &&
469 (curr_time.tm_min == alarm_time.tm_min) &&
470 (curr_time.tm_hour == alarm_time.tm_hour)) {
471 /* Set alarm int info, call real rtc int routine */
472 call_rtc_interrupt = 1;
473 rtc_int_flag |= RTC_AF;
474 }
475 }
476 if (call_rtc_interrupt) {
477 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
478 rtc_interrupt(rtc_int_flag, dev_id);
479 }
480 return IRQ_HANDLED;
481}
482#endif
483
484static int __init nohpet_setup(char *s)
485{
486 nohpet = 1;
487 return 1;
488}
489
490__setup("nohpet", nohpet_setup);