| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * mm/prio_tree.c - priority search tree for mapping->i_mmap | 
|  | 3 | * | 
|  | 4 | * Copyright (C) 2004, Rajesh Venkatasubramanian <vrajesh@umich.edu> | 
|  | 5 | * | 
|  | 6 | * This file is released under the GPL v2. | 
|  | 7 | * | 
|  | 8 | * Based on the radix priority search tree proposed by Edward M. McCreight | 
|  | 9 | * SIAM Journal of Computing, vol. 14, no.2, pages 257-276, May 1985 | 
|  | 10 | * | 
|  | 11 | * 02Feb2004	Initial version | 
|  | 12 | */ | 
|  | 13 |  | 
|  | 14 | #include <linux/mm.h> | 
|  | 15 | #include <linux/prio_tree.h> | 
|  | 16 |  | 
|  | 17 | /* | 
|  | 18 | * See lib/prio_tree.c for details on the general radix priority search tree | 
|  | 19 | * code. | 
|  | 20 | */ | 
|  | 21 |  | 
|  | 22 | /* | 
|  | 23 | * The following #defines are mirrored from lib/prio_tree.c. They're only used | 
|  | 24 | * for debugging, and should be removed (along with the debugging code using | 
|  | 25 | * them) when switching also VMAs to the regular prio_tree code. | 
|  | 26 | */ | 
|  | 27 |  | 
|  | 28 | #define RADIX_INDEX(vma)  ((vma)->vm_pgoff) | 
|  | 29 | #define VMA_SIZE(vma)	  (((vma)->vm_end - (vma)->vm_start) >> PAGE_SHIFT) | 
|  | 30 | /* avoid overflow */ | 
|  | 31 | #define HEAP_INDEX(vma)   ((vma)->vm_pgoff + (VMA_SIZE(vma) - 1)) | 
|  | 32 |  | 
|  | 33 | /* | 
|  | 34 | * Radix priority search tree for address_space->i_mmap | 
|  | 35 | * | 
|  | 36 | * For each vma that map a unique set of file pages i.e., unique [radix_index, | 
| Simon Arlott | 183ff22 | 2007-10-20 01:27:18 +0200 | [diff] [blame] | 37 | * heap_index] value, we have a corresponding priority search tree node. If | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 38 | * multiple vmas have identical [radix_index, heap_index] value, then one of | 
|  | 39 | * them is used as a tree node and others are stored in a vm_set list. The tree | 
|  | 40 | * node points to the first vma (head) of the list using vm_set.head. | 
|  | 41 | * | 
|  | 42 | * prio_tree_root | 
|  | 43 | *      | | 
|  | 44 | *      A       vm_set.head | 
|  | 45 | *     / \      / | 
|  | 46 | *    L   R -> H-I-J-K-M-N-O-P-Q-S | 
|  | 47 | *    ^   ^    <-- vm_set.list --> | 
|  | 48 | *  tree nodes | 
|  | 49 | * | 
|  | 50 | * We need some way to identify whether a vma is a tree node, head of a vm_set | 
|  | 51 | * list, or just a member of a vm_set list. We cannot use vm_flags to store | 
|  | 52 | * such information. The reason is, in the above figure, it is possible that | 
|  | 53 | * vm_flags' of R and H are covered by the different mmap_sems. When R is | 
|  | 54 | * removed under R->mmap_sem, H replaces R as a tree node. Since we do not hold | 
|  | 55 | * H->mmap_sem, we cannot use H->vm_flags for marking that H is a tree node now. | 
|  | 56 | * That's why some trick involving shared.vm_set.parent is used for identifying | 
|  | 57 | * tree nodes and list head nodes. | 
|  | 58 | * | 
|  | 59 | * vma radix priority search tree node rules: | 
|  | 60 | * | 
|  | 61 | * vma->shared.vm_set.parent != NULL    ==> a tree node | 
|  | 62 | *      vma->shared.vm_set.head != NULL ==> list of others mapping same range | 
|  | 63 | *      vma->shared.vm_set.head == NULL ==> no others map the same range | 
|  | 64 | * | 
|  | 65 | * vma->shared.vm_set.parent == NULL | 
|  | 66 | * 	vma->shared.vm_set.head != NULL ==> list head of vmas mapping same range | 
|  | 67 | * 	vma->shared.vm_set.head == NULL ==> a list node | 
|  | 68 | */ | 
|  | 69 |  | 
|  | 70 | /* | 
|  | 71 | * Add a new vma known to map the same set of pages as the old vma: | 
|  | 72 | * useful for fork's dup_mmap as well as vma_prio_tree_insert below. | 
|  | 73 | * Note that it just happens to work correctly on i_mmap_nonlinear too. | 
|  | 74 | */ | 
|  | 75 | void vma_prio_tree_add(struct vm_area_struct *vma, struct vm_area_struct *old) | 
|  | 76 | { | 
|  | 77 | /* Leave these BUG_ONs till prio_tree patch stabilizes */ | 
|  | 78 | BUG_ON(RADIX_INDEX(vma) != RADIX_INDEX(old)); | 
|  | 79 | BUG_ON(HEAP_INDEX(vma) != HEAP_INDEX(old)); | 
|  | 80 |  | 
|  | 81 | vma->shared.vm_set.head = NULL; | 
|  | 82 | vma->shared.vm_set.parent = NULL; | 
|  | 83 |  | 
|  | 84 | if (!old->shared.vm_set.parent) | 
|  | 85 | list_add(&vma->shared.vm_set.list, | 
|  | 86 | &old->shared.vm_set.list); | 
|  | 87 | else if (old->shared.vm_set.head) | 
|  | 88 | list_add_tail(&vma->shared.vm_set.list, | 
|  | 89 | &old->shared.vm_set.head->shared.vm_set.list); | 
|  | 90 | else { | 
|  | 91 | INIT_LIST_HEAD(&vma->shared.vm_set.list); | 
|  | 92 | vma->shared.vm_set.head = old; | 
|  | 93 | old->shared.vm_set.head = vma; | 
|  | 94 | } | 
|  | 95 | } | 
|  | 96 |  | 
|  | 97 | void vma_prio_tree_insert(struct vm_area_struct *vma, | 
|  | 98 | struct prio_tree_root *root) | 
|  | 99 | { | 
|  | 100 | struct prio_tree_node *ptr; | 
|  | 101 | struct vm_area_struct *old; | 
|  | 102 |  | 
|  | 103 | vma->shared.vm_set.head = NULL; | 
|  | 104 |  | 
|  | 105 | ptr = raw_prio_tree_insert(root, &vma->shared.prio_tree_node); | 
|  | 106 | if (ptr != (struct prio_tree_node *) &vma->shared.prio_tree_node) { | 
|  | 107 | old = prio_tree_entry(ptr, struct vm_area_struct, | 
|  | 108 | shared.prio_tree_node); | 
|  | 109 | vma_prio_tree_add(vma, old); | 
|  | 110 | } | 
|  | 111 | } | 
|  | 112 |  | 
|  | 113 | void vma_prio_tree_remove(struct vm_area_struct *vma, | 
|  | 114 | struct prio_tree_root *root) | 
|  | 115 | { | 
|  | 116 | struct vm_area_struct *node, *head, *new_head; | 
|  | 117 |  | 
|  | 118 | if (!vma->shared.vm_set.head) { | 
|  | 119 | if (!vma->shared.vm_set.parent) | 
|  | 120 | list_del_init(&vma->shared.vm_set.list); | 
|  | 121 | else | 
|  | 122 | raw_prio_tree_remove(root, &vma->shared.prio_tree_node); | 
|  | 123 | } else { | 
|  | 124 | /* Leave this BUG_ON till prio_tree patch stabilizes */ | 
|  | 125 | BUG_ON(vma->shared.vm_set.head->shared.vm_set.head != vma); | 
|  | 126 | if (vma->shared.vm_set.parent) { | 
|  | 127 | head = vma->shared.vm_set.head; | 
|  | 128 | if (!list_empty(&head->shared.vm_set.list)) { | 
|  | 129 | new_head = list_entry( | 
|  | 130 | head->shared.vm_set.list.next, | 
|  | 131 | struct vm_area_struct, | 
|  | 132 | shared.vm_set.list); | 
|  | 133 | list_del_init(&head->shared.vm_set.list); | 
|  | 134 | } else | 
|  | 135 | new_head = NULL; | 
|  | 136 |  | 
|  | 137 | raw_prio_tree_replace(root, &vma->shared.prio_tree_node, | 
|  | 138 | &head->shared.prio_tree_node); | 
|  | 139 | head->shared.vm_set.head = new_head; | 
|  | 140 | if (new_head) | 
|  | 141 | new_head->shared.vm_set.head = head; | 
|  | 142 |  | 
|  | 143 | } else { | 
|  | 144 | node = vma->shared.vm_set.head; | 
|  | 145 | if (!list_empty(&vma->shared.vm_set.list)) { | 
|  | 146 | new_head = list_entry( | 
|  | 147 | vma->shared.vm_set.list.next, | 
|  | 148 | struct vm_area_struct, | 
|  | 149 | shared.vm_set.list); | 
|  | 150 | list_del_init(&vma->shared.vm_set.list); | 
|  | 151 | node->shared.vm_set.head = new_head; | 
|  | 152 | new_head->shared.vm_set.head = node; | 
|  | 153 | } else | 
|  | 154 | node->shared.vm_set.head = NULL; | 
|  | 155 | } | 
|  | 156 | } | 
|  | 157 | } | 
|  | 158 |  | 
|  | 159 | /* | 
|  | 160 | * Helper function to enumerate vmas that map a given file page or a set of | 
|  | 161 | * contiguous file pages. The function returns vmas that at least map a single | 
|  | 162 | * page in the given range of contiguous file pages. | 
|  | 163 | */ | 
|  | 164 | struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, | 
|  | 165 | struct prio_tree_iter *iter) | 
|  | 166 | { | 
|  | 167 | struct prio_tree_node *ptr; | 
|  | 168 | struct vm_area_struct *next; | 
|  | 169 |  | 
|  | 170 | if (!vma) { | 
|  | 171 | /* | 
|  | 172 | * First call is with NULL vma | 
|  | 173 | */ | 
|  | 174 | ptr = prio_tree_next(iter); | 
|  | 175 | if (ptr) { | 
|  | 176 | next = prio_tree_entry(ptr, struct vm_area_struct, | 
|  | 177 | shared.prio_tree_node); | 
|  | 178 | prefetch(next->shared.vm_set.head); | 
|  | 179 | return next; | 
|  | 180 | } else | 
|  | 181 | return NULL; | 
|  | 182 | } | 
|  | 183 |  | 
|  | 184 | if (vma->shared.vm_set.parent) { | 
|  | 185 | if (vma->shared.vm_set.head) { | 
|  | 186 | next = vma->shared.vm_set.head; | 
|  | 187 | prefetch(next->shared.vm_set.list.next); | 
|  | 188 | return next; | 
|  | 189 | } | 
|  | 190 | } else { | 
|  | 191 | next = list_entry(vma->shared.vm_set.list.next, | 
|  | 192 | struct vm_area_struct, shared.vm_set.list); | 
|  | 193 | if (!next->shared.vm_set.head) { | 
|  | 194 | prefetch(next->shared.vm_set.list.next); | 
|  | 195 | return next; | 
|  | 196 | } | 
|  | 197 | } | 
|  | 198 |  | 
|  | 199 | ptr = prio_tree_next(iter); | 
|  | 200 | if (ptr) { | 
|  | 201 | next = prio_tree_entry(ptr, struct vm_area_struct, | 
|  | 202 | shared.prio_tree_node); | 
|  | 203 | prefetch(next->shared.vm_set.head); | 
|  | 204 | return next; | 
|  | 205 | } else | 
|  | 206 | return NULL; | 
|  | 207 | } |