blob: 65b6400124d58f6a6008978b7ccc4325a67e688d [file] [log] [blame]
Flemmard6c7e7332013-05-07 16:23:17 -07001/* Copyright (c) 2011-2012, Code Aurora Forum. All rights reserved.
2 *
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License version 2 and
5 * only version 2 as published by the Free Software Foundation.
6 *
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU General Public License for more details.
11 *
12 */
13#define pr_fmt(fmt) "[BATT][BMS] " fmt
14#define pr_fmt_debug(fmt) "[BATT][BMS]%s: " fmt, __func__
15
16#include <linux/module.h>
17#include <linux/moduleparam.h>
18#include <linux/platform_device.h>
19#include <linux/errno.h>
20#include <linux/mfd/pm8xxx/pm8921-bms-htc.h>
21#include <linux/mfd/pm8xxx/pm8921-charger-htc.h>
22#include <linux/mfd/pm8xxx/core.h>
23#include <linux/mfd/pm8xxx/pm8xxx-adc.h>
24#include <linux/mfd/pm8xxx/ccadc.h>
25#include <linux/interrupt.h>
26#include <linux/bitops.h>
27#include <linux/debugfs.h>
28#include <linux/slab.h>
29#include <linux/delay.h>
30#include <linux/mutex.h>
31#include <mach/board_htc.h>
32
33#ifdef CONFIG_HTC_BATT_8960
34#include "mach/htc_battery_cell.h"
35#endif
36
37#if defined(pr_debug)
38#undef pr_debug
39#endif
40#define pr_debug(fmt, ...) do { \
41 if (flag_enable_bms_chg_log) \
42 printk(KERN_INFO pr_fmt_debug(fmt), ##__VA_ARGS__); \
43 } while (0)
44static bool flag_enable_bms_chg_log;
45
46#define BMS_CONTROL 0x224
47#define BMS_S1_DELAY 0x225
48#define BMS_OUTPUT0 0x230
49#define BMS_OUTPUT1 0x231
50#define BMS_TOLERANCES 0x232
51#define BMS_TEST1 0x237
52
53#define ADC_ARB_SECP_CNTRL 0x190
54#define ADC_ARB_SECP_AMUX_CNTRL 0x191
55#define ADC_ARB_SECP_ANA_PARAM 0x192
56#define ADC_ARB_SECP_DIG_PARAM 0x193
57#define ADC_ARB_SECP_RSV 0x194
58#define ADC_ARB_SECP_DATA1 0x195
59#define ADC_ARB_SECP_DATA0 0x196
60
61#define ADC_ARB_BMS_CNTRL 0x18D
62#define AMUX_TRIM_2 0x322
63#define TEST_PROGRAM_REV 0x339
64
65#define OCV_UPDATE_STORAGE 0x105
66#define OCV_UPDATE_STORAGE_USE_MASK 0x0F
67
68enum pmic_bms_interrupts {
69 PM8921_BMS_SBI_WRITE_OK,
70 PM8921_BMS_CC_THR,
71 PM8921_BMS_VSENSE_THR,
72 PM8921_BMS_VSENSE_FOR_R,
73 PM8921_BMS_OCV_FOR_R,
74 PM8921_BMS_GOOD_OCV,
75 PM8921_BMS_VSENSE_AVG,
76 PM_BMS_MAX_INTS,
77};
78
79struct pm8921_soc_params {
80 uint16_t last_good_ocv_raw;
81 int cc;
82
83 int last_good_ocv_uv;
84};
85
86struct pm8921_rbatt_params {
87 uint16_t ocv_for_rbatt_raw;
88 uint16_t vsense_for_rbatt_raw;
89 uint16_t vbatt_for_rbatt_raw;
90
91 int ocv_for_rbatt_uv;
92 int vsense_for_rbatt_uv;
93 int vbatt_for_rbatt_uv;
94};
95
96struct pm8921_bms_chip {
97 struct device *dev;
98 struct dentry *dent;
99 unsigned int r_sense;
100 unsigned int i_test;
101 unsigned int v_failure;
102 unsigned int fcc;
103 struct single_row_lut *fcc_temp_lut;
104 struct single_row_lut *fcc_sf_lut;
105 struct pc_temp_ocv_lut *pc_temp_ocv_lut;
106 struct sf_lut *pc_sf_lut;
107 struct sf_lut *rbatt_sf_lut;
108 int delta_rbatt_mohm;
109 struct work_struct calib_hkadc_work;
110 unsigned int revision;
111 unsigned int xoadc_v0625_usb_present;
112 unsigned int xoadc_v0625_usb_absent;
113 unsigned int xoadc_v0625;
114 unsigned int xoadc_v125;
115 unsigned int batt_temp_channel;
116 unsigned int vbat_channel;
117 unsigned int ref625mv_channel;
118 unsigned int ref1p25v_channel;
119 unsigned int batt_id_channel;
120 unsigned int pmic_bms_irq[PM_BMS_MAX_INTS];
121 DECLARE_BITMAP(enabled_irqs, PM_BMS_MAX_INTS);
122 struct mutex bms_output_lock;
123 spinlock_t bms_100_lock;
124 struct single_row_lut *adjusted_fcc_temp_lut;
125 unsigned int charging_began;
126 int start_percent;
127 int end_percent;
128
129 uint16_t ocv_reading_at_100;
130 int cc_reading_at_100;
131 int max_voltage_uv;
132 int batt_temp_suspend;
133 int soc_rbatt_suspend;
134 int default_rbatt_mohm;
135 unsigned int rconn_mohm;
136 int amux_2_trim_delta;
137 uint16_t prev_last_good_ocv_raw;
138 int usb_chg_plugged_ready;
139};
140
141static struct pm8921_bms_chip *the_chip;
142
143struct pm8921_bms_debug {
144 int rbatt;
145 int rbatt_sf;
146 int voltage_unusable_uv;
147 int pc_unusable;
148 int rc_pc;
149 int scalefactor;
150 int batt_temp;
151 int soc_rbatt;
152};
153static struct pm8921_bms_debug bms_dbg;
154
155#define DEFAULT_RBATT_MOHMS 128
156#define DEFAULT_OCV_MICROVOLTS 3900000
157#define DEFAULT_CHARGE_CYCLES 0
158
159static int last_usb_cal_delta_uv = 1800;
160module_param(last_usb_cal_delta_uv, int, 0644);
161
162static int last_chargecycles = DEFAULT_CHARGE_CYCLES;
163static int last_charge_increase;
164module_param(last_chargecycles, int, 0644);
165module_param(last_charge_increase, int, 0644);
166
167static int last_rbatt = -EINVAL;
168static int last_ocv_uv = -EINVAL;
169static int last_soc = -EINVAL;
170static int last_real_fcc_mah = -EINVAL;
171static int last_real_fcc_batt_temp = -EINVAL;
172
173static int bms_ops_set(const char *val, const struct kernel_param *kp)
174{
175 if (*(int *)kp->arg == -EINVAL)
176 return param_set_int(val, kp);
177 else
178 return 0;
179}
180
181static struct kernel_param_ops bms_param_ops = {
182 .set = bms_ops_set,
183 .get = param_get_int,
184};
185
186module_param_cb(last_rbatt, &bms_param_ops, &last_rbatt, 0644);
187module_param_cb(last_ocv_uv, &bms_param_ops, &last_ocv_uv, 0644);
188module_param_cb(last_soc, &bms_param_ops, &last_soc, 0644);
189
190static int bms_fake_battery = -EINVAL;
191module_param(bms_fake_battery, int, 0644);
192
193static int bms_start_percent;
194static int bms_start_ocv_uv;
195static int bms_start_cc_uah;
196static int bms_end_percent;
197static int bms_end_ocv_uv;
198static int bms_end_cc_uah;
199static int bms_discharge_percent;
200static int is_ocv_update_start;
201
202static int bms_ro_ops_set(const char *val, const struct kernel_param *kp)
203{
204 return -EINVAL;
205}
206
207static struct kernel_param_ops bms_ro_param_ops = {
208 .set = bms_ro_ops_set,
209 .get = param_get_int,
210};
211module_param_cb(bms_start_percent, &bms_ro_param_ops, &bms_start_percent, 0644);
212module_param_cb(bms_start_ocv_uv, &bms_ro_param_ops, &bms_start_ocv_uv, 0644);
213module_param_cb(bms_start_cc_uah, &bms_ro_param_ops, &bms_start_cc_uah, 0644);
214
215module_param_cb(bms_end_percent, &bms_ro_param_ops, &bms_end_percent, 0644);
216module_param_cb(bms_end_ocv_uv, &bms_ro_param_ops, &bms_end_ocv_uv, 0644);
217module_param_cb(bms_end_cc_uah, &bms_ro_param_ops, &bms_end_cc_uah, 0644);
218
219static int dump_cc_uah(void);
220
221static int interpolate_fcc(struct pm8921_bms_chip *chip, int batt_temp);
222static void readjust_fcc_table(void)
223{
224 struct single_row_lut *temp, *old;
225 int i, fcc, ratio;
226
227 if (!the_chip->fcc_temp_lut) {
228 pr_err("The static fcc lut table is NULL\n");
229 return;
230 }
231
232 temp = kzalloc(sizeof(struct single_row_lut), GFP_KERNEL);
233 if (!temp) {
234 pr_err("Cannot allocate memory for adjusted fcc table\n");
235 return;
236 }
237
238 fcc = interpolate_fcc(the_chip, last_real_fcc_batt_temp);
239
240 temp->cols = the_chip->fcc_temp_lut->cols;
241 for (i = 0; i < the_chip->fcc_temp_lut->cols; i++) {
242 temp->x[i] = the_chip->fcc_temp_lut->x[i];
243 ratio = div_u64(the_chip->fcc_temp_lut->y[i] * 1000, fcc);
244 temp->y[i] = (ratio * last_real_fcc_mah);
245 temp->y[i] /= 1000;
246 pr_debug("temp=%d, staticfcc=%d, adjfcc=%d, ratio=%d\n",
247 temp->x[i], the_chip->fcc_temp_lut->y[i],
248 temp->y[i], ratio);
249 }
250
251 old = the_chip->adjusted_fcc_temp_lut;
252 the_chip->adjusted_fcc_temp_lut = temp;
253 kfree(old);
254}
255
256static int bms_last_real_fcc_set(const char *val,
257 const struct kernel_param *kp)
258{
259 int rc = 0;
260
261 if (last_real_fcc_mah == -EINVAL)
262 rc = param_set_int(val, kp);
263 if (rc) {
264 pr_err("Failed to set last_real_fcc_mah rc=%d\n", rc);
265 return rc;
266 }
267 if (last_real_fcc_batt_temp != -EINVAL)
268 readjust_fcc_table();
269 return rc;
270}
271static struct kernel_param_ops bms_last_real_fcc_param_ops = {
272 .set = bms_last_real_fcc_set,
273 .get = param_get_int,
274};
275module_param_cb(last_real_fcc_mah, &bms_last_real_fcc_param_ops,
276 &last_real_fcc_mah, 0644);
277
278static int bms_last_real_fcc_batt_temp_set(const char *val,
279 const struct kernel_param *kp)
280{
281 int rc = 0;
282
283 if (last_real_fcc_batt_temp == -EINVAL)
284 rc = param_set_int(val, kp);
285 if (rc) {
286 pr_err("Failed to set last_real_fcc_batt_temp rc=%d\n", rc);
287 return rc;
288 }
289 if (last_real_fcc_mah != -EINVAL)
290 readjust_fcc_table();
291 return rc;
292}
293
294static struct kernel_param_ops bms_last_real_fcc_batt_temp_param_ops = {
295 .set = bms_last_real_fcc_batt_temp_set,
296 .get = param_get_int,
297};
298module_param_cb(last_real_fcc_batt_temp, &bms_last_real_fcc_batt_temp_param_ops,
299 &last_real_fcc_batt_temp, 0644);
300
301static int pm_bms_get_rt_status(struct pm8921_bms_chip *chip, int irq_id)
302{
303 return pm8xxx_read_irq_stat(chip->dev->parent,
304 chip->pmic_bms_irq[irq_id]);
305}
306
307static void pm8921_bms_enable_irq(struct pm8921_bms_chip *chip, int interrupt)
308{
309 if (!__test_and_set_bit(interrupt, chip->enabled_irqs)) {
310 dev_dbg(chip->dev, "%s %d\n", __func__,
311 chip->pmic_bms_irq[interrupt]);
312 enable_irq(chip->pmic_bms_irq[interrupt]);
313 }
314}
315
316static void pm8921_bms_disable_irq(struct pm8921_bms_chip *chip, int interrupt)
317{
318 if (__test_and_clear_bit(interrupt, chip->enabled_irqs)) {
319 pr_debug("%d\n", chip->pmic_bms_irq[interrupt]);
320 disable_irq_nosync(chip->pmic_bms_irq[interrupt]);
321 }
322}
323
324static int pm_bms_masked_write(struct pm8921_bms_chip *chip, u16 addr,
325 u8 mask, u8 val)
326{
327 int rc;
328 u8 reg;
329
330 rc = pm8xxx_readb(chip->dev->parent, addr, &reg);
331 if (rc) {
332 pr_err("read failed addr = %03X, rc = %d\n", addr, rc);
333 return rc;
334 }
335 reg &= ~mask;
336 reg |= val & mask;
337 rc = pm8xxx_writeb(chip->dev->parent, addr, reg);
338 if (rc) {
339 pr_err("write failed addr = %03X, rc = %d\n", addr, rc);
340 return rc;
341 }
342 return 0;
343}
344
345static int usb_chg_plugged_in(void)
346{
347#if 0
348 union power_supply_propval ret = {0,};
349 static struct power_supply *psy;
350 if (psy == NULL) {
351 psy = power_supply_get_by_name("usb");
352 if (psy == NULL)
353 return 0;
354 }
355
356 if (psy->get_property(psy, POWER_SUPPLY_PROP_ONLINE, &ret))
357 return 0;
358 return ret.intval;
359#endif
360 int rc = pm8921_is_usb_chg_plugged_in();
361 if (rc < 0) {
362 return 0;
363 }
364 the_chip->usb_chg_plugged_ready = 1;
365 return rc;
366}
367
368#define HOLD_OREG_DATA BIT(1)
369static int pm_bms_lock_output_data(struct pm8921_bms_chip *chip)
370{
371 int rc;
372
373 rc = pm_bms_masked_write(chip, BMS_CONTROL, HOLD_OREG_DATA,
374 HOLD_OREG_DATA);
375 if (rc) {
376 pr_err("couldnt lock bms output rc = %d\n", rc);
377 return rc;
378 }
379 return 0;
380}
381
382static int pm_bms_unlock_output_data(struct pm8921_bms_chip *chip)
383{
384 int rc;
385
386 rc = pm_bms_masked_write(chip, BMS_CONTROL, HOLD_OREG_DATA, 0);
387 if (rc) {
388 pr_err("fail to unlock BMS_CONTROL rc = %d\n", rc);
389 return rc;
390 }
391 return 0;
392}
393
394#define SELECT_OUTPUT_DATA 0x1C
395#define SELECT_OUTPUT_TYPE_SHIFT 2
396#define OCV_FOR_RBATT 0x0
397#define VSENSE_FOR_RBATT 0x1
398#define VBATT_FOR_RBATT 0x2
399#define CC_MSB 0x3
400#define CC_LSB 0x4
401#define LAST_GOOD_OCV_VALUE 0x5
402#define VSENSE_AVG 0x6
403#define VBATT_AVG 0x7
404
405static int pm_bms_read_output_data(struct pm8921_bms_chip *chip, int type,
406 int16_t *result)
407{
408 int rc;
409 u8 reg;
410
411 if (!result) {
412 pr_err("result pointer null\n");
413 return -EINVAL;
414 }
415 *result = 0;
416 if (type < OCV_FOR_RBATT || type > VBATT_AVG) {
417 pr_err("invalid type %d asked to read\n", type);
418 return -EINVAL;
419 }
420
421 rc = pm_bms_masked_write(chip, BMS_CONTROL, SELECT_OUTPUT_DATA,
422 type << SELECT_OUTPUT_TYPE_SHIFT);
423 if (rc) {
424 pr_err("fail to select %d type in BMS_CONTROL rc = %d\n",
425 type, rc);
426 return rc;
427 }
428
429 rc = pm8xxx_readb(chip->dev->parent, BMS_OUTPUT0, &reg);
430 if (rc) {
431 pr_err("fail to read BMS_OUTPUT0 for type %d rc = %d\n",
432 type, rc);
433 return rc;
434 }
435 *result = reg;
436 rc = pm8xxx_readb(chip->dev->parent, BMS_OUTPUT1, &reg);
437 if (rc) {
438 pr_err("fail to read BMS_OUTPUT1 for type %d rc = %d\n",
439 type, rc);
440 return rc;
441 }
442 *result |= reg << 8;
443 pr_debug("type %d result %x", type, *result);
444 return 0;
445}
446
447#define V_PER_BIT_MUL_FACTOR 97656
448#define V_PER_BIT_DIV_FACTOR 1000
449#define XOADC_INTRINSIC_OFFSET 0x6000
450static int xoadc_reading_to_microvolt(unsigned int a)
451{
452 if (a <= XOADC_INTRINSIC_OFFSET)
453 return 0;
454
455 return (a - XOADC_INTRINSIC_OFFSET)
456 * V_PER_BIT_MUL_FACTOR / V_PER_BIT_DIV_FACTOR;
457}
458
459#define XOADC_CALIB_UV 625000
460#define VBATT_MUL_FACTOR 3
461static int adjust_xo_vbatt_reading(struct pm8921_bms_chip *chip,
462 int usb_chg, unsigned int uv)
463{
464 s64 numerator, denominator;
465 int local_delta;
466
467 if (uv == 0)
468 return 0;
469
470
471 if (chip->xoadc_v0625 == 0 || chip->xoadc_v125 == 0) {
472 pr_debug("No cal yet return %d\n", VBATT_MUL_FACTOR * uv);
473 return VBATT_MUL_FACTOR * uv;
474 }
475
476 if (usb_chg)
477 local_delta = last_usb_cal_delta_uv;
478 else
479 local_delta = 0;
480
481 pr_debug("using delta = %d\n", local_delta);
482 numerator = ((s64)uv - chip->xoadc_v0625 - local_delta)
483 * XOADC_CALIB_UV;
484 denominator = (s64)chip->xoadc_v125 - chip->xoadc_v0625 - local_delta;
485 if (denominator == 0)
486 return uv * VBATT_MUL_FACTOR;
487 return (XOADC_CALIB_UV + local_delta + div_s64(numerator, denominator))
488 * VBATT_MUL_FACTOR;
489}
490
491#define CC_RESOLUTION_N_V1 1085069
492#define CC_RESOLUTION_D_V1 100000
493#define CC_RESOLUTION_N_V2 868056
494#define CC_RESOLUTION_D_V2 10000
495
496static s64 cc_to_microvolt_v1(s64 cc)
497{
498 return div_s64(cc * CC_RESOLUTION_N_V1, CC_RESOLUTION_D_V1);
499}
500
501static s64 cc_to_microvolt_v2(s64 cc)
502{
503 return div_s64(cc * CC_RESOLUTION_N_V2, CC_RESOLUTION_D_V2);
504}
505
506static s64 cc_to_microvolt(struct pm8921_bms_chip *chip, s64 cc)
507{
508 return (chip->revision < PM8XXX_REVISION_8921_2p0) ?
509 cc_to_microvolt_v1((s64)cc) :
510 cc_to_microvolt_v2((s64)cc);
511}
512
513#define CC_READING_TICKS 56
514#define SLEEP_CLK_HZ 32764
515#define SECONDS_PER_HOUR 3600
516static s64 ccmicrovolt_to_nvh(s64 cc_uv)
517{
518 return div_s64(cc_uv * CC_READING_TICKS * 1000,
519 SLEEP_CLK_HZ * SECONDS_PER_HOUR);
520}
521
522static int read_cc(struct pm8921_bms_chip *chip, int *result)
523{
524 int rc;
525 uint16_t msw, lsw;
526
527 rc = pm_bms_read_output_data(chip, CC_LSB, &lsw);
528 if (rc) {
529 pr_err("fail to read CC_LSB rc = %d\n", rc);
530 return rc;
531 }
532 rc = pm_bms_read_output_data(chip, CC_MSB, &msw);
533 if (rc) {
534 pr_err("fail to read CC_MSB rc = %d\n", rc);
535 return rc;
536 }
537 *result = msw << 16 | lsw;
538 pr_debug("msw = %04x lsw = %04x cc = %d\n", msw, lsw, *result);
539 return 0;
540}
541
542static int adjust_xo_vbatt_reading_for_mbg(struct pm8921_bms_chip *chip,
543 int result)
544{
545 int64_t numerator;
546 int64_t denominator;
547
548 if (chip->amux_2_trim_delta == 0)
549 return result;
550
551 numerator = (s64)result * 1000000;
552 denominator = (1000000 + (410 * (s64)chip->amux_2_trim_delta));
553 return div_s64(numerator, denominator);
554}
555
556static int convert_vbatt_raw_to_uv(struct pm8921_bms_chip *chip,
557 int usb_chg,
558 uint16_t reading, int *result)
559{
560 *result = xoadc_reading_to_microvolt(reading);
561 pr_debug("raw = %04x vbatt = %u\n", reading, *result);
562 *result = adjust_xo_vbatt_reading(chip, usb_chg, *result);
563 pr_debug("after adj vbatt = %u\n", *result);
564 *result = adjust_xo_vbatt_reading_for_mbg(chip, *result);
565 pr_debug("after mbg adj vbatt = %u\n", *result);
566 return 0;
567}
568
569static int convert_vsense_to_uv(struct pm8921_bms_chip *chip,
570 int16_t reading, int *result)
571{
572 *result = pm8xxx_ccadc_reading_to_microvolt(chip->revision, reading);
573 pr_debug("raw = %04x vsense = %d\n", reading, *result);
574 *result = pm8xxx_cc_adjust_for_gain(*result);
575 pr_debug("after adj vsense = %d\n", *result);
576 return 0;
577}
578
579static int read_vsense_avg(struct pm8921_bms_chip *chip, int *result)
580{
581 int rc;
582 int16_t reading;
583
584 rc = pm_bms_read_output_data(chip, VSENSE_AVG, &reading);
585 if (rc) {
586 pr_err("fail to read VSENSE_AVG rc = %d\n", rc);
587 return rc;
588 }
589
590 convert_vsense_to_uv(chip, reading, result);
591 return 0;
592}
593
594static int linear_interpolate(int y0, int x0, int y1, int x1, int x)
595{
596 if (y0 == y1 || x == x0)
597 return y0;
598 if (x1 == x0 || x == x1)
599 return y1;
600
601 return y0 + ((y1 - y0) * (x - x0) / (x1 - x0));
602}
603
604static int interpolate_single_lut(struct single_row_lut *lut, int x)
605{
606 int i, result;
607
608 if (x < lut->x[0]) {
609 pr_debug("x %d less than known range return y = %d lut = %pS\n",
610 x, lut->y[0], lut);
611 return lut->y[0];
612 }
613 if (x > lut->x[lut->cols - 1]) {
614 pr_debug("x %d more than known range return y = %d lut = %pS\n",
615 x, lut->y[lut->cols - 1], lut);
616 return lut->y[lut->cols - 1];
617 }
618
619 for (i = 0; i < lut->cols; i++)
620 if (x <= lut->x[i])
621 break;
622 if (x == lut->x[i]) {
623 result = lut->y[i];
624 } else {
625 result = linear_interpolate(
626 lut->y[i - 1],
627 lut->x[i - 1],
628 lut->y[i],
629 lut->x[i],
630 x);
631 }
632 return result;
633}
634
635static int interpolate_fcc(struct pm8921_bms_chip *chip, int batt_temp)
636{
637
638 batt_temp = batt_temp/10;
639 return interpolate_single_lut(chip->fcc_temp_lut, batt_temp);
640}
641
642static int interpolate_fcc_adjusted(struct pm8921_bms_chip *chip, int batt_temp)
643{
644
645 batt_temp = batt_temp/10;
646 return interpolate_single_lut(chip->adjusted_fcc_temp_lut, batt_temp);
647}
648
649static int interpolate_scalingfactor_fcc(struct pm8921_bms_chip *chip,
650 int cycles)
651{
652 if (chip->fcc_sf_lut)
653 return interpolate_single_lut(chip->fcc_sf_lut, cycles);
654 else
655 return 100;
656}
657
658static int interpolate_scalingfactor(struct pm8921_bms_chip *chip,
659 struct sf_lut *sf_lut,
660 int row_entry, int pc)
661{
662 int i, scalefactorrow1, scalefactorrow2, scalefactor;
663 int rows, cols;
664 int row1 = 0;
665 int row2 = 0;
666
667 if (!sf_lut)
668 return 100;
669
670 rows = sf_lut->rows;
671 cols = sf_lut->cols;
672 if (pc > sf_lut->percent[0]) {
673 pr_debug("pc %d greater than known pc ranges for sfd\n", pc);
674 row1 = 0;
675 row2 = 0;
676 }
677 if (pc < sf_lut->percent[rows - 1]) {
678 pr_debug("pc %d less than known pc ranges for sf", pc);
679 row1 = rows - 1;
680 row2 = rows - 1;
681 }
682 for (i = 0; i < rows; i++) {
683 if (pc == sf_lut->percent[i]) {
684 row1 = i;
685 row2 = i;
686 break;
687 }
688 if (pc > sf_lut->percent[i]) {
689 row1 = i - 1;
690 row2 = i;
691 break;
692 }
693 }
694
695 if (row_entry < sf_lut->row_entries[0])
696 row_entry = sf_lut->row_entries[0];
697 if (row_entry > sf_lut->row_entries[cols - 1])
698 row_entry = sf_lut->row_entries[cols - 1];
699
700 for (i = 0; i < cols; i++)
701 if (row_entry <= sf_lut->row_entries[i])
702 break;
703 if (row_entry == sf_lut->row_entries[i]) {
704 scalefactor = linear_interpolate(
705 sf_lut->sf[row1][i],
706 sf_lut->percent[row1],
707 sf_lut->sf[row2][i],
708 sf_lut->percent[row2],
709 pc);
710 return scalefactor;
711 }
712
713 scalefactorrow1 = linear_interpolate(
714 sf_lut->sf[row1][i - 1],
715 sf_lut->row_entries[i - 1],
716 sf_lut->sf[row1][i],
717 sf_lut->row_entries[i],
718 row_entry);
719
720 scalefactorrow2 = linear_interpolate(
721 sf_lut->sf[row2][i - 1],
722 sf_lut->row_entries[i - 1],
723 sf_lut->sf[row2][i],
724 sf_lut->row_entries[i],
725 row_entry);
726
727 scalefactor = linear_interpolate(
728 scalefactorrow1,
729 sf_lut->percent[row1],
730 scalefactorrow2,
731 sf_lut->percent[row2],
732 pc);
733
734 return scalefactor;
735}
736
737static int is_between(int left, int right, int value)
738{
739 if (left >= right && left >= value && value >= right)
740 return 1;
741 if (left <= right && left <= value && value <= right)
742 return 1;
743
744 return 0;
745}
746
747static int interpolate_pc(struct pm8921_bms_chip *chip,
748 int batt_temp, int ocv)
749{
750 int i, j, pcj, pcj_minus_one, pc;
751 int rows = chip->pc_temp_ocv_lut->rows;
752 int cols = chip->pc_temp_ocv_lut->cols;
753
754
755 batt_temp = batt_temp/10;
756
757 if (batt_temp < chip->pc_temp_ocv_lut->temp[0]) {
758 pr_debug("batt_temp %d < known temp range for pc\n", batt_temp);
759 batt_temp = chip->pc_temp_ocv_lut->temp[0];
760 }
761 if (batt_temp > chip->pc_temp_ocv_lut->temp[cols - 1]) {
762 pr_debug("batt_temp %d > known temp range for pc\n", batt_temp);
763 batt_temp = chip->pc_temp_ocv_lut->temp[cols - 1];
764 }
765
766 for (j = 0; j < cols; j++)
767 if (batt_temp <= chip->pc_temp_ocv_lut->temp[j])
768 break;
769 if (batt_temp == chip->pc_temp_ocv_lut->temp[j]) {
770
771 if (ocv >= chip->pc_temp_ocv_lut->ocv[0][j])
772 return chip->pc_temp_ocv_lut->percent[0];
773 if (ocv <= chip->pc_temp_ocv_lut->ocv[rows - 1][j])
774 return chip->pc_temp_ocv_lut->percent[rows - 1];
775 for (i = 0; i < rows; i++) {
776 if (ocv >= chip->pc_temp_ocv_lut->ocv[i][j]) {
777 if (ocv == chip->pc_temp_ocv_lut->ocv[i][j])
778 return
779 chip->pc_temp_ocv_lut->percent[i];
780 pc = linear_interpolate(
781 chip->pc_temp_ocv_lut->percent[i],
782 chip->pc_temp_ocv_lut->ocv[i][j],
783 chip->pc_temp_ocv_lut->percent[i - 1],
784 chip->pc_temp_ocv_lut->ocv[i - 1][j],
785 ocv);
786 return pc;
787 }
788 }
789 }
790
791 if (ocv >= chip->pc_temp_ocv_lut->ocv[0][j])
792 return chip->pc_temp_ocv_lut->percent[0];
793 if (ocv <= chip->pc_temp_ocv_lut->ocv[rows - 1][j - 1])
794 return chip->pc_temp_ocv_lut->percent[rows - 1];
795
796 pcj_minus_one = 0;
797 pcj = 0;
798 for (i = 0; i < rows-1; i++) {
799 if (pcj == 0
800 && is_between(chip->pc_temp_ocv_lut->ocv[i][j],
801 chip->pc_temp_ocv_lut->ocv[i+1][j], ocv)) {
802 pcj = linear_interpolate(
803 chip->pc_temp_ocv_lut->percent[i],
804 chip->pc_temp_ocv_lut->ocv[i][j],
805 chip->pc_temp_ocv_lut->percent[i + 1],
806 chip->pc_temp_ocv_lut->ocv[i+1][j],
807 ocv);
808 }
809
810 if (pcj_minus_one == 0
811 && is_between(chip->pc_temp_ocv_lut->ocv[i][j-1],
812 chip->pc_temp_ocv_lut->ocv[i+1][j-1], ocv)) {
813
814 pcj_minus_one = linear_interpolate(
815 chip->pc_temp_ocv_lut->percent[i],
816 chip->pc_temp_ocv_lut->ocv[i][j-1],
817 chip->pc_temp_ocv_lut->percent[i + 1],
818 chip->pc_temp_ocv_lut->ocv[i+1][j-1],
819 ocv);
820 }
821
822 if (pcj && pcj_minus_one) {
823 pc = linear_interpolate(
824 pcj_minus_one,
825 chip->pc_temp_ocv_lut->temp[j-1],
826 pcj,
827 chip->pc_temp_ocv_lut->temp[j],
828 batt_temp);
829 return pc;
830 }
831 }
832
833 if (pcj)
834 return pcj;
835
836 if (pcj_minus_one)
837 return pcj_minus_one;
838
839 pr_debug("%d ocv wasn't found for temp %d in the LUT returning 100%%",
840 ocv, batt_temp);
841 return 100;
842}
843
844#define BMS_MODE_BIT BIT(6)
845#define EN_VBAT_BIT BIT(5)
846#define OVERRIDE_MODE_DELAY_MS 20
847int pm8921_bms_get_simultaneous_battery_voltage_and_current(int *ibat_ua,
848 int *vbat_uv)
849{
850 int16_t vsense_raw;
851 int16_t vbat_raw;
852 int vsense_uv, usb_chg;
853
854 if (the_chip == NULL) {
855 pr_err("Called to early\n");
856 return -EINVAL;
857 }
858
859 mutex_lock(&the_chip->bms_output_lock);
860
861 pm8xxx_writeb(the_chip->dev->parent, BMS_S1_DELAY, 0x00);
862 pm_bms_masked_write(the_chip, BMS_CONTROL,
863 BMS_MODE_BIT | EN_VBAT_BIT, BMS_MODE_BIT | EN_VBAT_BIT);
864
865 msleep(OVERRIDE_MODE_DELAY_MS);
866
867 pm_bms_lock_output_data(the_chip);
868 pm_bms_read_output_data(the_chip, VSENSE_AVG, &vsense_raw);
869 pm_bms_read_output_data(the_chip, VBATT_AVG, &vbat_raw);
870 pm_bms_unlock_output_data(the_chip);
871 pm_bms_masked_write(the_chip, BMS_CONTROL,
872 BMS_MODE_BIT | EN_VBAT_BIT, 0);
873
874 pm8xxx_writeb(the_chip->dev->parent, BMS_S1_DELAY, 0x0B);
875
876 mutex_unlock(&the_chip->bms_output_lock);
877
878 usb_chg = usb_chg_plugged_in();
879 convert_vbatt_raw_to_uv(the_chip, usb_chg, vbat_raw, vbat_uv);
880 convert_vsense_to_uv(the_chip, vsense_raw, &vsense_uv);
881 *ibat_ua = vsense_uv * 1000 / (int)the_chip->r_sense;
882
883 pr_debug("vsense_raw = 0x%x vbat_raw = 0x%x"
884 " ibat_ua = %d vbat_uv = %d\n",
885 (uint16_t)vsense_raw, (uint16_t)vbat_raw,
886 *ibat_ua, *vbat_uv);
887 return 0;
888}
889EXPORT_SYMBOL(pm8921_bms_get_simultaneous_battery_voltage_and_current);
890
891static int read_rbatt_params_raw(struct pm8921_bms_chip *chip,
892 struct pm8921_rbatt_params *raw)
893{
894 int usb_chg;
895
896 mutex_lock(&chip->bms_output_lock);
897 pm_bms_lock_output_data(chip);
898
899 pm_bms_read_output_data(chip,
900 OCV_FOR_RBATT, &raw->ocv_for_rbatt_raw);
901 pm_bms_read_output_data(chip,
902 VBATT_FOR_RBATT, &raw->vbatt_for_rbatt_raw);
903 pm_bms_read_output_data(chip,
904 VSENSE_FOR_RBATT, &raw->vsense_for_rbatt_raw);
905
906 pm_bms_unlock_output_data(chip);
907 mutex_unlock(&chip->bms_output_lock);
908
909 usb_chg = usb_chg_plugged_in();
910 convert_vbatt_raw_to_uv(chip, usb_chg,
911 raw->vbatt_for_rbatt_raw, &raw->vbatt_for_rbatt_uv);
912 convert_vbatt_raw_to_uv(chip, usb_chg,
913 raw->ocv_for_rbatt_raw, &raw->ocv_for_rbatt_uv);
914 convert_vsense_to_uv(chip,
915 raw->vsense_for_rbatt_raw, &raw->vsense_for_rbatt_uv);
916
917 pr_debug("vbatt_for_rbatt_raw = 0x%x, vbatt_for_rbatt= %duV\n",
918 raw->vbatt_for_rbatt_raw, raw->vbatt_for_rbatt_uv);
919 pr_debug("ocv_for_rbatt_raw = 0x%x, ocv_for_rbatt= %duV\n",
920 raw->ocv_for_rbatt_raw, raw->ocv_for_rbatt_uv);
921 pr_debug("vsense_for_rbatt_raw = 0x%x, vsense_for_rbatt= %duV\n",
922 raw->vsense_for_rbatt_raw, raw->vsense_for_rbatt_uv);
923 return 0;
924}
925
926#define MBG_TRANSIENT_ERROR_RAW 51
927static void adjust_pon_ocv_raw(struct pm8921_bms_chip *chip,
928 struct pm8921_soc_params *raw)
929{
930 if (raw->last_good_ocv_raw >= MBG_TRANSIENT_ERROR_RAW)
931 raw->last_good_ocv_raw -= MBG_TRANSIENT_ERROR_RAW;
932}
933
934static int read_soc_params_raw(struct pm8921_bms_chip *chip,
935 struct pm8921_soc_params *raw)
936{
937 int usb_chg, rc;
938 uint16_t last_good_ocv_raw_ori = 0;
939 int last_good_ocv_uv_ori_uv = 0;
940 u8 ocv_updated_flag = 0;
941
942 rc = pm8xxx_readb(chip->dev->parent, OCV_UPDATE_STORAGE, &ocv_updated_flag);
943 if (rc) {
944 pr_err("%s: failed to read addr = %d, rc=%d\n",
945 __func__, OCV_UPDATE_STORAGE, rc);
946 } else {
947 ocv_updated_flag &= OCV_UPDATE_STORAGE_USE_MASK;
948 pr_debug("%s: OCV_UPDATE_STORAGE = 0x%x\n", __func__, ocv_updated_flag);
949 }
950
951 mutex_lock(&chip->bms_output_lock);
952 pm_bms_lock_output_data(chip);
953
954 pm_bms_read_output_data(chip,
955 LAST_GOOD_OCV_VALUE, &raw->last_good_ocv_raw);
956 read_cc(chip, &raw->cc);
957
958 pm_bms_unlock_output_data(chip);
959 mutex_unlock(&chip->bms_output_lock);
960
961 usb_chg = usb_chg_plugged_in();
962 pr_debug("%s: usb_chg=%d, usb_chg_plugged_ready=%d,"
963 "prev_last_good_ocv_raw=0x%x, last_good_ocv_raw=0x%x\n",
964 __func__, usb_chg, chip->usb_chg_plugged_ready,
965 chip->prev_last_good_ocv_raw, raw->last_good_ocv_raw);
966 if (chip->prev_last_good_ocv_raw == 0) {
967 if (chip->usb_chg_plugged_ready == 1)
968 chip->prev_last_good_ocv_raw = raw->last_good_ocv_raw;
969 last_good_ocv_raw_ori = raw->last_good_ocv_raw;
970 if (!ocv_updated_flag)
971 adjust_pon_ocv_raw(chip, raw);
972 else
973 pr_info("%s: Skip adjust_pon_ocv_raw due to ocv_updated_flag=0x%x\n",
974 __func__, ocv_updated_flag);
975 convert_vbatt_raw_to_uv(chip, usb_chg,
976 raw->last_good_ocv_raw, &raw->last_good_ocv_uv);
977 convert_vbatt_raw_to_uv(chip, usb_chg,
978 last_good_ocv_raw_ori, &last_good_ocv_uv_ori_uv);
979 last_ocv_uv = raw->last_good_ocv_uv;
980 pr_info("%s: last_good_ocv_raw/ori=0x%x/0x%x, last_good_ocv_uv/ori=%duV/%duV\n",
981 __func__, raw->last_good_ocv_raw, last_good_ocv_raw_ori,
982 raw->last_good_ocv_uv, last_good_ocv_uv_ori_uv);
983 } else if (chip->prev_last_good_ocv_raw != raw->last_good_ocv_raw) {
984 chip->prev_last_good_ocv_raw = raw->last_good_ocv_raw;
985 convert_vbatt_raw_to_uv(chip, usb_chg,
986 raw->last_good_ocv_raw, &raw->last_good_ocv_uv);
987 last_ocv_uv = raw->last_good_ocv_uv;
988 pm_bms_masked_write(chip, OCV_UPDATE_STORAGE,
989 OCV_UPDATE_STORAGE_USE_MASK, 0x1);
990 rc = pm8xxx_readb(chip->dev->parent, OCV_UPDATE_STORAGE, &ocv_updated_flag);
991 if (rc) {
992 pr_err("%s: failed to read addr = %d, rc=%d\n",
993 __func__, OCV_UPDATE_STORAGE, rc);
994 } else {
995 ocv_updated_flag &= OCV_UPDATE_STORAGE_USE_MASK;
996 }
997 pr_info("%s: last_good_ocv_raw/uv=0x%x/%duV, ocv_updated_flag=0x%x\n",
998 __func__, raw->last_good_ocv_raw, raw->last_good_ocv_uv,
999 ocv_updated_flag);
1000 } else {
1001 raw->last_good_ocv_uv = last_ocv_uv;
1002 }
1003
1004 pr_debug("0p625 = %duV\n", chip->xoadc_v0625);
1005 pr_debug("1p25 = %duV\n", chip->xoadc_v125);
1006 pr_debug("last_good_ocv_raw= 0x%x, last_good_ocv_uv= %duV\n",
1007 raw->last_good_ocv_raw, raw->last_good_ocv_uv);
1008 pr_debug("cc_raw= 0x%x\n", raw->cc);
1009 return 0;
1010}
1011
1012static int get_rbatt(struct pm8921_bms_chip *chip, int soc_rbatt, int batt_temp)
1013{
1014 int rbatt, scalefactor;
1015
1016 rbatt = (last_rbatt < 0) ? chip->default_rbatt_mohm : last_rbatt;
1017 pr_debug("rbatt before scaling = %d\n", rbatt);
1018 if (chip->rbatt_sf_lut == NULL) {
1019 pr_debug("RBATT = %d\n", rbatt);
1020 return rbatt;
1021 }
1022
1023
1024 batt_temp = batt_temp / 10;
1025 scalefactor = interpolate_scalingfactor(chip, chip->rbatt_sf_lut,
1026 batt_temp, soc_rbatt);
1027 bms_dbg.rbatt_sf = scalefactor;
1028 bms_dbg.soc_rbatt = soc_rbatt;
1029 pr_debug("rbatt sf = %d for batt_temp = %d, soc_rbatt = %d\n",
1030 scalefactor, batt_temp, soc_rbatt);
1031 rbatt = (rbatt * scalefactor) / 100;
1032
1033 rbatt += the_chip->rconn_mohm;
1034 pr_debug("adding rconn_mohm = %d rbatt = %d\n",
1035 the_chip->rconn_mohm, rbatt);
1036
1037 if (is_between(20, 10, soc_rbatt))
1038 rbatt = rbatt
1039 + ((20 - soc_rbatt) * chip->delta_rbatt_mohm) / 10;
1040 else
1041 if (is_between(10, 0, soc_rbatt))
1042 rbatt = rbatt + chip->delta_rbatt_mohm;
1043
1044 pr_debug("RBATT = %d\n", rbatt);
1045 return rbatt;
1046}
1047
1048static int calculate_rbatt_resume(struct pm8921_bms_chip *chip,
1049 struct pm8921_rbatt_params *raw)
1050{
1051 unsigned int r_batt;
1052
1053 if (raw->ocv_for_rbatt_uv <= 0
1054 || raw->ocv_for_rbatt_uv <= raw->vbatt_for_rbatt_uv
1055 || raw->vsense_for_rbatt_raw <= 0) {
1056 pr_debug("rbatt readings unavailable ocv = %d, vbatt = %d,"
1057 "vsen = %d\n",
1058 raw->ocv_for_rbatt_uv,
1059 raw->vbatt_for_rbatt_uv,
1060 raw->vsense_for_rbatt_raw);
1061 return -EINVAL;
1062 }
1063 r_batt = ((raw->ocv_for_rbatt_uv - raw->vbatt_for_rbatt_uv)
1064 * chip->r_sense) / raw->vsense_for_rbatt_uv;
1065 pr_debug("r_batt = %umilliOhms", r_batt);
1066 return r_batt;
1067}
1068
1069static int calculate_fcc_uah(struct pm8921_bms_chip *chip, int batt_temp,
1070 int chargecycles)
1071{
1072 int initfcc, result, scalefactor = 0;
1073
1074 if (chip->adjusted_fcc_temp_lut == NULL) {
1075 initfcc = interpolate_fcc(chip, batt_temp);
1076
1077 scalefactor = interpolate_scalingfactor_fcc(chip, chargecycles);
1078
1079
1080 result = (initfcc * scalefactor * 1000) / 100;
1081 pr_debug("fcc = %d uAh\n", result);
1082 return result;
1083 } else {
1084 return 1000 * interpolate_fcc_adjusted(chip, batt_temp);
1085 }
1086}
1087
1088static int get_battery_uvolts(struct pm8921_bms_chip *chip, int *uvolts)
1089{
1090 int rc;
1091 struct pm8xxx_adc_chan_result result;
1092
1093 rc = pm8xxx_adc_read(chip->vbat_channel, &result);
1094 if (rc) {
1095 pr_err("error reading adc channel = %d, rc = %d\n",
1096 chip->vbat_channel, rc);
1097 return rc;
1098 }
1099 pr_debug("mvolts phy = %lld meas = 0x%llx", result.physical,
1100 result.measurement);
1101 *uvolts = (int)result.physical;
1102 return 0;
1103}
1104
1105static int adc_based_ocv(struct pm8921_bms_chip *chip, int *ocv)
1106{
1107 int vbatt, rbatt, ibatt_ua, rc;
1108
1109 rc = get_battery_uvolts(chip, &vbatt);
1110 if (rc) {
1111 pr_err("failed to read vbatt from adc rc = %d\n", rc);
1112 return rc;
1113 }
1114
1115 rc = pm8921_bms_get_battery_current(&ibatt_ua);
1116 if (rc) {
1117 pr_err("failed to read batt current rc = %d\n", rc);
1118 return rc;
1119 }
1120
1121 rbatt = (last_rbatt < 0) ? chip->default_rbatt_mohm : last_rbatt;
1122 *ocv = vbatt + (ibatt_ua * rbatt)/1000;
1123 return 0;
1124}
1125
1126static int calculate_pc(struct pm8921_bms_chip *chip, int ocv_uv, int batt_temp,
1127 int chargecycles)
1128{
1129 int pc, scalefactor;
1130
1131 pc = interpolate_pc(chip, batt_temp, ocv_uv / 1000);
1132 pr_debug("pc = %u for ocv = %dmicroVolts batt_temp = %d\n",
1133 pc, ocv_uv, batt_temp);
1134
1135 scalefactor = interpolate_scalingfactor(chip,
1136 chip->pc_sf_lut, chargecycles, pc);
1137 pr_debug("scalefactor = %u batt_temp = %d\n", scalefactor, batt_temp);
1138
1139 bms_dbg.scalefactor = scalefactor;
1140
1141 pc = (pc * scalefactor) / 100;
1142 return pc;
1143}
1144
1145static void calculate_cc_uah(struct pm8921_bms_chip *chip, int cc, int *val)
1146{
1147 int64_t cc_voltage_uv, cc_nvh, cc_uah;
1148
1149 cc_voltage_uv = cc;
1150 cc_voltage_uv -= chip->cc_reading_at_100;
1151 pr_debug("cc = %d. after subtracting %d cc = %lld\n",
1152 cc, chip->cc_reading_at_100,
1153 cc_voltage_uv);
1154 cc_voltage_uv = cc_to_microvolt(chip, cc_voltage_uv);
1155 cc_voltage_uv = pm8xxx_cc_adjust_for_gain(cc_voltage_uv);
1156 pr_debug("cc_voltage_uv = %lld microvolts\n", cc_voltage_uv);
1157 cc_nvh = ccmicrovolt_to_nvh(cc_voltage_uv);
1158 pr_debug("cc_nvh = %lld nano_volt_hour\n", cc_nvh);
1159 cc_uah = div_s64(cc_nvh, chip->r_sense);
1160 *val = cc_uah;
1161}
1162
1163static int calculate_unusable_charge_uah(struct pm8921_bms_chip *chip,
1164 int rbatt, int fcc_uah,
1165 int batt_temp, int chargecycles)
1166{
1167 int voltage_unusable_uv, pc_unusable;
1168
1169
1170 voltage_unusable_uv = (rbatt * chip->i_test)
1171 + (chip->v_failure * 1000);
1172 pc_unusable = calculate_pc(chip, voltage_unusable_uv,
1173 batt_temp, chargecycles);
1174 pr_debug("rbatt = %umilliOhms unusable_v =%d unusable_pc = %d\n",
1175 rbatt, voltage_unusable_uv, pc_unusable);
1176 bms_dbg.rbatt = rbatt;
1177 bms_dbg.voltage_unusable_uv = voltage_unusable_uv;
1178 bms_dbg.pc_unusable = pc_unusable;
1179 return (fcc_uah * pc_unusable) / 100;
1180}
1181
1182static int calculate_remaining_charge_uah(struct pm8921_bms_chip *chip,
1183 struct pm8921_soc_params *raw,
1184 int fcc_uah, int batt_temp,
1185 int chargecycles)
1186{
1187 int ocv, pc;
1188
1189
1190 ocv = 0;
1191 if (chip->ocv_reading_at_100 != raw->last_good_ocv_raw) {
1192 chip->ocv_reading_at_100 = 0;
1193 chip->cc_reading_at_100 = 0;
1194 ocv = raw->last_good_ocv_uv;
1195 } else {
1196 ocv = chip->max_voltage_uv;
1197 }
1198
1199 if (ocv == 0) {
1200 ocv = last_ocv_uv;
1201 pr_debug("ocv not available using last_ocv_uv=%d\n", ocv);
1202 }
1203
1204 pc = calculate_pc(chip, ocv, batt_temp, chargecycles);
1205 bms_dbg.rc_pc = pc;
1206 pr_debug("ocv = %d pc = %d\n", ocv, pc);
1207 return (fcc_uah * pc) / 100;
1208}
1209
1210static void calculate_soc_params(struct pm8921_bms_chip *chip,
1211 struct pm8921_soc_params *raw,
1212 int batt_temp, int chargecycles,
1213 int *fcc_uah,
1214 int *unusable_charge_uah,
1215 int *remaining_charge_uah,
1216 int *cc_uah,
1217 int *rbatt)
1218{
1219 unsigned long flags;
1220 int soc_rbatt;
1221
1222 *fcc_uah = calculate_fcc_uah(chip, batt_temp, chargecycles);
1223 pr_debug("FCC = %uuAh batt_temp = %d, cycles = %d\n",
1224 *fcc_uah, batt_temp, chargecycles);
1225
1226 spin_lock_irqsave(&chip->bms_100_lock, flags);
1227
1228 *remaining_charge_uah = calculate_remaining_charge_uah(chip, raw,
1229 *fcc_uah, batt_temp, chargecycles);
1230 pr_debug("RC = %uuAh\n", *remaining_charge_uah);
1231
1232
1233 calculate_cc_uah(chip, raw->cc, cc_uah);
1234 pr_debug("cc_uah = %duAh raw->cc = %x cc = %lld after subtracting %d\n",
1235 *cc_uah, raw->cc,
1236 (int64_t)raw->cc - chip->cc_reading_at_100,
1237 chip->cc_reading_at_100);
1238 spin_unlock_irqrestore(&chip->bms_100_lock, flags);
1239
1240 soc_rbatt = ((*remaining_charge_uah - *cc_uah) * 100) / *fcc_uah;
1241 if (soc_rbatt < 0)
1242 soc_rbatt = 0;
1243 *rbatt = get_rbatt(chip, soc_rbatt, batt_temp);
1244
1245 *unusable_charge_uah = calculate_unusable_charge_uah(chip, *rbatt,
1246 *fcc_uah, batt_temp, chargecycles);
1247 pr_debug("UUC = %uuAh\n", *unusable_charge_uah);
1248}
1249
1250static int calculate_real_fcc_uah(struct pm8921_bms_chip *chip,
1251 struct pm8921_soc_params *raw,
1252 int batt_temp, int chargecycles,
1253 int *ret_fcc_uah)
1254{
1255 int fcc_uah, unusable_charge_uah;
1256 int remaining_charge_uah;
1257 int cc_uah;
1258 int real_fcc_uah;
1259 int rbatt;
1260
1261 calculate_soc_params(chip, raw, batt_temp, chargecycles,
1262 &fcc_uah,
1263 &unusable_charge_uah,
1264 &remaining_charge_uah,
1265 &cc_uah,
1266 &rbatt);
1267
1268 real_fcc_uah = remaining_charge_uah - cc_uah;
1269 *ret_fcc_uah = fcc_uah;
1270 pr_debug("real_fcc = %d, RC = %d CC = %d fcc = %d\n",
1271 real_fcc_uah, remaining_charge_uah, cc_uah, fcc_uah);
1272 return real_fcc_uah;
1273}
1274static int calculate_state_of_charge(struct pm8921_bms_chip *chip,
1275 struct pm8921_soc_params *raw,
1276 int batt_temp, int chargecycles, int verbol)
1277{
1278 int remaining_usable_charge_uah, fcc_uah, unusable_charge_uah;
1279 int remaining_charge_uah, soc, soc_remainder = 0;
1280 int update_userspace = 1;
1281 int cc_uah;
1282 int rbatt;
1283
1284 calculate_soc_params(chip, raw, batt_temp, chargecycles,
1285 &fcc_uah,
1286 &unusable_charge_uah,
1287 &remaining_charge_uah,
1288 &cc_uah,
1289 &rbatt);
1290 bms_dbg.batt_temp = batt_temp;
1291
1292
1293 remaining_usable_charge_uah = remaining_charge_uah
1294 - cc_uah
1295 - unusable_charge_uah;
1296
1297 pr_debug("RUC = %duAh\n", remaining_usable_charge_uah);
1298 if (fcc_uah - unusable_charge_uah <= 0) {
1299 pr_warn("FCC = %duAh, UUC = %duAh forcing soc = 0\n",
1300 fcc_uah, unusable_charge_uah);
1301 soc = 0;
1302 } else {
1303 soc = (remaining_usable_charge_uah * 100)
1304 / (fcc_uah - unusable_charge_uah);
1305 soc_remainder = (remaining_usable_charge_uah * 100)
1306 % (fcc_uah - unusable_charge_uah);
1307
1308 if (soc >= 0 && soc_remainder > 0)
1309 soc += 1;
1310 }
1311
1312 if (verbol) {
1313 pr_info("FCC=%d,UC=%d,RC=%d,CC=%d,RUC=%d,SOC=%d,SOC_R=%d,"
1314 "start_percent=%d,end_percent=%d,"
1315 "rbatt=%d,rbatt_sf=%d,batt_temp=%d,soc_rbatt=%d,last_rbatt=%d,"
1316 "V_unusable_uv=%d,pc_unusable=%d,rc_pc=%d,scalefactor=%d\n",
1317 fcc_uah, unusable_charge_uah, remaining_charge_uah,
1318 cc_uah, remaining_usable_charge_uah, soc, soc_remainder,
1319 the_chip->start_percent, the_chip->end_percent,
1320 bms_dbg.rbatt, bms_dbg.rbatt_sf, bms_dbg.batt_temp,
1321 bms_dbg.soc_rbatt, last_rbatt, bms_dbg.voltage_unusable_uv,
1322 bms_dbg.pc_unusable, bms_dbg.rc_pc, bms_dbg.scalefactor);
1323 }
1324
1325 if (soc > 100)
1326 soc = 100;
1327 pr_debug("SOC = %u%%\n", soc);
1328
1329 if (bms_fake_battery != -EINVAL) {
1330 pr_debug("Returning Fake SOC = %d%%\n", bms_fake_battery);
1331 return bms_fake_battery;
1332 }
1333
1334 if (soc < 0) {
1335 pr_err("bad rem_usb_chg = %d rem_chg %d,"
1336 "cc_uah %d, unusb_chg %d\n",
1337 remaining_usable_charge_uah,
1338 remaining_charge_uah,
1339 cc_uah, unusable_charge_uah);
1340
1341 pr_err("for bad rem_usb_chg last_ocv_uv = %d"
1342 "chargecycles = %d, batt_temp = %d"
1343 "fcc = %d soc =%d\n",
1344 last_ocv_uv, chargecycles, batt_temp,
1345 fcc_uah, soc);
1346 update_userspace = 0;
1347 soc = 0;
1348 }
1349
1350 if (last_soc == -EINVAL || soc <= last_soc) {
1351 last_soc = update_userspace ? soc : last_soc;
1352 return soc;
1353 }
1354
1355 if (the_chip->start_percent != -EINVAL) {
1356 last_soc = soc;
1357 } else {
1358 pr_info("soc = %d reporting last_soc = %d\n", soc, last_soc);
1359 soc = last_soc;
1360 }
1361
1362
1363 return soc;
1364}
1365
1366#define MIN_DELTA_625_UV 1000
1367static void calib_hkadc(struct pm8921_bms_chip *chip)
1368{
1369 int voltage, rc;
1370 struct pm8xxx_adc_chan_result result;
1371 int usb_chg;
1372 int this_delta;
1373
1374 rc = pm8xxx_adc_read(the_chip->ref1p25v_channel, &result);
1375 if (rc) {
1376 pr_err("ADC failed for 1.25volts rc = %d\n", rc);
1377 return;
1378 }
1379 voltage = xoadc_reading_to_microvolt(result.adc_code);
1380
1381 pr_debug("result 1.25v = 0x%x, voltage = %duV adc_meas = %lld\n",
1382 result.adc_code, voltage, result.measurement);
1383
1384 chip->xoadc_v125 = voltage;
1385
1386 rc = pm8xxx_adc_read(the_chip->ref625mv_channel, &result);
1387 if (rc) {
1388 pr_err("ADC failed for 1.25volts rc = %d\n", rc);
1389 return;
1390 }
1391 voltage = xoadc_reading_to_microvolt(result.adc_code);
1392
1393 usb_chg = usb_chg_plugged_in();
1394 pr_debug("result 0.625V = 0x%x, voltage = %duV adc_meas = %lld "
1395 "usb_chg = %d\n",
1396 result.adc_code, voltage, result.measurement,
1397 usb_chg);
1398
1399 if (usb_chg)
1400 chip->xoadc_v0625_usb_present = voltage;
1401 else
1402 chip->xoadc_v0625_usb_absent = voltage;
1403
1404 chip->xoadc_v0625 = voltage;
1405 if (chip->xoadc_v0625_usb_present && chip->xoadc_v0625_usb_absent) {
1406 this_delta = chip->xoadc_v0625_usb_present
1407 - chip->xoadc_v0625_usb_absent;
1408 pr_debug("this_delta= %duV\n", this_delta);
1409 if (this_delta > MIN_DELTA_625_UV)
1410 last_usb_cal_delta_uv = this_delta;
1411 pr_debug("625V_present= %d, 625V_absent= %d, delta = %duV\n",
1412 chip->xoadc_v0625_usb_present,
1413 chip->xoadc_v0625_usb_absent,
1414 last_usb_cal_delta_uv);
1415 }
1416}
1417
1418static void calibrate_hkadc_work(struct work_struct *work)
1419{
1420 struct pm8921_bms_chip *chip = container_of(work,
1421 struct pm8921_bms_chip, calib_hkadc_work);
1422
1423 calib_hkadc(chip);
1424}
1425
1426void pm8921_bms_calibrate_hkadc(void)
1427{
1428 schedule_work(&the_chip->calib_hkadc_work);
1429}
1430
1431int pm8921_bms_get_vsense_avg(int *result)
1432{
1433 int rc = -EINVAL;
1434
1435 if (the_chip) {
1436 mutex_lock(&the_chip->bms_output_lock);
1437 pm_bms_lock_output_data(the_chip);
1438 rc = read_vsense_avg(the_chip, result);
1439 pm_bms_unlock_output_data(the_chip);
1440 mutex_unlock(&the_chip->bms_output_lock);
1441 } else
1442 pr_err("called before initialization\n");
1443 return rc;
1444}
1445EXPORT_SYMBOL(pm8921_bms_get_vsense_avg);
1446
1447int pm8921_bms_get_battery_current(int *result_ua)
1448{
1449 int vsense;
1450
1451 if (!the_chip) {
1452 pr_err("called before initialization\n");
1453 return -EINVAL;
1454 }
1455 if (the_chip->r_sense == 0) {
1456 pr_err("r_sense is zero\n");
1457 return -EINVAL;
1458 }
1459
1460 mutex_lock(&the_chip->bms_output_lock);
1461 pm_bms_lock_output_data(the_chip);
1462 read_vsense_avg(the_chip, &vsense);
1463 pm_bms_unlock_output_data(the_chip);
1464 mutex_unlock(&the_chip->bms_output_lock);
1465 pr_debug("vsense=%duV\n", vsense);
1466
1467 *result_ua = vsense * 1000 / (int)the_chip->r_sense;
1468 pr_debug("ibat=%duA\n", *result_ua);
1469 return 0;
1470}
1471EXPORT_SYMBOL(pm8921_bms_get_battery_current);
1472
1473int pm8921_bms_get_percent_charge(void)
1474{
1475 int batt_temp, rc;
1476 struct pm8xxx_adc_chan_result result;
1477 struct pm8921_soc_params raw;
1478
1479 if (!the_chip) {
1480 pr_err("called before initialization\n");
1481 return -EINVAL;
1482 }
1483
1484 rc = pm8xxx_adc_read(the_chip->batt_temp_channel, &result);
1485 if (rc) {
1486 pr_err("error reading adc channel = %d, rc = %d\n",
1487 the_chip->batt_temp_channel, rc);
1488 return rc;
1489 }
1490 pr_debug("batt_temp phy = %lld meas = 0x%llx", result.physical,
1491 result.measurement);
1492 batt_temp = (int)result.physical;
1493
1494 read_soc_params_raw(the_chip, &raw);
1495
1496 return calculate_state_of_charge(the_chip, &raw,
1497 batt_temp, last_chargecycles, 0);
1498}
1499EXPORT_SYMBOL_GPL(pm8921_bms_get_percent_charge);
1500
1501int pm8921_bms_get_rbatt(void)
1502{
1503 int batt_temp, rc;
1504 struct pm8xxx_adc_chan_result result;
1505 struct pm8921_soc_params raw;
1506 int fcc_uah;
1507 int unusable_charge_uah;
1508 int remaining_charge_uah;
1509 int cc_uah;
1510 int rbatt;
1511
1512 if (!the_chip) {
1513 pr_err("called before initialization\n");
1514 return -EINVAL;
1515 }
1516
1517 rc = pm8xxx_adc_read(the_chip->batt_temp_channel, &result);
1518 if (rc) {
1519 pr_err("error reading adc channel = %d, rc = %d\n",
1520 the_chip->batt_temp_channel, rc);
1521 return rc;
1522 }
1523 pr_debug("batt_temp phy = %lld meas = 0x%llx\n", result.physical,
1524 result.measurement);
1525 batt_temp = (int)result.physical;
1526
1527 read_soc_params_raw(the_chip, &raw);
1528
1529 calculate_soc_params(the_chip, &raw, batt_temp, last_chargecycles,
1530 &fcc_uah,
1531 &unusable_charge_uah,
1532 &remaining_charge_uah,
1533 &cc_uah,
1534 &rbatt);
1535 return rbatt;
1536}
1537EXPORT_SYMBOL_GPL(pm8921_bms_get_rbatt);
1538
1539int pm8921_bms_get_fcc(void)
1540{
1541 int batt_temp, rc;
1542 struct pm8xxx_adc_chan_result result;
1543
1544 if (!the_chip) {
1545 pr_err("called before initialization\n");
1546 return -EINVAL;
1547 }
1548
1549 rc = pm8xxx_adc_read(the_chip->batt_temp_channel, &result);
1550 if (rc) {
1551 pr_err("error reading adc channel = %d, rc = %d\n",
1552 the_chip->batt_temp_channel, rc);
1553 return rc;
1554 }
1555 pr_debug("batt_temp phy = %lld meas = 0x%llx", result.physical,
1556 result.measurement);
1557 batt_temp = (int)result.physical;
1558 return calculate_fcc_uah(the_chip, batt_temp, last_chargecycles);
1559}
1560EXPORT_SYMBOL_GPL(pm8921_bms_get_fcc);
1561
1562#ifdef CONFIG_HTC_BATT_8960
1563int pm8921_bms_get_batt_current(int *result)
1564{
1565 return pm8921_bms_get_battery_current(result);
1566}
1567
1568int pm8921_bms_get_batt_soc(int *result)
1569{
1570 int batt_temp, rc;
1571 struct pm8xxx_adc_chan_result temp_result;
1572 struct pm8921_soc_params raw;
1573
1574 if (!the_chip) {
1575 pr_err("called before initialization\n");
1576 return -EINVAL;
1577 }
1578
1579 rc = pm8xxx_adc_read(the_chip->batt_temp_channel, &temp_result);
1580 if (rc) {
1581 pr_err("error reading adc channel = %d, rc = %d\n",
1582 the_chip->batt_temp_channel, rc);
1583 return rc;
1584 }
1585 pr_debug("batt_temp phy = %lld meas = 0x%llx", temp_result.physical,
1586 temp_result.measurement);
1587 batt_temp = (int)temp_result.physical;
1588
1589 read_soc_params_raw(the_chip, &raw);
1590
1591 *result = calculate_state_of_charge(the_chip, &raw,
1592 batt_temp, last_chargecycles, 1);
1593 if (bms_discharge_percent &&
1594 ((bms_discharge_percent - *result) >= 5)) {
1595 pr_info("OCV can be update due to %d - %d >= 5\n",
1596 bms_discharge_percent, *result);
1597 bms_discharge_percent = 0;
1598 pm8921_bms_start_ocv_updates();
1599 }
1600
1601 return 0;
1602}
1603
1604int pm8921_bms_get_batt_cc(int *result)
1605{
1606 *result = dump_cc_uah();
1607
1608 return 0;
1609}
1610#endif
1611
1612#define IBAT_TOL_MASK 0x0F
1613#define OCV_TOL 0xF0
1614#define OCV_TOL_MASK 0xF0
1615#define IBAT_TOL_DEFAULT 0x03
1616#define IBAT_TOL_NOCHG 0x0F
1617#define OCV_TOL_DEFAULT 0x20
1618#define OCV_TOL_NO_OCV 0x00
1619int pm8921_bms_charging_began(void)
1620{
1621 int batt_temp, rc = 0;
1622 struct pm8xxx_adc_chan_result result;
1623 struct pm8921_soc_params raw;
1624
1625 if (!the_chip) {
1626 pr_err("called before initialization\n");
1627 return -EINVAL;
1628 }
1629
1630 rc = pm8xxx_adc_read(the_chip->batt_temp_channel, &result);
1631 if (rc) {
1632 pr_err("error reading adc channel = %d, rc = %d\n",
1633 the_chip->batt_temp_channel, rc);
1634 return rc;
1635 }
1636 pr_debug("batt_temp phy = %lld meas = 0x%llx\n", result.physical,
1637 result.measurement);
1638 batt_temp = (int)result.physical;
1639
1640 read_soc_params_raw(the_chip, &raw);
1641
1642 the_chip->start_percent = calculate_state_of_charge(the_chip, &raw,
1643 batt_temp, last_chargecycles, 0);
1644 bms_start_percent = the_chip->start_percent;
1645 bms_start_ocv_uv = raw.last_good_ocv_uv;
1646 calculate_cc_uah(the_chip, raw.cc, &bms_start_cc_uah);
1647 pm_bms_masked_write(the_chip, BMS_TOLERANCES,
1648 IBAT_TOL_MASK, IBAT_TOL_DEFAULT);
1649 pr_info("start_percent = %d%%\n", the_chip->start_percent);
1650 bms_discharge_percent = 0;
1651 pm8921_bms_stop_ocv_updates();
1652
1653 return rc;
1654}
1655EXPORT_SYMBOL_GPL(pm8921_bms_charging_began);
1656
1657#define DELTA_FCC_PERCENT 3
1658#define MIN_START_PERCENT_FOR_LEARNING (-30)
1659void pm8921_bms_charging_end(int is_battery_full)
1660{
1661 int batt_temp, rc;
1662 struct pm8xxx_adc_chan_result result;
1663 struct pm8921_soc_params raw;
1664
1665 if (the_chip == NULL)
1666 return;
1667
1668 rc = pm8xxx_adc_read(the_chip->batt_temp_channel, &result);
1669 if (rc) {
1670 pr_err("error reading adc channel = %d, rc = %d\n",
1671 the_chip->batt_temp_channel, rc);
1672 return;
1673 }
1674 pr_debug("batt_temp phy = %lld meas = 0x%llx\n", result.physical,
1675 result.measurement);
1676 batt_temp = (int)result.physical;
1677
1678 read_soc_params_raw(the_chip, &raw);
1679
1680 calculate_cc_uah(the_chip, raw.cc, &bms_end_cc_uah);
1681
1682 if (is_battery_full
1683 && the_chip->start_percent <= MIN_START_PERCENT_FOR_LEARNING) {
1684 int fcc_uah, new_fcc_uah, delta_fcc_uah;
1685
1686 new_fcc_uah = calculate_real_fcc_uah(the_chip, &raw,
1687 batt_temp, last_chargecycles,
1688 &fcc_uah);
1689 delta_fcc_uah = new_fcc_uah - fcc_uah;
1690 if (delta_fcc_uah < 0)
1691 delta_fcc_uah = -delta_fcc_uah;
1692
1693 if (delta_fcc_uah * 100 > (DELTA_FCC_PERCENT * fcc_uah)) {
1694
1695 if (new_fcc_uah > fcc_uah)
1696 new_fcc_uah
1697 = (fcc_uah +
1698 (DELTA_FCC_PERCENT * fcc_uah) / 100);
1699 else
1700 new_fcc_uah
1701 = (fcc_uah -
1702 (DELTA_FCC_PERCENT * fcc_uah) / 100);
1703 pr_info("delta_fcc=%d > %d percent of fcc=%d"
1704 "restring it to %d\n",
1705 delta_fcc_uah, DELTA_FCC_PERCENT,
1706 fcc_uah, new_fcc_uah);
1707 }
1708 last_real_fcc_mah = new_fcc_uah/1000;
1709 last_real_fcc_batt_temp = batt_temp;
1710 readjust_fcc_table();
1711 pr_info("learnt fcc = %d batt_temp = %d\n",
1712 last_real_fcc_mah, last_real_fcc_batt_temp);
1713 }
1714
1715
1716 if (is_battery_full) {
1717 unsigned long flags;
1718 spin_lock_irqsave(&the_chip->bms_100_lock, flags);
1719 the_chip->ocv_reading_at_100 = raw.last_good_ocv_raw;
1720 the_chip->cc_reading_at_100 = raw.cc;
1721 spin_unlock_irqrestore(&the_chip->bms_100_lock, flags);
1722 pr_debug("EOC ocv_reading = 0x%x cc = %d\n",
1723 the_chip->ocv_reading_at_100,
1724 the_chip->cc_reading_at_100);
1725 pm8921_bms_start_ocv_updates();
1726 }
1727
1728 the_chip->end_percent = calculate_state_of_charge(the_chip, &raw,
1729 batt_temp, last_chargecycles, 0);
1730
1731 bms_end_percent = the_chip->end_percent;
1732 if (!is_battery_full)
1733 bms_discharge_percent = the_chip->end_percent;
1734 else
1735 bms_discharge_percent = 0;
1736 bms_end_ocv_uv = raw.last_good_ocv_uv;
1737
1738 if (the_chip->end_percent > the_chip->start_percent) {
1739 last_charge_increase +=
1740 the_chip->end_percent - the_chip->start_percent;
1741 if (last_charge_increase > 100) {
1742 last_chargecycles++;
1743 last_charge_increase = last_charge_increase % 100;
1744 }
1745 }
1746 pr_info("end_percent = %d%% last_charge_increase = %d"
1747 "last_chargecycles = %d\n",
1748 the_chip->end_percent,
1749 last_charge_increase,
1750 last_chargecycles);
1751 the_chip->start_percent = -EINVAL;
1752 the_chip->end_percent = -EINVAL;
1753 pm_bms_masked_write(the_chip, BMS_TOLERANCES,
1754 IBAT_TOL_MASK, IBAT_TOL_NOCHG);
1755}
1756EXPORT_SYMBOL_GPL(pm8921_bms_charging_end);
1757
1758int pm8921_bms_stop_ocv_updates(void)
1759{
1760 if (!the_chip) {
1761 pr_err("called before init\n");
1762 return -EINVAL;
1763 }
1764 if (!is_ocv_update_start) {
1765 pr_info("ocv updates is already stopped");
1766 return -EINVAL;
1767 }
1768 is_ocv_update_start = 0;
1769 pr_info("stopping ocv updates, is_ocv_update_start=%d", is_ocv_update_start);
1770 return pm_bms_masked_write(the_chip, BMS_TOLERANCES,
1771 OCV_TOL_MASK, OCV_TOL_NO_OCV);
1772}
1773EXPORT_SYMBOL_GPL(pm8921_bms_stop_ocv_updates);
1774
1775int pm8921_bms_start_ocv_updates(void)
1776{
1777 if (!the_chip) {
1778 pr_err("called before init\n");
1779 return -EINVAL;
1780 }
1781 if (is_ocv_update_start) {
1782 pr_info("ocv updates is already started");
1783 return -EINVAL;
1784 }
1785 is_ocv_update_start = 1;
1786 pr_info("starting ocv updates, is_ocv_update_start=%d", is_ocv_update_start);
1787 return pm_bms_masked_write(the_chip, BMS_TOLERANCES,
1788 OCV_TOL_MASK, OCV_TOL_DEFAULT);
1789}
1790EXPORT_SYMBOL_GPL(pm8921_bms_start_ocv_updates);
1791
1792static irqreturn_t pm8921_bms_sbi_write_ok_handler(int irq, void *data)
1793{
1794 pr_debug("irq = %d triggered", irq);
1795 return IRQ_HANDLED;
1796}
1797
1798static irqreturn_t pm8921_bms_cc_thr_handler(int irq, void *data)
1799{
1800 pr_debug("irq = %d triggered", irq);
1801 return IRQ_HANDLED;
1802}
1803
1804static irqreturn_t pm8921_bms_vsense_thr_handler(int irq, void *data)
1805{
1806 pr_debug("irq = %d triggered", irq);
1807 return IRQ_HANDLED;
1808}
1809
1810static irqreturn_t pm8921_bms_vsense_for_r_handler(int irq, void *data)
1811{
1812 pr_debug("irq = %d triggered", irq);
1813 return IRQ_HANDLED;
1814}
1815
1816static irqreturn_t pm8921_bms_ocv_for_r_handler(int irq, void *data)
1817{
1818 struct pm8921_bms_chip *chip = data;
1819
1820 pr_debug("irq = %d triggered", irq);
1821 schedule_work(&chip->calib_hkadc_work);
1822 return IRQ_HANDLED;
1823}
1824
1825static irqreturn_t pm8921_bms_good_ocv_handler(int irq, void *data)
1826{
1827 struct pm8921_bms_chip *chip = data;
1828
1829 pr_debug("irq = %d triggered", irq);
1830 schedule_work(&chip->calib_hkadc_work);
1831 return IRQ_HANDLED;
1832}
1833
1834static irqreturn_t pm8921_bms_vsense_avg_handler(int irq, void *data)
1835{
1836 pr_debug("irq = %d triggered", irq);
1837 return IRQ_HANDLED;
1838}
1839
1840struct pm_bms_irq_init_data {
1841 unsigned int irq_id;
1842 char *name;
1843 unsigned long flags;
1844 irqreturn_t (*handler)(int, void *);
1845};
1846
1847#define BMS_IRQ(_id, _flags, _handler) \
1848{ \
1849 .irq_id = _id, \
1850 .name = #_id, \
1851 .flags = _flags, \
1852 .handler = _handler, \
1853}
1854
1855struct pm_bms_irq_init_data bms_irq_data[] = {
1856 BMS_IRQ(PM8921_BMS_SBI_WRITE_OK, IRQF_TRIGGER_RISING,
1857 pm8921_bms_sbi_write_ok_handler),
1858 BMS_IRQ(PM8921_BMS_CC_THR, IRQF_TRIGGER_RISING,
1859 pm8921_bms_cc_thr_handler),
1860 BMS_IRQ(PM8921_BMS_VSENSE_THR, IRQF_TRIGGER_RISING,
1861 pm8921_bms_vsense_thr_handler),
1862 BMS_IRQ(PM8921_BMS_VSENSE_FOR_R, IRQF_TRIGGER_RISING,
1863 pm8921_bms_vsense_for_r_handler),
1864 BMS_IRQ(PM8921_BMS_OCV_FOR_R, IRQF_TRIGGER_RISING,
1865 pm8921_bms_ocv_for_r_handler),
1866 BMS_IRQ(PM8921_BMS_GOOD_OCV, IRQF_TRIGGER_RISING,
1867 pm8921_bms_good_ocv_handler),
1868 BMS_IRQ(PM8921_BMS_VSENSE_AVG, IRQF_TRIGGER_RISING,
1869 pm8921_bms_vsense_avg_handler),
1870};
1871
1872static void free_irqs(struct pm8921_bms_chip *chip)
1873{
1874 int i;
1875
1876 for (i = 0; i < PM_BMS_MAX_INTS; i++)
1877 if (chip->pmic_bms_irq[i]) {
1878 free_irq(chip->pmic_bms_irq[i], NULL);
1879 chip->pmic_bms_irq[i] = 0;
1880 }
1881}
1882
1883static int __devinit request_irqs(struct pm8921_bms_chip *chip,
1884 struct platform_device *pdev)
1885{
1886 struct resource *res;
1887 int ret, i;
1888
1889 ret = 0;
1890 bitmap_fill(chip->enabled_irqs, PM_BMS_MAX_INTS);
1891
1892 for (i = 0; i < ARRAY_SIZE(bms_irq_data); i++) {
1893 res = platform_get_resource_byname(pdev, IORESOURCE_IRQ,
1894 bms_irq_data[i].name);
1895 if (res == NULL) {
1896 pr_err("couldn't find %s\n", bms_irq_data[i].name);
1897 goto err_out;
1898 }
1899 ret = request_irq(res->start, bms_irq_data[i].handler,
1900 bms_irq_data[i].flags,
1901 bms_irq_data[i].name, chip);
1902 if (ret < 0) {
1903 pr_err("couldn't request %d (%s) %d\n", res->start,
1904 bms_irq_data[i].name, ret);
1905 goto err_out;
1906 }
1907 chip->pmic_bms_irq[bms_irq_data[i].irq_id] = res->start;
1908 pm8921_bms_disable_irq(chip, bms_irq_data[i].irq_id);
1909 }
1910 return 0;
1911
1912err_out:
1913 free_irqs(chip);
1914 return -EINVAL;
1915}
1916
1917#define EN_BMS_BIT BIT(7)
1918#define EN_PON_HS_BIT BIT(0)
1919static int __devinit pm8921_bms_hw_init(struct pm8921_bms_chip *chip)
1920{
1921 int rc;
1922
1923 rc = pm_bms_masked_write(chip, BMS_CONTROL,
1924 EN_BMS_BIT | EN_PON_HS_BIT, EN_BMS_BIT | EN_PON_HS_BIT);
1925 if (rc) {
1926 pr_err("failed to enable pon and bms addr = %d %d",
1927 BMS_CONTROL, rc);
1928 }
1929
1930
1931 pm_bms_masked_write(chip, BMS_TOLERANCES,
1932 IBAT_TOL_MASK, IBAT_TOL_NOCHG);
1933
1934 is_ocv_update_start = 1;
1935 pm_bms_masked_write(chip, BMS_TOLERANCES,
1936 OCV_TOL_MASK, OCV_TOL_DEFAULT);
1937 return 0;
1938}
1939
1940static int bms_disabled;
1941static int set_disable_bms_param(const char *val, struct kernel_param *kp)
1942{
1943 u8 data;
1944 int rc;
1945 struct pm8921_bms_chip *chip = the_chip;
1946
1947 rc = param_set_int(val, kp);
1948
1949 if (rc) {
1950 pr_err("error setting value %d\n", rc);
1951 return rc;
1952 }
1953
1954 if (bms_disabled)
1955 data = 0;
1956 else
1957 data = EN_BMS_BIT | EN_PON_HS_BIT;
1958
1959 pr_info("set bms_disabled =%d\n", bms_disabled);
1960 rc = pm_bms_masked_write(chip, BMS_CONTROL,
1961 EN_BMS_BIT | EN_PON_HS_BIT, data);
1962 if (rc) {
1963 pr_err("failed to enable pon and bms addr = %d %d",
1964 BMS_CONTROL, rc);
1965 }
1966
1967 return 0;
1968}
1969module_param_call(disabled, set_disable_bms_param, param_get_uint,
1970 &bms_disabled, 0644);
1971
1972static void check_initial_ocv(struct pm8921_bms_chip *chip)
1973{
1974 int ocv_uv, rc;
1975 int16_t ocv_raw;
1976 int usb_chg;
1977
1978 ocv_uv = 0;
1979 pm_bms_read_output_data(chip, LAST_GOOD_OCV_VALUE, &ocv_raw);
1980 usb_chg = usb_chg_plugged_in();
1981 rc = convert_vbatt_raw_to_uv(chip, usb_chg, ocv_raw, &ocv_uv);
1982 if (rc || ocv_uv == 0) {
1983 rc = adc_based_ocv(chip, &ocv_uv);
1984 if (rc) {
1985 pr_err("failed to read adc based ocv_uv rc = %d\n", rc);
1986 ocv_uv = DEFAULT_OCV_MICROVOLTS;
1987 }
1988 last_ocv_uv = ocv_uv;
1989 }
1990 pr_debug("ocv_uv = %d last_ocv_uv = %d\n", ocv_uv, last_ocv_uv);
1991}
1992
1993static int64_t read_battery_id(struct pm8921_bms_chip *chip)
1994{
1995 int rc;
1996 struct pm8xxx_adc_chan_result result;
1997
1998 rc = pm8xxx_adc_read(chip->batt_id_channel, &result);
1999 if (rc) {
2000 pr_err("error reading batt id channel = %d, rc = %d\n",
2001 chip->vbat_channel, rc);
2002 return rc;
2003 }
2004 pr_debug("batt_id phy = %lld meas = 0x%llx\n", result.physical,
2005 result.measurement);
2006 return result.physical;
2007}
2008
2009#ifdef CONFIG_HTC_BATT_8960
2010#define PM8921_BMS_HTC_FAKE_BATT_ID (1)
2011static int set_battery_data(struct pm8921_bms_chip *chip)
2012{
2013 int battery_id_mv, batt_id;
2014 struct pm8921_bms_battery_data* bms_battery_data;
2015
2016
2017
2018 if (pm8xxx_get_revision(chip->dev->parent) < PM8XXX_REVISION_8921_2p0) {
2019 batt_id = PM8921_BMS_HTC_FAKE_BATT_ID;
2020 htc_battery_cell_set_cur_cell_by_id(batt_id);
2021 } else {
2022 battery_id_mv = (int)read_battery_id(chip) / 1000;
2023
2024 batt_id = htc_battery_cell_find_and_set_id_auto(battery_id_mv);
2025 }
2026
2027
2028 bms_battery_data = htc_battery_cell_get_cur_cell_gauge_cdata();
2029
2030 if (bms_battery_data) {
2031 pr_info("set bms_battery_data (cell_id=%d).\n",
2032 batt_id);
2033 chip->fcc = bms_battery_data->fcc;
2034 chip->fcc_temp_lut = bms_battery_data->fcc_temp_lut;
2035 chip->fcc_sf_lut = bms_battery_data->fcc_sf_lut;
2036 chip->pc_temp_ocv_lut = bms_battery_data->pc_temp_ocv_lut;
2037 chip->pc_sf_lut = bms_battery_data->pc_sf_lut;
2038 chip->rbatt_sf_lut = bms_battery_data->rbatt_sf_lut;
2039 chip->default_rbatt_mohm
2040 = bms_battery_data->default_rbatt_mohm;
2041 chip->delta_rbatt_mohm
2042 = bms_battery_data->delta_rbatt_mohm;
2043 } else {
2044 pr_err("bms_battery_data doesn't exist (id=%d)\n",
2045 batt_id);
2046 chip->fcc = palladium_1500_data.fcc;
2047 chip->fcc_temp_lut = palladium_1500_data.fcc_temp_lut;
2048 chip->fcc_sf_lut = palladium_1500_data.fcc_sf_lut;
2049 chip->pc_temp_ocv_lut = palladium_1500_data.pc_temp_ocv_lut;
2050 chip->pc_sf_lut = palladium_1500_data.pc_sf_lut;
2051 chip->rbatt_sf_lut = palladium_1500_data.rbatt_sf_lut;
2052 chip->default_rbatt_mohm
2053 = palladium_1500_data.default_rbatt_mohm;
2054 chip->delta_rbatt_mohm
2055 = palladium_1500_data.delta_rbatt_mohm;
2056 }
2057 return 0;
2058}
2059#else
2060#define PALLADIUM_ID_MIN 0x7F40
2061#define PALLADIUM_ID_MAX 0x7F5A
2062#define DESAY_5200_ID_MIN 0x7F7F
2063#define DESAY_5200_ID_MAX 0x802F
2064static int set_battery_data(struct pm8921_bms_chip *chip)
2065{
2066 int64_t battery_id;
2067
2068 battery_id = read_battery_id(chip);
2069
2070 if (battery_id < 0) {
2071 pr_err("cannot read battery id err = %lld\n", battery_id);
2072 return battery_id;
2073 }
2074
2075 if (is_between(PALLADIUM_ID_MIN, PALLADIUM_ID_MAX, battery_id)) {
2076 chip->fcc = palladium_1500_data.fcc;
2077 chip->fcc_temp_lut = palladium_1500_data.fcc_temp_lut;
2078 chip->fcc_sf_lut = palladium_1500_data.fcc_sf_lut;
2079 chip->pc_temp_ocv_lut = palladium_1500_data.pc_temp_ocv_lut;
2080 chip->pc_sf_lut = palladium_1500_data.pc_sf_lut;
2081 chip->rbatt_sf_lut = palladium_1500_data.rbatt_sf_lut;
2082 chip->default_rbatt_mohm
2083 = palladium_1500_data.default_rbatt_mohm;
2084 chip->delta_rbatt_mohm
2085 = palladium_1500_data.delta_rbatt_mohm;
2086 return 0;
2087 } else if (is_between(DESAY_5200_ID_MIN, DESAY_5200_ID_MAX,
2088 battery_id)) {
2089 chip->fcc = desay_5200_data.fcc;
2090 chip->fcc_temp_lut = desay_5200_data.fcc_temp_lut;
2091 chip->fcc_sf_lut = desay_5200_data.fcc_sf_lut;
2092 chip->pc_temp_ocv_lut = desay_5200_data.pc_temp_ocv_lut;
2093 chip->pc_sf_lut = desay_5200_data.pc_sf_lut;
2094 chip->rbatt_sf_lut = desay_5200_data.rbatt_sf_lut;
2095 chip->default_rbatt_mohm = desay_5200_data.default_rbatt_mohm;
2096 chip->delta_rbatt_mohm = desay_5200_data.delta_rbatt_mohm;
2097 return 0;
2098 } else {
2099 pr_warn("invalid battery id, palladium 1500 assumed batt_id %llx\n",
2100 battery_id);
2101 chip->fcc = palladium_1500_data.fcc;
2102 chip->fcc_temp_lut = palladium_1500_data.fcc_temp_lut;
2103 chip->fcc_sf_lut = palladium_1500_data.fcc_sf_lut;
2104 chip->pc_temp_ocv_lut = palladium_1500_data.pc_temp_ocv_lut;
2105 chip->pc_sf_lut = palladium_1500_data.pc_sf_lut;
2106 chip->rbatt_sf_lut = palladium_1500_data.rbatt_sf_lut;
2107 chip->default_rbatt_mohm
2108 = palladium_1500_data.default_rbatt_mohm;
2109 chip->delta_rbatt_mohm
2110 = palladium_1500_data.delta_rbatt_mohm;
2111 return 0;
2112 }
2113}
2114#endif
2115
2116enum bms_request_operation {
2117 CALC_RBATT,
2118 CALC_FCC,
2119 CALC_PC,
2120 CALC_SOC,
2121 CALIB_HKADC,
2122 CALIB_CCADC,
2123 STOP_OCV,
2124 START_OCV,
2125 GET_VBAT_VSENSE_SIMULTANEOUS,
2126};
2127
2128static int test_batt_temp = 5;
2129static int test_chargecycle = 150;
2130static int test_ocv = 3900000;
2131enum {
2132 TEST_BATT_TEMP,
2133 TEST_CHARGE_CYCLE,
2134 TEST_OCV,
2135};
2136static int get_test_param(void *data, u64 * val)
2137{
2138 switch ((int)data) {
2139 case TEST_BATT_TEMP:
2140 *val = test_batt_temp;
2141 break;
2142 case TEST_CHARGE_CYCLE:
2143 *val = test_chargecycle;
2144 break;
2145 case TEST_OCV:
2146 *val = test_ocv;
2147 break;
2148 default:
2149 return -EINVAL;
2150 }
2151 return 0;
2152}
2153static int set_test_param(void *data, u64 val)
2154{
2155 switch ((int)data) {
2156 case TEST_BATT_TEMP:
2157 test_batt_temp = (int)val;
2158 break;
2159 case TEST_CHARGE_CYCLE:
2160 test_chargecycle = (int)val;
2161 break;
2162 case TEST_OCV:
2163 test_ocv = (int)val;
2164 break;
2165 default:
2166 return -EINVAL;
2167 }
2168 return 0;
2169}
2170DEFINE_SIMPLE_ATTRIBUTE(temp_fops, get_test_param, set_test_param, "%llu\n");
2171
2172static int get_calc(void *data, u64 * val)
2173{
2174 int param = (int)data;
2175 int ret = 0;
2176 int ibat_ua, vbat_uv;
2177 struct pm8921_soc_params raw;
2178 struct pm8921_rbatt_params rraw;
2179
2180 read_soc_params_raw(the_chip, &raw);
2181 read_rbatt_params_raw(the_chip, &rraw);
2182
2183 *val = 0;
2184
2185
2186 switch (param) {
2187 case CALC_RBATT:
2188 *val = calculate_rbatt_resume(the_chip, &rraw);
2189 break;
2190 case CALC_FCC:
2191 *val = calculate_fcc_uah(the_chip, test_batt_temp,
2192 test_chargecycle);
2193 break;
2194 case CALC_PC:
2195 *val = calculate_pc(the_chip, test_ocv, test_batt_temp,
2196 test_chargecycle);
2197 break;
2198 case CALC_SOC:
2199 *val = calculate_state_of_charge(the_chip, &raw,
2200 test_batt_temp, test_chargecycle, 0);
2201 break;
2202 case CALIB_HKADC:
2203
2204 *val = 0;
2205 calib_hkadc(the_chip);
2206 break;
2207 case CALIB_CCADC:
2208
2209 *val = 0;
2210 pm8xxx_calib_ccadc();
2211 break;
2212 case GET_VBAT_VSENSE_SIMULTANEOUS:
2213
2214 *val =
2215 pm8921_bms_get_simultaneous_battery_voltage_and_current(
2216 &ibat_ua,
2217 &vbat_uv);
2218 break;
2219 default:
2220 ret = -EINVAL;
2221 }
2222 return ret;
2223}
2224
2225static int set_calc(void *data, u64 val)
2226{
2227 int param = (int)data;
2228 int ret = 0;
2229
2230 switch (param) {
2231 case STOP_OCV:
2232 pm8921_bms_stop_ocv_updates();
2233 break;
2234 case START_OCV:
2235 pm8921_bms_start_ocv_updates();
2236 break;
2237 default:
2238 ret = -EINVAL;
2239 }
2240 return ret;
2241}
2242DEFINE_SIMPLE_ATTRIBUTE(calc_fops, get_calc, set_calc, "%llu\n");
2243
2244static int get_reading(void *data, u64 * val)
2245{
2246 int param = (int)data;
2247 int ret = 0;
2248 struct pm8921_soc_params raw;
2249 struct pm8921_rbatt_params rraw;
2250
2251 read_soc_params_raw(the_chip, &raw);
2252 read_rbatt_params_raw(the_chip, &rraw);
2253
2254 *val = 0;
2255
2256 switch (param) {
2257 case CC_MSB:
2258 case CC_LSB:
2259 *val = raw.cc;
2260 break;
2261 case LAST_GOOD_OCV_VALUE:
2262 *val = raw.last_good_ocv_uv;
2263 break;
2264 case VBATT_FOR_RBATT:
2265 *val = rraw.vbatt_for_rbatt_uv;
2266 break;
2267 case VSENSE_FOR_RBATT:
2268 *val = rraw.vsense_for_rbatt_uv;
2269 break;
2270 case OCV_FOR_RBATT:
2271 *val = rraw.ocv_for_rbatt_uv;
2272 break;
2273 case VSENSE_AVG:
2274 read_vsense_avg(the_chip, (uint *)val);
2275 break;
2276 default:
2277 ret = -EINVAL;
2278 }
2279 return ret;
2280}
2281DEFINE_SIMPLE_ATTRIBUTE(reading_fops, get_reading, NULL, "%lld\n");
2282
2283static int get_rt_status(void *data, u64 * val)
2284{
2285 int i = (int)data;
2286 int ret;
2287
2288
2289 ret = pm_bms_get_rt_status(the_chip, i);
2290 *val = ret;
2291 return 0;
2292}
2293DEFINE_SIMPLE_ATTRIBUTE(rt_fops, get_rt_status, NULL, "%llu\n");
2294
2295static int get_reg(void *data, u64 * val)
2296{
2297 int addr = (int)data;
2298 int ret;
2299 u8 temp;
2300
2301 ret = pm8xxx_readb(the_chip->dev->parent, addr, &temp);
2302 if (ret) {
2303 pr_err("pm8xxx_readb to %x value = %d errored = %d\n",
2304 addr, temp, ret);
2305 return -EAGAIN;
2306 }
2307 *val = temp;
2308 return 0;
2309}
2310
2311static int set_reg(void *data, u64 val)
2312{
2313 int addr = (int)data;
2314 int ret;
2315 u8 temp;
2316
2317 temp = (u8) val;
2318 ret = pm8xxx_writeb(the_chip->dev->parent, addr, temp);
2319 if (ret) {
2320 pr_err("pm8xxx_writeb to %x value = %d errored = %d\n",
2321 addr, temp, ret);
2322 return -EAGAIN;
2323 }
2324 return 0;
2325}
2326DEFINE_SIMPLE_ATTRIBUTE(reg_fops, get_reg, set_reg, "0x%02llx\n");
2327
2328static void dump_all(void)
2329{
2330 u64 val;
2331
2332 get_reg((void *)BMS_CONTROL, &val);
2333 pr_info("BMS_CONTROL = 0x%02llx\n", val);
2334 get_reg((void *)BMS_OUTPUT0, &val);
2335 pr_info("BMS_OUTPUT0 = 0x%02llx\n", val);
2336 get_reg((void *)BMS_OUTPUT1, &val);
2337 pr_info("BMS_OUTPUT1 = 0x%02llx\n", val);
2338 get_reg((void *)BMS_TOLERANCES, &val);
2339 pr_info("BMS_TOLERANCES = 0x%02llx\n", val);
2340 get_reg((void *)BMS_TEST1, &val);
2341 pr_info("BMS_TEST1 = 0x%02llx\n", val);
2342 get_reg((void *)OCV_UPDATE_STORAGE, &val);
2343 pr_info("OCV_UPDATE_STORAGE = 0x%02llx\n", val);
2344
2345
2346 get_reading((void *)CC_MSB, &val);
2347 pr_info("read_cc = 0x%lld\n", val);
2348 get_reading((void *)LAST_GOOD_OCV_VALUE, &val);
2349 pr_info("last_good_ocv = 0x%lld\n", val);
2350 get_reading((void *)VBATT_FOR_RBATT, &val);
2351 pr_info("vbatt_for_rbatt = 0x%lld\n", val);
2352 get_reading((void *)VSENSE_FOR_RBATT, &val);
2353 pr_info("vsense_for_rbatt = 0x%lld\n", val);
2354 get_reading((void *)OCV_FOR_RBATT, &val);
2355 pr_info("ocv_for_rbatt = 0x%lld\n", val);
2356 get_reading((void *)VSENSE_AVG, &val);
2357 pr_info("vsense_avg = 0x%lld\n", val);
2358
2359
2360 pr_info("BMS irq: %d%d%d%d%d%d%d\n",
2361 pm_bms_get_rt_status(the_chip, PM8921_BMS_SBI_WRITE_OK),
2362 pm_bms_get_rt_status(the_chip, PM8921_BMS_CC_THR),
2363 pm_bms_get_rt_status(the_chip, PM8921_BMS_VSENSE_THR),
2364 pm_bms_get_rt_status(the_chip, PM8921_BMS_VSENSE_FOR_R),
2365 pm_bms_get_rt_status(the_chip, PM8921_BMS_OCV_FOR_R),
2366 pm_bms_get_rt_status(the_chip, PM8921_BMS_GOOD_OCV),
2367 pm_bms_get_rt_status(the_chip, PM8921_BMS_VSENSE_AVG));
2368
2369 pm8xxx_ccadc_dump_all();
2370}
2371
2372inline int pm8921_bms_dump_all(void)
2373{
2374 if (!the_chip) {
2375 pr_err("called before init\n");
2376 return -EINVAL;
2377 }
2378 dump_all();
2379 return 0;
2380}
2381EXPORT_SYMBOL(pm8921_bms_dump_all);
2382
2383int pm8921_bms_get_attr_text(char *buf, int size)
2384{
2385 struct pm8921_soc_params raw;
2386 struct pm8921_rbatt_params rraw;
2387 unsigned long flags;
2388 int len = 0;
2389 u64 val = 0;
2390 int cc_uah, fcc_uah, unusable_charge_uah, remaining_charge_uah;
2391 int chargecycles;
2392 int soc_rbatt, rbatt;
2393 int batt_temp, rc;
2394 struct pm8xxx_adc_chan_result result;
2395
2396 if (!the_chip) {
2397 pr_err("driver not initialized\n");
2398 return 0;
2399 }
2400
2401 get_reg((void *)BMS_CONTROL, &val);
2402 len += scnprintf(buf + len, size - len,
2403 "BMS_CONTROL: 0x%02llx;\n", val);
2404 get_reg((void *)BMS_OUTPUT0, &val);
2405 len += scnprintf(buf + len, size - len,
2406 "BMS_OUTPUT0: 0x%02llx;\n", val);
2407 get_reg((void *)BMS_OUTPUT1, &val);
2408 len += scnprintf(buf + len, size - len,
2409 "BMS_OUTPUT1: 0x%02llx;\n", val);
2410 get_reg((void *)BMS_TOLERANCES, &val);
2411 len += scnprintf(buf + len, size - len,
2412 "BMS_TOLERANCES: 0x%02llx;\n", val);
2413 get_reg((void *)BMS_TEST1, &val);
2414 len += scnprintf(buf + len, size - len,
2415 "BMS_TEST1: 0x%02llx;\n", val);
2416 get_reg((void *)OCV_UPDATE_STORAGE, &val);
2417 len += scnprintf(buf + len, size - len,
2418 "OCV_UPDATE_STORAGE: 0x%02llx;\n", val);
2419
2420 len += scnprintf(buf + len, size - len,
2421 "bms_discharge_soc: %d;\n", bms_discharge_percent);
2422 len += scnprintf(buf + len, size - len,
2423 "is_ocv_update_start: %d;\n", is_ocv_update_start);
2424
2425 read_soc_params_raw(the_chip, &raw);
2426 read_rbatt_params_raw(the_chip, &rraw);
2427
2428 len += scnprintf(buf + len, size - len,
2429 "OCV_FOR_RBATT_RAW: 0x%x;\n", rraw.ocv_for_rbatt_raw);
2430 len += scnprintf(buf + len, size - len,
2431 "VBATT_FOR_RBATT_RAW: 0x%x;\n", rraw.vbatt_for_rbatt_raw);
2432 len += scnprintf(buf + len, size - len,
2433 "VSENSE_FOR_RBATT_RAW: 0x%x;\n", rraw.vsense_for_rbatt_raw);
2434 len += scnprintf(buf + len, size - len,
2435 "LAST_GOOD_OCV_RAW: 0x%x;\n", raw.last_good_ocv_raw);
2436 len += scnprintf(buf + len, size - len,
2437 "CC_RAW: 0x%x;\n", raw.cc);
2438
2439 len += scnprintf(buf + len, size - len,
2440 "ocv_for_rbatt_uv: %d;\n", rraw.ocv_for_rbatt_uv);
2441 len += scnprintf(buf + len, size - len,
2442 "vbatt_for_rbatt_uv: %d;\n", rraw.vbatt_for_rbatt_uv);
2443 len += scnprintf(buf + len, size - len,
2444 "vsense_for_rbatt_uv: %d;\n", rraw.vsense_for_rbatt_uv);
2445 len += scnprintf(buf + len, size - len,
2446 "last_good_ocv_uv: %d;\n", raw.last_good_ocv_uv);
2447
2448 rc = pm8xxx_adc_read(the_chip->batt_temp_channel, &result);
2449 if (rc) {
2450 pr_err("error reading adc channel = %d, rc = %d\n",
2451 the_chip->batt_temp_channel, rc);
2452 return len;
2453 }
2454 batt_temp = (int)result.physical;
2455 chargecycles = last_chargecycles;
2456 fcc_uah = calculate_fcc_uah(the_chip, batt_temp, chargecycles);
2457 remaining_charge_uah = calculate_remaining_charge_uah(the_chip, &raw,
2458 fcc_uah, batt_temp, chargecycles);
2459 spin_lock_irqsave(&the_chip->bms_100_lock, flags);
2460 calculate_cc_uah(the_chip, raw.cc, &cc_uah);
2461 spin_unlock_irqrestore(&the_chip->bms_100_lock, flags);
2462 soc_rbatt = ((remaining_charge_uah - cc_uah) * 100) / fcc_uah;
2463 if (soc_rbatt < 0)
2464 soc_rbatt = 0;
2465 rbatt = get_rbatt(the_chip, soc_rbatt, batt_temp);
2466 unusable_charge_uah = calculate_unusable_charge_uah(the_chip, rbatt,
2467 fcc_uah, batt_temp, chargecycles);
2468 len += scnprintf(buf + len, size - len,
2469 "rbatt(milliOhms): %d;\n", bms_dbg.rbatt);
2470 len += scnprintf(buf + len, size - len,
2471 "rbatt_scalefactor: %d;\n", bms_dbg.rbatt_sf);
2472 len += scnprintf(buf + len, size - len,
2473 "soc_rbatt(%%): %d;\n", bms_dbg.soc_rbatt);
2474 len += scnprintf(buf + len, size - len,
2475 "last_rbatt(%%): %d;\n", last_rbatt);
2476 len += scnprintf(buf + len, size - len,
2477 "voltage_unusable_uv(uV): %d;\n", bms_dbg.voltage_unusable_uv);
2478 len += scnprintf(buf + len, size - len,
2479 "pc_unusable(%%): %d;\n", bms_dbg.pc_unusable);
2480 len += scnprintf(buf + len, size - len,
2481 "rc_pc(%%): %d;\n", bms_dbg.rc_pc);
2482 len += scnprintf(buf + len, size - len,
2483 "scalefactor(): %d;\n", bms_dbg.scalefactor);
2484 len += scnprintf(buf + len, size - len,
2485 "fcc(uAh): %d;\n", fcc_uah);
2486 len += scnprintf(buf + len, size - len,
2487 "unusable_charge(uAh): %d;\n", unusable_charge_uah);
2488 len += scnprintf(buf + len, size - len,
2489 "remaining_charge(uAh): %d;\n", remaining_charge_uah);
2490 len += scnprintf(buf + len, size - len,
2491 "cc(uAh): %d;\n", cc_uah);
2492 len += scnprintf(buf + len, size - len,
2493 "chargecycles: %d;\n", chargecycles);
2494 len += scnprintf(buf + len, size - len,
2495 "start_percent: %d;\n", the_chip->start_percent);
2496 len += scnprintf(buf + len, size - len,
2497 "end_percent: %d;\n", the_chip->end_percent);
2498
2499
2500 len += pm8xxx_ccadc_get_attr_text(buf + len, size - len);
2501
2502 return len;
2503}
2504EXPORT_SYMBOL(pm8921_bms_get_attr_text);
2505
2506static void create_debugfs_entries(struct pm8921_bms_chip *chip)
2507{
2508 int i;
2509
2510 chip->dent = debugfs_create_dir("pm8921-bms", NULL);
2511
2512 if (IS_ERR(chip->dent)) {
2513 pr_err("pmic bms couldnt create debugfs dir\n");
2514 return;
2515 }
2516
2517 debugfs_create_file("BMS_CONTROL", 0644, chip->dent,
2518 (void *)BMS_CONTROL, &reg_fops);
2519 debugfs_create_file("BMS_OUTPUT0", 0644, chip->dent,
2520 (void *)BMS_OUTPUT0, &reg_fops);
2521 debugfs_create_file("BMS_OUTPUT1", 0644, chip->dent,
2522 (void *)BMS_OUTPUT1, &reg_fops);
2523 debugfs_create_file("BMS_TEST1", 0644, chip->dent,
2524 (void *)BMS_TEST1, &reg_fops);
2525
2526 debugfs_create_file("test_batt_temp", 0644, chip->dent,
2527 (void *)TEST_BATT_TEMP, &temp_fops);
2528 debugfs_create_file("test_chargecycle", 0644, chip->dent,
2529 (void *)TEST_CHARGE_CYCLE, &temp_fops);
2530 debugfs_create_file("test_ocv", 0644, chip->dent,
2531 (void *)TEST_OCV, &temp_fops);
2532
2533 debugfs_create_file("read_cc", 0644, chip->dent,
2534 (void *)CC_MSB, &reading_fops);
2535 debugfs_create_file("read_last_good_ocv", 0644, chip->dent,
2536 (void *)LAST_GOOD_OCV_VALUE, &reading_fops);
2537 debugfs_create_file("read_vbatt_for_rbatt", 0644, chip->dent,
2538 (void *)VBATT_FOR_RBATT, &reading_fops);
2539 debugfs_create_file("read_vsense_for_rbatt", 0644, chip->dent,
2540 (void *)VSENSE_FOR_RBATT, &reading_fops);
2541 debugfs_create_file("read_ocv_for_rbatt", 0644, chip->dent,
2542 (void *)OCV_FOR_RBATT, &reading_fops);
2543 debugfs_create_file("read_vsense_avg", 0644, chip->dent,
2544 (void *)VSENSE_AVG, &reading_fops);
2545
2546 debugfs_create_file("show_rbatt", 0644, chip->dent,
2547 (void *)CALC_RBATT, &calc_fops);
2548 debugfs_create_file("show_fcc", 0644, chip->dent,
2549 (void *)CALC_FCC, &calc_fops);
2550 debugfs_create_file("show_pc", 0644, chip->dent,
2551 (void *)CALC_PC, &calc_fops);
2552 debugfs_create_file("show_soc", 0644, chip->dent,
2553 (void *)CALC_SOC, &calc_fops);
2554 debugfs_create_file("calib_hkadc", 0644, chip->dent,
2555 (void *)CALIB_HKADC, &calc_fops);
2556 debugfs_create_file("calib_ccadc", 0644, chip->dent,
2557 (void *)CALIB_CCADC, &calc_fops);
2558 debugfs_create_file("stop_ocv", 0644, chip->dent,
2559 (void *)STOP_OCV, &calc_fops);
2560 debugfs_create_file("start_ocv", 0644, chip->dent,
2561 (void *)START_OCV, &calc_fops);
2562
2563 debugfs_create_file("simultaneous", 0644, chip->dent,
2564 (void *)GET_VBAT_VSENSE_SIMULTANEOUS, &calc_fops);
2565
2566 for (i = 0; i < ARRAY_SIZE(bms_irq_data); i++) {
2567 if (chip->pmic_bms_irq[bms_irq_data[i].irq_id])
2568 debugfs_create_file(bms_irq_data[i].name, 0444,
2569 chip->dent,
2570 (void *)bms_irq_data[i].irq_id,
2571 &rt_fops);
2572 }
2573}
2574
2575static int dump_cc_uah(void)
2576{
2577 unsigned long flags;
2578 struct pm8921_soc_params raw;
2579 int cc_uah;
2580
2581 if (!the_chip) {
2582 pr_err("driver not initialized\n");
2583 return 0;
2584 }
2585 read_soc_params_raw(the_chip, &raw);
2586
2587 spin_lock_irqsave(&the_chip->bms_100_lock, flags);
2588
2589 calculate_cc_uah(the_chip, raw.cc, &cc_uah);
2590 pr_info("cc_uah = %duAh, raw->cc = %x,"
2591 " cc = %lld after subtracting %d\n",
2592 cc_uah, raw.cc,
2593 (int64_t)raw.cc - the_chip->cc_reading_at_100,
2594 the_chip->cc_reading_at_100);
2595 spin_unlock_irqrestore(&the_chip->bms_100_lock, flags);
2596 return cc_uah;
2597}
2598
2599int prev_cc_uah = 0;
2600static int pm8921_bms_suspend(struct device *dev)
2601{
2602 u64 val;
2603 int rc;
2604 struct pm8xxx_adc_chan_result result;
2605 struct pm8921_bms_chip *chip = dev_get_drvdata(dev);
2606 struct pm8921_soc_params raw;
2607 int fcc_uah;
2608 int remaining_charge_uah;
2609 int cc_uah;
2610
2611 chip->batt_temp_suspend = 0;
2612 rc = pm8xxx_adc_read(chip->batt_temp_channel, &result);
2613 if (rc) {
2614 pr_err("error reading adc channel = %d, rc = %d\n",
2615 chip->batt_temp_channel, rc);
2616 }
2617 chip->batt_temp_suspend = (int)result.physical;
2618 read_soc_params_raw(chip, &raw);
2619
2620 fcc_uah = calculate_fcc_uah(chip,
2621 chip->batt_temp_suspend, last_chargecycles);
2622 pr_debug("FCC = %uuAh batt_temp = %d, cycles = %d\n",
2623 fcc_uah, chip->batt_temp_suspend, last_chargecycles);
2624
2625 remaining_charge_uah = calculate_remaining_charge_uah(chip, &raw,
2626 fcc_uah, chip->batt_temp_suspend,
2627 last_chargecycles);
2628 pr_debug("RC = %uuAh\n", remaining_charge_uah);
2629
2630
2631 calculate_cc_uah(chip, raw.cc, &cc_uah);
2632 pr_debug("cc_uah = %duAh raw->cc = %x cc = %lld after subtracting %d\n",
2633 cc_uah, raw.cc,
2634 (int64_t)raw.cc - chip->cc_reading_at_100,
2635 chip->cc_reading_at_100);
2636 chip->soc_rbatt_suspend = ((remaining_charge_uah - cc_uah) * 100)
2637 / fcc_uah;
2638
2639 dump_cc_uah();
2640 get_reg((void *)BMS_TOLERANCES, &val);
2641 pr_info("BMS_TOLERANCES = 0x%02llx\n", val);
2642 return 0;
2643}
2644
2645#define DELTA_RBATT_PERCENT 10
2646static int pm8921_bms_resume(struct device *dev)
2647{
2648 u64 val;
2649 struct pm8921_rbatt_params raw;
2650 struct pm8921_bms_chip *chip = dev_get_drvdata(dev);
2651 int rbatt;
2652 int expected_rbatt;
2653 int scalefactor;
2654 int delta_rbatt;
2655
2656 read_rbatt_params_raw(chip, &raw);
2657 rbatt = calculate_rbatt_resume(chip, &raw);
2658
2659 if (rbatt < 0)
2660 return 0;
2661
2662 expected_rbatt
2663 = (last_rbatt < 0) ? chip->default_rbatt_mohm : last_rbatt;
2664
2665 if (chip->rbatt_sf_lut) {
2666 scalefactor = interpolate_scalingfactor(chip,
2667 chip->rbatt_sf_lut,
2668 chip->batt_temp_suspend / 10,
2669 chip->soc_rbatt_suspend);
2670 rbatt = rbatt * 100 / scalefactor;
2671 }
2672
2673 delta_rbatt = expected_rbatt - rbatt;
2674 if (delta_rbatt)
2675 delta_rbatt = -delta_rbatt;
2676 if (delta_rbatt * 100 <= DELTA_RBATT_PERCENT * expected_rbatt)
2677 last_rbatt = rbatt;
2678
2679 dump_cc_uah();
2680 get_reg((void *)BMS_TOLERANCES, &val);
2681 pr_info("last_rbatt:%d , BMS_TOLERANCES = 0x%02llx\n", last_rbatt, val);
2682 return 0;
2683}
2684
2685static const struct dev_pm_ops pm8921_bms_pm_ops = {
2686 .suspend = pm8921_bms_suspend,
2687 .resume = pm8921_bms_resume,
2688};
2689
2690#define REG_SBI_CONFIG 0x04F
2691#define PAGE3_ENABLE_MASK 0x6
2692#define PROGRAM_REV_MASK 0x0F
2693#define PROGRAM_REV 0x9
2694static int read_ocv_trim(struct pm8921_bms_chip *chip)
2695{
2696 int rc;
2697 u8 reg, sbi_config;
2698
2699 rc = pm8xxx_readb(chip->dev->parent, REG_SBI_CONFIG, &sbi_config);
2700 if (rc) {
2701 pr_err("error = %d reading sbi config reg\n", rc);
2702 return rc;
2703 }
2704
2705 reg = sbi_config | PAGE3_ENABLE_MASK;
2706 rc = pm8xxx_writeb(chip->dev->parent, REG_SBI_CONFIG, reg);
2707 if (rc) {
2708 pr_err("error = %d writing sbi config reg\n", rc);
2709 return rc;
2710 }
2711
2712 rc = pm8xxx_readb(chip->dev->parent, TEST_PROGRAM_REV, &reg);
2713 if (rc)
2714 pr_err("Error %d reading %d addr %d\n",
2715 rc, reg, TEST_PROGRAM_REV);
2716 pr_info("program rev reg is 0x%x\n", reg);
2717 reg &= PROGRAM_REV_MASK;
2718
2719
2720 if (reg >= PROGRAM_REV) {
2721 chip->amux_2_trim_delta = 0;
2722 goto restore_sbi_config;
2723 }
2724
2725 rc = pm8xxx_readb(chip->dev->parent, AMUX_TRIM_2, &reg);
2726 if (rc) {
2727 pr_err("error = %d reading trim reg\n", rc);
2728 return rc;
2729 }
2730
2731 chip->amux_2_trim_delta = abs(0x49 - reg);
2732 pr_info("trim reg=0x%x, trim delta=%d\n", reg, chip->amux_2_trim_delta);
2733
2734restore_sbi_config:
2735 rc = pm8xxx_writeb(chip->dev->parent, REG_SBI_CONFIG, sbi_config);
2736 if (rc) {
2737 pr_err("error = %d writing sbi config reg\n", rc);
2738 return rc;
2739 }
2740
2741 return 0;
2742}
2743
2744static int __devinit pm8921_bms_probe(struct platform_device *pdev)
2745{
2746 int rc = 0;
2747 int vbatt;
2748 struct pm8921_bms_chip *chip;
2749 const struct pm8921_bms_platform_data *pdata
2750 = pdev->dev.platform_data;
2751#ifdef CONFIG_HTC_BATT_8960
2752 const struct pm8921_charger_batt_param *chg_batt_param;
2753#endif
2754
2755 pr_info("%s\n", __func__);
2756
2757 if (!pdata) {
2758 pr_err("missing platform data\n");
2759 return -EINVAL;
2760 }
2761
2762 chip = kzalloc(sizeof(struct pm8921_bms_chip), GFP_KERNEL);
2763 if (!chip) {
2764 pr_err("Cannot allocate pm_bms_chip\n");
2765 return -ENOMEM;
2766 }
2767 mutex_init(&chip->bms_output_lock);
2768 spin_lock_init(&chip->bms_100_lock);
2769 chip->dev = &pdev->dev;
2770 chip->r_sense = pdata->r_sense;
2771 chip->i_test = pdata->i_test;
2772 chip->v_failure = pdata->v_failure;
2773 chip->rconn_mohm = pdata->rconn_mohm;
2774 chip->start_percent = -EINVAL;
2775 chip->end_percent = -EINVAL;
2776
2777 chip->batt_temp_channel = pdata->bms_cdata.batt_temp_channel;
2778 chip->vbat_channel = pdata->bms_cdata.vbat_channel;
2779 chip->ref625mv_channel = pdata->bms_cdata.ref625mv_channel;
2780 chip->ref1p25v_channel = pdata->bms_cdata.ref1p25v_channel;
2781 chip->batt_id_channel = pdata->bms_cdata.batt_id_channel;
2782 chip->revision = pm8xxx_get_revision(chip->dev->parent);
2783 INIT_WORK(&chip->calib_hkadc_work, calibrate_hkadc_work);
2784
2785 rc = set_battery_data(chip);
2786 if (rc) {
2787 pr_err("%s bad battery data %d\n", __func__, rc);
2788 goto free_chip;
2789 }
2790#ifdef CONFIG_HTC_BATT_8960
2791
2792 chg_batt_param = htc_battery_cell_get_cur_cell_charger_cdata();
2793 if (!chg_batt_param) {
2794 chip->max_voltage_uv = pdata->max_voltage_uv;
2795 } else {
2796 chip->max_voltage_uv = chg_batt_param->max_voltage * 1000;
2797 }
2798#else
2799 chip->max_voltage_uv = pdata->max_voltage_uv;
2800#endif
2801
2802 if (chip->pc_temp_ocv_lut == NULL) {
2803 pr_err("temp ocv lut table is NULL\n");
2804 rc = -EINVAL;
2805 goto free_chip;
2806 }
2807
2808
2809 if (chip->default_rbatt_mohm <= 0)
2810 chip->default_rbatt_mohm = DEFAULT_RBATT_MOHMS;
2811
2812
2813 rc = request_irqs(chip, pdev);
2814 if (rc) {
2815 pr_err("couldn't register interrupts rc = %d\n", rc);
2816 goto free_chip;
2817 }
2818
2819 rc = pm8921_bms_hw_init(chip);
2820 if (rc) {
2821 pr_err("couldn't init hardware rc = %d\n", rc);
2822 goto free_irqs;
2823 }
2824
2825 platform_set_drvdata(pdev, chip);
2826 the_chip = chip;
2827 create_debugfs_entries(chip);
2828
2829 rc = read_ocv_trim(chip);
2830 if (rc) {
2831 pr_err("couldn't adjust ocv_trim rc= %d\n", rc);
2832 goto free_irqs;
2833 }
2834 check_initial_ocv(chip);
2835
2836
2837 schedule_work(&chip->calib_hkadc_work);
2838
2839 pm8921_bms_enable_irq(chip, PM8921_BMS_GOOD_OCV);
2840 pm8921_bms_enable_irq(chip, PM8921_BMS_OCV_FOR_R);
2841
2842 get_battery_uvolts(chip, &vbatt);
2843 pr_info("OK battery_capacity_at_boot=%d volt = %d ocv = %d\n",
2844 pm8921_bms_get_percent_charge(),
2845 vbatt, last_ocv_uv);
2846 pr_info("r_sense=%u,i_test=%u,v_failure=%u\n", chip->r_sense, chip->i_test, chip->v_failure);
2847 return 0;
2848
2849free_irqs:
2850 free_irqs(chip);
2851free_chip:
2852 kfree(chip);
2853 return rc;
2854}
2855
2856static int __devexit pm8921_bms_remove(struct platform_device *pdev)
2857{
2858 struct pm8921_bms_chip *chip = platform_get_drvdata(pdev);
2859
2860 free_irqs(chip);
2861 kfree(chip->adjusted_fcc_temp_lut);
2862 platform_set_drvdata(pdev, NULL);
2863 the_chip = NULL;
2864 kfree(chip);
2865 return 0;
2866}
2867
2868static struct platform_driver pm8921_bms_driver = {
2869 .probe = pm8921_bms_probe,
2870 .remove = __devexit_p(pm8921_bms_remove),
2871 .driver = {
2872 .name = PM8921_BMS_DEV_NAME,
2873 .owner = THIS_MODULE,
2874 .pm = &pm8921_bms_pm_ops,
2875 },
2876};
2877
2878static int __init pm8921_bms_init(void)
2879{
2880 flag_enable_bms_chg_log =
2881 (get_kernel_flag() & KERNEL_FLAG_ENABLE_BMS_CHARGER_LOG) ? 1 : 0;
2882 return platform_driver_register(&pm8921_bms_driver);
2883}
2884
2885static void __exit pm8921_bms_exit(void)
2886{
2887 platform_driver_unregister(&pm8921_bms_driver);
2888}
2889
2890late_initcall(pm8921_bms_init);
2891module_exit(pm8921_bms_exit);
2892
2893MODULE_LICENSE("GPL v2");
2894MODULE_DESCRIPTION("PMIC8921 bms driver");
2895MODULE_VERSION("1.0");
2896MODULE_ALIAS("platform:" PM8921_BMS_DEV_NAME);