blob: 44b06d75416ea23f345e54fc682f2665e3be0040 [file] [log] [blame]
Ingo Molnarbb44e5d2007-07-09 18:51:58 +02001/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
Steven Rostedt4fd29172008-01-25 21:08:06 +01006#ifdef CONFIG_SMP
Ingo Molnar84de4272008-01-25 21:08:15 +01007
Gregory Haskins637f5082008-01-25 21:08:18 +01008static inline int rt_overloaded(struct rq *rq)
Steven Rostedt4fd29172008-01-25 21:08:06 +01009{
Gregory Haskins637f5082008-01-25 21:08:18 +010010 return atomic_read(&rq->rd->rto_count);
Steven Rostedt4fd29172008-01-25 21:08:06 +010011}
Ingo Molnar84de4272008-01-25 21:08:15 +010012
Steven Rostedt4fd29172008-01-25 21:08:06 +010013static inline void rt_set_overload(struct rq *rq)
14{
Gregory Haskins637f5082008-01-25 21:08:18 +010015 cpu_set(rq->cpu, rq->rd->rto_mask);
Steven Rostedt4fd29172008-01-25 21:08:06 +010016 /*
17 * Make sure the mask is visible before we set
18 * the overload count. That is checked to determine
19 * if we should look at the mask. It would be a shame
20 * if we looked at the mask, but the mask was not
21 * updated yet.
22 */
23 wmb();
Gregory Haskins637f5082008-01-25 21:08:18 +010024 atomic_inc(&rq->rd->rto_count);
Steven Rostedt4fd29172008-01-25 21:08:06 +010025}
Ingo Molnar84de4272008-01-25 21:08:15 +010026
Steven Rostedt4fd29172008-01-25 21:08:06 +010027static inline void rt_clear_overload(struct rq *rq)
28{
29 /* the order here really doesn't matter */
Gregory Haskins637f5082008-01-25 21:08:18 +010030 atomic_dec(&rq->rd->rto_count);
31 cpu_clear(rq->cpu, rq->rd->rto_mask);
Steven Rostedt4fd29172008-01-25 21:08:06 +010032}
Gregory Haskins73fe6aa2008-01-25 21:08:07 +010033
34static void update_rt_migration(struct rq *rq)
35{
Gregory Haskins637f5082008-01-25 21:08:18 +010036 if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
Gregory Haskinscdc8eb92008-01-25 21:08:23 +010037 if (!rq->rt.overloaded) {
38 rt_set_overload(rq);
39 rq->rt.overloaded = 1;
40 }
41 } else if (rq->rt.overloaded) {
Gregory Haskins73fe6aa2008-01-25 21:08:07 +010042 rt_clear_overload(rq);
Gregory Haskins637f5082008-01-25 21:08:18 +010043 rq->rt.overloaded = 0;
44 }
Gregory Haskins73fe6aa2008-01-25 21:08:07 +010045}
Steven Rostedt4fd29172008-01-25 21:08:06 +010046#endif /* CONFIG_SMP */
47
Peter Zijlstra6f505b12008-01-25 21:08:30 +010048static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
Peter Zijlstrafa85ae22008-01-25 21:08:29 +010049{
Peter Zijlstra6f505b12008-01-25 21:08:30 +010050 return container_of(rt_se, struct task_struct, rt);
51}
52
53static inline int on_rt_rq(struct sched_rt_entity *rt_se)
54{
55 return !list_empty(&rt_se->run_list);
56}
57
Peter Zijlstra052f1dc2008-02-13 15:45:40 +010058#ifdef CONFIG_RT_GROUP_SCHED
Peter Zijlstra6f505b12008-01-25 21:08:30 +010059
Peter Zijlstra9f0c1e52008-02-13 15:45:39 +010060static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
Peter Zijlstra6f505b12008-01-25 21:08:30 +010061{
62 if (!rt_rq->tg)
Peter Zijlstra9f0c1e52008-02-13 15:45:39 +010063 return RUNTIME_INF;
Peter Zijlstra6f505b12008-01-25 21:08:30 +010064
Peter Zijlstraac086bc2008-04-19 19:44:58 +020065 return rt_rq->rt_runtime;
66}
67
68static inline u64 sched_rt_period(struct rt_rq *rt_rq)
69{
70 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
Peter Zijlstra6f505b12008-01-25 21:08:30 +010071}
72
73#define for_each_leaf_rt_rq(rt_rq, rq) \
74 list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
75
76static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
77{
78 return rt_rq->rq;
79}
80
81static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
82{
83 return rt_se->rt_rq;
84}
85
86#define for_each_sched_rt_entity(rt_se) \
87 for (; rt_se; rt_se = rt_se->parent)
88
89static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
90{
91 return rt_se->my_q;
92}
93
94static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
95static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
96
Peter Zijlstra9f0c1e52008-02-13 15:45:39 +010097static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
Peter Zijlstra6f505b12008-01-25 21:08:30 +010098{
99 struct sched_rt_entity *rt_se = rt_rq->rt_se;
100
101 if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
Peter Zijlstra10203872008-01-25 21:08:32 +0100102 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
103
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100104 enqueue_rt_entity(rt_se);
Peter Zijlstra10203872008-01-25 21:08:32 +0100105 if (rt_rq->highest_prio < curr->prio)
106 resched_task(curr);
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100107 }
108}
109
Peter Zijlstra9f0c1e52008-02-13 15:45:39 +0100110static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100111{
112 struct sched_rt_entity *rt_se = rt_rq->rt_se;
113
114 if (rt_se && on_rt_rq(rt_se))
115 dequeue_rt_entity(rt_se);
116}
117
Peter Zijlstra23b0fdf2008-02-13 15:45:39 +0100118static inline int rt_rq_throttled(struct rt_rq *rt_rq)
119{
120 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
121}
122
123static int rt_se_boosted(struct sched_rt_entity *rt_se)
124{
125 struct rt_rq *rt_rq = group_rt_rq(rt_se);
126 struct task_struct *p;
127
128 if (rt_rq)
129 return !!rt_rq->rt_nr_boosted;
130
131 p = rt_task_of(rt_se);
132 return p->prio != p->normal_prio;
133}
134
Peter Zijlstrad0b27fa2008-04-19 19:44:57 +0200135#ifdef CONFIG_SMP
136static inline cpumask_t sched_rt_period_mask(void)
137{
138 return cpu_rq(smp_processor_id())->rd->span;
139}
140#else
141static inline cpumask_t sched_rt_period_mask(void)
142{
143 return cpu_online_map;
144}
145#endif
146
147static inline
148struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
149{
150 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
151}
152
Peter Zijlstraac086bc2008-04-19 19:44:58 +0200153static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
154{
155 return &rt_rq->tg->rt_bandwidth;
156}
157
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100158#else
159
Peter Zijlstra9f0c1e52008-02-13 15:45:39 +0100160static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100161{
Peter Zijlstraac086bc2008-04-19 19:44:58 +0200162 return rt_rq->rt_runtime;
163}
164
165static inline u64 sched_rt_period(struct rt_rq *rt_rq)
166{
167 return ktime_to_ns(def_rt_bandwidth.rt_period);
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100168}
169
170#define for_each_leaf_rt_rq(rt_rq, rq) \
171 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
172
173static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
174{
175 return container_of(rt_rq, struct rq, rt);
176}
177
178static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
179{
180 struct task_struct *p = rt_task_of(rt_se);
181 struct rq *rq = task_rq(p);
182
183 return &rq->rt;
184}
185
186#define for_each_sched_rt_entity(rt_se) \
187 for (; rt_se; rt_se = NULL)
188
189static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
190{
191 return NULL;
192}
193
Peter Zijlstra9f0c1e52008-02-13 15:45:39 +0100194static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100195{
196}
197
Peter Zijlstra9f0c1e52008-02-13 15:45:39 +0100198static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100199{
200}
201
Peter Zijlstra23b0fdf2008-02-13 15:45:39 +0100202static inline int rt_rq_throttled(struct rt_rq *rt_rq)
203{
204 return rt_rq->rt_throttled;
205}
Peter Zijlstrad0b27fa2008-04-19 19:44:57 +0200206
207static inline cpumask_t sched_rt_period_mask(void)
208{
209 return cpu_online_map;
210}
211
212static inline
213struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
214{
215 return &cpu_rq(cpu)->rt;
216}
217
Peter Zijlstraac086bc2008-04-19 19:44:58 +0200218static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
219{
220 return &def_rt_bandwidth;
221}
222
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100223#endif
224
Peter Zijlstrad0b27fa2008-04-19 19:44:57 +0200225static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
226{
227 int i, idle = 1;
228 cpumask_t span;
229
230 if (rt_b->rt_runtime == RUNTIME_INF)
231 return 1;
232
233 span = sched_rt_period_mask();
234 for_each_cpu_mask(i, span) {
235 int enqueue = 0;
236 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
237 struct rq *rq = rq_of_rt_rq(rt_rq);
238
239 spin_lock(&rq->lock);
240 if (rt_rq->rt_time) {
Peter Zijlstraac086bc2008-04-19 19:44:58 +0200241 u64 runtime;
Peter Zijlstrad0b27fa2008-04-19 19:44:57 +0200242
Peter Zijlstraac086bc2008-04-19 19:44:58 +0200243 spin_lock(&rt_rq->rt_runtime_lock);
244 runtime = rt_rq->rt_runtime;
Peter Zijlstrad0b27fa2008-04-19 19:44:57 +0200245 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
246 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
247 rt_rq->rt_throttled = 0;
248 enqueue = 1;
249 }
250 if (rt_rq->rt_time || rt_rq->rt_nr_running)
251 idle = 0;
Peter Zijlstraac086bc2008-04-19 19:44:58 +0200252 spin_unlock(&rt_rq->rt_runtime_lock);
Peter Zijlstrad0b27fa2008-04-19 19:44:57 +0200253 }
254
255 if (enqueue)
256 sched_rt_rq_enqueue(rt_rq);
257 spin_unlock(&rq->lock);
258 }
259
260 return idle;
261}
262
Peter Zijlstraac086bc2008-04-19 19:44:58 +0200263#ifdef CONFIG_SMP
264static int balance_runtime(struct rt_rq *rt_rq)
265{
266 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
267 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
268 int i, weight, more = 0;
269 u64 rt_period;
270
271 weight = cpus_weight(rd->span);
272
273 spin_lock(&rt_b->rt_runtime_lock);
274 rt_period = ktime_to_ns(rt_b->rt_period);
275 for_each_cpu_mask(i, rd->span) {
276 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
277 s64 diff;
278
279 if (iter == rt_rq)
280 continue;
281
282 spin_lock(&iter->rt_runtime_lock);
283 diff = iter->rt_runtime - iter->rt_time;
284 if (diff > 0) {
285 do_div(diff, weight);
286 if (rt_rq->rt_runtime + diff > rt_period)
287 diff = rt_period - rt_rq->rt_runtime;
288 iter->rt_runtime -= diff;
289 rt_rq->rt_runtime += diff;
290 more = 1;
291 if (rt_rq->rt_runtime == rt_period) {
292 spin_unlock(&iter->rt_runtime_lock);
293 break;
294 }
295 }
296 spin_unlock(&iter->rt_runtime_lock);
297 }
298 spin_unlock(&rt_b->rt_runtime_lock);
299
300 return more;
301}
302#endif
303
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100304static inline int rt_se_prio(struct sched_rt_entity *rt_se)
305{
Peter Zijlstra052f1dc2008-02-13 15:45:40 +0100306#ifdef CONFIG_RT_GROUP_SCHED
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100307 struct rt_rq *rt_rq = group_rt_rq(rt_se);
308
309 if (rt_rq)
310 return rt_rq->highest_prio;
311#endif
312
313 return rt_task_of(rt_se)->prio;
314}
315
Peter Zijlstra9f0c1e52008-02-13 15:45:39 +0100316static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100317{
Peter Zijlstra9f0c1e52008-02-13 15:45:39 +0100318 u64 runtime = sched_rt_runtime(rt_rq);
Peter Zijlstrafa85ae22008-01-25 21:08:29 +0100319
Peter Zijlstra9f0c1e52008-02-13 15:45:39 +0100320 if (runtime == RUNTIME_INF)
Peter Zijlstrafa85ae22008-01-25 21:08:29 +0100321 return 0;
322
323 if (rt_rq->rt_throttled)
Peter Zijlstra23b0fdf2008-02-13 15:45:39 +0100324 return rt_rq_throttled(rt_rq);
Peter Zijlstrafa85ae22008-01-25 21:08:29 +0100325
Peter Zijlstraac086bc2008-04-19 19:44:58 +0200326 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
327 return 0;
328
329#ifdef CONFIG_SMP
330 if (rt_rq->rt_time > runtime) {
331 int more;
332
333 spin_unlock(&rt_rq->rt_runtime_lock);
334 more = balance_runtime(rt_rq);
335 spin_lock(&rt_rq->rt_runtime_lock);
336
337 if (more)
338 runtime = sched_rt_runtime(rt_rq);
339 }
340#endif
341
Peter Zijlstra9f0c1e52008-02-13 15:45:39 +0100342 if (rt_rq->rt_time > runtime) {
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100343 rt_rq->rt_throttled = 1;
Peter Zijlstra23b0fdf2008-02-13 15:45:39 +0100344 if (rt_rq_throttled(rt_rq)) {
Peter Zijlstra9f0c1e52008-02-13 15:45:39 +0100345 sched_rt_rq_dequeue(rt_rq);
Peter Zijlstra23b0fdf2008-02-13 15:45:39 +0100346 return 1;
347 }
Peter Zijlstrafa85ae22008-01-25 21:08:29 +0100348 }
349
350 return 0;
351}
352
Ingo Molnarbb44e5d2007-07-09 18:51:58 +0200353/*
354 * Update the current task's runtime statistics. Skip current tasks that
355 * are not in our scheduling class.
356 */
Alexey Dobriyana9957442007-10-15 17:00:13 +0200357static void update_curr_rt(struct rq *rq)
Ingo Molnarbb44e5d2007-07-09 18:51:58 +0200358{
359 struct task_struct *curr = rq->curr;
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100360 struct sched_rt_entity *rt_se = &curr->rt;
361 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
Ingo Molnarbb44e5d2007-07-09 18:51:58 +0200362 u64 delta_exec;
363
364 if (!task_has_rt_policy(curr))
365 return;
366
Ingo Molnard2819182007-08-09 11:16:47 +0200367 delta_exec = rq->clock - curr->se.exec_start;
Ingo Molnarbb44e5d2007-07-09 18:51:58 +0200368 if (unlikely((s64)delta_exec < 0))
369 delta_exec = 0;
Ingo Molnar6cfb0d52007-08-02 17:41:40 +0200370
371 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
Ingo Molnarbb44e5d2007-07-09 18:51:58 +0200372
373 curr->se.sum_exec_runtime += delta_exec;
Ingo Molnard2819182007-08-09 11:16:47 +0200374 curr->se.exec_start = rq->clock;
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100375 cpuacct_charge(curr, delta_exec);
Peter Zijlstrafa85ae22008-01-25 21:08:29 +0100376
Dhaval Giani354d60c2008-04-19 19:44:59 +0200377 for_each_sched_rt_entity(rt_se) {
378 rt_rq = rt_rq_of_se(rt_se);
379
380 spin_lock(&rt_rq->rt_runtime_lock);
381 rt_rq->rt_time += delta_exec;
382 if (sched_rt_runtime_exceeded(rt_rq))
383 resched_task(curr);
384 spin_unlock(&rt_rq->rt_runtime_lock);
385 }
Ingo Molnarbb44e5d2007-07-09 18:51:58 +0200386}
387
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100388static inline
389void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
Steven Rostedt63489e42008-01-25 21:08:03 +0100390{
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100391 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
392 rt_rq->rt_nr_running++;
Peter Zijlstra052f1dc2008-02-13 15:45:40 +0100393#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
Gregory Haskins6e0534f2008-05-12 21:21:01 +0200394 if (rt_se_prio(rt_se) < rt_rq->highest_prio) {
395 struct rq *rq = rq_of_rt_rq(rt_rq);
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100396 rt_rq->highest_prio = rt_se_prio(rt_se);
Gregory Haskins6e0534f2008-05-12 21:21:01 +0200397 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_se_prio(rt_se));
398 }
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100399#endif
Steven Rostedt764a9d62008-01-25 21:08:04 +0100400#ifdef CONFIG_SMP
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100401 if (rt_se->nr_cpus_allowed > 1) {
402 struct rq *rq = rq_of_rt_rq(rt_rq);
Gregory Haskins73fe6aa2008-01-25 21:08:07 +0100403 rq->rt.rt_nr_migratory++;
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100404 }
Gregory Haskins73fe6aa2008-01-25 21:08:07 +0100405
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100406 update_rt_migration(rq_of_rt_rq(rt_rq));
407#endif
Peter Zijlstra052f1dc2008-02-13 15:45:40 +0100408#ifdef CONFIG_RT_GROUP_SCHED
Peter Zijlstra23b0fdf2008-02-13 15:45:39 +0100409 if (rt_se_boosted(rt_se))
410 rt_rq->rt_nr_boosted++;
Peter Zijlstrad0b27fa2008-04-19 19:44:57 +0200411
412 if (rt_rq->tg)
413 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
414#else
415 start_rt_bandwidth(&def_rt_bandwidth);
Peter Zijlstra23b0fdf2008-02-13 15:45:39 +0100416#endif
Steven Rostedt63489e42008-01-25 21:08:03 +0100417}
418
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100419static inline
420void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
Steven Rostedt63489e42008-01-25 21:08:03 +0100421{
Gregory Haskins6e0534f2008-05-12 21:21:01 +0200422#ifdef CONFIG_SMP
423 int highest_prio = rt_rq->highest_prio;
424#endif
425
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100426 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
427 WARN_ON(!rt_rq->rt_nr_running);
428 rt_rq->rt_nr_running--;
Peter Zijlstra052f1dc2008-02-13 15:45:40 +0100429#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100430 if (rt_rq->rt_nr_running) {
Steven Rostedt764a9d62008-01-25 21:08:04 +0100431 struct rt_prio_array *array;
432
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100433 WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
434 if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
Steven Rostedt764a9d62008-01-25 21:08:04 +0100435 /* recalculate */
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100436 array = &rt_rq->active;
437 rt_rq->highest_prio =
Steven Rostedt764a9d62008-01-25 21:08:04 +0100438 sched_find_first_bit(array->bitmap);
439 } /* otherwise leave rq->highest prio alone */
440 } else
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100441 rt_rq->highest_prio = MAX_RT_PRIO;
442#endif
443#ifdef CONFIG_SMP
444 if (rt_se->nr_cpus_allowed > 1) {
445 struct rq *rq = rq_of_rt_rq(rt_rq);
Gregory Haskins73fe6aa2008-01-25 21:08:07 +0100446 rq->rt.rt_nr_migratory--;
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100447 }
Gregory Haskins73fe6aa2008-01-25 21:08:07 +0100448
Gregory Haskins6e0534f2008-05-12 21:21:01 +0200449 if (rt_rq->highest_prio != highest_prio) {
450 struct rq *rq = rq_of_rt_rq(rt_rq);
451 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio);
452 }
453
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100454 update_rt_migration(rq_of_rt_rq(rt_rq));
Steven Rostedt764a9d62008-01-25 21:08:04 +0100455#endif /* CONFIG_SMP */
Peter Zijlstra052f1dc2008-02-13 15:45:40 +0100456#ifdef CONFIG_RT_GROUP_SCHED
Peter Zijlstra23b0fdf2008-02-13 15:45:39 +0100457 if (rt_se_boosted(rt_se))
458 rt_rq->rt_nr_boosted--;
459
460 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
461#endif
Steven Rostedt63489e42008-01-25 21:08:03 +0100462}
463
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100464static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
Ingo Molnarbb44e5d2007-07-09 18:51:58 +0200465{
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100466 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
467 struct rt_prio_array *array = &rt_rq->active;
468 struct rt_rq *group_rq = group_rt_rq(rt_se);
Ingo Molnarbb44e5d2007-07-09 18:51:58 +0200469
Peter Zijlstra23b0fdf2008-02-13 15:45:39 +0100470 if (group_rq && rt_rq_throttled(group_rq))
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100471 return;
Steven Rostedt63489e42008-01-25 21:08:03 +0100472
Gregory Haskins45c01e82008-05-12 21:20:41 +0200473 if (rt_se->nr_cpus_allowed == 1)
474 list_add_tail(&rt_se->run_list,
475 array->xqueue + rt_se_prio(rt_se));
476 else
477 list_add_tail(&rt_se->run_list,
478 array->squeue + rt_se_prio(rt_se));
479
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100480 __set_bit(rt_se_prio(rt_se), array->bitmap);
Peter Zijlstra78f2c7d2008-01-25 21:08:27 +0100481
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100482 inc_rt_tasks(rt_se, rt_rq);
483}
484
485static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
486{
487 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
488 struct rt_prio_array *array = &rt_rq->active;
489
490 list_del_init(&rt_se->run_list);
Gregory Haskins45c01e82008-05-12 21:20:41 +0200491 if (list_empty(array->squeue + rt_se_prio(rt_se))
492 && list_empty(array->xqueue + rt_se_prio(rt_se)))
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100493 __clear_bit(rt_se_prio(rt_se), array->bitmap);
494
495 dec_rt_tasks(rt_se, rt_rq);
496}
497
498/*
499 * Because the prio of an upper entry depends on the lower
500 * entries, we must remove entries top - down.
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100501 */
502static void dequeue_rt_stack(struct task_struct *p)
503{
Peter Zijlstra58d6c2d2008-04-19 19:45:00 +0200504 struct sched_rt_entity *rt_se, *back = NULL;
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100505
Peter Zijlstra58d6c2d2008-04-19 19:45:00 +0200506 rt_se = &p->rt;
507 for_each_sched_rt_entity(rt_se) {
508 rt_se->back = back;
509 back = rt_se;
510 }
511
512 for (rt_se = back; rt_se; rt_se = rt_se->back) {
513 if (on_rt_rq(rt_se))
514 dequeue_rt_entity(rt_se);
515 }
Ingo Molnarbb44e5d2007-07-09 18:51:58 +0200516}
517
518/*
519 * Adding/removing a task to/from a priority array:
520 */
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100521static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
522{
523 struct sched_rt_entity *rt_se = &p->rt;
524
525 if (wakeup)
526 rt_se->timeout = 0;
527
528 dequeue_rt_stack(p);
529
530 /*
531 * enqueue everybody, bottom - up.
532 */
533 for_each_sched_rt_entity(rt_se)
534 enqueue_rt_entity(rt_se);
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100535}
536
Ingo Molnarf02231e2007-08-09 11:16:48 +0200537static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
Ingo Molnarbb44e5d2007-07-09 18:51:58 +0200538{
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100539 struct sched_rt_entity *rt_se = &p->rt;
540 struct rt_rq *rt_rq;
Ingo Molnarbb44e5d2007-07-09 18:51:58 +0200541
Ingo Molnarf1e14ef2007-08-09 11:16:48 +0200542 update_curr_rt(rq);
Ingo Molnarbb44e5d2007-07-09 18:51:58 +0200543
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100544 dequeue_rt_stack(p);
Steven Rostedt63489e42008-01-25 21:08:03 +0100545
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100546 /*
547 * re-enqueue all non-empty rt_rq entities.
548 */
549 for_each_sched_rt_entity(rt_se) {
550 rt_rq = group_rt_rq(rt_se);
551 if (rt_rq && rt_rq->rt_nr_running)
552 enqueue_rt_entity(rt_se);
553 }
Ingo Molnarbb44e5d2007-07-09 18:51:58 +0200554}
555
556/*
557 * Put task to the end of the run list without the overhead of dequeue
558 * followed by enqueue.
Gregory Haskins45c01e82008-05-12 21:20:41 +0200559 *
560 * Note: We always enqueue the task to the shared-queue, regardless of its
561 * previous position w.r.t. exclusive vs shared. This is so that exclusive RR
562 * tasks fairly round-robin with all tasks on the runqueue, not just other
563 * exclusive tasks.
Ingo Molnarbb44e5d2007-07-09 18:51:58 +0200564 */
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100565static
566void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
Ingo Molnarbb44e5d2007-07-09 18:51:58 +0200567{
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100568 struct rt_prio_array *array = &rt_rq->active;
Ingo Molnarbb44e5d2007-07-09 18:51:58 +0200569
Gregory Haskins45c01e82008-05-12 21:20:41 +0200570 list_del_init(&rt_se->run_list);
571 list_add_tail(&rt_se->run_list, array->squeue + rt_se_prio(rt_se));
Ingo Molnarbb44e5d2007-07-09 18:51:58 +0200572}
573
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100574static void requeue_task_rt(struct rq *rq, struct task_struct *p)
575{
576 struct sched_rt_entity *rt_se = &p->rt;
577 struct rt_rq *rt_rq;
578
579 for_each_sched_rt_entity(rt_se) {
580 rt_rq = rt_rq_of_se(rt_se);
581 requeue_rt_entity(rt_rq, rt_se);
582 }
583}
584
585static void yield_task_rt(struct rq *rq)
Ingo Molnarbb44e5d2007-07-09 18:51:58 +0200586{
Dmitry Adamushko4530d7a2007-10-15 17:00:08 +0200587 requeue_task_rt(rq, rq->curr);
Ingo Molnarbb44e5d2007-07-09 18:51:58 +0200588}
589
Gregory Haskinse7693a32008-01-25 21:08:09 +0100590#ifdef CONFIG_SMP
Gregory Haskins318e0892008-01-25 21:08:10 +0100591static int find_lowest_rq(struct task_struct *task);
592
Gregory Haskinse7693a32008-01-25 21:08:09 +0100593static int select_task_rq_rt(struct task_struct *p, int sync)
594{
Gregory Haskins318e0892008-01-25 21:08:10 +0100595 struct rq *rq = task_rq(p);
596
597 /*
Steven Rostedte1f47d82008-01-25 21:08:12 +0100598 * If the current task is an RT task, then
599 * try to see if we can wake this RT task up on another
600 * runqueue. Otherwise simply start this RT task
601 * on its current runqueue.
602 *
603 * We want to avoid overloading runqueues. Even if
604 * the RT task is of higher priority than the current RT task.
605 * RT tasks behave differently than other tasks. If
606 * one gets preempted, we try to push it off to another queue.
607 * So trying to keep a preempting RT task on the same
608 * cache hot CPU will force the running RT task to
609 * a cold CPU. So we waste all the cache for the lower
610 * RT task in hopes of saving some of a RT task
611 * that is just being woken and probably will have
612 * cold cache anyway.
Gregory Haskins318e0892008-01-25 21:08:10 +0100613 */
Gregory Haskins17b32792008-01-25 21:08:13 +0100614 if (unlikely(rt_task(rq->curr)) &&
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100615 (p->rt.nr_cpus_allowed > 1)) {
Gregory Haskins318e0892008-01-25 21:08:10 +0100616 int cpu = find_lowest_rq(p);
617
618 return (cpu == -1) ? task_cpu(p) : cpu;
619 }
620
621 /*
622 * Otherwise, just let it ride on the affined RQ and the
623 * post-schedule router will push the preempted task away
624 */
Gregory Haskinse7693a32008-01-25 21:08:09 +0100625 return task_cpu(p);
626}
627#endif /* CONFIG_SMP */
628
Gregory Haskins45c01e82008-05-12 21:20:41 +0200629static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
630 struct rt_rq *rt_rq);
631
Ingo Molnarbb44e5d2007-07-09 18:51:58 +0200632/*
633 * Preempt the current task with a newly woken task if needed:
634 */
635static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
636{
Gregory Haskins45c01e82008-05-12 21:20:41 +0200637 if (p->prio < rq->curr->prio) {
Ingo Molnarbb44e5d2007-07-09 18:51:58 +0200638 resched_task(rq->curr);
Gregory Haskins45c01e82008-05-12 21:20:41 +0200639 return;
640 }
641
642#ifdef CONFIG_SMP
643 /*
644 * If:
645 *
646 * - the newly woken task is of equal priority to the current task
647 * - the newly woken task is non-migratable while current is migratable
648 * - current will be preempted on the next reschedule
649 *
650 * we should check to see if current can readily move to a different
651 * cpu. If so, we will reschedule to allow the push logic to try
652 * to move current somewhere else, making room for our non-migratable
653 * task.
654 */
655 if((p->prio == rq->curr->prio)
656 && p->rt.nr_cpus_allowed == 1
657 && rq->curr->rt.nr_cpus_allowed != 1
658 && pick_next_rt_entity(rq, &rq->rt) != &rq->curr->rt) {
659 cpumask_t mask;
660
661 if (cpupri_find(&rq->rd->cpupri, rq->curr, &mask))
662 /*
663 * There appears to be other cpus that can accept
664 * current, so lets reschedule to try and push it away
665 */
666 resched_task(rq->curr);
667 }
668#endif
Ingo Molnarbb44e5d2007-07-09 18:51:58 +0200669}
670
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100671static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
672 struct rt_rq *rt_rq)
Ingo Molnarbb44e5d2007-07-09 18:51:58 +0200673{
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100674 struct rt_prio_array *array = &rt_rq->active;
675 struct sched_rt_entity *next = NULL;
Ingo Molnarbb44e5d2007-07-09 18:51:58 +0200676 struct list_head *queue;
677 int idx;
678
679 idx = sched_find_first_bit(array->bitmap);
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100680 BUG_ON(idx >= MAX_RT_PRIO);
Ingo Molnarbb44e5d2007-07-09 18:51:58 +0200681
Gregory Haskins45c01e82008-05-12 21:20:41 +0200682 queue = array->xqueue + idx;
683 if (!list_empty(queue))
684 next = list_entry(queue->next, struct sched_rt_entity,
685 run_list);
686 else {
687 queue = array->squeue + idx;
688 next = list_entry(queue->next, struct sched_rt_entity,
689 run_list);
690 }
Dmitry Adamushko326587b2008-01-25 21:08:34 +0100691
Ingo Molnarbb44e5d2007-07-09 18:51:58 +0200692 return next;
693}
694
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100695static struct task_struct *pick_next_task_rt(struct rq *rq)
696{
697 struct sched_rt_entity *rt_se;
698 struct task_struct *p;
699 struct rt_rq *rt_rq;
700
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100701 rt_rq = &rq->rt;
702
703 if (unlikely(!rt_rq->rt_nr_running))
704 return NULL;
705
Peter Zijlstra23b0fdf2008-02-13 15:45:39 +0100706 if (rt_rq_throttled(rt_rq))
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100707 return NULL;
708
709 do {
710 rt_se = pick_next_rt_entity(rq, rt_rq);
Dmitry Adamushko326587b2008-01-25 21:08:34 +0100711 BUG_ON(!rt_se);
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100712 rt_rq = group_rt_rq(rt_se);
713 } while (rt_rq);
714
715 p = rt_task_of(rt_se);
716 p->se.exec_start = rq->clock;
717 return p;
718}
719
Ingo Molnar31ee5292007-08-09 11:16:49 +0200720static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
Ingo Molnarbb44e5d2007-07-09 18:51:58 +0200721{
Ingo Molnarf1e14ef2007-08-09 11:16:48 +0200722 update_curr_rt(rq);
Ingo Molnarbb44e5d2007-07-09 18:51:58 +0200723 p->se.exec_start = 0;
724}
725
Peter Williams681f3e62007-10-24 18:23:51 +0200726#ifdef CONFIG_SMP
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100727
Steven Rostedte8fa1362008-01-25 21:08:05 +0100728/* Only try algorithms three times */
729#define RT_MAX_TRIES 3
730
731static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
732static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
733
Steven Rostedtf65eda42008-01-25 21:08:07 +0100734static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
735{
736 if (!task_running(rq, p) &&
Gregory Haskins73fe6aa2008-01-25 21:08:07 +0100737 (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100738 (p->rt.nr_cpus_allowed > 1))
Steven Rostedtf65eda42008-01-25 21:08:07 +0100739 return 1;
740 return 0;
741}
742
Steven Rostedte8fa1362008-01-25 21:08:05 +0100743/* Return the second highest RT task, NULL otherwise */
Ingo Molnar79064fb2008-01-25 21:08:14 +0100744static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
Steven Rostedte8fa1362008-01-25 21:08:05 +0100745{
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100746 struct task_struct *next = NULL;
747 struct sched_rt_entity *rt_se;
748 struct rt_prio_array *array;
749 struct rt_rq *rt_rq;
Steven Rostedte8fa1362008-01-25 21:08:05 +0100750 int idx;
751
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100752 for_each_leaf_rt_rq(rt_rq, rq) {
753 array = &rt_rq->active;
754 idx = sched_find_first_bit(array->bitmap);
755 next_idx:
756 if (idx >= MAX_RT_PRIO)
757 continue;
758 if (next && next->prio < idx)
759 continue;
Gregory Haskins45c01e82008-05-12 21:20:41 +0200760 list_for_each_entry(rt_se, array->squeue + idx, run_list) {
Peter Zijlstra6f505b12008-01-25 21:08:30 +0100761 struct task_struct *p = rt_task_of(rt_se);
762 if (pick_rt_task(rq, p, cpu)) {
763 next = p;
764 break;
765 }
766 }
767 if (!next) {
768 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
769 goto next_idx;
770 }
Steven Rostedte8fa1362008-01-25 21:08:05 +0100771 }
772
Steven Rostedte8fa1362008-01-25 21:08:05 +0100773 return next;
774}
775
776static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
777
Gregory Haskins6e1254d2008-01-25 21:08:11 +0100778static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
779{
780 int first;
781
782 /* "this_cpu" is cheaper to preempt than a remote processor */
783 if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
784 return this_cpu;
785
786 first = first_cpu(*mask);
787 if (first != NR_CPUS)
788 return first;
789
790 return -1;
791}
792
793static int find_lowest_rq(struct task_struct *task)
794{
795 struct sched_domain *sd;
796 cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
797 int this_cpu = smp_processor_id();
798 int cpu = task_cpu(task);
799
Gregory Haskins6e0534f2008-05-12 21:21:01 +0200800 if (task->rt.nr_cpus_allowed == 1)
801 return -1; /* No other targets possible */
802
803 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
Gregory Haskins06f90db2008-01-25 21:08:13 +0100804 return -1; /* No targets found */
805
806 /*
Gregory Haskins6e1254d2008-01-25 21:08:11 +0100807 * At this point we have built a mask of cpus representing the
808 * lowest priority tasks in the system. Now we want to elect
809 * the best one based on our affinity and topology.
810 *
811 * We prioritize the last cpu that the task executed on since
812 * it is most likely cache-hot in that location.
813 */
814 if (cpu_isset(cpu, *lowest_mask))
815 return cpu;
816
817 /*
818 * Otherwise, we consult the sched_domains span maps to figure
819 * out which cpu is logically closest to our hot cache data.
820 */
821 if (this_cpu == cpu)
822 this_cpu = -1; /* Skip this_cpu opt if the same */
823
824 for_each_domain(cpu, sd) {
825 if (sd->flags & SD_WAKE_AFFINE) {
826 cpumask_t domain_mask;
827 int best_cpu;
828
829 cpus_and(domain_mask, sd->span, *lowest_mask);
830
831 best_cpu = pick_optimal_cpu(this_cpu,
832 &domain_mask);
833 if (best_cpu != -1)
834 return best_cpu;
835 }
836 }
837
838 /*
839 * And finally, if there were no matches within the domains
840 * just give the caller *something* to work with from the compatible
841 * locations.
842 */
843 return pick_optimal_cpu(this_cpu, lowest_mask);
Gregory Haskins07b40322008-01-25 21:08:10 +0100844}
845
Steven Rostedte8fa1362008-01-25 21:08:05 +0100846/* Will lock the rq it finds */
Ingo Molnar4df64c02008-01-25 21:08:15 +0100847static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
Steven Rostedte8fa1362008-01-25 21:08:05 +0100848{
849 struct rq *lowest_rq = NULL;
Steven Rostedte8fa1362008-01-25 21:08:05 +0100850 int tries;
Ingo Molnar4df64c02008-01-25 21:08:15 +0100851 int cpu;
Steven Rostedte8fa1362008-01-25 21:08:05 +0100852
853 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
Gregory Haskins07b40322008-01-25 21:08:10 +0100854 cpu = find_lowest_rq(task);
Steven Rostedte8fa1362008-01-25 21:08:05 +0100855
Gregory Haskins2de0b462008-01-25 21:08:10 +0100856 if ((cpu == -1) || (cpu == rq->cpu))
Steven Rostedte8fa1362008-01-25 21:08:05 +0100857 break;
858
Gregory Haskins07b40322008-01-25 21:08:10 +0100859 lowest_rq = cpu_rq(cpu);
860
Steven Rostedte8fa1362008-01-25 21:08:05 +0100861 /* if the prio of this runqueue changed, try again */
Gregory Haskins07b40322008-01-25 21:08:10 +0100862 if (double_lock_balance(rq, lowest_rq)) {
Steven Rostedte8fa1362008-01-25 21:08:05 +0100863 /*
864 * We had to unlock the run queue. In
865 * the mean time, task could have
866 * migrated already or had its affinity changed.
867 * Also make sure that it wasn't scheduled on its rq.
868 */
Gregory Haskins07b40322008-01-25 21:08:10 +0100869 if (unlikely(task_rq(task) != rq ||
Ingo Molnar4df64c02008-01-25 21:08:15 +0100870 !cpu_isset(lowest_rq->cpu,
871 task->cpus_allowed) ||
Gregory Haskins07b40322008-01-25 21:08:10 +0100872 task_running(rq, task) ||
Steven Rostedte8fa1362008-01-25 21:08:05 +0100873 !task->se.on_rq)) {
Ingo Molnar4df64c02008-01-25 21:08:15 +0100874
Steven Rostedte8fa1362008-01-25 21:08:05 +0100875 spin_unlock(&lowest_rq->lock);
876 lowest_rq = NULL;
877 break;
878 }
879 }
880
881 /* If this rq is still suitable use it. */
882 if (lowest_rq->rt.highest_prio > task->prio)
883 break;
884
885 /* try again */
886 spin_unlock(&lowest_rq->lock);
887 lowest_rq = NULL;
888 }
889
890 return lowest_rq;
891}
892
893/*
894 * If the current CPU has more than one RT task, see if the non
895 * running task can migrate over to a CPU that is running a task
896 * of lesser priority.
897 */
Gregory Haskins697f0a42008-01-25 21:08:09 +0100898static int push_rt_task(struct rq *rq)
Steven Rostedte8fa1362008-01-25 21:08:05 +0100899{
900 struct task_struct *next_task;
901 struct rq *lowest_rq;
902 int ret = 0;
903 int paranoid = RT_MAX_TRIES;
904
Gregory Haskinsa22d7fc2008-01-25 21:08:12 +0100905 if (!rq->rt.overloaded)
906 return 0;
907
Gregory Haskins697f0a42008-01-25 21:08:09 +0100908 next_task = pick_next_highest_task_rt(rq, -1);
Steven Rostedte8fa1362008-01-25 21:08:05 +0100909 if (!next_task)
910 return 0;
911
912 retry:
Gregory Haskins697f0a42008-01-25 21:08:09 +0100913 if (unlikely(next_task == rq->curr)) {
Steven Rostedtf65eda42008-01-25 21:08:07 +0100914 WARN_ON(1);
Steven Rostedte8fa1362008-01-25 21:08:05 +0100915 return 0;
Steven Rostedtf65eda42008-01-25 21:08:07 +0100916 }
Steven Rostedte8fa1362008-01-25 21:08:05 +0100917
918 /*
919 * It's possible that the next_task slipped in of
920 * higher priority than current. If that's the case
921 * just reschedule current.
922 */
Gregory Haskins697f0a42008-01-25 21:08:09 +0100923 if (unlikely(next_task->prio < rq->curr->prio)) {
924 resched_task(rq->curr);
Steven Rostedte8fa1362008-01-25 21:08:05 +0100925 return 0;
926 }
927
Gregory Haskins697f0a42008-01-25 21:08:09 +0100928 /* We might release rq lock */
Steven Rostedte8fa1362008-01-25 21:08:05 +0100929 get_task_struct(next_task);
930
931 /* find_lock_lowest_rq locks the rq if found */
Gregory Haskins697f0a42008-01-25 21:08:09 +0100932 lowest_rq = find_lock_lowest_rq(next_task, rq);
Steven Rostedte8fa1362008-01-25 21:08:05 +0100933 if (!lowest_rq) {
934 struct task_struct *task;
935 /*
Gregory Haskins697f0a42008-01-25 21:08:09 +0100936 * find lock_lowest_rq releases rq->lock
Steven Rostedte8fa1362008-01-25 21:08:05 +0100937 * so it is possible that next_task has changed.
938 * If it has, then try again.
939 */
Gregory Haskins697f0a42008-01-25 21:08:09 +0100940 task = pick_next_highest_task_rt(rq, -1);
Steven Rostedte8fa1362008-01-25 21:08:05 +0100941 if (unlikely(task != next_task) && task && paranoid--) {
942 put_task_struct(next_task);
943 next_task = task;
944 goto retry;
945 }
946 goto out;
947 }
948
Gregory Haskins697f0a42008-01-25 21:08:09 +0100949 deactivate_task(rq, next_task, 0);
Steven Rostedte8fa1362008-01-25 21:08:05 +0100950 set_task_cpu(next_task, lowest_rq->cpu);
951 activate_task(lowest_rq, next_task, 0);
952
953 resched_task(lowest_rq->curr);
954
955 spin_unlock(&lowest_rq->lock);
956
957 ret = 1;
958out:
959 put_task_struct(next_task);
960
961 return ret;
962}
963
964/*
965 * TODO: Currently we just use the second highest prio task on
966 * the queue, and stop when it can't migrate (or there's
967 * no more RT tasks). There may be a case where a lower
968 * priority RT task has a different affinity than the
969 * higher RT task. In this case the lower RT task could
970 * possibly be able to migrate where as the higher priority
971 * RT task could not. We currently ignore this issue.
972 * Enhancements are welcome!
973 */
974static void push_rt_tasks(struct rq *rq)
975{
976 /* push_rt_task will return true if it moved an RT */
977 while (push_rt_task(rq))
978 ;
979}
980
Steven Rostedtf65eda42008-01-25 21:08:07 +0100981static int pull_rt_task(struct rq *this_rq)
982{
Ingo Molnar80bf3172008-01-25 21:08:17 +0100983 int this_cpu = this_rq->cpu, ret = 0, cpu;
984 struct task_struct *p, *next;
Steven Rostedtf65eda42008-01-25 21:08:07 +0100985 struct rq *src_rq;
Steven Rostedtf65eda42008-01-25 21:08:07 +0100986
Gregory Haskins637f5082008-01-25 21:08:18 +0100987 if (likely(!rt_overloaded(this_rq)))
Steven Rostedtf65eda42008-01-25 21:08:07 +0100988 return 0;
989
990 next = pick_next_task_rt(this_rq);
991
Gregory Haskins637f5082008-01-25 21:08:18 +0100992 for_each_cpu_mask(cpu, this_rq->rd->rto_mask) {
Steven Rostedtf65eda42008-01-25 21:08:07 +0100993 if (this_cpu == cpu)
994 continue;
995
996 src_rq = cpu_rq(cpu);
Steven Rostedtf65eda42008-01-25 21:08:07 +0100997 /*
998 * We can potentially drop this_rq's lock in
999 * double_lock_balance, and another CPU could
1000 * steal our next task - hence we must cause
1001 * the caller to recalculate the next task
1002 * in that case:
1003 */
1004 if (double_lock_balance(this_rq, src_rq)) {
1005 struct task_struct *old_next = next;
Ingo Molnar80bf3172008-01-25 21:08:17 +01001006
Steven Rostedtf65eda42008-01-25 21:08:07 +01001007 next = pick_next_task_rt(this_rq);
1008 if (next != old_next)
1009 ret = 1;
1010 }
1011
1012 /*
1013 * Are there still pullable RT tasks?
1014 */
Mike Galbraith614ee1f2008-01-25 21:08:30 +01001015 if (src_rq->rt.rt_nr_running <= 1)
1016 goto skip;
Steven Rostedtf65eda42008-01-25 21:08:07 +01001017
Steven Rostedtf65eda42008-01-25 21:08:07 +01001018 p = pick_next_highest_task_rt(src_rq, this_cpu);
1019
1020 /*
1021 * Do we have an RT task that preempts
1022 * the to-be-scheduled task?
1023 */
1024 if (p && (!next || (p->prio < next->prio))) {
1025 WARN_ON(p == src_rq->curr);
1026 WARN_ON(!p->se.on_rq);
1027
1028 /*
1029 * There's a chance that p is higher in priority
1030 * than what's currently running on its cpu.
1031 * This is just that p is wakeing up and hasn't
1032 * had a chance to schedule. We only pull
1033 * p if it is lower in priority than the
1034 * current task on the run queue or
1035 * this_rq next task is lower in prio than
1036 * the current task on that rq.
1037 */
1038 if (p->prio < src_rq->curr->prio ||
1039 (next && next->prio < src_rq->curr->prio))
Mike Galbraith614ee1f2008-01-25 21:08:30 +01001040 goto skip;
Steven Rostedtf65eda42008-01-25 21:08:07 +01001041
1042 ret = 1;
1043
1044 deactivate_task(src_rq, p, 0);
1045 set_task_cpu(p, this_cpu);
1046 activate_task(this_rq, p, 0);
1047 /*
1048 * We continue with the search, just in
1049 * case there's an even higher prio task
1050 * in another runqueue. (low likelyhood
1051 * but possible)
Ingo Molnar80bf3172008-01-25 21:08:17 +01001052 *
Steven Rostedtf65eda42008-01-25 21:08:07 +01001053 * Update next so that we won't pick a task
1054 * on another cpu with a priority lower (or equal)
1055 * than the one we just picked.
1056 */
1057 next = p;
1058
1059 }
Mike Galbraith614ee1f2008-01-25 21:08:30 +01001060 skip:
Steven Rostedtf65eda42008-01-25 21:08:07 +01001061 spin_unlock(&src_rq->lock);
1062 }
1063
1064 return ret;
1065}
1066
Steven Rostedt9a897c52008-01-25 21:08:22 +01001067static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
Steven Rostedtf65eda42008-01-25 21:08:07 +01001068{
1069 /* Try to pull RT tasks here if we lower this rq's prio */
Ingo Molnar7f51f292008-01-25 21:08:17 +01001070 if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
Steven Rostedtf65eda42008-01-25 21:08:07 +01001071 pull_rt_task(rq);
1072}
1073
Steven Rostedt9a897c52008-01-25 21:08:22 +01001074static void post_schedule_rt(struct rq *rq)
Steven Rostedte8fa1362008-01-25 21:08:05 +01001075{
1076 /*
1077 * If we have more than one rt_task queued, then
1078 * see if we can push the other rt_tasks off to other CPUS.
1079 * Note we may release the rq lock, and since
1080 * the lock was owned by prev, we need to release it
1081 * first via finish_lock_switch and then reaquire it here.
1082 */
Gregory Haskinsa22d7fc2008-01-25 21:08:12 +01001083 if (unlikely(rq->rt.overloaded)) {
Steven Rostedte8fa1362008-01-25 21:08:05 +01001084 spin_lock_irq(&rq->lock);
1085 push_rt_tasks(rq);
1086 spin_unlock_irq(&rq->lock);
1087 }
1088}
1089
Gregory Haskins8ae121a2008-04-23 07:13:29 -04001090/*
1091 * If we are not running and we are not going to reschedule soon, we should
1092 * try to push tasks away now
1093 */
Steven Rostedt9a897c52008-01-25 21:08:22 +01001094static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
Steven Rostedt4642daf2008-01-25 21:08:07 +01001095{
Steven Rostedt9a897c52008-01-25 21:08:22 +01001096 if (!task_running(rq, p) &&
Gregory Haskins8ae121a2008-04-23 07:13:29 -04001097 !test_tsk_need_resched(rq->curr) &&
Gregory Haskinsa22d7fc2008-01-25 21:08:12 +01001098 rq->rt.overloaded)
Steven Rostedt4642daf2008-01-25 21:08:07 +01001099 push_rt_tasks(rq);
1100}
1101
Peter Williams43010652007-08-09 11:16:46 +02001102static unsigned long
Ingo Molnarbb44e5d2007-07-09 18:51:58 +02001103load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
Peter Williamse1d14842007-10-24 18:23:51 +02001104 unsigned long max_load_move,
1105 struct sched_domain *sd, enum cpu_idle_type idle,
1106 int *all_pinned, int *this_best_prio)
Ingo Molnarbb44e5d2007-07-09 18:51:58 +02001107{
Steven Rostedtc7a1e462008-01-25 21:08:07 +01001108 /* don't touch RT tasks */
1109 return 0;
Peter Williamse1d14842007-10-24 18:23:51 +02001110}
Ingo Molnarbb44e5d2007-07-09 18:51:58 +02001111
Peter Williamse1d14842007-10-24 18:23:51 +02001112static int
1113move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1114 struct sched_domain *sd, enum cpu_idle_type idle)
1115{
Steven Rostedtc7a1e462008-01-25 21:08:07 +01001116 /* don't touch RT tasks */
1117 return 0;
Ingo Molnarbb44e5d2007-07-09 18:51:58 +02001118}
Ingo Molnardeeeccd2008-01-25 21:08:15 +01001119
Mike Traviscd8ba7c2008-03-26 14:23:49 -07001120static void set_cpus_allowed_rt(struct task_struct *p,
1121 const cpumask_t *new_mask)
Gregory Haskins73fe6aa2008-01-25 21:08:07 +01001122{
1123 int weight = cpus_weight(*new_mask);
1124
1125 BUG_ON(!rt_task(p));
1126
1127 /*
1128 * Update the migration status of the RQ if we have an RT task
1129 * which is running AND changing its weight value.
1130 */
Peter Zijlstra6f505b12008-01-25 21:08:30 +01001131 if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
Gregory Haskins73fe6aa2008-01-25 21:08:07 +01001132 struct rq *rq = task_rq(p);
1133
Peter Zijlstra6f505b12008-01-25 21:08:30 +01001134 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
Gregory Haskins73fe6aa2008-01-25 21:08:07 +01001135 rq->rt.rt_nr_migratory++;
Peter Zijlstra6f505b12008-01-25 21:08:30 +01001136 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
Gregory Haskins73fe6aa2008-01-25 21:08:07 +01001137 BUG_ON(!rq->rt.rt_nr_migratory);
1138 rq->rt.rt_nr_migratory--;
1139 }
1140
1141 update_rt_migration(rq);
Gregory Haskins45c01e82008-05-12 21:20:41 +02001142
1143 if (unlikely(weight == 1 || p->rt.nr_cpus_allowed == 1))
1144 /*
1145 * If either the new or old weight is a "1", we need
1146 * to requeue to properly move between shared and
1147 * exclusive queues.
1148 */
1149 requeue_task_rt(rq, p);
Gregory Haskins73fe6aa2008-01-25 21:08:07 +01001150 }
1151
1152 p->cpus_allowed = *new_mask;
Peter Zijlstra6f505b12008-01-25 21:08:30 +01001153 p->rt.nr_cpus_allowed = weight;
Gregory Haskins73fe6aa2008-01-25 21:08:07 +01001154}
Ingo Molnardeeeccd2008-01-25 21:08:15 +01001155
Ingo Molnarbdd7c812008-01-25 21:08:18 +01001156/* Assumes rq->lock is held */
1157static void join_domain_rt(struct rq *rq)
1158{
1159 if (rq->rt.overloaded)
1160 rt_set_overload(rq);
Gregory Haskins6e0534f2008-05-12 21:21:01 +02001161
1162 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio);
Ingo Molnarbdd7c812008-01-25 21:08:18 +01001163}
1164
1165/* Assumes rq->lock is held */
1166static void leave_domain_rt(struct rq *rq)
1167{
1168 if (rq->rt.overloaded)
1169 rt_clear_overload(rq);
Gregory Haskins6e0534f2008-05-12 21:21:01 +02001170
1171 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
Ingo Molnarbdd7c812008-01-25 21:08:18 +01001172}
Steven Rostedtcb469842008-01-25 21:08:22 +01001173
1174/*
1175 * When switch from the rt queue, we bring ourselves to a position
1176 * that we might want to pull RT tasks from other runqueues.
1177 */
1178static void switched_from_rt(struct rq *rq, struct task_struct *p,
1179 int running)
1180{
1181 /*
1182 * If there are other RT tasks then we will reschedule
1183 * and the scheduling of the other RT tasks will handle
1184 * the balancing. But if we are the last RT task
1185 * we may need to handle the pulling of RT tasks
1186 * now.
1187 */
1188 if (!rq->rt.rt_nr_running)
1189 pull_rt_task(rq);
1190}
Steven Rostedte8fa1362008-01-25 21:08:05 +01001191#endif /* CONFIG_SMP */
Ingo Molnarbb44e5d2007-07-09 18:51:58 +02001192
Steven Rostedtcb469842008-01-25 21:08:22 +01001193/*
1194 * When switching a task to RT, we may overload the runqueue
1195 * with RT tasks. In this case we try to push them off to
1196 * other runqueues.
1197 */
1198static void switched_to_rt(struct rq *rq, struct task_struct *p,
1199 int running)
1200{
1201 int check_resched = 1;
1202
1203 /*
1204 * If we are already running, then there's nothing
1205 * that needs to be done. But if we are not running
1206 * we may need to preempt the current running task.
1207 * If that current running task is also an RT task
1208 * then see if we can move to another run queue.
1209 */
1210 if (!running) {
1211#ifdef CONFIG_SMP
1212 if (rq->rt.overloaded && push_rt_task(rq) &&
1213 /* Don't resched if we changed runqueues */
1214 rq != task_rq(p))
1215 check_resched = 0;
1216#endif /* CONFIG_SMP */
1217 if (check_resched && p->prio < rq->curr->prio)
1218 resched_task(rq->curr);
1219 }
1220}
1221
1222/*
1223 * Priority of the task has changed. This may cause
1224 * us to initiate a push or pull.
1225 */
1226static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1227 int oldprio, int running)
1228{
1229 if (running) {
1230#ifdef CONFIG_SMP
1231 /*
1232 * If our priority decreases while running, we
1233 * may need to pull tasks to this runqueue.
1234 */
1235 if (oldprio < p->prio)
1236 pull_rt_task(rq);
1237 /*
1238 * If there's a higher priority task waiting to run
Steven Rostedt6fa46fa2008-03-05 10:00:12 -05001239 * then reschedule. Note, the above pull_rt_task
1240 * can release the rq lock and p could migrate.
1241 * Only reschedule if p is still on the same runqueue.
Steven Rostedtcb469842008-01-25 21:08:22 +01001242 */
Steven Rostedt6fa46fa2008-03-05 10:00:12 -05001243 if (p->prio > rq->rt.highest_prio && rq->curr == p)
Steven Rostedtcb469842008-01-25 21:08:22 +01001244 resched_task(p);
1245#else
1246 /* For UP simply resched on drop of prio */
1247 if (oldprio < p->prio)
1248 resched_task(p);
1249#endif /* CONFIG_SMP */
1250 } else {
1251 /*
1252 * This task is not running, but if it is
1253 * greater than the current running task
1254 * then reschedule.
1255 */
1256 if (p->prio < rq->curr->prio)
1257 resched_task(rq->curr);
1258 }
1259}
1260
Peter Zijlstra78f2c7d2008-01-25 21:08:27 +01001261static void watchdog(struct rq *rq, struct task_struct *p)
1262{
1263 unsigned long soft, hard;
1264
1265 if (!p->signal)
1266 return;
1267
1268 soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1269 hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1270
1271 if (soft != RLIM_INFINITY) {
1272 unsigned long next;
1273
1274 p->rt.timeout++;
1275 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
Peter Zijlstra5a52dd52008-01-25 21:08:32 +01001276 if (p->rt.timeout > next)
Peter Zijlstra78f2c7d2008-01-25 21:08:27 +01001277 p->it_sched_expires = p->se.sum_exec_runtime;
1278 }
1279}
Steven Rostedtcb469842008-01-25 21:08:22 +01001280
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01001281static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
Ingo Molnarbb44e5d2007-07-09 18:51:58 +02001282{
Peter Zijlstra67e2be02007-12-20 15:01:17 +01001283 update_curr_rt(rq);
1284
Peter Zijlstra78f2c7d2008-01-25 21:08:27 +01001285 watchdog(rq, p);
1286
Ingo Molnarbb44e5d2007-07-09 18:51:58 +02001287 /*
1288 * RR tasks need a special form of timeslice management.
1289 * FIFO tasks have no timeslices.
1290 */
1291 if (p->policy != SCHED_RR)
1292 return;
1293
Peter Zijlstrafa717062008-01-25 21:08:27 +01001294 if (--p->rt.time_slice)
Ingo Molnarbb44e5d2007-07-09 18:51:58 +02001295 return;
1296
Peter Zijlstrafa717062008-01-25 21:08:27 +01001297 p->rt.time_slice = DEF_TIMESLICE;
Ingo Molnarbb44e5d2007-07-09 18:51:58 +02001298
Dmitry Adamushko98fbc792007-08-24 20:39:10 +02001299 /*
1300 * Requeue to the end of queue if we are not the only element
1301 * on the queue:
1302 */
Peter Zijlstrafa717062008-01-25 21:08:27 +01001303 if (p->rt.run_list.prev != p->rt.run_list.next) {
Dmitry Adamushko98fbc792007-08-24 20:39:10 +02001304 requeue_task_rt(rq, p);
1305 set_tsk_need_resched(p);
1306 }
Ingo Molnarbb44e5d2007-07-09 18:51:58 +02001307}
1308
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02001309static void set_curr_task_rt(struct rq *rq)
1310{
1311 struct task_struct *p = rq->curr;
1312
1313 p->se.exec_start = rq->clock;
1314}
1315
Harvey Harrison2abdad02008-04-25 10:53:13 -07001316static const struct sched_class rt_sched_class = {
Ingo Molnar5522d5d2007-10-15 17:00:12 +02001317 .next = &fair_sched_class,
Ingo Molnarbb44e5d2007-07-09 18:51:58 +02001318 .enqueue_task = enqueue_task_rt,
1319 .dequeue_task = dequeue_task_rt,
1320 .yield_task = yield_task_rt,
Gregory Haskinse7693a32008-01-25 21:08:09 +01001321#ifdef CONFIG_SMP
1322 .select_task_rq = select_task_rq_rt,
1323#endif /* CONFIG_SMP */
Ingo Molnarbb44e5d2007-07-09 18:51:58 +02001324
1325 .check_preempt_curr = check_preempt_curr_rt,
1326
1327 .pick_next_task = pick_next_task_rt,
1328 .put_prev_task = put_prev_task_rt,
1329
Peter Williams681f3e62007-10-24 18:23:51 +02001330#ifdef CONFIG_SMP
Ingo Molnarbb44e5d2007-07-09 18:51:58 +02001331 .load_balance = load_balance_rt,
Peter Williamse1d14842007-10-24 18:23:51 +02001332 .move_one_task = move_one_task_rt,
Gregory Haskins73fe6aa2008-01-25 21:08:07 +01001333 .set_cpus_allowed = set_cpus_allowed_rt,
Ingo Molnarbdd7c812008-01-25 21:08:18 +01001334 .join_domain = join_domain_rt,
1335 .leave_domain = leave_domain_rt,
Steven Rostedt9a897c52008-01-25 21:08:22 +01001336 .pre_schedule = pre_schedule_rt,
1337 .post_schedule = post_schedule_rt,
1338 .task_wake_up = task_wake_up_rt,
Steven Rostedtcb469842008-01-25 21:08:22 +01001339 .switched_from = switched_from_rt,
Peter Williams681f3e62007-10-24 18:23:51 +02001340#endif
Ingo Molnarbb44e5d2007-07-09 18:51:58 +02001341
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02001342 .set_curr_task = set_curr_task_rt,
Ingo Molnarbb44e5d2007-07-09 18:51:58 +02001343 .task_tick = task_tick_rt,
Steven Rostedtcb469842008-01-25 21:08:22 +01001344
1345 .prio_changed = prio_changed_rt,
1346 .switched_to = switched_to_rt,
Ingo Molnarbb44e5d2007-07-09 18:51:58 +02001347};