| Paul Mundt | 95b781c | 2008-11-26 00:29:58 +0900 | [diff] [blame] | 1 | #ifndef __ASM_SH_UNALIGNED_SH4A_H | 
 | 2 | #define __ASM_SH_UNALIGNED_SH4A_H | 
 | 3 |  | 
 | 4 | /* | 
 | 5 |  * SH-4A has support for unaligned 32-bit loads, and 32-bit loads only. | 
| Magnus Damm | 48c72fc | 2009-06-04 20:20:24 +0900 | [diff] [blame] | 6 |  * Support for 64-bit accesses are done through shifting and masking | 
 | 7 |  * relative to the endianness. Unaligned stores are not supported by the | 
 | 8 |  * instruction encoding, so these continue to use the packed | 
| Paul Mundt | 95b781c | 2008-11-26 00:29:58 +0900 | [diff] [blame] | 9 |  * struct. | 
 | 10 |  * | 
 | 11 |  * The same note as with the movli.l/movco.l pair applies here, as long | 
 | 12 |  * as the load is gauranteed to be inlined, nothing else will hook in to | 
 | 13 |  * r0 and we get the return value for free. | 
 | 14 |  * | 
 | 15 |  * NOTE: Due to the fact we require r0 encoding, care should be taken to | 
 | 16 |  * avoid mixing these heavily with other r0 consumers, such as the atomic | 
 | 17 |  * ops. Failure to adhere to this can result in the compiler running out | 
 | 18 |  * of spill registers and blowing up when building at low optimization | 
 | 19 |  * levels. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=34777. | 
 | 20 |  */ | 
 | 21 | #include <linux/types.h> | 
 | 22 | #include <asm/byteorder.h> | 
 | 23 |  | 
 | 24 | static __always_inline u32 __get_unaligned_cpu32(const u8 *p) | 
 | 25 | { | 
 | 26 | 	unsigned long unaligned; | 
 | 27 |  | 
 | 28 | 	__asm__ __volatile__ ( | 
 | 29 | 		"movua.l	@%1, %0\n\t" | 
 | 30 | 		 : "=z" (unaligned) | 
 | 31 | 		 : "r" (p) | 
 | 32 | 	); | 
 | 33 |  | 
 | 34 | 	return unaligned; | 
 | 35 | } | 
 | 36 |  | 
 | 37 | struct __una_u16 { u16 x __attribute__((packed)); }; | 
 | 38 | struct __una_u32 { u32 x __attribute__((packed)); }; | 
 | 39 | struct __una_u64 { u64 x __attribute__((packed)); }; | 
 | 40 |  | 
 | 41 | static inline u16 __get_unaligned_cpu16(const u8 *p) | 
 | 42 | { | 
 | 43 | #ifdef __LITTLE_ENDIAN | 
| Magnus Damm | 48c72fc | 2009-06-04 20:20:24 +0900 | [diff] [blame] | 44 | 	return p[0] | p[1] << 8; | 
| Paul Mundt | 95b781c | 2008-11-26 00:29:58 +0900 | [diff] [blame] | 45 | #else | 
| Magnus Damm | 48c72fc | 2009-06-04 20:20:24 +0900 | [diff] [blame] | 46 | 	return p[0] << 8 | p[1]; | 
| Paul Mundt | 95b781c | 2008-11-26 00:29:58 +0900 | [diff] [blame] | 47 | #endif | 
 | 48 | } | 
 | 49 |  | 
 | 50 | /* | 
 | 51 |  * Even though movua.l supports auto-increment on the read side, it can | 
 | 52 |  * only store to r0 due to instruction encoding constraints, so just let | 
 | 53 |  * the compiler sort it out on its own. | 
 | 54 |  */ | 
 | 55 | static inline u64 __get_unaligned_cpu64(const u8 *p) | 
 | 56 | { | 
 | 57 | #ifdef __LITTLE_ENDIAN | 
 | 58 | 	return (u64)__get_unaligned_cpu32(p + 4) << 32 | | 
 | 59 | 		    __get_unaligned_cpu32(p); | 
 | 60 | #else | 
 | 61 | 	return (u64)__get_unaligned_cpu32(p) << 32 | | 
 | 62 | 		    __get_unaligned_cpu32(p + 4); | 
 | 63 | #endif | 
 | 64 | } | 
 | 65 |  | 
 | 66 | static inline u16 get_unaligned_le16(const void *p) | 
 | 67 | { | 
 | 68 | 	return le16_to_cpu(__get_unaligned_cpu16(p)); | 
 | 69 | } | 
 | 70 |  | 
 | 71 | static inline u32 get_unaligned_le32(const void *p) | 
 | 72 | { | 
 | 73 | 	return le32_to_cpu(__get_unaligned_cpu32(p)); | 
 | 74 | } | 
 | 75 |  | 
 | 76 | static inline u64 get_unaligned_le64(const void *p) | 
 | 77 | { | 
 | 78 | 	return le64_to_cpu(__get_unaligned_cpu64(p)); | 
 | 79 | } | 
 | 80 |  | 
 | 81 | static inline u16 get_unaligned_be16(const void *p) | 
 | 82 | { | 
 | 83 | 	return be16_to_cpu(__get_unaligned_cpu16(p)); | 
 | 84 | } | 
 | 85 |  | 
 | 86 | static inline u32 get_unaligned_be32(const void *p) | 
 | 87 | { | 
 | 88 | 	return be32_to_cpu(__get_unaligned_cpu32(p)); | 
 | 89 | } | 
 | 90 |  | 
 | 91 | static inline u64 get_unaligned_be64(const void *p) | 
 | 92 | { | 
 | 93 | 	return be64_to_cpu(__get_unaligned_cpu64(p)); | 
 | 94 | } | 
 | 95 |  | 
 | 96 | static inline void __put_le16_noalign(u8 *p, u16 val) | 
 | 97 | { | 
 | 98 | 	*p++ = val; | 
 | 99 | 	*p++ = val >> 8; | 
 | 100 | } | 
 | 101 |  | 
 | 102 | static inline void __put_le32_noalign(u8 *p, u32 val) | 
 | 103 | { | 
 | 104 | 	__put_le16_noalign(p, val); | 
 | 105 | 	__put_le16_noalign(p + 2, val >> 16); | 
 | 106 | } | 
 | 107 |  | 
 | 108 | static inline void __put_le64_noalign(u8 *p, u64 val) | 
 | 109 | { | 
 | 110 | 	__put_le32_noalign(p, val); | 
 | 111 | 	__put_le32_noalign(p + 4, val >> 32); | 
 | 112 | } | 
 | 113 |  | 
 | 114 | static inline void __put_be16_noalign(u8 *p, u16 val) | 
 | 115 | { | 
 | 116 | 	*p++ = val >> 8; | 
 | 117 | 	*p++ = val; | 
 | 118 | } | 
 | 119 |  | 
 | 120 | static inline void __put_be32_noalign(u8 *p, u32 val) | 
 | 121 | { | 
 | 122 | 	__put_be16_noalign(p, val >> 16); | 
 | 123 | 	__put_be16_noalign(p + 2, val); | 
 | 124 | } | 
 | 125 |  | 
 | 126 | static inline void __put_be64_noalign(u8 *p, u64 val) | 
 | 127 | { | 
 | 128 | 	__put_be32_noalign(p, val >> 32); | 
 | 129 | 	__put_be32_noalign(p + 4, val); | 
 | 130 | } | 
 | 131 |  | 
 | 132 | static inline void put_unaligned_le16(u16 val, void *p) | 
 | 133 | { | 
 | 134 | #ifdef __LITTLE_ENDIAN | 
 | 135 | 	((struct __una_u16 *)p)->x = val; | 
 | 136 | #else | 
 | 137 | 	__put_le16_noalign(p, val); | 
 | 138 | #endif | 
 | 139 | } | 
 | 140 |  | 
 | 141 | static inline void put_unaligned_le32(u32 val, void *p) | 
 | 142 | { | 
 | 143 | #ifdef __LITTLE_ENDIAN | 
 | 144 | 	((struct __una_u32 *)p)->x = val; | 
 | 145 | #else | 
 | 146 | 	__put_le32_noalign(p, val); | 
 | 147 | #endif | 
 | 148 | } | 
 | 149 |  | 
 | 150 | static inline void put_unaligned_le64(u64 val, void *p) | 
 | 151 | { | 
 | 152 | #ifdef __LITTLE_ENDIAN | 
 | 153 | 	((struct __una_u64 *)p)->x = val; | 
 | 154 | #else | 
 | 155 | 	__put_le64_noalign(p, val); | 
 | 156 | #endif | 
 | 157 | } | 
 | 158 |  | 
 | 159 | static inline void put_unaligned_be16(u16 val, void *p) | 
 | 160 | { | 
 | 161 | #ifdef __BIG_ENDIAN | 
 | 162 | 	((struct __una_u16 *)p)->x = val; | 
 | 163 | #else | 
 | 164 | 	__put_be16_noalign(p, val); | 
 | 165 | #endif | 
 | 166 | } | 
 | 167 |  | 
 | 168 | static inline void put_unaligned_be32(u32 val, void *p) | 
 | 169 | { | 
 | 170 | #ifdef __BIG_ENDIAN | 
 | 171 | 	((struct __una_u32 *)p)->x = val; | 
 | 172 | #else | 
 | 173 | 	__put_be32_noalign(p, val); | 
 | 174 | #endif | 
 | 175 | } | 
 | 176 |  | 
 | 177 | static inline void put_unaligned_be64(u64 val, void *p) | 
 | 178 | { | 
 | 179 | #ifdef __BIG_ENDIAN | 
 | 180 | 	((struct __una_u64 *)p)->x = val; | 
 | 181 | #else | 
 | 182 | 	__put_be64_noalign(p, val); | 
 | 183 | #endif | 
 | 184 | } | 
 | 185 |  | 
 | 186 | /* | 
 | 187 |  * Cause a link-time error if we try an unaligned access other than | 
 | 188 |  * 1,2,4 or 8 bytes long | 
 | 189 |  */ | 
 | 190 | extern void __bad_unaligned_access_size(void); | 
 | 191 |  | 
 | 192 | #define __get_unaligned_le(ptr) ((__force typeof(*(ptr)))({			\ | 
 | 193 | 	__builtin_choose_expr(sizeof(*(ptr)) == 1, *(ptr),			\ | 
 | 194 | 	__builtin_choose_expr(sizeof(*(ptr)) == 2, get_unaligned_le16((ptr)),	\ | 
 | 195 | 	__builtin_choose_expr(sizeof(*(ptr)) == 4, get_unaligned_le32((ptr)),	\ | 
 | 196 | 	__builtin_choose_expr(sizeof(*(ptr)) == 8, get_unaligned_le64((ptr)),	\ | 
 | 197 | 	__bad_unaligned_access_size()))));					\ | 
 | 198 | 	})) | 
 | 199 |  | 
 | 200 | #define __get_unaligned_be(ptr) ((__force typeof(*(ptr)))({			\ | 
 | 201 | 	__builtin_choose_expr(sizeof(*(ptr)) == 1, *(ptr),			\ | 
 | 202 | 	__builtin_choose_expr(sizeof(*(ptr)) == 2, get_unaligned_be16((ptr)),	\ | 
 | 203 | 	__builtin_choose_expr(sizeof(*(ptr)) == 4, get_unaligned_be32((ptr)),	\ | 
 | 204 | 	__builtin_choose_expr(sizeof(*(ptr)) == 8, get_unaligned_be64((ptr)),	\ | 
 | 205 | 	__bad_unaligned_access_size()))));					\ | 
 | 206 | 	})) | 
 | 207 |  | 
 | 208 | #define __put_unaligned_le(val, ptr) ({					\ | 
 | 209 | 	void *__gu_p = (ptr);						\ | 
 | 210 | 	switch (sizeof(*(ptr))) {					\ | 
 | 211 | 	case 1:								\ | 
 | 212 | 		*(u8 *)__gu_p = (__force u8)(val);			\ | 
 | 213 | 		break;							\ | 
 | 214 | 	case 2:								\ | 
 | 215 | 		put_unaligned_le16((__force u16)(val), __gu_p);		\ | 
 | 216 | 		break;							\ | 
 | 217 | 	case 4:								\ | 
 | 218 | 		put_unaligned_le32((__force u32)(val), __gu_p);		\ | 
 | 219 | 		break;							\ | 
 | 220 | 	case 8:								\ | 
 | 221 | 		put_unaligned_le64((__force u64)(val), __gu_p);		\ | 
 | 222 | 		break;							\ | 
 | 223 | 	default:							\ | 
 | 224 | 		__bad_unaligned_access_size();				\ | 
 | 225 | 		break;							\ | 
 | 226 | 	}								\ | 
 | 227 | 	(void)0; }) | 
 | 228 |  | 
 | 229 | #define __put_unaligned_be(val, ptr) ({					\ | 
 | 230 | 	void *__gu_p = (ptr);						\ | 
 | 231 | 	switch (sizeof(*(ptr))) {					\ | 
 | 232 | 	case 1:								\ | 
 | 233 | 		*(u8 *)__gu_p = (__force u8)(val);			\ | 
 | 234 | 		break;							\ | 
 | 235 | 	case 2:								\ | 
 | 236 | 		put_unaligned_be16((__force u16)(val), __gu_p);		\ | 
 | 237 | 		break;							\ | 
 | 238 | 	case 4:								\ | 
 | 239 | 		put_unaligned_be32((__force u32)(val), __gu_p);		\ | 
 | 240 | 		break;							\ | 
 | 241 | 	case 8:								\ | 
 | 242 | 		put_unaligned_be64((__force u64)(val), __gu_p);		\ | 
 | 243 | 		break;							\ | 
 | 244 | 	default:							\ | 
 | 245 | 		__bad_unaligned_access_size();				\ | 
 | 246 | 		break;							\ | 
 | 247 | 	}								\ | 
 | 248 | 	(void)0; }) | 
 | 249 |  | 
 | 250 | #ifdef __LITTLE_ENDIAN | 
 | 251 | # define get_unaligned __get_unaligned_le | 
 | 252 | # define put_unaligned __put_unaligned_le | 
 | 253 | #else | 
 | 254 | # define get_unaligned __get_unaligned_be | 
 | 255 | # define put_unaligned __put_unaligned_be | 
 | 256 | #endif | 
 | 257 |  | 
 | 258 | #endif /* __ASM_SH_UNALIGNED_SH4A_H */ |