| Andy Grover | fcd8b7c | 2009-02-24 15:30:36 +0000 | [diff] [blame] | 1 | /* | 
|  | 2 | * Copyright (c) 2006 Oracle.  All rights reserved. | 
|  | 3 | * | 
|  | 4 | * This software is available to you under a choice of one of two | 
|  | 5 | * licenses.  You may choose to be licensed under the terms of the GNU | 
|  | 6 | * General Public License (GPL) Version 2, available from the file | 
|  | 7 | * COPYING in the main directory of this source tree, or the | 
|  | 8 | * OpenIB.org BSD license below: | 
|  | 9 | * | 
|  | 10 | *     Redistribution and use in source and binary forms, with or | 
|  | 11 | *     without modification, are permitted provided that the following | 
|  | 12 | *     conditions are met: | 
|  | 13 | * | 
|  | 14 | *      - Redistributions of source code must retain the above | 
|  | 15 | *        copyright notice, this list of conditions and the following | 
|  | 16 | *        disclaimer. | 
|  | 17 | * | 
|  | 18 | *      - Redistributions in binary form must reproduce the above | 
|  | 19 | *        copyright notice, this list of conditions and the following | 
|  | 20 | *        disclaimer in the documentation and/or other materials | 
|  | 21 | *        provided with the distribution. | 
|  | 22 | * | 
|  | 23 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | 
|  | 24 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | 
|  | 25 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | 
|  | 26 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | 
|  | 27 | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | 
|  | 28 | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | 
|  | 29 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | 
|  | 30 | * SOFTWARE. | 
|  | 31 | * | 
|  | 32 | */ | 
|  | 33 | #include <linux/kernel.h> | 
|  | 34 | #include <linux/in.h> | 
|  | 35 | #include <linux/device.h> | 
|  | 36 | #include <linux/dmapool.h> | 
|  | 37 |  | 
|  | 38 | #include "rds.h" | 
|  | 39 | #include "rdma.h" | 
|  | 40 | #include "iw.h" | 
|  | 41 |  | 
|  | 42 | static void rds_iw_send_rdma_complete(struct rds_message *rm, | 
|  | 43 | int wc_status) | 
|  | 44 | { | 
|  | 45 | int notify_status; | 
|  | 46 |  | 
|  | 47 | switch (wc_status) { | 
|  | 48 | case IB_WC_WR_FLUSH_ERR: | 
|  | 49 | return; | 
|  | 50 |  | 
|  | 51 | case IB_WC_SUCCESS: | 
|  | 52 | notify_status = RDS_RDMA_SUCCESS; | 
|  | 53 | break; | 
|  | 54 |  | 
|  | 55 | case IB_WC_REM_ACCESS_ERR: | 
|  | 56 | notify_status = RDS_RDMA_REMOTE_ERROR; | 
|  | 57 | break; | 
|  | 58 |  | 
|  | 59 | default: | 
|  | 60 | notify_status = RDS_RDMA_OTHER_ERROR; | 
|  | 61 | break; | 
|  | 62 | } | 
|  | 63 | rds_rdma_send_complete(rm, notify_status); | 
|  | 64 | } | 
|  | 65 |  | 
|  | 66 | static void rds_iw_send_unmap_rdma(struct rds_iw_connection *ic, | 
|  | 67 | struct rds_rdma_op *op) | 
|  | 68 | { | 
|  | 69 | if (op->r_mapped) { | 
|  | 70 | ib_dma_unmap_sg(ic->i_cm_id->device, | 
|  | 71 | op->r_sg, op->r_nents, | 
|  | 72 | op->r_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE); | 
|  | 73 | op->r_mapped = 0; | 
|  | 74 | } | 
|  | 75 | } | 
|  | 76 |  | 
|  | 77 | static void rds_iw_send_unmap_rm(struct rds_iw_connection *ic, | 
|  | 78 | struct rds_iw_send_work *send, | 
|  | 79 | int wc_status) | 
|  | 80 | { | 
|  | 81 | struct rds_message *rm = send->s_rm; | 
|  | 82 |  | 
|  | 83 | rdsdebug("ic %p send %p rm %p\n", ic, send, rm); | 
|  | 84 |  | 
|  | 85 | ib_dma_unmap_sg(ic->i_cm_id->device, | 
|  | 86 | rm->m_sg, rm->m_nents, | 
|  | 87 | DMA_TO_DEVICE); | 
|  | 88 |  | 
|  | 89 | if (rm->m_rdma_op != NULL) { | 
|  | 90 | rds_iw_send_unmap_rdma(ic, rm->m_rdma_op); | 
|  | 91 |  | 
|  | 92 | /* If the user asked for a completion notification on this | 
|  | 93 | * message, we can implement three different semantics: | 
|  | 94 | *  1.	Notify when we received the ACK on the RDS message | 
|  | 95 | *	that was queued with the RDMA. This provides reliable | 
|  | 96 | *	notification of RDMA status at the expense of a one-way | 
|  | 97 | *	packet delay. | 
|  | 98 | *  2.	Notify when the IB stack gives us the completion event for | 
|  | 99 | *	the RDMA operation. | 
|  | 100 | *  3.	Notify when the IB stack gives us the completion event for | 
|  | 101 | *	the accompanying RDS messages. | 
|  | 102 | * Here, we implement approach #3. To implement approach #2, | 
|  | 103 | * call rds_rdma_send_complete from the cq_handler. To implement #1, | 
|  | 104 | * don't call rds_rdma_send_complete at all, and fall back to the notify | 
|  | 105 | * handling in the ACK processing code. | 
|  | 106 | * | 
|  | 107 | * Note: There's no need to explicitly sync any RDMA buffers using | 
|  | 108 | * ib_dma_sync_sg_for_cpu - the completion for the RDMA | 
|  | 109 | * operation itself unmapped the RDMA buffers, which takes care | 
|  | 110 | * of synching. | 
|  | 111 | */ | 
|  | 112 | rds_iw_send_rdma_complete(rm, wc_status); | 
|  | 113 |  | 
|  | 114 | if (rm->m_rdma_op->r_write) | 
|  | 115 | rds_stats_add(s_send_rdma_bytes, rm->m_rdma_op->r_bytes); | 
|  | 116 | else | 
|  | 117 | rds_stats_add(s_recv_rdma_bytes, rm->m_rdma_op->r_bytes); | 
|  | 118 | } | 
|  | 119 |  | 
|  | 120 | /* If anyone waited for this message to get flushed out, wake | 
|  | 121 | * them up now */ | 
|  | 122 | rds_message_unmapped(rm); | 
|  | 123 |  | 
|  | 124 | rds_message_put(rm); | 
|  | 125 | send->s_rm = NULL; | 
|  | 126 | } | 
|  | 127 |  | 
|  | 128 | void rds_iw_send_init_ring(struct rds_iw_connection *ic) | 
|  | 129 | { | 
|  | 130 | struct rds_iw_send_work *send; | 
|  | 131 | u32 i; | 
|  | 132 |  | 
|  | 133 | for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) { | 
|  | 134 | struct ib_sge *sge; | 
|  | 135 |  | 
|  | 136 | send->s_rm = NULL; | 
|  | 137 | send->s_op = NULL; | 
|  | 138 | send->s_mapping = NULL; | 
|  | 139 |  | 
|  | 140 | send->s_wr.next = NULL; | 
|  | 141 | send->s_wr.wr_id = i; | 
|  | 142 | send->s_wr.sg_list = send->s_sge; | 
|  | 143 | send->s_wr.num_sge = 1; | 
|  | 144 | send->s_wr.opcode = IB_WR_SEND; | 
|  | 145 | send->s_wr.send_flags = 0; | 
|  | 146 | send->s_wr.ex.imm_data = 0; | 
|  | 147 |  | 
|  | 148 | sge = rds_iw_data_sge(ic, send->s_sge); | 
|  | 149 | sge->lkey = 0; | 
|  | 150 |  | 
|  | 151 | sge = rds_iw_header_sge(ic, send->s_sge); | 
|  | 152 | sge->addr = ic->i_send_hdrs_dma + (i * sizeof(struct rds_header)); | 
|  | 153 | sge->length = sizeof(struct rds_header); | 
|  | 154 | sge->lkey = 0; | 
|  | 155 |  | 
|  | 156 | send->s_mr = ib_alloc_fast_reg_mr(ic->i_pd, fastreg_message_size); | 
|  | 157 | if (IS_ERR(send->s_mr)) { | 
|  | 158 | printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_mr failed\n"); | 
|  | 159 | break; | 
|  | 160 | } | 
|  | 161 |  | 
|  | 162 | send->s_page_list = ib_alloc_fast_reg_page_list( | 
|  | 163 | ic->i_cm_id->device, fastreg_message_size); | 
|  | 164 | if (IS_ERR(send->s_page_list)) { | 
|  | 165 | printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_page_list failed\n"); | 
|  | 166 | break; | 
|  | 167 | } | 
|  | 168 | } | 
|  | 169 | } | 
|  | 170 |  | 
|  | 171 | void rds_iw_send_clear_ring(struct rds_iw_connection *ic) | 
|  | 172 | { | 
|  | 173 | struct rds_iw_send_work *send; | 
|  | 174 | u32 i; | 
|  | 175 |  | 
|  | 176 | for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) { | 
|  | 177 | BUG_ON(!send->s_mr); | 
|  | 178 | ib_dereg_mr(send->s_mr); | 
|  | 179 | BUG_ON(!send->s_page_list); | 
|  | 180 | ib_free_fast_reg_page_list(send->s_page_list); | 
|  | 181 | if (send->s_wr.opcode == 0xdead) | 
|  | 182 | continue; | 
|  | 183 | if (send->s_rm) | 
|  | 184 | rds_iw_send_unmap_rm(ic, send, IB_WC_WR_FLUSH_ERR); | 
|  | 185 | if (send->s_op) | 
|  | 186 | rds_iw_send_unmap_rdma(ic, send->s_op); | 
|  | 187 | } | 
|  | 188 | } | 
|  | 189 |  | 
|  | 190 | /* | 
|  | 191 | * The _oldest/_free ring operations here race cleanly with the alloc/unalloc | 
|  | 192 | * operations performed in the send path.  As the sender allocs and potentially | 
|  | 193 | * unallocs the next free entry in the ring it doesn't alter which is | 
|  | 194 | * the next to be freed, which is what this is concerned with. | 
|  | 195 | */ | 
|  | 196 | void rds_iw_send_cq_comp_handler(struct ib_cq *cq, void *context) | 
|  | 197 | { | 
|  | 198 | struct rds_connection *conn = context; | 
|  | 199 | struct rds_iw_connection *ic = conn->c_transport_data; | 
|  | 200 | struct ib_wc wc; | 
|  | 201 | struct rds_iw_send_work *send; | 
|  | 202 | u32 completed; | 
|  | 203 | u32 oldest; | 
|  | 204 | u32 i; | 
|  | 205 | int ret; | 
|  | 206 |  | 
|  | 207 | rdsdebug("cq %p conn %p\n", cq, conn); | 
|  | 208 | rds_iw_stats_inc(s_iw_tx_cq_call); | 
|  | 209 | ret = ib_req_notify_cq(cq, IB_CQ_NEXT_COMP); | 
|  | 210 | if (ret) | 
|  | 211 | rdsdebug("ib_req_notify_cq send failed: %d\n", ret); | 
|  | 212 |  | 
|  | 213 | while (ib_poll_cq(cq, 1, &wc) > 0) { | 
|  | 214 | rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n", | 
|  | 215 | (unsigned long long)wc.wr_id, wc.status, wc.byte_len, | 
|  | 216 | be32_to_cpu(wc.ex.imm_data)); | 
|  | 217 | rds_iw_stats_inc(s_iw_tx_cq_event); | 
|  | 218 |  | 
|  | 219 | if (wc.status != IB_WC_SUCCESS) { | 
|  | 220 | printk(KERN_ERR "WC Error:  status = %d opcode = %d\n", wc.status, wc.opcode); | 
|  | 221 | break; | 
|  | 222 | } | 
|  | 223 |  | 
|  | 224 | if (wc.opcode == IB_WC_LOCAL_INV && wc.wr_id == RDS_IW_LOCAL_INV_WR_ID) { | 
|  | 225 | ic->i_fastreg_posted = 0; | 
|  | 226 | continue; | 
|  | 227 | } | 
|  | 228 |  | 
|  | 229 | if (wc.opcode == IB_WC_FAST_REG_MR && wc.wr_id == RDS_IW_FAST_REG_WR_ID) { | 
|  | 230 | ic->i_fastreg_posted = 1; | 
|  | 231 | continue; | 
|  | 232 | } | 
|  | 233 |  | 
|  | 234 | if (wc.wr_id == RDS_IW_ACK_WR_ID) { | 
|  | 235 | if (ic->i_ack_queued + HZ/2 < jiffies) | 
|  | 236 | rds_iw_stats_inc(s_iw_tx_stalled); | 
|  | 237 | rds_iw_ack_send_complete(ic); | 
|  | 238 | continue; | 
|  | 239 | } | 
|  | 240 |  | 
|  | 241 | oldest = rds_iw_ring_oldest(&ic->i_send_ring); | 
|  | 242 |  | 
|  | 243 | completed = rds_iw_ring_completed(&ic->i_send_ring, wc.wr_id, oldest); | 
|  | 244 |  | 
|  | 245 | for (i = 0; i < completed; i++) { | 
|  | 246 | send = &ic->i_sends[oldest]; | 
|  | 247 |  | 
|  | 248 | /* In the error case, wc.opcode sometimes contains garbage */ | 
|  | 249 | switch (send->s_wr.opcode) { | 
|  | 250 | case IB_WR_SEND: | 
|  | 251 | if (send->s_rm) | 
|  | 252 | rds_iw_send_unmap_rm(ic, send, wc.status); | 
|  | 253 | break; | 
|  | 254 | case IB_WR_FAST_REG_MR: | 
|  | 255 | case IB_WR_RDMA_WRITE: | 
|  | 256 | case IB_WR_RDMA_READ: | 
|  | 257 | case IB_WR_RDMA_READ_WITH_INV: | 
|  | 258 | /* Nothing to be done - the SG list will be unmapped | 
|  | 259 | * when the SEND completes. */ | 
|  | 260 | break; | 
|  | 261 | default: | 
|  | 262 | if (printk_ratelimit()) | 
|  | 263 | printk(KERN_NOTICE | 
|  | 264 | "RDS/IW: %s: unexpected opcode 0x%x in WR!\n", | 
|  | 265 | __func__, send->s_wr.opcode); | 
|  | 266 | break; | 
|  | 267 | } | 
|  | 268 |  | 
|  | 269 | send->s_wr.opcode = 0xdead; | 
|  | 270 | send->s_wr.num_sge = 1; | 
|  | 271 | if (send->s_queued + HZ/2 < jiffies) | 
|  | 272 | rds_iw_stats_inc(s_iw_tx_stalled); | 
|  | 273 |  | 
|  | 274 | /* If a RDMA operation produced an error, signal this right | 
|  | 275 | * away. If we don't, the subsequent SEND that goes with this | 
|  | 276 | * RDMA will be canceled with ERR_WFLUSH, and the application | 
|  | 277 | * never learn that the RDMA failed. */ | 
|  | 278 | if (unlikely(wc.status == IB_WC_REM_ACCESS_ERR && send->s_op)) { | 
|  | 279 | struct rds_message *rm; | 
|  | 280 |  | 
|  | 281 | rm = rds_send_get_message(conn, send->s_op); | 
|  | 282 | if (rm) | 
|  | 283 | rds_iw_send_rdma_complete(rm, wc.status); | 
|  | 284 | } | 
|  | 285 |  | 
|  | 286 | oldest = (oldest + 1) % ic->i_send_ring.w_nr; | 
|  | 287 | } | 
|  | 288 |  | 
|  | 289 | rds_iw_ring_free(&ic->i_send_ring, completed); | 
|  | 290 |  | 
| Joe Perches | f64f9e7 | 2009-11-29 16:55:45 -0800 | [diff] [blame] | 291 | if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags) || | 
|  | 292 | test_bit(0, &conn->c_map_queued)) | 
| Andy Grover | fcd8b7c | 2009-02-24 15:30:36 +0000 | [diff] [blame] | 293 | queue_delayed_work(rds_wq, &conn->c_send_w, 0); | 
|  | 294 |  | 
|  | 295 | /* We expect errors as the qp is drained during shutdown */ | 
|  | 296 | if (wc.status != IB_WC_SUCCESS && rds_conn_up(conn)) { | 
|  | 297 | rds_iw_conn_error(conn, | 
|  | 298 | "send completion on %pI4 " | 
|  | 299 | "had status %u, disconnecting and reconnecting\n", | 
|  | 300 | &conn->c_faddr, wc.status); | 
|  | 301 | } | 
|  | 302 | } | 
|  | 303 | } | 
|  | 304 |  | 
|  | 305 | /* | 
|  | 306 | * This is the main function for allocating credits when sending | 
|  | 307 | * messages. | 
|  | 308 | * | 
|  | 309 | * Conceptually, we have two counters: | 
|  | 310 | *  -	send credits: this tells us how many WRs we're allowed | 
|  | 311 | *	to submit without overruning the reciever's queue. For | 
|  | 312 | *	each SEND WR we post, we decrement this by one. | 
|  | 313 | * | 
|  | 314 | *  -	posted credits: this tells us how many WRs we recently | 
|  | 315 | *	posted to the receive queue. This value is transferred | 
|  | 316 | *	to the peer as a "credit update" in a RDS header field. | 
|  | 317 | *	Every time we transmit credits to the peer, we subtract | 
|  | 318 | *	the amount of transferred credits from this counter. | 
|  | 319 | * | 
|  | 320 | * It is essential that we avoid situations where both sides have | 
|  | 321 | * exhausted their send credits, and are unable to send new credits | 
|  | 322 | * to the peer. We achieve this by requiring that we send at least | 
|  | 323 | * one credit update to the peer before exhausting our credits. | 
|  | 324 | * When new credits arrive, we subtract one credit that is withheld | 
|  | 325 | * until we've posted new buffers and are ready to transmit these | 
|  | 326 | * credits (see rds_iw_send_add_credits below). | 
|  | 327 | * | 
|  | 328 | * The RDS send code is essentially single-threaded; rds_send_xmit | 
|  | 329 | * grabs c_send_lock to ensure exclusive access to the send ring. | 
|  | 330 | * However, the ACK sending code is independent and can race with | 
|  | 331 | * message SENDs. | 
|  | 332 | * | 
|  | 333 | * In the send path, we need to update the counters for send credits | 
|  | 334 | * and the counter of posted buffers atomically - when we use the | 
|  | 335 | * last available credit, we cannot allow another thread to race us | 
|  | 336 | * and grab the posted credits counter.  Hence, we have to use a | 
|  | 337 | * spinlock to protect the credit counter, or use atomics. | 
|  | 338 | * | 
|  | 339 | * Spinlocks shared between the send and the receive path are bad, | 
|  | 340 | * because they create unnecessary delays. An early implementation | 
|  | 341 | * using a spinlock showed a 5% degradation in throughput at some | 
|  | 342 | * loads. | 
|  | 343 | * | 
|  | 344 | * This implementation avoids spinlocks completely, putting both | 
|  | 345 | * counters into a single atomic, and updating that atomic using | 
|  | 346 | * atomic_add (in the receive path, when receiving fresh credits), | 
|  | 347 | * and using atomic_cmpxchg when updating the two counters. | 
|  | 348 | */ | 
|  | 349 | int rds_iw_send_grab_credits(struct rds_iw_connection *ic, | 
| Steve Wise | 7b70d03 | 2009-04-09 14:09:39 +0000 | [diff] [blame] | 350 | u32 wanted, u32 *adv_credits, int need_posted, int max_posted) | 
| Andy Grover | fcd8b7c | 2009-02-24 15:30:36 +0000 | [diff] [blame] | 351 | { | 
|  | 352 | unsigned int avail, posted, got = 0, advertise; | 
|  | 353 | long oldval, newval; | 
|  | 354 |  | 
|  | 355 | *adv_credits = 0; | 
|  | 356 | if (!ic->i_flowctl) | 
|  | 357 | return wanted; | 
|  | 358 |  | 
|  | 359 | try_again: | 
|  | 360 | advertise = 0; | 
|  | 361 | oldval = newval = atomic_read(&ic->i_credits); | 
|  | 362 | posted = IB_GET_POST_CREDITS(oldval); | 
|  | 363 | avail = IB_GET_SEND_CREDITS(oldval); | 
|  | 364 |  | 
|  | 365 | rdsdebug("rds_iw_send_grab_credits(%u): credits=%u posted=%u\n", | 
|  | 366 | wanted, avail, posted); | 
|  | 367 |  | 
|  | 368 | /* The last credit must be used to send a credit update. */ | 
|  | 369 | if (avail && !posted) | 
|  | 370 | avail--; | 
|  | 371 |  | 
|  | 372 | if (avail < wanted) { | 
|  | 373 | struct rds_connection *conn = ic->i_cm_id->context; | 
|  | 374 |  | 
|  | 375 | /* Oops, there aren't that many credits left! */ | 
|  | 376 | set_bit(RDS_LL_SEND_FULL, &conn->c_flags); | 
|  | 377 | got = avail; | 
|  | 378 | } else { | 
|  | 379 | /* Sometimes you get what you want, lalala. */ | 
|  | 380 | got = wanted; | 
|  | 381 | } | 
|  | 382 | newval -= IB_SET_SEND_CREDITS(got); | 
|  | 383 |  | 
|  | 384 | /* | 
|  | 385 | * If need_posted is non-zero, then the caller wants | 
|  | 386 | * the posted regardless of whether any send credits are | 
|  | 387 | * available. | 
|  | 388 | */ | 
|  | 389 | if (posted && (got || need_posted)) { | 
| Steve Wise | 7b70d03 | 2009-04-09 14:09:39 +0000 | [diff] [blame] | 390 | advertise = min_t(unsigned int, posted, max_posted); | 
| Andy Grover | fcd8b7c | 2009-02-24 15:30:36 +0000 | [diff] [blame] | 391 | newval -= IB_SET_POST_CREDITS(advertise); | 
|  | 392 | } | 
|  | 393 |  | 
|  | 394 | /* Finally bill everything */ | 
|  | 395 | if (atomic_cmpxchg(&ic->i_credits, oldval, newval) != oldval) | 
|  | 396 | goto try_again; | 
|  | 397 |  | 
|  | 398 | *adv_credits = advertise; | 
|  | 399 | return got; | 
|  | 400 | } | 
|  | 401 |  | 
|  | 402 | void rds_iw_send_add_credits(struct rds_connection *conn, unsigned int credits) | 
|  | 403 | { | 
|  | 404 | struct rds_iw_connection *ic = conn->c_transport_data; | 
|  | 405 |  | 
|  | 406 | if (credits == 0) | 
|  | 407 | return; | 
|  | 408 |  | 
|  | 409 | rdsdebug("rds_iw_send_add_credits(%u): current=%u%s\n", | 
|  | 410 | credits, | 
|  | 411 | IB_GET_SEND_CREDITS(atomic_read(&ic->i_credits)), | 
|  | 412 | test_bit(RDS_LL_SEND_FULL, &conn->c_flags) ? ", ll_send_full" : ""); | 
|  | 413 |  | 
|  | 414 | atomic_add(IB_SET_SEND_CREDITS(credits), &ic->i_credits); | 
|  | 415 | if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags)) | 
|  | 416 | queue_delayed_work(rds_wq, &conn->c_send_w, 0); | 
|  | 417 |  | 
|  | 418 | WARN_ON(IB_GET_SEND_CREDITS(credits) >= 16384); | 
|  | 419 |  | 
|  | 420 | rds_iw_stats_inc(s_iw_rx_credit_updates); | 
|  | 421 | } | 
|  | 422 |  | 
|  | 423 | void rds_iw_advertise_credits(struct rds_connection *conn, unsigned int posted) | 
|  | 424 | { | 
|  | 425 | struct rds_iw_connection *ic = conn->c_transport_data; | 
|  | 426 |  | 
|  | 427 | if (posted == 0) | 
|  | 428 | return; | 
|  | 429 |  | 
|  | 430 | atomic_add(IB_SET_POST_CREDITS(posted), &ic->i_credits); | 
|  | 431 |  | 
|  | 432 | /* Decide whether to send an update to the peer now. | 
|  | 433 | * If we would send a credit update for every single buffer we | 
|  | 434 | * post, we would end up with an ACK storm (ACK arrives, | 
|  | 435 | * consumes buffer, we refill the ring, send ACK to remote | 
|  | 436 | * advertising the newly posted buffer... ad inf) | 
|  | 437 | * | 
|  | 438 | * Performance pretty much depends on how often we send | 
|  | 439 | * credit updates - too frequent updates mean lots of ACKs. | 
|  | 440 | * Too infrequent updates, and the peer will run out of | 
|  | 441 | * credits and has to throttle. | 
|  | 442 | * For the time being, 16 seems to be a good compromise. | 
|  | 443 | */ | 
|  | 444 | if (IB_GET_POST_CREDITS(atomic_read(&ic->i_credits)) >= 16) | 
|  | 445 | set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); | 
|  | 446 | } | 
|  | 447 |  | 
|  | 448 | static inline void | 
|  | 449 | rds_iw_xmit_populate_wr(struct rds_iw_connection *ic, | 
|  | 450 | struct rds_iw_send_work *send, unsigned int pos, | 
|  | 451 | unsigned long buffer, unsigned int length, | 
|  | 452 | int send_flags) | 
|  | 453 | { | 
|  | 454 | struct ib_sge *sge; | 
|  | 455 |  | 
|  | 456 | WARN_ON(pos != send - ic->i_sends); | 
|  | 457 |  | 
|  | 458 | send->s_wr.send_flags = send_flags; | 
|  | 459 | send->s_wr.opcode = IB_WR_SEND; | 
|  | 460 | send->s_wr.num_sge = 2; | 
|  | 461 | send->s_wr.next = NULL; | 
|  | 462 | send->s_queued = jiffies; | 
|  | 463 | send->s_op = NULL; | 
|  | 464 |  | 
|  | 465 | if (length != 0) { | 
|  | 466 | sge = rds_iw_data_sge(ic, send->s_sge); | 
|  | 467 | sge->addr = buffer; | 
|  | 468 | sge->length = length; | 
|  | 469 | sge->lkey = rds_iw_local_dma_lkey(ic); | 
|  | 470 |  | 
|  | 471 | sge = rds_iw_header_sge(ic, send->s_sge); | 
|  | 472 | } else { | 
|  | 473 | /* We're sending a packet with no payload. There is only | 
|  | 474 | * one SGE */ | 
|  | 475 | send->s_wr.num_sge = 1; | 
|  | 476 | sge = &send->s_sge[0]; | 
|  | 477 | } | 
|  | 478 |  | 
|  | 479 | sge->addr = ic->i_send_hdrs_dma + (pos * sizeof(struct rds_header)); | 
|  | 480 | sge->length = sizeof(struct rds_header); | 
|  | 481 | sge->lkey = rds_iw_local_dma_lkey(ic); | 
|  | 482 | } | 
|  | 483 |  | 
|  | 484 | /* | 
|  | 485 | * This can be called multiple times for a given message.  The first time | 
|  | 486 | * we see a message we map its scatterlist into the IB device so that | 
|  | 487 | * we can provide that mapped address to the IB scatter gather entries | 
|  | 488 | * in the IB work requests.  We translate the scatterlist into a series | 
|  | 489 | * of work requests that fragment the message.  These work requests complete | 
|  | 490 | * in order so we pass ownership of the message to the completion handler | 
|  | 491 | * once we send the final fragment. | 
|  | 492 | * | 
|  | 493 | * The RDS core uses the c_send_lock to only enter this function once | 
|  | 494 | * per connection.  This makes sure that the tx ring alloc/unalloc pairs | 
|  | 495 | * don't get out of sync and confuse the ring. | 
|  | 496 | */ | 
|  | 497 | int rds_iw_xmit(struct rds_connection *conn, struct rds_message *rm, | 
|  | 498 | unsigned int hdr_off, unsigned int sg, unsigned int off) | 
|  | 499 | { | 
|  | 500 | struct rds_iw_connection *ic = conn->c_transport_data; | 
|  | 501 | struct ib_device *dev = ic->i_cm_id->device; | 
|  | 502 | struct rds_iw_send_work *send = NULL; | 
|  | 503 | struct rds_iw_send_work *first; | 
|  | 504 | struct rds_iw_send_work *prev; | 
|  | 505 | struct ib_send_wr *failed_wr; | 
|  | 506 | struct scatterlist *scat; | 
|  | 507 | u32 pos; | 
|  | 508 | u32 i; | 
|  | 509 | u32 work_alloc; | 
|  | 510 | u32 credit_alloc; | 
|  | 511 | u32 posted; | 
|  | 512 | u32 adv_credits = 0; | 
|  | 513 | int send_flags = 0; | 
|  | 514 | int sent; | 
|  | 515 | int ret; | 
|  | 516 | int flow_controlled = 0; | 
|  | 517 |  | 
|  | 518 | BUG_ON(off % RDS_FRAG_SIZE); | 
|  | 519 | BUG_ON(hdr_off != 0 && hdr_off != sizeof(struct rds_header)); | 
|  | 520 |  | 
|  | 521 | /* Fastreg support */ | 
| Joe Perches | f64f9e7 | 2009-11-29 16:55:45 -0800 | [diff] [blame] | 522 | if (rds_rdma_cookie_key(rm->m_rdma_cookie) && !ic->i_fastreg_posted) { | 
| Andy Grover | fcd8b7c | 2009-02-24 15:30:36 +0000 | [diff] [blame] | 523 | ret = -EAGAIN; | 
|  | 524 | goto out; | 
|  | 525 | } | 
|  | 526 |  | 
|  | 527 | /* FIXME we may overallocate here */ | 
|  | 528 | if (be32_to_cpu(rm->m_inc.i_hdr.h_len) == 0) | 
|  | 529 | i = 1; | 
|  | 530 | else | 
|  | 531 | i = ceil(be32_to_cpu(rm->m_inc.i_hdr.h_len), RDS_FRAG_SIZE); | 
|  | 532 |  | 
|  | 533 | work_alloc = rds_iw_ring_alloc(&ic->i_send_ring, i, &pos); | 
|  | 534 | if (work_alloc == 0) { | 
|  | 535 | set_bit(RDS_LL_SEND_FULL, &conn->c_flags); | 
|  | 536 | rds_iw_stats_inc(s_iw_tx_ring_full); | 
|  | 537 | ret = -ENOMEM; | 
|  | 538 | goto out; | 
|  | 539 | } | 
|  | 540 |  | 
|  | 541 | credit_alloc = work_alloc; | 
|  | 542 | if (ic->i_flowctl) { | 
| Steve Wise | 7b70d03 | 2009-04-09 14:09:39 +0000 | [diff] [blame] | 543 | credit_alloc = rds_iw_send_grab_credits(ic, work_alloc, &posted, 0, RDS_MAX_ADV_CREDIT); | 
| Andy Grover | fcd8b7c | 2009-02-24 15:30:36 +0000 | [diff] [blame] | 544 | adv_credits += posted; | 
|  | 545 | if (credit_alloc < work_alloc) { | 
|  | 546 | rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc - credit_alloc); | 
|  | 547 | work_alloc = credit_alloc; | 
|  | 548 | flow_controlled++; | 
|  | 549 | } | 
|  | 550 | if (work_alloc == 0) { | 
| Steve Wise | d39e060 | 2009-04-09 14:09:38 +0000 | [diff] [blame] | 551 | set_bit(RDS_LL_SEND_FULL, &conn->c_flags); | 
| Andy Grover | fcd8b7c | 2009-02-24 15:30:36 +0000 | [diff] [blame] | 552 | rds_iw_stats_inc(s_iw_tx_throttle); | 
|  | 553 | ret = -ENOMEM; | 
|  | 554 | goto out; | 
|  | 555 | } | 
|  | 556 | } | 
|  | 557 |  | 
|  | 558 | /* map the message the first time we see it */ | 
|  | 559 | if (ic->i_rm == NULL) { | 
|  | 560 | /* | 
|  | 561 | printk(KERN_NOTICE "rds_iw_xmit prep msg dport=%u flags=0x%x len=%d\n", | 
|  | 562 | be16_to_cpu(rm->m_inc.i_hdr.h_dport), | 
|  | 563 | rm->m_inc.i_hdr.h_flags, | 
|  | 564 | be32_to_cpu(rm->m_inc.i_hdr.h_len)); | 
|  | 565 | */ | 
|  | 566 | if (rm->m_nents) { | 
|  | 567 | rm->m_count = ib_dma_map_sg(dev, | 
|  | 568 | rm->m_sg, rm->m_nents, DMA_TO_DEVICE); | 
|  | 569 | rdsdebug("ic %p mapping rm %p: %d\n", ic, rm, rm->m_count); | 
|  | 570 | if (rm->m_count == 0) { | 
|  | 571 | rds_iw_stats_inc(s_iw_tx_sg_mapping_failure); | 
|  | 572 | rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc); | 
|  | 573 | ret = -ENOMEM; /* XXX ? */ | 
|  | 574 | goto out; | 
|  | 575 | } | 
|  | 576 | } else { | 
|  | 577 | rm->m_count = 0; | 
|  | 578 | } | 
|  | 579 |  | 
|  | 580 | ic->i_unsignaled_wrs = rds_iw_sysctl_max_unsig_wrs; | 
|  | 581 | ic->i_unsignaled_bytes = rds_iw_sysctl_max_unsig_bytes; | 
|  | 582 | rds_message_addref(rm); | 
|  | 583 | ic->i_rm = rm; | 
|  | 584 |  | 
|  | 585 | /* Finalize the header */ | 
|  | 586 | if (test_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags)) | 
|  | 587 | rm->m_inc.i_hdr.h_flags |= RDS_FLAG_ACK_REQUIRED; | 
|  | 588 | if (test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags)) | 
|  | 589 | rm->m_inc.i_hdr.h_flags |= RDS_FLAG_RETRANSMITTED; | 
|  | 590 |  | 
|  | 591 | /* If it has a RDMA op, tell the peer we did it. This is | 
|  | 592 | * used by the peer to release use-once RDMA MRs. */ | 
|  | 593 | if (rm->m_rdma_op) { | 
|  | 594 | struct rds_ext_header_rdma ext_hdr; | 
|  | 595 |  | 
|  | 596 | ext_hdr.h_rdma_rkey = cpu_to_be32(rm->m_rdma_op->r_key); | 
|  | 597 | rds_message_add_extension(&rm->m_inc.i_hdr, | 
|  | 598 | RDS_EXTHDR_RDMA, &ext_hdr, sizeof(ext_hdr)); | 
|  | 599 | } | 
|  | 600 | if (rm->m_rdma_cookie) { | 
|  | 601 | rds_message_add_rdma_dest_extension(&rm->m_inc.i_hdr, | 
|  | 602 | rds_rdma_cookie_key(rm->m_rdma_cookie), | 
|  | 603 | rds_rdma_cookie_offset(rm->m_rdma_cookie)); | 
|  | 604 | } | 
|  | 605 |  | 
|  | 606 | /* Note - rds_iw_piggyb_ack clears the ACK_REQUIRED bit, so | 
|  | 607 | * we should not do this unless we have a chance of at least | 
|  | 608 | * sticking the header into the send ring. Which is why we | 
|  | 609 | * should call rds_iw_ring_alloc first. */ | 
|  | 610 | rm->m_inc.i_hdr.h_ack = cpu_to_be64(rds_iw_piggyb_ack(ic)); | 
|  | 611 | rds_message_make_checksum(&rm->m_inc.i_hdr); | 
|  | 612 |  | 
|  | 613 | /* | 
|  | 614 | * Update adv_credits since we reset the ACK_REQUIRED bit. | 
|  | 615 | */ | 
| Steve Wise | 7b70d03 | 2009-04-09 14:09:39 +0000 | [diff] [blame] | 616 | rds_iw_send_grab_credits(ic, 0, &posted, 1, RDS_MAX_ADV_CREDIT - adv_credits); | 
| Andy Grover | fcd8b7c | 2009-02-24 15:30:36 +0000 | [diff] [blame] | 617 | adv_credits += posted; | 
|  | 618 | BUG_ON(adv_credits > 255); | 
| Andy Grover | 735f61e | 2010-03-11 13:49:55 +0000 | [diff] [blame] | 619 | } | 
| Andy Grover | fcd8b7c | 2009-02-24 15:30:36 +0000 | [diff] [blame] | 620 |  | 
|  | 621 | send = &ic->i_sends[pos]; | 
|  | 622 | first = send; | 
|  | 623 | prev = NULL; | 
|  | 624 | scat = &rm->m_sg[sg]; | 
|  | 625 | sent = 0; | 
|  | 626 | i = 0; | 
|  | 627 |  | 
|  | 628 | /* Sometimes you want to put a fence between an RDMA | 
|  | 629 | * READ and the following SEND. | 
|  | 630 | * We could either do this all the time | 
|  | 631 | * or when requested by the user. Right now, we let | 
|  | 632 | * the application choose. | 
|  | 633 | */ | 
|  | 634 | if (rm->m_rdma_op && rm->m_rdma_op->r_fence) | 
|  | 635 | send_flags = IB_SEND_FENCE; | 
|  | 636 |  | 
|  | 637 | /* | 
|  | 638 | * We could be copying the header into the unused tail of the page. | 
|  | 639 | * That would need to be changed in the future when those pages might | 
|  | 640 | * be mapped userspace pages or page cache pages.  So instead we always | 
|  | 641 | * use a second sge and our long-lived ring of mapped headers.  We send | 
|  | 642 | * the header after the data so that the data payload can be aligned on | 
|  | 643 | * the receiver. | 
|  | 644 | */ | 
|  | 645 |  | 
|  | 646 | /* handle a 0-len message */ | 
|  | 647 | if (be32_to_cpu(rm->m_inc.i_hdr.h_len) == 0) { | 
|  | 648 | rds_iw_xmit_populate_wr(ic, send, pos, 0, 0, send_flags); | 
|  | 649 | goto add_header; | 
|  | 650 | } | 
|  | 651 |  | 
|  | 652 | /* if there's data reference it with a chain of work reqs */ | 
|  | 653 | for (; i < work_alloc && scat != &rm->m_sg[rm->m_count]; i++) { | 
|  | 654 | unsigned int len; | 
|  | 655 |  | 
|  | 656 | send = &ic->i_sends[pos]; | 
|  | 657 |  | 
|  | 658 | len = min(RDS_FRAG_SIZE, ib_sg_dma_len(dev, scat) - off); | 
|  | 659 | rds_iw_xmit_populate_wr(ic, send, pos, | 
|  | 660 | ib_sg_dma_address(dev, scat) + off, len, | 
|  | 661 | send_flags); | 
|  | 662 |  | 
|  | 663 | /* | 
|  | 664 | * We want to delay signaling completions just enough to get | 
|  | 665 | * the batching benefits but not so much that we create dead time | 
|  | 666 | * on the wire. | 
|  | 667 | */ | 
|  | 668 | if (ic->i_unsignaled_wrs-- == 0) { | 
|  | 669 | ic->i_unsignaled_wrs = rds_iw_sysctl_max_unsig_wrs; | 
|  | 670 | send->s_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED; | 
|  | 671 | } | 
|  | 672 |  | 
|  | 673 | ic->i_unsignaled_bytes -= len; | 
|  | 674 | if (ic->i_unsignaled_bytes <= 0) { | 
|  | 675 | ic->i_unsignaled_bytes = rds_iw_sysctl_max_unsig_bytes; | 
|  | 676 | send->s_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED; | 
|  | 677 | } | 
|  | 678 |  | 
|  | 679 | /* | 
|  | 680 | * Always signal the last one if we're stopping due to flow control. | 
|  | 681 | */ | 
|  | 682 | if (flow_controlled && i == (work_alloc-1)) | 
|  | 683 | send->s_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED; | 
|  | 684 |  | 
|  | 685 | rdsdebug("send %p wr %p num_sge %u next %p\n", send, | 
|  | 686 | &send->s_wr, send->s_wr.num_sge, send->s_wr.next); | 
|  | 687 |  | 
|  | 688 | sent += len; | 
|  | 689 | off += len; | 
|  | 690 | if (off == ib_sg_dma_len(dev, scat)) { | 
|  | 691 | scat++; | 
|  | 692 | off = 0; | 
|  | 693 | } | 
|  | 694 |  | 
|  | 695 | add_header: | 
|  | 696 | /* Tack on the header after the data. The header SGE should already | 
|  | 697 | * have been set up to point to the right header buffer. */ | 
|  | 698 | memcpy(&ic->i_send_hdrs[pos], &rm->m_inc.i_hdr, sizeof(struct rds_header)); | 
|  | 699 |  | 
|  | 700 | if (0) { | 
|  | 701 | struct rds_header *hdr = &ic->i_send_hdrs[pos]; | 
|  | 702 |  | 
|  | 703 | printk(KERN_NOTICE "send WR dport=%u flags=0x%x len=%d\n", | 
|  | 704 | be16_to_cpu(hdr->h_dport), | 
|  | 705 | hdr->h_flags, | 
|  | 706 | be32_to_cpu(hdr->h_len)); | 
|  | 707 | } | 
|  | 708 | if (adv_credits) { | 
|  | 709 | struct rds_header *hdr = &ic->i_send_hdrs[pos]; | 
|  | 710 |  | 
|  | 711 | /* add credit and redo the header checksum */ | 
|  | 712 | hdr->h_credit = adv_credits; | 
|  | 713 | rds_message_make_checksum(hdr); | 
|  | 714 | adv_credits = 0; | 
|  | 715 | rds_iw_stats_inc(s_iw_tx_credit_updates); | 
|  | 716 | } | 
|  | 717 |  | 
|  | 718 | if (prev) | 
|  | 719 | prev->s_wr.next = &send->s_wr; | 
|  | 720 | prev = send; | 
|  | 721 |  | 
|  | 722 | pos = (pos + 1) % ic->i_send_ring.w_nr; | 
|  | 723 | } | 
|  | 724 |  | 
|  | 725 | /* Account the RDS header in the number of bytes we sent, but just once. | 
|  | 726 | * The caller has no concept of fragmentation. */ | 
|  | 727 | if (hdr_off == 0) | 
|  | 728 | sent += sizeof(struct rds_header); | 
|  | 729 |  | 
|  | 730 | /* if we finished the message then send completion owns it */ | 
|  | 731 | if (scat == &rm->m_sg[rm->m_count]) { | 
|  | 732 | prev->s_rm = ic->i_rm; | 
|  | 733 | prev->s_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED; | 
|  | 734 | ic->i_rm = NULL; | 
|  | 735 | } | 
|  | 736 |  | 
|  | 737 | if (i < work_alloc) { | 
|  | 738 | rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc - i); | 
|  | 739 | work_alloc = i; | 
|  | 740 | } | 
|  | 741 | if (ic->i_flowctl && i < credit_alloc) | 
|  | 742 | rds_iw_send_add_credits(conn, credit_alloc - i); | 
|  | 743 |  | 
|  | 744 | /* XXX need to worry about failed_wr and partial sends. */ | 
|  | 745 | failed_wr = &first->s_wr; | 
|  | 746 | ret = ib_post_send(ic->i_cm_id->qp, &first->s_wr, &failed_wr); | 
|  | 747 | rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic, | 
|  | 748 | first, &first->s_wr, ret, failed_wr); | 
|  | 749 | BUG_ON(failed_wr != &first->s_wr); | 
|  | 750 | if (ret) { | 
|  | 751 | printk(KERN_WARNING "RDS/IW: ib_post_send to %pI4 " | 
|  | 752 | "returned %d\n", &conn->c_faddr, ret); | 
|  | 753 | rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc); | 
|  | 754 | if (prev->s_rm) { | 
|  | 755 | ic->i_rm = prev->s_rm; | 
|  | 756 | prev->s_rm = NULL; | 
|  | 757 | } | 
|  | 758 | goto out; | 
|  | 759 | } | 
|  | 760 |  | 
|  | 761 | ret = sent; | 
|  | 762 | out: | 
|  | 763 | BUG_ON(adv_credits); | 
|  | 764 | return ret; | 
|  | 765 | } | 
|  | 766 |  | 
|  | 767 | static void rds_iw_build_send_fastreg(struct rds_iw_device *rds_iwdev, struct rds_iw_connection *ic, struct rds_iw_send_work *send, int nent, int len, u64 sg_addr) | 
|  | 768 | { | 
|  | 769 | BUG_ON(nent > send->s_page_list->max_page_list_len); | 
|  | 770 | /* | 
|  | 771 | * Perform a WR for the fast_reg_mr. Each individual page | 
|  | 772 | * in the sg list is added to the fast reg page list and placed | 
|  | 773 | * inside the fast_reg_mr WR. | 
|  | 774 | */ | 
|  | 775 | send->s_wr.opcode = IB_WR_FAST_REG_MR; | 
|  | 776 | send->s_wr.wr.fast_reg.length = len; | 
|  | 777 | send->s_wr.wr.fast_reg.rkey = send->s_mr->rkey; | 
|  | 778 | send->s_wr.wr.fast_reg.page_list = send->s_page_list; | 
|  | 779 | send->s_wr.wr.fast_reg.page_list_len = nent; | 
| Andy Grover | 404bb72 | 2009-07-17 13:13:34 +0000 | [diff] [blame] | 780 | send->s_wr.wr.fast_reg.page_shift = PAGE_SHIFT; | 
| Andy Grover | fcd8b7c | 2009-02-24 15:30:36 +0000 | [diff] [blame] | 781 | send->s_wr.wr.fast_reg.access_flags = IB_ACCESS_REMOTE_WRITE; | 
|  | 782 | send->s_wr.wr.fast_reg.iova_start = sg_addr; | 
|  | 783 |  | 
|  | 784 | ib_update_fast_reg_key(send->s_mr, send->s_remap_count++); | 
|  | 785 | } | 
|  | 786 |  | 
|  | 787 | int rds_iw_xmit_rdma(struct rds_connection *conn, struct rds_rdma_op *op) | 
|  | 788 | { | 
|  | 789 | struct rds_iw_connection *ic = conn->c_transport_data; | 
|  | 790 | struct rds_iw_send_work *send = NULL; | 
|  | 791 | struct rds_iw_send_work *first; | 
|  | 792 | struct rds_iw_send_work *prev; | 
|  | 793 | struct ib_send_wr *failed_wr; | 
|  | 794 | struct rds_iw_device *rds_iwdev; | 
|  | 795 | struct scatterlist *scat; | 
|  | 796 | unsigned long len; | 
|  | 797 | u64 remote_addr = op->r_remote_addr; | 
|  | 798 | u32 pos, fr_pos; | 
|  | 799 | u32 work_alloc; | 
|  | 800 | u32 i; | 
|  | 801 | u32 j; | 
|  | 802 | int sent; | 
|  | 803 | int ret; | 
|  | 804 | int num_sge; | 
|  | 805 |  | 
|  | 806 | rds_iwdev = ib_get_client_data(ic->i_cm_id->device, &rds_iw_client); | 
|  | 807 |  | 
|  | 808 | /* map the message the first time we see it */ | 
|  | 809 | if (!op->r_mapped) { | 
|  | 810 | op->r_count = ib_dma_map_sg(ic->i_cm_id->device, | 
|  | 811 | op->r_sg, op->r_nents, (op->r_write) ? | 
|  | 812 | DMA_TO_DEVICE : DMA_FROM_DEVICE); | 
|  | 813 | rdsdebug("ic %p mapping op %p: %d\n", ic, op, op->r_count); | 
|  | 814 | if (op->r_count == 0) { | 
|  | 815 | rds_iw_stats_inc(s_iw_tx_sg_mapping_failure); | 
|  | 816 | ret = -ENOMEM; /* XXX ? */ | 
|  | 817 | goto out; | 
|  | 818 | } | 
|  | 819 |  | 
|  | 820 | op->r_mapped = 1; | 
|  | 821 | } | 
|  | 822 |  | 
|  | 823 | if (!op->r_write) { | 
|  | 824 | /* Alloc space on the send queue for the fastreg */ | 
|  | 825 | work_alloc = rds_iw_ring_alloc(&ic->i_send_ring, 1, &fr_pos); | 
|  | 826 | if (work_alloc != 1) { | 
|  | 827 | rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc); | 
|  | 828 | rds_iw_stats_inc(s_iw_tx_ring_full); | 
|  | 829 | ret = -ENOMEM; | 
|  | 830 | goto out; | 
|  | 831 | } | 
|  | 832 | } | 
|  | 833 |  | 
|  | 834 | /* | 
|  | 835 | * Instead of knowing how to return a partial rdma read/write we insist that there | 
|  | 836 | * be enough work requests to send the entire message. | 
|  | 837 | */ | 
|  | 838 | i = ceil(op->r_count, rds_iwdev->max_sge); | 
|  | 839 |  | 
|  | 840 | work_alloc = rds_iw_ring_alloc(&ic->i_send_ring, i, &pos); | 
|  | 841 | if (work_alloc != i) { | 
|  | 842 | rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc); | 
|  | 843 | rds_iw_stats_inc(s_iw_tx_ring_full); | 
|  | 844 | ret = -ENOMEM; | 
|  | 845 | goto out; | 
|  | 846 | } | 
|  | 847 |  | 
|  | 848 | send = &ic->i_sends[pos]; | 
|  | 849 | if (!op->r_write) { | 
|  | 850 | first = prev = &ic->i_sends[fr_pos]; | 
|  | 851 | } else { | 
|  | 852 | first = send; | 
|  | 853 | prev = NULL; | 
|  | 854 | } | 
|  | 855 | scat = &op->r_sg[0]; | 
|  | 856 | sent = 0; | 
|  | 857 | num_sge = op->r_count; | 
|  | 858 |  | 
|  | 859 | for (i = 0; i < work_alloc && scat != &op->r_sg[op->r_count]; i++) { | 
|  | 860 | send->s_wr.send_flags = 0; | 
|  | 861 | send->s_queued = jiffies; | 
|  | 862 |  | 
|  | 863 | /* | 
|  | 864 | * We want to delay signaling completions just enough to get | 
|  | 865 | * the batching benefits but not so much that we create dead time on the wire. | 
|  | 866 | */ | 
|  | 867 | if (ic->i_unsignaled_wrs-- == 0) { | 
|  | 868 | ic->i_unsignaled_wrs = rds_iw_sysctl_max_unsig_wrs; | 
|  | 869 | send->s_wr.send_flags = IB_SEND_SIGNALED; | 
|  | 870 | } | 
|  | 871 |  | 
|  | 872 | /* To avoid the need to have the plumbing to invalidate the fastreg_mr used | 
|  | 873 | * for local access after RDS is finished with it, using | 
|  | 874 | * IB_WR_RDMA_READ_WITH_INV will invalidate it after the read has completed. | 
|  | 875 | */ | 
|  | 876 | if (op->r_write) | 
|  | 877 | send->s_wr.opcode = IB_WR_RDMA_WRITE; | 
|  | 878 | else | 
|  | 879 | send->s_wr.opcode = IB_WR_RDMA_READ_WITH_INV; | 
|  | 880 |  | 
|  | 881 | send->s_wr.wr.rdma.remote_addr = remote_addr; | 
|  | 882 | send->s_wr.wr.rdma.rkey = op->r_key; | 
|  | 883 | send->s_op = op; | 
|  | 884 |  | 
|  | 885 | if (num_sge > rds_iwdev->max_sge) { | 
|  | 886 | send->s_wr.num_sge = rds_iwdev->max_sge; | 
|  | 887 | num_sge -= rds_iwdev->max_sge; | 
|  | 888 | } else | 
|  | 889 | send->s_wr.num_sge = num_sge; | 
|  | 890 |  | 
|  | 891 | send->s_wr.next = NULL; | 
|  | 892 |  | 
|  | 893 | if (prev) | 
|  | 894 | prev->s_wr.next = &send->s_wr; | 
|  | 895 |  | 
|  | 896 | for (j = 0; j < send->s_wr.num_sge && scat != &op->r_sg[op->r_count]; j++) { | 
|  | 897 | len = ib_sg_dma_len(ic->i_cm_id->device, scat); | 
|  | 898 |  | 
|  | 899 | if (send->s_wr.opcode == IB_WR_RDMA_READ_WITH_INV) | 
|  | 900 | send->s_page_list->page_list[j] = ib_sg_dma_address(ic->i_cm_id->device, scat); | 
|  | 901 | else { | 
|  | 902 | send->s_sge[j].addr = ib_sg_dma_address(ic->i_cm_id->device, scat); | 
|  | 903 | send->s_sge[j].length = len; | 
|  | 904 | send->s_sge[j].lkey = rds_iw_local_dma_lkey(ic); | 
|  | 905 | } | 
|  | 906 |  | 
|  | 907 | sent += len; | 
|  | 908 | rdsdebug("ic %p sent %d remote_addr %llu\n", ic, sent, remote_addr); | 
|  | 909 | remote_addr += len; | 
|  | 910 |  | 
|  | 911 | scat++; | 
|  | 912 | } | 
|  | 913 |  | 
|  | 914 | if (send->s_wr.opcode == IB_WR_RDMA_READ_WITH_INV) { | 
|  | 915 | send->s_wr.num_sge = 1; | 
|  | 916 | send->s_sge[0].addr = conn->c_xmit_rm->m_rs->rs_user_addr; | 
|  | 917 | send->s_sge[0].length = conn->c_xmit_rm->m_rs->rs_user_bytes; | 
|  | 918 | send->s_sge[0].lkey = ic->i_sends[fr_pos].s_mr->lkey; | 
|  | 919 | } | 
|  | 920 |  | 
|  | 921 | rdsdebug("send %p wr %p num_sge %u next %p\n", send, | 
|  | 922 | &send->s_wr, send->s_wr.num_sge, send->s_wr.next); | 
|  | 923 |  | 
|  | 924 | prev = send; | 
|  | 925 | if (++send == &ic->i_sends[ic->i_send_ring.w_nr]) | 
|  | 926 | send = ic->i_sends; | 
|  | 927 | } | 
|  | 928 |  | 
|  | 929 | /* if we finished the message then send completion owns it */ | 
|  | 930 | if (scat == &op->r_sg[op->r_count]) | 
|  | 931 | first->s_wr.send_flags = IB_SEND_SIGNALED; | 
|  | 932 |  | 
|  | 933 | if (i < work_alloc) { | 
|  | 934 | rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc - i); | 
|  | 935 | work_alloc = i; | 
|  | 936 | } | 
|  | 937 |  | 
|  | 938 | /* On iWARP, local memory access by a remote system (ie, RDMA Read) is not | 
|  | 939 | * recommended.  Putting the lkey on the wire is a security hole, as it can | 
|  | 940 | * allow for memory access to all of memory on the remote system.  Some | 
|  | 941 | * adapters do not allow using the lkey for this at all.  To bypass this use a | 
|  | 942 | * fastreg_mr (or possibly a dma_mr) | 
|  | 943 | */ | 
|  | 944 | if (!op->r_write) { | 
|  | 945 | rds_iw_build_send_fastreg(rds_iwdev, ic, &ic->i_sends[fr_pos], | 
|  | 946 | op->r_count, sent, conn->c_xmit_rm->m_rs->rs_user_addr); | 
|  | 947 | work_alloc++; | 
|  | 948 | } | 
|  | 949 |  | 
|  | 950 | failed_wr = &first->s_wr; | 
|  | 951 | ret = ib_post_send(ic->i_cm_id->qp, &first->s_wr, &failed_wr); | 
|  | 952 | rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic, | 
|  | 953 | first, &first->s_wr, ret, failed_wr); | 
|  | 954 | BUG_ON(failed_wr != &first->s_wr); | 
|  | 955 | if (ret) { | 
|  | 956 | printk(KERN_WARNING "RDS/IW: rdma ib_post_send to %pI4 " | 
|  | 957 | "returned %d\n", &conn->c_faddr, ret); | 
|  | 958 | rds_iw_ring_unalloc(&ic->i_send_ring, work_alloc); | 
|  | 959 | goto out; | 
|  | 960 | } | 
|  | 961 |  | 
|  | 962 | out: | 
|  | 963 | return ret; | 
|  | 964 | } | 
|  | 965 |  | 
|  | 966 | void rds_iw_xmit_complete(struct rds_connection *conn) | 
|  | 967 | { | 
|  | 968 | struct rds_iw_connection *ic = conn->c_transport_data; | 
|  | 969 |  | 
|  | 970 | /* We may have a pending ACK or window update we were unable | 
|  | 971 | * to send previously (due to flow control). Try again. */ | 
|  | 972 | rds_iw_attempt_ack(ic); | 
|  | 973 | } |