blob: afc59f274e58994f9c24278cac138ae41de3acb3 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
Ingo Molnarc31f2e82007-07-09 18:52:01 +020019 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
Linus Torvalds1da177e2005-04-16 15:20:36 -070025 */
26
27#include <linux/mm.h>
28#include <linux/module.h>
29#include <linux/nmi.h>
30#include <linux/init.h>
Ingo Molnardff06c12007-07-09 18:52:00 +020031#include <linux/uaccess.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070032#include <linux/highmem.h>
33#include <linux/smp_lock.h>
34#include <asm/mmu_context.h>
35#include <linux/interrupt.h>
Randy.Dunlapc59ede72006-01-11 12:17:46 -080036#include <linux/capability.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070037#include <linux/completion.h>
38#include <linux/kernel_stat.h>
Ingo Molnar9a11b49a2006-07-03 00:24:33 -070039#include <linux/debug_locks.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070040#include <linux/security.h>
41#include <linux/notifier.h>
42#include <linux/profile.h>
Nigel Cunningham7dfb7102006-12-06 20:34:23 -080043#include <linux/freezer.h>
akpm@osdl.org198e2f12006-01-12 01:05:30 -080044#include <linux/vmalloc.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070045#include <linux/blkdev.h>
46#include <linux/delay.h>
47#include <linux/smp.h>
48#include <linux/threads.h>
49#include <linux/timer.h>
50#include <linux/rcupdate.h>
51#include <linux/cpu.h>
52#include <linux/cpuset.h>
53#include <linux/percpu.h>
54#include <linux/kthread.h>
55#include <linux/seq_file.h>
Nick Piggine692ab52007-07-26 13:40:43 +020056#include <linux/sysctl.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070057#include <linux/syscalls.h>
58#include <linux/times.h>
Jay Lan8f0ab512006-09-30 23:28:59 -070059#include <linux/tsacct_kern.h>
bibo maoc6fd91f2006-03-26 01:38:20 -080060#include <linux/kprobes.h>
Shailabh Nagar0ff92242006-07-14 00:24:37 -070061#include <linux/delayacct.h>
Eric Dumazet5517d862007-05-08 00:32:57 -070062#include <linux/reciprocal_div.h>
Ingo Molnardff06c12007-07-09 18:52:00 +020063#include <linux/unistd.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070064
Eric Dumazet5517d862007-05-08 00:32:57 -070065#include <asm/tlb.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070066
67/*
Alexey Dobriyanb035b6d2007-02-10 01:45:10 -080068 * Scheduler clock - returns current time in nanosec units.
69 * This is default implementation.
70 * Architectures and sub-architectures can override this.
71 */
72unsigned long long __attribute__((weak)) sched_clock(void)
73{
74 return (unsigned long long)jiffies * (1000000000 / HZ);
75}
76
77/*
Linus Torvalds1da177e2005-04-16 15:20:36 -070078 * Convert user-nice values [ -20 ... 0 ... 19 ]
79 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
80 * and back.
81 */
82#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
83#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
84#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
85
86/*
87 * 'User priority' is the nice value converted to something we
88 * can work with better when scaling various scheduler parameters,
89 * it's a [ 0 ... 39 ] range.
90 */
91#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
92#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
93#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
94
95/*
96 * Some helpers for converting nanosecond timing to jiffy resolution
97 */
98#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
99#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
100
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200101#define NICE_0_LOAD SCHED_LOAD_SCALE
102#define NICE_0_SHIFT SCHED_LOAD_SHIFT
103
Linus Torvalds1da177e2005-04-16 15:20:36 -0700104/*
105 * These are the 'tuning knobs' of the scheduler:
106 *
107 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
108 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
109 * Timeslices get refilled after they expire.
110 */
111#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
112#define DEF_TIMESLICE (100 * HZ / 1000)
Peter Williams2dd73a42006-06-27 02:54:34 -0700113
Eric Dumazet5517d862007-05-08 00:32:57 -0700114#ifdef CONFIG_SMP
115/*
116 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
117 * Since cpu_power is a 'constant', we can use a reciprocal divide.
118 */
119static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
120{
121 return reciprocal_divide(load, sg->reciprocal_cpu_power);
122}
123
124/*
125 * Each time a sched group cpu_power is changed,
126 * we must compute its reciprocal value
127 */
128static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
129{
130 sg->__cpu_power += val;
131 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
132}
133#endif
134
Ingo Molnar634fa8c2007-07-09 18:52:00 +0200135#define SCALE_PRIO(x, prio) \
136 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
Borislav Petkov91fcdd42006-10-19 23:28:29 -0700137
Ingo Molnar634fa8c2007-07-09 18:52:00 +0200138/*
139 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
140 * to time slice values: [800ms ... 100ms ... 5ms]
141 */
142static unsigned int static_prio_timeslice(int static_prio)
Peter Williams2dd73a42006-06-27 02:54:34 -0700143{
Ingo Molnar634fa8c2007-07-09 18:52:00 +0200144 if (static_prio == NICE_TO_PRIO(19))
145 return 1;
146
147 if (static_prio < NICE_TO_PRIO(0))
148 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
149 else
150 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
Peter Williams2dd73a42006-06-27 02:54:34 -0700151}
152
Ingo Molnare05606d2007-07-09 18:51:59 +0200153static inline int rt_policy(int policy)
154{
155 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
156 return 1;
157 return 0;
158}
159
160static inline int task_has_rt_policy(struct task_struct *p)
161{
162 return rt_policy(p->policy);
163}
164
Linus Torvalds1da177e2005-04-16 15:20:36 -0700165/*
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200166 * This is the priority-queue data structure of the RT scheduling class:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700167 */
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200168struct rt_prio_array {
169 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
170 struct list_head queue[MAX_RT_PRIO];
171};
Linus Torvalds1da177e2005-04-16 15:20:36 -0700172
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200173struct load_stat {
174 struct load_weight load;
175 u64 load_update_start, load_update_last;
176 unsigned long delta_fair, delta_exec, delta_stat;
177};
178
179/* CFS-related fields in a runqueue */
180struct cfs_rq {
181 struct load_weight load;
182 unsigned long nr_running;
183
184 s64 fair_clock;
185 u64 exec_clock;
186 s64 wait_runtime;
187 u64 sleeper_bonus;
188 unsigned long wait_runtime_overruns, wait_runtime_underruns;
189
190 struct rb_root tasks_timeline;
191 struct rb_node *rb_leftmost;
192 struct rb_node *rb_load_balance_curr;
193#ifdef CONFIG_FAIR_GROUP_SCHED
194 /* 'curr' points to currently running entity on this cfs_rq.
195 * It is set to NULL otherwise (i.e when none are currently running).
196 */
197 struct sched_entity *curr;
198 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
199
200 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
201 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
202 * (like users, containers etc.)
203 *
204 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
205 * list is used during load balance.
206 */
207 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
208#endif
209};
210
211/* Real-Time classes' related field in a runqueue: */
212struct rt_rq {
213 struct rt_prio_array active;
214 int rt_load_balance_idx;
215 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
216};
217
218/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700219 * This is the main, per-CPU runqueue data structure.
220 *
221 * Locking rule: those places that want to lock multiple runqueues
222 * (such as the load balancing or the thread migration code), lock
223 * acquire operations must be ordered by ascending &runqueue.
224 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700225struct rq {
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200226 spinlock_t lock; /* runqueue lock */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700227
228 /*
229 * nr_running and cpu_load should be in the same cacheline because
230 * remote CPUs use both these fields when doing load calculation.
231 */
232 unsigned long nr_running;
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200233 #define CPU_LOAD_IDX_MAX 5
234 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
Siddha, Suresh Bbdecea32007-05-08 00:32:48 -0700235 unsigned char idle_at_tick;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -0700236#ifdef CONFIG_NO_HZ
237 unsigned char in_nohz_recently;
238#endif
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200239 struct load_stat ls; /* capture load from *all* tasks on this cpu */
240 unsigned long nr_load_updates;
241 u64 nr_switches;
242
243 struct cfs_rq cfs;
244#ifdef CONFIG_FAIR_GROUP_SCHED
245 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700246#endif
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200247 struct rt_rq rt;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700248
249 /*
250 * This is part of a global counter where only the total sum
251 * over all CPUs matters. A task can increase this counter on
252 * one CPU and if it got migrated afterwards it may decrease
253 * it on another CPU. Always updated under the runqueue lock:
254 */
255 unsigned long nr_uninterruptible;
256
Ingo Molnar36c8b582006-07-03 00:25:41 -0700257 struct task_struct *curr, *idle;
Christoph Lameterc9819f42006-12-10 02:20:25 -0800258 unsigned long next_balance;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700259 struct mm_struct *prev_mm;
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200260
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200261 u64 clock, prev_clock_raw;
262 s64 clock_max_delta;
263
264 unsigned int clock_warps, clock_overflows;
265 unsigned int clock_unstable_events;
266
Linus Torvalds1da177e2005-04-16 15:20:36 -0700267 atomic_t nr_iowait;
268
269#ifdef CONFIG_SMP
270 struct sched_domain *sd;
271
272 /* For active balancing */
273 int active_balance;
274 int push_cpu;
Christoph Lameter0a2966b2006-09-25 23:30:51 -0700275 int cpu; /* cpu of this runqueue */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700276
Ingo Molnar36c8b582006-07-03 00:25:41 -0700277 struct task_struct *migration_thread;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700278 struct list_head migration_queue;
279#endif
280
281#ifdef CONFIG_SCHEDSTATS
282 /* latency stats */
283 struct sched_info rq_sched_info;
284
285 /* sys_sched_yield() stats */
286 unsigned long yld_exp_empty;
287 unsigned long yld_act_empty;
288 unsigned long yld_both_empty;
289 unsigned long yld_cnt;
290
291 /* schedule() stats */
292 unsigned long sched_switch;
293 unsigned long sched_cnt;
294 unsigned long sched_goidle;
295
296 /* try_to_wake_up() stats */
297 unsigned long ttwu_cnt;
298 unsigned long ttwu_local;
299#endif
Ingo Molnarfcb99372006-07-03 00:25:10 -0700300 struct lock_class_key rq_lock_key;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700301};
302
Fenghua Yuf34e3b62007-07-19 01:48:13 -0700303static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
Gautham R Shenoy5be93612007-05-09 02:34:04 -0700304static DEFINE_MUTEX(sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700305
Ingo Molnardd41f592007-07-09 18:51:59 +0200306static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
307{
308 rq->curr->sched_class->check_preempt_curr(rq, p);
309}
310
Christoph Lameter0a2966b2006-09-25 23:30:51 -0700311static inline int cpu_of(struct rq *rq)
312{
313#ifdef CONFIG_SMP
314 return rq->cpu;
315#else
316 return 0;
317#endif
318}
319
Nick Piggin674311d2005-06-25 14:57:27 -0700320/*
Ingo Molnarb04a0f42007-08-09 11:16:46 +0200321 * Update the per-runqueue clock, as finegrained as the platform can give
322 * us, but without assuming monotonicity, etc.:
Ingo Molnar20d315d2007-07-09 18:51:58 +0200323 */
Ingo Molnarb04a0f42007-08-09 11:16:46 +0200324static void __update_rq_clock(struct rq *rq)
Ingo Molnar20d315d2007-07-09 18:51:58 +0200325{
326 u64 prev_raw = rq->prev_clock_raw;
327 u64 now = sched_clock();
328 s64 delta = now - prev_raw;
329 u64 clock = rq->clock;
330
Ingo Molnarb04a0f42007-08-09 11:16:46 +0200331#ifdef CONFIG_SCHED_DEBUG
332 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
333#endif
Ingo Molnar20d315d2007-07-09 18:51:58 +0200334 /*
335 * Protect against sched_clock() occasionally going backwards:
336 */
337 if (unlikely(delta < 0)) {
338 clock++;
339 rq->clock_warps++;
340 } else {
341 /*
342 * Catch too large forward jumps too:
343 */
344 if (unlikely(delta > 2*TICK_NSEC)) {
345 clock++;
346 rq->clock_overflows++;
347 } else {
348 if (unlikely(delta > rq->clock_max_delta))
349 rq->clock_max_delta = delta;
350 clock += delta;
351 }
352 }
353
354 rq->prev_clock_raw = now;
355 rq->clock = clock;
Ingo Molnar20d315d2007-07-09 18:51:58 +0200356}
357
Ingo Molnarb04a0f42007-08-09 11:16:46 +0200358static void update_rq_clock(struct rq *rq)
Ingo Molnar20d315d2007-07-09 18:51:58 +0200359{
Ingo Molnarb04a0f42007-08-09 11:16:46 +0200360 if (likely(smp_processor_id() == cpu_of(rq)))
361 __update_rq_clock(rq);
362}
Ingo Molnar20d315d2007-07-09 18:51:58 +0200363
Ingo Molnar20d315d2007-07-09 18:51:58 +0200364/*
Nick Piggin674311d2005-06-25 14:57:27 -0700365 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -0700366 * See detach_destroy_domains: synchronize_sched for details.
Nick Piggin674311d2005-06-25 14:57:27 -0700367 *
368 * The domain tree of any CPU may only be accessed from within
369 * preempt-disabled sections.
370 */
Ingo Molnar48f24c42006-07-03 00:25:40 -0700371#define for_each_domain(cpu, __sd) \
372 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700373
374#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
375#define this_rq() (&__get_cpu_var(runqueues))
376#define task_rq(p) cpu_rq(task_cpu(p))
377#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
378
Ingo Molnare436d802007-07-19 21:28:35 +0200379/*
380 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
381 * clock constructed from sched_clock():
382 */
383unsigned long long cpu_clock(int cpu)
384{
Ingo Molnare436d802007-07-19 21:28:35 +0200385 unsigned long long now;
386 unsigned long flags;
Ingo Molnarb04a0f42007-08-09 11:16:46 +0200387 struct rq *rq;
Ingo Molnare436d802007-07-19 21:28:35 +0200388
Ingo Molnar2cd4d0e2007-07-26 13:40:43 +0200389 local_irq_save(flags);
Ingo Molnarb04a0f42007-08-09 11:16:46 +0200390 rq = cpu_rq(cpu);
391 update_rq_clock(rq);
392 now = rq->clock;
Ingo Molnar2cd4d0e2007-07-26 13:40:43 +0200393 local_irq_restore(flags);
Ingo Molnare436d802007-07-19 21:28:35 +0200394
395 return now;
396}
397
Ingo Molnar138a8ae2007-07-09 18:51:58 +0200398#ifdef CONFIG_FAIR_GROUP_SCHED
399/* Change a task's ->cfs_rq if it moves across CPUs */
400static inline void set_task_cfs_rq(struct task_struct *p)
401{
402 p->se.cfs_rq = &task_rq(p)->cfs;
403}
404#else
405static inline void set_task_cfs_rq(struct task_struct *p)
406{
407}
408#endif
409
Linus Torvalds1da177e2005-04-16 15:20:36 -0700410#ifndef prepare_arch_switch
Nick Piggin4866cde2005-06-25 14:57:23 -0700411# define prepare_arch_switch(next) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700412#endif
Nick Piggin4866cde2005-06-25 14:57:23 -0700413#ifndef finish_arch_switch
414# define finish_arch_switch(prev) do { } while (0)
415#endif
416
417#ifndef __ARCH_WANT_UNLOCKED_CTXSW
Ingo Molnar70b97a72006-07-03 00:25:42 -0700418static inline int task_running(struct rq *rq, struct task_struct *p)
Nick Piggin4866cde2005-06-25 14:57:23 -0700419{
420 return rq->curr == p;
421}
422
Ingo Molnar70b97a72006-07-03 00:25:42 -0700423static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
Nick Piggin4866cde2005-06-25 14:57:23 -0700424{
425}
426
Ingo Molnar70b97a72006-07-03 00:25:42 -0700427static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
Nick Piggin4866cde2005-06-25 14:57:23 -0700428{
Ingo Molnarda04c032005-09-13 11:17:59 +0200429#ifdef CONFIG_DEBUG_SPINLOCK
430 /* this is a valid case when another task releases the spinlock */
431 rq->lock.owner = current;
432#endif
Ingo Molnar8a25d5d2006-07-03 00:24:54 -0700433 /*
434 * If we are tracking spinlock dependencies then we have to
435 * fix up the runqueue lock - which gets 'carried over' from
436 * prev into current:
437 */
438 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
439
Nick Piggin4866cde2005-06-25 14:57:23 -0700440 spin_unlock_irq(&rq->lock);
441}
442
443#else /* __ARCH_WANT_UNLOCKED_CTXSW */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700444static inline int task_running(struct rq *rq, struct task_struct *p)
Nick Piggin4866cde2005-06-25 14:57:23 -0700445{
446#ifdef CONFIG_SMP
447 return p->oncpu;
448#else
449 return rq->curr == p;
450#endif
451}
452
Ingo Molnar70b97a72006-07-03 00:25:42 -0700453static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
Nick Piggin4866cde2005-06-25 14:57:23 -0700454{
455#ifdef CONFIG_SMP
456 /*
457 * We can optimise this out completely for !SMP, because the
458 * SMP rebalancing from interrupt is the only thing that cares
459 * here.
460 */
461 next->oncpu = 1;
462#endif
463#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
464 spin_unlock_irq(&rq->lock);
465#else
466 spin_unlock(&rq->lock);
467#endif
468}
469
Ingo Molnar70b97a72006-07-03 00:25:42 -0700470static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
Nick Piggin4866cde2005-06-25 14:57:23 -0700471{
472#ifdef CONFIG_SMP
473 /*
474 * After ->oncpu is cleared, the task can be moved to a different CPU.
475 * We must ensure this doesn't happen until the switch is completely
476 * finished.
477 */
478 smp_wmb();
479 prev->oncpu = 0;
480#endif
481#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
482 local_irq_enable();
483#endif
484}
485#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700486
487/*
Ingo Molnarb29739f2006-06-27 02:54:51 -0700488 * __task_rq_lock - lock the runqueue a given task resides on.
489 * Must be called interrupts disabled.
490 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700491static inline struct rq *__task_rq_lock(struct task_struct *p)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700492 __acquires(rq->lock)
493{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700494 struct rq *rq;
Ingo Molnarb29739f2006-06-27 02:54:51 -0700495
496repeat_lock_task:
497 rq = task_rq(p);
498 spin_lock(&rq->lock);
499 if (unlikely(rq != task_rq(p))) {
500 spin_unlock(&rq->lock);
501 goto repeat_lock_task;
502 }
503 return rq;
504}
505
506/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700507 * task_rq_lock - lock the runqueue a given task resides on and disable
508 * interrupts. Note the ordering: we can safely lookup the task_rq without
509 * explicitly disabling preemption.
510 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700511static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700512 __acquires(rq->lock)
513{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700514 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700515
516repeat_lock_task:
517 local_irq_save(*flags);
518 rq = task_rq(p);
519 spin_lock(&rq->lock);
520 if (unlikely(rq != task_rq(p))) {
521 spin_unlock_irqrestore(&rq->lock, *flags);
522 goto repeat_lock_task;
523 }
524 return rq;
525}
526
Ingo Molnar70b97a72006-07-03 00:25:42 -0700527static inline void __task_rq_unlock(struct rq *rq)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700528 __releases(rq->lock)
529{
530 spin_unlock(&rq->lock);
531}
532
Ingo Molnar70b97a72006-07-03 00:25:42 -0700533static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700534 __releases(rq->lock)
535{
536 spin_unlock_irqrestore(&rq->lock, *flags);
537}
538
Linus Torvalds1da177e2005-04-16 15:20:36 -0700539/*
Robert P. J. Daycc2a73b2006-12-10 02:20:00 -0800540 * this_rq_lock - lock this runqueue and disable interrupts.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700541 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700542static inline struct rq *this_rq_lock(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700543 __acquires(rq->lock)
544{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700545 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700546
547 local_irq_disable();
548 rq = this_rq();
549 spin_lock(&rq->lock);
550
551 return rq;
552}
553
Ingo Molnarc24d20d2007-07-09 18:51:59 +0200554/*
Ingo Molnar1b9f19c2007-07-09 18:51:59 +0200555 * CPU frequency is/was unstable - start new by setting prev_clock_raw:
556 */
557void sched_clock_unstable_event(void)
558{
559 unsigned long flags;
560 struct rq *rq;
561
562 rq = task_rq_lock(current, &flags);
563 rq->prev_clock_raw = sched_clock();
564 rq->clock_unstable_events++;
565 task_rq_unlock(rq, &flags);
566}
567
568/*
Ingo Molnarc24d20d2007-07-09 18:51:59 +0200569 * resched_task - mark a task 'to be rescheduled now'.
570 *
571 * On UP this means the setting of the need_resched flag, on SMP it
572 * might also involve a cross-CPU call to trigger the scheduler on
573 * the target CPU.
574 */
575#ifdef CONFIG_SMP
576
577#ifndef tsk_is_polling
578#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
579#endif
580
581static void resched_task(struct task_struct *p)
582{
583 int cpu;
584
585 assert_spin_locked(&task_rq(p)->lock);
586
587 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
588 return;
589
590 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
591
592 cpu = task_cpu(p);
593 if (cpu == smp_processor_id())
594 return;
595
596 /* NEED_RESCHED must be visible before we test polling */
597 smp_mb();
598 if (!tsk_is_polling(p))
599 smp_send_reschedule(cpu);
600}
601
602static void resched_cpu(int cpu)
603{
604 struct rq *rq = cpu_rq(cpu);
605 unsigned long flags;
606
607 if (!spin_trylock_irqsave(&rq->lock, flags))
608 return;
609 resched_task(cpu_curr(cpu));
610 spin_unlock_irqrestore(&rq->lock, flags);
611}
612#else
613static inline void resched_task(struct task_struct *p)
614{
615 assert_spin_locked(&task_rq(p)->lock);
616 set_tsk_need_resched(p);
617}
618#endif
619
Ingo Molnar45bf76d2007-07-09 18:51:59 +0200620static u64 div64_likely32(u64 divident, unsigned long divisor)
621{
622#if BITS_PER_LONG == 32
623 if (likely(divident <= 0xffffffffULL))
624 return (u32)divident / divisor;
625 do_div(divident, divisor);
626
627 return divident;
628#else
629 return divident / divisor;
630#endif
631}
632
633#if BITS_PER_LONG == 32
634# define WMULT_CONST (~0UL)
635#else
636# define WMULT_CONST (1UL << 32)
637#endif
638
639#define WMULT_SHIFT 32
640
Ingo Molnarcb1c4fc2007-08-02 17:41:40 +0200641static unsigned long
Ingo Molnar45bf76d2007-07-09 18:51:59 +0200642calc_delta_mine(unsigned long delta_exec, unsigned long weight,
643 struct load_weight *lw)
644{
645 u64 tmp;
646
647 if (unlikely(!lw->inv_weight))
648 lw->inv_weight = WMULT_CONST / lw->weight;
649
650 tmp = (u64)delta_exec * weight;
651 /*
652 * Check whether we'd overflow the 64-bit multiplication:
653 */
654 if (unlikely(tmp > WMULT_CONST)) {
655 tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
656 >> (WMULT_SHIFT/2);
657 } else {
658 tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
659 }
660
Ingo Molnarecf691d2007-08-02 17:41:40 +0200661 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
Ingo Molnar45bf76d2007-07-09 18:51:59 +0200662}
663
664static inline unsigned long
665calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
666{
667 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
668}
669
670static void update_load_add(struct load_weight *lw, unsigned long inc)
671{
672 lw->weight += inc;
673 lw->inv_weight = 0;
674}
675
676static void update_load_sub(struct load_weight *lw, unsigned long dec)
677{
678 lw->weight -= dec;
679 lw->inv_weight = 0;
680}
681
Linus Torvalds1da177e2005-04-16 15:20:36 -0700682/*
Peter Williams2dd73a42006-06-27 02:54:34 -0700683 * To aid in avoiding the subversion of "niceness" due to uneven distribution
684 * of tasks with abnormal "nice" values across CPUs the contribution that
685 * each task makes to its run queue's load is weighted according to its
686 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
687 * scaled version of the new time slice allocation that they receive on time
688 * slice expiry etc.
689 */
690
Ingo Molnardd41f592007-07-09 18:51:59 +0200691#define WEIGHT_IDLEPRIO 2
692#define WMULT_IDLEPRIO (1 << 31)
693
694/*
695 * Nice levels are multiplicative, with a gentle 10% change for every
696 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
697 * nice 1, it will get ~10% less CPU time than another CPU-bound task
698 * that remained on nice 0.
699 *
700 * The "10% effect" is relative and cumulative: from _any_ nice level,
701 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
Ingo Molnarf9153ee2007-07-16 09:46:30 +0200702 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
703 * If a task goes up by ~10% and another task goes down by ~10% then
704 * the relative distance between them is ~25%.)
Ingo Molnardd41f592007-07-09 18:51:59 +0200705 */
706static const int prio_to_weight[40] = {
707/* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
708/* -10 */ 9537, 7629, 6103, 4883, 3906, 3125, 2500, 2000, 1600, 1280,
709/* 0 */ NICE_0_LOAD /* 1024 */,
710/* 1 */ 819, 655, 524, 419, 336, 268, 215, 172, 137,
711/* 10 */ 110, 87, 70, 56, 45, 36, 29, 23, 18, 15,
712};
713
Ingo Molnar5714d2d2007-07-16 09:46:31 +0200714/*
715 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
716 *
717 * In cases where the weight does not change often, we can use the
718 * precalculated inverse to speed up arithmetics by turning divisions
719 * into multiplications:
720 */
Ingo Molnardd41f592007-07-09 18:51:59 +0200721static const u32 prio_to_wmult[40] = {
Ingo Molnare4af30b2007-07-16 09:46:31 +0200722/* -20 */ 48356, 60446, 75558, 94446, 118058,
723/* -15 */ 147573, 184467, 230589, 288233, 360285,
724/* -10 */ 450347, 562979, 703746, 879575, 1099582,
725/* -5 */ 1374389, 1717986, 2147483, 2684354, 3355443,
726/* 0 */ 4194304, 5244160, 6557201, 8196502, 10250518,
727/* 5 */ 12782640, 16025997, 19976592, 24970740, 31350126,
728/* 10 */ 39045157, 49367440, 61356675, 76695844, 95443717,
729/* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
Ingo Molnardd41f592007-07-09 18:51:59 +0200730};
Peter Williams2dd73a42006-06-27 02:54:34 -0700731
Ingo Molnardd41f592007-07-09 18:51:59 +0200732static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
733
734/*
735 * runqueue iterator, to support SMP load-balancing between different
736 * scheduling classes, without having to expose their internal data
737 * structures to the load-balancing proper:
738 */
739struct rq_iterator {
740 void *arg;
741 struct task_struct *(*start)(void *);
742 struct task_struct *(*next)(void *);
743};
744
745static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
746 unsigned long max_nr_move, unsigned long max_load_move,
747 struct sched_domain *sd, enum cpu_idle_type idle,
748 int *all_pinned, unsigned long *load_moved,
Peter Williamsa4ac01c2007-08-09 11:16:46 +0200749 int *this_best_prio, struct rq_iterator *iterator);
Ingo Molnardd41f592007-07-09 18:51:59 +0200750
751#include "sched_stats.h"
752#include "sched_rt.c"
753#include "sched_fair.c"
754#include "sched_idletask.c"
755#ifdef CONFIG_SCHED_DEBUG
756# include "sched_debug.c"
757#endif
758
759#define sched_class_highest (&rt_sched_class)
760
Ingo Molnar9c217242007-08-02 17:41:40 +0200761static void __update_curr_load(struct rq *rq, struct load_stat *ls)
762{
763 if (rq->curr != rq->idle && ls->load.weight) {
764 ls->delta_exec += ls->delta_stat;
765 ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
766 ls->delta_stat = 0;
767 }
768}
769
770/*
771 * Update delta_exec, delta_fair fields for rq.
772 *
773 * delta_fair clock advances at a rate inversely proportional to
774 * total load (rq->ls.load.weight) on the runqueue, while
775 * delta_exec advances at the same rate as wall-clock (provided
776 * cpu is not idle).
777 *
778 * delta_exec / delta_fair is a measure of the (smoothened) load on this
779 * runqueue over any given interval. This (smoothened) load is used
780 * during load balance.
781 *
782 * This function is called /before/ updating rq->ls.load
783 * and when switching tasks.
784 */
Ingo Molnar84a1d7a2007-08-09 11:16:49 +0200785static void update_curr_load(struct rq *rq)
Ingo Molnar9c217242007-08-02 17:41:40 +0200786{
787 struct load_stat *ls = &rq->ls;
788 u64 start;
789
790 start = ls->load_update_start;
Ingo Molnard2819182007-08-09 11:16:47 +0200791 ls->load_update_start = rq->clock;
792 ls->delta_stat += rq->clock - start;
Ingo Molnar9c217242007-08-02 17:41:40 +0200793 /*
794 * Stagger updates to ls->delta_fair. Very frequent updates
795 * can be expensive.
796 */
797 if (ls->delta_stat >= sysctl_sched_stat_granularity)
798 __update_curr_load(rq, ls);
799}
800
Ingo Molnar29b4b622007-08-09 11:16:49 +0200801static inline void inc_load(struct rq *rq, const struct task_struct *p)
Ingo Molnar9c217242007-08-02 17:41:40 +0200802{
Ingo Molnar84a1d7a2007-08-09 11:16:49 +0200803 update_curr_load(rq);
Ingo Molnar9c217242007-08-02 17:41:40 +0200804 update_load_add(&rq->ls.load, p->se.load.weight);
805}
806
Ingo Molnar79b5ddd2007-08-09 11:16:49 +0200807static inline void dec_load(struct rq *rq, const struct task_struct *p)
Ingo Molnar9c217242007-08-02 17:41:40 +0200808{
Ingo Molnar84a1d7a2007-08-09 11:16:49 +0200809 update_curr_load(rq);
Ingo Molnar9c217242007-08-02 17:41:40 +0200810 update_load_sub(&rq->ls.load, p->se.load.weight);
811}
812
Ingo Molnare5fa2232007-08-09 11:16:49 +0200813static void inc_nr_running(struct task_struct *p, struct rq *rq)
Ingo Molnar9c217242007-08-02 17:41:40 +0200814{
815 rq->nr_running++;
Ingo Molnar29b4b622007-08-09 11:16:49 +0200816 inc_load(rq, p);
Ingo Molnar9c217242007-08-02 17:41:40 +0200817}
818
Ingo Molnardb531812007-08-09 11:16:49 +0200819static void dec_nr_running(struct task_struct *p, struct rq *rq)
Ingo Molnar9c217242007-08-02 17:41:40 +0200820{
821 rq->nr_running--;
Ingo Molnar79b5ddd2007-08-09 11:16:49 +0200822 dec_load(rq, p);
Ingo Molnar9c217242007-08-02 17:41:40 +0200823}
824
Ingo Molnar45bf76d2007-07-09 18:51:59 +0200825static void set_load_weight(struct task_struct *p)
826{
Ingo Molnardd41f592007-07-09 18:51:59 +0200827 task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
828 p->se.wait_runtime = 0;
829
Ingo Molnar45bf76d2007-07-09 18:51:59 +0200830 if (task_has_rt_policy(p)) {
Ingo Molnardd41f592007-07-09 18:51:59 +0200831 p->se.load.weight = prio_to_weight[0] * 2;
832 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
833 return;
834 }
835
836 /*
837 * SCHED_IDLE tasks get minimal weight:
838 */
839 if (p->policy == SCHED_IDLE) {
840 p->se.load.weight = WEIGHT_IDLEPRIO;
841 p->se.load.inv_weight = WMULT_IDLEPRIO;
842 return;
843 }
844
845 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
846 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
Ingo Molnar45bf76d2007-07-09 18:51:59 +0200847}
848
Ingo Molnar8159f872007-08-09 11:16:49 +0200849static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
Ingo Molnar71f8bd42007-07-09 18:51:59 +0200850{
851 sched_info_queued(p);
Ingo Molnarfd390f62007-08-09 11:16:48 +0200852 p->sched_class->enqueue_task(rq, p, wakeup);
Ingo Molnardd41f592007-07-09 18:51:59 +0200853 p->se.on_rq = 1;
854}
855
Ingo Molnar69be72c2007-08-09 11:16:49 +0200856static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
Ingo Molnardd41f592007-07-09 18:51:59 +0200857{
Ingo Molnarf02231e2007-08-09 11:16:48 +0200858 p->sched_class->dequeue_task(rq, p, sleep);
Ingo Molnardd41f592007-07-09 18:51:59 +0200859 p->se.on_rq = 0;
Ingo Molnar71f8bd42007-07-09 18:51:59 +0200860}
861
862/*
Ingo Molnardd41f592007-07-09 18:51:59 +0200863 * __normal_prio - return the priority that is based on the static prio
Ingo Molnar71f8bd42007-07-09 18:51:59 +0200864 */
Ingo Molnar14531182007-07-09 18:51:59 +0200865static inline int __normal_prio(struct task_struct *p)
866{
Ingo Molnardd41f592007-07-09 18:51:59 +0200867 return p->static_prio;
Ingo Molnar14531182007-07-09 18:51:59 +0200868}
869
870/*
Ingo Molnarb29739f2006-06-27 02:54:51 -0700871 * Calculate the expected normal priority: i.e. priority
872 * without taking RT-inheritance into account. Might be
873 * boosted by interactivity modifiers. Changes upon fork,
874 * setprio syscalls, and whenever the interactivity
875 * estimator recalculates.
876 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700877static inline int normal_prio(struct task_struct *p)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700878{
879 int prio;
880
Ingo Molnare05606d2007-07-09 18:51:59 +0200881 if (task_has_rt_policy(p))
Ingo Molnarb29739f2006-06-27 02:54:51 -0700882 prio = MAX_RT_PRIO-1 - p->rt_priority;
883 else
884 prio = __normal_prio(p);
885 return prio;
886}
887
888/*
889 * Calculate the current priority, i.e. the priority
890 * taken into account by the scheduler. This value might
891 * be boosted by RT tasks, or might be boosted by
892 * interactivity modifiers. Will be RT if the task got
893 * RT-boosted. If not then it returns p->normal_prio.
894 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700895static int effective_prio(struct task_struct *p)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700896{
897 p->normal_prio = normal_prio(p);
898 /*
899 * If we are RT tasks or we were boosted to RT priority,
900 * keep the priority unchanged. Otherwise, update priority
901 * to the normal priority:
902 */
903 if (!rt_prio(p->prio))
904 return p->normal_prio;
905 return p->prio;
906}
907
908/*
Ingo Molnardd41f592007-07-09 18:51:59 +0200909 * activate_task - move a task to the runqueue.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700910 */
Ingo Molnardd41f592007-07-09 18:51:59 +0200911static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700912{
Ingo Molnardd41f592007-07-09 18:51:59 +0200913 if (p->state == TASK_UNINTERRUPTIBLE)
914 rq->nr_uninterruptible--;
915
Ingo Molnar8159f872007-08-09 11:16:49 +0200916 enqueue_task(rq, p, wakeup);
Ingo Molnare5fa2232007-08-09 11:16:49 +0200917 inc_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700918}
919
920/*
Ingo Molnardd41f592007-07-09 18:51:59 +0200921 * activate_idle_task - move idle task to the _front_ of runqueue.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700922 */
Ingo Molnardd41f592007-07-09 18:51:59 +0200923static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700924{
Ingo Molnara8e504d2007-08-09 11:16:47 +0200925 update_rq_clock(rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700926
Ingo Molnardd41f592007-07-09 18:51:59 +0200927 if (p->state == TASK_UNINTERRUPTIBLE)
928 rq->nr_uninterruptible--;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700929
Ingo Molnar8159f872007-08-09 11:16:49 +0200930 enqueue_task(rq, p, 0);
Ingo Molnare5fa2232007-08-09 11:16:49 +0200931 inc_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700932}
933
934/*
935 * deactivate_task - remove a task from the runqueue.
936 */
Ingo Molnar2e1cb742007-08-09 11:16:49 +0200937static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700938{
Ingo Molnardd41f592007-07-09 18:51:59 +0200939 if (p->state == TASK_UNINTERRUPTIBLE)
940 rq->nr_uninterruptible++;
941
Ingo Molnar69be72c2007-08-09 11:16:49 +0200942 dequeue_task(rq, p, sleep);
Ingo Molnardb531812007-08-09 11:16:49 +0200943 dec_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700944}
945
Linus Torvalds1da177e2005-04-16 15:20:36 -0700946/**
947 * task_curr - is this task currently executing on a CPU?
948 * @p: the task in question.
949 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700950inline int task_curr(const struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700951{
952 return cpu_curr(task_cpu(p)) == p;
953}
954
Peter Williams2dd73a42006-06-27 02:54:34 -0700955/* Used instead of source_load when we know the type == 0 */
956unsigned long weighted_cpuload(const int cpu)
957{
Ingo Molnardd41f592007-07-09 18:51:59 +0200958 return cpu_rq(cpu)->ls.load.weight;
959}
960
961static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
962{
963#ifdef CONFIG_SMP
964 task_thread_info(p)->cpu = cpu;
965 set_task_cfs_rq(p);
966#endif
Peter Williams2dd73a42006-06-27 02:54:34 -0700967}
968
Linus Torvalds1da177e2005-04-16 15:20:36 -0700969#ifdef CONFIG_SMP
Ingo Molnarc65cc872007-07-09 18:51:58 +0200970
Ingo Molnardd41f592007-07-09 18:51:59 +0200971void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
Ingo Molnarc65cc872007-07-09 18:51:58 +0200972{
Ingo Molnardd41f592007-07-09 18:51:59 +0200973 int old_cpu = task_cpu(p);
974 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
975 u64 clock_offset, fair_clock_offset;
976
977 clock_offset = old_rq->clock - new_rq->clock;
Ingo Molnar6cfb0d52007-08-02 17:41:40 +0200978 fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;
979
Ingo Molnardd41f592007-07-09 18:51:59 +0200980 if (p->se.wait_start_fair)
981 p->se.wait_start_fair -= fair_clock_offset;
Ingo Molnar6cfb0d52007-08-02 17:41:40 +0200982 if (p->se.sleep_start_fair)
983 p->se.sleep_start_fair -= fair_clock_offset;
984
985#ifdef CONFIG_SCHEDSTATS
986 if (p->se.wait_start)
987 p->se.wait_start -= clock_offset;
Ingo Molnardd41f592007-07-09 18:51:59 +0200988 if (p->se.sleep_start)
989 p->se.sleep_start -= clock_offset;
990 if (p->se.block_start)
991 p->se.block_start -= clock_offset;
Ingo Molnar6cfb0d52007-08-02 17:41:40 +0200992#endif
Ingo Molnardd41f592007-07-09 18:51:59 +0200993
994 __set_task_cpu(p, new_cpu);
Ingo Molnarc65cc872007-07-09 18:51:58 +0200995}
996
Ingo Molnar70b97a72006-07-03 00:25:42 -0700997struct migration_req {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700998 struct list_head list;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700999
Ingo Molnar36c8b582006-07-03 00:25:41 -07001000 struct task_struct *task;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001001 int dest_cpu;
1002
Linus Torvalds1da177e2005-04-16 15:20:36 -07001003 struct completion done;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001004};
Linus Torvalds1da177e2005-04-16 15:20:36 -07001005
1006/*
1007 * The task's runqueue lock must be held.
1008 * Returns true if you have to wait for migration thread.
1009 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001010static int
Ingo Molnar70b97a72006-07-03 00:25:42 -07001011migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001012{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001013 struct rq *rq = task_rq(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001014
1015 /*
1016 * If the task is not on a runqueue (and not running), then
1017 * it is sufficient to simply update the task's cpu field.
1018 */
Ingo Molnardd41f592007-07-09 18:51:59 +02001019 if (!p->se.on_rq && !task_running(rq, p)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001020 set_task_cpu(p, dest_cpu);
1021 return 0;
1022 }
1023
1024 init_completion(&req->done);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001025 req->task = p;
1026 req->dest_cpu = dest_cpu;
1027 list_add(&req->list, &rq->migration_queue);
Ingo Molnar48f24c42006-07-03 00:25:40 -07001028
Linus Torvalds1da177e2005-04-16 15:20:36 -07001029 return 1;
1030}
1031
1032/*
1033 * wait_task_inactive - wait for a thread to unschedule.
1034 *
1035 * The caller must ensure that the task *will* unschedule sometime soon,
1036 * else this function might spin for a *long* time. This function can't
1037 * be called with interrupts off, or it may introduce deadlock with
1038 * smp_call_function() if an IPI is sent by the same process we are
1039 * waiting to become inactive.
1040 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001041void wait_task_inactive(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001042{
1043 unsigned long flags;
Ingo Molnardd41f592007-07-09 18:51:59 +02001044 int running, on_rq;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001045 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001046
1047repeat:
Linus Torvaldsfa490cf2007-06-18 09:34:40 -07001048 /*
1049 * We do the initial early heuristics without holding
1050 * any task-queue locks at all. We'll only try to get
1051 * the runqueue lock when things look like they will
1052 * work out!
1053 */
1054 rq = task_rq(p);
1055
1056 /*
1057 * If the task is actively running on another CPU
1058 * still, just relax and busy-wait without holding
1059 * any locks.
1060 *
1061 * NOTE! Since we don't hold any locks, it's not
1062 * even sure that "rq" stays as the right runqueue!
1063 * But we don't care, since "task_running()" will
1064 * return false if the runqueue has changed and p
1065 * is actually now running somewhere else!
1066 */
1067 while (task_running(rq, p))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001068 cpu_relax();
Linus Torvaldsfa490cf2007-06-18 09:34:40 -07001069
1070 /*
1071 * Ok, time to look more closely! We need the rq
1072 * lock now, to be *sure*. If we're wrong, we'll
1073 * just go back and repeat.
1074 */
1075 rq = task_rq_lock(p, &flags);
1076 running = task_running(rq, p);
Ingo Molnardd41f592007-07-09 18:51:59 +02001077 on_rq = p->se.on_rq;
Linus Torvaldsfa490cf2007-06-18 09:34:40 -07001078 task_rq_unlock(rq, &flags);
1079
1080 /*
1081 * Was it really running after all now that we
1082 * checked with the proper locks actually held?
1083 *
1084 * Oops. Go back and try again..
1085 */
1086 if (unlikely(running)) {
1087 cpu_relax();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001088 goto repeat;
1089 }
Linus Torvaldsfa490cf2007-06-18 09:34:40 -07001090
1091 /*
1092 * It's not enough that it's not actively running,
1093 * it must be off the runqueue _entirely_, and not
1094 * preempted!
1095 *
1096 * So if it wa still runnable (but just not actively
1097 * running right now), it's preempted, and we should
1098 * yield - it could be a while.
1099 */
Ingo Molnardd41f592007-07-09 18:51:59 +02001100 if (unlikely(on_rq)) {
Linus Torvaldsfa490cf2007-06-18 09:34:40 -07001101 yield();
1102 goto repeat;
1103 }
1104
1105 /*
1106 * Ahh, all good. It wasn't running, and it wasn't
1107 * runnable, which means that it will never become
1108 * running in the future either. We're all done!
1109 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001110}
1111
1112/***
1113 * kick_process - kick a running thread to enter/exit the kernel
1114 * @p: the to-be-kicked thread
1115 *
1116 * Cause a process which is running on another CPU to enter
1117 * kernel-mode, without any delay. (to get signals handled.)
1118 *
1119 * NOTE: this function doesnt have to take the runqueue lock,
1120 * because all it wants to ensure is that the remote task enters
1121 * the kernel. If the IPI races and the task has been migrated
1122 * to another CPU then no harm is done and the purpose has been
1123 * achieved as well.
1124 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001125void kick_process(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001126{
1127 int cpu;
1128
1129 preempt_disable();
1130 cpu = task_cpu(p);
1131 if ((cpu != smp_processor_id()) && task_curr(p))
1132 smp_send_reschedule(cpu);
1133 preempt_enable();
1134}
1135
1136/*
Peter Williams2dd73a42006-06-27 02:54:34 -07001137 * Return a low guess at the load of a migration-source cpu weighted
1138 * according to the scheduling class and "nice" value.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001139 *
1140 * We want to under-estimate the load of migration sources, to
1141 * balance conservatively.
1142 */
Con Kolivasb9104722005-11-08 21:38:55 -08001143static inline unsigned long source_load(int cpu, int type)
1144{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001145 struct rq *rq = cpu_rq(cpu);
Ingo Molnardd41f592007-07-09 18:51:59 +02001146 unsigned long total = weighted_cpuload(cpu);
Nick Piggina2000572006-02-10 01:51:02 -08001147
Peter Williams2dd73a42006-06-27 02:54:34 -07001148 if (type == 0)
Ingo Molnardd41f592007-07-09 18:51:59 +02001149 return total;
Peter Williams2dd73a42006-06-27 02:54:34 -07001150
Ingo Molnardd41f592007-07-09 18:51:59 +02001151 return min(rq->cpu_load[type-1], total);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001152}
1153
1154/*
Peter Williams2dd73a42006-06-27 02:54:34 -07001155 * Return a high guess at the load of a migration-target cpu weighted
1156 * according to the scheduling class and "nice" value.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001157 */
Con Kolivasb9104722005-11-08 21:38:55 -08001158static inline unsigned long target_load(int cpu, int type)
1159{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001160 struct rq *rq = cpu_rq(cpu);
Ingo Molnardd41f592007-07-09 18:51:59 +02001161 unsigned long total = weighted_cpuload(cpu);
Nick Piggina2000572006-02-10 01:51:02 -08001162
Peter Williams2dd73a42006-06-27 02:54:34 -07001163 if (type == 0)
Ingo Molnardd41f592007-07-09 18:51:59 +02001164 return total;
Peter Williams2dd73a42006-06-27 02:54:34 -07001165
Ingo Molnardd41f592007-07-09 18:51:59 +02001166 return max(rq->cpu_load[type-1], total);
Peter Williams2dd73a42006-06-27 02:54:34 -07001167}
1168
1169/*
1170 * Return the average load per task on the cpu's run queue
1171 */
1172static inline unsigned long cpu_avg_load_per_task(int cpu)
1173{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001174 struct rq *rq = cpu_rq(cpu);
Ingo Molnardd41f592007-07-09 18:51:59 +02001175 unsigned long total = weighted_cpuload(cpu);
Peter Williams2dd73a42006-06-27 02:54:34 -07001176 unsigned long n = rq->nr_running;
1177
Ingo Molnardd41f592007-07-09 18:51:59 +02001178 return n ? total / n : SCHED_LOAD_SCALE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001179}
1180
Nick Piggin147cbb42005-06-25 14:57:19 -07001181/*
1182 * find_idlest_group finds and returns the least busy CPU group within the
1183 * domain.
1184 */
1185static struct sched_group *
1186find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1187{
1188 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1189 unsigned long min_load = ULONG_MAX, this_load = 0;
1190 int load_idx = sd->forkexec_idx;
1191 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1192
1193 do {
1194 unsigned long load, avg_load;
1195 int local_group;
1196 int i;
1197
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001198 /* Skip over this group if it has no CPUs allowed */
1199 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1200 goto nextgroup;
1201
Nick Piggin147cbb42005-06-25 14:57:19 -07001202 local_group = cpu_isset(this_cpu, group->cpumask);
Nick Piggin147cbb42005-06-25 14:57:19 -07001203
1204 /* Tally up the load of all CPUs in the group */
1205 avg_load = 0;
1206
1207 for_each_cpu_mask(i, group->cpumask) {
1208 /* Bias balancing toward cpus of our domain */
1209 if (local_group)
1210 load = source_load(i, load_idx);
1211 else
1212 load = target_load(i, load_idx);
1213
1214 avg_load += load;
1215 }
1216
1217 /* Adjust by relative CPU power of the group */
Eric Dumazet5517d862007-05-08 00:32:57 -07001218 avg_load = sg_div_cpu_power(group,
1219 avg_load * SCHED_LOAD_SCALE);
Nick Piggin147cbb42005-06-25 14:57:19 -07001220
1221 if (local_group) {
1222 this_load = avg_load;
1223 this = group;
1224 } else if (avg_load < min_load) {
1225 min_load = avg_load;
1226 idlest = group;
1227 }
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001228nextgroup:
Nick Piggin147cbb42005-06-25 14:57:19 -07001229 group = group->next;
1230 } while (group != sd->groups);
1231
1232 if (!idlest || 100*this_load < imbalance*min_load)
1233 return NULL;
1234 return idlest;
1235}
1236
1237/*
Satoru Takeuchi0feaece2006-10-03 01:14:10 -07001238 * find_idlest_cpu - find the idlest cpu among the cpus in group.
Nick Piggin147cbb42005-06-25 14:57:19 -07001239 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07001240static int
1241find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
Nick Piggin147cbb42005-06-25 14:57:19 -07001242{
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001243 cpumask_t tmp;
Nick Piggin147cbb42005-06-25 14:57:19 -07001244 unsigned long load, min_load = ULONG_MAX;
1245 int idlest = -1;
1246 int i;
1247
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001248 /* Traverse only the allowed CPUs */
1249 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1250
1251 for_each_cpu_mask(i, tmp) {
Peter Williams2dd73a42006-06-27 02:54:34 -07001252 load = weighted_cpuload(i);
Nick Piggin147cbb42005-06-25 14:57:19 -07001253
1254 if (load < min_load || (load == min_load && i == this_cpu)) {
1255 min_load = load;
1256 idlest = i;
1257 }
1258 }
1259
1260 return idlest;
1261}
1262
Nick Piggin476d1392005-06-25 14:57:29 -07001263/*
1264 * sched_balance_self: balance the current task (running on cpu) in domains
1265 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1266 * SD_BALANCE_EXEC.
1267 *
1268 * Balance, ie. select the least loaded group.
1269 *
1270 * Returns the target CPU number, or the same CPU if no balancing is needed.
1271 *
1272 * preempt must be disabled.
1273 */
1274static int sched_balance_self(int cpu, int flag)
1275{
1276 struct task_struct *t = current;
1277 struct sched_domain *tmp, *sd = NULL;
Nick Piggin147cbb42005-06-25 14:57:19 -07001278
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07001279 for_each_domain(cpu, tmp) {
Ingo Molnar9761eea2007-07-09 18:52:00 +02001280 /*
1281 * If power savings logic is enabled for a domain, stop there.
1282 */
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07001283 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1284 break;
Nick Piggin476d1392005-06-25 14:57:29 -07001285 if (tmp->flags & flag)
1286 sd = tmp;
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07001287 }
Nick Piggin476d1392005-06-25 14:57:29 -07001288
1289 while (sd) {
1290 cpumask_t span;
1291 struct sched_group *group;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001292 int new_cpu, weight;
1293
1294 if (!(sd->flags & flag)) {
1295 sd = sd->child;
1296 continue;
1297 }
Nick Piggin476d1392005-06-25 14:57:29 -07001298
1299 span = sd->span;
1300 group = find_idlest_group(sd, t, cpu);
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001301 if (!group) {
1302 sd = sd->child;
1303 continue;
1304 }
Nick Piggin476d1392005-06-25 14:57:29 -07001305
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001306 new_cpu = find_idlest_cpu(group, t, cpu);
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001307 if (new_cpu == -1 || new_cpu == cpu) {
1308 /* Now try balancing at a lower domain level of cpu */
1309 sd = sd->child;
1310 continue;
1311 }
Nick Piggin476d1392005-06-25 14:57:29 -07001312
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001313 /* Now try balancing at a lower domain level of new_cpu */
Nick Piggin476d1392005-06-25 14:57:29 -07001314 cpu = new_cpu;
Nick Piggin476d1392005-06-25 14:57:29 -07001315 sd = NULL;
1316 weight = cpus_weight(span);
1317 for_each_domain(cpu, tmp) {
1318 if (weight <= cpus_weight(tmp->span))
1319 break;
1320 if (tmp->flags & flag)
1321 sd = tmp;
1322 }
1323 /* while loop will break here if sd == NULL */
1324 }
1325
1326 return cpu;
1327}
1328
1329#endif /* CONFIG_SMP */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001330
1331/*
1332 * wake_idle() will wake a task on an idle cpu if task->cpu is
1333 * not idle and an idle cpu is available. The span of cpus to
1334 * search starts with cpus closest then further out as needed,
1335 * so we always favor a closer, idle cpu.
1336 *
1337 * Returns the CPU we should wake onto.
1338 */
1339#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
Ingo Molnar36c8b582006-07-03 00:25:41 -07001340static int wake_idle(int cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001341{
1342 cpumask_t tmp;
1343 struct sched_domain *sd;
1344 int i;
1345
Siddha, Suresh B49531982007-05-08 00:33:01 -07001346 /*
1347 * If it is idle, then it is the best cpu to run this task.
1348 *
1349 * This cpu is also the best, if it has more than one task already.
1350 * Siblings must be also busy(in most cases) as they didn't already
1351 * pickup the extra load from this cpu and hence we need not check
1352 * sibling runqueue info. This will avoid the checks and cache miss
1353 * penalities associated with that.
1354 */
1355 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001356 return cpu;
1357
1358 for_each_domain(cpu, sd) {
1359 if (sd->flags & SD_WAKE_IDLE) {
Nick Piggine0f364f2005-06-25 14:57:06 -07001360 cpus_and(tmp, sd->span, p->cpus_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001361 for_each_cpu_mask(i, tmp) {
1362 if (idle_cpu(i))
1363 return i;
1364 }
Ingo Molnar9761eea2007-07-09 18:52:00 +02001365 } else {
Nick Piggine0f364f2005-06-25 14:57:06 -07001366 break;
Ingo Molnar9761eea2007-07-09 18:52:00 +02001367 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001368 }
1369 return cpu;
1370}
1371#else
Ingo Molnar36c8b582006-07-03 00:25:41 -07001372static inline int wake_idle(int cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001373{
1374 return cpu;
1375}
1376#endif
1377
1378/***
1379 * try_to_wake_up - wake up a thread
1380 * @p: the to-be-woken-up thread
1381 * @state: the mask of task states that can be woken
1382 * @sync: do a synchronous wakeup?
1383 *
1384 * Put it on the run-queue if it's not already there. The "current"
1385 * thread is always on the run-queue (except when the actual
1386 * re-schedule is in progress), and as such you're allowed to do
1387 * the simpler "current->state = TASK_RUNNING" to mark yourself
1388 * runnable without the overhead of this.
1389 *
1390 * returns failure only if the task is already active.
1391 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001392static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001393{
1394 int cpu, this_cpu, success = 0;
1395 unsigned long flags;
1396 long old_state;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001397 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001398#ifdef CONFIG_SMP
Nick Piggin78979862005-06-25 14:57:13 -07001399 struct sched_domain *sd, *this_sd = NULL;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001400 unsigned long load, this_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001401 int new_cpu;
1402#endif
1403
1404 rq = task_rq_lock(p, &flags);
1405 old_state = p->state;
1406 if (!(old_state & state))
1407 goto out;
1408
Ingo Molnardd41f592007-07-09 18:51:59 +02001409 if (p->se.on_rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001410 goto out_running;
1411
1412 cpu = task_cpu(p);
1413 this_cpu = smp_processor_id();
1414
1415#ifdef CONFIG_SMP
1416 if (unlikely(task_running(rq, p)))
1417 goto out_activate;
1418
Nick Piggin78979862005-06-25 14:57:13 -07001419 new_cpu = cpu;
1420
Linus Torvalds1da177e2005-04-16 15:20:36 -07001421 schedstat_inc(rq, ttwu_cnt);
1422 if (cpu == this_cpu) {
1423 schedstat_inc(rq, ttwu_local);
Nick Piggin78979862005-06-25 14:57:13 -07001424 goto out_set_cpu;
1425 }
1426
1427 for_each_domain(this_cpu, sd) {
1428 if (cpu_isset(cpu, sd->span)) {
1429 schedstat_inc(sd, ttwu_wake_remote);
1430 this_sd = sd;
1431 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001432 }
1433 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001434
Nick Piggin78979862005-06-25 14:57:13 -07001435 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001436 goto out_set_cpu;
1437
Linus Torvalds1da177e2005-04-16 15:20:36 -07001438 /*
Nick Piggin78979862005-06-25 14:57:13 -07001439 * Check for affine wakeup and passive balancing possibilities.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001440 */
Nick Piggin78979862005-06-25 14:57:13 -07001441 if (this_sd) {
1442 int idx = this_sd->wake_idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001443 unsigned int imbalance;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001444
Nick Piggina3f21bc2005-06-25 14:57:15 -07001445 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1446
Nick Piggin78979862005-06-25 14:57:13 -07001447 load = source_load(cpu, idx);
1448 this_load = target_load(this_cpu, idx);
1449
Nick Piggin78979862005-06-25 14:57:13 -07001450 new_cpu = this_cpu; /* Wake to this CPU if we can */
1451
Nick Piggina3f21bc2005-06-25 14:57:15 -07001452 if (this_sd->flags & SD_WAKE_AFFINE) {
1453 unsigned long tl = this_load;
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08001454 unsigned long tl_per_task;
1455
1456 tl_per_task = cpu_avg_load_per_task(this_cpu);
Peter Williams2dd73a42006-06-27 02:54:34 -07001457
Linus Torvalds1da177e2005-04-16 15:20:36 -07001458 /*
Nick Piggina3f21bc2005-06-25 14:57:15 -07001459 * If sync wakeup then subtract the (maximum possible)
1460 * effect of the currently running task from the load
1461 * of the current CPU:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001462 */
Nick Piggina3f21bc2005-06-25 14:57:15 -07001463 if (sync)
Ingo Molnardd41f592007-07-09 18:51:59 +02001464 tl -= current->se.load.weight;
Nick Piggina3f21bc2005-06-25 14:57:15 -07001465
1466 if ((tl <= load &&
Peter Williams2dd73a42006-06-27 02:54:34 -07001467 tl + target_load(cpu, idx) <= tl_per_task) ||
Ingo Molnardd41f592007-07-09 18:51:59 +02001468 100*(tl + p->se.load.weight) <= imbalance*load) {
Nick Piggina3f21bc2005-06-25 14:57:15 -07001469 /*
1470 * This domain has SD_WAKE_AFFINE and
1471 * p is cache cold in this domain, and
1472 * there is no bad imbalance.
1473 */
1474 schedstat_inc(this_sd, ttwu_move_affine);
1475 goto out_set_cpu;
1476 }
1477 }
1478
1479 /*
1480 * Start passive balancing when half the imbalance_pct
1481 * limit is reached.
1482 */
1483 if (this_sd->flags & SD_WAKE_BALANCE) {
1484 if (imbalance*this_load <= 100*load) {
1485 schedstat_inc(this_sd, ttwu_move_balance);
1486 goto out_set_cpu;
1487 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001488 }
1489 }
1490
1491 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1492out_set_cpu:
1493 new_cpu = wake_idle(new_cpu, p);
1494 if (new_cpu != cpu) {
1495 set_task_cpu(p, new_cpu);
1496 task_rq_unlock(rq, &flags);
1497 /* might preempt at this point */
1498 rq = task_rq_lock(p, &flags);
1499 old_state = p->state;
1500 if (!(old_state & state))
1501 goto out;
Ingo Molnardd41f592007-07-09 18:51:59 +02001502 if (p->se.on_rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001503 goto out_running;
1504
1505 this_cpu = smp_processor_id();
1506 cpu = task_cpu(p);
1507 }
1508
1509out_activate:
1510#endif /* CONFIG_SMP */
Ingo Molnar2daa3572007-08-09 11:16:51 +02001511 update_rq_clock(rq);
Ingo Molnardd41f592007-07-09 18:51:59 +02001512 activate_task(rq, p, 1);
Ingo Molnard79fc0f2005-09-10 00:26:12 -07001513 /*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001514 * Sync wakeups (i.e. those types of wakeups where the waker
1515 * has indicated that it will leave the CPU in short order)
1516 * don't trigger a preemption, if the woken up task will run on
1517 * this cpu. (in this case the 'I will reschedule' promise of
1518 * the waker guarantees that the freshly woken up task is going
1519 * to be considered on this CPU.)
1520 */
Ingo Molnardd41f592007-07-09 18:51:59 +02001521 if (!sync || cpu != this_cpu)
1522 check_preempt_curr(rq, p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001523 success = 1;
1524
1525out_running:
1526 p->state = TASK_RUNNING;
1527out:
1528 task_rq_unlock(rq, &flags);
1529
1530 return success;
1531}
1532
Ingo Molnar36c8b582006-07-03 00:25:41 -07001533int fastcall wake_up_process(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001534{
1535 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1536 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1537}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001538EXPORT_SYMBOL(wake_up_process);
1539
Ingo Molnar36c8b582006-07-03 00:25:41 -07001540int fastcall wake_up_state(struct task_struct *p, unsigned int state)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001541{
1542 return try_to_wake_up(p, state, 0);
1543}
1544
Linus Torvalds1da177e2005-04-16 15:20:36 -07001545/*
1546 * Perform scheduler related setup for a newly forked process p.
1547 * p is forked by current.
Ingo Molnardd41f592007-07-09 18:51:59 +02001548 *
1549 * __sched_fork() is basic setup used by init_idle() too:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001550 */
Ingo Molnardd41f592007-07-09 18:51:59 +02001551static void __sched_fork(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001552{
Ingo Molnardd41f592007-07-09 18:51:59 +02001553 p->se.wait_start_fair = 0;
Ingo Molnardd41f592007-07-09 18:51:59 +02001554 p->se.exec_start = 0;
1555 p->se.sum_exec_runtime = 0;
1556 p->se.delta_exec = 0;
1557 p->se.delta_fair_run = 0;
1558 p->se.delta_fair_sleep = 0;
1559 p->se.wait_runtime = 0;
Ingo Molnar6cfb0d52007-08-02 17:41:40 +02001560 p->se.sleep_start_fair = 0;
1561
1562#ifdef CONFIG_SCHEDSTATS
1563 p->se.wait_start = 0;
Ingo Molnardd41f592007-07-09 18:51:59 +02001564 p->se.sum_wait_runtime = 0;
1565 p->se.sum_sleep_runtime = 0;
1566 p->se.sleep_start = 0;
Ingo Molnardd41f592007-07-09 18:51:59 +02001567 p->se.block_start = 0;
1568 p->se.sleep_max = 0;
1569 p->se.block_max = 0;
1570 p->se.exec_max = 0;
1571 p->se.wait_max = 0;
1572 p->se.wait_runtime_overruns = 0;
1573 p->se.wait_runtime_underruns = 0;
Ingo Molnar6cfb0d52007-08-02 17:41:40 +02001574#endif
Nick Piggin476d1392005-06-25 14:57:29 -07001575
Ingo Molnardd41f592007-07-09 18:51:59 +02001576 INIT_LIST_HEAD(&p->run_list);
1577 p->se.on_rq = 0;
Nick Piggin476d1392005-06-25 14:57:29 -07001578
Avi Kivitye107be32007-07-26 13:40:43 +02001579#ifdef CONFIG_PREEMPT_NOTIFIERS
1580 INIT_HLIST_HEAD(&p->preempt_notifiers);
1581#endif
1582
Linus Torvalds1da177e2005-04-16 15:20:36 -07001583 /*
1584 * We mark the process as running here, but have not actually
1585 * inserted it onto the runqueue yet. This guarantees that
1586 * nobody will actually run it, and a signal or other external
1587 * event cannot wake it up and insert it on the runqueue either.
1588 */
1589 p->state = TASK_RUNNING;
Ingo Molnardd41f592007-07-09 18:51:59 +02001590}
1591
1592/*
1593 * fork()/clone()-time setup:
1594 */
1595void sched_fork(struct task_struct *p, int clone_flags)
1596{
1597 int cpu = get_cpu();
1598
1599 __sched_fork(p);
1600
1601#ifdef CONFIG_SMP
1602 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1603#endif
1604 __set_task_cpu(p, cpu);
Ingo Molnarb29739f2006-06-27 02:54:51 -07001605
1606 /*
1607 * Make sure we do not leak PI boosting priority to the child:
1608 */
1609 p->prio = current->normal_prio;
1610
Chandra Seetharaman52f17b62006-07-14 00:24:38 -07001611#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
Ingo Molnardd41f592007-07-09 18:51:59 +02001612 if (likely(sched_info_on()))
Chandra Seetharaman52f17b62006-07-14 00:24:38 -07001613 memset(&p->sched_info, 0, sizeof(p->sched_info));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001614#endif
Chen, Kenneth Wd6077cb2006-02-14 13:53:10 -08001615#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
Nick Piggin4866cde2005-06-25 14:57:23 -07001616 p->oncpu = 0;
1617#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001618#ifdef CONFIG_PREEMPT
Nick Piggin4866cde2005-06-25 14:57:23 -07001619 /* Want to start with kernel preemption disabled. */
Al Viroa1261f52005-11-13 16:06:55 -08001620 task_thread_info(p)->preempt_count = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001621#endif
Nick Piggin476d1392005-06-25 14:57:29 -07001622 put_cpu();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001623}
1624
1625/*
Ingo Molnardd41f592007-07-09 18:51:59 +02001626 * After fork, child runs first. (default) If set to 0 then
1627 * parent will (try to) run first.
1628 */
1629unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
1630
1631/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001632 * wake_up_new_task - wake up a newly created task for the first time.
1633 *
1634 * This function will do some initial scheduler statistics housekeeping
1635 * that must be done for every newly created context, then puts the task
1636 * on the runqueue and wakes it.
1637 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001638void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001639{
1640 unsigned long flags;
Ingo Molnardd41f592007-07-09 18:51:59 +02001641 struct rq *rq;
1642 int this_cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001643
1644 rq = task_rq_lock(p, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001645 BUG_ON(p->state != TASK_RUNNING);
Ingo Molnardd41f592007-07-09 18:51:59 +02001646 this_cpu = smp_processor_id(); /* parent's CPU */
Ingo Molnara8e504d2007-08-09 11:16:47 +02001647 update_rq_clock(rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001648
1649 p->prio = effective_prio(p);
1650
Ingo Molnarcad60d92007-08-02 17:41:40 +02001651 if (!p->sched_class->task_new || !sysctl_sched_child_runs_first ||
1652 (clone_flags & CLONE_VM) || task_cpu(p) != this_cpu ||
1653 !current->se.on_rq) {
1654
Ingo Molnardd41f592007-07-09 18:51:59 +02001655 activate_task(rq, p, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001656 } else {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001657 /*
Ingo Molnardd41f592007-07-09 18:51:59 +02001658 * Let the scheduling class do new task startup
1659 * management (if any):
Linus Torvalds1da177e2005-04-16 15:20:36 -07001660 */
Ingo Molnaree0827d2007-08-09 11:16:49 +02001661 p->sched_class->task_new(rq, p);
Ingo Molnare5fa2232007-08-09 11:16:49 +02001662 inc_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001663 }
Ingo Molnardd41f592007-07-09 18:51:59 +02001664 check_preempt_curr(rq, p);
1665 task_rq_unlock(rq, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001666}
1667
Avi Kivitye107be32007-07-26 13:40:43 +02001668#ifdef CONFIG_PREEMPT_NOTIFIERS
1669
1670/**
Randy Dunlap421cee22007-07-31 00:37:50 -07001671 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1672 * @notifier: notifier struct to register
Avi Kivitye107be32007-07-26 13:40:43 +02001673 */
1674void preempt_notifier_register(struct preempt_notifier *notifier)
1675{
1676 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1677}
1678EXPORT_SYMBOL_GPL(preempt_notifier_register);
1679
1680/**
1681 * preempt_notifier_unregister - no longer interested in preemption notifications
Randy Dunlap421cee22007-07-31 00:37:50 -07001682 * @notifier: notifier struct to unregister
Avi Kivitye107be32007-07-26 13:40:43 +02001683 *
1684 * This is safe to call from within a preemption notifier.
1685 */
1686void preempt_notifier_unregister(struct preempt_notifier *notifier)
1687{
1688 hlist_del(&notifier->link);
1689}
1690EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1691
1692static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1693{
1694 struct preempt_notifier *notifier;
1695 struct hlist_node *node;
1696
1697 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1698 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1699}
1700
1701static void
1702fire_sched_out_preempt_notifiers(struct task_struct *curr,
1703 struct task_struct *next)
1704{
1705 struct preempt_notifier *notifier;
1706 struct hlist_node *node;
1707
1708 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1709 notifier->ops->sched_out(notifier, next);
1710}
1711
1712#else
1713
1714static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1715{
1716}
1717
1718static void
1719fire_sched_out_preempt_notifiers(struct task_struct *curr,
1720 struct task_struct *next)
1721{
1722}
1723
1724#endif
1725
Linus Torvalds1da177e2005-04-16 15:20:36 -07001726/**
Nick Piggin4866cde2005-06-25 14:57:23 -07001727 * prepare_task_switch - prepare to switch tasks
1728 * @rq: the runqueue preparing to switch
Randy Dunlap421cee22007-07-31 00:37:50 -07001729 * @prev: the current task that is being switched out
Nick Piggin4866cde2005-06-25 14:57:23 -07001730 * @next: the task we are going to switch to.
1731 *
1732 * This is called with the rq lock held and interrupts off. It must
1733 * be paired with a subsequent finish_task_switch after the context
1734 * switch.
1735 *
1736 * prepare_task_switch sets up locking and calls architecture specific
1737 * hooks.
1738 */
Avi Kivitye107be32007-07-26 13:40:43 +02001739static inline void
1740prepare_task_switch(struct rq *rq, struct task_struct *prev,
1741 struct task_struct *next)
Nick Piggin4866cde2005-06-25 14:57:23 -07001742{
Avi Kivitye107be32007-07-26 13:40:43 +02001743 fire_sched_out_preempt_notifiers(prev, next);
Nick Piggin4866cde2005-06-25 14:57:23 -07001744 prepare_lock_switch(rq, next);
1745 prepare_arch_switch(next);
1746}
1747
1748/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07001749 * finish_task_switch - clean up after a task-switch
Jeff Garzik344baba2005-09-07 01:15:17 -04001750 * @rq: runqueue associated with task-switch
Linus Torvalds1da177e2005-04-16 15:20:36 -07001751 * @prev: the thread we just switched away from.
1752 *
Nick Piggin4866cde2005-06-25 14:57:23 -07001753 * finish_task_switch must be called after the context switch, paired
1754 * with a prepare_task_switch call before the context switch.
1755 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1756 * and do any other architecture-specific cleanup actions.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001757 *
1758 * Note that we may have delayed dropping an mm in context_switch(). If
1759 * so, we finish that here outside of the runqueue lock. (Doing it
1760 * with the lock held can cause deadlocks; see schedule() for
1761 * details.)
1762 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07001763static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001764 __releases(rq->lock)
1765{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001766 struct mm_struct *mm = rq->prev_mm;
Oleg Nesterov55a101f2006-09-29 02:01:10 -07001767 long prev_state;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001768
1769 rq->prev_mm = NULL;
1770
1771 /*
1772 * A task struct has one reference for the use as "current".
Oleg Nesterovc394cc92006-09-29 02:01:11 -07001773 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
Oleg Nesterov55a101f2006-09-29 02:01:10 -07001774 * schedule one last time. The schedule call will never return, and
1775 * the scheduled task must drop that reference.
Oleg Nesterovc394cc92006-09-29 02:01:11 -07001776 * The test for TASK_DEAD must occur while the runqueue locks are
Linus Torvalds1da177e2005-04-16 15:20:36 -07001777 * still held, otherwise prev could be scheduled on another cpu, die
1778 * there before we look at prev->state, and then the reference would
1779 * be dropped twice.
1780 * Manfred Spraul <manfred@colorfullife.com>
1781 */
Oleg Nesterov55a101f2006-09-29 02:01:10 -07001782 prev_state = prev->state;
Nick Piggin4866cde2005-06-25 14:57:23 -07001783 finish_arch_switch(prev);
1784 finish_lock_switch(rq, prev);
Avi Kivitye107be32007-07-26 13:40:43 +02001785 fire_sched_in_preempt_notifiers(current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001786 if (mm)
1787 mmdrop(mm);
Oleg Nesterovc394cc92006-09-29 02:01:11 -07001788 if (unlikely(prev_state == TASK_DEAD)) {
bibo maoc6fd91f2006-03-26 01:38:20 -08001789 /*
1790 * Remove function-return probe instances associated with this
1791 * task and put them back on the free list.
Ingo Molnar9761eea2007-07-09 18:52:00 +02001792 */
bibo maoc6fd91f2006-03-26 01:38:20 -08001793 kprobe_flush_task(prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001794 put_task_struct(prev);
bibo maoc6fd91f2006-03-26 01:38:20 -08001795 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001796}
1797
1798/**
1799 * schedule_tail - first thing a freshly forked thread must call.
1800 * @prev: the thread we just switched away from.
1801 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001802asmlinkage void schedule_tail(struct task_struct *prev)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001803 __releases(rq->lock)
1804{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001805 struct rq *rq = this_rq();
1806
Nick Piggin4866cde2005-06-25 14:57:23 -07001807 finish_task_switch(rq, prev);
1808#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1809 /* In this case, finish_task_switch does not reenable preemption */
1810 preempt_enable();
1811#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001812 if (current->set_child_tid)
1813 put_user(current->pid, current->set_child_tid);
1814}
1815
1816/*
1817 * context_switch - switch to the new MM and the new
1818 * thread's register state.
1819 */
Ingo Molnardd41f592007-07-09 18:51:59 +02001820static inline void
Ingo Molnar70b97a72006-07-03 00:25:42 -07001821context_switch(struct rq *rq, struct task_struct *prev,
Ingo Molnar36c8b582006-07-03 00:25:41 -07001822 struct task_struct *next)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001823{
Ingo Molnardd41f592007-07-09 18:51:59 +02001824 struct mm_struct *mm, *oldmm;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001825
Avi Kivitye107be32007-07-26 13:40:43 +02001826 prepare_task_switch(rq, prev, next);
Ingo Molnardd41f592007-07-09 18:51:59 +02001827 mm = next->mm;
1828 oldmm = prev->active_mm;
Zachary Amsden9226d122007-02-13 13:26:21 +01001829 /*
1830 * For paravirt, this is coupled with an exit in switch_to to
1831 * combine the page table reload and the switch backend into
1832 * one hypercall.
1833 */
1834 arch_enter_lazy_cpu_mode();
1835
Ingo Molnardd41f592007-07-09 18:51:59 +02001836 if (unlikely(!mm)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001837 next->active_mm = oldmm;
1838 atomic_inc(&oldmm->mm_count);
1839 enter_lazy_tlb(oldmm, next);
1840 } else
1841 switch_mm(oldmm, mm, next);
1842
Ingo Molnardd41f592007-07-09 18:51:59 +02001843 if (unlikely(!prev->mm)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001844 prev->active_mm = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001845 rq->prev_mm = oldmm;
1846 }
Ingo Molnar3a5f5e42006-07-14 00:24:27 -07001847 /*
1848 * Since the runqueue lock will be released by the next
1849 * task (which is an invalid locking op but in the case
1850 * of the scheduler it's an obvious special-case), so we
1851 * do an early lockdep release here:
1852 */
1853#ifndef __ARCH_WANT_UNLOCKED_CTXSW
Ingo Molnar8a25d5d2006-07-03 00:24:54 -07001854 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
Ingo Molnar3a5f5e42006-07-14 00:24:27 -07001855#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001856
1857 /* Here we just switch the register state and the stack. */
1858 switch_to(prev, next, prev);
1859
Ingo Molnardd41f592007-07-09 18:51:59 +02001860 barrier();
1861 /*
1862 * this_rq must be evaluated again because prev may have moved
1863 * CPUs since it called schedule(), thus the 'rq' on its stack
1864 * frame will be invalid.
1865 */
1866 finish_task_switch(this_rq(), prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001867}
1868
1869/*
1870 * nr_running, nr_uninterruptible and nr_context_switches:
1871 *
1872 * externally visible scheduler statistics: current number of runnable
1873 * threads, current number of uninterruptible-sleeping threads, total
1874 * number of context switches performed since bootup.
1875 */
1876unsigned long nr_running(void)
1877{
1878 unsigned long i, sum = 0;
1879
1880 for_each_online_cpu(i)
1881 sum += cpu_rq(i)->nr_running;
1882
1883 return sum;
1884}
1885
1886unsigned long nr_uninterruptible(void)
1887{
1888 unsigned long i, sum = 0;
1889
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08001890 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001891 sum += cpu_rq(i)->nr_uninterruptible;
1892
1893 /*
1894 * Since we read the counters lockless, it might be slightly
1895 * inaccurate. Do not allow it to go below zero though:
1896 */
1897 if (unlikely((long)sum < 0))
1898 sum = 0;
1899
1900 return sum;
1901}
1902
1903unsigned long long nr_context_switches(void)
1904{
Steven Rostedtcc94abf2006-06-27 02:54:31 -07001905 int i;
1906 unsigned long long sum = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001907
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08001908 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001909 sum += cpu_rq(i)->nr_switches;
1910
1911 return sum;
1912}
1913
1914unsigned long nr_iowait(void)
1915{
1916 unsigned long i, sum = 0;
1917
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08001918 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001919 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1920
1921 return sum;
1922}
1923
Jack Steinerdb1b1fe2006-03-31 02:31:21 -08001924unsigned long nr_active(void)
1925{
1926 unsigned long i, running = 0, uninterruptible = 0;
1927
1928 for_each_online_cpu(i) {
1929 running += cpu_rq(i)->nr_running;
1930 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1931 }
1932
1933 if (unlikely((long)uninterruptible < 0))
1934 uninterruptible = 0;
1935
1936 return running + uninterruptible;
1937}
1938
Linus Torvalds1da177e2005-04-16 15:20:36 -07001939/*
Ingo Molnardd41f592007-07-09 18:51:59 +02001940 * Update rq->cpu_load[] statistics. This function is usually called every
1941 * scheduler tick (TICK_NSEC).
Ingo Molnar48f24c42006-07-03 00:25:40 -07001942 */
Ingo Molnardd41f592007-07-09 18:51:59 +02001943static void update_cpu_load(struct rq *this_rq)
Ingo Molnar48f24c42006-07-03 00:25:40 -07001944{
Ingo Molnardd41f592007-07-09 18:51:59 +02001945 u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
1946 unsigned long total_load = this_rq->ls.load.weight;
1947 unsigned long this_load = total_load;
1948 struct load_stat *ls = &this_rq->ls;
Ingo Molnardd41f592007-07-09 18:51:59 +02001949 int i, scale;
1950
1951 this_rq->nr_load_updates++;
1952 if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
1953 goto do_avg;
1954
1955 /* Update delta_fair/delta_exec fields first */
Ingo Molnar84a1d7a2007-08-09 11:16:49 +02001956 update_curr_load(this_rq);
Ingo Molnardd41f592007-07-09 18:51:59 +02001957
1958 fair_delta64 = ls->delta_fair + 1;
1959 ls->delta_fair = 0;
1960
1961 exec_delta64 = ls->delta_exec + 1;
1962 ls->delta_exec = 0;
1963
Ingo Molnard2819182007-08-09 11:16:47 +02001964 sample_interval64 = this_rq->clock - ls->load_update_last;
1965 ls->load_update_last = this_rq->clock;
Ingo Molnardd41f592007-07-09 18:51:59 +02001966
1967 if ((s64)sample_interval64 < (s64)TICK_NSEC)
1968 sample_interval64 = TICK_NSEC;
1969
1970 if (exec_delta64 > sample_interval64)
1971 exec_delta64 = sample_interval64;
1972
1973 idle_delta64 = sample_interval64 - exec_delta64;
1974
1975 tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
1976 tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
1977
1978 this_load = (unsigned long)tmp64;
1979
1980do_avg:
1981
1982 /* Update our load: */
1983 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
1984 unsigned long old_load, new_load;
1985
1986 /* scale is effectively 1 << i now, and >> i divides by scale */
1987
1988 old_load = this_rq->cpu_load[i];
1989 new_load = this_load;
1990
1991 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
1992 }
Ingo Molnar48f24c42006-07-03 00:25:40 -07001993}
1994
Ingo Molnardd41f592007-07-09 18:51:59 +02001995#ifdef CONFIG_SMP
1996
Ingo Molnar48f24c42006-07-03 00:25:40 -07001997/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001998 * double_rq_lock - safely lock two runqueues
1999 *
2000 * Note this does not disable interrupts like task_rq_lock,
2001 * you need to do so manually before calling.
2002 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002003static void double_rq_lock(struct rq *rq1, struct rq *rq2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002004 __acquires(rq1->lock)
2005 __acquires(rq2->lock)
2006{
Kirill Korotaev054b9102006-12-10 02:20:11 -08002007 BUG_ON(!irqs_disabled());
Linus Torvalds1da177e2005-04-16 15:20:36 -07002008 if (rq1 == rq2) {
2009 spin_lock(&rq1->lock);
2010 __acquire(rq2->lock); /* Fake it out ;) */
2011 } else {
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002012 if (rq1 < rq2) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002013 spin_lock(&rq1->lock);
2014 spin_lock(&rq2->lock);
2015 } else {
2016 spin_lock(&rq2->lock);
2017 spin_lock(&rq1->lock);
2018 }
2019 }
Ingo Molnar6e82a3b2007-08-09 11:16:51 +02002020 update_rq_clock(rq1);
2021 update_rq_clock(rq2);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002022}
2023
2024/*
2025 * double_rq_unlock - safely unlock two runqueues
2026 *
2027 * Note this does not restore interrupts like task_rq_unlock,
2028 * you need to do so manually after calling.
2029 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002030static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002031 __releases(rq1->lock)
2032 __releases(rq2->lock)
2033{
2034 spin_unlock(&rq1->lock);
2035 if (rq1 != rq2)
2036 spin_unlock(&rq2->lock);
2037 else
2038 __release(rq2->lock);
2039}
2040
2041/*
2042 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2043 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002044static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002045 __releases(this_rq->lock)
2046 __acquires(busiest->lock)
2047 __acquires(this_rq->lock)
2048{
Kirill Korotaev054b9102006-12-10 02:20:11 -08002049 if (unlikely(!irqs_disabled())) {
2050 /* printk() doesn't work good under rq->lock */
2051 spin_unlock(&this_rq->lock);
2052 BUG_ON(1);
2053 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002054 if (unlikely(!spin_trylock(&busiest->lock))) {
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002055 if (busiest < this_rq) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002056 spin_unlock(&this_rq->lock);
2057 spin_lock(&busiest->lock);
2058 spin_lock(&this_rq->lock);
2059 } else
2060 spin_lock(&busiest->lock);
2061 }
2062}
2063
2064/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002065 * If dest_cpu is allowed for this process, migrate the task to it.
2066 * This is accomplished by forcing the cpu_allowed mask to only
2067 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2068 * the cpu_allowed mask is restored.
2069 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07002070static void sched_migrate_task(struct task_struct *p, int dest_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002071{
Ingo Molnar70b97a72006-07-03 00:25:42 -07002072 struct migration_req req;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002073 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002074 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002075
2076 rq = task_rq_lock(p, &flags);
2077 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2078 || unlikely(cpu_is_offline(dest_cpu)))
2079 goto out;
2080
2081 /* force the process onto the specified CPU */
2082 if (migrate_task(p, dest_cpu, &req)) {
2083 /* Need to wait for migration thread (might exit: take ref). */
2084 struct task_struct *mt = rq->migration_thread;
Ingo Molnar36c8b582006-07-03 00:25:41 -07002085
Linus Torvalds1da177e2005-04-16 15:20:36 -07002086 get_task_struct(mt);
2087 task_rq_unlock(rq, &flags);
2088 wake_up_process(mt);
2089 put_task_struct(mt);
2090 wait_for_completion(&req.done);
Ingo Molnar36c8b582006-07-03 00:25:41 -07002091
Linus Torvalds1da177e2005-04-16 15:20:36 -07002092 return;
2093 }
2094out:
2095 task_rq_unlock(rq, &flags);
2096}
2097
2098/*
Nick Piggin476d1392005-06-25 14:57:29 -07002099 * sched_exec - execve() is a valuable balancing opportunity, because at
2100 * this point the task has the smallest effective memory and cache footprint.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002101 */
2102void sched_exec(void)
2103{
Linus Torvalds1da177e2005-04-16 15:20:36 -07002104 int new_cpu, this_cpu = get_cpu();
Nick Piggin476d1392005-06-25 14:57:29 -07002105 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002106 put_cpu();
Nick Piggin476d1392005-06-25 14:57:29 -07002107 if (new_cpu != this_cpu)
2108 sched_migrate_task(current, new_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002109}
2110
2111/*
2112 * pull_task - move a task from a remote runqueue to the local runqueue.
2113 * Both runqueues must be locked.
2114 */
Ingo Molnardd41f592007-07-09 18:51:59 +02002115static void pull_task(struct rq *src_rq, struct task_struct *p,
2116 struct rq *this_rq, int this_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002117{
Ingo Molnar2e1cb742007-08-09 11:16:49 +02002118 deactivate_task(src_rq, p, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002119 set_task_cpu(p, this_cpu);
Ingo Molnardd41f592007-07-09 18:51:59 +02002120 activate_task(this_rq, p, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002121 /*
2122 * Note that idle threads have a prio of MAX_PRIO, for this test
2123 * to be always true for them.
2124 */
Ingo Molnardd41f592007-07-09 18:51:59 +02002125 check_preempt_curr(this_rq, p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002126}
2127
2128/*
2129 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2130 */
Arjan van de Ven858119e2006-01-14 13:20:43 -08002131static
Ingo Molnar70b97a72006-07-03 00:25:42 -07002132int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002133 struct sched_domain *sd, enum cpu_idle_type idle,
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07002134 int *all_pinned)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002135{
2136 /*
2137 * We do not migrate tasks that are:
2138 * 1) running (obviously), or
2139 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2140 * 3) are cache-hot on their current CPU.
2141 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002142 if (!cpu_isset(this_cpu, p->cpus_allowed))
2143 return 0;
Nick Piggin81026792005-06-25 14:57:07 -07002144 *all_pinned = 0;
2145
2146 if (task_running(rq, p))
2147 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002148
2149 /*
Ingo Molnardd41f592007-07-09 18:51:59 +02002150 * Aggressive migration if too many balance attempts have failed:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002151 */
Ingo Molnardd41f592007-07-09 18:51:59 +02002152 if (sd->nr_balance_failed > sd->cache_nice_tries)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002153 return 1;
2154
Linus Torvalds1da177e2005-04-16 15:20:36 -07002155 return 1;
2156}
2157
Ingo Molnardd41f592007-07-09 18:51:59 +02002158static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2159 unsigned long max_nr_move, unsigned long max_load_move,
2160 struct sched_domain *sd, enum cpu_idle_type idle,
2161 int *all_pinned, unsigned long *load_moved,
Peter Williamsa4ac01c2007-08-09 11:16:46 +02002162 int *this_best_prio, struct rq_iterator *iterator)
Ingo Molnardd41f592007-07-09 18:51:59 +02002163{
2164 int pulled = 0, pinned = 0, skip_for_load;
2165 struct task_struct *p;
2166 long rem_load_move = max_load_move;
2167
2168 if (max_nr_move == 0 || max_load_move == 0)
2169 goto out;
2170
2171 pinned = 1;
2172
2173 /*
2174 * Start the load-balancing iterator:
2175 */
2176 p = iterator->start(iterator->arg);
2177next:
2178 if (!p)
2179 goto out;
2180 /*
2181 * To help distribute high priority tasks accross CPUs we don't
2182 * skip a task if it will be the highest priority task (i.e. smallest
2183 * prio value) on its new queue regardless of its load weight
2184 */
2185 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2186 SCHED_LOAD_SCALE_FUZZ;
Peter Williamsa4ac01c2007-08-09 11:16:46 +02002187 if ((skip_for_load && p->prio >= *this_best_prio) ||
Ingo Molnardd41f592007-07-09 18:51:59 +02002188 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
Ingo Molnardd41f592007-07-09 18:51:59 +02002189 p = iterator->next(iterator->arg);
2190 goto next;
2191 }
2192
2193 pull_task(busiest, p, this_rq, this_cpu);
2194 pulled++;
2195 rem_load_move -= p->se.load.weight;
2196
2197 /*
2198 * We only want to steal up to the prescribed number of tasks
2199 * and the prescribed amount of weighted load.
2200 */
2201 if (pulled < max_nr_move && rem_load_move > 0) {
Peter Williamsa4ac01c2007-08-09 11:16:46 +02002202 if (p->prio < *this_best_prio)
2203 *this_best_prio = p->prio;
Ingo Molnardd41f592007-07-09 18:51:59 +02002204 p = iterator->next(iterator->arg);
2205 goto next;
2206 }
2207out:
2208 /*
2209 * Right now, this is the only place pull_task() is called,
2210 * so we can safely collect pull_task() stats here rather than
2211 * inside pull_task().
2212 */
2213 schedstat_add(sd, lb_gained[idle], pulled);
2214
2215 if (all_pinned)
2216 *all_pinned = pinned;
2217 *load_moved = max_load_move - rem_load_move;
2218 return pulled;
2219}
Ingo Molnar48f24c42006-07-03 00:25:40 -07002220
Linus Torvalds1da177e2005-04-16 15:20:36 -07002221/*
Peter Williams43010652007-08-09 11:16:46 +02002222 * move_tasks tries to move up to max_load_move weighted load from busiest to
2223 * this_rq, as part of a balancing operation within domain "sd".
2224 * Returns 1 if successful and 0 otherwise.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002225 *
2226 * Called with both runqueues locked.
2227 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002228static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
Peter Williams43010652007-08-09 11:16:46 +02002229 unsigned long max_load_move,
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002230 struct sched_domain *sd, enum cpu_idle_type idle,
Peter Williams2dd73a42006-06-27 02:54:34 -07002231 int *all_pinned)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002232{
Ingo Molnardd41f592007-07-09 18:51:59 +02002233 struct sched_class *class = sched_class_highest;
Peter Williams43010652007-08-09 11:16:46 +02002234 unsigned long total_load_moved = 0;
Peter Williamsa4ac01c2007-08-09 11:16:46 +02002235 int this_best_prio = this_rq->curr->prio;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002236
Ingo Molnardd41f592007-07-09 18:51:59 +02002237 do {
Peter Williams43010652007-08-09 11:16:46 +02002238 total_load_moved +=
2239 class->load_balance(this_rq, this_cpu, busiest,
2240 ULONG_MAX, max_load_move - total_load_moved,
Peter Williamsa4ac01c2007-08-09 11:16:46 +02002241 sd, idle, all_pinned, &this_best_prio);
Ingo Molnardd41f592007-07-09 18:51:59 +02002242 class = class->next;
Peter Williams43010652007-08-09 11:16:46 +02002243 } while (class && max_load_move > total_load_moved);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002244
Peter Williams43010652007-08-09 11:16:46 +02002245 return total_load_moved > 0;
2246}
2247
2248/*
2249 * move_one_task tries to move exactly one task from busiest to this_rq, as
2250 * part of active balancing operations within "domain".
2251 * Returns 1 if successful and 0 otherwise.
2252 *
2253 * Called with both runqueues locked.
2254 */
2255static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2256 struct sched_domain *sd, enum cpu_idle_type idle)
2257{
2258 struct sched_class *class;
Peter Williamsa4ac01c2007-08-09 11:16:46 +02002259 int this_best_prio = MAX_PRIO;
Peter Williams43010652007-08-09 11:16:46 +02002260
2261 for (class = sched_class_highest; class; class = class->next)
2262 if (class->load_balance(this_rq, this_cpu, busiest,
Peter Williamsa4ac01c2007-08-09 11:16:46 +02002263 1, ULONG_MAX, sd, idle, NULL,
2264 &this_best_prio))
Peter Williams43010652007-08-09 11:16:46 +02002265 return 1;
2266
2267 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002268}
2269
2270/*
2271 * find_busiest_group finds and returns the busiest CPU group within the
Ingo Molnar48f24c42006-07-03 00:25:40 -07002272 * domain. It calculates and returns the amount of weighted load which
2273 * should be moved to restore balance via the imbalance parameter.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002274 */
2275static struct sched_group *
2276find_busiest_group(struct sched_domain *sd, int this_cpu,
Ingo Molnardd41f592007-07-09 18:51:59 +02002277 unsigned long *imbalance, enum cpu_idle_type idle,
2278 int *sd_idle, cpumask_t *cpus, int *balance)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002279{
2280 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2281 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002282 unsigned long max_pull;
Peter Williams2dd73a42006-06-27 02:54:34 -07002283 unsigned long busiest_load_per_task, busiest_nr_running;
2284 unsigned long this_load_per_task, this_nr_running;
Nick Piggin78979862005-06-25 14:57:13 -07002285 int load_idx;
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002286#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2287 int power_savings_balance = 1;
2288 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2289 unsigned long min_nr_running = ULONG_MAX;
2290 struct sched_group *group_min = NULL, *group_leader = NULL;
2291#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002292
2293 max_load = this_load = total_load = total_pwr = 0;
Peter Williams2dd73a42006-06-27 02:54:34 -07002294 busiest_load_per_task = busiest_nr_running = 0;
2295 this_load_per_task = this_nr_running = 0;
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002296 if (idle == CPU_NOT_IDLE)
Nick Piggin78979862005-06-25 14:57:13 -07002297 load_idx = sd->busy_idx;
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002298 else if (idle == CPU_NEWLY_IDLE)
Nick Piggin78979862005-06-25 14:57:13 -07002299 load_idx = sd->newidle_idx;
2300 else
2301 load_idx = sd->idle_idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002302
2303 do {
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002304 unsigned long load, group_capacity;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002305 int local_group;
2306 int i;
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002307 unsigned int balance_cpu = -1, first_idle_cpu = 0;
Peter Williams2dd73a42006-06-27 02:54:34 -07002308 unsigned long sum_nr_running, sum_weighted_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002309
2310 local_group = cpu_isset(this_cpu, group->cpumask);
2311
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002312 if (local_group)
2313 balance_cpu = first_cpu(group->cpumask);
2314
Linus Torvalds1da177e2005-04-16 15:20:36 -07002315 /* Tally up the load of all CPUs in the group */
Peter Williams2dd73a42006-06-27 02:54:34 -07002316 sum_weighted_load = sum_nr_running = avg_load = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002317
2318 for_each_cpu_mask(i, group->cpumask) {
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002319 struct rq *rq;
2320
2321 if (!cpu_isset(i, *cpus))
2322 continue;
2323
2324 rq = cpu_rq(i);
Peter Williams2dd73a42006-06-27 02:54:34 -07002325
Suresh Siddha9439aab2007-07-19 21:28:35 +02002326 if (*sd_idle && rq->nr_running)
Nick Piggin5969fe02005-09-10 00:26:19 -07002327 *sd_idle = 0;
2328
Linus Torvalds1da177e2005-04-16 15:20:36 -07002329 /* Bias balancing toward cpus of our domain */
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002330 if (local_group) {
2331 if (idle_cpu(i) && !first_idle_cpu) {
2332 first_idle_cpu = 1;
2333 balance_cpu = i;
2334 }
2335
Nick Piggina2000572006-02-10 01:51:02 -08002336 load = target_load(i, load_idx);
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002337 } else
Nick Piggina2000572006-02-10 01:51:02 -08002338 load = source_load(i, load_idx);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002339
2340 avg_load += load;
Peter Williams2dd73a42006-06-27 02:54:34 -07002341 sum_nr_running += rq->nr_running;
Ingo Molnardd41f592007-07-09 18:51:59 +02002342 sum_weighted_load += weighted_cpuload(i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002343 }
2344
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002345 /*
2346 * First idle cpu or the first cpu(busiest) in this sched group
2347 * is eligible for doing load balancing at this and above
Suresh Siddha9439aab2007-07-19 21:28:35 +02002348 * domains. In the newly idle case, we will allow all the cpu's
2349 * to do the newly idle load balance.
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002350 */
Suresh Siddha9439aab2007-07-19 21:28:35 +02002351 if (idle != CPU_NEWLY_IDLE && local_group &&
2352 balance_cpu != this_cpu && balance) {
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002353 *balance = 0;
2354 goto ret;
2355 }
2356
Linus Torvalds1da177e2005-04-16 15:20:36 -07002357 total_load += avg_load;
Eric Dumazet5517d862007-05-08 00:32:57 -07002358 total_pwr += group->__cpu_power;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002359
2360 /* Adjust by relative CPU power of the group */
Eric Dumazet5517d862007-05-08 00:32:57 -07002361 avg_load = sg_div_cpu_power(group,
2362 avg_load * SCHED_LOAD_SCALE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002363
Eric Dumazet5517d862007-05-08 00:32:57 -07002364 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002365
Linus Torvalds1da177e2005-04-16 15:20:36 -07002366 if (local_group) {
2367 this_load = avg_load;
2368 this = group;
Peter Williams2dd73a42006-06-27 02:54:34 -07002369 this_nr_running = sum_nr_running;
2370 this_load_per_task = sum_weighted_load;
2371 } else if (avg_load > max_load &&
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002372 sum_nr_running > group_capacity) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002373 max_load = avg_load;
2374 busiest = group;
Peter Williams2dd73a42006-06-27 02:54:34 -07002375 busiest_nr_running = sum_nr_running;
2376 busiest_load_per_task = sum_weighted_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002377 }
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002378
2379#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2380 /*
2381 * Busy processors will not participate in power savings
2382 * balance.
2383 */
Ingo Molnardd41f592007-07-09 18:51:59 +02002384 if (idle == CPU_NOT_IDLE ||
2385 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2386 goto group_next;
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002387
2388 /*
2389 * If the local group is idle or completely loaded
2390 * no need to do power savings balance at this domain
2391 */
2392 if (local_group && (this_nr_running >= group_capacity ||
2393 !this_nr_running))
2394 power_savings_balance = 0;
2395
Ingo Molnardd41f592007-07-09 18:51:59 +02002396 /*
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002397 * If a group is already running at full capacity or idle,
2398 * don't include that group in power savings calculations
Ingo Molnardd41f592007-07-09 18:51:59 +02002399 */
2400 if (!power_savings_balance || sum_nr_running >= group_capacity
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002401 || !sum_nr_running)
Ingo Molnardd41f592007-07-09 18:51:59 +02002402 goto group_next;
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002403
Ingo Molnardd41f592007-07-09 18:51:59 +02002404 /*
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002405 * Calculate the group which has the least non-idle load.
Ingo Molnardd41f592007-07-09 18:51:59 +02002406 * This is the group from where we need to pick up the load
2407 * for saving power
2408 */
2409 if ((sum_nr_running < min_nr_running) ||
2410 (sum_nr_running == min_nr_running &&
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002411 first_cpu(group->cpumask) <
2412 first_cpu(group_min->cpumask))) {
Ingo Molnardd41f592007-07-09 18:51:59 +02002413 group_min = group;
2414 min_nr_running = sum_nr_running;
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002415 min_load_per_task = sum_weighted_load /
2416 sum_nr_running;
Ingo Molnardd41f592007-07-09 18:51:59 +02002417 }
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002418
Ingo Molnardd41f592007-07-09 18:51:59 +02002419 /*
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002420 * Calculate the group which is almost near its
Ingo Molnardd41f592007-07-09 18:51:59 +02002421 * capacity but still has some space to pick up some load
2422 * from other group and save more power
2423 */
2424 if (sum_nr_running <= group_capacity - 1) {
2425 if (sum_nr_running > leader_nr_running ||
2426 (sum_nr_running == leader_nr_running &&
2427 first_cpu(group->cpumask) >
2428 first_cpu(group_leader->cpumask))) {
2429 group_leader = group;
2430 leader_nr_running = sum_nr_running;
2431 }
Ingo Molnar48f24c42006-07-03 00:25:40 -07002432 }
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002433group_next:
2434#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002435 group = group->next;
2436 } while (group != sd->groups);
2437
Peter Williams2dd73a42006-06-27 02:54:34 -07002438 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002439 goto out_balanced;
2440
2441 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2442
2443 if (this_load >= avg_load ||
2444 100*max_load <= sd->imbalance_pct*this_load)
2445 goto out_balanced;
2446
Peter Williams2dd73a42006-06-27 02:54:34 -07002447 busiest_load_per_task /= busiest_nr_running;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002448 /*
2449 * We're trying to get all the cpus to the average_load, so we don't
2450 * want to push ourselves above the average load, nor do we wish to
2451 * reduce the max loaded cpu below the average load, as either of these
2452 * actions would just result in more rebalancing later, and ping-pong
2453 * tasks around. Thus we look for the minimum possible imbalance.
2454 * Negative imbalances (*we* are more loaded than anyone else) will
2455 * be counted as no imbalance for these purposes -- we can't fix that
2456 * by pulling tasks to us. Be careful of negative numbers as they'll
2457 * appear as very large values with unsigned longs.
2458 */
Peter Williams2dd73a42006-06-27 02:54:34 -07002459 if (max_load <= busiest_load_per_task)
2460 goto out_balanced;
2461
2462 /*
2463 * In the presence of smp nice balancing, certain scenarios can have
2464 * max load less than avg load(as we skip the groups at or below
2465 * its cpu_power, while calculating max_load..)
2466 */
2467 if (max_load < avg_load) {
2468 *imbalance = 0;
2469 goto small_imbalance;
2470 }
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002471
2472 /* Don't want to pull so many tasks that a group would go idle */
Peter Williams2dd73a42006-06-27 02:54:34 -07002473 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002474
Linus Torvalds1da177e2005-04-16 15:20:36 -07002475 /* How much load to actually move to equalise the imbalance */
Eric Dumazet5517d862007-05-08 00:32:57 -07002476 *imbalance = min(max_pull * busiest->__cpu_power,
2477 (avg_load - this_load) * this->__cpu_power)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002478 / SCHED_LOAD_SCALE;
2479
Peter Williams2dd73a42006-06-27 02:54:34 -07002480 /*
2481 * if *imbalance is less than the average load per runnable task
2482 * there is no gaurantee that any tasks will be moved so we'll have
2483 * a think about bumping its value to force at least one task to be
2484 * moved
2485 */
Ingo Molnardd41f592007-07-09 18:51:59 +02002486 if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07002487 unsigned long tmp, pwr_now, pwr_move;
Peter Williams2dd73a42006-06-27 02:54:34 -07002488 unsigned int imbn;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002489
Peter Williams2dd73a42006-06-27 02:54:34 -07002490small_imbalance:
2491 pwr_move = pwr_now = 0;
2492 imbn = 2;
2493 if (this_nr_running) {
2494 this_load_per_task /= this_nr_running;
2495 if (busiest_load_per_task > this_load_per_task)
2496 imbn = 1;
2497 } else
2498 this_load_per_task = SCHED_LOAD_SCALE;
2499
Ingo Molnardd41f592007-07-09 18:51:59 +02002500 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2501 busiest_load_per_task * imbn) {
Peter Williams2dd73a42006-06-27 02:54:34 -07002502 *imbalance = busiest_load_per_task;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002503 return busiest;
2504 }
2505
2506 /*
2507 * OK, we don't have enough imbalance to justify moving tasks,
2508 * however we may be able to increase total CPU power used by
2509 * moving them.
2510 */
2511
Eric Dumazet5517d862007-05-08 00:32:57 -07002512 pwr_now += busiest->__cpu_power *
2513 min(busiest_load_per_task, max_load);
2514 pwr_now += this->__cpu_power *
2515 min(this_load_per_task, this_load);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002516 pwr_now /= SCHED_LOAD_SCALE;
2517
2518 /* Amount of load we'd subtract */
Eric Dumazet5517d862007-05-08 00:32:57 -07002519 tmp = sg_div_cpu_power(busiest,
2520 busiest_load_per_task * SCHED_LOAD_SCALE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002521 if (max_load > tmp)
Eric Dumazet5517d862007-05-08 00:32:57 -07002522 pwr_move += busiest->__cpu_power *
Peter Williams2dd73a42006-06-27 02:54:34 -07002523 min(busiest_load_per_task, max_load - tmp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002524
2525 /* Amount of load we'd add */
Eric Dumazet5517d862007-05-08 00:32:57 -07002526 if (max_load * busiest->__cpu_power <
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08002527 busiest_load_per_task * SCHED_LOAD_SCALE)
Eric Dumazet5517d862007-05-08 00:32:57 -07002528 tmp = sg_div_cpu_power(this,
2529 max_load * busiest->__cpu_power);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002530 else
Eric Dumazet5517d862007-05-08 00:32:57 -07002531 tmp = sg_div_cpu_power(this,
2532 busiest_load_per_task * SCHED_LOAD_SCALE);
2533 pwr_move += this->__cpu_power *
2534 min(this_load_per_task, this_load + tmp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002535 pwr_move /= SCHED_LOAD_SCALE;
2536
2537 /* Move if we gain throughput */
2538 if (pwr_move <= pwr_now)
2539 goto out_balanced;
2540
Peter Williams2dd73a42006-06-27 02:54:34 -07002541 *imbalance = busiest_load_per_task;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002542 }
2543
Linus Torvalds1da177e2005-04-16 15:20:36 -07002544 return busiest;
2545
2546out_balanced:
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002547#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002548 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002549 goto ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002550
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002551 if (this == group_leader && group_leader != group_min) {
2552 *imbalance = min_load_per_task;
2553 return group_min;
2554 }
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002555#endif
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002556ret:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002557 *imbalance = 0;
2558 return NULL;
2559}
2560
2561/*
2562 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2563 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002564static struct rq *
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002565find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002566 unsigned long imbalance, cpumask_t *cpus)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002567{
Ingo Molnar70b97a72006-07-03 00:25:42 -07002568 struct rq *busiest = NULL, *rq;
Peter Williams2dd73a42006-06-27 02:54:34 -07002569 unsigned long max_load = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002570 int i;
2571
2572 for_each_cpu_mask(i, group->cpumask) {
Ingo Molnardd41f592007-07-09 18:51:59 +02002573 unsigned long wl;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002574
2575 if (!cpu_isset(i, *cpus))
2576 continue;
2577
Ingo Molnar48f24c42006-07-03 00:25:40 -07002578 rq = cpu_rq(i);
Ingo Molnardd41f592007-07-09 18:51:59 +02002579 wl = weighted_cpuload(i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002580
Ingo Molnardd41f592007-07-09 18:51:59 +02002581 if (rq->nr_running == 1 && wl > imbalance)
Peter Williams2dd73a42006-06-27 02:54:34 -07002582 continue;
2583
Ingo Molnardd41f592007-07-09 18:51:59 +02002584 if (wl > max_load) {
2585 max_load = wl;
Ingo Molnar48f24c42006-07-03 00:25:40 -07002586 busiest = rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002587 }
2588 }
2589
2590 return busiest;
2591}
2592
2593/*
Nick Piggin77391d72005-06-25 14:57:30 -07002594 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2595 * so long as it is large enough.
2596 */
2597#define MAX_PINNED_INTERVAL 512
2598
2599/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002600 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2601 * tasks if there is an imbalance.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002602 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002603static int load_balance(int this_cpu, struct rq *this_rq,
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002604 struct sched_domain *sd, enum cpu_idle_type idle,
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002605 int *balance)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002606{
Peter Williams43010652007-08-09 11:16:46 +02002607 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002608 struct sched_group *group;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002609 unsigned long imbalance;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002610 struct rq *busiest;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002611 cpumask_t cpus = CPU_MASK_ALL;
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002612 unsigned long flags;
Nick Piggin5969fe02005-09-10 00:26:19 -07002613
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002614 /*
2615 * When power savings policy is enabled for the parent domain, idle
2616 * sibling can pick up load irrespective of busy siblings. In this case,
Ingo Molnardd41f592007-07-09 18:51:59 +02002617 * let the state of idle sibling percolate up as CPU_IDLE, instead of
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002618 * portraying it as CPU_NOT_IDLE.
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002619 */
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002620 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002621 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002622 sd_idle = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002623
Linus Torvalds1da177e2005-04-16 15:20:36 -07002624 schedstat_inc(sd, lb_cnt[idle]);
2625
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002626redo:
2627 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002628 &cpus, balance);
2629
Chen, Kenneth W06066712006-12-10 02:20:35 -08002630 if (*balance == 0)
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002631 goto out_balanced;
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002632
Linus Torvalds1da177e2005-04-16 15:20:36 -07002633 if (!group) {
2634 schedstat_inc(sd, lb_nobusyg[idle]);
2635 goto out_balanced;
2636 }
2637
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002638 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002639 if (!busiest) {
2640 schedstat_inc(sd, lb_nobusyq[idle]);
2641 goto out_balanced;
2642 }
2643
Nick Piggindb935db2005-06-25 14:57:11 -07002644 BUG_ON(busiest == this_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002645
2646 schedstat_add(sd, lb_imbalance[idle], imbalance);
2647
Peter Williams43010652007-08-09 11:16:46 +02002648 ld_moved = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002649 if (busiest->nr_running > 1) {
2650 /*
2651 * Attempt to move tasks. If find_busiest_group has found
2652 * an imbalance but busiest->nr_running <= 1, the group is
Peter Williams43010652007-08-09 11:16:46 +02002653 * still unbalanced. ld_moved simply stays zero, so it is
Linus Torvalds1da177e2005-04-16 15:20:36 -07002654 * correctly treated as an imbalance.
2655 */
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002656 local_irq_save(flags);
Nick Piggine17224b2005-09-10 00:26:18 -07002657 double_rq_lock(this_rq, busiest);
Peter Williams43010652007-08-09 11:16:46 +02002658 ld_moved = move_tasks(this_rq, this_cpu, busiest,
Ingo Molnar48f24c42006-07-03 00:25:40 -07002659 imbalance, sd, idle, &all_pinned);
Nick Piggine17224b2005-09-10 00:26:18 -07002660 double_rq_unlock(this_rq, busiest);
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002661 local_irq_restore(flags);
Nick Piggin81026792005-06-25 14:57:07 -07002662
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002663 /*
2664 * some other cpu did the load balance for us.
2665 */
Peter Williams43010652007-08-09 11:16:46 +02002666 if (ld_moved && this_cpu != smp_processor_id())
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002667 resched_cpu(this_cpu);
2668
Nick Piggin81026792005-06-25 14:57:07 -07002669 /* All tasks on this runqueue were pinned by CPU affinity */
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002670 if (unlikely(all_pinned)) {
2671 cpu_clear(cpu_of(busiest), cpus);
2672 if (!cpus_empty(cpus))
2673 goto redo;
Nick Piggin81026792005-06-25 14:57:07 -07002674 goto out_balanced;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002675 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002676 }
Nick Piggin81026792005-06-25 14:57:07 -07002677
Peter Williams43010652007-08-09 11:16:46 +02002678 if (!ld_moved) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002679 schedstat_inc(sd, lb_failed[idle]);
2680 sd->nr_balance_failed++;
2681
2682 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002683
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002684 spin_lock_irqsave(&busiest->lock, flags);
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002685
2686 /* don't kick the migration_thread, if the curr
2687 * task on busiest cpu can't be moved to this_cpu
2688 */
2689 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002690 spin_unlock_irqrestore(&busiest->lock, flags);
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002691 all_pinned = 1;
2692 goto out_one_pinned;
2693 }
2694
Linus Torvalds1da177e2005-04-16 15:20:36 -07002695 if (!busiest->active_balance) {
2696 busiest->active_balance = 1;
2697 busiest->push_cpu = this_cpu;
Nick Piggin81026792005-06-25 14:57:07 -07002698 active_balance = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002699 }
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002700 spin_unlock_irqrestore(&busiest->lock, flags);
Nick Piggin81026792005-06-25 14:57:07 -07002701 if (active_balance)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002702 wake_up_process(busiest->migration_thread);
2703
2704 /*
2705 * We've kicked active balancing, reset the failure
2706 * counter.
2707 */
Nick Piggin39507452005-06-25 14:57:09 -07002708 sd->nr_balance_failed = sd->cache_nice_tries+1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002709 }
Nick Piggin81026792005-06-25 14:57:07 -07002710 } else
Linus Torvalds1da177e2005-04-16 15:20:36 -07002711 sd->nr_balance_failed = 0;
2712
Nick Piggin81026792005-06-25 14:57:07 -07002713 if (likely(!active_balance)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002714 /* We were unbalanced, so reset the balancing interval */
2715 sd->balance_interval = sd->min_interval;
Nick Piggin81026792005-06-25 14:57:07 -07002716 } else {
2717 /*
2718 * If we've begun active balancing, start to back off. This
2719 * case may not be covered by the all_pinned logic if there
2720 * is only 1 task on the busy runqueue (because we don't call
2721 * move_tasks).
2722 */
2723 if (sd->balance_interval < sd->max_interval)
2724 sd->balance_interval *= 2;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002725 }
2726
Peter Williams43010652007-08-09 11:16:46 +02002727 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002728 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002729 return -1;
Peter Williams43010652007-08-09 11:16:46 +02002730 return ld_moved;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002731
2732out_balanced:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002733 schedstat_inc(sd, lb_balanced[idle]);
2734
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002735 sd->nr_balance_failed = 0;
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002736
2737out_one_pinned:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002738 /* tune up the balancing interval */
Nick Piggin77391d72005-06-25 14:57:30 -07002739 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2740 (sd->balance_interval < sd->max_interval))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002741 sd->balance_interval *= 2;
2742
Ingo Molnar48f24c42006-07-03 00:25:40 -07002743 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002744 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002745 return -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002746 return 0;
2747}
2748
2749/*
2750 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2751 * tasks if there is an imbalance.
2752 *
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002753 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
Linus Torvalds1da177e2005-04-16 15:20:36 -07002754 * this_rq is locked.
2755 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07002756static int
Ingo Molnar70b97a72006-07-03 00:25:42 -07002757load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002758{
2759 struct sched_group *group;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002760 struct rq *busiest = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002761 unsigned long imbalance;
Peter Williams43010652007-08-09 11:16:46 +02002762 int ld_moved = 0;
Nick Piggin5969fe02005-09-10 00:26:19 -07002763 int sd_idle = 0;
Suresh Siddha969bb4e2007-07-19 21:28:35 +02002764 int all_pinned = 0;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002765 cpumask_t cpus = CPU_MASK_ALL;
Nick Piggin5969fe02005-09-10 00:26:19 -07002766
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002767 /*
2768 * When power savings policy is enabled for the parent domain, idle
2769 * sibling can pick up load irrespective of busy siblings. In this case,
2770 * let the state of idle sibling percolate up as IDLE, instead of
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002771 * portraying it as CPU_NOT_IDLE.
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002772 */
2773 if (sd->flags & SD_SHARE_CPUPOWER &&
2774 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002775 sd_idle = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002776
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002777 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002778redo:
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002779 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002780 &sd_idle, &cpus, NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002781 if (!group) {
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002782 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002783 goto out_balanced;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002784 }
2785
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002786 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002787 &cpus);
Nick Piggindb935db2005-06-25 14:57:11 -07002788 if (!busiest) {
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002789 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002790 goto out_balanced;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002791 }
2792
Nick Piggindb935db2005-06-25 14:57:11 -07002793 BUG_ON(busiest == this_rq);
2794
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002795 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002796
Peter Williams43010652007-08-09 11:16:46 +02002797 ld_moved = 0;
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002798 if (busiest->nr_running > 1) {
2799 /* Attempt to move tasks */
2800 double_lock_balance(this_rq, busiest);
Ingo Molnar6e82a3b2007-08-09 11:16:51 +02002801 /* this_rq->clock is already updated */
2802 update_rq_clock(busiest);
Peter Williams43010652007-08-09 11:16:46 +02002803 ld_moved = move_tasks(this_rq, this_cpu, busiest,
Suresh Siddha969bb4e2007-07-19 21:28:35 +02002804 imbalance, sd, CPU_NEWLY_IDLE,
2805 &all_pinned);
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002806 spin_unlock(&busiest->lock);
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002807
Suresh Siddha969bb4e2007-07-19 21:28:35 +02002808 if (unlikely(all_pinned)) {
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002809 cpu_clear(cpu_of(busiest), cpus);
2810 if (!cpus_empty(cpus))
2811 goto redo;
2812 }
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002813 }
2814
Peter Williams43010652007-08-09 11:16:46 +02002815 if (!ld_moved) {
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002816 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002817 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2818 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002819 return -1;
2820 } else
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002821 sd->nr_balance_failed = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002822
Peter Williams43010652007-08-09 11:16:46 +02002823 return ld_moved;
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002824
2825out_balanced:
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002826 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
Ingo Molnar48f24c42006-07-03 00:25:40 -07002827 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002828 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002829 return -1;
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002830 sd->nr_balance_failed = 0;
Ingo Molnar48f24c42006-07-03 00:25:40 -07002831
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002832 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002833}
2834
2835/*
2836 * idle_balance is called by schedule() if this_cpu is about to become
2837 * idle. Attempts to pull tasks from other CPUs.
2838 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002839static void idle_balance(int this_cpu, struct rq *this_rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002840{
2841 struct sched_domain *sd;
Ingo Molnardd41f592007-07-09 18:51:59 +02002842 int pulled_task = -1;
2843 unsigned long next_balance = jiffies + HZ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002844
2845 for_each_domain(this_cpu, sd) {
Christoph Lameter92c4ca52007-06-23 17:16:33 -07002846 unsigned long interval;
2847
2848 if (!(sd->flags & SD_LOAD_BALANCE))
2849 continue;
2850
2851 if (sd->flags & SD_BALANCE_NEWIDLE)
Ingo Molnar48f24c42006-07-03 00:25:40 -07002852 /* If we've pulled tasks over stop searching: */
Christoph Lameter1bd77f22006-12-10 02:20:27 -08002853 pulled_task = load_balance_newidle(this_cpu,
Christoph Lameter92c4ca52007-06-23 17:16:33 -07002854 this_rq, sd);
2855
2856 interval = msecs_to_jiffies(sd->balance_interval);
2857 if (time_after(next_balance, sd->last_balance + interval))
2858 next_balance = sd->last_balance + interval;
2859 if (pulled_task)
2860 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002861 }
Ingo Molnardd41f592007-07-09 18:51:59 +02002862 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
Christoph Lameter1bd77f22006-12-10 02:20:27 -08002863 /*
2864 * We are going idle. next_balance may be set based on
2865 * a busy processor. So reset next_balance.
2866 */
2867 this_rq->next_balance = next_balance;
Ingo Molnardd41f592007-07-09 18:51:59 +02002868 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002869}
2870
2871/*
2872 * active_load_balance is run by migration threads. It pushes running tasks
2873 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2874 * running on each physical CPU where possible, and avoids physical /
2875 * logical imbalances.
2876 *
2877 * Called with busiest_rq locked.
2878 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002879static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002880{
Nick Piggin39507452005-06-25 14:57:09 -07002881 int target_cpu = busiest_rq->push_cpu;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002882 struct sched_domain *sd;
2883 struct rq *target_rq;
Nick Piggin39507452005-06-25 14:57:09 -07002884
Ingo Molnar48f24c42006-07-03 00:25:40 -07002885 /* Is there any task to move? */
Nick Piggin39507452005-06-25 14:57:09 -07002886 if (busiest_rq->nr_running <= 1)
Nick Piggin39507452005-06-25 14:57:09 -07002887 return;
2888
2889 target_rq = cpu_rq(target_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002890
2891 /*
Nick Piggin39507452005-06-25 14:57:09 -07002892 * This condition is "impossible", if it occurs
2893 * we need to fix it. Originally reported by
2894 * Bjorn Helgaas on a 128-cpu setup.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002895 */
Nick Piggin39507452005-06-25 14:57:09 -07002896 BUG_ON(busiest_rq == target_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002897
Nick Piggin39507452005-06-25 14:57:09 -07002898 /* move a task from busiest_rq to target_rq */
2899 double_lock_balance(busiest_rq, target_rq);
Ingo Molnar6e82a3b2007-08-09 11:16:51 +02002900 update_rq_clock(busiest_rq);
2901 update_rq_clock(target_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002902
Nick Piggin39507452005-06-25 14:57:09 -07002903 /* Search for an sd spanning us and the target CPU. */
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002904 for_each_domain(target_cpu, sd) {
Nick Piggin39507452005-06-25 14:57:09 -07002905 if ((sd->flags & SD_LOAD_BALANCE) &&
Ingo Molnar48f24c42006-07-03 00:25:40 -07002906 cpu_isset(busiest_cpu, sd->span))
Nick Piggin39507452005-06-25 14:57:09 -07002907 break;
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002908 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002909
Ingo Molnar48f24c42006-07-03 00:25:40 -07002910 if (likely(sd)) {
2911 schedstat_inc(sd, alb_cnt);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002912
Peter Williams43010652007-08-09 11:16:46 +02002913 if (move_one_task(target_rq, target_cpu, busiest_rq,
2914 sd, CPU_IDLE))
Ingo Molnar48f24c42006-07-03 00:25:40 -07002915 schedstat_inc(sd, alb_pushed);
2916 else
2917 schedstat_inc(sd, alb_failed);
2918 }
Nick Piggin39507452005-06-25 14:57:09 -07002919 spin_unlock(&target_rq->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002920}
2921
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002922#ifdef CONFIG_NO_HZ
2923static struct {
2924 atomic_t load_balancer;
2925 cpumask_t cpu_mask;
2926} nohz ____cacheline_aligned = {
2927 .load_balancer = ATOMIC_INIT(-1),
2928 .cpu_mask = CPU_MASK_NONE,
2929};
2930
Christoph Lameter7835b982006-12-10 02:20:22 -08002931/*
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002932 * This routine will try to nominate the ilb (idle load balancing)
2933 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2934 * load balancing on behalf of all those cpus. If all the cpus in the system
2935 * go into this tickless mode, then there will be no ilb owner (as there is
2936 * no need for one) and all the cpus will sleep till the next wakeup event
2937 * arrives...
Christoph Lameter7835b982006-12-10 02:20:22 -08002938 *
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002939 * For the ilb owner, tick is not stopped. And this tick will be used
2940 * for idle load balancing. ilb owner will still be part of
2941 * nohz.cpu_mask..
2942 *
2943 * While stopping the tick, this cpu will become the ilb owner if there
2944 * is no other owner. And will be the owner till that cpu becomes busy
2945 * or if all cpus in the system stop their ticks at which point
2946 * there is no need for ilb owner.
2947 *
2948 * When the ilb owner becomes busy, it nominates another owner, during the
2949 * next busy scheduler_tick()
2950 */
2951int select_nohz_load_balancer(int stop_tick)
2952{
2953 int cpu = smp_processor_id();
2954
2955 if (stop_tick) {
2956 cpu_set(cpu, nohz.cpu_mask);
2957 cpu_rq(cpu)->in_nohz_recently = 1;
2958
2959 /*
2960 * If we are going offline and still the leader, give up!
2961 */
2962 if (cpu_is_offline(cpu) &&
2963 atomic_read(&nohz.load_balancer) == cpu) {
2964 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2965 BUG();
2966 return 0;
2967 }
2968
2969 /* time for ilb owner also to sleep */
2970 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2971 if (atomic_read(&nohz.load_balancer) == cpu)
2972 atomic_set(&nohz.load_balancer, -1);
2973 return 0;
2974 }
2975
2976 if (atomic_read(&nohz.load_balancer) == -1) {
2977 /* make me the ilb owner */
2978 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2979 return 1;
2980 } else if (atomic_read(&nohz.load_balancer) == cpu)
2981 return 1;
2982 } else {
2983 if (!cpu_isset(cpu, nohz.cpu_mask))
2984 return 0;
2985
2986 cpu_clear(cpu, nohz.cpu_mask);
2987
2988 if (atomic_read(&nohz.load_balancer) == cpu)
2989 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2990 BUG();
2991 }
2992 return 0;
2993}
2994#endif
2995
2996static DEFINE_SPINLOCK(balancing);
2997
2998/*
Christoph Lameter7835b982006-12-10 02:20:22 -08002999 * It checks each scheduling domain to see if it is due to be balanced,
3000 * and initiates a balancing operation if so.
3001 *
3002 * Balancing parameters are set up in arch_init_sched_domains.
3003 */
Ingo Molnard15bcfd2007-07-09 18:51:57 +02003004static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
Christoph Lameter7835b982006-12-10 02:20:22 -08003005{
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003006 int balance = 1;
3007 struct rq *rq = cpu_rq(cpu);
Christoph Lameter7835b982006-12-10 02:20:22 -08003008 unsigned long interval;
3009 struct sched_domain *sd;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003010 /* Earliest time when we have to do rebalance again */
Christoph Lameterc9819f42006-12-10 02:20:25 -08003011 unsigned long next_balance = jiffies + 60*HZ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003012
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003013 for_each_domain(cpu, sd) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003014 if (!(sd->flags & SD_LOAD_BALANCE))
3015 continue;
3016
3017 interval = sd->balance_interval;
Ingo Molnard15bcfd2007-07-09 18:51:57 +02003018 if (idle != CPU_IDLE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003019 interval *= sd->busy_factor;
3020
3021 /* scale ms to jiffies */
3022 interval = msecs_to_jiffies(interval);
3023 if (unlikely(!interval))
3024 interval = 1;
Ingo Molnardd41f592007-07-09 18:51:59 +02003025 if (interval > HZ*NR_CPUS/10)
3026 interval = HZ*NR_CPUS/10;
3027
Linus Torvalds1da177e2005-04-16 15:20:36 -07003028
Christoph Lameter08c183f2006-12-10 02:20:29 -08003029 if (sd->flags & SD_SERIALIZE) {
3030 if (!spin_trylock(&balancing))
3031 goto out;
3032 }
3033
Christoph Lameterc9819f42006-12-10 02:20:25 -08003034 if (time_after_eq(jiffies, sd->last_balance + interval)) {
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003035 if (load_balance(cpu, rq, sd, idle, &balance)) {
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07003036 /*
3037 * We've pulled tasks over so either we're no
Nick Piggin5969fe02005-09-10 00:26:19 -07003038 * longer idle, or one of our SMT siblings is
3039 * not idle.
3040 */
Ingo Molnard15bcfd2007-07-09 18:51:57 +02003041 idle = CPU_NOT_IDLE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003042 }
Christoph Lameter1bd77f22006-12-10 02:20:27 -08003043 sd->last_balance = jiffies;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003044 }
Christoph Lameter08c183f2006-12-10 02:20:29 -08003045 if (sd->flags & SD_SERIALIZE)
3046 spin_unlock(&balancing);
3047out:
Christoph Lameterc9819f42006-12-10 02:20:25 -08003048 if (time_after(next_balance, sd->last_balance + interval))
3049 next_balance = sd->last_balance + interval;
Siddha, Suresh B783609c2006-12-10 02:20:33 -08003050
3051 /*
3052 * Stop the load balance at this level. There is another
3053 * CPU in our sched group which is doing load balancing more
3054 * actively.
3055 */
3056 if (!balance)
3057 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003058 }
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003059 rq->next_balance = next_balance;
3060}
3061
3062/*
3063 * run_rebalance_domains is triggered when needed from the scheduler tick.
3064 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3065 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3066 */
3067static void run_rebalance_domains(struct softirq_action *h)
3068{
Ingo Molnardd41f592007-07-09 18:51:59 +02003069 int this_cpu = smp_processor_id();
3070 struct rq *this_rq = cpu_rq(this_cpu);
3071 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3072 CPU_IDLE : CPU_NOT_IDLE;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003073
Ingo Molnardd41f592007-07-09 18:51:59 +02003074 rebalance_domains(this_cpu, idle);
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003075
3076#ifdef CONFIG_NO_HZ
3077 /*
3078 * If this cpu is the owner for idle load balancing, then do the
3079 * balancing on behalf of the other idle cpus whose ticks are
3080 * stopped.
3081 */
Ingo Molnardd41f592007-07-09 18:51:59 +02003082 if (this_rq->idle_at_tick &&
3083 atomic_read(&nohz.load_balancer) == this_cpu) {
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003084 cpumask_t cpus = nohz.cpu_mask;
3085 struct rq *rq;
3086 int balance_cpu;
3087
Ingo Molnardd41f592007-07-09 18:51:59 +02003088 cpu_clear(this_cpu, cpus);
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003089 for_each_cpu_mask(balance_cpu, cpus) {
3090 /*
3091 * If this cpu gets work to do, stop the load balancing
3092 * work being done for other cpus. Next load
3093 * balancing owner will pick it up.
3094 */
3095 if (need_resched())
3096 break;
3097
Ingo Molnardd41f592007-07-09 18:51:59 +02003098 rebalance_domains(balance_cpu, SCHED_IDLE);
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003099
3100 rq = cpu_rq(balance_cpu);
Ingo Molnardd41f592007-07-09 18:51:59 +02003101 if (time_after(this_rq->next_balance, rq->next_balance))
3102 this_rq->next_balance = rq->next_balance;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003103 }
3104 }
3105#endif
3106}
3107
3108/*
3109 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3110 *
3111 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3112 * idle load balancing owner or decide to stop the periodic load balancing,
3113 * if the whole system is idle.
3114 */
Ingo Molnardd41f592007-07-09 18:51:59 +02003115static inline void trigger_load_balance(struct rq *rq, int cpu)
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003116{
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003117#ifdef CONFIG_NO_HZ
3118 /*
3119 * If we were in the nohz mode recently and busy at the current
3120 * scheduler tick, then check if we need to nominate new idle
3121 * load balancer.
3122 */
3123 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3124 rq->in_nohz_recently = 0;
3125
3126 if (atomic_read(&nohz.load_balancer) == cpu) {
3127 cpu_clear(cpu, nohz.cpu_mask);
3128 atomic_set(&nohz.load_balancer, -1);
3129 }
3130
3131 if (atomic_read(&nohz.load_balancer) == -1) {
3132 /*
3133 * simple selection for now: Nominate the
3134 * first cpu in the nohz list to be the next
3135 * ilb owner.
3136 *
3137 * TBD: Traverse the sched domains and nominate
3138 * the nearest cpu in the nohz.cpu_mask.
3139 */
3140 int ilb = first_cpu(nohz.cpu_mask);
3141
3142 if (ilb != NR_CPUS)
3143 resched_cpu(ilb);
3144 }
3145 }
3146
3147 /*
3148 * If this cpu is idle and doing idle load balancing for all the
3149 * cpus with ticks stopped, is it time for that to stop?
3150 */
3151 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3152 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3153 resched_cpu(cpu);
3154 return;
3155 }
3156
3157 /*
3158 * If this cpu is idle and the idle load balancing is done by
3159 * someone else, then no need raise the SCHED_SOFTIRQ
3160 */
3161 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3162 cpu_isset(cpu, nohz.cpu_mask))
3163 return;
3164#endif
3165 if (time_after_eq(jiffies, rq->next_balance))
3166 raise_softirq(SCHED_SOFTIRQ);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003167}
Ingo Molnardd41f592007-07-09 18:51:59 +02003168
3169#else /* CONFIG_SMP */
3170
Linus Torvalds1da177e2005-04-16 15:20:36 -07003171/*
3172 * on UP we do not need to balance between CPUs:
3173 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07003174static inline void idle_balance(int cpu, struct rq *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003175{
3176}
Ingo Molnardd41f592007-07-09 18:51:59 +02003177
3178/* Avoid "used but not defined" warning on UP */
3179static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3180 unsigned long max_nr_move, unsigned long max_load_move,
3181 struct sched_domain *sd, enum cpu_idle_type idle,
3182 int *all_pinned, unsigned long *load_moved,
Peter Williamsa4ac01c2007-08-09 11:16:46 +02003183 int *this_best_prio, struct rq_iterator *iterator)
Ingo Molnardd41f592007-07-09 18:51:59 +02003184{
3185 *load_moved = 0;
3186
3187 return 0;
3188}
3189
Linus Torvalds1da177e2005-04-16 15:20:36 -07003190#endif
3191
Linus Torvalds1da177e2005-04-16 15:20:36 -07003192DEFINE_PER_CPU(struct kernel_stat, kstat);
3193
3194EXPORT_PER_CPU_SYMBOL(kstat);
3195
3196/*
Ingo Molnar41b86e92007-07-09 18:51:58 +02003197 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3198 * that have not yet been banked in case the task is currently running.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003199 */
Ingo Molnar41b86e92007-07-09 18:51:58 +02003200unsigned long long task_sched_runtime(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003201{
Linus Torvalds1da177e2005-04-16 15:20:36 -07003202 unsigned long flags;
Ingo Molnar41b86e92007-07-09 18:51:58 +02003203 u64 ns, delta_exec;
3204 struct rq *rq;
Ingo Molnar48f24c42006-07-03 00:25:40 -07003205
Ingo Molnar41b86e92007-07-09 18:51:58 +02003206 rq = task_rq_lock(p, &flags);
3207 ns = p->se.sum_exec_runtime;
3208 if (rq->curr == p) {
Ingo Molnara8e504d2007-08-09 11:16:47 +02003209 update_rq_clock(rq);
3210 delta_exec = rq->clock - p->se.exec_start;
Ingo Molnar41b86e92007-07-09 18:51:58 +02003211 if ((s64)delta_exec > 0)
3212 ns += delta_exec;
3213 }
3214 task_rq_unlock(rq, &flags);
Ingo Molnar48f24c42006-07-03 00:25:40 -07003215
Linus Torvalds1da177e2005-04-16 15:20:36 -07003216 return ns;
3217}
3218
3219/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07003220 * Account user cpu time to a process.
3221 * @p: the process that the cpu time gets accounted to
3222 * @hardirq_offset: the offset to subtract from hardirq_count()
3223 * @cputime: the cpu time spent in user space since the last update
3224 */
3225void account_user_time(struct task_struct *p, cputime_t cputime)
3226{
3227 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3228 cputime64_t tmp;
3229
3230 p->utime = cputime_add(p->utime, cputime);
3231
3232 /* Add user time to cpustat. */
3233 tmp = cputime_to_cputime64(cputime);
3234 if (TASK_NICE(p) > 0)
3235 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3236 else
3237 cpustat->user = cputime64_add(cpustat->user, tmp);
3238}
3239
3240/*
3241 * Account system cpu time to a process.
3242 * @p: the process that the cpu time gets accounted to
3243 * @hardirq_offset: the offset to subtract from hardirq_count()
3244 * @cputime: the cpu time spent in kernel space since the last update
3245 */
3246void account_system_time(struct task_struct *p, int hardirq_offset,
3247 cputime_t cputime)
3248{
3249 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
Ingo Molnar70b97a72006-07-03 00:25:42 -07003250 struct rq *rq = this_rq();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003251 cputime64_t tmp;
3252
3253 p->stime = cputime_add(p->stime, cputime);
3254
3255 /* Add system time to cpustat. */
3256 tmp = cputime_to_cputime64(cputime);
3257 if (hardirq_count() - hardirq_offset)
3258 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3259 else if (softirq_count())
3260 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3261 else if (p != rq->idle)
3262 cpustat->system = cputime64_add(cpustat->system, tmp);
3263 else if (atomic_read(&rq->nr_iowait) > 0)
3264 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3265 else
3266 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3267 /* Account for system time used */
3268 acct_update_integrals(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003269}
3270
3271/*
3272 * Account for involuntary wait time.
3273 * @p: the process from which the cpu time has been stolen
3274 * @steal: the cpu time spent in involuntary wait
3275 */
3276void account_steal_time(struct task_struct *p, cputime_t steal)
3277{
3278 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3279 cputime64_t tmp = cputime_to_cputime64(steal);
Ingo Molnar70b97a72006-07-03 00:25:42 -07003280 struct rq *rq = this_rq();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003281
3282 if (p == rq->idle) {
3283 p->stime = cputime_add(p->stime, steal);
3284 if (atomic_read(&rq->nr_iowait) > 0)
3285 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3286 else
3287 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3288 } else
3289 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3290}
3291
Christoph Lameter7835b982006-12-10 02:20:22 -08003292/*
3293 * This function gets called by the timer code, with HZ frequency.
3294 * We call it with interrupts disabled.
3295 *
3296 * It also gets called by the fork code, when changing the parent's
3297 * timeslices.
3298 */
3299void scheduler_tick(void)
3300{
Christoph Lameter7835b982006-12-10 02:20:22 -08003301 int cpu = smp_processor_id();
3302 struct rq *rq = cpu_rq(cpu);
Ingo Molnardd41f592007-07-09 18:51:59 +02003303 struct task_struct *curr = rq->curr;
Christoph Lameter7835b982006-12-10 02:20:22 -08003304
Ingo Molnardd41f592007-07-09 18:51:59 +02003305 spin_lock(&rq->lock);
Ingo Molnar546fe3c2007-08-09 11:16:51 +02003306 __update_rq_clock(rq);
Ingo Molnarf1a438d2007-08-09 11:16:45 +02003307 update_cpu_load(rq);
Ingo Molnardd41f592007-07-09 18:51:59 +02003308 if (curr != rq->idle) /* FIXME: needed? */
3309 curr->sched_class->task_tick(rq, curr);
Ingo Molnardd41f592007-07-09 18:51:59 +02003310 spin_unlock(&rq->lock);
3311
Christoph Lametere418e1c2006-12-10 02:20:23 -08003312#ifdef CONFIG_SMP
Ingo Molnardd41f592007-07-09 18:51:59 +02003313 rq->idle_at_tick = idle_cpu(cpu);
3314 trigger_load_balance(rq, cpu);
Christoph Lametere418e1c2006-12-10 02:20:23 -08003315#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07003316}
3317
Linus Torvalds1da177e2005-04-16 15:20:36 -07003318#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3319
3320void fastcall add_preempt_count(int val)
3321{
3322 /*
3323 * Underflow?
3324 */
Ingo Molnar9a11b49a2006-07-03 00:24:33 -07003325 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3326 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003327 preempt_count() += val;
3328 /*
3329 * Spinlock count overflowing soon?
3330 */
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08003331 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3332 PREEMPT_MASK - 10);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003333}
3334EXPORT_SYMBOL(add_preempt_count);
3335
3336void fastcall sub_preempt_count(int val)
3337{
3338 /*
3339 * Underflow?
3340 */
Ingo Molnar9a11b49a2006-07-03 00:24:33 -07003341 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3342 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003343 /*
3344 * Is the spinlock portion underflowing?
3345 */
Ingo Molnar9a11b49a2006-07-03 00:24:33 -07003346 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3347 !(preempt_count() & PREEMPT_MASK)))
3348 return;
3349
Linus Torvalds1da177e2005-04-16 15:20:36 -07003350 preempt_count() -= val;
3351}
3352EXPORT_SYMBOL(sub_preempt_count);
3353
3354#endif
3355
3356/*
Ingo Molnardd41f592007-07-09 18:51:59 +02003357 * Print scheduling while atomic bug:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003358 */
Ingo Molnardd41f592007-07-09 18:51:59 +02003359static noinline void __schedule_bug(struct task_struct *prev)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003360{
Ingo Molnardd41f592007-07-09 18:51:59 +02003361 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3362 prev->comm, preempt_count(), prev->pid);
3363 debug_show_held_locks(prev);
3364 if (irqs_disabled())
3365 print_irqtrace_events(prev);
3366 dump_stack();
3367}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003368
Ingo Molnardd41f592007-07-09 18:51:59 +02003369/*
3370 * Various schedule()-time debugging checks and statistics:
3371 */
3372static inline void schedule_debug(struct task_struct *prev)
3373{
Linus Torvalds1da177e2005-04-16 15:20:36 -07003374 /*
3375 * Test if we are atomic. Since do_exit() needs to call into
3376 * schedule() atomically, we ignore that path for now.
3377 * Otherwise, whine if we are scheduling when we should not be.
3378 */
Ingo Molnardd41f592007-07-09 18:51:59 +02003379 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3380 __schedule_bug(prev);
3381
Linus Torvalds1da177e2005-04-16 15:20:36 -07003382 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3383
Ingo Molnardd41f592007-07-09 18:51:59 +02003384 schedstat_inc(this_rq(), sched_cnt);
3385}
3386
3387/*
3388 * Pick up the highest-prio task:
3389 */
3390static inline struct task_struct *
Ingo Molnarff95f3d2007-08-09 11:16:49 +02003391pick_next_task(struct rq *rq, struct task_struct *prev)
Ingo Molnardd41f592007-07-09 18:51:59 +02003392{
3393 struct sched_class *class;
3394 struct task_struct *p;
3395
3396 /*
3397 * Optimization: we know that if all tasks are in
3398 * the fair class we can call that function directly:
3399 */
3400 if (likely(rq->nr_running == rq->cfs.nr_running)) {
Ingo Molnarfb8d4722007-08-09 11:16:48 +02003401 p = fair_sched_class.pick_next_task(rq);
Ingo Molnardd41f592007-07-09 18:51:59 +02003402 if (likely(p))
3403 return p;
3404 }
3405
3406 class = sched_class_highest;
3407 for ( ; ; ) {
Ingo Molnarfb8d4722007-08-09 11:16:48 +02003408 p = class->pick_next_task(rq);
Ingo Molnardd41f592007-07-09 18:51:59 +02003409 if (p)
3410 return p;
3411 /*
3412 * Will never be NULL as the idle class always
3413 * returns a non-NULL p:
3414 */
3415 class = class->next;
3416 }
3417}
3418
3419/*
3420 * schedule() is the main scheduler function.
3421 */
3422asmlinkage void __sched schedule(void)
3423{
3424 struct task_struct *prev, *next;
3425 long *switch_count;
3426 struct rq *rq;
Ingo Molnardd41f592007-07-09 18:51:59 +02003427 int cpu;
3428
Linus Torvalds1da177e2005-04-16 15:20:36 -07003429need_resched:
3430 preempt_disable();
Ingo Molnardd41f592007-07-09 18:51:59 +02003431 cpu = smp_processor_id();
3432 rq = cpu_rq(cpu);
3433 rcu_qsctr_inc(cpu);
3434 prev = rq->curr;
3435 switch_count = &prev->nivcsw;
3436
Linus Torvalds1da177e2005-04-16 15:20:36 -07003437 release_kernel_lock(prev);
3438need_resched_nonpreemptible:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003439
Ingo Molnardd41f592007-07-09 18:51:59 +02003440 schedule_debug(prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003441
3442 spin_lock_irq(&rq->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003443 clear_tsk_need_resched(prev);
Ingo Molnarc1b3da32007-08-09 11:16:47 +02003444 __update_rq_clock(rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003445
Ingo Molnardd41f592007-07-09 18:51:59 +02003446 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3447 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3448 unlikely(signal_pending(prev)))) {
3449 prev->state = TASK_RUNNING;
3450 } else {
Ingo Molnar2e1cb742007-08-09 11:16:49 +02003451 deactivate_task(rq, prev, 1);
Ingo Molnardd41f592007-07-09 18:51:59 +02003452 }
3453 switch_count = &prev->nvcsw;
3454 }
3455
3456 if (unlikely(!rq->nr_running))
3457 idle_balance(cpu, rq);
3458
Ingo Molnar31ee5292007-08-09 11:16:49 +02003459 prev->sched_class->put_prev_task(rq, prev);
Ingo Molnarff95f3d2007-08-09 11:16:49 +02003460 next = pick_next_task(rq, prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003461
3462 sched_info_switch(prev, next);
Ingo Molnardd41f592007-07-09 18:51:59 +02003463
Linus Torvalds1da177e2005-04-16 15:20:36 -07003464 if (likely(prev != next)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003465 rq->nr_switches++;
3466 rq->curr = next;
3467 ++*switch_count;
3468
Ingo Molnardd41f592007-07-09 18:51:59 +02003469 context_switch(rq, prev, next); /* unlocks the rq */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003470 } else
3471 spin_unlock_irq(&rq->lock);
3472
Ingo Molnardd41f592007-07-09 18:51:59 +02003473 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3474 cpu = smp_processor_id();
3475 rq = cpu_rq(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003476 goto need_resched_nonpreemptible;
Ingo Molnardd41f592007-07-09 18:51:59 +02003477 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003478 preempt_enable_no_resched();
3479 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3480 goto need_resched;
3481}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003482EXPORT_SYMBOL(schedule);
3483
3484#ifdef CONFIG_PREEMPT
3485/*
Andreas Mohr2ed6e342006-07-10 04:43:52 -07003486 * this is the entry point to schedule() from in-kernel preemption
Linus Torvalds1da177e2005-04-16 15:20:36 -07003487 * off of preempt_enable. Kernel preemptions off return from interrupt
3488 * occur there and call schedule directly.
3489 */
3490asmlinkage void __sched preempt_schedule(void)
3491{
3492 struct thread_info *ti = current_thread_info();
3493#ifdef CONFIG_PREEMPT_BKL
3494 struct task_struct *task = current;
3495 int saved_lock_depth;
3496#endif
3497 /*
3498 * If there is a non-zero preempt_count or interrupts are disabled,
3499 * we do not want to preempt the current task. Just return..
3500 */
Nick Pigginbeed33a2006-10-11 01:21:52 -07003501 if (likely(ti->preempt_count || irqs_disabled()))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003502 return;
3503
3504need_resched:
3505 add_preempt_count(PREEMPT_ACTIVE);
3506 /*
3507 * We keep the big kernel semaphore locked, but we
3508 * clear ->lock_depth so that schedule() doesnt
3509 * auto-release the semaphore:
3510 */
3511#ifdef CONFIG_PREEMPT_BKL
3512 saved_lock_depth = task->lock_depth;
3513 task->lock_depth = -1;
3514#endif
3515 schedule();
3516#ifdef CONFIG_PREEMPT_BKL
3517 task->lock_depth = saved_lock_depth;
3518#endif
3519 sub_preempt_count(PREEMPT_ACTIVE);
3520
3521 /* we could miss a preemption opportunity between schedule and now */
3522 barrier();
3523 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3524 goto need_resched;
3525}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003526EXPORT_SYMBOL(preempt_schedule);
3527
3528/*
Andreas Mohr2ed6e342006-07-10 04:43:52 -07003529 * this is the entry point to schedule() from kernel preemption
Linus Torvalds1da177e2005-04-16 15:20:36 -07003530 * off of irq context.
3531 * Note, that this is called and return with irqs disabled. This will
3532 * protect us against recursive calling from irq.
3533 */
3534asmlinkage void __sched preempt_schedule_irq(void)
3535{
3536 struct thread_info *ti = current_thread_info();
3537#ifdef CONFIG_PREEMPT_BKL
3538 struct task_struct *task = current;
3539 int saved_lock_depth;
3540#endif
Andreas Mohr2ed6e342006-07-10 04:43:52 -07003541 /* Catch callers which need to be fixed */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003542 BUG_ON(ti->preempt_count || !irqs_disabled());
3543
3544need_resched:
3545 add_preempt_count(PREEMPT_ACTIVE);
3546 /*
3547 * We keep the big kernel semaphore locked, but we
3548 * clear ->lock_depth so that schedule() doesnt
3549 * auto-release the semaphore:
3550 */
3551#ifdef CONFIG_PREEMPT_BKL
3552 saved_lock_depth = task->lock_depth;
3553 task->lock_depth = -1;
3554#endif
3555 local_irq_enable();
3556 schedule();
3557 local_irq_disable();
3558#ifdef CONFIG_PREEMPT_BKL
3559 task->lock_depth = saved_lock_depth;
3560#endif
3561 sub_preempt_count(PREEMPT_ACTIVE);
3562
3563 /* we could miss a preemption opportunity between schedule and now */
3564 barrier();
3565 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3566 goto need_resched;
3567}
3568
3569#endif /* CONFIG_PREEMPT */
3570
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003571int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3572 void *key)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003573{
Ingo Molnar48f24c42006-07-03 00:25:40 -07003574 return try_to_wake_up(curr->private, mode, sync);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003575}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003576EXPORT_SYMBOL(default_wake_function);
3577
3578/*
3579 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3580 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3581 * number) then we wake all the non-exclusive tasks and one exclusive task.
3582 *
3583 * There are circumstances in which we can try to wake a task which has already
3584 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3585 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3586 */
3587static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3588 int nr_exclusive, int sync, void *key)
3589{
3590 struct list_head *tmp, *next;
3591
3592 list_for_each_safe(tmp, next, &q->task_list) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07003593 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3594 unsigned flags = curr->flags;
3595
Linus Torvalds1da177e2005-04-16 15:20:36 -07003596 if (curr->func(curr, mode, sync, key) &&
Ingo Molnar48f24c42006-07-03 00:25:40 -07003597 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003598 break;
3599 }
3600}
3601
3602/**
3603 * __wake_up - wake up threads blocked on a waitqueue.
3604 * @q: the waitqueue
3605 * @mode: which threads
3606 * @nr_exclusive: how many wake-one or wake-many threads to wake up
Martin Waitz67be2dd2005-05-01 08:59:26 -07003607 * @key: is directly passed to the wakeup function
Linus Torvalds1da177e2005-04-16 15:20:36 -07003608 */
3609void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003610 int nr_exclusive, void *key)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003611{
3612 unsigned long flags;
3613
3614 spin_lock_irqsave(&q->lock, flags);
3615 __wake_up_common(q, mode, nr_exclusive, 0, key);
3616 spin_unlock_irqrestore(&q->lock, flags);
3617}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003618EXPORT_SYMBOL(__wake_up);
3619
3620/*
3621 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3622 */
3623void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3624{
3625 __wake_up_common(q, mode, 1, 0, NULL);
3626}
3627
3628/**
Martin Waitz67be2dd2005-05-01 08:59:26 -07003629 * __wake_up_sync - wake up threads blocked on a waitqueue.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003630 * @q: the waitqueue
3631 * @mode: which threads
3632 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3633 *
3634 * The sync wakeup differs that the waker knows that it will schedule
3635 * away soon, so while the target thread will be woken up, it will not
3636 * be migrated to another CPU - ie. the two threads are 'synchronized'
3637 * with each other. This can prevent needless bouncing between CPUs.
3638 *
3639 * On UP it can prevent extra preemption.
3640 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003641void fastcall
3642__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003643{
3644 unsigned long flags;
3645 int sync = 1;
3646
3647 if (unlikely(!q))
3648 return;
3649
3650 if (unlikely(!nr_exclusive))
3651 sync = 0;
3652
3653 spin_lock_irqsave(&q->lock, flags);
3654 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3655 spin_unlock_irqrestore(&q->lock, flags);
3656}
3657EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3658
3659void fastcall complete(struct completion *x)
3660{
3661 unsigned long flags;
3662
3663 spin_lock_irqsave(&x->wait.lock, flags);
3664 x->done++;
3665 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3666 1, 0, NULL);
3667 spin_unlock_irqrestore(&x->wait.lock, flags);
3668}
3669EXPORT_SYMBOL(complete);
3670
3671void fastcall complete_all(struct completion *x)
3672{
3673 unsigned long flags;
3674
3675 spin_lock_irqsave(&x->wait.lock, flags);
3676 x->done += UINT_MAX/2;
3677 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3678 0, 0, NULL);
3679 spin_unlock_irqrestore(&x->wait.lock, flags);
3680}
3681EXPORT_SYMBOL(complete_all);
3682
3683void fastcall __sched wait_for_completion(struct completion *x)
3684{
3685 might_sleep();
Ingo Molnar48f24c42006-07-03 00:25:40 -07003686
Linus Torvalds1da177e2005-04-16 15:20:36 -07003687 spin_lock_irq(&x->wait.lock);
3688 if (!x->done) {
3689 DECLARE_WAITQUEUE(wait, current);
3690
3691 wait.flags |= WQ_FLAG_EXCLUSIVE;
3692 __add_wait_queue_tail(&x->wait, &wait);
3693 do {
3694 __set_current_state(TASK_UNINTERRUPTIBLE);
3695 spin_unlock_irq(&x->wait.lock);
3696 schedule();
3697 spin_lock_irq(&x->wait.lock);
3698 } while (!x->done);
3699 __remove_wait_queue(&x->wait, &wait);
3700 }
3701 x->done--;
3702 spin_unlock_irq(&x->wait.lock);
3703}
3704EXPORT_SYMBOL(wait_for_completion);
3705
3706unsigned long fastcall __sched
3707wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3708{
3709 might_sleep();
3710
3711 spin_lock_irq(&x->wait.lock);
3712 if (!x->done) {
3713 DECLARE_WAITQUEUE(wait, current);
3714
3715 wait.flags |= WQ_FLAG_EXCLUSIVE;
3716 __add_wait_queue_tail(&x->wait, &wait);
3717 do {
3718 __set_current_state(TASK_UNINTERRUPTIBLE);
3719 spin_unlock_irq(&x->wait.lock);
3720 timeout = schedule_timeout(timeout);
3721 spin_lock_irq(&x->wait.lock);
3722 if (!timeout) {
3723 __remove_wait_queue(&x->wait, &wait);
3724 goto out;
3725 }
3726 } while (!x->done);
3727 __remove_wait_queue(&x->wait, &wait);
3728 }
3729 x->done--;
3730out:
3731 spin_unlock_irq(&x->wait.lock);
3732 return timeout;
3733}
3734EXPORT_SYMBOL(wait_for_completion_timeout);
3735
3736int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3737{
3738 int ret = 0;
3739
3740 might_sleep();
3741
3742 spin_lock_irq(&x->wait.lock);
3743 if (!x->done) {
3744 DECLARE_WAITQUEUE(wait, current);
3745
3746 wait.flags |= WQ_FLAG_EXCLUSIVE;
3747 __add_wait_queue_tail(&x->wait, &wait);
3748 do {
3749 if (signal_pending(current)) {
3750 ret = -ERESTARTSYS;
3751 __remove_wait_queue(&x->wait, &wait);
3752 goto out;
3753 }
3754 __set_current_state(TASK_INTERRUPTIBLE);
3755 spin_unlock_irq(&x->wait.lock);
3756 schedule();
3757 spin_lock_irq(&x->wait.lock);
3758 } while (!x->done);
3759 __remove_wait_queue(&x->wait, &wait);
3760 }
3761 x->done--;
3762out:
3763 spin_unlock_irq(&x->wait.lock);
3764
3765 return ret;
3766}
3767EXPORT_SYMBOL(wait_for_completion_interruptible);
3768
3769unsigned long fastcall __sched
3770wait_for_completion_interruptible_timeout(struct completion *x,
3771 unsigned long timeout)
3772{
3773 might_sleep();
3774
3775 spin_lock_irq(&x->wait.lock);
3776 if (!x->done) {
3777 DECLARE_WAITQUEUE(wait, current);
3778
3779 wait.flags |= WQ_FLAG_EXCLUSIVE;
3780 __add_wait_queue_tail(&x->wait, &wait);
3781 do {
3782 if (signal_pending(current)) {
3783 timeout = -ERESTARTSYS;
3784 __remove_wait_queue(&x->wait, &wait);
3785 goto out;
3786 }
3787 __set_current_state(TASK_INTERRUPTIBLE);
3788 spin_unlock_irq(&x->wait.lock);
3789 timeout = schedule_timeout(timeout);
3790 spin_lock_irq(&x->wait.lock);
3791 if (!timeout) {
3792 __remove_wait_queue(&x->wait, &wait);
3793 goto out;
3794 }
3795 } while (!x->done);
3796 __remove_wait_queue(&x->wait, &wait);
3797 }
3798 x->done--;
3799out:
3800 spin_unlock_irq(&x->wait.lock);
3801 return timeout;
3802}
3803EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3804
Ingo Molnar0fec1712007-07-09 18:52:01 +02003805static inline void
3806sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003807{
Ingo Molnar0fec1712007-07-09 18:52:01 +02003808 spin_lock_irqsave(&q->lock, *flags);
3809 __add_wait_queue(q, wait);
3810 spin_unlock(&q->lock);
3811}
3812
3813static inline void
3814sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3815{
3816 spin_lock_irq(&q->lock);
3817 __remove_wait_queue(q, wait);
3818 spin_unlock_irqrestore(&q->lock, *flags);
3819}
3820
3821void __sched interruptible_sleep_on(wait_queue_head_t *q)
3822{
3823 unsigned long flags;
3824 wait_queue_t wait;
3825
3826 init_waitqueue_entry(&wait, current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003827
3828 current->state = TASK_INTERRUPTIBLE;
3829
Ingo Molnar0fec1712007-07-09 18:52:01 +02003830 sleep_on_head(q, &wait, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003831 schedule();
Ingo Molnar0fec1712007-07-09 18:52:01 +02003832 sleep_on_tail(q, &wait, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003833}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003834EXPORT_SYMBOL(interruptible_sleep_on);
3835
Ingo Molnar0fec1712007-07-09 18:52:01 +02003836long __sched
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003837interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003838{
Ingo Molnar0fec1712007-07-09 18:52:01 +02003839 unsigned long flags;
3840 wait_queue_t wait;
3841
3842 init_waitqueue_entry(&wait, current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003843
3844 current->state = TASK_INTERRUPTIBLE;
3845
Ingo Molnar0fec1712007-07-09 18:52:01 +02003846 sleep_on_head(q, &wait, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003847 timeout = schedule_timeout(timeout);
Ingo Molnar0fec1712007-07-09 18:52:01 +02003848 sleep_on_tail(q, &wait, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003849
3850 return timeout;
3851}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003852EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3853
Ingo Molnar0fec1712007-07-09 18:52:01 +02003854void __sched sleep_on(wait_queue_head_t *q)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003855{
Ingo Molnar0fec1712007-07-09 18:52:01 +02003856 unsigned long flags;
3857 wait_queue_t wait;
3858
3859 init_waitqueue_entry(&wait, current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003860
3861 current->state = TASK_UNINTERRUPTIBLE;
3862
Ingo Molnar0fec1712007-07-09 18:52:01 +02003863 sleep_on_head(q, &wait, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003864 schedule();
Ingo Molnar0fec1712007-07-09 18:52:01 +02003865 sleep_on_tail(q, &wait, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003866}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003867EXPORT_SYMBOL(sleep_on);
3868
Ingo Molnar0fec1712007-07-09 18:52:01 +02003869long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003870{
Ingo Molnar0fec1712007-07-09 18:52:01 +02003871 unsigned long flags;
3872 wait_queue_t wait;
3873
3874 init_waitqueue_entry(&wait, current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003875
3876 current->state = TASK_UNINTERRUPTIBLE;
3877
Ingo Molnar0fec1712007-07-09 18:52:01 +02003878 sleep_on_head(q, &wait, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003879 timeout = schedule_timeout(timeout);
Ingo Molnar0fec1712007-07-09 18:52:01 +02003880 sleep_on_tail(q, &wait, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003881
3882 return timeout;
3883}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003884EXPORT_SYMBOL(sleep_on_timeout);
3885
Ingo Molnarb29739f2006-06-27 02:54:51 -07003886#ifdef CONFIG_RT_MUTEXES
3887
3888/*
3889 * rt_mutex_setprio - set the current priority of a task
3890 * @p: task
3891 * @prio: prio value (kernel-internal form)
3892 *
3893 * This function changes the 'effective' priority of a task. It does
3894 * not touch ->normal_prio like __setscheduler().
3895 *
3896 * Used by the rt_mutex code to implement priority inheritance logic.
3897 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07003898void rt_mutex_setprio(struct task_struct *p, int prio)
Ingo Molnarb29739f2006-06-27 02:54:51 -07003899{
3900 unsigned long flags;
Ingo Molnardd41f592007-07-09 18:51:59 +02003901 int oldprio, on_rq;
Ingo Molnar70b97a72006-07-03 00:25:42 -07003902 struct rq *rq;
Ingo Molnarb29739f2006-06-27 02:54:51 -07003903
3904 BUG_ON(prio < 0 || prio > MAX_PRIO);
3905
3906 rq = task_rq_lock(p, &flags);
Ingo Molnara8e504d2007-08-09 11:16:47 +02003907 update_rq_clock(rq);
Ingo Molnarb29739f2006-06-27 02:54:51 -07003908
Andrew Mortond5f9f942007-05-08 20:27:06 -07003909 oldprio = p->prio;
Ingo Molnardd41f592007-07-09 18:51:59 +02003910 on_rq = p->se.on_rq;
3911 if (on_rq)
Ingo Molnar69be72c2007-08-09 11:16:49 +02003912 dequeue_task(rq, p, 0);
Ingo Molnardd41f592007-07-09 18:51:59 +02003913
3914 if (rt_prio(prio))
3915 p->sched_class = &rt_sched_class;
3916 else
3917 p->sched_class = &fair_sched_class;
3918
Ingo Molnarb29739f2006-06-27 02:54:51 -07003919 p->prio = prio;
3920
Ingo Molnardd41f592007-07-09 18:51:59 +02003921 if (on_rq) {
Ingo Molnar8159f872007-08-09 11:16:49 +02003922 enqueue_task(rq, p, 0);
Ingo Molnarb29739f2006-06-27 02:54:51 -07003923 /*
3924 * Reschedule if we are currently running on this runqueue and
Andrew Mortond5f9f942007-05-08 20:27:06 -07003925 * our priority decreased, or if we are not currently running on
3926 * this runqueue and our priority is higher than the current's
Ingo Molnarb29739f2006-06-27 02:54:51 -07003927 */
Andrew Mortond5f9f942007-05-08 20:27:06 -07003928 if (task_running(rq, p)) {
3929 if (p->prio > oldprio)
3930 resched_task(rq->curr);
Ingo Molnardd41f592007-07-09 18:51:59 +02003931 } else {
3932 check_preempt_curr(rq, p);
3933 }
Ingo Molnarb29739f2006-06-27 02:54:51 -07003934 }
3935 task_rq_unlock(rq, &flags);
3936}
3937
3938#endif
3939
Ingo Molnar36c8b582006-07-03 00:25:41 -07003940void set_user_nice(struct task_struct *p, long nice)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003941{
Ingo Molnardd41f592007-07-09 18:51:59 +02003942 int old_prio, delta, on_rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003943 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07003944 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003945
3946 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3947 return;
3948 /*
3949 * We have to be careful, if called from sys_setpriority(),
3950 * the task might be in the middle of scheduling on another CPU.
3951 */
3952 rq = task_rq_lock(p, &flags);
Ingo Molnara8e504d2007-08-09 11:16:47 +02003953 update_rq_clock(rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003954 /*
3955 * The RT priorities are set via sched_setscheduler(), but we still
3956 * allow the 'normal' nice value to be set - but as expected
3957 * it wont have any effect on scheduling until the task is
Ingo Molnardd41f592007-07-09 18:51:59 +02003958 * SCHED_FIFO/SCHED_RR:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003959 */
Ingo Molnare05606d2007-07-09 18:51:59 +02003960 if (task_has_rt_policy(p)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003961 p->static_prio = NICE_TO_PRIO(nice);
3962 goto out_unlock;
3963 }
Ingo Molnardd41f592007-07-09 18:51:59 +02003964 on_rq = p->se.on_rq;
3965 if (on_rq) {
Ingo Molnar69be72c2007-08-09 11:16:49 +02003966 dequeue_task(rq, p, 0);
Ingo Molnar79b5ddd2007-08-09 11:16:49 +02003967 dec_load(rq, p);
Peter Williams2dd73a42006-06-27 02:54:34 -07003968 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003969
Linus Torvalds1da177e2005-04-16 15:20:36 -07003970 p->static_prio = NICE_TO_PRIO(nice);
Peter Williams2dd73a42006-06-27 02:54:34 -07003971 set_load_weight(p);
Ingo Molnarb29739f2006-06-27 02:54:51 -07003972 old_prio = p->prio;
3973 p->prio = effective_prio(p);
3974 delta = p->prio - old_prio;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003975
Ingo Molnardd41f592007-07-09 18:51:59 +02003976 if (on_rq) {
Ingo Molnar8159f872007-08-09 11:16:49 +02003977 enqueue_task(rq, p, 0);
Ingo Molnar29b4b622007-08-09 11:16:49 +02003978 inc_load(rq, p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003979 /*
Andrew Mortond5f9f942007-05-08 20:27:06 -07003980 * If the task increased its priority or is running and
3981 * lowered its priority, then reschedule its CPU:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003982 */
Andrew Mortond5f9f942007-05-08 20:27:06 -07003983 if (delta < 0 || (delta > 0 && task_running(rq, p)))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003984 resched_task(rq->curr);
3985 }
3986out_unlock:
3987 task_rq_unlock(rq, &flags);
3988}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003989EXPORT_SYMBOL(set_user_nice);
3990
Matt Mackalle43379f2005-05-01 08:59:00 -07003991/*
3992 * can_nice - check if a task can reduce its nice value
3993 * @p: task
3994 * @nice: nice value
3995 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07003996int can_nice(const struct task_struct *p, const int nice)
Matt Mackalle43379f2005-05-01 08:59:00 -07003997{
Matt Mackall024f4742005-08-18 11:24:19 -07003998 /* convert nice value [19,-20] to rlimit style value [1,40] */
3999 int nice_rlim = 20 - nice;
Ingo Molnar48f24c42006-07-03 00:25:40 -07004000
Matt Mackalle43379f2005-05-01 08:59:00 -07004001 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4002 capable(CAP_SYS_NICE));
4003}
4004
Linus Torvalds1da177e2005-04-16 15:20:36 -07004005#ifdef __ARCH_WANT_SYS_NICE
4006
4007/*
4008 * sys_nice - change the priority of the current process.
4009 * @increment: priority increment
4010 *
4011 * sys_setpriority is a more generic, but much slower function that
4012 * does similar things.
4013 */
4014asmlinkage long sys_nice(int increment)
4015{
Ingo Molnar48f24c42006-07-03 00:25:40 -07004016 long nice, retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004017
4018 /*
4019 * Setpriority might change our priority at the same moment.
4020 * We don't have to worry. Conceptually one call occurs first
4021 * and we have a single winner.
4022 */
Matt Mackalle43379f2005-05-01 08:59:00 -07004023 if (increment < -40)
4024 increment = -40;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004025 if (increment > 40)
4026 increment = 40;
4027
4028 nice = PRIO_TO_NICE(current->static_prio) + increment;
4029 if (nice < -20)
4030 nice = -20;
4031 if (nice > 19)
4032 nice = 19;
4033
Matt Mackalle43379f2005-05-01 08:59:00 -07004034 if (increment < 0 && !can_nice(current, nice))
4035 return -EPERM;
4036
Linus Torvalds1da177e2005-04-16 15:20:36 -07004037 retval = security_task_setnice(current, nice);
4038 if (retval)
4039 return retval;
4040
4041 set_user_nice(current, nice);
4042 return 0;
4043}
4044
4045#endif
4046
4047/**
4048 * task_prio - return the priority value of a given task.
4049 * @p: the task in question.
4050 *
4051 * This is the priority value as seen by users in /proc.
4052 * RT tasks are offset by -200. Normal tasks are centered
4053 * around 0, value goes from -16 to +15.
4054 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004055int task_prio(const struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004056{
4057 return p->prio - MAX_RT_PRIO;
4058}
4059
4060/**
4061 * task_nice - return the nice value of a given task.
4062 * @p: the task in question.
4063 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004064int task_nice(const struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004065{
4066 return TASK_NICE(p);
4067}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004068EXPORT_SYMBOL_GPL(task_nice);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004069
4070/**
4071 * idle_cpu - is a given cpu idle currently?
4072 * @cpu: the processor in question.
4073 */
4074int idle_cpu(int cpu)
4075{
4076 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4077}
4078
Linus Torvalds1da177e2005-04-16 15:20:36 -07004079/**
4080 * idle_task - return the idle task for a given cpu.
4081 * @cpu: the processor in question.
4082 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004083struct task_struct *idle_task(int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004084{
4085 return cpu_rq(cpu)->idle;
4086}
4087
4088/**
4089 * find_process_by_pid - find a process with a matching PID value.
4090 * @pid: the pid in question.
4091 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004092static inline struct task_struct *find_process_by_pid(pid_t pid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004093{
4094 return pid ? find_task_by_pid(pid) : current;
4095}
4096
4097/* Actually do priority change: must hold rq lock. */
Ingo Molnardd41f592007-07-09 18:51:59 +02004098static void
4099__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004100{
Ingo Molnardd41f592007-07-09 18:51:59 +02004101 BUG_ON(p->se.on_rq);
Ingo Molnar48f24c42006-07-03 00:25:40 -07004102
Linus Torvalds1da177e2005-04-16 15:20:36 -07004103 p->policy = policy;
Ingo Molnardd41f592007-07-09 18:51:59 +02004104 switch (p->policy) {
4105 case SCHED_NORMAL:
4106 case SCHED_BATCH:
4107 case SCHED_IDLE:
4108 p->sched_class = &fair_sched_class;
4109 break;
4110 case SCHED_FIFO:
4111 case SCHED_RR:
4112 p->sched_class = &rt_sched_class;
4113 break;
4114 }
4115
Linus Torvalds1da177e2005-04-16 15:20:36 -07004116 p->rt_priority = prio;
Ingo Molnarb29739f2006-06-27 02:54:51 -07004117 p->normal_prio = normal_prio(p);
4118 /* we are holding p->pi_lock already */
4119 p->prio = rt_mutex_getprio(p);
Peter Williams2dd73a42006-06-27 02:54:34 -07004120 set_load_weight(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004121}
4122
4123/**
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08004124 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004125 * @p: the task in question.
4126 * @policy: new policy.
4127 * @param: structure containing the new RT priority.
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004128 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08004129 * NOTE that the task may be already dead.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004130 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004131int sched_setscheduler(struct task_struct *p, int policy,
4132 struct sched_param *param)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004133{
Ingo Molnardd41f592007-07-09 18:51:59 +02004134 int retval, oldprio, oldpolicy = -1, on_rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004135 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07004136 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004137
Steven Rostedt66e53932006-06-27 02:54:44 -07004138 /* may grab non-irq protected spin_locks */
4139 BUG_ON(in_interrupt());
Linus Torvalds1da177e2005-04-16 15:20:36 -07004140recheck:
4141 /* double check policy once rq lock held */
4142 if (policy < 0)
4143 policy = oldpolicy = p->policy;
4144 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
Ingo Molnardd41f592007-07-09 18:51:59 +02004145 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4146 policy != SCHED_IDLE)
Ingo Molnarb0a94992006-01-14 13:20:41 -08004147 return -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004148 /*
4149 * Valid priorities for SCHED_FIFO and SCHED_RR are
Ingo Molnardd41f592007-07-09 18:51:59 +02004150 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4151 * SCHED_BATCH and SCHED_IDLE is 0.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004152 */
4153 if (param->sched_priority < 0 ||
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004154 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
Steven Rostedtd46523e2005-07-25 16:28:39 -04004155 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004156 return -EINVAL;
Ingo Molnare05606d2007-07-09 18:51:59 +02004157 if (rt_policy(policy) != (param->sched_priority != 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004158 return -EINVAL;
4159
Olivier Croquette37e4ab32005-06-25 14:57:32 -07004160 /*
4161 * Allow unprivileged RT tasks to decrease priority:
4162 */
4163 if (!capable(CAP_SYS_NICE)) {
Ingo Molnare05606d2007-07-09 18:51:59 +02004164 if (rt_policy(policy)) {
Oleg Nesterov8dc3e902006-09-29 02:00:50 -07004165 unsigned long rlim_rtprio;
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004166
Oleg Nesterov8dc3e902006-09-29 02:00:50 -07004167 if (!lock_task_sighand(p, &flags))
4168 return -ESRCH;
4169 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4170 unlock_task_sighand(p, &flags);
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004171
Oleg Nesterov8dc3e902006-09-29 02:00:50 -07004172 /* can't set/change the rt policy */
4173 if (policy != p->policy && !rlim_rtprio)
4174 return -EPERM;
4175
4176 /* can't increase priority */
4177 if (param->sched_priority > p->rt_priority &&
4178 param->sched_priority > rlim_rtprio)
4179 return -EPERM;
4180 }
Ingo Molnardd41f592007-07-09 18:51:59 +02004181 /*
4182 * Like positive nice levels, dont allow tasks to
4183 * move out of SCHED_IDLE either:
4184 */
4185 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4186 return -EPERM;
Oleg Nesterov8dc3e902006-09-29 02:00:50 -07004187
Olivier Croquette37e4ab32005-06-25 14:57:32 -07004188 /* can't change other user's priorities */
4189 if ((current->euid != p->euid) &&
4190 (current->euid != p->uid))
4191 return -EPERM;
4192 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004193
4194 retval = security_task_setscheduler(p, policy, param);
4195 if (retval)
4196 return retval;
4197 /*
Ingo Molnarb29739f2006-06-27 02:54:51 -07004198 * make sure no PI-waiters arrive (or leave) while we are
4199 * changing the priority of the task:
4200 */
4201 spin_lock_irqsave(&p->pi_lock, flags);
4202 /*
Linus Torvalds1da177e2005-04-16 15:20:36 -07004203 * To be able to change p->policy safely, the apropriate
4204 * runqueue lock must be held.
4205 */
Ingo Molnarb29739f2006-06-27 02:54:51 -07004206 rq = __task_rq_lock(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004207 /* recheck policy now with rq lock held */
4208 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4209 policy = oldpolicy = -1;
Ingo Molnarb29739f2006-06-27 02:54:51 -07004210 __task_rq_unlock(rq);
4211 spin_unlock_irqrestore(&p->pi_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004212 goto recheck;
4213 }
Ingo Molnar2daa3572007-08-09 11:16:51 +02004214 update_rq_clock(rq);
Ingo Molnardd41f592007-07-09 18:51:59 +02004215 on_rq = p->se.on_rq;
Ingo Molnar2daa3572007-08-09 11:16:51 +02004216 if (on_rq)
Ingo Molnar2e1cb742007-08-09 11:16:49 +02004217 deactivate_task(rq, p, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004218 oldprio = p->prio;
Ingo Molnardd41f592007-07-09 18:51:59 +02004219 __setscheduler(rq, p, policy, param->sched_priority);
4220 if (on_rq) {
4221 activate_task(rq, p, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004222 /*
4223 * Reschedule if we are currently running on this runqueue and
Andrew Mortond5f9f942007-05-08 20:27:06 -07004224 * our priority decreased, or if we are not currently running on
4225 * this runqueue and our priority is higher than the current's
Linus Torvalds1da177e2005-04-16 15:20:36 -07004226 */
Andrew Mortond5f9f942007-05-08 20:27:06 -07004227 if (task_running(rq, p)) {
4228 if (p->prio > oldprio)
4229 resched_task(rq->curr);
Ingo Molnardd41f592007-07-09 18:51:59 +02004230 } else {
4231 check_preempt_curr(rq, p);
4232 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004233 }
Ingo Molnarb29739f2006-06-27 02:54:51 -07004234 __task_rq_unlock(rq);
4235 spin_unlock_irqrestore(&p->pi_lock, flags);
4236
Thomas Gleixner95e02ca2006-06-27 02:55:02 -07004237 rt_mutex_adjust_pi(p);
4238
Linus Torvalds1da177e2005-04-16 15:20:36 -07004239 return 0;
4240}
4241EXPORT_SYMBOL_GPL(sched_setscheduler);
4242
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004243static int
4244do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004245{
Linus Torvalds1da177e2005-04-16 15:20:36 -07004246 struct sched_param lparam;
4247 struct task_struct *p;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004248 int retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004249
4250 if (!param || pid < 0)
4251 return -EINVAL;
4252 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4253 return -EFAULT;
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004254
4255 rcu_read_lock();
4256 retval = -ESRCH;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004257 p = find_process_by_pid(pid);
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004258 if (p != NULL)
4259 retval = sched_setscheduler(p, policy, &lparam);
4260 rcu_read_unlock();
Ingo Molnar36c8b582006-07-03 00:25:41 -07004261
Linus Torvalds1da177e2005-04-16 15:20:36 -07004262 return retval;
4263}
4264
4265/**
4266 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4267 * @pid: the pid in question.
4268 * @policy: new policy.
4269 * @param: structure containing the new RT priority.
4270 */
4271asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4272 struct sched_param __user *param)
4273{
Jason Baronc21761f2006-01-18 17:43:03 -08004274 /* negative values for policy are not valid */
4275 if (policy < 0)
4276 return -EINVAL;
4277
Linus Torvalds1da177e2005-04-16 15:20:36 -07004278 return do_sched_setscheduler(pid, policy, param);
4279}
4280
4281/**
4282 * sys_sched_setparam - set/change the RT priority of a thread
4283 * @pid: the pid in question.
4284 * @param: structure containing the new RT priority.
4285 */
4286asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4287{
4288 return do_sched_setscheduler(pid, -1, param);
4289}
4290
4291/**
4292 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4293 * @pid: the pid in question.
4294 */
4295asmlinkage long sys_sched_getscheduler(pid_t pid)
4296{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004297 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004298 int retval = -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004299
4300 if (pid < 0)
4301 goto out_nounlock;
4302
4303 retval = -ESRCH;
4304 read_lock(&tasklist_lock);
4305 p = find_process_by_pid(pid);
4306 if (p) {
4307 retval = security_task_getscheduler(p);
4308 if (!retval)
4309 retval = p->policy;
4310 }
4311 read_unlock(&tasklist_lock);
4312
4313out_nounlock:
4314 return retval;
4315}
4316
4317/**
4318 * sys_sched_getscheduler - get the RT priority of a thread
4319 * @pid: the pid in question.
4320 * @param: structure containing the RT priority.
4321 */
4322asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4323{
4324 struct sched_param lp;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004325 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004326 int retval = -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004327
4328 if (!param || pid < 0)
4329 goto out_nounlock;
4330
4331 read_lock(&tasklist_lock);
4332 p = find_process_by_pid(pid);
4333 retval = -ESRCH;
4334 if (!p)
4335 goto out_unlock;
4336
4337 retval = security_task_getscheduler(p);
4338 if (retval)
4339 goto out_unlock;
4340
4341 lp.sched_priority = p->rt_priority;
4342 read_unlock(&tasklist_lock);
4343
4344 /*
4345 * This one might sleep, we cannot do it with a spinlock held ...
4346 */
4347 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4348
4349out_nounlock:
4350 return retval;
4351
4352out_unlock:
4353 read_unlock(&tasklist_lock);
4354 return retval;
4355}
4356
4357long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4358{
Linus Torvalds1da177e2005-04-16 15:20:36 -07004359 cpumask_t cpus_allowed;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004360 struct task_struct *p;
4361 int retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004362
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004363 mutex_lock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004364 read_lock(&tasklist_lock);
4365
4366 p = find_process_by_pid(pid);
4367 if (!p) {
4368 read_unlock(&tasklist_lock);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004369 mutex_unlock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004370 return -ESRCH;
4371 }
4372
4373 /*
4374 * It is not safe to call set_cpus_allowed with the
4375 * tasklist_lock held. We will bump the task_struct's
4376 * usage count and then drop tasklist_lock.
4377 */
4378 get_task_struct(p);
4379 read_unlock(&tasklist_lock);
4380
4381 retval = -EPERM;
4382 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4383 !capable(CAP_SYS_NICE))
4384 goto out_unlock;
4385
David Quigleye7834f82006-06-23 02:03:59 -07004386 retval = security_task_setscheduler(p, 0, NULL);
4387 if (retval)
4388 goto out_unlock;
4389
Linus Torvalds1da177e2005-04-16 15:20:36 -07004390 cpus_allowed = cpuset_cpus_allowed(p);
4391 cpus_and(new_mask, new_mask, cpus_allowed);
4392 retval = set_cpus_allowed(p, new_mask);
4393
4394out_unlock:
4395 put_task_struct(p);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004396 mutex_unlock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004397 return retval;
4398}
4399
4400static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4401 cpumask_t *new_mask)
4402{
4403 if (len < sizeof(cpumask_t)) {
4404 memset(new_mask, 0, sizeof(cpumask_t));
4405 } else if (len > sizeof(cpumask_t)) {
4406 len = sizeof(cpumask_t);
4407 }
4408 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4409}
4410
4411/**
4412 * sys_sched_setaffinity - set the cpu affinity of a process
4413 * @pid: pid of the process
4414 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4415 * @user_mask_ptr: user-space pointer to the new cpu mask
4416 */
4417asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4418 unsigned long __user *user_mask_ptr)
4419{
4420 cpumask_t new_mask;
4421 int retval;
4422
4423 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4424 if (retval)
4425 return retval;
4426
4427 return sched_setaffinity(pid, new_mask);
4428}
4429
4430/*
4431 * Represents all cpu's present in the system
4432 * In systems capable of hotplug, this map could dynamically grow
4433 * as new cpu's are detected in the system via any platform specific
4434 * method, such as ACPI for e.g.
4435 */
4436
Andi Kleen4cef0c62006-01-11 22:44:57 +01004437cpumask_t cpu_present_map __read_mostly;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004438EXPORT_SYMBOL(cpu_present_map);
4439
4440#ifndef CONFIG_SMP
Andi Kleen4cef0c62006-01-11 22:44:57 +01004441cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
Greg Bankse16b38f2006-10-02 02:17:40 -07004442EXPORT_SYMBOL(cpu_online_map);
4443
Andi Kleen4cef0c62006-01-11 22:44:57 +01004444cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
Greg Bankse16b38f2006-10-02 02:17:40 -07004445EXPORT_SYMBOL(cpu_possible_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004446#endif
4447
4448long sched_getaffinity(pid_t pid, cpumask_t *mask)
4449{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004450 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004451 int retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004452
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004453 mutex_lock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004454 read_lock(&tasklist_lock);
4455
4456 retval = -ESRCH;
4457 p = find_process_by_pid(pid);
4458 if (!p)
4459 goto out_unlock;
4460
David Quigleye7834f82006-06-23 02:03:59 -07004461 retval = security_task_getscheduler(p);
4462 if (retval)
4463 goto out_unlock;
4464
Jack Steiner2f7016d2006-02-01 03:05:18 -08004465 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004466
4467out_unlock:
4468 read_unlock(&tasklist_lock);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004469 mutex_unlock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004470
Ulrich Drepper9531b622007-08-09 11:16:46 +02004471 return retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004472}
4473
4474/**
4475 * sys_sched_getaffinity - get the cpu affinity of a process
4476 * @pid: pid of the process
4477 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4478 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4479 */
4480asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4481 unsigned long __user *user_mask_ptr)
4482{
4483 int ret;
4484 cpumask_t mask;
4485
4486 if (len < sizeof(cpumask_t))
4487 return -EINVAL;
4488
4489 ret = sched_getaffinity(pid, &mask);
4490 if (ret < 0)
4491 return ret;
4492
4493 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4494 return -EFAULT;
4495
4496 return sizeof(cpumask_t);
4497}
4498
4499/**
4500 * sys_sched_yield - yield the current processor to other threads.
4501 *
Ingo Molnardd41f592007-07-09 18:51:59 +02004502 * This function yields the current CPU to other tasks. If there are no
4503 * other threads running on this CPU then this function will return.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004504 */
4505asmlinkage long sys_sched_yield(void)
4506{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004507 struct rq *rq = this_rq_lock();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004508
4509 schedstat_inc(rq, yld_cnt);
Ingo Molnardd41f592007-07-09 18:51:59 +02004510 if (unlikely(rq->nr_running == 1))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004511 schedstat_inc(rq, yld_act_empty);
Ingo Molnardd41f592007-07-09 18:51:59 +02004512 else
4513 current->sched_class->yield_task(rq, current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004514
4515 /*
4516 * Since we are going to call schedule() anyway, there's
4517 * no need to preempt or enable interrupts:
4518 */
4519 __release(rq->lock);
Ingo Molnar8a25d5d2006-07-03 00:24:54 -07004520 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004521 _raw_spin_unlock(&rq->lock);
4522 preempt_enable_no_resched();
4523
4524 schedule();
4525
4526 return 0;
4527}
4528
Andrew Mortone7b38402006-06-30 01:56:00 -07004529static void __cond_resched(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004530{
Ingo Molnar8e0a43d2006-06-23 02:05:23 -07004531#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4532 __might_sleep(__FILE__, __LINE__);
4533#endif
Ingo Molnar5bbcfd92005-07-07 17:57:04 -07004534 /*
4535 * The BKS might be reacquired before we have dropped
4536 * PREEMPT_ACTIVE, which could trigger a second
4537 * cond_resched() call.
4538 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07004539 do {
4540 add_preempt_count(PREEMPT_ACTIVE);
4541 schedule();
4542 sub_preempt_count(PREEMPT_ACTIVE);
4543 } while (need_resched());
4544}
4545
4546int __sched cond_resched(void)
4547{
Ingo Molnar94142322006-12-29 16:48:13 -08004548 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4549 system_state == SYSTEM_RUNNING) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004550 __cond_resched();
4551 return 1;
4552 }
4553 return 0;
4554}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004555EXPORT_SYMBOL(cond_resched);
4556
4557/*
4558 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4559 * call schedule, and on return reacquire the lock.
4560 *
4561 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4562 * operations here to prevent schedule() from being called twice (once via
4563 * spin_unlock(), once by hand).
4564 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004565int cond_resched_lock(spinlock_t *lock)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004566{
Jan Kara6df3cec2005-06-13 15:52:32 -07004567 int ret = 0;
4568
Linus Torvalds1da177e2005-04-16 15:20:36 -07004569 if (need_lockbreak(lock)) {
4570 spin_unlock(lock);
4571 cpu_relax();
Jan Kara6df3cec2005-06-13 15:52:32 -07004572 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004573 spin_lock(lock);
4574 }
Ingo Molnar94142322006-12-29 16:48:13 -08004575 if (need_resched() && system_state == SYSTEM_RUNNING) {
Ingo Molnar8a25d5d2006-07-03 00:24:54 -07004576 spin_release(&lock->dep_map, 1, _THIS_IP_);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004577 _raw_spin_unlock(lock);
4578 preempt_enable_no_resched();
4579 __cond_resched();
Jan Kara6df3cec2005-06-13 15:52:32 -07004580 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004581 spin_lock(lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004582 }
Jan Kara6df3cec2005-06-13 15:52:32 -07004583 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004584}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004585EXPORT_SYMBOL(cond_resched_lock);
4586
4587int __sched cond_resched_softirq(void)
4588{
4589 BUG_ON(!in_softirq());
4590
Ingo Molnar94142322006-12-29 16:48:13 -08004591 if (need_resched() && system_state == SYSTEM_RUNNING) {
Thomas Gleixner98d82562007-05-23 13:58:18 -07004592 local_bh_enable();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004593 __cond_resched();
4594 local_bh_disable();
4595 return 1;
4596 }
4597 return 0;
4598}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004599EXPORT_SYMBOL(cond_resched_softirq);
4600
Linus Torvalds1da177e2005-04-16 15:20:36 -07004601/**
4602 * yield - yield the current processor to other threads.
4603 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08004604 * This is a shortcut for kernel-space yielding - it marks the
Linus Torvalds1da177e2005-04-16 15:20:36 -07004605 * thread runnable and calls sys_sched_yield().
4606 */
4607void __sched yield(void)
4608{
4609 set_current_state(TASK_RUNNING);
4610 sys_sched_yield();
4611}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004612EXPORT_SYMBOL(yield);
4613
4614/*
4615 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4616 * that process accounting knows that this is a task in IO wait state.
4617 *
4618 * But don't do that if it is a deliberate, throttling IO wait (this task
4619 * has set its backing_dev_info: the queue against which it should throttle)
4620 */
4621void __sched io_schedule(void)
4622{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004623 struct rq *rq = &__raw_get_cpu_var(runqueues);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004624
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004625 delayacct_blkio_start();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004626 atomic_inc(&rq->nr_iowait);
4627 schedule();
4628 atomic_dec(&rq->nr_iowait);
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004629 delayacct_blkio_end();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004630}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004631EXPORT_SYMBOL(io_schedule);
4632
4633long __sched io_schedule_timeout(long timeout)
4634{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004635 struct rq *rq = &__raw_get_cpu_var(runqueues);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004636 long ret;
4637
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004638 delayacct_blkio_start();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004639 atomic_inc(&rq->nr_iowait);
4640 ret = schedule_timeout(timeout);
4641 atomic_dec(&rq->nr_iowait);
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004642 delayacct_blkio_end();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004643 return ret;
4644}
4645
4646/**
4647 * sys_sched_get_priority_max - return maximum RT priority.
4648 * @policy: scheduling class.
4649 *
4650 * this syscall returns the maximum rt_priority that can be used
4651 * by a given scheduling class.
4652 */
4653asmlinkage long sys_sched_get_priority_max(int policy)
4654{
4655 int ret = -EINVAL;
4656
4657 switch (policy) {
4658 case SCHED_FIFO:
4659 case SCHED_RR:
4660 ret = MAX_USER_RT_PRIO-1;
4661 break;
4662 case SCHED_NORMAL:
Ingo Molnarb0a94992006-01-14 13:20:41 -08004663 case SCHED_BATCH:
Ingo Molnardd41f592007-07-09 18:51:59 +02004664 case SCHED_IDLE:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004665 ret = 0;
4666 break;
4667 }
4668 return ret;
4669}
4670
4671/**
4672 * sys_sched_get_priority_min - return minimum RT priority.
4673 * @policy: scheduling class.
4674 *
4675 * this syscall returns the minimum rt_priority that can be used
4676 * by a given scheduling class.
4677 */
4678asmlinkage long sys_sched_get_priority_min(int policy)
4679{
4680 int ret = -EINVAL;
4681
4682 switch (policy) {
4683 case SCHED_FIFO:
4684 case SCHED_RR:
4685 ret = 1;
4686 break;
4687 case SCHED_NORMAL:
Ingo Molnarb0a94992006-01-14 13:20:41 -08004688 case SCHED_BATCH:
Ingo Molnardd41f592007-07-09 18:51:59 +02004689 case SCHED_IDLE:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004690 ret = 0;
4691 }
4692 return ret;
4693}
4694
4695/**
4696 * sys_sched_rr_get_interval - return the default timeslice of a process.
4697 * @pid: pid of the process.
4698 * @interval: userspace pointer to the timeslice value.
4699 *
4700 * this syscall writes the default timeslice value of a given process
4701 * into the user-space timespec buffer. A value of '0' means infinity.
4702 */
4703asmlinkage
4704long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4705{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004706 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004707 int retval = -EINVAL;
4708 struct timespec t;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004709
4710 if (pid < 0)
4711 goto out_nounlock;
4712
4713 retval = -ESRCH;
4714 read_lock(&tasklist_lock);
4715 p = find_process_by_pid(pid);
4716 if (!p)
4717 goto out_unlock;
4718
4719 retval = security_task_getscheduler(p);
4720 if (retval)
4721 goto out_unlock;
4722
Peter Williamsb78709c2006-06-26 16:58:00 +10004723 jiffies_to_timespec(p->policy == SCHED_FIFO ?
Ingo Molnardd41f592007-07-09 18:51:59 +02004724 0 : static_prio_timeslice(p->static_prio), &t);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004725 read_unlock(&tasklist_lock);
4726 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4727out_nounlock:
4728 return retval;
4729out_unlock:
4730 read_unlock(&tasklist_lock);
4731 return retval;
4732}
4733
Andreas Mohr2ed6e342006-07-10 04:43:52 -07004734static const char stat_nam[] = "RSDTtZX";
Ingo Molnar36c8b582006-07-03 00:25:41 -07004735
4736static void show_task(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004737{
Linus Torvalds1da177e2005-04-16 15:20:36 -07004738 unsigned long free = 0;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004739 unsigned state;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004740
Linus Torvalds1da177e2005-04-16 15:20:36 -07004741 state = p->state ? __ffs(p->state) + 1 : 0;
Andreas Mohr2ed6e342006-07-10 04:43:52 -07004742 printk("%-13.13s %c", p->comm,
4743 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
Ingo Molnar4bd77322007-07-11 21:21:47 +02004744#if BITS_PER_LONG == 32
Linus Torvalds1da177e2005-04-16 15:20:36 -07004745 if (state == TASK_RUNNING)
Ingo Molnar4bd77322007-07-11 21:21:47 +02004746 printk(" running ");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004747 else
Ingo Molnar4bd77322007-07-11 21:21:47 +02004748 printk(" %08lx ", thread_saved_pc(p));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004749#else
4750 if (state == TASK_RUNNING)
Ingo Molnar4bd77322007-07-11 21:21:47 +02004751 printk(" running task ");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004752 else
4753 printk(" %016lx ", thread_saved_pc(p));
4754#endif
4755#ifdef CONFIG_DEBUG_STACK_USAGE
4756 {
Al Viro10ebffd2005-11-13 16:06:56 -08004757 unsigned long *n = end_of_stack(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004758 while (!*n)
4759 n++;
Al Viro10ebffd2005-11-13 16:06:56 -08004760 free = (unsigned long)n - (unsigned long)end_of_stack(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004761 }
4762#endif
Ingo Molnar4bd77322007-07-11 21:21:47 +02004763 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004764
4765 if (state != TASK_RUNNING)
4766 show_stack(p, NULL);
4767}
4768
Ingo Molnare59e2ae2006-12-06 20:35:59 -08004769void show_state_filter(unsigned long state_filter)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004770{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004771 struct task_struct *g, *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004772
Ingo Molnar4bd77322007-07-11 21:21:47 +02004773#if BITS_PER_LONG == 32
4774 printk(KERN_INFO
4775 " task PC stack pid father\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004776#else
Ingo Molnar4bd77322007-07-11 21:21:47 +02004777 printk(KERN_INFO
4778 " task PC stack pid father\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004779#endif
4780 read_lock(&tasklist_lock);
4781 do_each_thread(g, p) {
4782 /*
4783 * reset the NMI-timeout, listing all files on a slow
4784 * console might take alot of time:
4785 */
4786 touch_nmi_watchdog();
Ingo Molnar39bc89f2007-04-25 20:50:03 -07004787 if (!state_filter || (p->state & state_filter))
Ingo Molnare59e2ae2006-12-06 20:35:59 -08004788 show_task(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004789 } while_each_thread(g, p);
4790
Jeremy Fitzhardinge04c91672007-05-08 00:28:05 -07004791 touch_all_softlockup_watchdogs();
4792
Ingo Molnardd41f592007-07-09 18:51:59 +02004793#ifdef CONFIG_SCHED_DEBUG
4794 sysrq_sched_debug_show();
4795#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07004796 read_unlock(&tasklist_lock);
Ingo Molnare59e2ae2006-12-06 20:35:59 -08004797 /*
4798 * Only show locks if all tasks are dumped:
4799 */
4800 if (state_filter == -1)
4801 debug_show_all_locks();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004802}
4803
Ingo Molnar1df21052007-07-09 18:51:58 +02004804void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4805{
Ingo Molnardd41f592007-07-09 18:51:59 +02004806 idle->sched_class = &idle_sched_class;
Ingo Molnar1df21052007-07-09 18:51:58 +02004807}
4808
Ingo Molnarf340c0d2005-06-28 16:40:42 +02004809/**
4810 * init_idle - set up an idle thread for a given CPU
4811 * @idle: task in question
4812 * @cpu: cpu the idle task belongs to
4813 *
4814 * NOTE: this function does not set the idle thread's NEED_RESCHED
4815 * flag, to make booting more robust.
4816 */
Nick Piggin5c1e1762006-10-03 01:14:04 -07004817void __cpuinit init_idle(struct task_struct *idle, int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004818{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004819 struct rq *rq = cpu_rq(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004820 unsigned long flags;
4821
Ingo Molnardd41f592007-07-09 18:51:59 +02004822 __sched_fork(idle);
4823 idle->se.exec_start = sched_clock();
4824
Ingo Molnarb29739f2006-06-27 02:54:51 -07004825 idle->prio = idle->normal_prio = MAX_PRIO;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004826 idle->cpus_allowed = cpumask_of_cpu(cpu);
Ingo Molnardd41f592007-07-09 18:51:59 +02004827 __set_task_cpu(idle, cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004828
4829 spin_lock_irqsave(&rq->lock, flags);
4830 rq->curr = rq->idle = idle;
Nick Piggin4866cde2005-06-25 14:57:23 -07004831#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4832 idle->oncpu = 1;
4833#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07004834 spin_unlock_irqrestore(&rq->lock, flags);
4835
4836 /* Set the preempt count _outside_ the spinlocks! */
4837#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
Al Viroa1261f52005-11-13 16:06:55 -08004838 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004839#else
Al Viroa1261f52005-11-13 16:06:55 -08004840 task_thread_info(idle)->preempt_count = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004841#endif
Ingo Molnardd41f592007-07-09 18:51:59 +02004842 /*
4843 * The idle tasks have their own, simple scheduling class:
4844 */
4845 idle->sched_class = &idle_sched_class;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004846}
4847
4848/*
4849 * In a system that switches off the HZ timer nohz_cpu_mask
4850 * indicates which cpus entered this state. This is used
4851 * in the rcu update to wait only for active cpus. For system
4852 * which do not switch off the HZ timer nohz_cpu_mask should
4853 * always be CPU_MASK_NONE.
4854 */
4855cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4856
Ingo Molnardd41f592007-07-09 18:51:59 +02004857/*
4858 * Increase the granularity value when there are more CPUs,
4859 * because with more CPUs the 'effective latency' as visible
4860 * to users decreases. But the relationship is not linear,
4861 * so pick a second-best guess by going with the log2 of the
4862 * number of CPUs.
4863 *
4864 * This idea comes from the SD scheduler of Con Kolivas:
4865 */
4866static inline void sched_init_granularity(void)
4867{
4868 unsigned int factor = 1 + ilog2(num_online_cpus());
Ingo Molnara5968df2007-07-11 21:21:47 +02004869 const unsigned long gran_limit = 100000000;
Ingo Molnardd41f592007-07-09 18:51:59 +02004870
4871 sysctl_sched_granularity *= factor;
4872 if (sysctl_sched_granularity > gran_limit)
4873 sysctl_sched_granularity = gran_limit;
4874
4875 sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
4876 sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
4877}
4878
Linus Torvalds1da177e2005-04-16 15:20:36 -07004879#ifdef CONFIG_SMP
4880/*
4881 * This is how migration works:
4882 *
Ingo Molnar70b97a72006-07-03 00:25:42 -07004883 * 1) we queue a struct migration_req structure in the source CPU's
Linus Torvalds1da177e2005-04-16 15:20:36 -07004884 * runqueue and wake up that CPU's migration thread.
4885 * 2) we down() the locked semaphore => thread blocks.
4886 * 3) migration thread wakes up (implicitly it forces the migrated
4887 * thread off the CPU)
4888 * 4) it gets the migration request and checks whether the migrated
4889 * task is still in the wrong runqueue.
4890 * 5) if it's in the wrong runqueue then the migration thread removes
4891 * it and puts it into the right queue.
4892 * 6) migration thread up()s the semaphore.
4893 * 7) we wake up and the migration is done.
4894 */
4895
4896/*
4897 * Change a given task's CPU affinity. Migrate the thread to a
4898 * proper CPU and schedule it away if the CPU it's executing on
4899 * is removed from the allowed bitmask.
4900 *
4901 * NOTE: the caller must have a valid reference to the task, the
4902 * task must not exit() & deallocate itself prematurely. The
4903 * call is not atomic; no spinlocks may be held.
4904 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004905int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004906{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004907 struct migration_req req;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004908 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07004909 struct rq *rq;
Ingo Molnar48f24c42006-07-03 00:25:40 -07004910 int ret = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004911
4912 rq = task_rq_lock(p, &flags);
4913 if (!cpus_intersects(new_mask, cpu_online_map)) {
4914 ret = -EINVAL;
4915 goto out;
4916 }
4917
4918 p->cpus_allowed = new_mask;
4919 /* Can the task run on the task's current CPU? If so, we're done */
4920 if (cpu_isset(task_cpu(p), new_mask))
4921 goto out;
4922
4923 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4924 /* Need help from migration thread: drop lock and wait. */
4925 task_rq_unlock(rq, &flags);
4926 wake_up_process(rq->migration_thread);
4927 wait_for_completion(&req.done);
4928 tlb_migrate_finish(p->mm);
4929 return 0;
4930 }
4931out:
4932 task_rq_unlock(rq, &flags);
Ingo Molnar48f24c42006-07-03 00:25:40 -07004933
Linus Torvalds1da177e2005-04-16 15:20:36 -07004934 return ret;
4935}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004936EXPORT_SYMBOL_GPL(set_cpus_allowed);
4937
4938/*
4939 * Move (not current) task off this cpu, onto dest cpu. We're doing
4940 * this because either it can't run here any more (set_cpus_allowed()
4941 * away from this CPU, or CPU going down), or because we're
4942 * attempting to rebalance this task on exec (sched_exec).
4943 *
4944 * So we race with normal scheduler movements, but that's OK, as long
4945 * as the task is no longer on this CPU.
Kirill Korotaevefc30812006-06-27 02:54:32 -07004946 *
4947 * Returns non-zero if task was successfully migrated.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004948 */
Kirill Korotaevefc30812006-06-27 02:54:32 -07004949static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004950{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004951 struct rq *rq_dest, *rq_src;
Ingo Molnardd41f592007-07-09 18:51:59 +02004952 int ret = 0, on_rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004953
4954 if (unlikely(cpu_is_offline(dest_cpu)))
Kirill Korotaevefc30812006-06-27 02:54:32 -07004955 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004956
4957 rq_src = cpu_rq(src_cpu);
4958 rq_dest = cpu_rq(dest_cpu);
4959
4960 double_rq_lock(rq_src, rq_dest);
4961 /* Already moved. */
4962 if (task_cpu(p) != src_cpu)
4963 goto out;
4964 /* Affinity changed (again). */
4965 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4966 goto out;
4967
Ingo Molnardd41f592007-07-09 18:51:59 +02004968 on_rq = p->se.on_rq;
Ingo Molnar6e82a3b2007-08-09 11:16:51 +02004969 if (on_rq)
Ingo Molnar2e1cb742007-08-09 11:16:49 +02004970 deactivate_task(rq_src, p, 0);
Ingo Molnar6e82a3b2007-08-09 11:16:51 +02004971
Linus Torvalds1da177e2005-04-16 15:20:36 -07004972 set_task_cpu(p, dest_cpu);
Ingo Molnardd41f592007-07-09 18:51:59 +02004973 if (on_rq) {
4974 activate_task(rq_dest, p, 0);
4975 check_preempt_curr(rq_dest, p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004976 }
Kirill Korotaevefc30812006-06-27 02:54:32 -07004977 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004978out:
4979 double_rq_unlock(rq_src, rq_dest);
Kirill Korotaevefc30812006-06-27 02:54:32 -07004980 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004981}
4982
4983/*
4984 * migration_thread - this is a highprio system thread that performs
4985 * thread migration by bumping thread off CPU then 'pushing' onto
4986 * another runqueue.
4987 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004988static int migration_thread(void *data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004989{
Linus Torvalds1da177e2005-04-16 15:20:36 -07004990 int cpu = (long)data;
Ingo Molnar70b97a72006-07-03 00:25:42 -07004991 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004992
4993 rq = cpu_rq(cpu);
4994 BUG_ON(rq->migration_thread != current);
4995
4996 set_current_state(TASK_INTERRUPTIBLE);
4997 while (!kthread_should_stop()) {
Ingo Molnar70b97a72006-07-03 00:25:42 -07004998 struct migration_req *req;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004999 struct list_head *head;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005000
Linus Torvalds1da177e2005-04-16 15:20:36 -07005001 spin_lock_irq(&rq->lock);
5002
5003 if (cpu_is_offline(cpu)) {
5004 spin_unlock_irq(&rq->lock);
5005 goto wait_to_die;
5006 }
5007
5008 if (rq->active_balance) {
5009 active_load_balance(rq, cpu);
5010 rq->active_balance = 0;
5011 }
5012
5013 head = &rq->migration_queue;
5014
5015 if (list_empty(head)) {
5016 spin_unlock_irq(&rq->lock);
5017 schedule();
5018 set_current_state(TASK_INTERRUPTIBLE);
5019 continue;
5020 }
Ingo Molnar70b97a72006-07-03 00:25:42 -07005021 req = list_entry(head->next, struct migration_req, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005022 list_del_init(head->next);
5023
Nick Piggin674311d2005-06-25 14:57:27 -07005024 spin_unlock(&rq->lock);
5025 __migrate_task(req->task, cpu, req->dest_cpu);
5026 local_irq_enable();
Linus Torvalds1da177e2005-04-16 15:20:36 -07005027
5028 complete(&req->done);
5029 }
5030 __set_current_state(TASK_RUNNING);
5031 return 0;
5032
5033wait_to_die:
5034 /* Wait for kthread_stop */
5035 set_current_state(TASK_INTERRUPTIBLE);
5036 while (!kthread_should_stop()) {
5037 schedule();
5038 set_current_state(TASK_INTERRUPTIBLE);
5039 }
5040 __set_current_state(TASK_RUNNING);
5041 return 0;
5042}
5043
5044#ifdef CONFIG_HOTPLUG_CPU
Kirill Korotaev054b9102006-12-10 02:20:11 -08005045/*
5046 * Figure out where task on dead CPU should go, use force if neccessary.
5047 * NOTE: interrupts should be disabled by the caller
5048 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005049static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005050{
Kirill Korotaevefc30812006-06-27 02:54:32 -07005051 unsigned long flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005052 cpumask_t mask;
Ingo Molnar70b97a72006-07-03 00:25:42 -07005053 struct rq *rq;
5054 int dest_cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005055
Kirill Korotaevefc30812006-06-27 02:54:32 -07005056restart:
Linus Torvalds1da177e2005-04-16 15:20:36 -07005057 /* On same node? */
5058 mask = node_to_cpumask(cpu_to_node(dead_cpu));
Ingo Molnar48f24c42006-07-03 00:25:40 -07005059 cpus_and(mask, mask, p->cpus_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005060 dest_cpu = any_online_cpu(mask);
5061
5062 /* On any allowed CPU? */
5063 if (dest_cpu == NR_CPUS)
Ingo Molnar48f24c42006-07-03 00:25:40 -07005064 dest_cpu = any_online_cpu(p->cpus_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005065
5066 /* No more Mr. Nice Guy. */
5067 if (dest_cpu == NR_CPUS) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07005068 rq = task_rq_lock(p, &flags);
5069 cpus_setall(p->cpus_allowed);
5070 dest_cpu = any_online_cpu(p->cpus_allowed);
Kirill Korotaevefc30812006-06-27 02:54:32 -07005071 task_rq_unlock(rq, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005072
5073 /*
5074 * Don't tell them about moving exiting tasks or
5075 * kernel threads (both mm NULL), since they never
5076 * leave kernel.
5077 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005078 if (p->mm && printk_ratelimit())
Linus Torvalds1da177e2005-04-16 15:20:36 -07005079 printk(KERN_INFO "process %d (%s) no "
5080 "longer affine to cpu%d\n",
Ingo Molnar48f24c42006-07-03 00:25:40 -07005081 p->pid, p->comm, dead_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005082 }
Ingo Molnar48f24c42006-07-03 00:25:40 -07005083 if (!__migrate_task(p, dead_cpu, dest_cpu))
Kirill Korotaevefc30812006-06-27 02:54:32 -07005084 goto restart;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005085}
5086
5087/*
5088 * While a dead CPU has no uninterruptible tasks queued at this point,
5089 * it might still have a nonzero ->nr_uninterruptible counter, because
5090 * for performance reasons the counter is not stricly tracking tasks to
5091 * their home CPUs. So we just add the counter to another CPU's counter,
5092 * to keep the global sum constant after CPU-down:
5093 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07005094static void migrate_nr_uninterruptible(struct rq *rq_src)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005095{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005096 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005097 unsigned long flags;
5098
5099 local_irq_save(flags);
5100 double_rq_lock(rq_src, rq_dest);
5101 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5102 rq_src->nr_uninterruptible = 0;
5103 double_rq_unlock(rq_src, rq_dest);
5104 local_irq_restore(flags);
5105}
5106
5107/* Run through task list and migrate tasks from the dead cpu. */
5108static void migrate_live_tasks(int src_cpu)
5109{
Ingo Molnar48f24c42006-07-03 00:25:40 -07005110 struct task_struct *p, *t;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005111
5112 write_lock_irq(&tasklist_lock);
5113
Ingo Molnar48f24c42006-07-03 00:25:40 -07005114 do_each_thread(t, p) {
5115 if (p == current)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005116 continue;
5117
Ingo Molnar48f24c42006-07-03 00:25:40 -07005118 if (task_cpu(p) == src_cpu)
5119 move_task_off_dead_cpu(src_cpu, p);
5120 } while_each_thread(t, p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005121
5122 write_unlock_irq(&tasklist_lock);
5123}
5124
Ingo Molnardd41f592007-07-09 18:51:59 +02005125/*
5126 * Schedules idle task to be the next runnable task on current CPU.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005127 * It does so by boosting its priority to highest possible and adding it to
Ingo Molnar48f24c42006-07-03 00:25:40 -07005128 * the _front_ of the runqueue. Used by CPU offline code.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005129 */
5130void sched_idle_next(void)
5131{
Ingo Molnar48f24c42006-07-03 00:25:40 -07005132 int this_cpu = smp_processor_id();
Ingo Molnar70b97a72006-07-03 00:25:42 -07005133 struct rq *rq = cpu_rq(this_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005134 struct task_struct *p = rq->idle;
5135 unsigned long flags;
5136
5137 /* cpu has to be offline */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005138 BUG_ON(cpu_online(this_cpu));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005139
Ingo Molnar48f24c42006-07-03 00:25:40 -07005140 /*
5141 * Strictly not necessary since rest of the CPUs are stopped by now
5142 * and interrupts disabled on the current cpu.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005143 */
5144 spin_lock_irqsave(&rq->lock, flags);
5145
Ingo Molnardd41f592007-07-09 18:51:59 +02005146 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005147
5148 /* Add idle task to the _front_ of its priority queue: */
Ingo Molnardd41f592007-07-09 18:51:59 +02005149 activate_idle_task(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005150
5151 spin_unlock_irqrestore(&rq->lock, flags);
5152}
5153
Ingo Molnar48f24c42006-07-03 00:25:40 -07005154/*
5155 * Ensures that the idle task is using init_mm right before its cpu goes
Linus Torvalds1da177e2005-04-16 15:20:36 -07005156 * offline.
5157 */
5158void idle_task_exit(void)
5159{
5160 struct mm_struct *mm = current->active_mm;
5161
5162 BUG_ON(cpu_online(smp_processor_id()));
5163
5164 if (mm != &init_mm)
5165 switch_mm(mm, &init_mm, current);
5166 mmdrop(mm);
5167}
5168
Kirill Korotaev054b9102006-12-10 02:20:11 -08005169/* called under rq->lock with disabled interrupts */
Ingo Molnar36c8b582006-07-03 00:25:41 -07005170static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005171{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005172 struct rq *rq = cpu_rq(dead_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005173
5174 /* Must be exiting, otherwise would be on tasklist. */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005175 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005176
5177 /* Cannot have done final schedule yet: would have vanished. */
Oleg Nesterovc394cc92006-09-29 02:01:11 -07005178 BUG_ON(p->state == TASK_DEAD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005179
Ingo Molnar48f24c42006-07-03 00:25:40 -07005180 get_task_struct(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005181
5182 /*
5183 * Drop lock around migration; if someone else moves it,
5184 * that's OK. No task can be added to this CPU, so iteration is
5185 * fine.
Kirill Korotaev054b9102006-12-10 02:20:11 -08005186 * NOTE: interrupts should be left disabled --dev@
Linus Torvalds1da177e2005-04-16 15:20:36 -07005187 */
Kirill Korotaev054b9102006-12-10 02:20:11 -08005188 spin_unlock(&rq->lock);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005189 move_task_off_dead_cpu(dead_cpu, p);
Kirill Korotaev054b9102006-12-10 02:20:11 -08005190 spin_lock(&rq->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005191
Ingo Molnar48f24c42006-07-03 00:25:40 -07005192 put_task_struct(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005193}
5194
5195/* release_task() removes task from tasklist, so we won't find dead tasks. */
5196static void migrate_dead_tasks(unsigned int dead_cpu)
5197{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005198 struct rq *rq = cpu_rq(dead_cpu);
Ingo Molnardd41f592007-07-09 18:51:59 +02005199 struct task_struct *next;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005200
Ingo Molnardd41f592007-07-09 18:51:59 +02005201 for ( ; ; ) {
5202 if (!rq->nr_running)
5203 break;
Ingo Molnara8e504d2007-08-09 11:16:47 +02005204 update_rq_clock(rq);
Ingo Molnarff95f3d2007-08-09 11:16:49 +02005205 next = pick_next_task(rq, rq->curr);
Ingo Molnardd41f592007-07-09 18:51:59 +02005206 if (!next)
5207 break;
5208 migrate_dead(dead_cpu, next);
Nick Piggine692ab52007-07-26 13:40:43 +02005209
Linus Torvalds1da177e2005-04-16 15:20:36 -07005210 }
5211}
5212#endif /* CONFIG_HOTPLUG_CPU */
5213
Nick Piggine692ab52007-07-26 13:40:43 +02005214#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5215
5216static struct ctl_table sd_ctl_dir[] = {
Alexey Dobriyane0361852007-08-09 11:16:46 +02005217 {
5218 .procname = "sched_domain",
5219 .mode = 0755,
5220 },
Nick Piggine692ab52007-07-26 13:40:43 +02005221 {0,},
5222};
5223
5224static struct ctl_table sd_ctl_root[] = {
Alexey Dobriyane0361852007-08-09 11:16:46 +02005225 {
5226 .procname = "kernel",
5227 .mode = 0755,
5228 .child = sd_ctl_dir,
5229 },
Nick Piggine692ab52007-07-26 13:40:43 +02005230 {0,},
5231};
5232
5233static struct ctl_table *sd_alloc_ctl_entry(int n)
5234{
5235 struct ctl_table *entry =
5236 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5237
5238 BUG_ON(!entry);
5239 memset(entry, 0, n * sizeof(struct ctl_table));
5240
5241 return entry;
5242}
5243
5244static void
Alexey Dobriyane0361852007-08-09 11:16:46 +02005245set_table_entry(struct ctl_table *entry,
Nick Piggine692ab52007-07-26 13:40:43 +02005246 const char *procname, void *data, int maxlen,
5247 mode_t mode, proc_handler *proc_handler)
5248{
Nick Piggine692ab52007-07-26 13:40:43 +02005249 entry->procname = procname;
5250 entry->data = data;
5251 entry->maxlen = maxlen;
5252 entry->mode = mode;
5253 entry->proc_handler = proc_handler;
5254}
5255
5256static struct ctl_table *
5257sd_alloc_ctl_domain_table(struct sched_domain *sd)
5258{
5259 struct ctl_table *table = sd_alloc_ctl_entry(14);
5260
Alexey Dobriyane0361852007-08-09 11:16:46 +02005261 set_table_entry(&table[0], "min_interval", &sd->min_interval,
Nick Piggine692ab52007-07-26 13:40:43 +02005262 sizeof(long), 0644, proc_doulongvec_minmax);
Alexey Dobriyane0361852007-08-09 11:16:46 +02005263 set_table_entry(&table[1], "max_interval", &sd->max_interval,
Nick Piggine692ab52007-07-26 13:40:43 +02005264 sizeof(long), 0644, proc_doulongvec_minmax);
Alexey Dobriyane0361852007-08-09 11:16:46 +02005265 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
Nick Piggine692ab52007-07-26 13:40:43 +02005266 sizeof(int), 0644, proc_dointvec_minmax);
Alexey Dobriyane0361852007-08-09 11:16:46 +02005267 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
Nick Piggine692ab52007-07-26 13:40:43 +02005268 sizeof(int), 0644, proc_dointvec_minmax);
Alexey Dobriyane0361852007-08-09 11:16:46 +02005269 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
Nick Piggine692ab52007-07-26 13:40:43 +02005270 sizeof(int), 0644, proc_dointvec_minmax);
Alexey Dobriyane0361852007-08-09 11:16:46 +02005271 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
Nick Piggine692ab52007-07-26 13:40:43 +02005272 sizeof(int), 0644, proc_dointvec_minmax);
Alexey Dobriyane0361852007-08-09 11:16:46 +02005273 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
Nick Piggine692ab52007-07-26 13:40:43 +02005274 sizeof(int), 0644, proc_dointvec_minmax);
Alexey Dobriyane0361852007-08-09 11:16:46 +02005275 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
Nick Piggine692ab52007-07-26 13:40:43 +02005276 sizeof(int), 0644, proc_dointvec_minmax);
Alexey Dobriyane0361852007-08-09 11:16:46 +02005277 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
Nick Piggine692ab52007-07-26 13:40:43 +02005278 sizeof(int), 0644, proc_dointvec_minmax);
Alexey Dobriyane0361852007-08-09 11:16:46 +02005279 set_table_entry(&table[10], "cache_nice_tries",
Nick Piggine692ab52007-07-26 13:40:43 +02005280 &sd->cache_nice_tries,
5281 sizeof(int), 0644, proc_dointvec_minmax);
Alexey Dobriyane0361852007-08-09 11:16:46 +02005282 set_table_entry(&table[12], "flags", &sd->flags,
Nick Piggine692ab52007-07-26 13:40:43 +02005283 sizeof(int), 0644, proc_dointvec_minmax);
5284
5285 return table;
5286}
5287
5288static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5289{
5290 struct ctl_table *entry, *table;
5291 struct sched_domain *sd;
5292 int domain_num = 0, i;
5293 char buf[32];
5294
5295 for_each_domain(cpu, sd)
5296 domain_num++;
5297 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5298
5299 i = 0;
5300 for_each_domain(cpu, sd) {
5301 snprintf(buf, 32, "domain%d", i);
Nick Piggine692ab52007-07-26 13:40:43 +02005302 entry->procname = kstrdup(buf, GFP_KERNEL);
5303 entry->mode = 0755;
5304 entry->child = sd_alloc_ctl_domain_table(sd);
5305 entry++;
5306 i++;
5307 }
5308 return table;
5309}
5310
5311static struct ctl_table_header *sd_sysctl_header;
5312static void init_sched_domain_sysctl(void)
5313{
5314 int i, cpu_num = num_online_cpus();
5315 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5316 char buf[32];
5317
5318 sd_ctl_dir[0].child = entry;
5319
5320 for (i = 0; i < cpu_num; i++, entry++) {
5321 snprintf(buf, 32, "cpu%d", i);
Nick Piggine692ab52007-07-26 13:40:43 +02005322 entry->procname = kstrdup(buf, GFP_KERNEL);
5323 entry->mode = 0755;
5324 entry->child = sd_alloc_ctl_cpu_table(i);
5325 }
5326 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5327}
5328#else
5329static void init_sched_domain_sysctl(void)
5330{
5331}
5332#endif
5333
Linus Torvalds1da177e2005-04-16 15:20:36 -07005334/*
5335 * migration_call - callback that gets triggered when a CPU is added.
5336 * Here we can start up the necessary migration thread for the new CPU.
5337 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005338static int __cpuinit
5339migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005340{
Linus Torvalds1da177e2005-04-16 15:20:36 -07005341 struct task_struct *p;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005342 int cpu = (long)hcpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005343 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07005344 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005345
5346 switch (action) {
Gautham R Shenoy5be93612007-05-09 02:34:04 -07005347 case CPU_LOCK_ACQUIRE:
5348 mutex_lock(&sched_hotcpu_mutex);
5349 break;
5350
Linus Torvalds1da177e2005-04-16 15:20:36 -07005351 case CPU_UP_PREPARE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07005352 case CPU_UP_PREPARE_FROZEN:
Ingo Molnardd41f592007-07-09 18:51:59 +02005353 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005354 if (IS_ERR(p))
5355 return NOTIFY_BAD;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005356 kthread_bind(p, cpu);
5357 /* Must be high prio: stop_machine expects to yield to it. */
5358 rq = task_rq_lock(p, &flags);
Ingo Molnardd41f592007-07-09 18:51:59 +02005359 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005360 task_rq_unlock(rq, &flags);
5361 cpu_rq(cpu)->migration_thread = p;
5362 break;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005363
Linus Torvalds1da177e2005-04-16 15:20:36 -07005364 case CPU_ONLINE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07005365 case CPU_ONLINE_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07005366 /* Strictly unneccessary, as first user will wake it. */
5367 wake_up_process(cpu_rq(cpu)->migration_thread);
5368 break;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005369
Linus Torvalds1da177e2005-04-16 15:20:36 -07005370#ifdef CONFIG_HOTPLUG_CPU
5371 case CPU_UP_CANCELED:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07005372 case CPU_UP_CANCELED_FROZEN:
Heiko Carstensfc75cdf2006-06-25 05:49:10 -07005373 if (!cpu_rq(cpu)->migration_thread)
5374 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005375 /* Unbind it from offline cpu so it can run. Fall thru. */
Heiko Carstensa4c4af72005-11-07 00:58:38 -08005376 kthread_bind(cpu_rq(cpu)->migration_thread,
5377 any_online_cpu(cpu_online_map));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005378 kthread_stop(cpu_rq(cpu)->migration_thread);
5379 cpu_rq(cpu)->migration_thread = NULL;
5380 break;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005381
Linus Torvalds1da177e2005-04-16 15:20:36 -07005382 case CPU_DEAD:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07005383 case CPU_DEAD_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07005384 migrate_live_tasks(cpu);
5385 rq = cpu_rq(cpu);
5386 kthread_stop(rq->migration_thread);
5387 rq->migration_thread = NULL;
5388 /* Idle task back to normal (off runqueue, low prio) */
5389 rq = task_rq_lock(rq->idle, &flags);
Ingo Molnara8e504d2007-08-09 11:16:47 +02005390 update_rq_clock(rq);
Ingo Molnar2e1cb742007-08-09 11:16:49 +02005391 deactivate_task(rq, rq->idle, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005392 rq->idle->static_prio = MAX_PRIO;
Ingo Molnardd41f592007-07-09 18:51:59 +02005393 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5394 rq->idle->sched_class = &idle_sched_class;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005395 migrate_dead_tasks(cpu);
5396 task_rq_unlock(rq, &flags);
5397 migrate_nr_uninterruptible(rq);
5398 BUG_ON(rq->nr_running != 0);
5399
5400 /* No need to migrate the tasks: it was best-effort if
Gautham R Shenoy5be93612007-05-09 02:34:04 -07005401 * they didn't take sched_hotcpu_mutex. Just wake up
Linus Torvalds1da177e2005-04-16 15:20:36 -07005402 * the requestors. */
5403 spin_lock_irq(&rq->lock);
5404 while (!list_empty(&rq->migration_queue)) {
Ingo Molnar70b97a72006-07-03 00:25:42 -07005405 struct migration_req *req;
5406
Linus Torvalds1da177e2005-04-16 15:20:36 -07005407 req = list_entry(rq->migration_queue.next,
Ingo Molnar70b97a72006-07-03 00:25:42 -07005408 struct migration_req, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005409 list_del_init(&req->list);
5410 complete(&req->done);
5411 }
5412 spin_unlock_irq(&rq->lock);
5413 break;
5414#endif
Gautham R Shenoy5be93612007-05-09 02:34:04 -07005415 case CPU_LOCK_RELEASE:
5416 mutex_unlock(&sched_hotcpu_mutex);
5417 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005418 }
5419 return NOTIFY_OK;
5420}
5421
5422/* Register at highest priority so that task migration (migrate_all_tasks)
5423 * happens before everything else.
5424 */
Chandra Seetharaman26c21432006-06-27 02:54:10 -07005425static struct notifier_block __cpuinitdata migration_notifier = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005426 .notifier_call = migration_call,
5427 .priority = 10
5428};
5429
5430int __init migration_init(void)
5431{
5432 void *cpu = (void *)(long)smp_processor_id();
Akinobu Mita07dccf32006-09-29 02:00:22 -07005433 int err;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005434
5435 /* Start one for the boot CPU: */
Akinobu Mita07dccf32006-09-29 02:00:22 -07005436 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5437 BUG_ON(err == NOTIFY_BAD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005438 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5439 register_cpu_notifier(&migration_notifier);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005440
Linus Torvalds1da177e2005-04-16 15:20:36 -07005441 return 0;
5442}
5443#endif
5444
5445#ifdef CONFIG_SMP
Christoph Lameter476f3532007-05-06 14:48:58 -07005446
5447/* Number of possible processor ids */
5448int nr_cpu_ids __read_mostly = NR_CPUS;
5449EXPORT_SYMBOL(nr_cpu_ids);
5450
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005451#undef SCHED_DOMAIN_DEBUG
Linus Torvalds1da177e2005-04-16 15:20:36 -07005452#ifdef SCHED_DOMAIN_DEBUG
5453static void sched_domain_debug(struct sched_domain *sd, int cpu)
5454{
5455 int level = 0;
5456
Nick Piggin41c7ce92005-06-25 14:57:24 -07005457 if (!sd) {
5458 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5459 return;
5460 }
5461
Linus Torvalds1da177e2005-04-16 15:20:36 -07005462 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5463
5464 do {
5465 int i;
5466 char str[NR_CPUS];
5467 struct sched_group *group = sd->groups;
5468 cpumask_t groupmask;
5469
5470 cpumask_scnprintf(str, NR_CPUS, sd->span);
5471 cpus_clear(groupmask);
5472
5473 printk(KERN_DEBUG);
5474 for (i = 0; i < level + 1; i++)
5475 printk(" ");
5476 printk("domain %d: ", level);
5477
5478 if (!(sd->flags & SD_LOAD_BALANCE)) {
5479 printk("does not load-balance\n");
5480 if (sd->parent)
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005481 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5482 " has parent");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005483 break;
5484 }
5485
5486 printk("span %s\n", str);
5487
5488 if (!cpu_isset(cpu, sd->span))
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005489 printk(KERN_ERR "ERROR: domain->span does not contain "
5490 "CPU%d\n", cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005491 if (!cpu_isset(cpu, group->cpumask))
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005492 printk(KERN_ERR "ERROR: domain->groups does not contain"
5493 " CPU%d\n", cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005494
5495 printk(KERN_DEBUG);
5496 for (i = 0; i < level + 2; i++)
5497 printk(" ");
5498 printk("groups:");
5499 do {
5500 if (!group) {
5501 printk("\n");
5502 printk(KERN_ERR "ERROR: group is NULL\n");
5503 break;
5504 }
5505
Eric Dumazet5517d862007-05-08 00:32:57 -07005506 if (!group->__cpu_power) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005507 printk("\n");
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005508 printk(KERN_ERR "ERROR: domain->cpu_power not "
5509 "set\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005510 }
5511
5512 if (!cpus_weight(group->cpumask)) {
5513 printk("\n");
5514 printk(KERN_ERR "ERROR: empty group\n");
5515 }
5516
5517 if (cpus_intersects(groupmask, group->cpumask)) {
5518 printk("\n");
5519 printk(KERN_ERR "ERROR: repeated CPUs\n");
5520 }
5521
5522 cpus_or(groupmask, groupmask, group->cpumask);
5523
5524 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5525 printk(" %s", str);
5526
5527 group = group->next;
5528 } while (group != sd->groups);
5529 printk("\n");
5530
5531 if (!cpus_equal(sd->span, groupmask))
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005532 printk(KERN_ERR "ERROR: groups don't span "
5533 "domain->span\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005534
5535 level++;
5536 sd = sd->parent;
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005537 if (!sd)
5538 continue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005539
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005540 if (!cpus_subset(groupmask, sd->span))
5541 printk(KERN_ERR "ERROR: parent span is not a superset "
5542 "of domain->span\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005543
5544 } while (sd);
5545}
5546#else
Ingo Molnar48f24c42006-07-03 00:25:40 -07005547# define sched_domain_debug(sd, cpu) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005548#endif
5549
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005550static int sd_degenerate(struct sched_domain *sd)
Suresh Siddha245af2c2005-06-25 14:57:25 -07005551{
5552 if (cpus_weight(sd->span) == 1)
5553 return 1;
5554
5555 /* Following flags need at least 2 groups */
5556 if (sd->flags & (SD_LOAD_BALANCE |
5557 SD_BALANCE_NEWIDLE |
5558 SD_BALANCE_FORK |
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005559 SD_BALANCE_EXEC |
5560 SD_SHARE_CPUPOWER |
5561 SD_SHARE_PKG_RESOURCES)) {
Suresh Siddha245af2c2005-06-25 14:57:25 -07005562 if (sd->groups != sd->groups->next)
5563 return 0;
5564 }
5565
5566 /* Following flags don't use groups */
5567 if (sd->flags & (SD_WAKE_IDLE |
5568 SD_WAKE_AFFINE |
5569 SD_WAKE_BALANCE))
5570 return 0;
5571
5572 return 1;
5573}
5574
Ingo Molnar48f24c42006-07-03 00:25:40 -07005575static int
5576sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
Suresh Siddha245af2c2005-06-25 14:57:25 -07005577{
5578 unsigned long cflags = sd->flags, pflags = parent->flags;
5579
5580 if (sd_degenerate(parent))
5581 return 1;
5582
5583 if (!cpus_equal(sd->span, parent->span))
5584 return 0;
5585
5586 /* Does parent contain flags not in child? */
5587 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5588 if (cflags & SD_WAKE_AFFINE)
5589 pflags &= ~SD_WAKE_BALANCE;
5590 /* Flags needing groups don't count if only 1 group in parent */
5591 if (parent->groups == parent->groups->next) {
5592 pflags &= ~(SD_LOAD_BALANCE |
5593 SD_BALANCE_NEWIDLE |
5594 SD_BALANCE_FORK |
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005595 SD_BALANCE_EXEC |
5596 SD_SHARE_CPUPOWER |
5597 SD_SHARE_PKG_RESOURCES);
Suresh Siddha245af2c2005-06-25 14:57:25 -07005598 }
5599 if (~cflags & pflags)
5600 return 0;
5601
5602 return 1;
5603}
5604
Linus Torvalds1da177e2005-04-16 15:20:36 -07005605/*
5606 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5607 * hold the hotplug lock.
5608 */
John Hawkes9c1cfda2005-09-06 15:18:14 -07005609static void cpu_attach_domain(struct sched_domain *sd, int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005610{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005611 struct rq *rq = cpu_rq(cpu);
Suresh Siddha245af2c2005-06-25 14:57:25 -07005612 struct sched_domain *tmp;
5613
5614 /* Remove the sched domains which do not contribute to scheduling. */
5615 for (tmp = sd; tmp; tmp = tmp->parent) {
5616 struct sched_domain *parent = tmp->parent;
5617 if (!parent)
5618 break;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005619 if (sd_parent_degenerate(tmp, parent)) {
Suresh Siddha245af2c2005-06-25 14:57:25 -07005620 tmp->parent = parent->parent;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005621 if (parent->parent)
5622 parent->parent->child = tmp;
5623 }
Suresh Siddha245af2c2005-06-25 14:57:25 -07005624 }
5625
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005626 if (sd && sd_degenerate(sd)) {
Suresh Siddha245af2c2005-06-25 14:57:25 -07005627 sd = sd->parent;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005628 if (sd)
5629 sd->child = NULL;
5630 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005631
5632 sched_domain_debug(sd, cpu);
5633
Nick Piggin674311d2005-06-25 14:57:27 -07005634 rcu_assign_pointer(rq->sd, sd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005635}
5636
5637/* cpus with isolated domains */
Tim Chen67af63a2006-12-22 01:07:50 -08005638static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005639
5640/* Setup the mask of cpus configured for isolated domains */
5641static int __init isolated_cpu_setup(char *str)
5642{
5643 int ints[NR_CPUS], i;
5644
5645 str = get_options(str, ARRAY_SIZE(ints), ints);
5646 cpus_clear(cpu_isolated_map);
5647 for (i = 1; i <= ints[0]; i++)
5648 if (ints[i] < NR_CPUS)
5649 cpu_set(ints[i], cpu_isolated_map);
5650 return 1;
5651}
5652
5653__setup ("isolcpus=", isolated_cpu_setup);
5654
5655/*
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005656 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5657 * to a function which identifies what group(along with sched group) a CPU
5658 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5659 * (due to the fact that we keep track of groups covered with a cpumask_t).
Linus Torvalds1da177e2005-04-16 15:20:36 -07005660 *
5661 * init_sched_build_groups will build a circular linked list of the groups
5662 * covered by the given span, and will set each group's ->cpumask correctly,
5663 * and ->cpu_power to 0.
5664 */
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005665static void
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005666init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5667 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5668 struct sched_group **sg))
Linus Torvalds1da177e2005-04-16 15:20:36 -07005669{
5670 struct sched_group *first = NULL, *last = NULL;
5671 cpumask_t covered = CPU_MASK_NONE;
5672 int i;
5673
5674 for_each_cpu_mask(i, span) {
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005675 struct sched_group *sg;
5676 int group = group_fn(i, cpu_map, &sg);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005677 int j;
5678
5679 if (cpu_isset(i, covered))
5680 continue;
5681
5682 sg->cpumask = CPU_MASK_NONE;
Eric Dumazet5517d862007-05-08 00:32:57 -07005683 sg->__cpu_power = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005684
5685 for_each_cpu_mask(j, span) {
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005686 if (group_fn(j, cpu_map, NULL) != group)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005687 continue;
5688
5689 cpu_set(j, covered);
5690 cpu_set(j, sg->cpumask);
5691 }
5692 if (!first)
5693 first = sg;
5694 if (last)
5695 last->next = sg;
5696 last = sg;
5697 }
5698 last->next = first;
5699}
5700
John Hawkes9c1cfda2005-09-06 15:18:14 -07005701#define SD_NODES_PER_DOMAIN 16
Linus Torvalds1da177e2005-04-16 15:20:36 -07005702
John Hawkes9c1cfda2005-09-06 15:18:14 -07005703#ifdef CONFIG_NUMA
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005704
John Hawkes9c1cfda2005-09-06 15:18:14 -07005705/**
5706 * find_next_best_node - find the next node to include in a sched_domain
5707 * @node: node whose sched_domain we're building
5708 * @used_nodes: nodes already in the sched_domain
5709 *
5710 * Find the next node to include in a given scheduling domain. Simply
5711 * finds the closest node not already in the @used_nodes map.
5712 *
5713 * Should use nodemask_t.
5714 */
5715static int find_next_best_node(int node, unsigned long *used_nodes)
5716{
5717 int i, n, val, min_val, best_node = 0;
5718
5719 min_val = INT_MAX;
5720
5721 for (i = 0; i < MAX_NUMNODES; i++) {
5722 /* Start at @node */
5723 n = (node + i) % MAX_NUMNODES;
5724
5725 if (!nr_cpus_node(n))
5726 continue;
5727
5728 /* Skip already used nodes */
5729 if (test_bit(n, used_nodes))
5730 continue;
5731
5732 /* Simple min distance search */
5733 val = node_distance(node, n);
5734
5735 if (val < min_val) {
5736 min_val = val;
5737 best_node = n;
5738 }
5739 }
5740
5741 set_bit(best_node, used_nodes);
5742 return best_node;
5743}
5744
5745/**
5746 * sched_domain_node_span - get a cpumask for a node's sched_domain
5747 * @node: node whose cpumask we're constructing
5748 * @size: number of nodes to include in this span
5749 *
5750 * Given a node, construct a good cpumask for its sched_domain to span. It
5751 * should be one that prevents unnecessary balancing, but also spreads tasks
5752 * out optimally.
5753 */
5754static cpumask_t sched_domain_node_span(int node)
5755{
John Hawkes9c1cfda2005-09-06 15:18:14 -07005756 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005757 cpumask_t span, nodemask;
5758 int i;
John Hawkes9c1cfda2005-09-06 15:18:14 -07005759
5760 cpus_clear(span);
5761 bitmap_zero(used_nodes, MAX_NUMNODES);
5762
5763 nodemask = node_to_cpumask(node);
5764 cpus_or(span, span, nodemask);
5765 set_bit(node, used_nodes);
5766
5767 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5768 int next_node = find_next_best_node(node, used_nodes);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005769
John Hawkes9c1cfda2005-09-06 15:18:14 -07005770 nodemask = node_to_cpumask(next_node);
5771 cpus_or(span, span, nodemask);
5772 }
5773
5774 return span;
5775}
5776#endif
5777
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07005778int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005779
John Hawkes9c1cfda2005-09-06 15:18:14 -07005780/*
Ingo Molnar48f24c42006-07-03 00:25:40 -07005781 * SMT sched-domains:
John Hawkes9c1cfda2005-09-06 15:18:14 -07005782 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005783#ifdef CONFIG_SCHED_SMT
5784static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005785static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005786
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005787static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5788 struct sched_group **sg)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005789{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005790 if (sg)
5791 *sg = &per_cpu(sched_group_cpus, cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005792 return cpu;
5793}
5794#endif
5795
Ingo Molnar48f24c42006-07-03 00:25:40 -07005796/*
5797 * multi-core sched-domains:
5798 */
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005799#ifdef CONFIG_SCHED_MC
5800static DEFINE_PER_CPU(struct sched_domain, core_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005801static DEFINE_PER_CPU(struct sched_group, sched_group_core);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005802#endif
5803
5804#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005805static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5806 struct sched_group **sg)
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005807{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005808 int group;
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005809 cpumask_t mask = cpu_sibling_map[cpu];
5810 cpus_and(mask, mask, *cpu_map);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005811 group = first_cpu(mask);
5812 if (sg)
5813 *sg = &per_cpu(sched_group_core, group);
5814 return group;
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005815}
5816#elif defined(CONFIG_SCHED_MC)
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005817static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5818 struct sched_group **sg)
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005819{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005820 if (sg)
5821 *sg = &per_cpu(sched_group_core, cpu);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005822 return cpu;
5823}
5824#endif
5825
Linus Torvalds1da177e2005-04-16 15:20:36 -07005826static DEFINE_PER_CPU(struct sched_domain, phys_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005827static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005828
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005829static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5830 struct sched_group **sg)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005831{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005832 int group;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005833#ifdef CONFIG_SCHED_MC
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005834 cpumask_t mask = cpu_coregroup_map(cpu);
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005835 cpus_and(mask, mask, *cpu_map);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005836 group = first_cpu(mask);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005837#elif defined(CONFIG_SCHED_SMT)
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005838 cpumask_t mask = cpu_sibling_map[cpu];
5839 cpus_and(mask, mask, *cpu_map);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005840 group = first_cpu(mask);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005841#else
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005842 group = cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005843#endif
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005844 if (sg)
5845 *sg = &per_cpu(sched_group_phys, group);
5846 return group;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005847}
5848
5849#ifdef CONFIG_NUMA
John Hawkes9c1cfda2005-09-06 15:18:14 -07005850/*
5851 * The init_sched_build_groups can't handle what we want to do with node
5852 * groups, so roll our own. Now each node has its own list of groups which
5853 * gets dynamically allocated.
5854 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005855static DEFINE_PER_CPU(struct sched_domain, node_domains);
John Hawkesd1b55132005-09-06 15:18:14 -07005856static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
John Hawkes9c1cfda2005-09-06 15:18:14 -07005857
5858static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005859static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
John Hawkes9c1cfda2005-09-06 15:18:14 -07005860
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005861static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5862 struct sched_group **sg)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005863{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005864 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5865 int group;
5866
5867 cpus_and(nodemask, nodemask, *cpu_map);
5868 group = first_cpu(nodemask);
5869
5870 if (sg)
5871 *sg = &per_cpu(sched_group_allnodes, group);
5872 return group;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005873}
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005874
Siddha, Suresh B08069032006-03-27 01:15:23 -08005875static void init_numa_sched_groups_power(struct sched_group *group_head)
5876{
5877 struct sched_group *sg = group_head;
5878 int j;
5879
5880 if (!sg)
5881 return;
5882next_sg:
5883 for_each_cpu_mask(j, sg->cpumask) {
5884 struct sched_domain *sd;
5885
5886 sd = &per_cpu(phys_domains, j);
5887 if (j != first_cpu(sd->groups->cpumask)) {
5888 /*
5889 * Only add "power" once for each
5890 * physical package.
5891 */
5892 continue;
5893 }
5894
Eric Dumazet5517d862007-05-08 00:32:57 -07005895 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
Siddha, Suresh B08069032006-03-27 01:15:23 -08005896 }
5897 sg = sg->next;
5898 if (sg != group_head)
5899 goto next_sg;
5900}
Linus Torvalds1da177e2005-04-16 15:20:36 -07005901#endif
5902
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005903#ifdef CONFIG_NUMA
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005904/* Free memory allocated for various sched_group structures */
5905static void free_sched_groups(const cpumask_t *cpu_map)
5906{
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005907 int cpu, i;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005908
5909 for_each_cpu_mask(cpu, *cpu_map) {
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005910 struct sched_group **sched_group_nodes
5911 = sched_group_nodes_bycpu[cpu];
5912
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005913 if (!sched_group_nodes)
5914 continue;
5915
5916 for (i = 0; i < MAX_NUMNODES; i++) {
5917 cpumask_t nodemask = node_to_cpumask(i);
5918 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5919
5920 cpus_and(nodemask, nodemask, *cpu_map);
5921 if (cpus_empty(nodemask))
5922 continue;
5923
5924 if (sg == NULL)
5925 continue;
5926 sg = sg->next;
5927next_sg:
5928 oldsg = sg;
5929 sg = sg->next;
5930 kfree(oldsg);
5931 if (oldsg != sched_group_nodes[i])
5932 goto next_sg;
5933 }
5934 kfree(sched_group_nodes);
5935 sched_group_nodes_bycpu[cpu] = NULL;
5936 }
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005937}
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005938#else
5939static void free_sched_groups(const cpumask_t *cpu_map)
5940{
5941}
5942#endif
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005943
Linus Torvalds1da177e2005-04-16 15:20:36 -07005944/*
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005945 * Initialize sched groups cpu_power.
5946 *
5947 * cpu_power indicates the capacity of sched group, which is used while
5948 * distributing the load between different sched groups in a sched domain.
5949 * Typically cpu_power for all the groups in a sched domain will be same unless
5950 * there are asymmetries in the topology. If there are asymmetries, group
5951 * having more cpu_power will pickup more load compared to the group having
5952 * less cpu_power.
5953 *
5954 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5955 * the maximum number of tasks a group can handle in the presence of other idle
5956 * or lightly loaded groups in the same sched domain.
5957 */
5958static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5959{
5960 struct sched_domain *child;
5961 struct sched_group *group;
5962
5963 WARN_ON(!sd || !sd->groups);
5964
5965 if (cpu != first_cpu(sd->groups->cpumask))
5966 return;
5967
5968 child = sd->child;
5969
Eric Dumazet5517d862007-05-08 00:32:57 -07005970 sd->groups->__cpu_power = 0;
5971
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005972 /*
5973 * For perf policy, if the groups in child domain share resources
5974 * (for example cores sharing some portions of the cache hierarchy
5975 * or SMT), then set this domain groups cpu_power such that each group
5976 * can handle only one task, when there are other idle groups in the
5977 * same sched domain.
5978 */
5979 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
5980 (child->flags &
5981 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
Eric Dumazet5517d862007-05-08 00:32:57 -07005982 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005983 return;
5984 }
5985
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005986 /*
5987 * add cpu_power of each child group to this groups cpu_power
5988 */
5989 group = child->groups;
5990 do {
Eric Dumazet5517d862007-05-08 00:32:57 -07005991 sg_inc_cpu_power(sd->groups, group->__cpu_power);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005992 group = group->next;
5993 } while (group != child->groups);
5994}
5995
5996/*
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005997 * Build sched domains for a given set of cpus and attach the sched domains
5998 * to the individual cpus
Linus Torvalds1da177e2005-04-16 15:20:36 -07005999 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006000static int build_sched_domains(const cpumask_t *cpu_map)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006001{
6002 int i;
John Hawkesd1b55132005-09-06 15:18:14 -07006003#ifdef CONFIG_NUMA
6004 struct sched_group **sched_group_nodes = NULL;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006005 int sd_allnodes = 0;
John Hawkesd1b55132005-09-06 15:18:14 -07006006
6007 /*
6008 * Allocate the per-node list of sched groups
6009 */
Ingo Molnardd41f592007-07-09 18:51:59 +02006010 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
Srivatsa Vaddagirid3a5aa92006-06-27 02:54:39 -07006011 GFP_KERNEL);
John Hawkesd1b55132005-09-06 15:18:14 -07006012 if (!sched_group_nodes) {
6013 printk(KERN_WARNING "Can not alloc sched group node list\n");
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006014 return -ENOMEM;
John Hawkesd1b55132005-09-06 15:18:14 -07006015 }
6016 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6017#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07006018
6019 /*
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006020 * Set up domains for cpus specified by the cpu_map.
Linus Torvalds1da177e2005-04-16 15:20:36 -07006021 */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006022 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006023 struct sched_domain *sd = NULL, *p;
6024 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6025
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006026 cpus_and(nodemask, nodemask, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006027
6028#ifdef CONFIG_NUMA
Ingo Molnardd41f592007-07-09 18:51:59 +02006029 if (cpus_weight(*cpu_map) >
6030 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
John Hawkes9c1cfda2005-09-06 15:18:14 -07006031 sd = &per_cpu(allnodes_domains, i);
6032 *sd = SD_ALLNODES_INIT;
6033 sd->span = *cpu_map;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006034 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006035 p = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006036 sd_allnodes = 1;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006037 } else
6038 p = NULL;
6039
Linus Torvalds1da177e2005-04-16 15:20:36 -07006040 sd = &per_cpu(node_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006041 *sd = SD_NODE_INIT;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006042 sd->span = sched_domain_node_span(cpu_to_node(i));
6043 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07006044 if (p)
6045 p->child = sd;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006046 cpus_and(sd->span, sd->span, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006047#endif
6048
6049 p = sd;
6050 sd = &per_cpu(phys_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006051 *sd = SD_CPU_INIT;
6052 sd->span = nodemask;
6053 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07006054 if (p)
6055 p->child = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006056 cpu_to_phys_group(i, cpu_map, &sd->groups);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006057
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006058#ifdef CONFIG_SCHED_MC
6059 p = sd;
6060 sd = &per_cpu(core_domains, i);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006061 *sd = SD_MC_INIT;
6062 sd->span = cpu_coregroup_map(i);
6063 cpus_and(sd->span, sd->span, *cpu_map);
6064 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07006065 p->child = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006066 cpu_to_core_group(i, cpu_map, &sd->groups);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006067#endif
6068
Linus Torvalds1da177e2005-04-16 15:20:36 -07006069#ifdef CONFIG_SCHED_SMT
6070 p = sd;
6071 sd = &per_cpu(cpu_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006072 *sd = SD_SIBLING_INIT;
6073 sd->span = cpu_sibling_map[i];
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006074 cpus_and(sd->span, sd->span, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006075 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07006076 p->child = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006077 cpu_to_cpu_group(i, cpu_map, &sd->groups);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006078#endif
6079 }
6080
6081#ifdef CONFIG_SCHED_SMT
6082 /* Set up CPU (sibling) groups */
John Hawkes9c1cfda2005-09-06 15:18:14 -07006083 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006084 cpumask_t this_sibling_map = cpu_sibling_map[i];
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006085 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006086 if (i != first_cpu(this_sibling_map))
6087 continue;
6088
Ingo Molnardd41f592007-07-09 18:51:59 +02006089 init_sched_build_groups(this_sibling_map, cpu_map,
6090 &cpu_to_cpu_group);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006091 }
6092#endif
6093
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006094#ifdef CONFIG_SCHED_MC
6095 /* Set up multi-core groups */
6096 for_each_cpu_mask(i, *cpu_map) {
6097 cpumask_t this_core_map = cpu_coregroup_map(i);
6098 cpus_and(this_core_map, this_core_map, *cpu_map);
6099 if (i != first_cpu(this_core_map))
6100 continue;
Ingo Molnardd41f592007-07-09 18:51:59 +02006101 init_sched_build_groups(this_core_map, cpu_map,
6102 &cpu_to_core_group);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006103 }
6104#endif
6105
Linus Torvalds1da177e2005-04-16 15:20:36 -07006106 /* Set up physical groups */
6107 for (i = 0; i < MAX_NUMNODES; i++) {
6108 cpumask_t nodemask = node_to_cpumask(i);
6109
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006110 cpus_and(nodemask, nodemask, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006111 if (cpus_empty(nodemask))
6112 continue;
6113
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006114 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006115 }
6116
6117#ifdef CONFIG_NUMA
6118 /* Set up node groups */
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006119 if (sd_allnodes)
Ingo Molnardd41f592007-07-09 18:51:59 +02006120 init_sched_build_groups(*cpu_map, cpu_map,
6121 &cpu_to_allnodes_group);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006122
6123 for (i = 0; i < MAX_NUMNODES; i++) {
6124 /* Set up node groups */
6125 struct sched_group *sg, *prev;
6126 cpumask_t nodemask = node_to_cpumask(i);
6127 cpumask_t domainspan;
6128 cpumask_t covered = CPU_MASK_NONE;
6129 int j;
6130
6131 cpus_and(nodemask, nodemask, *cpu_map);
John Hawkesd1b55132005-09-06 15:18:14 -07006132 if (cpus_empty(nodemask)) {
6133 sched_group_nodes[i] = NULL;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006134 continue;
John Hawkesd1b55132005-09-06 15:18:14 -07006135 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006136
6137 domainspan = sched_domain_node_span(i);
6138 cpus_and(domainspan, domainspan, *cpu_map);
6139
Srivatsa Vaddagiri15f0b672006-06-27 02:54:40 -07006140 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006141 if (!sg) {
6142 printk(KERN_WARNING "Can not alloc domain group for "
6143 "node %d\n", i);
6144 goto error;
6145 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006146 sched_group_nodes[i] = sg;
6147 for_each_cpu_mask(j, nodemask) {
6148 struct sched_domain *sd;
Ingo Molnar9761eea2007-07-09 18:52:00 +02006149
John Hawkes9c1cfda2005-09-06 15:18:14 -07006150 sd = &per_cpu(node_domains, j);
6151 sd->groups = sg;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006152 }
Eric Dumazet5517d862007-05-08 00:32:57 -07006153 sg->__cpu_power = 0;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006154 sg->cpumask = nodemask;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006155 sg->next = sg;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006156 cpus_or(covered, covered, nodemask);
6157 prev = sg;
6158
6159 for (j = 0; j < MAX_NUMNODES; j++) {
6160 cpumask_t tmp, notcovered;
6161 int n = (i + j) % MAX_NUMNODES;
6162
6163 cpus_complement(notcovered, covered);
6164 cpus_and(tmp, notcovered, *cpu_map);
6165 cpus_and(tmp, tmp, domainspan);
6166 if (cpus_empty(tmp))
6167 break;
6168
6169 nodemask = node_to_cpumask(n);
6170 cpus_and(tmp, tmp, nodemask);
6171 if (cpus_empty(tmp))
6172 continue;
6173
Srivatsa Vaddagiri15f0b672006-06-27 02:54:40 -07006174 sg = kmalloc_node(sizeof(struct sched_group),
6175 GFP_KERNEL, i);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006176 if (!sg) {
6177 printk(KERN_WARNING
6178 "Can not alloc domain group for node %d\n", j);
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006179 goto error;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006180 }
Eric Dumazet5517d862007-05-08 00:32:57 -07006181 sg->__cpu_power = 0;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006182 sg->cpumask = tmp;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006183 sg->next = prev->next;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006184 cpus_or(covered, covered, tmp);
6185 prev->next = sg;
6186 prev = sg;
6187 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006188 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07006189#endif
6190
6191 /* Calculate CPU power for physical packages and nodes */
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006192#ifdef CONFIG_SCHED_SMT
6193 for_each_cpu_mask(i, *cpu_map) {
Ingo Molnardd41f592007-07-09 18:51:59 +02006194 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6195
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006196 init_sched_groups_power(i, sd);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006197 }
6198#endif
6199#ifdef CONFIG_SCHED_MC
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006200 for_each_cpu_mask(i, *cpu_map) {
Ingo Molnardd41f592007-07-09 18:51:59 +02006201 struct sched_domain *sd = &per_cpu(core_domains, i);
6202
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006203 init_sched_groups_power(i, sd);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006204 }
6205#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07006206
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006207 for_each_cpu_mask(i, *cpu_map) {
Ingo Molnardd41f592007-07-09 18:51:59 +02006208 struct sched_domain *sd = &per_cpu(phys_domains, i);
6209
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006210 init_sched_groups_power(i, sd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006211 }
6212
John Hawkes9c1cfda2005-09-06 15:18:14 -07006213#ifdef CONFIG_NUMA
Siddha, Suresh B08069032006-03-27 01:15:23 -08006214 for (i = 0; i < MAX_NUMNODES; i++)
6215 init_numa_sched_groups_power(sched_group_nodes[i]);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006216
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006217 if (sd_allnodes) {
6218 struct sched_group *sg;
Siddha, Suresh Bf712c0c2006-07-30 03:02:59 -07006219
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006220 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
Siddha, Suresh Bf712c0c2006-07-30 03:02:59 -07006221 init_numa_sched_groups_power(sg);
6222 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006223#endif
6224
Linus Torvalds1da177e2005-04-16 15:20:36 -07006225 /* Attach the domains */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006226 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006227 struct sched_domain *sd;
6228#ifdef CONFIG_SCHED_SMT
6229 sd = &per_cpu(cpu_domains, i);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006230#elif defined(CONFIG_SCHED_MC)
6231 sd = &per_cpu(core_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006232#else
6233 sd = &per_cpu(phys_domains, i);
6234#endif
6235 cpu_attach_domain(sd, i);
6236 }
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006237
6238 return 0;
6239
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006240#ifdef CONFIG_NUMA
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006241error:
6242 free_sched_groups(cpu_map);
6243 return -ENOMEM;
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006244#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07006245}
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006246/*
6247 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6248 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006249static int arch_init_sched_domains(const cpumask_t *cpu_map)
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006250{
6251 cpumask_t cpu_default_map;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006252 int err;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006253
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006254 /*
6255 * Setup mask for cpus without special case scheduling requirements.
6256 * For now this just excludes isolated cpus, but could be used to
6257 * exclude other special cases in the future.
6258 */
6259 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6260
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006261 err = build_sched_domains(&cpu_default_map);
6262
6263 return err;
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006264}
6265
6266static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006267{
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006268 free_sched_groups(cpu_map);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006269}
Linus Torvalds1da177e2005-04-16 15:20:36 -07006270
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006271/*
6272 * Detach sched domains from a group of cpus specified in cpu_map
6273 * These cpus will now be attached to the NULL domain
6274 */
Arjan van de Ven858119e2006-01-14 13:20:43 -08006275static void detach_destroy_domains(const cpumask_t *cpu_map)
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006276{
6277 int i;
6278
6279 for_each_cpu_mask(i, *cpu_map)
6280 cpu_attach_domain(NULL, i);
6281 synchronize_sched();
6282 arch_destroy_sched_domains(cpu_map);
6283}
6284
6285/*
6286 * Partition sched domains as specified by the cpumasks below.
6287 * This attaches all cpus from the cpumasks to the NULL domain,
6288 * waits for a RCU quiescent period, recalculates sched
6289 * domain information and then attaches them back to the
6290 * correct sched domains
6291 * Call with hotplug lock held
6292 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006293int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006294{
6295 cpumask_t change_map;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006296 int err = 0;
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006297
6298 cpus_and(*partition1, *partition1, cpu_online_map);
6299 cpus_and(*partition2, *partition2, cpu_online_map);
6300 cpus_or(change_map, *partition1, *partition2);
6301
6302 /* Detach sched domains from all of the affected cpus */
6303 detach_destroy_domains(&change_map);
6304 if (!cpus_empty(*partition1))
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006305 err = build_sched_domains(partition1);
6306 if (!err && !cpus_empty(*partition2))
6307 err = build_sched_domains(partition2);
6308
6309 return err;
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006310}
6311
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006312#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6313int arch_reinit_sched_domains(void)
6314{
6315 int err;
6316
Gautham R Shenoy5be93612007-05-09 02:34:04 -07006317 mutex_lock(&sched_hotcpu_mutex);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006318 detach_destroy_domains(&cpu_online_map);
6319 err = arch_init_sched_domains(&cpu_online_map);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07006320 mutex_unlock(&sched_hotcpu_mutex);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006321
6322 return err;
6323}
6324
6325static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6326{
6327 int ret;
6328
6329 if (buf[0] != '0' && buf[0] != '1')
6330 return -EINVAL;
6331
6332 if (smt)
6333 sched_smt_power_savings = (buf[0] == '1');
6334 else
6335 sched_mc_power_savings = (buf[0] == '1');
6336
6337 ret = arch_reinit_sched_domains();
6338
6339 return ret ? ret : count;
6340}
6341
6342int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6343{
6344 int err = 0;
Ingo Molnar48f24c42006-07-03 00:25:40 -07006345
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006346#ifdef CONFIG_SCHED_SMT
6347 if (smt_capable())
6348 err = sysfs_create_file(&cls->kset.kobj,
6349 &attr_sched_smt_power_savings.attr);
6350#endif
6351#ifdef CONFIG_SCHED_MC
6352 if (!err && mc_capable())
6353 err = sysfs_create_file(&cls->kset.kobj,
6354 &attr_sched_mc_power_savings.attr);
6355#endif
6356 return err;
6357}
6358#endif
6359
6360#ifdef CONFIG_SCHED_MC
6361static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6362{
6363 return sprintf(page, "%u\n", sched_mc_power_savings);
6364}
Ingo Molnar48f24c42006-07-03 00:25:40 -07006365static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6366 const char *buf, size_t count)
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006367{
6368 return sched_power_savings_store(buf, count, 0);
6369}
6370SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6371 sched_mc_power_savings_store);
6372#endif
6373
6374#ifdef CONFIG_SCHED_SMT
6375static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6376{
6377 return sprintf(page, "%u\n", sched_smt_power_savings);
6378}
Ingo Molnar48f24c42006-07-03 00:25:40 -07006379static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6380 const char *buf, size_t count)
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006381{
6382 return sched_power_savings_store(buf, count, 1);
6383}
6384SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6385 sched_smt_power_savings_store);
6386#endif
6387
Linus Torvalds1da177e2005-04-16 15:20:36 -07006388/*
6389 * Force a reinitialization of the sched domains hierarchy. The domains
6390 * and groups cannot be updated in place without racing with the balancing
Nick Piggin41c7ce92005-06-25 14:57:24 -07006391 * code, so we temporarily attach all running cpus to the NULL domain
Linus Torvalds1da177e2005-04-16 15:20:36 -07006392 * which will prevent rebalancing while the sched domains are recalculated.
6393 */
6394static int update_sched_domains(struct notifier_block *nfb,
6395 unsigned long action, void *hcpu)
6396{
Linus Torvalds1da177e2005-04-16 15:20:36 -07006397 switch (action) {
6398 case CPU_UP_PREPARE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006399 case CPU_UP_PREPARE_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006400 case CPU_DOWN_PREPARE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006401 case CPU_DOWN_PREPARE_FROZEN:
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006402 detach_destroy_domains(&cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006403 return NOTIFY_OK;
6404
6405 case CPU_UP_CANCELED:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006406 case CPU_UP_CANCELED_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006407 case CPU_DOWN_FAILED:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006408 case CPU_DOWN_FAILED_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006409 case CPU_ONLINE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006410 case CPU_ONLINE_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006411 case CPU_DEAD:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006412 case CPU_DEAD_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006413 /*
6414 * Fall through and re-initialise the domains.
6415 */
6416 break;
6417 default:
6418 return NOTIFY_DONE;
6419 }
6420
6421 /* The hotplug lock is already held by cpu_up/cpu_down */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006422 arch_init_sched_domains(&cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006423
6424 return NOTIFY_OK;
6425}
Linus Torvalds1da177e2005-04-16 15:20:36 -07006426
6427void __init sched_init_smp(void)
6428{
Nick Piggin5c1e1762006-10-03 01:14:04 -07006429 cpumask_t non_isolated_cpus;
6430
Gautham R Shenoy5be93612007-05-09 02:34:04 -07006431 mutex_lock(&sched_hotcpu_mutex);
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006432 arch_init_sched_domains(&cpu_online_map);
Nathan Lynche5e56732007-01-10 23:15:28 -08006433 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
Nick Piggin5c1e1762006-10-03 01:14:04 -07006434 if (cpus_empty(non_isolated_cpus))
6435 cpu_set(smp_processor_id(), non_isolated_cpus);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07006436 mutex_unlock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006437 /* XXX: Theoretical race here - CPU may be hotplugged now */
6438 hotcpu_notifier(update_sched_domains, 0);
Nick Piggin5c1e1762006-10-03 01:14:04 -07006439
Nick Piggine692ab52007-07-26 13:40:43 +02006440 init_sched_domain_sysctl();
6441
Nick Piggin5c1e1762006-10-03 01:14:04 -07006442 /* Move init over to a non-isolated CPU */
6443 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6444 BUG();
Ingo Molnardd41f592007-07-09 18:51:59 +02006445 sched_init_granularity();
Linus Torvalds1da177e2005-04-16 15:20:36 -07006446}
6447#else
6448void __init sched_init_smp(void)
6449{
Ingo Molnardd41f592007-07-09 18:51:59 +02006450 sched_init_granularity();
Linus Torvalds1da177e2005-04-16 15:20:36 -07006451}
6452#endif /* CONFIG_SMP */
6453
6454int in_sched_functions(unsigned long addr)
6455{
6456 /* Linker adds these: start and end of __sched functions */
6457 extern char __sched_text_start[], __sched_text_end[];
Ingo Molnar48f24c42006-07-03 00:25:40 -07006458
Linus Torvalds1da177e2005-04-16 15:20:36 -07006459 return in_lock_functions(addr) ||
6460 (addr >= (unsigned long)__sched_text_start
6461 && addr < (unsigned long)__sched_text_end);
6462}
6463
Ingo Molnardd41f592007-07-09 18:51:59 +02006464static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6465{
6466 cfs_rq->tasks_timeline = RB_ROOT;
6467 cfs_rq->fair_clock = 1;
6468#ifdef CONFIG_FAIR_GROUP_SCHED
6469 cfs_rq->rq = rq;
6470#endif
6471}
6472
Linus Torvalds1da177e2005-04-16 15:20:36 -07006473void __init sched_init(void)
6474{
Ingo Molnardd41f592007-07-09 18:51:59 +02006475 u64 now = sched_clock();
Christoph Lameter476f3532007-05-06 14:48:58 -07006476 int highest_cpu = 0;
Ingo Molnardd41f592007-07-09 18:51:59 +02006477 int i, j;
6478
6479 /*
6480 * Link up the scheduling class hierarchy:
6481 */
6482 rt_sched_class.next = &fair_sched_class;
6483 fair_sched_class.next = &idle_sched_class;
6484 idle_sched_class.next = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006485
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08006486 for_each_possible_cpu(i) {
Ingo Molnardd41f592007-07-09 18:51:59 +02006487 struct rt_prio_array *array;
Ingo Molnar70b97a72006-07-03 00:25:42 -07006488 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006489
6490 rq = cpu_rq(i);
6491 spin_lock_init(&rq->lock);
Ingo Molnarfcb99372006-07-03 00:25:10 -07006492 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
Nick Piggin78979862005-06-25 14:57:13 -07006493 rq->nr_running = 0;
Ingo Molnardd41f592007-07-09 18:51:59 +02006494 rq->clock = 1;
6495 init_cfs_rq(&rq->cfs, rq);
6496#ifdef CONFIG_FAIR_GROUP_SCHED
6497 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6498 list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6499#endif
6500 rq->ls.load_update_last = now;
6501 rq->ls.load_update_start = now;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006502
Ingo Molnardd41f592007-07-09 18:51:59 +02006503 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6504 rq->cpu_load[j] = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006505#ifdef CONFIG_SMP
Nick Piggin41c7ce92005-06-25 14:57:24 -07006506 rq->sd = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006507 rq->active_balance = 0;
Ingo Molnardd41f592007-07-09 18:51:59 +02006508 rq->next_balance = jiffies;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006509 rq->push_cpu = 0;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07006510 rq->cpu = i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006511 rq->migration_thread = NULL;
6512 INIT_LIST_HEAD(&rq->migration_queue);
6513#endif
6514 atomic_set(&rq->nr_iowait, 0);
6515
Ingo Molnardd41f592007-07-09 18:51:59 +02006516 array = &rq->rt.active;
6517 for (j = 0; j < MAX_RT_PRIO; j++) {
6518 INIT_LIST_HEAD(array->queue + j);
6519 __clear_bit(j, array->bitmap);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006520 }
Christoph Lameter476f3532007-05-06 14:48:58 -07006521 highest_cpu = i;
Ingo Molnardd41f592007-07-09 18:51:59 +02006522 /* delimiter for bitsearch: */
6523 __set_bit(MAX_RT_PRIO, array->bitmap);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006524 }
6525
Peter Williams2dd73a42006-06-27 02:54:34 -07006526 set_load_weight(&init_task);
Heiko Carstensb50f60c2006-07-30 03:03:52 -07006527
Avi Kivitye107be32007-07-26 13:40:43 +02006528#ifdef CONFIG_PREEMPT_NOTIFIERS
6529 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6530#endif
6531
Christoph Lameterc9819f42006-12-10 02:20:25 -08006532#ifdef CONFIG_SMP
Christoph Lameter476f3532007-05-06 14:48:58 -07006533 nr_cpu_ids = highest_cpu + 1;
Christoph Lameterc9819f42006-12-10 02:20:25 -08006534 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6535#endif
6536
Heiko Carstensb50f60c2006-07-30 03:03:52 -07006537#ifdef CONFIG_RT_MUTEXES
6538 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6539#endif
6540
Linus Torvalds1da177e2005-04-16 15:20:36 -07006541 /*
6542 * The boot idle thread does lazy MMU switching as well:
6543 */
6544 atomic_inc(&init_mm.mm_count);
6545 enter_lazy_tlb(&init_mm, current);
6546
6547 /*
6548 * Make us the idle thread. Technically, schedule() should not be
6549 * called from this thread, however somewhere below it might be,
6550 * but because we are the idle thread, we just pick up running again
6551 * when this runqueue becomes "idle".
6552 */
6553 init_idle(current, smp_processor_id());
Ingo Molnardd41f592007-07-09 18:51:59 +02006554 /*
6555 * During early bootup we pretend to be a normal task:
6556 */
6557 current->sched_class = &fair_sched_class;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006558}
6559
6560#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6561void __might_sleep(char *file, int line)
6562{
Ingo Molnar48f24c42006-07-03 00:25:40 -07006563#ifdef in_atomic
Linus Torvalds1da177e2005-04-16 15:20:36 -07006564 static unsigned long prev_jiffy; /* ratelimiting */
6565
6566 if ((in_atomic() || irqs_disabled()) &&
6567 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6568 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6569 return;
6570 prev_jiffy = jiffies;
Ingo Molnar91368d72006-03-23 03:00:54 -08006571 printk(KERN_ERR "BUG: sleeping function called from invalid"
Linus Torvalds1da177e2005-04-16 15:20:36 -07006572 " context at %s:%d\n", file, line);
6573 printk("in_atomic():%d, irqs_disabled():%d\n",
6574 in_atomic(), irqs_disabled());
Peter Zijlstraa4c410f2006-12-06 20:37:21 -08006575 debug_show_held_locks(current);
Ingo Molnar3117df02006-12-13 00:34:43 -08006576 if (irqs_disabled())
6577 print_irqtrace_events(current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006578 dump_stack();
6579 }
6580#endif
6581}
6582EXPORT_SYMBOL(__might_sleep);
6583#endif
6584
6585#ifdef CONFIG_MAGIC_SYSRQ
6586void normalize_rt_tasks(void)
6587{
Ingo Molnara0f98a12007-06-17 18:37:45 +02006588 struct task_struct *g, *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006589 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07006590 struct rq *rq;
Ingo Molnardd41f592007-07-09 18:51:59 +02006591 int on_rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006592
6593 read_lock_irq(&tasklist_lock);
Ingo Molnara0f98a12007-06-17 18:37:45 +02006594 do_each_thread(g, p) {
Ingo Molnardd41f592007-07-09 18:51:59 +02006595 p->se.fair_key = 0;
6596 p->se.wait_runtime = 0;
Ingo Molnardd41f592007-07-09 18:51:59 +02006597 p->se.exec_start = 0;
Ingo Molnar6cfb0d52007-08-02 17:41:40 +02006598 p->se.wait_start_fair = 0;
Ingo Molnardd41f592007-07-09 18:51:59 +02006599 p->se.sleep_start_fair = 0;
Ingo Molnar6cfb0d52007-08-02 17:41:40 +02006600#ifdef CONFIG_SCHEDSTATS
6601 p->se.wait_start = 0;
6602 p->se.sleep_start = 0;
Ingo Molnardd41f592007-07-09 18:51:59 +02006603 p->se.block_start = 0;
Ingo Molnar6cfb0d52007-08-02 17:41:40 +02006604#endif
Ingo Molnardd41f592007-07-09 18:51:59 +02006605 task_rq(p)->cfs.fair_clock = 0;
6606 task_rq(p)->clock = 0;
6607
6608 if (!rt_task(p)) {
6609 /*
6610 * Renice negative nice level userspace
6611 * tasks back to 0:
6612 */
6613 if (TASK_NICE(p) < 0 && p->mm)
6614 set_user_nice(p, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006615 continue;
Ingo Molnardd41f592007-07-09 18:51:59 +02006616 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07006617
Ingo Molnarb29739f2006-06-27 02:54:51 -07006618 spin_lock_irqsave(&p->pi_lock, flags);
6619 rq = __task_rq_lock(p);
Ingo Molnardd41f592007-07-09 18:51:59 +02006620#ifdef CONFIG_SMP
6621 /*
6622 * Do not touch the migration thread:
6623 */
6624 if (p == rq->migration_thread)
6625 goto out_unlock;
6626#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07006627
Ingo Molnar2daa3572007-08-09 11:16:51 +02006628 update_rq_clock(rq);
Ingo Molnardd41f592007-07-09 18:51:59 +02006629 on_rq = p->se.on_rq;
Ingo Molnar2daa3572007-08-09 11:16:51 +02006630 if (on_rq)
6631 deactivate_task(rq, p, 0);
Ingo Molnardd41f592007-07-09 18:51:59 +02006632 __setscheduler(rq, p, SCHED_NORMAL, 0);
6633 if (on_rq) {
Ingo Molnar2daa3572007-08-09 11:16:51 +02006634 activate_task(rq, p, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006635 resched_task(rq->curr);
6636 }
Ingo Molnardd41f592007-07-09 18:51:59 +02006637#ifdef CONFIG_SMP
6638 out_unlock:
6639#endif
Ingo Molnarb29739f2006-06-27 02:54:51 -07006640 __task_rq_unlock(rq);
6641 spin_unlock_irqrestore(&p->pi_lock, flags);
Ingo Molnara0f98a12007-06-17 18:37:45 +02006642 } while_each_thread(g, p);
6643
Linus Torvalds1da177e2005-04-16 15:20:36 -07006644 read_unlock_irq(&tasklist_lock);
6645}
6646
6647#endif /* CONFIG_MAGIC_SYSRQ */
Linus Torvalds1df5c102005-09-12 07:59:21 -07006648
6649#ifdef CONFIG_IA64
6650/*
6651 * These functions are only useful for the IA64 MCA handling.
6652 *
6653 * They can only be called when the whole system has been
6654 * stopped - every CPU needs to be quiescent, and no scheduling
6655 * activity can take place. Using them for anything else would
6656 * be a serious bug, and as a result, they aren't even visible
6657 * under any other configuration.
6658 */
6659
6660/**
6661 * curr_task - return the current task for a given cpu.
6662 * @cpu: the processor in question.
6663 *
6664 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6665 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07006666struct task_struct *curr_task(int cpu)
Linus Torvalds1df5c102005-09-12 07:59:21 -07006667{
6668 return cpu_curr(cpu);
6669}
6670
6671/**
6672 * set_curr_task - set the current task for a given cpu.
6673 * @cpu: the processor in question.
6674 * @p: the task pointer to set.
6675 *
6676 * Description: This function must only be used when non-maskable interrupts
6677 * are serviced on a separate stack. It allows the architecture to switch the
6678 * notion of the current task on a cpu in a non-blocking manner. This function
6679 * must be called with all CPU's synchronized, and interrupts disabled, the
6680 * and caller must save the original value of the current task (see
6681 * curr_task() above) and restore that value before reenabling interrupts and
6682 * re-starting the system.
6683 *
6684 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6685 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07006686void set_curr_task(int cpu, struct task_struct *p)
Linus Torvalds1df5c102005-09-12 07:59:21 -07006687{
6688 cpu_curr(cpu) = p;
6689}
6690
6691#endif