blob: 3ede0981f4acfb1b92804a4110054128e0ca2a31 [file] [log] [blame]
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001/*
Ingo Molnar57c0c152009-09-21 12:20:38 +02002 * Performance events core code:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
Ingo Molnar57c0c152009-09-21 12:20:38 +02009 * For licensing details see kernel-base/COPYING
Ingo Molnarcdd6c482009-09-21 12:02:48 +020010 */
11
12#include <linux/fs.h>
13#include <linux/mm.h>
14#include <linux/cpu.h>
15#include <linux/smp.h>
16#include <linux/file.h>
17#include <linux/poll.h>
18#include <linux/sysfs.h>
19#include <linux/dcache.h>
20#include <linux/percpu.h>
21#include <linux/ptrace.h>
22#include <linux/vmstat.h>
Peter Zijlstra906010b2009-09-21 16:08:49 +020023#include <linux/vmalloc.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020024#include <linux/hardirq.h>
25#include <linux/rculist.h>
26#include <linux/uaccess.h>
27#include <linux/syscalls.h>
28#include <linux/anon_inodes.h>
29#include <linux/kernel_stat.h>
30#include <linux/perf_event.h>
Li Zefan6fb29152009-10-15 11:21:42 +080031#include <linux/ftrace_event.h>
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +020032#include <linux/hw_breakpoint.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020033
34#include <asm/irq_regs.h>
35
36/*
37 * Each CPU has a list of per CPU events:
38 */
39DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
40
41int perf_max_events __read_mostly = 1;
42static int perf_reserved_percpu __read_mostly;
43static int perf_overcommit __read_mostly = 1;
44
45static atomic_t nr_events __read_mostly;
46static atomic_t nr_mmap_events __read_mostly;
47static atomic_t nr_comm_events __read_mostly;
48static atomic_t nr_task_events __read_mostly;
49
50/*
51 * perf event paranoia level:
52 * -1 - not paranoid at all
53 * 0 - disallow raw tracepoint access for unpriv
54 * 1 - disallow cpu events for unpriv
55 * 2 - disallow kernel profiling for unpriv
56 */
57int sysctl_perf_event_paranoid __read_mostly = 1;
58
59static inline bool perf_paranoid_tracepoint_raw(void)
60{
61 return sysctl_perf_event_paranoid > -1;
62}
63
64static inline bool perf_paranoid_cpu(void)
65{
66 return sysctl_perf_event_paranoid > 0;
67}
68
69static inline bool perf_paranoid_kernel(void)
70{
71 return sysctl_perf_event_paranoid > 1;
72}
73
74int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
75
76/*
77 * max perf event sample rate
78 */
79int sysctl_perf_event_sample_rate __read_mostly = 100000;
80
81static atomic64_t perf_event_id;
82
83/*
84 * Lock for (sysadmin-configurable) event reservations:
85 */
86static DEFINE_SPINLOCK(perf_resource_lock);
87
88/*
89 * Architecture provided APIs - weak aliases:
90 */
91extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
92{
93 return NULL;
94}
95
96void __weak hw_perf_disable(void) { barrier(); }
97void __weak hw_perf_enable(void) { barrier(); }
98
99void __weak hw_perf_event_setup(int cpu) { barrier(); }
100void __weak hw_perf_event_setup_online(int cpu) { barrier(); }
101
102int __weak
103hw_perf_group_sched_in(struct perf_event *group_leader,
104 struct perf_cpu_context *cpuctx,
105 struct perf_event_context *ctx, int cpu)
106{
107 return 0;
108}
109
110void __weak perf_event_print_debug(void) { }
111
112static DEFINE_PER_CPU(int, perf_disable_count);
113
114void __perf_disable(void)
115{
116 __get_cpu_var(perf_disable_count)++;
117}
118
119bool __perf_enable(void)
120{
121 return !--__get_cpu_var(perf_disable_count);
122}
123
124void perf_disable(void)
125{
126 __perf_disable();
127 hw_perf_disable();
128}
129
130void perf_enable(void)
131{
132 if (__perf_enable())
133 hw_perf_enable();
134}
135
136static void get_ctx(struct perf_event_context *ctx)
137{
138 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
139}
140
141static void free_ctx(struct rcu_head *head)
142{
143 struct perf_event_context *ctx;
144
145 ctx = container_of(head, struct perf_event_context, rcu_head);
146 kfree(ctx);
147}
148
149static void put_ctx(struct perf_event_context *ctx)
150{
151 if (atomic_dec_and_test(&ctx->refcount)) {
152 if (ctx->parent_ctx)
153 put_ctx(ctx->parent_ctx);
154 if (ctx->task)
155 put_task_struct(ctx->task);
156 call_rcu(&ctx->rcu_head, free_ctx);
157 }
158}
159
160static void unclone_ctx(struct perf_event_context *ctx)
161{
162 if (ctx->parent_ctx) {
163 put_ctx(ctx->parent_ctx);
164 ctx->parent_ctx = NULL;
165 }
166}
167
168/*
169 * If we inherit events we want to return the parent event id
170 * to userspace.
171 */
172static u64 primary_event_id(struct perf_event *event)
173{
174 u64 id = event->id;
175
176 if (event->parent)
177 id = event->parent->id;
178
179 return id;
180}
181
182/*
183 * Get the perf_event_context for a task and lock it.
184 * This has to cope with with the fact that until it is locked,
185 * the context could get moved to another task.
186 */
187static struct perf_event_context *
188perf_lock_task_context(struct task_struct *task, unsigned long *flags)
189{
190 struct perf_event_context *ctx;
191
192 rcu_read_lock();
193 retry:
194 ctx = rcu_dereference(task->perf_event_ctxp);
195 if (ctx) {
196 /*
197 * If this context is a clone of another, it might
198 * get swapped for another underneath us by
199 * perf_event_task_sched_out, though the
200 * rcu_read_lock() protects us from any context
201 * getting freed. Lock the context and check if it
202 * got swapped before we could get the lock, and retry
203 * if so. If we locked the right context, then it
204 * can't get swapped on us any more.
205 */
206 spin_lock_irqsave(&ctx->lock, *flags);
207 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
208 spin_unlock_irqrestore(&ctx->lock, *flags);
209 goto retry;
210 }
211
212 if (!atomic_inc_not_zero(&ctx->refcount)) {
213 spin_unlock_irqrestore(&ctx->lock, *flags);
214 ctx = NULL;
215 }
216 }
217 rcu_read_unlock();
218 return ctx;
219}
220
221/*
222 * Get the context for a task and increment its pin_count so it
223 * can't get swapped to another task. This also increments its
224 * reference count so that the context can't get freed.
225 */
226static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
227{
228 struct perf_event_context *ctx;
229 unsigned long flags;
230
231 ctx = perf_lock_task_context(task, &flags);
232 if (ctx) {
233 ++ctx->pin_count;
234 spin_unlock_irqrestore(&ctx->lock, flags);
235 }
236 return ctx;
237}
238
239static void perf_unpin_context(struct perf_event_context *ctx)
240{
241 unsigned long flags;
242
243 spin_lock_irqsave(&ctx->lock, flags);
244 --ctx->pin_count;
245 spin_unlock_irqrestore(&ctx->lock, flags);
246 put_ctx(ctx);
247}
248
249/*
250 * Add a event from the lists for its context.
251 * Must be called with ctx->mutex and ctx->lock held.
252 */
253static void
254list_add_event(struct perf_event *event, struct perf_event_context *ctx)
255{
256 struct perf_event *group_leader = event->group_leader;
257
258 /*
259 * Depending on whether it is a standalone or sibling event,
260 * add it straight to the context's event list, or to the group
261 * leader's sibling list:
262 */
263 if (group_leader == event)
264 list_add_tail(&event->group_entry, &ctx->group_list);
265 else {
266 list_add_tail(&event->group_entry, &group_leader->sibling_list);
267 group_leader->nr_siblings++;
268 }
269
270 list_add_rcu(&event->event_entry, &ctx->event_list);
271 ctx->nr_events++;
272 if (event->attr.inherit_stat)
273 ctx->nr_stat++;
274}
275
276/*
277 * Remove a event from the lists for its context.
278 * Must be called with ctx->mutex and ctx->lock held.
279 */
280static void
281list_del_event(struct perf_event *event, struct perf_event_context *ctx)
282{
283 struct perf_event *sibling, *tmp;
284
285 if (list_empty(&event->group_entry))
286 return;
287 ctx->nr_events--;
288 if (event->attr.inherit_stat)
289 ctx->nr_stat--;
290
291 list_del_init(&event->group_entry);
292 list_del_rcu(&event->event_entry);
293
294 if (event->group_leader != event)
295 event->group_leader->nr_siblings--;
296
297 /*
298 * If this was a group event with sibling events then
299 * upgrade the siblings to singleton events by adding them
300 * to the context list directly:
301 */
302 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
303
304 list_move_tail(&sibling->group_entry, &ctx->group_list);
305 sibling->group_leader = sibling;
306 }
307}
308
309static void
310event_sched_out(struct perf_event *event,
311 struct perf_cpu_context *cpuctx,
312 struct perf_event_context *ctx)
313{
314 if (event->state != PERF_EVENT_STATE_ACTIVE)
315 return;
316
317 event->state = PERF_EVENT_STATE_INACTIVE;
318 if (event->pending_disable) {
319 event->pending_disable = 0;
320 event->state = PERF_EVENT_STATE_OFF;
321 }
322 event->tstamp_stopped = ctx->time;
323 event->pmu->disable(event);
324 event->oncpu = -1;
325
326 if (!is_software_event(event))
327 cpuctx->active_oncpu--;
328 ctx->nr_active--;
329 if (event->attr.exclusive || !cpuctx->active_oncpu)
330 cpuctx->exclusive = 0;
331}
332
333static void
334group_sched_out(struct perf_event *group_event,
335 struct perf_cpu_context *cpuctx,
336 struct perf_event_context *ctx)
337{
338 struct perf_event *event;
339
340 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
341 return;
342
343 event_sched_out(group_event, cpuctx, ctx);
344
345 /*
346 * Schedule out siblings (if any):
347 */
348 list_for_each_entry(event, &group_event->sibling_list, group_entry)
349 event_sched_out(event, cpuctx, ctx);
350
351 if (group_event->attr.exclusive)
352 cpuctx->exclusive = 0;
353}
354
355/*
356 * Cross CPU call to remove a performance event
357 *
358 * We disable the event on the hardware level first. After that we
359 * remove it from the context list.
360 */
361static void __perf_event_remove_from_context(void *info)
362{
363 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
364 struct perf_event *event = info;
365 struct perf_event_context *ctx = event->ctx;
366
367 /*
368 * If this is a task context, we need to check whether it is
369 * the current task context of this cpu. If not it has been
370 * scheduled out before the smp call arrived.
371 */
372 if (ctx->task && cpuctx->task_ctx != ctx)
373 return;
374
375 spin_lock(&ctx->lock);
376 /*
377 * Protect the list operation against NMI by disabling the
378 * events on a global level.
379 */
380 perf_disable();
381
382 event_sched_out(event, cpuctx, ctx);
383
384 list_del_event(event, ctx);
385
386 if (!ctx->task) {
387 /*
388 * Allow more per task events with respect to the
389 * reservation:
390 */
391 cpuctx->max_pertask =
392 min(perf_max_events - ctx->nr_events,
393 perf_max_events - perf_reserved_percpu);
394 }
395
396 perf_enable();
397 spin_unlock(&ctx->lock);
398}
399
400
401/*
402 * Remove the event from a task's (or a CPU's) list of events.
403 *
404 * Must be called with ctx->mutex held.
405 *
406 * CPU events are removed with a smp call. For task events we only
407 * call when the task is on a CPU.
408 *
409 * If event->ctx is a cloned context, callers must make sure that
410 * every task struct that event->ctx->task could possibly point to
411 * remains valid. This is OK when called from perf_release since
412 * that only calls us on the top-level context, which can't be a clone.
413 * When called from perf_event_exit_task, it's OK because the
414 * context has been detached from its task.
415 */
416static void perf_event_remove_from_context(struct perf_event *event)
417{
418 struct perf_event_context *ctx = event->ctx;
419 struct task_struct *task = ctx->task;
420
421 if (!task) {
422 /*
423 * Per cpu events are removed via an smp call and
424 * the removal is always sucessful.
425 */
426 smp_call_function_single(event->cpu,
427 __perf_event_remove_from_context,
428 event, 1);
429 return;
430 }
431
432retry:
433 task_oncpu_function_call(task, __perf_event_remove_from_context,
434 event);
435
436 spin_lock_irq(&ctx->lock);
437 /*
438 * If the context is active we need to retry the smp call.
439 */
440 if (ctx->nr_active && !list_empty(&event->group_entry)) {
441 spin_unlock_irq(&ctx->lock);
442 goto retry;
443 }
444
445 /*
446 * The lock prevents that this context is scheduled in so we
447 * can remove the event safely, if the call above did not
448 * succeed.
449 */
450 if (!list_empty(&event->group_entry)) {
451 list_del_event(event, ctx);
452 }
453 spin_unlock_irq(&ctx->lock);
454}
455
456static inline u64 perf_clock(void)
457{
458 return cpu_clock(smp_processor_id());
459}
460
461/*
462 * Update the record of the current time in a context.
463 */
464static void update_context_time(struct perf_event_context *ctx)
465{
466 u64 now = perf_clock();
467
468 ctx->time += now - ctx->timestamp;
469 ctx->timestamp = now;
470}
471
472/*
473 * Update the total_time_enabled and total_time_running fields for a event.
474 */
475static void update_event_times(struct perf_event *event)
476{
477 struct perf_event_context *ctx = event->ctx;
478 u64 run_end;
479
480 if (event->state < PERF_EVENT_STATE_INACTIVE ||
481 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
482 return;
483
484 event->total_time_enabled = ctx->time - event->tstamp_enabled;
485
486 if (event->state == PERF_EVENT_STATE_INACTIVE)
487 run_end = event->tstamp_stopped;
488 else
489 run_end = ctx->time;
490
491 event->total_time_running = run_end - event->tstamp_running;
492}
493
494/*
495 * Update total_time_enabled and total_time_running for all events in a group.
496 */
497static void update_group_times(struct perf_event *leader)
498{
499 struct perf_event *event;
500
501 update_event_times(leader);
502 list_for_each_entry(event, &leader->sibling_list, group_entry)
503 update_event_times(event);
504}
505
506/*
507 * Cross CPU call to disable a performance event
508 */
509static void __perf_event_disable(void *info)
510{
511 struct perf_event *event = info;
512 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
513 struct perf_event_context *ctx = event->ctx;
514
515 /*
516 * If this is a per-task event, need to check whether this
517 * event's task is the current task on this cpu.
518 */
519 if (ctx->task && cpuctx->task_ctx != ctx)
520 return;
521
522 spin_lock(&ctx->lock);
523
524 /*
525 * If the event is on, turn it off.
526 * If it is in error state, leave it in error state.
527 */
528 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
529 update_context_time(ctx);
530 update_group_times(event);
531 if (event == event->group_leader)
532 group_sched_out(event, cpuctx, ctx);
533 else
534 event_sched_out(event, cpuctx, ctx);
535 event->state = PERF_EVENT_STATE_OFF;
536 }
537
538 spin_unlock(&ctx->lock);
539}
540
541/*
542 * Disable a event.
543 *
544 * If event->ctx is a cloned context, callers must make sure that
545 * every task struct that event->ctx->task could possibly point to
546 * remains valid. This condition is satisifed when called through
547 * perf_event_for_each_child or perf_event_for_each because they
548 * hold the top-level event's child_mutex, so any descendant that
549 * goes to exit will block in sync_child_event.
550 * When called from perf_pending_event it's OK because event->ctx
551 * is the current context on this CPU and preemption is disabled,
552 * hence we can't get into perf_event_task_sched_out for this context.
553 */
554static void perf_event_disable(struct perf_event *event)
555{
556 struct perf_event_context *ctx = event->ctx;
557 struct task_struct *task = ctx->task;
558
559 if (!task) {
560 /*
561 * Disable the event on the cpu that it's on
562 */
563 smp_call_function_single(event->cpu, __perf_event_disable,
564 event, 1);
565 return;
566 }
567
568 retry:
569 task_oncpu_function_call(task, __perf_event_disable, event);
570
571 spin_lock_irq(&ctx->lock);
572 /*
573 * If the event is still active, we need to retry the cross-call.
574 */
575 if (event->state == PERF_EVENT_STATE_ACTIVE) {
576 spin_unlock_irq(&ctx->lock);
577 goto retry;
578 }
579
580 /*
581 * Since we have the lock this context can't be scheduled
582 * in, so we can change the state safely.
583 */
584 if (event->state == PERF_EVENT_STATE_INACTIVE) {
585 update_group_times(event);
586 event->state = PERF_EVENT_STATE_OFF;
587 }
588
589 spin_unlock_irq(&ctx->lock);
590}
591
592static int
593event_sched_in(struct perf_event *event,
594 struct perf_cpu_context *cpuctx,
595 struct perf_event_context *ctx,
596 int cpu)
597{
598 if (event->state <= PERF_EVENT_STATE_OFF)
599 return 0;
600
601 event->state = PERF_EVENT_STATE_ACTIVE;
602 event->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
603 /*
604 * The new state must be visible before we turn it on in the hardware:
605 */
606 smp_wmb();
607
608 if (event->pmu->enable(event)) {
609 event->state = PERF_EVENT_STATE_INACTIVE;
610 event->oncpu = -1;
611 return -EAGAIN;
612 }
613
614 event->tstamp_running += ctx->time - event->tstamp_stopped;
615
616 if (!is_software_event(event))
617 cpuctx->active_oncpu++;
618 ctx->nr_active++;
619
620 if (event->attr.exclusive)
621 cpuctx->exclusive = 1;
622
623 return 0;
624}
625
626static int
627group_sched_in(struct perf_event *group_event,
628 struct perf_cpu_context *cpuctx,
629 struct perf_event_context *ctx,
630 int cpu)
631{
632 struct perf_event *event, *partial_group;
633 int ret;
634
635 if (group_event->state == PERF_EVENT_STATE_OFF)
636 return 0;
637
638 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
639 if (ret)
640 return ret < 0 ? ret : 0;
641
642 if (event_sched_in(group_event, cpuctx, ctx, cpu))
643 return -EAGAIN;
644
645 /*
646 * Schedule in siblings as one group (if any):
647 */
648 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
649 if (event_sched_in(event, cpuctx, ctx, cpu)) {
650 partial_group = event;
651 goto group_error;
652 }
653 }
654
655 return 0;
656
657group_error:
658 /*
659 * Groups can be scheduled in as one unit only, so undo any
660 * partial group before returning:
661 */
662 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
663 if (event == partial_group)
664 break;
665 event_sched_out(event, cpuctx, ctx);
666 }
667 event_sched_out(group_event, cpuctx, ctx);
668
669 return -EAGAIN;
670}
671
672/*
673 * Return 1 for a group consisting entirely of software events,
674 * 0 if the group contains any hardware events.
675 */
676static int is_software_only_group(struct perf_event *leader)
677{
678 struct perf_event *event;
679
680 if (!is_software_event(leader))
681 return 0;
682
683 list_for_each_entry(event, &leader->sibling_list, group_entry)
684 if (!is_software_event(event))
685 return 0;
686
687 return 1;
688}
689
690/*
691 * Work out whether we can put this event group on the CPU now.
692 */
693static int group_can_go_on(struct perf_event *event,
694 struct perf_cpu_context *cpuctx,
695 int can_add_hw)
696{
697 /*
698 * Groups consisting entirely of software events can always go on.
699 */
700 if (is_software_only_group(event))
701 return 1;
702 /*
703 * If an exclusive group is already on, no other hardware
704 * events can go on.
705 */
706 if (cpuctx->exclusive)
707 return 0;
708 /*
709 * If this group is exclusive and there are already
710 * events on the CPU, it can't go on.
711 */
712 if (event->attr.exclusive && cpuctx->active_oncpu)
713 return 0;
714 /*
715 * Otherwise, try to add it if all previous groups were able
716 * to go on.
717 */
718 return can_add_hw;
719}
720
721static void add_event_to_ctx(struct perf_event *event,
722 struct perf_event_context *ctx)
723{
724 list_add_event(event, ctx);
725 event->tstamp_enabled = ctx->time;
726 event->tstamp_running = ctx->time;
727 event->tstamp_stopped = ctx->time;
728}
729
730/*
731 * Cross CPU call to install and enable a performance event
732 *
733 * Must be called with ctx->mutex held
734 */
735static void __perf_install_in_context(void *info)
736{
737 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
738 struct perf_event *event = info;
739 struct perf_event_context *ctx = event->ctx;
740 struct perf_event *leader = event->group_leader;
741 int cpu = smp_processor_id();
742 int err;
743
744 /*
745 * If this is a task context, we need to check whether it is
746 * the current task context of this cpu. If not it has been
747 * scheduled out before the smp call arrived.
748 * Or possibly this is the right context but it isn't
749 * on this cpu because it had no events.
750 */
751 if (ctx->task && cpuctx->task_ctx != ctx) {
752 if (cpuctx->task_ctx || ctx->task != current)
753 return;
754 cpuctx->task_ctx = ctx;
755 }
756
757 spin_lock(&ctx->lock);
758 ctx->is_active = 1;
759 update_context_time(ctx);
760
761 /*
762 * Protect the list operation against NMI by disabling the
763 * events on a global level. NOP for non NMI based events.
764 */
765 perf_disable();
766
767 add_event_to_ctx(event, ctx);
768
769 /*
770 * Don't put the event on if it is disabled or if
771 * it is in a group and the group isn't on.
772 */
773 if (event->state != PERF_EVENT_STATE_INACTIVE ||
774 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
775 goto unlock;
776
777 /*
778 * An exclusive event can't go on if there are already active
779 * hardware events, and no hardware event can go on if there
780 * is already an exclusive event on.
781 */
782 if (!group_can_go_on(event, cpuctx, 1))
783 err = -EEXIST;
784 else
785 err = event_sched_in(event, cpuctx, ctx, cpu);
786
787 if (err) {
788 /*
789 * This event couldn't go on. If it is in a group
790 * then we have to pull the whole group off.
791 * If the event group is pinned then put it in error state.
792 */
793 if (leader != event)
794 group_sched_out(leader, cpuctx, ctx);
795 if (leader->attr.pinned) {
796 update_group_times(leader);
797 leader->state = PERF_EVENT_STATE_ERROR;
798 }
799 }
800
801 if (!err && !ctx->task && cpuctx->max_pertask)
802 cpuctx->max_pertask--;
803
804 unlock:
805 perf_enable();
806
807 spin_unlock(&ctx->lock);
808}
809
810/*
811 * Attach a performance event to a context
812 *
813 * First we add the event to the list with the hardware enable bit
814 * in event->hw_config cleared.
815 *
816 * If the event is attached to a task which is on a CPU we use a smp
817 * call to enable it in the task context. The task might have been
818 * scheduled away, but we check this in the smp call again.
819 *
820 * Must be called with ctx->mutex held.
821 */
822static void
823perf_install_in_context(struct perf_event_context *ctx,
824 struct perf_event *event,
825 int cpu)
826{
827 struct task_struct *task = ctx->task;
828
829 if (!task) {
830 /*
831 * Per cpu events are installed via an smp call and
832 * the install is always sucessful.
833 */
834 smp_call_function_single(cpu, __perf_install_in_context,
835 event, 1);
836 return;
837 }
838
839retry:
840 task_oncpu_function_call(task, __perf_install_in_context,
841 event);
842
843 spin_lock_irq(&ctx->lock);
844 /*
845 * we need to retry the smp call.
846 */
847 if (ctx->is_active && list_empty(&event->group_entry)) {
848 spin_unlock_irq(&ctx->lock);
849 goto retry;
850 }
851
852 /*
853 * The lock prevents that this context is scheduled in so we
854 * can add the event safely, if it the call above did not
855 * succeed.
856 */
857 if (list_empty(&event->group_entry))
858 add_event_to_ctx(event, ctx);
859 spin_unlock_irq(&ctx->lock);
860}
861
862/*
863 * Put a event into inactive state and update time fields.
864 * Enabling the leader of a group effectively enables all
865 * the group members that aren't explicitly disabled, so we
866 * have to update their ->tstamp_enabled also.
867 * Note: this works for group members as well as group leaders
868 * since the non-leader members' sibling_lists will be empty.
869 */
870static void __perf_event_mark_enabled(struct perf_event *event,
871 struct perf_event_context *ctx)
872{
873 struct perf_event *sub;
874
875 event->state = PERF_EVENT_STATE_INACTIVE;
876 event->tstamp_enabled = ctx->time - event->total_time_enabled;
877 list_for_each_entry(sub, &event->sibling_list, group_entry)
878 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
879 sub->tstamp_enabled =
880 ctx->time - sub->total_time_enabled;
881}
882
883/*
884 * Cross CPU call to enable a performance event
885 */
886static void __perf_event_enable(void *info)
887{
888 struct perf_event *event = info;
889 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
890 struct perf_event_context *ctx = event->ctx;
891 struct perf_event *leader = event->group_leader;
892 int err;
893
894 /*
895 * If this is a per-task event, need to check whether this
896 * event's task is the current task on this cpu.
897 */
898 if (ctx->task && cpuctx->task_ctx != ctx) {
899 if (cpuctx->task_ctx || ctx->task != current)
900 return;
901 cpuctx->task_ctx = ctx;
902 }
903
904 spin_lock(&ctx->lock);
905 ctx->is_active = 1;
906 update_context_time(ctx);
907
908 if (event->state >= PERF_EVENT_STATE_INACTIVE)
909 goto unlock;
910 __perf_event_mark_enabled(event, ctx);
911
912 /*
913 * If the event is in a group and isn't the group leader,
914 * then don't put it on unless the group is on.
915 */
916 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
917 goto unlock;
918
919 if (!group_can_go_on(event, cpuctx, 1)) {
920 err = -EEXIST;
921 } else {
922 perf_disable();
923 if (event == leader)
924 err = group_sched_in(event, cpuctx, ctx,
925 smp_processor_id());
926 else
927 err = event_sched_in(event, cpuctx, ctx,
928 smp_processor_id());
929 perf_enable();
930 }
931
932 if (err) {
933 /*
934 * If this event can't go on and it's part of a
935 * group, then the whole group has to come off.
936 */
937 if (leader != event)
938 group_sched_out(leader, cpuctx, ctx);
939 if (leader->attr.pinned) {
940 update_group_times(leader);
941 leader->state = PERF_EVENT_STATE_ERROR;
942 }
943 }
944
945 unlock:
946 spin_unlock(&ctx->lock);
947}
948
949/*
950 * Enable a event.
951 *
952 * If event->ctx is a cloned context, callers must make sure that
953 * every task struct that event->ctx->task could possibly point to
954 * remains valid. This condition is satisfied when called through
955 * perf_event_for_each_child or perf_event_for_each as described
956 * for perf_event_disable.
957 */
958static void perf_event_enable(struct perf_event *event)
959{
960 struct perf_event_context *ctx = event->ctx;
961 struct task_struct *task = ctx->task;
962
963 if (!task) {
964 /*
965 * Enable the event on the cpu that it's on
966 */
967 smp_call_function_single(event->cpu, __perf_event_enable,
968 event, 1);
969 return;
970 }
971
972 spin_lock_irq(&ctx->lock);
973 if (event->state >= PERF_EVENT_STATE_INACTIVE)
974 goto out;
975
976 /*
977 * If the event is in error state, clear that first.
978 * That way, if we see the event in error state below, we
979 * know that it has gone back into error state, as distinct
980 * from the task having been scheduled away before the
981 * cross-call arrived.
982 */
983 if (event->state == PERF_EVENT_STATE_ERROR)
984 event->state = PERF_EVENT_STATE_OFF;
985
986 retry:
987 spin_unlock_irq(&ctx->lock);
988 task_oncpu_function_call(task, __perf_event_enable, event);
989
990 spin_lock_irq(&ctx->lock);
991
992 /*
993 * If the context is active and the event is still off,
994 * we need to retry the cross-call.
995 */
996 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
997 goto retry;
998
999 /*
1000 * Since we have the lock this context can't be scheduled
1001 * in, so we can change the state safely.
1002 */
1003 if (event->state == PERF_EVENT_STATE_OFF)
1004 __perf_event_mark_enabled(event, ctx);
1005
1006 out:
1007 spin_unlock_irq(&ctx->lock);
1008}
1009
1010static int perf_event_refresh(struct perf_event *event, int refresh)
1011{
1012 /*
1013 * not supported on inherited events
1014 */
1015 if (event->attr.inherit)
1016 return -EINVAL;
1017
1018 atomic_add(refresh, &event->event_limit);
1019 perf_event_enable(event);
1020
1021 return 0;
1022}
1023
1024void __perf_event_sched_out(struct perf_event_context *ctx,
1025 struct perf_cpu_context *cpuctx)
1026{
1027 struct perf_event *event;
1028
1029 spin_lock(&ctx->lock);
1030 ctx->is_active = 0;
1031 if (likely(!ctx->nr_events))
1032 goto out;
1033 update_context_time(ctx);
1034
1035 perf_disable();
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001036 if (ctx->nr_active)
1037 list_for_each_entry(event, &ctx->group_list, group_entry)
1038 group_sched_out(event, cpuctx, ctx);
1039
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001040 perf_enable();
1041 out:
1042 spin_unlock(&ctx->lock);
1043}
1044
1045/*
1046 * Test whether two contexts are equivalent, i.e. whether they
1047 * have both been cloned from the same version of the same context
1048 * and they both have the same number of enabled events.
1049 * If the number of enabled events is the same, then the set
1050 * of enabled events should be the same, because these are both
1051 * inherited contexts, therefore we can't access individual events
1052 * in them directly with an fd; we can only enable/disable all
1053 * events via prctl, or enable/disable all events in a family
1054 * via ioctl, which will have the same effect on both contexts.
1055 */
1056static int context_equiv(struct perf_event_context *ctx1,
1057 struct perf_event_context *ctx2)
1058{
1059 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1060 && ctx1->parent_gen == ctx2->parent_gen
1061 && !ctx1->pin_count && !ctx2->pin_count;
1062}
1063
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001064static void __perf_event_sync_stat(struct perf_event *event,
1065 struct perf_event *next_event)
1066{
1067 u64 value;
1068
1069 if (!event->attr.inherit_stat)
1070 return;
1071
1072 /*
1073 * Update the event value, we cannot use perf_event_read()
1074 * because we're in the middle of a context switch and have IRQs
1075 * disabled, which upsets smp_call_function_single(), however
1076 * we know the event must be on the current CPU, therefore we
1077 * don't need to use it.
1078 */
1079 switch (event->state) {
1080 case PERF_EVENT_STATE_ACTIVE:
Peter Zijlstra3dbebf12009-11-20 22:19:52 +01001081 event->pmu->read(event);
1082 /* fall-through */
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001083
1084 case PERF_EVENT_STATE_INACTIVE:
1085 update_event_times(event);
1086 break;
1087
1088 default:
1089 break;
1090 }
1091
1092 /*
1093 * In order to keep per-task stats reliable we need to flip the event
1094 * values when we flip the contexts.
1095 */
1096 value = atomic64_read(&next_event->count);
1097 value = atomic64_xchg(&event->count, value);
1098 atomic64_set(&next_event->count, value);
1099
1100 swap(event->total_time_enabled, next_event->total_time_enabled);
1101 swap(event->total_time_running, next_event->total_time_running);
1102
1103 /*
1104 * Since we swizzled the values, update the user visible data too.
1105 */
1106 perf_event_update_userpage(event);
1107 perf_event_update_userpage(next_event);
1108}
1109
1110#define list_next_entry(pos, member) \
1111 list_entry(pos->member.next, typeof(*pos), member)
1112
1113static void perf_event_sync_stat(struct perf_event_context *ctx,
1114 struct perf_event_context *next_ctx)
1115{
1116 struct perf_event *event, *next_event;
1117
1118 if (!ctx->nr_stat)
1119 return;
1120
Peter Zijlstra02ffdbc2009-11-20 22:19:50 +01001121 update_context_time(ctx);
1122
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001123 event = list_first_entry(&ctx->event_list,
1124 struct perf_event, event_entry);
1125
1126 next_event = list_first_entry(&next_ctx->event_list,
1127 struct perf_event, event_entry);
1128
1129 while (&event->event_entry != &ctx->event_list &&
1130 &next_event->event_entry != &next_ctx->event_list) {
1131
1132 __perf_event_sync_stat(event, next_event);
1133
1134 event = list_next_entry(event, event_entry);
1135 next_event = list_next_entry(next_event, event_entry);
1136 }
1137}
1138
1139/*
1140 * Called from scheduler to remove the events of the current task,
1141 * with interrupts disabled.
1142 *
1143 * We stop each event and update the event value in event->count.
1144 *
1145 * This does not protect us against NMI, but disable()
1146 * sets the disabled bit in the control field of event _before_
1147 * accessing the event control register. If a NMI hits, then it will
1148 * not restart the event.
1149 */
1150void perf_event_task_sched_out(struct task_struct *task,
1151 struct task_struct *next, int cpu)
1152{
1153 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1154 struct perf_event_context *ctx = task->perf_event_ctxp;
1155 struct perf_event_context *next_ctx;
1156 struct perf_event_context *parent;
1157 struct pt_regs *regs;
1158 int do_switch = 1;
1159
1160 regs = task_pt_regs(task);
1161 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1162
1163 if (likely(!ctx || !cpuctx->task_ctx))
1164 return;
1165
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001166 rcu_read_lock();
1167 parent = rcu_dereference(ctx->parent_ctx);
1168 next_ctx = next->perf_event_ctxp;
1169 if (parent && next_ctx &&
1170 rcu_dereference(next_ctx->parent_ctx) == parent) {
1171 /*
1172 * Looks like the two contexts are clones, so we might be
1173 * able to optimize the context switch. We lock both
1174 * contexts and check that they are clones under the
1175 * lock (including re-checking that neither has been
1176 * uncloned in the meantime). It doesn't matter which
1177 * order we take the locks because no other cpu could
1178 * be trying to lock both of these tasks.
1179 */
1180 spin_lock(&ctx->lock);
1181 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1182 if (context_equiv(ctx, next_ctx)) {
1183 /*
1184 * XXX do we need a memory barrier of sorts
1185 * wrt to rcu_dereference() of perf_event_ctxp
1186 */
1187 task->perf_event_ctxp = next_ctx;
1188 next->perf_event_ctxp = ctx;
1189 ctx->task = next;
1190 next_ctx->task = task;
1191 do_switch = 0;
1192
1193 perf_event_sync_stat(ctx, next_ctx);
1194 }
1195 spin_unlock(&next_ctx->lock);
1196 spin_unlock(&ctx->lock);
1197 }
1198 rcu_read_unlock();
1199
1200 if (do_switch) {
1201 __perf_event_sched_out(ctx, cpuctx);
1202 cpuctx->task_ctx = NULL;
1203 }
1204}
1205
1206/*
1207 * Called with IRQs disabled
1208 */
1209static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1210{
1211 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1212
1213 if (!cpuctx->task_ctx)
1214 return;
1215
1216 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1217 return;
1218
1219 __perf_event_sched_out(ctx, cpuctx);
1220 cpuctx->task_ctx = NULL;
1221}
1222
1223/*
1224 * Called with IRQs disabled
1225 */
1226static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx)
1227{
1228 __perf_event_sched_out(&cpuctx->ctx, cpuctx);
1229}
1230
1231static void
1232__perf_event_sched_in(struct perf_event_context *ctx,
1233 struct perf_cpu_context *cpuctx, int cpu)
1234{
1235 struct perf_event *event;
1236 int can_add_hw = 1;
1237
1238 spin_lock(&ctx->lock);
1239 ctx->is_active = 1;
1240 if (likely(!ctx->nr_events))
1241 goto out;
1242
1243 ctx->timestamp = perf_clock();
1244
1245 perf_disable();
1246
1247 /*
1248 * First go through the list and put on any pinned groups
1249 * in order to give them the best chance of going on.
1250 */
1251 list_for_each_entry(event, &ctx->group_list, group_entry) {
1252 if (event->state <= PERF_EVENT_STATE_OFF ||
1253 !event->attr.pinned)
1254 continue;
1255 if (event->cpu != -1 && event->cpu != cpu)
1256 continue;
1257
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001258 if (group_can_go_on(event, cpuctx, 1))
1259 group_sched_in(event, cpuctx, ctx, cpu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001260
1261 /*
1262 * If this pinned group hasn't been scheduled,
1263 * put it in error state.
1264 */
1265 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1266 update_group_times(event);
1267 event->state = PERF_EVENT_STATE_ERROR;
1268 }
1269 }
1270
1271 list_for_each_entry(event, &ctx->group_list, group_entry) {
1272 /*
1273 * Ignore events in OFF or ERROR state, and
1274 * ignore pinned events since we did them already.
1275 */
1276 if (event->state <= PERF_EVENT_STATE_OFF ||
1277 event->attr.pinned)
1278 continue;
1279
1280 /*
1281 * Listen to the 'cpu' scheduling filter constraint
1282 * of events:
1283 */
1284 if (event->cpu != -1 && event->cpu != cpu)
1285 continue;
1286
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001287 if (group_can_go_on(event, cpuctx, can_add_hw))
1288 if (group_sched_in(event, cpuctx, ctx, cpu))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001289 can_add_hw = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001290 }
1291 perf_enable();
1292 out:
1293 spin_unlock(&ctx->lock);
1294}
1295
1296/*
1297 * Called from scheduler to add the events of the current task
1298 * with interrupts disabled.
1299 *
1300 * We restore the event value and then enable it.
1301 *
1302 * This does not protect us against NMI, but enable()
1303 * sets the enabled bit in the control field of event _before_
1304 * accessing the event control register. If a NMI hits, then it will
1305 * keep the event running.
1306 */
1307void perf_event_task_sched_in(struct task_struct *task, int cpu)
1308{
1309 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1310 struct perf_event_context *ctx = task->perf_event_ctxp;
1311
1312 if (likely(!ctx))
1313 return;
1314 if (cpuctx->task_ctx == ctx)
1315 return;
1316 __perf_event_sched_in(ctx, cpuctx, cpu);
1317 cpuctx->task_ctx = ctx;
1318}
1319
1320static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1321{
1322 struct perf_event_context *ctx = &cpuctx->ctx;
1323
1324 __perf_event_sched_in(ctx, cpuctx, cpu);
1325}
1326
1327#define MAX_INTERRUPTS (~0ULL)
1328
1329static void perf_log_throttle(struct perf_event *event, int enable);
1330
1331static void perf_adjust_period(struct perf_event *event, u64 events)
1332{
1333 struct hw_perf_event *hwc = &event->hw;
1334 u64 period, sample_period;
1335 s64 delta;
1336
1337 events *= hwc->sample_period;
1338 period = div64_u64(events, event->attr.sample_freq);
1339
1340 delta = (s64)(period - hwc->sample_period);
1341 delta = (delta + 7) / 8; /* low pass filter */
1342
1343 sample_period = hwc->sample_period + delta;
1344
1345 if (!sample_period)
1346 sample_period = 1;
1347
1348 hwc->sample_period = sample_period;
1349}
1350
1351static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1352{
1353 struct perf_event *event;
1354 struct hw_perf_event *hwc;
1355 u64 interrupts, freq;
1356
1357 spin_lock(&ctx->lock);
Paul Mackerras03541f82009-10-14 16:58:03 +11001358 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001359 if (event->state != PERF_EVENT_STATE_ACTIVE)
1360 continue;
1361
1362 hwc = &event->hw;
1363
1364 interrupts = hwc->interrupts;
1365 hwc->interrupts = 0;
1366
1367 /*
1368 * unthrottle events on the tick
1369 */
1370 if (interrupts == MAX_INTERRUPTS) {
1371 perf_log_throttle(event, 1);
1372 event->pmu->unthrottle(event);
1373 interrupts = 2*sysctl_perf_event_sample_rate/HZ;
1374 }
1375
1376 if (!event->attr.freq || !event->attr.sample_freq)
1377 continue;
1378
1379 /*
1380 * if the specified freq < HZ then we need to skip ticks
1381 */
1382 if (event->attr.sample_freq < HZ) {
1383 freq = event->attr.sample_freq;
1384
1385 hwc->freq_count += freq;
1386 hwc->freq_interrupts += interrupts;
1387
1388 if (hwc->freq_count < HZ)
1389 continue;
1390
1391 interrupts = hwc->freq_interrupts;
1392 hwc->freq_interrupts = 0;
1393 hwc->freq_count -= HZ;
1394 } else
1395 freq = HZ;
1396
1397 perf_adjust_period(event, freq * interrupts);
1398
1399 /*
1400 * In order to avoid being stalled by an (accidental) huge
1401 * sample period, force reset the sample period if we didn't
1402 * get any events in this freq period.
1403 */
1404 if (!interrupts) {
1405 perf_disable();
1406 event->pmu->disable(event);
1407 atomic64_set(&hwc->period_left, 0);
1408 event->pmu->enable(event);
1409 perf_enable();
1410 }
1411 }
1412 spin_unlock(&ctx->lock);
1413}
1414
1415/*
1416 * Round-robin a context's events:
1417 */
1418static void rotate_ctx(struct perf_event_context *ctx)
1419{
1420 struct perf_event *event;
1421
1422 if (!ctx->nr_events)
1423 return;
1424
1425 spin_lock(&ctx->lock);
1426 /*
1427 * Rotate the first entry last (works just fine for group events too):
1428 */
1429 perf_disable();
1430 list_for_each_entry(event, &ctx->group_list, group_entry) {
1431 list_move_tail(&event->group_entry, &ctx->group_list);
1432 break;
1433 }
1434 perf_enable();
1435
1436 spin_unlock(&ctx->lock);
1437}
1438
1439void perf_event_task_tick(struct task_struct *curr, int cpu)
1440{
1441 struct perf_cpu_context *cpuctx;
1442 struct perf_event_context *ctx;
1443
1444 if (!atomic_read(&nr_events))
1445 return;
1446
1447 cpuctx = &per_cpu(perf_cpu_context, cpu);
1448 ctx = curr->perf_event_ctxp;
1449
1450 perf_ctx_adjust_freq(&cpuctx->ctx);
1451 if (ctx)
1452 perf_ctx_adjust_freq(ctx);
1453
1454 perf_event_cpu_sched_out(cpuctx);
1455 if (ctx)
1456 __perf_event_task_sched_out(ctx);
1457
1458 rotate_ctx(&cpuctx->ctx);
1459 if (ctx)
1460 rotate_ctx(ctx);
1461
1462 perf_event_cpu_sched_in(cpuctx, cpu);
1463 if (ctx)
1464 perf_event_task_sched_in(curr, cpu);
1465}
1466
1467/*
1468 * Enable all of a task's events that have been marked enable-on-exec.
1469 * This expects task == current.
1470 */
1471static void perf_event_enable_on_exec(struct task_struct *task)
1472{
1473 struct perf_event_context *ctx;
1474 struct perf_event *event;
1475 unsigned long flags;
1476 int enabled = 0;
1477
1478 local_irq_save(flags);
1479 ctx = task->perf_event_ctxp;
1480 if (!ctx || !ctx->nr_events)
1481 goto out;
1482
1483 __perf_event_task_sched_out(ctx);
1484
1485 spin_lock(&ctx->lock);
1486
1487 list_for_each_entry(event, &ctx->group_list, group_entry) {
1488 if (!event->attr.enable_on_exec)
1489 continue;
1490 event->attr.enable_on_exec = 0;
1491 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1492 continue;
1493 __perf_event_mark_enabled(event, ctx);
1494 enabled = 1;
1495 }
1496
1497 /*
1498 * Unclone this context if we enabled any event.
1499 */
1500 if (enabled)
1501 unclone_ctx(ctx);
1502
1503 spin_unlock(&ctx->lock);
1504
1505 perf_event_task_sched_in(task, smp_processor_id());
1506 out:
1507 local_irq_restore(flags);
1508}
1509
1510/*
1511 * Cross CPU call to read the hardware event
1512 */
1513static void __perf_event_read(void *info)
1514{
1515 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1516 struct perf_event *event = info;
1517 struct perf_event_context *ctx = event->ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001518
1519 /*
1520 * If this is a task context, we need to check whether it is
1521 * the current task context of this cpu. If not it has been
1522 * scheduled out before the smp call arrived. In that case
1523 * event->count would have been updated to a recent sample
1524 * when the event was scheduled out.
1525 */
1526 if (ctx->task && cpuctx->task_ctx != ctx)
1527 return;
1528
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001529 spin_lock(&ctx->lock);
Peter Zijlstra58e5ad12009-11-20 22:19:53 +01001530 update_context_time(ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001531 update_event_times(event);
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001532 spin_unlock(&ctx->lock);
1533
Peter Zijlstra58e5ad12009-11-20 22:19:53 +01001534 event->pmu->read(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001535}
1536
1537static u64 perf_event_read(struct perf_event *event)
1538{
1539 /*
1540 * If event is enabled and currently active on a CPU, update the
1541 * value in the event structure:
1542 */
1543 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1544 smp_call_function_single(event->oncpu,
1545 __perf_event_read, event, 1);
1546 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001547 struct perf_event_context *ctx = event->ctx;
1548 unsigned long flags;
1549
1550 spin_lock_irqsave(&ctx->lock, flags);
1551 update_context_time(ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001552 update_event_times(event);
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001553 spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001554 }
1555
1556 return atomic64_read(&event->count);
1557}
1558
1559/*
1560 * Initialize the perf_event context in a task_struct:
1561 */
1562static void
1563__perf_event_init_context(struct perf_event_context *ctx,
1564 struct task_struct *task)
1565{
1566 memset(ctx, 0, sizeof(*ctx));
1567 spin_lock_init(&ctx->lock);
1568 mutex_init(&ctx->mutex);
1569 INIT_LIST_HEAD(&ctx->group_list);
1570 INIT_LIST_HEAD(&ctx->event_list);
1571 atomic_set(&ctx->refcount, 1);
1572 ctx->task = task;
1573}
1574
1575static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1576{
1577 struct perf_event_context *ctx;
1578 struct perf_cpu_context *cpuctx;
1579 struct task_struct *task;
1580 unsigned long flags;
1581 int err;
1582
1583 /*
1584 * If cpu is not a wildcard then this is a percpu event:
1585 */
1586 if (cpu != -1) {
1587 /* Must be root to operate on a CPU event: */
1588 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1589 return ERR_PTR(-EACCES);
1590
1591 if (cpu < 0 || cpu > num_possible_cpus())
1592 return ERR_PTR(-EINVAL);
1593
1594 /*
1595 * We could be clever and allow to attach a event to an
1596 * offline CPU and activate it when the CPU comes up, but
1597 * that's for later.
1598 */
1599 if (!cpu_isset(cpu, cpu_online_map))
1600 return ERR_PTR(-ENODEV);
1601
1602 cpuctx = &per_cpu(perf_cpu_context, cpu);
1603 ctx = &cpuctx->ctx;
1604 get_ctx(ctx);
1605
1606 return ctx;
1607 }
1608
1609 rcu_read_lock();
1610 if (!pid)
1611 task = current;
1612 else
1613 task = find_task_by_vpid(pid);
1614 if (task)
1615 get_task_struct(task);
1616 rcu_read_unlock();
1617
1618 if (!task)
1619 return ERR_PTR(-ESRCH);
1620
1621 /*
1622 * Can't attach events to a dying task.
1623 */
1624 err = -ESRCH;
1625 if (task->flags & PF_EXITING)
1626 goto errout;
1627
1628 /* Reuse ptrace permission checks for now. */
1629 err = -EACCES;
1630 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1631 goto errout;
1632
1633 retry:
1634 ctx = perf_lock_task_context(task, &flags);
1635 if (ctx) {
1636 unclone_ctx(ctx);
1637 spin_unlock_irqrestore(&ctx->lock, flags);
1638 }
1639
1640 if (!ctx) {
1641 ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1642 err = -ENOMEM;
1643 if (!ctx)
1644 goto errout;
1645 __perf_event_init_context(ctx, task);
1646 get_ctx(ctx);
1647 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1648 /*
1649 * We raced with some other task; use
1650 * the context they set.
1651 */
1652 kfree(ctx);
1653 goto retry;
1654 }
1655 get_task_struct(task);
1656 }
1657
1658 put_task_struct(task);
1659 return ctx;
1660
1661 errout:
1662 put_task_struct(task);
1663 return ERR_PTR(err);
1664}
1665
Li Zefan6fb29152009-10-15 11:21:42 +08001666static void perf_event_free_filter(struct perf_event *event);
1667
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001668static void free_event_rcu(struct rcu_head *head)
1669{
1670 struct perf_event *event;
1671
1672 event = container_of(head, struct perf_event, rcu_head);
1673 if (event->ns)
1674 put_pid_ns(event->ns);
Li Zefan6fb29152009-10-15 11:21:42 +08001675 perf_event_free_filter(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001676 kfree(event);
1677}
1678
1679static void perf_pending_sync(struct perf_event *event);
1680
1681static void free_event(struct perf_event *event)
1682{
1683 perf_pending_sync(event);
1684
1685 if (!event->parent) {
1686 atomic_dec(&nr_events);
1687 if (event->attr.mmap)
1688 atomic_dec(&nr_mmap_events);
1689 if (event->attr.comm)
1690 atomic_dec(&nr_comm_events);
1691 if (event->attr.task)
1692 atomic_dec(&nr_task_events);
1693 }
1694
1695 if (event->output) {
1696 fput(event->output->filp);
1697 event->output = NULL;
1698 }
1699
1700 if (event->destroy)
1701 event->destroy(event);
1702
1703 put_ctx(event->ctx);
1704 call_rcu(&event->rcu_head, free_event_rcu);
1705}
1706
1707/*
1708 * Called when the last reference to the file is gone.
1709 */
1710static int perf_release(struct inode *inode, struct file *file)
1711{
1712 struct perf_event *event = file->private_data;
1713 struct perf_event_context *ctx = event->ctx;
1714
1715 file->private_data = NULL;
1716
1717 WARN_ON_ONCE(ctx->parent_ctx);
1718 mutex_lock(&ctx->mutex);
1719 perf_event_remove_from_context(event);
1720 mutex_unlock(&ctx->mutex);
1721
1722 mutex_lock(&event->owner->perf_event_mutex);
1723 list_del_init(&event->owner_entry);
1724 mutex_unlock(&event->owner->perf_event_mutex);
1725 put_task_struct(event->owner);
1726
1727 free_event(event);
1728
1729 return 0;
1730}
1731
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001732int perf_event_release_kernel(struct perf_event *event)
1733{
1734 struct perf_event_context *ctx = event->ctx;
1735
1736 WARN_ON_ONCE(ctx->parent_ctx);
1737 mutex_lock(&ctx->mutex);
1738 perf_event_remove_from_context(event);
1739 mutex_unlock(&ctx->mutex);
1740
1741 mutex_lock(&event->owner->perf_event_mutex);
1742 list_del_init(&event->owner_entry);
1743 mutex_unlock(&event->owner->perf_event_mutex);
1744 put_task_struct(event->owner);
1745
1746 free_event(event);
1747
1748 return 0;
1749}
1750EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1751
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001752static int perf_event_read_size(struct perf_event *event)
1753{
1754 int entry = sizeof(u64); /* value */
1755 int size = 0;
1756 int nr = 1;
1757
1758 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1759 size += sizeof(u64);
1760
1761 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1762 size += sizeof(u64);
1763
1764 if (event->attr.read_format & PERF_FORMAT_ID)
1765 entry += sizeof(u64);
1766
1767 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1768 nr += event->group_leader->nr_siblings;
1769 size += sizeof(u64);
1770 }
1771
1772 size += entry * nr;
1773
1774 return size;
1775}
1776
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001777u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001778{
1779 struct perf_event *child;
1780 u64 total = 0;
1781
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001782 *enabled = 0;
1783 *running = 0;
1784
Peter Zijlstra6f105812009-11-20 22:19:56 +01001785 mutex_lock(&event->child_mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001786 total += perf_event_read(event);
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001787 *enabled += event->total_time_enabled +
1788 atomic64_read(&event->child_total_time_enabled);
1789 *running += event->total_time_running +
1790 atomic64_read(&event->child_total_time_running);
1791
1792 list_for_each_entry(child, &event->child_list, child_list) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001793 total += perf_event_read(child);
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001794 *enabled += child->total_time_enabled;
1795 *running += child->total_time_running;
1796 }
Peter Zijlstra6f105812009-11-20 22:19:56 +01001797 mutex_unlock(&event->child_mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001798
1799 return total;
1800}
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001801EXPORT_SYMBOL_GPL(perf_event_read_value);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001802
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001803static int perf_event_read_group(struct perf_event *event,
1804 u64 read_format, char __user *buf)
1805{
1806 struct perf_event *leader = event->group_leader, *sub;
Peter Zijlstra6f105812009-11-20 22:19:56 +01001807 int n = 0, size = 0, ret = -EFAULT;
1808 struct perf_event_context *ctx = leader->ctx;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001809 u64 values[5];
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001810 u64 count, enabled, running;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001811
Peter Zijlstra6f105812009-11-20 22:19:56 +01001812 mutex_lock(&ctx->mutex);
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001813 count = perf_event_read_value(leader, &enabled, &running);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001814
1815 values[n++] = 1 + leader->nr_siblings;
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001816 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1817 values[n++] = enabled;
1818 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1819 values[n++] = running;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001820 values[n++] = count;
1821 if (read_format & PERF_FORMAT_ID)
1822 values[n++] = primary_event_id(leader);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001823
1824 size = n * sizeof(u64);
1825
1826 if (copy_to_user(buf, values, size))
Peter Zijlstra6f105812009-11-20 22:19:56 +01001827 goto unlock;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001828
Peter Zijlstra6f105812009-11-20 22:19:56 +01001829 ret = size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001830
1831 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
Peter Zijlstraabf48682009-11-20 22:19:49 +01001832 n = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001833
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001834 values[n++] = perf_event_read_value(sub, &enabled, &running);
Peter Zijlstraabf48682009-11-20 22:19:49 +01001835 if (read_format & PERF_FORMAT_ID)
1836 values[n++] = primary_event_id(sub);
1837
1838 size = n * sizeof(u64);
1839
Peter Zijlstra6f105812009-11-20 22:19:56 +01001840 if (copy_to_user(buf + size, values, size)) {
1841 ret = -EFAULT;
1842 goto unlock;
1843 }
Peter Zijlstraabf48682009-11-20 22:19:49 +01001844
1845 ret += size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001846 }
Peter Zijlstra6f105812009-11-20 22:19:56 +01001847unlock:
1848 mutex_unlock(&ctx->mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001849
Peter Zijlstraabf48682009-11-20 22:19:49 +01001850 return ret;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001851}
1852
1853static int perf_event_read_one(struct perf_event *event,
1854 u64 read_format, char __user *buf)
1855{
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001856 u64 enabled, running;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001857 u64 values[4];
1858 int n = 0;
1859
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001860 values[n++] = perf_event_read_value(event, &enabled, &running);
1861 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1862 values[n++] = enabled;
1863 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1864 values[n++] = running;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001865 if (read_format & PERF_FORMAT_ID)
1866 values[n++] = primary_event_id(event);
1867
1868 if (copy_to_user(buf, values, n * sizeof(u64)))
1869 return -EFAULT;
1870
1871 return n * sizeof(u64);
1872}
1873
1874/*
1875 * Read the performance event - simple non blocking version for now
1876 */
1877static ssize_t
1878perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
1879{
1880 u64 read_format = event->attr.read_format;
1881 int ret;
1882
1883 /*
1884 * Return end-of-file for a read on a event that is in
1885 * error state (i.e. because it was pinned but it couldn't be
1886 * scheduled on to the CPU at some point).
1887 */
1888 if (event->state == PERF_EVENT_STATE_ERROR)
1889 return 0;
1890
1891 if (count < perf_event_read_size(event))
1892 return -ENOSPC;
1893
1894 WARN_ON_ONCE(event->ctx->parent_ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001895 if (read_format & PERF_FORMAT_GROUP)
1896 ret = perf_event_read_group(event, read_format, buf);
1897 else
1898 ret = perf_event_read_one(event, read_format, buf);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001899
1900 return ret;
1901}
1902
1903static ssize_t
1904perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1905{
1906 struct perf_event *event = file->private_data;
1907
1908 return perf_read_hw(event, buf, count);
1909}
1910
1911static unsigned int perf_poll(struct file *file, poll_table *wait)
1912{
1913 struct perf_event *event = file->private_data;
1914 struct perf_mmap_data *data;
1915 unsigned int events = POLL_HUP;
1916
1917 rcu_read_lock();
1918 data = rcu_dereference(event->data);
1919 if (data)
1920 events = atomic_xchg(&data->poll, 0);
1921 rcu_read_unlock();
1922
1923 poll_wait(file, &event->waitq, wait);
1924
1925 return events;
1926}
1927
1928static void perf_event_reset(struct perf_event *event)
1929{
1930 (void)perf_event_read(event);
1931 atomic64_set(&event->count, 0);
1932 perf_event_update_userpage(event);
1933}
1934
1935/*
1936 * Holding the top-level event's child_mutex means that any
1937 * descendant process that has inherited this event will block
1938 * in sync_child_event if it goes to exit, thus satisfying the
1939 * task existence requirements of perf_event_enable/disable.
1940 */
1941static void perf_event_for_each_child(struct perf_event *event,
1942 void (*func)(struct perf_event *))
1943{
1944 struct perf_event *child;
1945
1946 WARN_ON_ONCE(event->ctx->parent_ctx);
1947 mutex_lock(&event->child_mutex);
1948 func(event);
1949 list_for_each_entry(child, &event->child_list, child_list)
1950 func(child);
1951 mutex_unlock(&event->child_mutex);
1952}
1953
1954static void perf_event_for_each(struct perf_event *event,
1955 void (*func)(struct perf_event *))
1956{
1957 struct perf_event_context *ctx = event->ctx;
1958 struct perf_event *sibling;
1959
1960 WARN_ON_ONCE(ctx->parent_ctx);
1961 mutex_lock(&ctx->mutex);
1962 event = event->group_leader;
1963
1964 perf_event_for_each_child(event, func);
1965 func(event);
1966 list_for_each_entry(sibling, &event->sibling_list, group_entry)
1967 perf_event_for_each_child(event, func);
1968 mutex_unlock(&ctx->mutex);
1969}
1970
1971static int perf_event_period(struct perf_event *event, u64 __user *arg)
1972{
1973 struct perf_event_context *ctx = event->ctx;
1974 unsigned long size;
1975 int ret = 0;
1976 u64 value;
1977
1978 if (!event->attr.sample_period)
1979 return -EINVAL;
1980
1981 size = copy_from_user(&value, arg, sizeof(value));
1982 if (size != sizeof(value))
1983 return -EFAULT;
1984
1985 if (!value)
1986 return -EINVAL;
1987
1988 spin_lock_irq(&ctx->lock);
1989 if (event->attr.freq) {
1990 if (value > sysctl_perf_event_sample_rate) {
1991 ret = -EINVAL;
1992 goto unlock;
1993 }
1994
1995 event->attr.sample_freq = value;
1996 } else {
1997 event->attr.sample_period = value;
1998 event->hw.sample_period = value;
1999 }
2000unlock:
2001 spin_unlock_irq(&ctx->lock);
2002
2003 return ret;
2004}
2005
Li Zefan6fb29152009-10-15 11:21:42 +08002006static int perf_event_set_output(struct perf_event *event, int output_fd);
2007static int perf_event_set_filter(struct perf_event *event, void __user *arg);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002008
2009static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2010{
2011 struct perf_event *event = file->private_data;
2012 void (*func)(struct perf_event *);
2013 u32 flags = arg;
2014
2015 switch (cmd) {
2016 case PERF_EVENT_IOC_ENABLE:
2017 func = perf_event_enable;
2018 break;
2019 case PERF_EVENT_IOC_DISABLE:
2020 func = perf_event_disable;
2021 break;
2022 case PERF_EVENT_IOC_RESET:
2023 func = perf_event_reset;
2024 break;
2025
2026 case PERF_EVENT_IOC_REFRESH:
2027 return perf_event_refresh(event, arg);
2028
2029 case PERF_EVENT_IOC_PERIOD:
2030 return perf_event_period(event, (u64 __user *)arg);
2031
2032 case PERF_EVENT_IOC_SET_OUTPUT:
2033 return perf_event_set_output(event, arg);
2034
Li Zefan6fb29152009-10-15 11:21:42 +08002035 case PERF_EVENT_IOC_SET_FILTER:
2036 return perf_event_set_filter(event, (void __user *)arg);
2037
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002038 default:
2039 return -ENOTTY;
2040 }
2041
2042 if (flags & PERF_IOC_FLAG_GROUP)
2043 perf_event_for_each(event, func);
2044 else
2045 perf_event_for_each_child(event, func);
2046
2047 return 0;
2048}
2049
2050int perf_event_task_enable(void)
2051{
2052 struct perf_event *event;
2053
2054 mutex_lock(&current->perf_event_mutex);
2055 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2056 perf_event_for_each_child(event, perf_event_enable);
2057 mutex_unlock(&current->perf_event_mutex);
2058
2059 return 0;
2060}
2061
2062int perf_event_task_disable(void)
2063{
2064 struct perf_event *event;
2065
2066 mutex_lock(&current->perf_event_mutex);
2067 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2068 perf_event_for_each_child(event, perf_event_disable);
2069 mutex_unlock(&current->perf_event_mutex);
2070
2071 return 0;
2072}
2073
2074#ifndef PERF_EVENT_INDEX_OFFSET
2075# define PERF_EVENT_INDEX_OFFSET 0
2076#endif
2077
2078static int perf_event_index(struct perf_event *event)
2079{
2080 if (event->state != PERF_EVENT_STATE_ACTIVE)
2081 return 0;
2082
2083 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2084}
2085
2086/*
2087 * Callers need to ensure there can be no nesting of this function, otherwise
2088 * the seqlock logic goes bad. We can not serialize this because the arch
2089 * code calls this from NMI context.
2090 */
2091void perf_event_update_userpage(struct perf_event *event)
2092{
2093 struct perf_event_mmap_page *userpg;
2094 struct perf_mmap_data *data;
2095
2096 rcu_read_lock();
2097 data = rcu_dereference(event->data);
2098 if (!data)
2099 goto unlock;
2100
2101 userpg = data->user_page;
2102
2103 /*
2104 * Disable preemption so as to not let the corresponding user-space
2105 * spin too long if we get preempted.
2106 */
2107 preempt_disable();
2108 ++userpg->lock;
2109 barrier();
2110 userpg->index = perf_event_index(event);
2111 userpg->offset = atomic64_read(&event->count);
2112 if (event->state == PERF_EVENT_STATE_ACTIVE)
2113 userpg->offset -= atomic64_read(&event->hw.prev_count);
2114
2115 userpg->time_enabled = event->total_time_enabled +
2116 atomic64_read(&event->child_total_time_enabled);
2117
2118 userpg->time_running = event->total_time_running +
2119 atomic64_read(&event->child_total_time_running);
2120
2121 barrier();
2122 ++userpg->lock;
2123 preempt_enable();
2124unlock:
2125 rcu_read_unlock();
2126}
2127
Peter Zijlstra906010b2009-09-21 16:08:49 +02002128static unsigned long perf_data_size(struct perf_mmap_data *data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002129{
Peter Zijlstra906010b2009-09-21 16:08:49 +02002130 return data->nr_pages << (PAGE_SHIFT + data->data_order);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002131}
2132
Peter Zijlstra906010b2009-09-21 16:08:49 +02002133#ifndef CONFIG_PERF_USE_VMALLOC
2134
2135/*
2136 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2137 */
2138
2139static struct page *
2140perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2141{
2142 if (pgoff > data->nr_pages)
2143 return NULL;
2144
2145 if (pgoff == 0)
2146 return virt_to_page(data->user_page);
2147
2148 return virt_to_page(data->data_pages[pgoff - 1]);
2149}
2150
2151static struct perf_mmap_data *
2152perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002153{
2154 struct perf_mmap_data *data;
2155 unsigned long size;
2156 int i;
2157
2158 WARN_ON(atomic_read(&event->mmap_count));
2159
2160 size = sizeof(struct perf_mmap_data);
2161 size += nr_pages * sizeof(void *);
2162
2163 data = kzalloc(size, GFP_KERNEL);
2164 if (!data)
2165 goto fail;
2166
2167 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2168 if (!data->user_page)
2169 goto fail_user_page;
2170
2171 for (i = 0; i < nr_pages; i++) {
2172 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2173 if (!data->data_pages[i])
2174 goto fail_data_pages;
2175 }
2176
Peter Zijlstra906010b2009-09-21 16:08:49 +02002177 data->data_order = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002178 data->nr_pages = nr_pages;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002179
Peter Zijlstra906010b2009-09-21 16:08:49 +02002180 return data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002181
2182fail_data_pages:
2183 for (i--; i >= 0; i--)
2184 free_page((unsigned long)data->data_pages[i]);
2185
2186 free_page((unsigned long)data->user_page);
2187
2188fail_user_page:
2189 kfree(data);
2190
2191fail:
Peter Zijlstra906010b2009-09-21 16:08:49 +02002192 return NULL;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002193}
2194
2195static void perf_mmap_free_page(unsigned long addr)
2196{
2197 struct page *page = virt_to_page((void *)addr);
2198
2199 page->mapping = NULL;
2200 __free_page(page);
2201}
2202
Peter Zijlstra906010b2009-09-21 16:08:49 +02002203static void perf_mmap_data_free(struct perf_mmap_data *data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002204{
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002205 int i;
2206
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002207 perf_mmap_free_page((unsigned long)data->user_page);
2208 for (i = 0; i < data->nr_pages; i++)
2209 perf_mmap_free_page((unsigned long)data->data_pages[i]);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002210}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002211
Peter Zijlstra906010b2009-09-21 16:08:49 +02002212#else
2213
2214/*
2215 * Back perf_mmap() with vmalloc memory.
2216 *
2217 * Required for architectures that have d-cache aliasing issues.
2218 */
2219
2220static struct page *
2221perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2222{
2223 if (pgoff > (1UL << data->data_order))
2224 return NULL;
2225
2226 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2227}
2228
2229static void perf_mmap_unmark_page(void *addr)
2230{
2231 struct page *page = vmalloc_to_page(addr);
2232
2233 page->mapping = NULL;
2234}
2235
2236static void perf_mmap_data_free_work(struct work_struct *work)
2237{
2238 struct perf_mmap_data *data;
2239 void *base;
2240 int i, nr;
2241
2242 data = container_of(work, struct perf_mmap_data, work);
2243 nr = 1 << data->data_order;
2244
2245 base = data->user_page;
2246 for (i = 0; i < nr + 1; i++)
2247 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2248
2249 vfree(base);
2250}
2251
2252static void perf_mmap_data_free(struct perf_mmap_data *data)
2253{
2254 schedule_work(&data->work);
2255}
2256
2257static struct perf_mmap_data *
2258perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2259{
2260 struct perf_mmap_data *data;
2261 unsigned long size;
2262 void *all_buf;
2263
2264 WARN_ON(atomic_read(&event->mmap_count));
2265
2266 size = sizeof(struct perf_mmap_data);
2267 size += sizeof(void *);
2268
2269 data = kzalloc(size, GFP_KERNEL);
2270 if (!data)
2271 goto fail;
2272
2273 INIT_WORK(&data->work, perf_mmap_data_free_work);
2274
2275 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2276 if (!all_buf)
2277 goto fail_all_buf;
2278
2279 data->user_page = all_buf;
2280 data->data_pages[0] = all_buf + PAGE_SIZE;
2281 data->data_order = ilog2(nr_pages);
2282 data->nr_pages = 1;
2283
2284 return data;
2285
2286fail_all_buf:
2287 kfree(data);
2288
2289fail:
2290 return NULL;
2291}
2292
2293#endif
2294
2295static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2296{
2297 struct perf_event *event = vma->vm_file->private_data;
2298 struct perf_mmap_data *data;
2299 int ret = VM_FAULT_SIGBUS;
2300
2301 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2302 if (vmf->pgoff == 0)
2303 ret = 0;
2304 return ret;
2305 }
2306
2307 rcu_read_lock();
2308 data = rcu_dereference(event->data);
2309 if (!data)
2310 goto unlock;
2311
2312 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2313 goto unlock;
2314
2315 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2316 if (!vmf->page)
2317 goto unlock;
2318
2319 get_page(vmf->page);
2320 vmf->page->mapping = vma->vm_file->f_mapping;
2321 vmf->page->index = vmf->pgoff;
2322
2323 ret = 0;
2324unlock:
2325 rcu_read_unlock();
2326
2327 return ret;
2328}
2329
2330static void
2331perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2332{
2333 long max_size = perf_data_size(data);
2334
2335 atomic_set(&data->lock, -1);
2336
2337 if (event->attr.watermark) {
2338 data->watermark = min_t(long, max_size,
2339 event->attr.wakeup_watermark);
2340 }
2341
2342 if (!data->watermark)
2343 data->watermark = max_t(long, PAGE_SIZE, max_size / 2);
2344
2345
2346 rcu_assign_pointer(event->data, data);
2347}
2348
2349static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2350{
2351 struct perf_mmap_data *data;
2352
2353 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2354 perf_mmap_data_free(data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002355 kfree(data);
2356}
2357
Peter Zijlstra906010b2009-09-21 16:08:49 +02002358static void perf_mmap_data_release(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002359{
2360 struct perf_mmap_data *data = event->data;
2361
2362 WARN_ON(atomic_read(&event->mmap_count));
2363
2364 rcu_assign_pointer(event->data, NULL);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002365 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002366}
2367
2368static void perf_mmap_open(struct vm_area_struct *vma)
2369{
2370 struct perf_event *event = vma->vm_file->private_data;
2371
2372 atomic_inc(&event->mmap_count);
2373}
2374
2375static void perf_mmap_close(struct vm_area_struct *vma)
2376{
2377 struct perf_event *event = vma->vm_file->private_data;
2378
2379 WARN_ON_ONCE(event->ctx->parent_ctx);
2380 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
Peter Zijlstra906010b2009-09-21 16:08:49 +02002381 unsigned long size = perf_data_size(event->data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002382 struct user_struct *user = current_user();
2383
Peter Zijlstra906010b2009-09-21 16:08:49 +02002384 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002385 vma->vm_mm->locked_vm -= event->data->nr_locked;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002386 perf_mmap_data_release(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002387 mutex_unlock(&event->mmap_mutex);
2388 }
2389}
2390
Alexey Dobriyanf0f37e22009-09-27 22:29:37 +04002391static const struct vm_operations_struct perf_mmap_vmops = {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002392 .open = perf_mmap_open,
2393 .close = perf_mmap_close,
2394 .fault = perf_mmap_fault,
2395 .page_mkwrite = perf_mmap_fault,
2396};
2397
2398static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2399{
2400 struct perf_event *event = file->private_data;
2401 unsigned long user_locked, user_lock_limit;
2402 struct user_struct *user = current_user();
2403 unsigned long locked, lock_limit;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002404 struct perf_mmap_data *data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002405 unsigned long vma_size;
2406 unsigned long nr_pages;
2407 long user_extra, extra;
2408 int ret = 0;
2409
2410 if (!(vma->vm_flags & VM_SHARED))
2411 return -EINVAL;
2412
2413 vma_size = vma->vm_end - vma->vm_start;
2414 nr_pages = (vma_size / PAGE_SIZE) - 1;
2415
2416 /*
2417 * If we have data pages ensure they're a power-of-two number, so we
2418 * can do bitmasks instead of modulo.
2419 */
2420 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2421 return -EINVAL;
2422
2423 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2424 return -EINVAL;
2425
2426 if (vma->vm_pgoff != 0)
2427 return -EINVAL;
2428
2429 WARN_ON_ONCE(event->ctx->parent_ctx);
2430 mutex_lock(&event->mmap_mutex);
2431 if (event->output) {
2432 ret = -EINVAL;
2433 goto unlock;
2434 }
2435
2436 if (atomic_inc_not_zero(&event->mmap_count)) {
2437 if (nr_pages != event->data->nr_pages)
2438 ret = -EINVAL;
2439 goto unlock;
2440 }
2441
2442 user_extra = nr_pages + 1;
2443 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2444
2445 /*
2446 * Increase the limit linearly with more CPUs:
2447 */
2448 user_lock_limit *= num_online_cpus();
2449
2450 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2451
2452 extra = 0;
2453 if (user_locked > user_lock_limit)
2454 extra = user_locked - user_lock_limit;
2455
2456 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2457 lock_limit >>= PAGE_SHIFT;
2458 locked = vma->vm_mm->locked_vm + extra;
2459
2460 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2461 !capable(CAP_IPC_LOCK)) {
2462 ret = -EPERM;
2463 goto unlock;
2464 }
2465
2466 WARN_ON(event->data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002467
2468 data = perf_mmap_data_alloc(event, nr_pages);
2469 ret = -ENOMEM;
2470 if (!data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002471 goto unlock;
2472
Peter Zijlstra906010b2009-09-21 16:08:49 +02002473 ret = 0;
2474 perf_mmap_data_init(event, data);
2475
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002476 atomic_set(&event->mmap_count, 1);
2477 atomic_long_add(user_extra, &user->locked_vm);
2478 vma->vm_mm->locked_vm += extra;
2479 event->data->nr_locked = extra;
2480 if (vma->vm_flags & VM_WRITE)
2481 event->data->writable = 1;
2482
2483unlock:
2484 mutex_unlock(&event->mmap_mutex);
2485
2486 vma->vm_flags |= VM_RESERVED;
2487 vma->vm_ops = &perf_mmap_vmops;
2488
2489 return ret;
2490}
2491
2492static int perf_fasync(int fd, struct file *filp, int on)
2493{
2494 struct inode *inode = filp->f_path.dentry->d_inode;
2495 struct perf_event *event = filp->private_data;
2496 int retval;
2497
2498 mutex_lock(&inode->i_mutex);
2499 retval = fasync_helper(fd, filp, on, &event->fasync);
2500 mutex_unlock(&inode->i_mutex);
2501
2502 if (retval < 0)
2503 return retval;
2504
2505 return 0;
2506}
2507
2508static const struct file_operations perf_fops = {
2509 .release = perf_release,
2510 .read = perf_read,
2511 .poll = perf_poll,
2512 .unlocked_ioctl = perf_ioctl,
2513 .compat_ioctl = perf_ioctl,
2514 .mmap = perf_mmap,
2515 .fasync = perf_fasync,
2516};
2517
2518/*
2519 * Perf event wakeup
2520 *
2521 * If there's data, ensure we set the poll() state and publish everything
2522 * to user-space before waking everybody up.
2523 */
2524
2525void perf_event_wakeup(struct perf_event *event)
2526{
2527 wake_up_all(&event->waitq);
2528
2529 if (event->pending_kill) {
2530 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2531 event->pending_kill = 0;
2532 }
2533}
2534
2535/*
2536 * Pending wakeups
2537 *
2538 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2539 *
2540 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2541 * single linked list and use cmpxchg() to add entries lockless.
2542 */
2543
2544static void perf_pending_event(struct perf_pending_entry *entry)
2545{
2546 struct perf_event *event = container_of(entry,
2547 struct perf_event, pending);
2548
2549 if (event->pending_disable) {
2550 event->pending_disable = 0;
2551 __perf_event_disable(event);
2552 }
2553
2554 if (event->pending_wakeup) {
2555 event->pending_wakeup = 0;
2556 perf_event_wakeup(event);
2557 }
2558}
2559
2560#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2561
2562static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2563 PENDING_TAIL,
2564};
2565
2566static void perf_pending_queue(struct perf_pending_entry *entry,
2567 void (*func)(struct perf_pending_entry *))
2568{
2569 struct perf_pending_entry **head;
2570
2571 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2572 return;
2573
2574 entry->func = func;
2575
2576 head = &get_cpu_var(perf_pending_head);
2577
2578 do {
2579 entry->next = *head;
2580 } while (cmpxchg(head, entry->next, entry) != entry->next);
2581
2582 set_perf_event_pending();
2583
2584 put_cpu_var(perf_pending_head);
2585}
2586
2587static int __perf_pending_run(void)
2588{
2589 struct perf_pending_entry *list;
2590 int nr = 0;
2591
2592 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2593 while (list != PENDING_TAIL) {
2594 void (*func)(struct perf_pending_entry *);
2595 struct perf_pending_entry *entry = list;
2596
2597 list = list->next;
2598
2599 func = entry->func;
2600 entry->next = NULL;
2601 /*
2602 * Ensure we observe the unqueue before we issue the wakeup,
2603 * so that we won't be waiting forever.
2604 * -- see perf_not_pending().
2605 */
2606 smp_wmb();
2607
2608 func(entry);
2609 nr++;
2610 }
2611
2612 return nr;
2613}
2614
2615static inline int perf_not_pending(struct perf_event *event)
2616{
2617 /*
2618 * If we flush on whatever cpu we run, there is a chance we don't
2619 * need to wait.
2620 */
2621 get_cpu();
2622 __perf_pending_run();
2623 put_cpu();
2624
2625 /*
2626 * Ensure we see the proper queue state before going to sleep
2627 * so that we do not miss the wakeup. -- see perf_pending_handle()
2628 */
2629 smp_rmb();
2630 return event->pending.next == NULL;
2631}
2632
2633static void perf_pending_sync(struct perf_event *event)
2634{
2635 wait_event(event->waitq, perf_not_pending(event));
2636}
2637
2638void perf_event_do_pending(void)
2639{
2640 __perf_pending_run();
2641}
2642
2643/*
2644 * Callchain support -- arch specific
2645 */
2646
2647__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2648{
2649 return NULL;
2650}
2651
2652/*
2653 * Output
2654 */
2655static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2656 unsigned long offset, unsigned long head)
2657{
2658 unsigned long mask;
2659
2660 if (!data->writable)
2661 return true;
2662
Peter Zijlstra906010b2009-09-21 16:08:49 +02002663 mask = perf_data_size(data) - 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002664
2665 offset = (offset - tail) & mask;
2666 head = (head - tail) & mask;
2667
2668 if ((int)(head - offset) < 0)
2669 return false;
2670
2671 return true;
2672}
2673
2674static void perf_output_wakeup(struct perf_output_handle *handle)
2675{
2676 atomic_set(&handle->data->poll, POLL_IN);
2677
2678 if (handle->nmi) {
2679 handle->event->pending_wakeup = 1;
2680 perf_pending_queue(&handle->event->pending,
2681 perf_pending_event);
2682 } else
2683 perf_event_wakeup(handle->event);
2684}
2685
2686/*
2687 * Curious locking construct.
2688 *
2689 * We need to ensure a later event_id doesn't publish a head when a former
2690 * event_id isn't done writing. However since we need to deal with NMIs we
2691 * cannot fully serialize things.
2692 *
2693 * What we do is serialize between CPUs so we only have to deal with NMI
2694 * nesting on a single CPU.
2695 *
2696 * We only publish the head (and generate a wakeup) when the outer-most
2697 * event_id completes.
2698 */
2699static void perf_output_lock(struct perf_output_handle *handle)
2700{
2701 struct perf_mmap_data *data = handle->data;
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002702 int cur, cpu = get_cpu();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002703
2704 handle->locked = 0;
2705
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002706 for (;;) {
2707 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2708 if (cur == -1) {
2709 handle->locked = 1;
2710 break;
2711 }
2712 if (cur == cpu)
2713 break;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002714
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002715 cpu_relax();
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002716 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002717}
2718
2719static void perf_output_unlock(struct perf_output_handle *handle)
2720{
2721 struct perf_mmap_data *data = handle->data;
2722 unsigned long head;
2723 int cpu;
2724
2725 data->done_head = data->head;
2726
2727 if (!handle->locked)
2728 goto out;
2729
2730again:
2731 /*
2732 * The xchg implies a full barrier that ensures all writes are done
2733 * before we publish the new head, matched by a rmb() in userspace when
2734 * reading this position.
2735 */
2736 while ((head = atomic_long_xchg(&data->done_head, 0)))
2737 data->user_page->data_head = head;
2738
2739 /*
2740 * NMI can happen here, which means we can miss a done_head update.
2741 */
2742
2743 cpu = atomic_xchg(&data->lock, -1);
2744 WARN_ON_ONCE(cpu != smp_processor_id());
2745
2746 /*
2747 * Therefore we have to validate we did not indeed do so.
2748 */
2749 if (unlikely(atomic_long_read(&data->done_head))) {
2750 /*
2751 * Since we had it locked, we can lock it again.
2752 */
2753 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2754 cpu_relax();
2755
2756 goto again;
2757 }
2758
2759 if (atomic_xchg(&data->wakeup, 0))
2760 perf_output_wakeup(handle);
2761out:
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002762 put_cpu();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002763}
2764
2765void perf_output_copy(struct perf_output_handle *handle,
2766 const void *buf, unsigned int len)
2767{
2768 unsigned int pages_mask;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002769 unsigned long offset;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002770 unsigned int size;
2771 void **pages;
2772
2773 offset = handle->offset;
2774 pages_mask = handle->data->nr_pages - 1;
2775 pages = handle->data->data_pages;
2776
2777 do {
Peter Zijlstra906010b2009-09-21 16:08:49 +02002778 unsigned long page_offset;
2779 unsigned long page_size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002780 int nr;
2781
2782 nr = (offset >> PAGE_SHIFT) & pages_mask;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002783 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
2784 page_offset = offset & (page_size - 1);
2785 size = min_t(unsigned int, page_size - page_offset, len);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002786
2787 memcpy(pages[nr] + page_offset, buf, size);
2788
2789 len -= size;
2790 buf += size;
2791 offset += size;
2792 } while (len);
2793
2794 handle->offset = offset;
2795
2796 /*
2797 * Check we didn't copy past our reservation window, taking the
2798 * possible unsigned int wrap into account.
2799 */
2800 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2801}
2802
2803int perf_output_begin(struct perf_output_handle *handle,
2804 struct perf_event *event, unsigned int size,
2805 int nmi, int sample)
2806{
2807 struct perf_event *output_event;
2808 struct perf_mmap_data *data;
2809 unsigned long tail, offset, head;
2810 int have_lost;
2811 struct {
2812 struct perf_event_header header;
2813 u64 id;
2814 u64 lost;
2815 } lost_event;
2816
2817 rcu_read_lock();
2818 /*
2819 * For inherited events we send all the output towards the parent.
2820 */
2821 if (event->parent)
2822 event = event->parent;
2823
2824 output_event = rcu_dereference(event->output);
2825 if (output_event)
2826 event = output_event;
2827
2828 data = rcu_dereference(event->data);
2829 if (!data)
2830 goto out;
2831
2832 handle->data = data;
2833 handle->event = event;
2834 handle->nmi = nmi;
2835 handle->sample = sample;
2836
2837 if (!data->nr_pages)
2838 goto fail;
2839
2840 have_lost = atomic_read(&data->lost);
2841 if (have_lost)
2842 size += sizeof(lost_event);
2843
2844 perf_output_lock(handle);
2845
2846 do {
2847 /*
2848 * Userspace could choose to issue a mb() before updating the
2849 * tail pointer. So that all reads will be completed before the
2850 * write is issued.
2851 */
2852 tail = ACCESS_ONCE(data->user_page->data_tail);
2853 smp_rmb();
2854 offset = head = atomic_long_read(&data->head);
2855 head += size;
2856 if (unlikely(!perf_output_space(data, tail, offset, head)))
2857 goto fail;
2858 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2859
2860 handle->offset = offset;
2861 handle->head = head;
2862
2863 if (head - tail > data->watermark)
2864 atomic_set(&data->wakeup, 1);
2865
2866 if (have_lost) {
2867 lost_event.header.type = PERF_RECORD_LOST;
2868 lost_event.header.misc = 0;
2869 lost_event.header.size = sizeof(lost_event);
2870 lost_event.id = event->id;
2871 lost_event.lost = atomic_xchg(&data->lost, 0);
2872
2873 perf_output_put(handle, lost_event);
2874 }
2875
2876 return 0;
2877
2878fail:
2879 atomic_inc(&data->lost);
2880 perf_output_unlock(handle);
2881out:
2882 rcu_read_unlock();
2883
2884 return -ENOSPC;
2885}
2886
2887void perf_output_end(struct perf_output_handle *handle)
2888{
2889 struct perf_event *event = handle->event;
2890 struct perf_mmap_data *data = handle->data;
2891
2892 int wakeup_events = event->attr.wakeup_events;
2893
2894 if (handle->sample && wakeup_events) {
2895 int events = atomic_inc_return(&data->events);
2896 if (events >= wakeup_events) {
2897 atomic_sub(wakeup_events, &data->events);
2898 atomic_set(&data->wakeup, 1);
2899 }
2900 }
2901
2902 perf_output_unlock(handle);
2903 rcu_read_unlock();
2904}
2905
2906static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
2907{
2908 /*
2909 * only top level events have the pid namespace they were created in
2910 */
2911 if (event->parent)
2912 event = event->parent;
2913
2914 return task_tgid_nr_ns(p, event->ns);
2915}
2916
2917static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
2918{
2919 /*
2920 * only top level events have the pid namespace they were created in
2921 */
2922 if (event->parent)
2923 event = event->parent;
2924
2925 return task_pid_nr_ns(p, event->ns);
2926}
2927
2928static void perf_output_read_one(struct perf_output_handle *handle,
2929 struct perf_event *event)
2930{
2931 u64 read_format = event->attr.read_format;
2932 u64 values[4];
2933 int n = 0;
2934
2935 values[n++] = atomic64_read(&event->count);
2936 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2937 values[n++] = event->total_time_enabled +
2938 atomic64_read(&event->child_total_time_enabled);
2939 }
2940 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2941 values[n++] = event->total_time_running +
2942 atomic64_read(&event->child_total_time_running);
2943 }
2944 if (read_format & PERF_FORMAT_ID)
2945 values[n++] = primary_event_id(event);
2946
2947 perf_output_copy(handle, values, n * sizeof(u64));
2948}
2949
2950/*
2951 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2952 */
2953static void perf_output_read_group(struct perf_output_handle *handle,
2954 struct perf_event *event)
2955{
2956 struct perf_event *leader = event->group_leader, *sub;
2957 u64 read_format = event->attr.read_format;
2958 u64 values[5];
2959 int n = 0;
2960
2961 values[n++] = 1 + leader->nr_siblings;
2962
2963 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2964 values[n++] = leader->total_time_enabled;
2965
2966 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2967 values[n++] = leader->total_time_running;
2968
2969 if (leader != event)
2970 leader->pmu->read(leader);
2971
2972 values[n++] = atomic64_read(&leader->count);
2973 if (read_format & PERF_FORMAT_ID)
2974 values[n++] = primary_event_id(leader);
2975
2976 perf_output_copy(handle, values, n * sizeof(u64));
2977
2978 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2979 n = 0;
2980
2981 if (sub != event)
2982 sub->pmu->read(sub);
2983
2984 values[n++] = atomic64_read(&sub->count);
2985 if (read_format & PERF_FORMAT_ID)
2986 values[n++] = primary_event_id(sub);
2987
2988 perf_output_copy(handle, values, n * sizeof(u64));
2989 }
2990}
2991
2992static void perf_output_read(struct perf_output_handle *handle,
2993 struct perf_event *event)
2994{
2995 if (event->attr.read_format & PERF_FORMAT_GROUP)
2996 perf_output_read_group(handle, event);
2997 else
2998 perf_output_read_one(handle, event);
2999}
3000
3001void perf_output_sample(struct perf_output_handle *handle,
3002 struct perf_event_header *header,
3003 struct perf_sample_data *data,
3004 struct perf_event *event)
3005{
3006 u64 sample_type = data->type;
3007
3008 perf_output_put(handle, *header);
3009
3010 if (sample_type & PERF_SAMPLE_IP)
3011 perf_output_put(handle, data->ip);
3012
3013 if (sample_type & PERF_SAMPLE_TID)
3014 perf_output_put(handle, data->tid_entry);
3015
3016 if (sample_type & PERF_SAMPLE_TIME)
3017 perf_output_put(handle, data->time);
3018
3019 if (sample_type & PERF_SAMPLE_ADDR)
3020 perf_output_put(handle, data->addr);
3021
3022 if (sample_type & PERF_SAMPLE_ID)
3023 perf_output_put(handle, data->id);
3024
3025 if (sample_type & PERF_SAMPLE_STREAM_ID)
3026 perf_output_put(handle, data->stream_id);
3027
3028 if (sample_type & PERF_SAMPLE_CPU)
3029 perf_output_put(handle, data->cpu_entry);
3030
3031 if (sample_type & PERF_SAMPLE_PERIOD)
3032 perf_output_put(handle, data->period);
3033
3034 if (sample_type & PERF_SAMPLE_READ)
3035 perf_output_read(handle, event);
3036
3037 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3038 if (data->callchain) {
3039 int size = 1;
3040
3041 if (data->callchain)
3042 size += data->callchain->nr;
3043
3044 size *= sizeof(u64);
3045
3046 perf_output_copy(handle, data->callchain, size);
3047 } else {
3048 u64 nr = 0;
3049 perf_output_put(handle, nr);
3050 }
3051 }
3052
3053 if (sample_type & PERF_SAMPLE_RAW) {
3054 if (data->raw) {
3055 perf_output_put(handle, data->raw->size);
3056 perf_output_copy(handle, data->raw->data,
3057 data->raw->size);
3058 } else {
3059 struct {
3060 u32 size;
3061 u32 data;
3062 } raw = {
3063 .size = sizeof(u32),
3064 .data = 0,
3065 };
3066 perf_output_put(handle, raw);
3067 }
3068 }
3069}
3070
3071void perf_prepare_sample(struct perf_event_header *header,
3072 struct perf_sample_data *data,
3073 struct perf_event *event,
3074 struct pt_regs *regs)
3075{
3076 u64 sample_type = event->attr.sample_type;
3077
3078 data->type = sample_type;
3079
3080 header->type = PERF_RECORD_SAMPLE;
3081 header->size = sizeof(*header);
3082
3083 header->misc = 0;
3084 header->misc |= perf_misc_flags(regs);
3085
3086 if (sample_type & PERF_SAMPLE_IP) {
3087 data->ip = perf_instruction_pointer(regs);
3088
3089 header->size += sizeof(data->ip);
3090 }
3091
3092 if (sample_type & PERF_SAMPLE_TID) {
3093 /* namespace issues */
3094 data->tid_entry.pid = perf_event_pid(event, current);
3095 data->tid_entry.tid = perf_event_tid(event, current);
3096
3097 header->size += sizeof(data->tid_entry);
3098 }
3099
3100 if (sample_type & PERF_SAMPLE_TIME) {
3101 data->time = perf_clock();
3102
3103 header->size += sizeof(data->time);
3104 }
3105
3106 if (sample_type & PERF_SAMPLE_ADDR)
3107 header->size += sizeof(data->addr);
3108
3109 if (sample_type & PERF_SAMPLE_ID) {
3110 data->id = primary_event_id(event);
3111
3112 header->size += sizeof(data->id);
3113 }
3114
3115 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3116 data->stream_id = event->id;
3117
3118 header->size += sizeof(data->stream_id);
3119 }
3120
3121 if (sample_type & PERF_SAMPLE_CPU) {
3122 data->cpu_entry.cpu = raw_smp_processor_id();
3123 data->cpu_entry.reserved = 0;
3124
3125 header->size += sizeof(data->cpu_entry);
3126 }
3127
3128 if (sample_type & PERF_SAMPLE_PERIOD)
3129 header->size += sizeof(data->period);
3130
3131 if (sample_type & PERF_SAMPLE_READ)
3132 header->size += perf_event_read_size(event);
3133
3134 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3135 int size = 1;
3136
3137 data->callchain = perf_callchain(regs);
3138
3139 if (data->callchain)
3140 size += data->callchain->nr;
3141
3142 header->size += size * sizeof(u64);
3143 }
3144
3145 if (sample_type & PERF_SAMPLE_RAW) {
3146 int size = sizeof(u32);
3147
3148 if (data->raw)
3149 size += data->raw->size;
3150 else
3151 size += sizeof(u32);
3152
3153 WARN_ON_ONCE(size & (sizeof(u64)-1));
3154 header->size += size;
3155 }
3156}
3157
3158static void perf_event_output(struct perf_event *event, int nmi,
3159 struct perf_sample_data *data,
3160 struct pt_regs *regs)
3161{
3162 struct perf_output_handle handle;
3163 struct perf_event_header header;
3164
3165 perf_prepare_sample(&header, data, event, regs);
3166
3167 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3168 return;
3169
3170 perf_output_sample(&handle, &header, data, event);
3171
3172 perf_output_end(&handle);
3173}
3174
3175/*
3176 * read event_id
3177 */
3178
3179struct perf_read_event {
3180 struct perf_event_header header;
3181
3182 u32 pid;
3183 u32 tid;
3184};
3185
3186static void
3187perf_event_read_event(struct perf_event *event,
3188 struct task_struct *task)
3189{
3190 struct perf_output_handle handle;
3191 struct perf_read_event read_event = {
3192 .header = {
3193 .type = PERF_RECORD_READ,
3194 .misc = 0,
3195 .size = sizeof(read_event) + perf_event_read_size(event),
3196 },
3197 .pid = perf_event_pid(event, task),
3198 .tid = perf_event_tid(event, task),
3199 };
3200 int ret;
3201
3202 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3203 if (ret)
3204 return;
3205
3206 perf_output_put(&handle, read_event);
3207 perf_output_read(&handle, event);
3208
3209 perf_output_end(&handle);
3210}
3211
3212/*
3213 * task tracking -- fork/exit
3214 *
3215 * enabled by: attr.comm | attr.mmap | attr.task
3216 */
3217
3218struct perf_task_event {
3219 struct task_struct *task;
3220 struct perf_event_context *task_ctx;
3221
3222 struct {
3223 struct perf_event_header header;
3224
3225 u32 pid;
3226 u32 ppid;
3227 u32 tid;
3228 u32 ptid;
3229 u64 time;
3230 } event_id;
3231};
3232
3233static void perf_event_task_output(struct perf_event *event,
3234 struct perf_task_event *task_event)
3235{
3236 struct perf_output_handle handle;
3237 int size;
3238 struct task_struct *task = task_event->task;
3239 int ret;
3240
3241 size = task_event->event_id.header.size;
3242 ret = perf_output_begin(&handle, event, size, 0, 0);
3243
3244 if (ret)
3245 return;
3246
3247 task_event->event_id.pid = perf_event_pid(event, task);
3248 task_event->event_id.ppid = perf_event_pid(event, current);
3249
3250 task_event->event_id.tid = perf_event_tid(event, task);
3251 task_event->event_id.ptid = perf_event_tid(event, current);
3252
3253 task_event->event_id.time = perf_clock();
3254
3255 perf_output_put(&handle, task_event->event_id);
3256
3257 perf_output_end(&handle);
3258}
3259
3260static int perf_event_task_match(struct perf_event *event)
3261{
3262 if (event->attr.comm || event->attr.mmap || event->attr.task)
3263 return 1;
3264
3265 return 0;
3266}
3267
3268static void perf_event_task_ctx(struct perf_event_context *ctx,
3269 struct perf_task_event *task_event)
3270{
3271 struct perf_event *event;
3272
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003273 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3274 if (perf_event_task_match(event))
3275 perf_event_task_output(event, task_event);
3276 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003277}
3278
3279static void perf_event_task_event(struct perf_task_event *task_event)
3280{
3281 struct perf_cpu_context *cpuctx;
3282 struct perf_event_context *ctx = task_event->task_ctx;
3283
Peter Zijlstrad6ff86c2009-11-20 22:19:46 +01003284 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003285 cpuctx = &get_cpu_var(perf_cpu_context);
3286 perf_event_task_ctx(&cpuctx->ctx, task_event);
3287 put_cpu_var(perf_cpu_context);
3288
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003289 if (!ctx)
3290 ctx = rcu_dereference(task_event->task->perf_event_ctxp);
3291 if (ctx)
3292 perf_event_task_ctx(ctx, task_event);
3293 rcu_read_unlock();
3294}
3295
3296static void perf_event_task(struct task_struct *task,
3297 struct perf_event_context *task_ctx,
3298 int new)
3299{
3300 struct perf_task_event task_event;
3301
3302 if (!atomic_read(&nr_comm_events) &&
3303 !atomic_read(&nr_mmap_events) &&
3304 !atomic_read(&nr_task_events))
3305 return;
3306
3307 task_event = (struct perf_task_event){
3308 .task = task,
3309 .task_ctx = task_ctx,
3310 .event_id = {
3311 .header = {
3312 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3313 .misc = 0,
3314 .size = sizeof(task_event.event_id),
3315 },
3316 /* .pid */
3317 /* .ppid */
3318 /* .tid */
3319 /* .ptid */
3320 },
3321 };
3322
3323 perf_event_task_event(&task_event);
3324}
3325
3326void perf_event_fork(struct task_struct *task)
3327{
3328 perf_event_task(task, NULL, 1);
3329}
3330
3331/*
3332 * comm tracking
3333 */
3334
3335struct perf_comm_event {
3336 struct task_struct *task;
3337 char *comm;
3338 int comm_size;
3339
3340 struct {
3341 struct perf_event_header header;
3342
3343 u32 pid;
3344 u32 tid;
3345 } event_id;
3346};
3347
3348static void perf_event_comm_output(struct perf_event *event,
3349 struct perf_comm_event *comm_event)
3350{
3351 struct perf_output_handle handle;
3352 int size = comm_event->event_id.header.size;
3353 int ret = perf_output_begin(&handle, event, size, 0, 0);
3354
3355 if (ret)
3356 return;
3357
3358 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3359 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3360
3361 perf_output_put(&handle, comm_event->event_id);
3362 perf_output_copy(&handle, comm_event->comm,
3363 comm_event->comm_size);
3364 perf_output_end(&handle);
3365}
3366
3367static int perf_event_comm_match(struct perf_event *event)
3368{
3369 if (event->attr.comm)
3370 return 1;
3371
3372 return 0;
3373}
3374
3375static void perf_event_comm_ctx(struct perf_event_context *ctx,
3376 struct perf_comm_event *comm_event)
3377{
3378 struct perf_event *event;
3379
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003380 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3381 if (perf_event_comm_match(event))
3382 perf_event_comm_output(event, comm_event);
3383 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003384}
3385
3386static void perf_event_comm_event(struct perf_comm_event *comm_event)
3387{
3388 struct perf_cpu_context *cpuctx;
3389 struct perf_event_context *ctx;
3390 unsigned int size;
3391 char comm[TASK_COMM_LEN];
3392
3393 memset(comm, 0, sizeof(comm));
3394 strncpy(comm, comm_event->task->comm, sizeof(comm));
3395 size = ALIGN(strlen(comm)+1, sizeof(u64));
3396
3397 comm_event->comm = comm;
3398 comm_event->comm_size = size;
3399
3400 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3401
Peter Zijlstraf6595f32009-11-20 22:19:47 +01003402 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003403 cpuctx = &get_cpu_var(perf_cpu_context);
3404 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3405 put_cpu_var(perf_cpu_context);
3406
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003407 /*
3408 * doesn't really matter which of the child contexts the
3409 * events ends up in.
3410 */
3411 ctx = rcu_dereference(current->perf_event_ctxp);
3412 if (ctx)
3413 perf_event_comm_ctx(ctx, comm_event);
3414 rcu_read_unlock();
3415}
3416
3417void perf_event_comm(struct task_struct *task)
3418{
3419 struct perf_comm_event comm_event;
3420
3421 if (task->perf_event_ctxp)
3422 perf_event_enable_on_exec(task);
3423
3424 if (!atomic_read(&nr_comm_events))
3425 return;
3426
3427 comm_event = (struct perf_comm_event){
3428 .task = task,
3429 /* .comm */
3430 /* .comm_size */
3431 .event_id = {
3432 .header = {
3433 .type = PERF_RECORD_COMM,
3434 .misc = 0,
3435 /* .size */
3436 },
3437 /* .pid */
3438 /* .tid */
3439 },
3440 };
3441
3442 perf_event_comm_event(&comm_event);
3443}
3444
3445/*
3446 * mmap tracking
3447 */
3448
3449struct perf_mmap_event {
3450 struct vm_area_struct *vma;
3451
3452 const char *file_name;
3453 int file_size;
3454
3455 struct {
3456 struct perf_event_header header;
3457
3458 u32 pid;
3459 u32 tid;
3460 u64 start;
3461 u64 len;
3462 u64 pgoff;
3463 } event_id;
3464};
3465
3466static void perf_event_mmap_output(struct perf_event *event,
3467 struct perf_mmap_event *mmap_event)
3468{
3469 struct perf_output_handle handle;
3470 int size = mmap_event->event_id.header.size;
3471 int ret = perf_output_begin(&handle, event, size, 0, 0);
3472
3473 if (ret)
3474 return;
3475
3476 mmap_event->event_id.pid = perf_event_pid(event, current);
3477 mmap_event->event_id.tid = perf_event_tid(event, current);
3478
3479 perf_output_put(&handle, mmap_event->event_id);
3480 perf_output_copy(&handle, mmap_event->file_name,
3481 mmap_event->file_size);
3482 perf_output_end(&handle);
3483}
3484
3485static int perf_event_mmap_match(struct perf_event *event,
3486 struct perf_mmap_event *mmap_event)
3487{
3488 if (event->attr.mmap)
3489 return 1;
3490
3491 return 0;
3492}
3493
3494static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3495 struct perf_mmap_event *mmap_event)
3496{
3497 struct perf_event *event;
3498
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003499 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3500 if (perf_event_mmap_match(event, mmap_event))
3501 perf_event_mmap_output(event, mmap_event);
3502 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003503}
3504
3505static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3506{
3507 struct perf_cpu_context *cpuctx;
3508 struct perf_event_context *ctx;
3509 struct vm_area_struct *vma = mmap_event->vma;
3510 struct file *file = vma->vm_file;
3511 unsigned int size;
3512 char tmp[16];
3513 char *buf = NULL;
3514 const char *name;
3515
3516 memset(tmp, 0, sizeof(tmp));
3517
3518 if (file) {
3519 /*
3520 * d_path works from the end of the buffer backwards, so we
3521 * need to add enough zero bytes after the string to handle
3522 * the 64bit alignment we do later.
3523 */
3524 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3525 if (!buf) {
3526 name = strncpy(tmp, "//enomem", sizeof(tmp));
3527 goto got_name;
3528 }
3529 name = d_path(&file->f_path, buf, PATH_MAX);
3530 if (IS_ERR(name)) {
3531 name = strncpy(tmp, "//toolong", sizeof(tmp));
3532 goto got_name;
3533 }
3534 } else {
3535 if (arch_vma_name(mmap_event->vma)) {
3536 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3537 sizeof(tmp));
3538 goto got_name;
3539 }
3540
3541 if (!vma->vm_mm) {
3542 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3543 goto got_name;
3544 }
3545
3546 name = strncpy(tmp, "//anon", sizeof(tmp));
3547 goto got_name;
3548 }
3549
3550got_name:
3551 size = ALIGN(strlen(name)+1, sizeof(u64));
3552
3553 mmap_event->file_name = name;
3554 mmap_event->file_size = size;
3555
3556 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3557
Peter Zijlstraf6d9dd22009-11-20 22:19:48 +01003558 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003559 cpuctx = &get_cpu_var(perf_cpu_context);
3560 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3561 put_cpu_var(perf_cpu_context);
3562
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003563 /*
3564 * doesn't really matter which of the child contexts the
3565 * events ends up in.
3566 */
3567 ctx = rcu_dereference(current->perf_event_ctxp);
3568 if (ctx)
3569 perf_event_mmap_ctx(ctx, mmap_event);
3570 rcu_read_unlock();
3571
3572 kfree(buf);
3573}
3574
3575void __perf_event_mmap(struct vm_area_struct *vma)
3576{
3577 struct perf_mmap_event mmap_event;
3578
3579 if (!atomic_read(&nr_mmap_events))
3580 return;
3581
3582 mmap_event = (struct perf_mmap_event){
3583 .vma = vma,
3584 /* .file_name */
3585 /* .file_size */
3586 .event_id = {
3587 .header = {
3588 .type = PERF_RECORD_MMAP,
3589 .misc = 0,
3590 /* .size */
3591 },
3592 /* .pid */
3593 /* .tid */
3594 .start = vma->vm_start,
3595 .len = vma->vm_end - vma->vm_start,
3596 .pgoff = vma->vm_pgoff,
3597 },
3598 };
3599
3600 perf_event_mmap_event(&mmap_event);
3601}
3602
3603/*
3604 * IRQ throttle logging
3605 */
3606
3607static void perf_log_throttle(struct perf_event *event, int enable)
3608{
3609 struct perf_output_handle handle;
3610 int ret;
3611
3612 struct {
3613 struct perf_event_header header;
3614 u64 time;
3615 u64 id;
3616 u64 stream_id;
3617 } throttle_event = {
3618 .header = {
3619 .type = PERF_RECORD_THROTTLE,
3620 .misc = 0,
3621 .size = sizeof(throttle_event),
3622 },
3623 .time = perf_clock(),
3624 .id = primary_event_id(event),
3625 .stream_id = event->id,
3626 };
3627
3628 if (enable)
3629 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3630
3631 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3632 if (ret)
3633 return;
3634
3635 perf_output_put(&handle, throttle_event);
3636 perf_output_end(&handle);
3637}
3638
3639/*
3640 * Generic event overflow handling, sampling.
3641 */
3642
3643static int __perf_event_overflow(struct perf_event *event, int nmi,
3644 int throttle, struct perf_sample_data *data,
3645 struct pt_regs *regs)
3646{
3647 int events = atomic_read(&event->event_limit);
3648 struct hw_perf_event *hwc = &event->hw;
3649 int ret = 0;
3650
3651 throttle = (throttle && event->pmu->unthrottle != NULL);
3652
3653 if (!throttle) {
3654 hwc->interrupts++;
3655 } else {
3656 if (hwc->interrupts != MAX_INTERRUPTS) {
3657 hwc->interrupts++;
3658 if (HZ * hwc->interrupts >
3659 (u64)sysctl_perf_event_sample_rate) {
3660 hwc->interrupts = MAX_INTERRUPTS;
3661 perf_log_throttle(event, 0);
3662 ret = 1;
3663 }
3664 } else {
3665 /*
3666 * Keep re-disabling events even though on the previous
3667 * pass we disabled it - just in case we raced with a
3668 * sched-in and the event got enabled again:
3669 */
3670 ret = 1;
3671 }
3672 }
3673
3674 if (event->attr.freq) {
3675 u64 now = perf_clock();
3676 s64 delta = now - hwc->freq_stamp;
3677
3678 hwc->freq_stamp = now;
3679
3680 if (delta > 0 && delta < TICK_NSEC)
3681 perf_adjust_period(event, NSEC_PER_SEC / (int)delta);
3682 }
3683
3684 /*
3685 * XXX event_limit might not quite work as expected on inherited
3686 * events
3687 */
3688
3689 event->pending_kill = POLL_IN;
3690 if (events && atomic_dec_and_test(&event->event_limit)) {
3691 ret = 1;
3692 event->pending_kill = POLL_HUP;
3693 if (nmi) {
3694 event->pending_disable = 1;
3695 perf_pending_queue(&event->pending,
3696 perf_pending_event);
3697 } else
3698 perf_event_disable(event);
3699 }
3700
Peter Zijlstra453f19e2009-11-20 22:19:43 +01003701 if (event->overflow_handler)
3702 event->overflow_handler(event, nmi, data, regs);
3703 else
3704 perf_event_output(event, nmi, data, regs);
3705
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003706 return ret;
3707}
3708
3709int perf_event_overflow(struct perf_event *event, int nmi,
3710 struct perf_sample_data *data,
3711 struct pt_regs *regs)
3712{
3713 return __perf_event_overflow(event, nmi, 1, data, regs);
3714}
3715
3716/*
3717 * Generic software event infrastructure
3718 */
3719
3720/*
3721 * We directly increment event->count and keep a second value in
3722 * event->hw.period_left to count intervals. This period event
3723 * is kept in the range [-sample_period, 0] so that we can use the
3724 * sign as trigger.
3725 */
3726
3727static u64 perf_swevent_set_period(struct perf_event *event)
3728{
3729 struct hw_perf_event *hwc = &event->hw;
3730 u64 period = hwc->last_period;
3731 u64 nr, offset;
3732 s64 old, val;
3733
3734 hwc->last_period = hwc->sample_period;
3735
3736again:
3737 old = val = atomic64_read(&hwc->period_left);
3738 if (val < 0)
3739 return 0;
3740
3741 nr = div64_u64(period + val, period);
3742 offset = nr * period;
3743 val -= offset;
3744 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3745 goto again;
3746
3747 return nr;
3748}
3749
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003750static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003751 int nmi, struct perf_sample_data *data,
3752 struct pt_regs *regs)
3753{
3754 struct hw_perf_event *hwc = &event->hw;
3755 int throttle = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003756
3757 data->period = event->hw.last_period;
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003758 if (!overflow)
3759 overflow = perf_swevent_set_period(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003760
3761 if (hwc->interrupts == MAX_INTERRUPTS)
3762 return;
3763
3764 for (; overflow; overflow--) {
3765 if (__perf_event_overflow(event, nmi, throttle,
3766 data, regs)) {
3767 /*
3768 * We inhibit the overflow from happening when
3769 * hwc->interrupts == MAX_INTERRUPTS.
3770 */
3771 break;
3772 }
3773 throttle = 1;
3774 }
3775}
3776
3777static void perf_swevent_unthrottle(struct perf_event *event)
3778{
3779 /*
3780 * Nothing to do, we already reset hwc->interrupts.
3781 */
3782}
3783
3784static void perf_swevent_add(struct perf_event *event, u64 nr,
3785 int nmi, struct perf_sample_data *data,
3786 struct pt_regs *regs)
3787{
3788 struct hw_perf_event *hwc = &event->hw;
3789
3790 atomic64_add(nr, &event->count);
3791
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003792 if (!regs)
3793 return;
3794
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003795 if (!hwc->sample_period)
3796 return;
3797
3798 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3799 return perf_swevent_overflow(event, 1, nmi, data, regs);
3800
3801 if (atomic64_add_negative(nr, &hwc->period_left))
3802 return;
3803
3804 perf_swevent_overflow(event, 0, nmi, data, regs);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003805}
3806
3807static int perf_swevent_is_counting(struct perf_event *event)
3808{
3809 /*
3810 * The event is active, we're good!
3811 */
3812 if (event->state == PERF_EVENT_STATE_ACTIVE)
3813 return 1;
3814
3815 /*
3816 * The event is off/error, not counting.
3817 */
3818 if (event->state != PERF_EVENT_STATE_INACTIVE)
3819 return 0;
3820
3821 /*
3822 * The event is inactive, if the context is active
3823 * we're part of a group that didn't make it on the 'pmu',
3824 * not counting.
3825 */
3826 if (event->ctx->is_active)
3827 return 0;
3828
3829 /*
3830 * We're inactive and the context is too, this means the
3831 * task is scheduled out, we're counting events that happen
3832 * to us, like migration events.
3833 */
3834 return 1;
3835}
3836
Li Zefan6fb29152009-10-15 11:21:42 +08003837static int perf_tp_event_match(struct perf_event *event,
3838 struct perf_sample_data *data);
3839
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003840static int perf_swevent_match(struct perf_event *event,
3841 enum perf_type_id type,
Li Zefan6fb29152009-10-15 11:21:42 +08003842 u32 event_id,
3843 struct perf_sample_data *data,
3844 struct pt_regs *regs)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003845{
3846 if (!perf_swevent_is_counting(event))
3847 return 0;
3848
3849 if (event->attr.type != type)
3850 return 0;
3851 if (event->attr.config != event_id)
3852 return 0;
3853
3854 if (regs) {
3855 if (event->attr.exclude_user && user_mode(regs))
3856 return 0;
3857
3858 if (event->attr.exclude_kernel && !user_mode(regs))
3859 return 0;
3860 }
3861
Li Zefan6fb29152009-10-15 11:21:42 +08003862 if (event->attr.type == PERF_TYPE_TRACEPOINT &&
3863 !perf_tp_event_match(event, data))
3864 return 0;
3865
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003866 return 1;
3867}
3868
3869static void perf_swevent_ctx_event(struct perf_event_context *ctx,
3870 enum perf_type_id type,
3871 u32 event_id, u64 nr, int nmi,
3872 struct perf_sample_data *data,
3873 struct pt_regs *regs)
3874{
3875 struct perf_event *event;
3876
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003877 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
Li Zefan6fb29152009-10-15 11:21:42 +08003878 if (perf_swevent_match(event, type, event_id, data, regs))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003879 perf_swevent_add(event, nr, nmi, data, regs);
3880 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003881}
3882
3883static int *perf_swevent_recursion_context(struct perf_cpu_context *cpuctx)
3884{
3885 if (in_nmi())
3886 return &cpuctx->recursion[3];
3887
3888 if (in_irq())
3889 return &cpuctx->recursion[2];
3890
3891 if (in_softirq())
3892 return &cpuctx->recursion[1];
3893
3894 return &cpuctx->recursion[0];
3895}
3896
3897static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
3898 u64 nr, int nmi,
3899 struct perf_sample_data *data,
3900 struct pt_regs *regs)
3901{
3902 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3903 int *recursion = perf_swevent_recursion_context(cpuctx);
3904 struct perf_event_context *ctx;
3905
3906 if (*recursion)
3907 goto out;
3908
3909 (*recursion)++;
3910 barrier();
3911
Peter Zijlstra81520182009-11-20 22:19:45 +01003912 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003913 perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
3914 nr, nmi, data, regs);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003915 /*
3916 * doesn't really matter which of the child contexts the
3917 * events ends up in.
3918 */
3919 ctx = rcu_dereference(current->perf_event_ctxp);
3920 if (ctx)
3921 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
3922 rcu_read_unlock();
3923
3924 barrier();
3925 (*recursion)--;
3926
3927out:
3928 put_cpu_var(perf_cpu_context);
3929}
3930
3931void __perf_sw_event(u32 event_id, u64 nr, int nmi,
3932 struct pt_regs *regs, u64 addr)
3933{
3934 struct perf_sample_data data = {
3935 .addr = addr,
3936 };
3937
3938 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi,
3939 &data, regs);
3940}
3941
3942static void perf_swevent_read(struct perf_event *event)
3943{
3944}
3945
3946static int perf_swevent_enable(struct perf_event *event)
3947{
3948 struct hw_perf_event *hwc = &event->hw;
3949
3950 if (hwc->sample_period) {
3951 hwc->last_period = hwc->sample_period;
3952 perf_swevent_set_period(event);
3953 }
3954 return 0;
3955}
3956
3957static void perf_swevent_disable(struct perf_event *event)
3958{
3959}
3960
3961static const struct pmu perf_ops_generic = {
3962 .enable = perf_swevent_enable,
3963 .disable = perf_swevent_disable,
3964 .read = perf_swevent_read,
3965 .unthrottle = perf_swevent_unthrottle,
3966};
3967
3968/*
3969 * hrtimer based swevent callback
3970 */
3971
3972static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
3973{
3974 enum hrtimer_restart ret = HRTIMER_RESTART;
3975 struct perf_sample_data data;
3976 struct pt_regs *regs;
3977 struct perf_event *event;
3978 u64 period;
3979
3980 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
3981 event->pmu->read(event);
3982
3983 data.addr = 0;
3984 regs = get_irq_regs();
3985 /*
3986 * In case we exclude kernel IPs or are somehow not in interrupt
3987 * context, provide the next best thing, the user IP.
3988 */
3989 if ((event->attr.exclude_kernel || !regs) &&
3990 !event->attr.exclude_user)
3991 regs = task_pt_regs(current);
3992
3993 if (regs) {
Soeren Sandmann54f44072009-10-22 18:34:08 +02003994 if (!(event->attr.exclude_idle && current->pid == 0))
3995 if (perf_event_overflow(event, 0, &data, regs))
3996 ret = HRTIMER_NORESTART;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003997 }
3998
3999 period = max_t(u64, 10000, event->hw.sample_period);
4000 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4001
4002 return ret;
4003}
4004
Soeren Sandmann721a6692009-09-15 14:33:08 +02004005static void perf_swevent_start_hrtimer(struct perf_event *event)
4006{
4007 struct hw_perf_event *hwc = &event->hw;
4008
4009 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4010 hwc->hrtimer.function = perf_swevent_hrtimer;
4011 if (hwc->sample_period) {
4012 u64 period;
4013
4014 if (hwc->remaining) {
4015 if (hwc->remaining < 0)
4016 period = 10000;
4017 else
4018 period = hwc->remaining;
4019 hwc->remaining = 0;
4020 } else {
4021 period = max_t(u64, 10000, hwc->sample_period);
4022 }
4023 __hrtimer_start_range_ns(&hwc->hrtimer,
4024 ns_to_ktime(period), 0,
4025 HRTIMER_MODE_REL, 0);
4026 }
4027}
4028
4029static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4030{
4031 struct hw_perf_event *hwc = &event->hw;
4032
4033 if (hwc->sample_period) {
4034 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4035 hwc->remaining = ktime_to_ns(remaining);
4036
4037 hrtimer_cancel(&hwc->hrtimer);
4038 }
4039}
4040
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004041/*
4042 * Software event: cpu wall time clock
4043 */
4044
4045static void cpu_clock_perf_event_update(struct perf_event *event)
4046{
4047 int cpu = raw_smp_processor_id();
4048 s64 prev;
4049 u64 now;
4050
4051 now = cpu_clock(cpu);
4052 prev = atomic64_read(&event->hw.prev_count);
4053 atomic64_set(&event->hw.prev_count, now);
4054 atomic64_add(now - prev, &event->count);
4055}
4056
4057static int cpu_clock_perf_event_enable(struct perf_event *event)
4058{
4059 struct hw_perf_event *hwc = &event->hw;
4060 int cpu = raw_smp_processor_id();
4061
4062 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
Soeren Sandmann721a6692009-09-15 14:33:08 +02004063 perf_swevent_start_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004064
4065 return 0;
4066}
4067
4068static void cpu_clock_perf_event_disable(struct perf_event *event)
4069{
Soeren Sandmann721a6692009-09-15 14:33:08 +02004070 perf_swevent_cancel_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004071 cpu_clock_perf_event_update(event);
4072}
4073
4074static void cpu_clock_perf_event_read(struct perf_event *event)
4075{
4076 cpu_clock_perf_event_update(event);
4077}
4078
4079static const struct pmu perf_ops_cpu_clock = {
4080 .enable = cpu_clock_perf_event_enable,
4081 .disable = cpu_clock_perf_event_disable,
4082 .read = cpu_clock_perf_event_read,
4083};
4084
4085/*
4086 * Software event: task time clock
4087 */
4088
4089static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4090{
4091 u64 prev;
4092 s64 delta;
4093
4094 prev = atomic64_xchg(&event->hw.prev_count, now);
4095 delta = now - prev;
4096 atomic64_add(delta, &event->count);
4097}
4098
4099static int task_clock_perf_event_enable(struct perf_event *event)
4100{
4101 struct hw_perf_event *hwc = &event->hw;
4102 u64 now;
4103
4104 now = event->ctx->time;
4105
4106 atomic64_set(&hwc->prev_count, now);
Soeren Sandmann721a6692009-09-15 14:33:08 +02004107
4108 perf_swevent_start_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004109
4110 return 0;
4111}
4112
4113static void task_clock_perf_event_disable(struct perf_event *event)
4114{
Soeren Sandmann721a6692009-09-15 14:33:08 +02004115 perf_swevent_cancel_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004116 task_clock_perf_event_update(event, event->ctx->time);
4117
4118}
4119
4120static void task_clock_perf_event_read(struct perf_event *event)
4121{
4122 u64 time;
4123
4124 if (!in_nmi()) {
4125 update_context_time(event->ctx);
4126 time = event->ctx->time;
4127 } else {
4128 u64 now = perf_clock();
4129 u64 delta = now - event->ctx->timestamp;
4130 time = event->ctx->time + delta;
4131 }
4132
4133 task_clock_perf_event_update(event, time);
4134}
4135
4136static const struct pmu perf_ops_task_clock = {
4137 .enable = task_clock_perf_event_enable,
4138 .disable = task_clock_perf_event_disable,
4139 .read = task_clock_perf_event_read,
4140};
4141
4142#ifdef CONFIG_EVENT_PROFILE
Li Zefan6fb29152009-10-15 11:21:42 +08004143
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004144void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4145 int entry_size)
4146{
4147 struct perf_raw_record raw = {
4148 .size = entry_size,
4149 .data = record,
4150 };
4151
4152 struct perf_sample_data data = {
4153 .addr = addr,
4154 .raw = &raw,
4155 };
4156
4157 struct pt_regs *regs = get_irq_regs();
4158
4159 if (!regs)
4160 regs = task_pt_regs(current);
4161
4162 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4163 &data, regs);
4164}
4165EXPORT_SYMBOL_GPL(perf_tp_event);
4166
Li Zefan6fb29152009-10-15 11:21:42 +08004167static int perf_tp_event_match(struct perf_event *event,
4168 struct perf_sample_data *data)
4169{
4170 void *record = data->raw->data;
4171
4172 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4173 return 1;
4174 return 0;
4175}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004176
4177static void tp_perf_event_destroy(struct perf_event *event)
4178{
4179 ftrace_profile_disable(event->attr.config);
4180}
4181
4182static const struct pmu *tp_perf_event_init(struct perf_event *event)
4183{
4184 /*
4185 * Raw tracepoint data is a severe data leak, only allow root to
4186 * have these.
4187 */
4188 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4189 perf_paranoid_tracepoint_raw() &&
4190 !capable(CAP_SYS_ADMIN))
4191 return ERR_PTR(-EPERM);
4192
4193 if (ftrace_profile_enable(event->attr.config))
4194 return NULL;
4195
4196 event->destroy = tp_perf_event_destroy;
4197
4198 return &perf_ops_generic;
4199}
Li Zefan6fb29152009-10-15 11:21:42 +08004200
4201static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4202{
4203 char *filter_str;
4204 int ret;
4205
4206 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4207 return -EINVAL;
4208
4209 filter_str = strndup_user(arg, PAGE_SIZE);
4210 if (IS_ERR(filter_str))
4211 return PTR_ERR(filter_str);
4212
4213 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4214
4215 kfree(filter_str);
4216 return ret;
4217}
4218
4219static void perf_event_free_filter(struct perf_event *event)
4220{
4221 ftrace_profile_free_filter(event);
4222}
4223
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004224#else
Li Zefan6fb29152009-10-15 11:21:42 +08004225
4226static int perf_tp_event_match(struct perf_event *event,
4227 struct perf_sample_data *data)
4228{
4229 return 1;
4230}
4231
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004232static const struct pmu *tp_perf_event_init(struct perf_event *event)
4233{
4234 return NULL;
4235}
Li Zefan6fb29152009-10-15 11:21:42 +08004236
4237static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4238{
4239 return -ENOENT;
4240}
4241
4242static void perf_event_free_filter(struct perf_event *event)
4243{
4244}
4245
4246#endif /* CONFIG_EVENT_PROFILE */
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004247
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004248#ifdef CONFIG_HAVE_HW_BREAKPOINT
4249static void bp_perf_event_destroy(struct perf_event *event)
4250{
4251 release_bp_slot(event);
4252}
4253
4254static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4255{
4256 int err;
4257 /*
4258 * The breakpoint is already filled if we haven't created the counter
4259 * through perf syscall
4260 * FIXME: manage to get trigerred to NULL if it comes from syscalls
4261 */
4262 if (!bp->callback)
4263 err = register_perf_hw_breakpoint(bp);
4264 else
4265 err = __register_perf_hw_breakpoint(bp);
4266 if (err)
4267 return ERR_PTR(err);
4268
4269 bp->destroy = bp_perf_event_destroy;
4270
4271 return &perf_ops_bp;
4272}
4273
4274void perf_bp_event(struct perf_event *bp, void *regs)
4275{
4276 /* TODO */
4277}
4278#else
4279static void bp_perf_event_destroy(struct perf_event *event)
4280{
4281}
4282
4283static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4284{
4285 return NULL;
4286}
4287
4288void perf_bp_event(struct perf_event *bp, void *regs)
4289{
4290}
4291#endif
4292
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004293atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4294
4295static void sw_perf_event_destroy(struct perf_event *event)
4296{
4297 u64 event_id = event->attr.config;
4298
4299 WARN_ON(event->parent);
4300
4301 atomic_dec(&perf_swevent_enabled[event_id]);
4302}
4303
4304static const struct pmu *sw_perf_event_init(struct perf_event *event)
4305{
4306 const struct pmu *pmu = NULL;
4307 u64 event_id = event->attr.config;
4308
4309 /*
4310 * Software events (currently) can't in general distinguish
4311 * between user, kernel and hypervisor events.
4312 * However, context switches and cpu migrations are considered
4313 * to be kernel events, and page faults are never hypervisor
4314 * events.
4315 */
4316 switch (event_id) {
4317 case PERF_COUNT_SW_CPU_CLOCK:
4318 pmu = &perf_ops_cpu_clock;
4319
4320 break;
4321 case PERF_COUNT_SW_TASK_CLOCK:
4322 /*
4323 * If the user instantiates this as a per-cpu event,
4324 * use the cpu_clock event instead.
4325 */
4326 if (event->ctx->task)
4327 pmu = &perf_ops_task_clock;
4328 else
4329 pmu = &perf_ops_cpu_clock;
4330
4331 break;
4332 case PERF_COUNT_SW_PAGE_FAULTS:
4333 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4334 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4335 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4336 case PERF_COUNT_SW_CPU_MIGRATIONS:
Anton Blanchardf7d79862009-10-18 01:09:29 +00004337 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4338 case PERF_COUNT_SW_EMULATION_FAULTS:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004339 if (!event->parent) {
4340 atomic_inc(&perf_swevent_enabled[event_id]);
4341 event->destroy = sw_perf_event_destroy;
4342 }
4343 pmu = &perf_ops_generic;
4344 break;
4345 }
4346
4347 return pmu;
4348}
4349
4350/*
4351 * Allocate and initialize a event structure
4352 */
4353static struct perf_event *
4354perf_event_alloc(struct perf_event_attr *attr,
4355 int cpu,
4356 struct perf_event_context *ctx,
4357 struct perf_event *group_leader,
4358 struct perf_event *parent_event,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004359 perf_callback_t callback,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004360 gfp_t gfpflags)
4361{
4362 const struct pmu *pmu;
4363 struct perf_event *event;
4364 struct hw_perf_event *hwc;
4365 long err;
4366
4367 event = kzalloc(sizeof(*event), gfpflags);
4368 if (!event)
4369 return ERR_PTR(-ENOMEM);
4370
4371 /*
4372 * Single events are their own group leaders, with an
4373 * empty sibling list:
4374 */
4375 if (!group_leader)
4376 group_leader = event;
4377
4378 mutex_init(&event->child_mutex);
4379 INIT_LIST_HEAD(&event->child_list);
4380
4381 INIT_LIST_HEAD(&event->group_entry);
4382 INIT_LIST_HEAD(&event->event_entry);
4383 INIT_LIST_HEAD(&event->sibling_list);
4384 init_waitqueue_head(&event->waitq);
4385
4386 mutex_init(&event->mmap_mutex);
4387
4388 event->cpu = cpu;
4389 event->attr = *attr;
4390 event->group_leader = group_leader;
4391 event->pmu = NULL;
4392 event->ctx = ctx;
4393 event->oncpu = -1;
4394
4395 event->parent = parent_event;
4396
4397 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4398 event->id = atomic64_inc_return(&perf_event_id);
4399
4400 event->state = PERF_EVENT_STATE_INACTIVE;
4401
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004402 if (!callback && parent_event)
4403 callback = parent_event->callback;
4404
4405 event->callback = callback;
4406
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004407 if (attr->disabled)
4408 event->state = PERF_EVENT_STATE_OFF;
4409
4410 pmu = NULL;
4411
4412 hwc = &event->hw;
4413 hwc->sample_period = attr->sample_period;
4414 if (attr->freq && attr->sample_freq)
4415 hwc->sample_period = 1;
4416 hwc->last_period = hwc->sample_period;
4417
4418 atomic64_set(&hwc->period_left, hwc->sample_period);
4419
4420 /*
4421 * we currently do not support PERF_FORMAT_GROUP on inherited events
4422 */
4423 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4424 goto done;
4425
4426 switch (attr->type) {
4427 case PERF_TYPE_RAW:
4428 case PERF_TYPE_HARDWARE:
4429 case PERF_TYPE_HW_CACHE:
4430 pmu = hw_perf_event_init(event);
4431 break;
4432
4433 case PERF_TYPE_SOFTWARE:
4434 pmu = sw_perf_event_init(event);
4435 break;
4436
4437 case PERF_TYPE_TRACEPOINT:
4438 pmu = tp_perf_event_init(event);
4439 break;
4440
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004441 case PERF_TYPE_BREAKPOINT:
4442 pmu = bp_perf_event_init(event);
4443 break;
4444
4445
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004446 default:
4447 break;
4448 }
4449done:
4450 err = 0;
4451 if (!pmu)
4452 err = -EINVAL;
4453 else if (IS_ERR(pmu))
4454 err = PTR_ERR(pmu);
4455
4456 if (err) {
4457 if (event->ns)
4458 put_pid_ns(event->ns);
4459 kfree(event);
4460 return ERR_PTR(err);
4461 }
4462
4463 event->pmu = pmu;
4464
4465 if (!event->parent) {
4466 atomic_inc(&nr_events);
4467 if (event->attr.mmap)
4468 atomic_inc(&nr_mmap_events);
4469 if (event->attr.comm)
4470 atomic_inc(&nr_comm_events);
4471 if (event->attr.task)
4472 atomic_inc(&nr_task_events);
4473 }
4474
4475 return event;
4476}
4477
4478static int perf_copy_attr(struct perf_event_attr __user *uattr,
4479 struct perf_event_attr *attr)
4480{
4481 u32 size;
4482 int ret;
4483
4484 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4485 return -EFAULT;
4486
4487 /*
4488 * zero the full structure, so that a short copy will be nice.
4489 */
4490 memset(attr, 0, sizeof(*attr));
4491
4492 ret = get_user(size, &uattr->size);
4493 if (ret)
4494 return ret;
4495
4496 if (size > PAGE_SIZE) /* silly large */
4497 goto err_size;
4498
4499 if (!size) /* abi compat */
4500 size = PERF_ATTR_SIZE_VER0;
4501
4502 if (size < PERF_ATTR_SIZE_VER0)
4503 goto err_size;
4504
4505 /*
4506 * If we're handed a bigger struct than we know of,
4507 * ensure all the unknown bits are 0 - i.e. new
4508 * user-space does not rely on any kernel feature
4509 * extensions we dont know about yet.
4510 */
4511 if (size > sizeof(*attr)) {
4512 unsigned char __user *addr;
4513 unsigned char __user *end;
4514 unsigned char val;
4515
4516 addr = (void __user *)uattr + sizeof(*attr);
4517 end = (void __user *)uattr + size;
4518
4519 for (; addr < end; addr++) {
4520 ret = get_user(val, addr);
4521 if (ret)
4522 return ret;
4523 if (val)
4524 goto err_size;
4525 }
4526 size = sizeof(*attr);
4527 }
4528
4529 ret = copy_from_user(attr, uattr, size);
4530 if (ret)
4531 return -EFAULT;
4532
4533 /*
4534 * If the type exists, the corresponding creation will verify
4535 * the attr->config.
4536 */
4537 if (attr->type >= PERF_TYPE_MAX)
4538 return -EINVAL;
4539
4540 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
4541 return -EINVAL;
4542
4543 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4544 return -EINVAL;
4545
4546 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4547 return -EINVAL;
4548
4549out:
4550 return ret;
4551
4552err_size:
4553 put_user(sizeof(*attr), &uattr->size);
4554 ret = -E2BIG;
4555 goto out;
4556}
4557
Li Zefan6fb29152009-10-15 11:21:42 +08004558static int perf_event_set_output(struct perf_event *event, int output_fd)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004559{
4560 struct perf_event *output_event = NULL;
4561 struct file *output_file = NULL;
4562 struct perf_event *old_output;
4563 int fput_needed = 0;
4564 int ret = -EINVAL;
4565
4566 if (!output_fd)
4567 goto set;
4568
4569 output_file = fget_light(output_fd, &fput_needed);
4570 if (!output_file)
4571 return -EBADF;
4572
4573 if (output_file->f_op != &perf_fops)
4574 goto out;
4575
4576 output_event = output_file->private_data;
4577
4578 /* Don't chain output fds */
4579 if (output_event->output)
4580 goto out;
4581
4582 /* Don't set an output fd when we already have an output channel */
4583 if (event->data)
4584 goto out;
4585
4586 atomic_long_inc(&output_file->f_count);
4587
4588set:
4589 mutex_lock(&event->mmap_mutex);
4590 old_output = event->output;
4591 rcu_assign_pointer(event->output, output_event);
4592 mutex_unlock(&event->mmap_mutex);
4593
4594 if (old_output) {
4595 /*
4596 * we need to make sure no existing perf_output_*()
4597 * is still referencing this event.
4598 */
4599 synchronize_rcu();
4600 fput(old_output->filp);
4601 }
4602
4603 ret = 0;
4604out:
4605 fput_light(output_file, fput_needed);
4606 return ret;
4607}
4608
4609/**
4610 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4611 *
4612 * @attr_uptr: event_id type attributes for monitoring/sampling
4613 * @pid: target pid
4614 * @cpu: target cpu
4615 * @group_fd: group leader event fd
4616 */
4617SYSCALL_DEFINE5(perf_event_open,
4618 struct perf_event_attr __user *, attr_uptr,
4619 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4620{
4621 struct perf_event *event, *group_leader;
4622 struct perf_event_attr attr;
4623 struct perf_event_context *ctx;
4624 struct file *event_file = NULL;
4625 struct file *group_file = NULL;
4626 int fput_needed = 0;
4627 int fput_needed2 = 0;
4628 int err;
4629
4630 /* for future expandability... */
4631 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4632 return -EINVAL;
4633
4634 err = perf_copy_attr(attr_uptr, &attr);
4635 if (err)
4636 return err;
4637
4638 if (!attr.exclude_kernel) {
4639 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4640 return -EACCES;
4641 }
4642
4643 if (attr.freq) {
4644 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4645 return -EINVAL;
4646 }
4647
4648 /*
4649 * Get the target context (task or percpu):
4650 */
4651 ctx = find_get_context(pid, cpu);
4652 if (IS_ERR(ctx))
4653 return PTR_ERR(ctx);
4654
4655 /*
4656 * Look up the group leader (we will attach this event to it):
4657 */
4658 group_leader = NULL;
4659 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4660 err = -EINVAL;
4661 group_file = fget_light(group_fd, &fput_needed);
4662 if (!group_file)
4663 goto err_put_context;
4664 if (group_file->f_op != &perf_fops)
4665 goto err_put_context;
4666
4667 group_leader = group_file->private_data;
4668 /*
4669 * Do not allow a recursive hierarchy (this new sibling
4670 * becoming part of another group-sibling):
4671 */
4672 if (group_leader->group_leader != group_leader)
4673 goto err_put_context;
4674 /*
4675 * Do not allow to attach to a group in a different
4676 * task or CPU context:
4677 */
4678 if (group_leader->ctx != ctx)
4679 goto err_put_context;
4680 /*
4681 * Only a group leader can be exclusive or pinned
4682 */
4683 if (attr.exclusive || attr.pinned)
4684 goto err_put_context;
4685 }
4686
4687 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004688 NULL, NULL, GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004689 err = PTR_ERR(event);
4690 if (IS_ERR(event))
4691 goto err_put_context;
4692
4693 err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0);
4694 if (err < 0)
4695 goto err_free_put_context;
4696
4697 event_file = fget_light(err, &fput_needed2);
4698 if (!event_file)
4699 goto err_free_put_context;
4700
4701 if (flags & PERF_FLAG_FD_OUTPUT) {
4702 err = perf_event_set_output(event, group_fd);
4703 if (err)
4704 goto err_fput_free_put_context;
4705 }
4706
4707 event->filp = event_file;
4708 WARN_ON_ONCE(ctx->parent_ctx);
4709 mutex_lock(&ctx->mutex);
4710 perf_install_in_context(ctx, event, cpu);
4711 ++ctx->generation;
4712 mutex_unlock(&ctx->mutex);
4713
4714 event->owner = current;
4715 get_task_struct(current);
4716 mutex_lock(&current->perf_event_mutex);
4717 list_add_tail(&event->owner_entry, &current->perf_event_list);
4718 mutex_unlock(&current->perf_event_mutex);
4719
4720err_fput_free_put_context:
4721 fput_light(event_file, fput_needed2);
4722
4723err_free_put_context:
4724 if (err < 0)
4725 kfree(event);
4726
4727err_put_context:
4728 if (err < 0)
4729 put_ctx(ctx);
4730
4731 fput_light(group_file, fput_needed);
4732
4733 return err;
4734}
4735
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004736/**
4737 * perf_event_create_kernel_counter
4738 *
4739 * @attr: attributes of the counter to create
4740 * @cpu: cpu in which the counter is bound
4741 * @pid: task to profile
4742 */
4743struct perf_event *
4744perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004745 pid_t pid, perf_callback_t callback)
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004746{
4747 struct perf_event *event;
4748 struct perf_event_context *ctx;
4749 int err;
4750
4751 /*
4752 * Get the target context (task or percpu):
4753 */
4754
4755 ctx = find_get_context(pid, cpu);
4756 if (IS_ERR(ctx))
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004757 return NULL;
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004758
4759 event = perf_event_alloc(attr, cpu, ctx, NULL,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004760 NULL, callback, GFP_KERNEL);
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004761 err = PTR_ERR(event);
4762 if (IS_ERR(event))
4763 goto err_put_context;
4764
4765 event->filp = NULL;
4766 WARN_ON_ONCE(ctx->parent_ctx);
4767 mutex_lock(&ctx->mutex);
4768 perf_install_in_context(ctx, event, cpu);
4769 ++ctx->generation;
4770 mutex_unlock(&ctx->mutex);
4771
4772 event->owner = current;
4773 get_task_struct(current);
4774 mutex_lock(&current->perf_event_mutex);
4775 list_add_tail(&event->owner_entry, &current->perf_event_list);
4776 mutex_unlock(&current->perf_event_mutex);
4777
4778 return event;
4779
4780err_put_context:
4781 if (err < 0)
4782 put_ctx(ctx);
4783
4784 return NULL;
4785}
4786EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
4787
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004788/*
4789 * inherit a event from parent task to child task:
4790 */
4791static struct perf_event *
4792inherit_event(struct perf_event *parent_event,
4793 struct task_struct *parent,
4794 struct perf_event_context *parent_ctx,
4795 struct task_struct *child,
4796 struct perf_event *group_leader,
4797 struct perf_event_context *child_ctx)
4798{
4799 struct perf_event *child_event;
4800
4801 /*
4802 * Instead of creating recursive hierarchies of events,
4803 * we link inherited events back to the original parent,
4804 * which has a filp for sure, which we use as the reference
4805 * count:
4806 */
4807 if (parent_event->parent)
4808 parent_event = parent_event->parent;
4809
4810 child_event = perf_event_alloc(&parent_event->attr,
4811 parent_event->cpu, child_ctx,
4812 group_leader, parent_event,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004813 NULL, GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004814 if (IS_ERR(child_event))
4815 return child_event;
4816 get_ctx(child_ctx);
4817
4818 /*
4819 * Make the child state follow the state of the parent event,
4820 * not its attr.disabled bit. We hold the parent's mutex,
4821 * so we won't race with perf_event_{en, dis}able_family.
4822 */
4823 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
4824 child_event->state = PERF_EVENT_STATE_INACTIVE;
4825 else
4826 child_event->state = PERF_EVENT_STATE_OFF;
4827
4828 if (parent_event->attr.freq)
4829 child_event->hw.sample_period = parent_event->hw.sample_period;
4830
Peter Zijlstra453f19e2009-11-20 22:19:43 +01004831 child_event->overflow_handler = parent_event->overflow_handler;
4832
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004833 /*
4834 * Link it up in the child's context:
4835 */
4836 add_event_to_ctx(child_event, child_ctx);
4837
4838 /*
4839 * Get a reference to the parent filp - we will fput it
4840 * when the child event exits. This is safe to do because
4841 * we are in the parent and we know that the filp still
4842 * exists and has a nonzero count:
4843 */
4844 atomic_long_inc(&parent_event->filp->f_count);
4845
4846 /*
4847 * Link this into the parent event's child list
4848 */
4849 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4850 mutex_lock(&parent_event->child_mutex);
4851 list_add_tail(&child_event->child_list, &parent_event->child_list);
4852 mutex_unlock(&parent_event->child_mutex);
4853
4854 return child_event;
4855}
4856
4857static int inherit_group(struct perf_event *parent_event,
4858 struct task_struct *parent,
4859 struct perf_event_context *parent_ctx,
4860 struct task_struct *child,
4861 struct perf_event_context *child_ctx)
4862{
4863 struct perf_event *leader;
4864 struct perf_event *sub;
4865 struct perf_event *child_ctr;
4866
4867 leader = inherit_event(parent_event, parent, parent_ctx,
4868 child, NULL, child_ctx);
4869 if (IS_ERR(leader))
4870 return PTR_ERR(leader);
4871 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
4872 child_ctr = inherit_event(sub, parent, parent_ctx,
4873 child, leader, child_ctx);
4874 if (IS_ERR(child_ctr))
4875 return PTR_ERR(child_ctr);
4876 }
4877 return 0;
4878}
4879
4880static void sync_child_event(struct perf_event *child_event,
4881 struct task_struct *child)
4882{
4883 struct perf_event *parent_event = child_event->parent;
4884 u64 child_val;
4885
4886 if (child_event->attr.inherit_stat)
4887 perf_event_read_event(child_event, child);
4888
4889 child_val = atomic64_read(&child_event->count);
4890
4891 /*
4892 * Add back the child's count to the parent's count:
4893 */
4894 atomic64_add(child_val, &parent_event->count);
4895 atomic64_add(child_event->total_time_enabled,
4896 &parent_event->child_total_time_enabled);
4897 atomic64_add(child_event->total_time_running,
4898 &parent_event->child_total_time_running);
4899
4900 /*
4901 * Remove this event from the parent's list
4902 */
4903 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4904 mutex_lock(&parent_event->child_mutex);
4905 list_del_init(&child_event->child_list);
4906 mutex_unlock(&parent_event->child_mutex);
4907
4908 /*
4909 * Release the parent event, if this was the last
4910 * reference to it.
4911 */
4912 fput(parent_event->filp);
4913}
4914
4915static void
4916__perf_event_exit_task(struct perf_event *child_event,
4917 struct perf_event_context *child_ctx,
4918 struct task_struct *child)
4919{
4920 struct perf_event *parent_event;
4921
4922 update_event_times(child_event);
4923 perf_event_remove_from_context(child_event);
4924
4925 parent_event = child_event->parent;
4926 /*
4927 * It can happen that parent exits first, and has events
4928 * that are still around due to the child reference. These
4929 * events need to be zapped - but otherwise linger.
4930 */
4931 if (parent_event) {
4932 sync_child_event(child_event, child);
4933 free_event(child_event);
4934 }
4935}
4936
4937/*
4938 * When a child task exits, feed back event values to parent events.
4939 */
4940void perf_event_exit_task(struct task_struct *child)
4941{
4942 struct perf_event *child_event, *tmp;
4943 struct perf_event_context *child_ctx;
4944 unsigned long flags;
4945
4946 if (likely(!child->perf_event_ctxp)) {
4947 perf_event_task(child, NULL, 0);
4948 return;
4949 }
4950
4951 local_irq_save(flags);
4952 /*
4953 * We can't reschedule here because interrupts are disabled,
4954 * and either child is current or it is a task that can't be
4955 * scheduled, so we are now safe from rescheduling changing
4956 * our context.
4957 */
4958 child_ctx = child->perf_event_ctxp;
4959 __perf_event_task_sched_out(child_ctx);
4960
4961 /*
4962 * Take the context lock here so that if find_get_context is
4963 * reading child->perf_event_ctxp, we wait until it has
4964 * incremented the context's refcount before we do put_ctx below.
4965 */
4966 spin_lock(&child_ctx->lock);
4967 child->perf_event_ctxp = NULL;
4968 /*
4969 * If this context is a clone; unclone it so it can't get
4970 * swapped to another process while we're removing all
4971 * the events from it.
4972 */
4973 unclone_ctx(child_ctx);
4974 spin_unlock_irqrestore(&child_ctx->lock, flags);
4975
4976 /*
4977 * Report the task dead after unscheduling the events so that we
4978 * won't get any samples after PERF_RECORD_EXIT. We can however still
4979 * get a few PERF_RECORD_READ events.
4980 */
4981 perf_event_task(child, child_ctx, 0);
4982
4983 /*
4984 * We can recurse on the same lock type through:
4985 *
4986 * __perf_event_exit_task()
4987 * sync_child_event()
4988 * fput(parent_event->filp)
4989 * perf_release()
4990 * mutex_lock(&ctx->mutex)
4991 *
4992 * But since its the parent context it won't be the same instance.
4993 */
4994 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
4995
4996again:
4997 list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list,
4998 group_entry)
4999 __perf_event_exit_task(child_event, child_ctx, child);
5000
5001 /*
5002 * If the last event was a group event, it will have appended all
5003 * its siblings to the list, but we obtained 'tmp' before that which
5004 * will still point to the list head terminating the iteration.
5005 */
5006 if (!list_empty(&child_ctx->group_list))
5007 goto again;
5008
5009 mutex_unlock(&child_ctx->mutex);
5010
5011 put_ctx(child_ctx);
5012}
5013
5014/*
5015 * free an unexposed, unused context as created by inheritance by
5016 * init_task below, used by fork() in case of fail.
5017 */
5018void perf_event_free_task(struct task_struct *task)
5019{
5020 struct perf_event_context *ctx = task->perf_event_ctxp;
5021 struct perf_event *event, *tmp;
5022
5023 if (!ctx)
5024 return;
5025
5026 mutex_lock(&ctx->mutex);
5027again:
5028 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) {
5029 struct perf_event *parent = event->parent;
5030
5031 if (WARN_ON_ONCE(!parent))
5032 continue;
5033
5034 mutex_lock(&parent->child_mutex);
5035 list_del_init(&event->child_list);
5036 mutex_unlock(&parent->child_mutex);
5037
5038 fput(parent->filp);
5039
5040 list_del_event(event, ctx);
5041 free_event(event);
5042 }
5043
5044 if (!list_empty(&ctx->group_list))
5045 goto again;
5046
5047 mutex_unlock(&ctx->mutex);
5048
5049 put_ctx(ctx);
5050}
5051
5052/*
5053 * Initialize the perf_event context in task_struct
5054 */
5055int perf_event_init_task(struct task_struct *child)
5056{
5057 struct perf_event_context *child_ctx, *parent_ctx;
5058 struct perf_event_context *cloned_ctx;
5059 struct perf_event *event;
5060 struct task_struct *parent = current;
5061 int inherited_all = 1;
5062 int ret = 0;
5063
5064 child->perf_event_ctxp = NULL;
5065
5066 mutex_init(&child->perf_event_mutex);
5067 INIT_LIST_HEAD(&child->perf_event_list);
5068
5069 if (likely(!parent->perf_event_ctxp))
5070 return 0;
5071
5072 /*
5073 * This is executed from the parent task context, so inherit
5074 * events that have been marked for cloning.
5075 * First allocate and initialize a context for the child.
5076 */
5077
5078 child_ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
5079 if (!child_ctx)
5080 return -ENOMEM;
5081
5082 __perf_event_init_context(child_ctx, child);
5083 child->perf_event_ctxp = child_ctx;
5084 get_task_struct(child);
5085
5086 /*
5087 * If the parent's context is a clone, pin it so it won't get
5088 * swapped under us.
5089 */
5090 parent_ctx = perf_pin_task_context(parent);
5091
5092 /*
5093 * No need to check if parent_ctx != NULL here; since we saw
5094 * it non-NULL earlier, the only reason for it to become NULL
5095 * is if we exit, and since we're currently in the middle of
5096 * a fork we can't be exiting at the same time.
5097 */
5098
5099 /*
5100 * Lock the parent list. No need to lock the child - not PID
5101 * hashed yet and not running, so nobody can access it.
5102 */
5103 mutex_lock(&parent_ctx->mutex);
5104
5105 /*
5106 * We dont have to disable NMIs - we are only looking at
5107 * the list, not manipulating it:
5108 */
Xiao Guangrong27f99942009-09-25 13:54:01 +08005109 list_for_each_entry(event, &parent_ctx->group_list, group_entry) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005110
5111 if (!event->attr.inherit) {
5112 inherited_all = 0;
5113 continue;
5114 }
5115
5116 ret = inherit_group(event, parent, parent_ctx,
5117 child, child_ctx);
5118 if (ret) {
5119 inherited_all = 0;
5120 break;
5121 }
5122 }
5123
5124 if (inherited_all) {
5125 /*
5126 * Mark the child context as a clone of the parent
5127 * context, or of whatever the parent is a clone of.
5128 * Note that if the parent is a clone, it could get
5129 * uncloned at any point, but that doesn't matter
5130 * because the list of events and the generation
5131 * count can't have changed since we took the mutex.
5132 */
5133 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5134 if (cloned_ctx) {
5135 child_ctx->parent_ctx = cloned_ctx;
5136 child_ctx->parent_gen = parent_ctx->parent_gen;
5137 } else {
5138 child_ctx->parent_ctx = parent_ctx;
5139 child_ctx->parent_gen = parent_ctx->generation;
5140 }
5141 get_ctx(child_ctx->parent_ctx);
5142 }
5143
5144 mutex_unlock(&parent_ctx->mutex);
5145
5146 perf_unpin_context(parent_ctx);
5147
5148 return ret;
5149}
5150
5151static void __cpuinit perf_event_init_cpu(int cpu)
5152{
5153 struct perf_cpu_context *cpuctx;
5154
5155 cpuctx = &per_cpu(perf_cpu_context, cpu);
5156 __perf_event_init_context(&cpuctx->ctx, NULL);
5157
5158 spin_lock(&perf_resource_lock);
5159 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5160 spin_unlock(&perf_resource_lock);
5161
5162 hw_perf_event_setup(cpu);
5163}
5164
5165#ifdef CONFIG_HOTPLUG_CPU
5166static void __perf_event_exit_cpu(void *info)
5167{
5168 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5169 struct perf_event_context *ctx = &cpuctx->ctx;
5170 struct perf_event *event, *tmp;
5171
5172 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry)
5173 __perf_event_remove_from_context(event);
5174}
5175static void perf_event_exit_cpu(int cpu)
5176{
5177 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5178 struct perf_event_context *ctx = &cpuctx->ctx;
5179
5180 mutex_lock(&ctx->mutex);
5181 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5182 mutex_unlock(&ctx->mutex);
5183}
5184#else
5185static inline void perf_event_exit_cpu(int cpu) { }
5186#endif
5187
5188static int __cpuinit
5189perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5190{
5191 unsigned int cpu = (long)hcpu;
5192
5193 switch (action) {
5194
5195 case CPU_UP_PREPARE:
5196 case CPU_UP_PREPARE_FROZEN:
5197 perf_event_init_cpu(cpu);
5198 break;
5199
5200 case CPU_ONLINE:
5201 case CPU_ONLINE_FROZEN:
5202 hw_perf_event_setup_online(cpu);
5203 break;
5204
5205 case CPU_DOWN_PREPARE:
5206 case CPU_DOWN_PREPARE_FROZEN:
5207 perf_event_exit_cpu(cpu);
5208 break;
5209
5210 default:
5211 break;
5212 }
5213
5214 return NOTIFY_OK;
5215}
5216
5217/*
5218 * This has to have a higher priority than migration_notifier in sched.c.
5219 */
5220static struct notifier_block __cpuinitdata perf_cpu_nb = {
5221 .notifier_call = perf_cpu_notify,
5222 .priority = 20,
5223};
5224
5225void __init perf_event_init(void)
5226{
5227 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5228 (void *)(long)smp_processor_id());
5229 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5230 (void *)(long)smp_processor_id());
5231 register_cpu_notifier(&perf_cpu_nb);
5232}
5233
5234static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
5235{
5236 return sprintf(buf, "%d\n", perf_reserved_percpu);
5237}
5238
5239static ssize_t
5240perf_set_reserve_percpu(struct sysdev_class *class,
5241 const char *buf,
5242 size_t count)
5243{
5244 struct perf_cpu_context *cpuctx;
5245 unsigned long val;
5246 int err, cpu, mpt;
5247
5248 err = strict_strtoul(buf, 10, &val);
5249 if (err)
5250 return err;
5251 if (val > perf_max_events)
5252 return -EINVAL;
5253
5254 spin_lock(&perf_resource_lock);
5255 perf_reserved_percpu = val;
5256 for_each_online_cpu(cpu) {
5257 cpuctx = &per_cpu(perf_cpu_context, cpu);
5258 spin_lock_irq(&cpuctx->ctx.lock);
5259 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5260 perf_max_events - perf_reserved_percpu);
5261 cpuctx->max_pertask = mpt;
5262 spin_unlock_irq(&cpuctx->ctx.lock);
5263 }
5264 spin_unlock(&perf_resource_lock);
5265
5266 return count;
5267}
5268
5269static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
5270{
5271 return sprintf(buf, "%d\n", perf_overcommit);
5272}
5273
5274static ssize_t
5275perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
5276{
5277 unsigned long val;
5278 int err;
5279
5280 err = strict_strtoul(buf, 10, &val);
5281 if (err)
5282 return err;
5283 if (val > 1)
5284 return -EINVAL;
5285
5286 spin_lock(&perf_resource_lock);
5287 perf_overcommit = val;
5288 spin_unlock(&perf_resource_lock);
5289
5290 return count;
5291}
5292
5293static SYSDEV_CLASS_ATTR(
5294 reserve_percpu,
5295 0644,
5296 perf_show_reserve_percpu,
5297 perf_set_reserve_percpu
5298 );
5299
5300static SYSDEV_CLASS_ATTR(
5301 overcommit,
5302 0644,
5303 perf_show_overcommit,
5304 perf_set_overcommit
5305 );
5306
5307static struct attribute *perfclass_attrs[] = {
5308 &attr_reserve_percpu.attr,
5309 &attr_overcommit.attr,
5310 NULL
5311};
5312
5313static struct attribute_group perfclass_attr_group = {
5314 .attrs = perfclass_attrs,
5315 .name = "perf_events",
5316};
5317
5318static int __init perf_event_sysfs_init(void)
5319{
5320 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5321 &perfclass_attr_group);
5322}
5323device_initcall(perf_event_sysfs_init);