blob: bb6cb83450b2ce631c5e078ee9ce86cbd6c46e23 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/arch/x86-64/kernel/time.c
3 *
4 * "High Precision Event Timer" based timekeeping.
5 *
6 * Copyright (c) 1991,1992,1995 Linus Torvalds
7 * Copyright (c) 1994 Alan Modra
8 * Copyright (c) 1995 Markus Kuhn
9 * Copyright (c) 1996 Ingo Molnar
10 * Copyright (c) 1998 Andrea Arcangeli
11 * Copyright (c) 2002 Vojtech Pavlik
12 * Copyright (c) 2003 Andi Kleen
13 * RTC support code taken from arch/i386/kernel/timers/time_hpet.c
14 */
15
16#include <linux/kernel.h>
17#include <linux/sched.h>
18#include <linux/interrupt.h>
19#include <linux/init.h>
20#include <linux/mc146818rtc.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070021#include <linux/time.h>
22#include <linux/ioport.h>
23#include <linux/module.h>
24#include <linux/device.h>
25#include <linux/sysdev.h>
26#include <linux/bcd.h>
27#include <linux/kallsyms.h>
Andi Kleen312df5f2005-05-16 21:53:28 -070028#include <linux/acpi.h>
Andi Kleen8d916402005-05-31 14:39:26 -070029#ifdef CONFIG_ACPI
Andi Kleen312df5f2005-05-16 21:53:28 -070030#include <acpi/achware.h> /* for PM timer frequency */
Andi Kleen8d916402005-05-31 14:39:26 -070031#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -070032#include <asm/8253pit.h>
33#include <asm/pgtable.h>
34#include <asm/vsyscall.h>
35#include <asm/timex.h>
36#include <asm/proto.h>
37#include <asm/hpet.h>
38#include <asm/sections.h>
39#include <linux/cpufreq.h>
40#include <linux/hpet.h>
41#ifdef CONFIG_X86_LOCAL_APIC
42#include <asm/apic.h>
43#endif
44
Linus Torvalds1da177e2005-04-16 15:20:36 -070045#ifdef CONFIG_CPU_FREQ
46static void cpufreq_delayed_get(void);
47#endif
48extern void i8254_timer_resume(void);
49extern int using_apic_timer;
50
Andi Kleene8b91772006-02-26 04:18:49 +010051static char *time_init_gtod(void);
52
Linus Torvalds1da177e2005-04-16 15:20:36 -070053DEFINE_SPINLOCK(rtc_lock);
54DEFINE_SPINLOCK(i8253_lock);
55
Andi Kleen73dea472006-02-03 21:50:50 +010056int nohpet __initdata = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -070057static int notsc __initdata = 0;
58
59#undef HPET_HACK_ENABLE_DANGEROUS
60
61unsigned int cpu_khz; /* TSC clocks / usec, not used here */
62static unsigned long hpet_period; /* fsecs / HPET clock */
63unsigned long hpet_tick; /* HPET clocks / interrupt */
Chris McDermott33042a92006-02-11 17:55:50 -080064int hpet_use_timer; /* Use counter of hpet for time keeping, otherwise PIT */
Linus Torvalds1da177e2005-04-16 15:20:36 -070065unsigned long vxtime_hz = PIT_TICK_RATE;
66int report_lost_ticks; /* command line option */
67unsigned long long monotonic_base;
68
69struct vxtime_data __vxtime __section_vxtime; /* for vsyscalls */
70
71volatile unsigned long __jiffies __section_jiffies = INITIAL_JIFFIES;
72unsigned long __wall_jiffies __section_wall_jiffies = INITIAL_JIFFIES;
73struct timespec __xtime __section_xtime;
74struct timezone __sys_tz __section_sys_tz;
75
Linus Torvalds1da177e2005-04-16 15:20:36 -070076/*
77 * do_gettimeoffset() returns microseconds since last timer interrupt was
78 * triggered by hardware. A memory read of HPET is slower than a register read
79 * of TSC, but much more reliable. It's also synchronized to the timer
80 * interrupt. Note that do_gettimeoffset() may return more than hpet_tick, if a
81 * timer interrupt has happened already, but vxtime.trigger wasn't updated yet.
82 * This is not a problem, because jiffies hasn't updated either. They are bound
83 * together by xtime_lock.
84 */
85
86static inline unsigned int do_gettimeoffset_tsc(void)
87{
88 unsigned long t;
89 unsigned long x;
Andi Kleenc818a182006-01-11 22:45:24 +010090 t = get_cycles_sync();
Andi Kleen7351c0b2006-03-25 16:30:34 +010091 if (t < vxtime.last_tsc)
92 t = vxtime.last_tsc; /* hack */
Linus Torvalds1da177e2005-04-16 15:20:36 -070093 x = ((t - vxtime.last_tsc) * vxtime.tsc_quot) >> 32;
94 return x;
95}
96
97static inline unsigned int do_gettimeoffset_hpet(void)
98{
john stultza3a00752005-06-23 00:08:36 -070099 /* cap counter read to one tick to avoid inconsistencies */
100 unsigned long counter = hpet_readl(HPET_COUNTER) - vxtime.last;
101 return (min(counter,hpet_tick) * vxtime.quot) >> 32;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700102}
103
104unsigned int (*do_gettimeoffset)(void) = do_gettimeoffset_tsc;
105
106/*
107 * This version of gettimeofday() has microsecond resolution and better than
108 * microsecond precision, as we're using at least a 10 MHz (usually 14.31818
109 * MHz) HPET timer.
110 */
111
112void do_gettimeofday(struct timeval *tv)
113{
114 unsigned long seq, t;
115 unsigned int sec, usec;
116
117 do {
118 seq = read_seqbegin(&xtime_lock);
119
120 sec = xtime.tv_sec;
121 usec = xtime.tv_nsec / 1000;
122
123 /* i386 does some correction here to keep the clock
124 monotonous even when ntpd is fixing drift.
125 But they didn't work for me, there is a non monotonic
126 clock anyways with ntp.
127 I dropped all corrections now until a real solution can
128 be found. Note when you fix it here you need to do the same
129 in arch/x86_64/kernel/vsyscall.c and export all needed
130 variables in vmlinux.lds. -AK */
131
132 t = (jiffies - wall_jiffies) * (1000000L / HZ) +
133 do_gettimeoffset();
134 usec += t;
135
136 } while (read_seqretry(&xtime_lock, seq));
137
138 tv->tv_sec = sec + usec / 1000000;
139 tv->tv_usec = usec % 1000000;
140}
141
142EXPORT_SYMBOL(do_gettimeofday);
143
144/*
145 * settimeofday() first undoes the correction that gettimeofday would do
146 * on the time, and then saves it. This is ugly, but has been like this for
147 * ages already.
148 */
149
150int do_settimeofday(struct timespec *tv)
151{
152 time_t wtm_sec, sec = tv->tv_sec;
153 long wtm_nsec, nsec = tv->tv_nsec;
154
155 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
156 return -EINVAL;
157
158 write_seqlock_irq(&xtime_lock);
159
160 nsec -= do_gettimeoffset() * 1000 +
161 (jiffies - wall_jiffies) * (NSEC_PER_SEC/HZ);
162
163 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
164 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
165
166 set_normalized_timespec(&xtime, sec, nsec);
167 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
168
john stultzb149ee22005-09-06 15:17:46 -0700169 ntp_clear();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700170
171 write_sequnlock_irq(&xtime_lock);
172 clock_was_set();
173 return 0;
174}
175
176EXPORT_SYMBOL(do_settimeofday);
177
178unsigned long profile_pc(struct pt_regs *regs)
179{
180 unsigned long pc = instruction_pointer(regs);
181
Andi Kleen7351c0b2006-03-25 16:30:34 +0100182 /* Assume the lock function has either no stack frame or only a single
183 word. This checks if the address on the stack looks like a kernel
184 text address.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700185 There is a small window for false hits, but in that case the tick
186 is just accounted to the spinlock function.
187 Better would be to write these functions in assembler again
188 and check exactly. */
189 if (in_lock_functions(pc)) {
190 char *v = *(char **)regs->rsp;
191 if ((v >= _stext && v <= _etext) ||
192 (v >= _sinittext && v <= _einittext) ||
193 (v >= (char *)MODULES_VADDR && v <= (char *)MODULES_END))
194 return (unsigned long)v;
195 return ((unsigned long *)regs->rsp)[1];
196 }
197 return pc;
198}
199EXPORT_SYMBOL(profile_pc);
200
201/*
202 * In order to set the CMOS clock precisely, set_rtc_mmss has to be called 500
203 * ms after the second nowtime has started, because when nowtime is written
204 * into the registers of the CMOS clock, it will jump to the next second
205 * precisely 500 ms later. Check the Motorola MC146818A or Dallas DS12887 data
206 * sheet for details.
207 */
208
209static void set_rtc_mmss(unsigned long nowtime)
210{
211 int real_seconds, real_minutes, cmos_minutes;
212 unsigned char control, freq_select;
213
214/*
215 * IRQs are disabled when we're called from the timer interrupt,
216 * no need for spin_lock_irqsave()
217 */
218
219 spin_lock(&rtc_lock);
220
221/*
222 * Tell the clock it's being set and stop it.
223 */
224
225 control = CMOS_READ(RTC_CONTROL);
226 CMOS_WRITE(control | RTC_SET, RTC_CONTROL);
227
228 freq_select = CMOS_READ(RTC_FREQ_SELECT);
229 CMOS_WRITE(freq_select | RTC_DIV_RESET2, RTC_FREQ_SELECT);
230
231 cmos_minutes = CMOS_READ(RTC_MINUTES);
232 BCD_TO_BIN(cmos_minutes);
233
234/*
235 * since we're only adjusting minutes and seconds, don't interfere with hour
236 * overflow. This avoids messing with unknown time zones but requires your RTC
237 * not to be off by more than 15 minutes. Since we're calling it only when
238 * our clock is externally synchronized using NTP, this shouldn't be a problem.
239 */
240
241 real_seconds = nowtime % 60;
242 real_minutes = nowtime / 60;
243 if (((abs(real_minutes - cmos_minutes) + 15) / 30) & 1)
244 real_minutes += 30; /* correct for half hour time zone */
245 real_minutes %= 60;
246
247#if 0
248 /* AMD 8111 is a really bad time keeper and hits this regularly.
249 It probably was an attempt to avoid screwing up DST, but ignore
250 that for now. */
251 if (abs(real_minutes - cmos_minutes) >= 30) {
252 printk(KERN_WARNING "time.c: can't update CMOS clock "
253 "from %d to %d\n", cmos_minutes, real_minutes);
254 } else
255#endif
256
257 {
Andi Kleen0b913172006-01-11 22:45:33 +0100258 BIN_TO_BCD(real_seconds);
259 BIN_TO_BCD(real_minutes);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700260 CMOS_WRITE(real_seconds, RTC_SECONDS);
261 CMOS_WRITE(real_minutes, RTC_MINUTES);
262 }
263
264/*
265 * The following flags have to be released exactly in this order, otherwise the
266 * DS12887 (popular MC146818A clone with integrated battery and quartz) will
267 * not reset the oscillator and will not update precisely 500 ms later. You
268 * won't find this mentioned in the Dallas Semiconductor data sheets, but who
269 * believes data sheets anyway ... -- Markus Kuhn
270 */
271
272 CMOS_WRITE(control, RTC_CONTROL);
273 CMOS_WRITE(freq_select, RTC_FREQ_SELECT);
274
275 spin_unlock(&rtc_lock);
276}
277
278
279/* monotonic_clock(): returns # of nanoseconds passed since time_init()
280 * Note: This function is required to return accurate
281 * time even in the absence of multiple timer ticks.
282 */
283unsigned long long monotonic_clock(void)
284{
285 unsigned long seq;
286 u32 last_offset, this_offset, offset;
287 unsigned long long base;
288
289 if (vxtime.mode == VXTIME_HPET) {
290 do {
291 seq = read_seqbegin(&xtime_lock);
292
293 last_offset = vxtime.last;
294 base = monotonic_base;
john stultza3a00752005-06-23 00:08:36 -0700295 this_offset = hpet_readl(HPET_COUNTER);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700296 } while (read_seqretry(&xtime_lock, seq));
297 offset = (this_offset - last_offset);
Andi Kleen7351c0b2006-03-25 16:30:34 +0100298 offset *= (NSEC_PER_SEC/HZ) / hpet_tick;
Andi Kleen0b913172006-01-11 22:45:33 +0100299 } else {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700300 do {
301 seq = read_seqbegin(&xtime_lock);
302
303 last_offset = vxtime.last_tsc;
304 base = monotonic_base;
305 } while (read_seqretry(&xtime_lock, seq));
Andi Kleenc818a182006-01-11 22:45:24 +0100306 this_offset = get_cycles_sync();
Andi Kleen7351c0b2006-03-25 16:30:34 +0100307 offset = (this_offset - last_offset)*1000 / cpu_khz;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700308 }
Andi Kleen7351c0b2006-03-25 16:30:34 +0100309 return base + offset;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700310}
311EXPORT_SYMBOL(monotonic_clock);
312
313static noinline void handle_lost_ticks(int lost, struct pt_regs *regs)
314{
Andi Kleen7351c0b2006-03-25 16:30:34 +0100315 static long lost_count;
316 static int warned;
317 if (report_lost_ticks) {
318 printk(KERN_WARNING "time.c: Lost %d timer tick(s)! ", lost);
319 print_symbol("rip %s)\n", regs->rip);
320 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700321
Andi Kleen7351c0b2006-03-25 16:30:34 +0100322 if (lost_count == 1000 && !warned) {
323 printk(KERN_WARNING "warning: many lost ticks.\n"
324 KERN_WARNING "Your time source seems to be instable or "
Linus Torvalds1da177e2005-04-16 15:20:36 -0700325 "some driver is hogging interupts\n");
Andi Kleen7351c0b2006-03-25 16:30:34 +0100326 print_symbol("rip %s\n", regs->rip);
327 if (vxtime.mode == VXTIME_TSC && vxtime.hpet_address) {
328 printk(KERN_WARNING "Falling back to HPET\n");
329 if (hpet_use_timer)
330 vxtime.last = hpet_readl(HPET_T0_CMP) -
331 hpet_tick;
332 else
333 vxtime.last = hpet_readl(HPET_COUNTER);
334 vxtime.mode = VXTIME_HPET;
335 do_gettimeoffset = do_gettimeoffset_hpet;
336 }
337 /* else should fall back to PIT, but code missing. */
338 warned = 1;
339 } else
340 lost_count++;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700341
342#ifdef CONFIG_CPU_FREQ
Andi Kleen7351c0b2006-03-25 16:30:34 +0100343 /* In some cases the CPU can change frequency without us noticing
344 Give cpufreq a change to catch up. */
345 if ((lost_count+1) % 25 == 0)
346 cpufreq_delayed_get();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700347#endif
348}
349
Andi Kleen73dea472006-02-03 21:50:50 +0100350void main_timer_handler(struct pt_regs *regs)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700351{
352 static unsigned long rtc_update = 0;
353 unsigned long tsc;
Andi Kleen9ede6b02006-03-25 16:29:31 +0100354 int delay = 0, offset = 0, lost = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700355
356/*
357 * Here we are in the timer irq handler. We have irqs locally disabled (so we
358 * don't need spin_lock_irqsave()) but we don't know if the timer_bh is running
359 * on the other CPU, so we need a lock. We also need to lock the vsyscall
360 * variables, because both do_timer() and us change them -arca+vojtech
361 */
362
363 write_seqlock(&xtime_lock);
364
john stultza3a00752005-06-23 00:08:36 -0700365 if (vxtime.hpet_address)
366 offset = hpet_readl(HPET_COUNTER);
367
368 if (hpet_use_timer) {
369 /* if we're using the hpet timer functionality,
370 * we can more accurately know the counter value
371 * when the timer interrupt occured.
372 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700373 offset = hpet_readl(HPET_T0_CMP) - hpet_tick;
374 delay = hpet_readl(HPET_COUNTER) - offset;
Andi Kleen9ede6b02006-03-25 16:29:31 +0100375 } else if (!pmtmr_ioport) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700376 spin_lock(&i8253_lock);
377 outb_p(0x00, 0x43);
378 delay = inb_p(0x40);
379 delay |= inb(0x40) << 8;
380 spin_unlock(&i8253_lock);
381 delay = LATCH - 1 - delay;
382 }
383
Andi Kleenc818a182006-01-11 22:45:24 +0100384 tsc = get_cycles_sync();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700385
386 if (vxtime.mode == VXTIME_HPET) {
387 if (offset - vxtime.last > hpet_tick) {
388 lost = (offset - vxtime.last) / hpet_tick - 1;
389 }
390
391 monotonic_base +=
392 (offset - vxtime.last)*(NSEC_PER_SEC/HZ) / hpet_tick;
393
394 vxtime.last = offset;
Andi Kleen312df5f2005-05-16 21:53:28 -0700395#ifdef CONFIG_X86_PM_TIMER
396 } else if (vxtime.mode == VXTIME_PMTMR) {
397 lost = pmtimer_mark_offset();
398#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700399 } else {
400 offset = (((tsc - vxtime.last_tsc) *
401 vxtime.tsc_quot) >> 32) - (USEC_PER_SEC / HZ);
402
403 if (offset < 0)
404 offset = 0;
405
406 if (offset > (USEC_PER_SEC / HZ)) {
407 lost = offset / (USEC_PER_SEC / HZ);
408 offset %= (USEC_PER_SEC / HZ);
409 }
410
411 monotonic_base += (tsc - vxtime.last_tsc)*1000000/cpu_khz ;
412
413 vxtime.last_tsc = tsc - vxtime.quot * delay / vxtime.tsc_quot;
414
415 if ((((tsc - vxtime.last_tsc) *
416 vxtime.tsc_quot) >> 32) < offset)
417 vxtime.last_tsc = tsc -
418 (((long) offset << 32) / vxtime.tsc_quot) - 1;
419 }
420
421 if (lost > 0) {
422 handle_lost_ticks(lost, regs);
423 jiffies += lost;
424 }
425
426/*
427 * Do the timer stuff.
428 */
429
430 do_timer(regs);
431#ifndef CONFIG_SMP
432 update_process_times(user_mode(regs));
433#endif
434
435/*
436 * In the SMP case we use the local APIC timer interrupt to do the profiling,
437 * except when we simulate SMP mode on a uniprocessor system, in that case we
438 * have to call the local interrupt handler.
439 */
440
441#ifndef CONFIG_X86_LOCAL_APIC
442 profile_tick(CPU_PROFILING, regs);
443#else
444 if (!using_apic_timer)
445 smp_local_timer_interrupt(regs);
446#endif
447
448/*
449 * If we have an externally synchronized Linux clock, then update CMOS clock
450 * accordingly every ~11 minutes. set_rtc_mmss() will be called in the jiffy
451 * closest to exactly 500 ms before the next second. If the update fails, we
452 * don't care, as it'll be updated on the next turn, and the problem (time way
453 * off) isn't likely to go away much sooner anyway.
454 */
455
john stultzb149ee22005-09-06 15:17:46 -0700456 if (ntp_synced() && xtime.tv_sec > rtc_update &&
Linus Torvalds1da177e2005-04-16 15:20:36 -0700457 abs(xtime.tv_nsec - 500000000) <= tick_nsec / 2) {
458 set_rtc_mmss(xtime.tv_sec);
459 rtc_update = xtime.tv_sec + 660;
460 }
461
462 write_sequnlock(&xtime_lock);
Andi Kleen73dea472006-02-03 21:50:50 +0100463}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700464
Andi Kleen73dea472006-02-03 21:50:50 +0100465static irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
466{
467 if (apic_runs_main_timer > 1)
468 return IRQ_HANDLED;
469 main_timer_handler(regs);
Venkatesh Pallipadid25bf7e2006-01-11 22:44:24 +0100470#ifdef CONFIG_X86_LOCAL_APIC
471 if (using_apic_timer)
472 smp_send_timer_broadcast_ipi();
473#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700474 return IRQ_HANDLED;
475}
476
Ravikiran G Thirumalai68ed0042006-03-22 00:07:38 -0800477static unsigned int cyc2ns_scale __read_mostly;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700478#define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
479
Mathieu Desnoyersdacb16b2005-10-30 14:59:25 -0800480static inline void set_cyc2ns_scale(unsigned long cpu_khz)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700481{
Mathieu Desnoyersdacb16b2005-10-30 14:59:25 -0800482 cyc2ns_scale = (1000000 << CYC2NS_SCALE_FACTOR)/cpu_khz;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700483}
484
485static inline unsigned long long cycles_2_ns(unsigned long long cyc)
486{
487 return (cyc * cyc2ns_scale) >> CYC2NS_SCALE_FACTOR;
488}
489
490unsigned long long sched_clock(void)
491{
492 unsigned long a = 0;
493
494#if 0
495 /* Don't do a HPET read here. Using TSC always is much faster
496 and HPET may not be mapped yet when the scheduler first runs.
497 Disadvantage is a small drift between CPUs in some configurations,
498 but that should be tolerable. */
499 if (__vxtime.mode == VXTIME_HPET)
500 return (hpet_readl(HPET_COUNTER) * vxtime.quot) >> 32;
501#endif
502
503 /* Could do CPU core sync here. Opteron can execute rdtsc speculatively,
504 which means it is not completely exact and may not be monotonous between
505 CPUs. But the errors should be too small to matter for scheduling
506 purposes. */
507
508 rdtscll(a);
509 return cycles_2_ns(a);
510}
511
Andi Kleenbdf2b1c2006-01-11 22:46:39 +0100512static unsigned long get_cmos_time(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700513{
Jan Beulich5329e132006-01-11 22:46:42 +0100514 unsigned int timeout = 1000000, year, mon, day, hour, min, sec;
515 unsigned char uip = 0, this = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700516 unsigned long flags;
Andi Kleen6954bee2006-03-25 16:30:31 +0100517 unsigned extyear = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700518
519/*
520 * The Linux interpretation of the CMOS clock register contents: When the
521 * Update-In-Progress (UIP) flag goes from 1 to 0, the RTC registers show the
522 * second which has precisely just started. Waiting for this can take up to 1
523 * second, we timeout approximately after 2.4 seconds on a machine with
524 * standard 8.3 MHz ISA bus.
525 */
526
527 spin_lock_irqsave(&rtc_lock, flags);
528
Jan Beulich5329e132006-01-11 22:46:42 +0100529 while (timeout && (!uip || this)) {
530 uip |= this;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700531 this = CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP;
532 timeout--;
533 }
534
Andi Kleen0b913172006-01-11 22:45:33 +0100535 /*
536 * Here we are safe to assume the registers won't change for a whole
537 * second, so we just go ahead and read them.
538 */
539 sec = CMOS_READ(RTC_SECONDS);
540 min = CMOS_READ(RTC_MINUTES);
541 hour = CMOS_READ(RTC_HOURS);
542 day = CMOS_READ(RTC_DAY_OF_MONTH);
543 mon = CMOS_READ(RTC_MONTH);
544 year = CMOS_READ(RTC_YEAR);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700545
Andi Kleen6954bee2006-03-25 16:30:31 +0100546#ifdef CONFIG_ACPI
547 if (acpi_fadt.revision >= FADT2_REVISION_ID && acpi_fadt.century)
548 extyear = CMOS_READ(acpi_fadt.century);
549#endif
550
Linus Torvalds1da177e2005-04-16 15:20:36 -0700551 spin_unlock_irqrestore(&rtc_lock, flags);
552
Andi Kleen0b913172006-01-11 22:45:33 +0100553 /*
554 * We know that x86-64 always uses BCD format, no need to check the
555 * config register.
Andi Kleen7351c0b2006-03-25 16:30:34 +0100556 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700557
Andi Kleen0b913172006-01-11 22:45:33 +0100558 BCD_TO_BIN(sec);
559 BCD_TO_BIN(min);
560 BCD_TO_BIN(hour);
561 BCD_TO_BIN(day);
562 BCD_TO_BIN(mon);
563 BCD_TO_BIN(year);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700564
Andi Kleen6954bee2006-03-25 16:30:31 +0100565 if (extyear) {
566 BCD_TO_BIN(extyear);
567 year += extyear;
568 printk(KERN_INFO "Extended CMOS year: %d\n", extyear);
569 } else {
570 /*
571 * x86-64 systems only exists since 2002.
572 * This will work up to Dec 31, 2100
573 */
574 year += 2000;
575 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700576
577 return mktime(year, mon, day, hour, min, sec);
578}
579
580#ifdef CONFIG_CPU_FREQ
581
582/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
583 changes.
584
585 RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
586 not that important because current Opteron setups do not support
587 scaling on SMP anyroads.
588
589 Should fix up last_tsc too. Currently gettimeofday in the
590 first tick after the change will be slightly wrong. */
591
592#include <linux/workqueue.h>
593
594static unsigned int cpufreq_delayed_issched = 0;
595static unsigned int cpufreq_init = 0;
596static struct work_struct cpufreq_delayed_get_work;
597
598static void handle_cpufreq_delayed_get(void *v)
599{
600 unsigned int cpu;
601 for_each_online_cpu(cpu) {
602 cpufreq_get(cpu);
603 }
604 cpufreq_delayed_issched = 0;
605}
606
607/* if we notice lost ticks, schedule a call to cpufreq_get() as it tries
608 * to verify the CPU frequency the timing core thinks the CPU is running
609 * at is still correct.
610 */
611static void cpufreq_delayed_get(void)
612{
613 static int warned;
614 if (cpufreq_init && !cpufreq_delayed_issched) {
615 cpufreq_delayed_issched = 1;
616 if (!warned) {
617 warned = 1;
Andi Kleen7351c0b2006-03-25 16:30:34 +0100618 printk(KERN_DEBUG
619 "Losing some ticks... checking if CPU frequency changed.\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -0700620 }
621 schedule_work(&cpufreq_delayed_get_work);
622 }
623}
624
625static unsigned int ref_freq = 0;
626static unsigned long loops_per_jiffy_ref = 0;
627
628static unsigned long cpu_khz_ref = 0;
629
630static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
631 void *data)
632{
633 struct cpufreq_freqs *freq = data;
634 unsigned long *lpj, dummy;
635
Andi Kleenc29601e2005-04-16 15:25:05 -0700636 if (cpu_has(&cpu_data[freq->cpu], X86_FEATURE_CONSTANT_TSC))
637 return 0;
638
Linus Torvalds1da177e2005-04-16 15:20:36 -0700639 lpj = &dummy;
640 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
641#ifdef CONFIG_SMP
Andi Kleen7351c0b2006-03-25 16:30:34 +0100642 lpj = &cpu_data[freq->cpu].loops_per_jiffy;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700643#else
Andi Kleen7351c0b2006-03-25 16:30:34 +0100644 lpj = &boot_cpu_data.loops_per_jiffy;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700645#endif
646
Linus Torvalds1da177e2005-04-16 15:20:36 -0700647 if (!ref_freq) {
648 ref_freq = freq->old;
649 loops_per_jiffy_ref = *lpj;
650 cpu_khz_ref = cpu_khz;
651 }
652 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
653 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
654 (val == CPUFREQ_RESUMECHANGE)) {
655 *lpj =
656 cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
657
658 cpu_khz = cpufreq_scale(cpu_khz_ref, ref_freq, freq->new);
659 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
660 vxtime.tsc_quot = (1000L << 32) / cpu_khz;
661 }
662
Mathieu Desnoyersdacb16b2005-10-30 14:59:25 -0800663 set_cyc2ns_scale(cpu_khz_ref);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700664
665 return 0;
666}
667
668static struct notifier_block time_cpufreq_notifier_block = {
669 .notifier_call = time_cpufreq_notifier
670};
671
672static int __init cpufreq_tsc(void)
673{
674 INIT_WORK(&cpufreq_delayed_get_work, handle_cpufreq_delayed_get, NULL);
675 if (!cpufreq_register_notifier(&time_cpufreq_notifier_block,
676 CPUFREQ_TRANSITION_NOTIFIER))
677 cpufreq_init = 1;
678 return 0;
679}
680
681core_initcall(cpufreq_tsc);
682
683#endif
684
685/*
686 * calibrate_tsc() calibrates the processor TSC in a very simple way, comparing
687 * it to the HPET timer of known frequency.
688 */
689
690#define TICK_COUNT 100000000
691
692static unsigned int __init hpet_calibrate_tsc(void)
693{
694 int tsc_start, hpet_start;
695 int tsc_now, hpet_now;
696 unsigned long flags;
697
698 local_irq_save(flags);
699 local_irq_disable();
700
701 hpet_start = hpet_readl(HPET_COUNTER);
702 rdtscl(tsc_start);
703
704 do {
705 local_irq_disable();
706 hpet_now = hpet_readl(HPET_COUNTER);
Andi Kleenc818a182006-01-11 22:45:24 +0100707 tsc_now = get_cycles_sync();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700708 local_irq_restore(flags);
709 } while ((tsc_now - tsc_start) < TICK_COUNT &&
710 (hpet_now - hpet_start) < TICK_COUNT);
711
712 return (tsc_now - tsc_start) * 1000000000L
713 / ((hpet_now - hpet_start) * hpet_period / 1000);
714}
715
716
717/*
718 * pit_calibrate_tsc() uses the speaker output (channel 2) of
719 * the PIT. This is better than using the timer interrupt output,
720 * because we can read the value of the speaker with just one inb(),
721 * where we need three i/o operations for the interrupt channel.
722 * We count how many ticks the TSC does in 50 ms.
723 */
724
725static unsigned int __init pit_calibrate_tsc(void)
726{
727 unsigned long start, end;
728 unsigned long flags;
729
730 spin_lock_irqsave(&i8253_lock, flags);
731
732 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
733
734 outb(0xb0, 0x43);
735 outb((PIT_TICK_RATE / (1000 / 50)) & 0xff, 0x42);
736 outb((PIT_TICK_RATE / (1000 / 50)) >> 8, 0x42);
Andi Kleenc818a182006-01-11 22:45:24 +0100737 start = get_cycles_sync();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700738 while ((inb(0x61) & 0x20) == 0);
Andi Kleenc818a182006-01-11 22:45:24 +0100739 end = get_cycles_sync();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700740
741 spin_unlock_irqrestore(&i8253_lock, flags);
742
743 return (end - start) / 50;
744}
745
746#ifdef CONFIG_HPET
747static __init int late_hpet_init(void)
748{
749 struct hpet_data hd;
750 unsigned int ntimer;
751
752 if (!vxtime.hpet_address)
Andi Kleen0b913172006-01-11 22:45:33 +0100753 return -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700754
755 memset(&hd, 0, sizeof (hd));
756
757 ntimer = hpet_readl(HPET_ID);
758 ntimer = (ntimer & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
759 ntimer++;
760
761 /*
762 * Register with driver.
763 * Timer0 and Timer1 is used by platform.
764 */
765 hd.hd_phys_address = vxtime.hpet_address;
Al Virodd42b152006-02-01 07:30:33 -0500766 hd.hd_address = (void __iomem *)fix_to_virt(FIX_HPET_BASE);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700767 hd.hd_nirqs = ntimer;
768 hd.hd_flags = HPET_DATA_PLATFORM;
769 hpet_reserve_timer(&hd, 0);
770#ifdef CONFIG_HPET_EMULATE_RTC
771 hpet_reserve_timer(&hd, 1);
772#endif
773 hd.hd_irq[0] = HPET_LEGACY_8254;
774 hd.hd_irq[1] = HPET_LEGACY_RTC;
775 if (ntimer > 2) {
776 struct hpet *hpet;
777 struct hpet_timer *timer;
778 int i;
779
780 hpet = (struct hpet *) fix_to_virt(FIX_HPET_BASE);
Andi Kleen7351c0b2006-03-25 16:30:34 +0100781 timer = &hpet->hpet_timers[2];
782 for (i = 2; i < ntimer; timer++, i++)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700783 hd.hd_irq[i] = (timer->hpet_config &
784 Tn_INT_ROUTE_CNF_MASK) >>
785 Tn_INT_ROUTE_CNF_SHIFT;
786
787 }
788
789 hpet_alloc(&hd);
790 return 0;
791}
792fs_initcall(late_hpet_init);
793#endif
794
795static int hpet_timer_stop_set_go(unsigned long tick)
796{
797 unsigned int cfg;
798
799/*
800 * Stop the timers and reset the main counter.
801 */
802
803 cfg = hpet_readl(HPET_CFG);
804 cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
805 hpet_writel(cfg, HPET_CFG);
806 hpet_writel(0, HPET_COUNTER);
807 hpet_writel(0, HPET_COUNTER + 4);
808
809/*
810 * Set up timer 0, as periodic with first interrupt to happen at hpet_tick,
811 * and period also hpet_tick.
812 */
john stultza3a00752005-06-23 00:08:36 -0700813 if (hpet_use_timer) {
814 hpet_writel(HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
Linus Torvalds1da177e2005-04-16 15:20:36 -0700815 HPET_TN_32BIT, HPET_T0_CFG);
john stultza3a00752005-06-23 00:08:36 -0700816 hpet_writel(hpet_tick, HPET_T0_CMP);
817 hpet_writel(hpet_tick, HPET_T0_CMP); /* AK: why twice? */
818 cfg |= HPET_CFG_LEGACY;
819 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700820/*
821 * Go!
822 */
823
john stultza3a00752005-06-23 00:08:36 -0700824 cfg |= HPET_CFG_ENABLE;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700825 hpet_writel(cfg, HPET_CFG);
826
827 return 0;
828}
829
830static int hpet_init(void)
831{
832 unsigned int id;
833
834 if (!vxtime.hpet_address)
835 return -1;
836 set_fixmap_nocache(FIX_HPET_BASE, vxtime.hpet_address);
837 __set_fixmap(VSYSCALL_HPET, vxtime.hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
838
839/*
840 * Read the period, compute tick and quotient.
841 */
842
843 id = hpet_readl(HPET_ID);
844
john stultza3a00752005-06-23 00:08:36 -0700845 if (!(id & HPET_ID_VENDOR) || !(id & HPET_ID_NUMBER))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700846 return -1;
847
848 hpet_period = hpet_readl(HPET_PERIOD);
849 if (hpet_period < 100000 || hpet_period > 100000000)
850 return -1;
851
852 hpet_tick = (1000000000L * (USEC_PER_SEC / HZ) + hpet_period / 2) /
853 hpet_period;
854
john stultza3a00752005-06-23 00:08:36 -0700855 hpet_use_timer = (id & HPET_ID_LEGSUP);
856
Linus Torvalds1da177e2005-04-16 15:20:36 -0700857 return hpet_timer_stop_set_go(hpet_tick);
858}
859
860static int hpet_reenable(void)
861{
862 return hpet_timer_stop_set_go(hpet_tick);
863}
864
Andi Kleen73dea472006-02-03 21:50:50 +0100865#define PIT_MODE 0x43
866#define PIT_CH0 0x40
867
868static void __init __pit_init(int val, u8 mode)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700869{
870 unsigned long flags;
871
872 spin_lock_irqsave(&i8253_lock, flags);
Andi Kleen73dea472006-02-03 21:50:50 +0100873 outb_p(mode, PIT_MODE);
874 outb_p(val & 0xff, PIT_CH0); /* LSB */
875 outb_p(val >> 8, PIT_CH0); /* MSB */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700876 spin_unlock_irqrestore(&i8253_lock, flags);
877}
878
Andi Kleen73dea472006-02-03 21:50:50 +0100879void __init pit_init(void)
880{
881 __pit_init(LATCH, 0x34); /* binary, mode 2, LSB/MSB, ch 0 */
882}
883
884void __init pit_stop_interrupt(void)
885{
886 __pit_init(0, 0x30); /* mode 0 */
887}
888
889void __init stop_timer_interrupt(void)
890{
891 char *name;
892 if (vxtime.hpet_address) {
893 name = "HPET";
894 hpet_timer_stop_set_go(0);
895 } else {
896 name = "PIT";
897 pit_stop_interrupt();
898 }
899 printk(KERN_INFO "timer: %s interrupt stopped.\n", name);
900}
901
Linus Torvalds1da177e2005-04-16 15:20:36 -0700902int __init time_setup(char *str)
903{
904 report_lost_ticks = 1;
905 return 1;
906}
907
908static struct irqaction irq0 = {
909 timer_interrupt, SA_INTERRUPT, CPU_MASK_NONE, "timer", NULL, NULL
910};
911
Linus Torvalds1da177e2005-04-16 15:20:36 -0700912void __init time_init(void)
913{
914 char *timename;
Andi Kleene8b91772006-02-26 04:18:49 +0100915 char *gtod;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700916
917#ifdef HPET_HACK_ENABLE_DANGEROUS
918 if (!vxtime.hpet_address) {
919 printk(KERN_WARNING "time.c: WARNING: Enabling HPET base "
920 "manually!\n");
921 outl(0x800038a0, 0xcf8);
922 outl(0xff000001, 0xcfc);
923 outl(0x800038a0, 0xcf8);
924 vxtime.hpet_address = inl(0xcfc) & 0xfffffffe;
925 printk(KERN_WARNING "time.c: WARNING: Enabled HPET "
926 "at %#lx.\n", vxtime.hpet_address);
927 }
928#endif
929 if (nohpet)
930 vxtime.hpet_address = 0;
931
932 xtime.tv_sec = get_cmos_time();
933 xtime.tv_nsec = 0;
934
935 set_normalized_timespec(&wall_to_monotonic,
936 -xtime.tv_sec, -xtime.tv_nsec);
937
john stultza3a00752005-06-23 00:08:36 -0700938 if (!hpet_init())
Andi Kleen7351c0b2006-03-25 16:30:34 +0100939 vxtime_hz = (1000000000000000L + hpet_period / 2) / hpet_period;
Andi Kleen68e18892005-12-12 22:17:07 -0800940 else
941 vxtime.hpet_address = 0;
john stultza3a00752005-06-23 00:08:36 -0700942
943 if (hpet_use_timer) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700944 cpu_khz = hpet_calibrate_tsc();
945 timename = "HPET";
Andi Kleen312df5f2005-05-16 21:53:28 -0700946#ifdef CONFIG_X86_PM_TIMER
john stultzfd495472005-12-12 22:17:13 -0800947 } else if (pmtmr_ioport && !vxtime.hpet_address) {
Andi Kleen312df5f2005-05-16 21:53:28 -0700948 vxtime_hz = PM_TIMER_FREQUENCY;
949 timename = "PM";
950 pit_init();
951 cpu_khz = pit_calibrate_tsc();
952#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700953 } else {
954 pit_init();
955 cpu_khz = pit_calibrate_tsc();
956 timename = "PIT";
957 }
958
Andi Kleene8b91772006-02-26 04:18:49 +0100959 vxtime.mode = VXTIME_TSC;
960 gtod = time_init_gtod();
961
962 printk(KERN_INFO "time.c: Using %ld.%06ld MHz WALL %s GTOD %s timer.\n",
963 vxtime_hz / 1000000, vxtime_hz % 1000000, timename, gtod);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700964 printk(KERN_INFO "time.c: Detected %d.%03d MHz processor.\n",
965 cpu_khz / 1000, cpu_khz % 1000);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700966 vxtime.quot = (1000000L << 32) / vxtime_hz;
967 vxtime.tsc_quot = (1000L << 32) / cpu_khz;
Andi Kleenc818a182006-01-11 22:45:24 +0100968 vxtime.last_tsc = get_cycles_sync();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700969 setup_irq(0, &irq0);
970
Mathieu Desnoyersdacb16b2005-10-30 14:59:25 -0800971 set_cyc2ns_scale(cpu_khz);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700972}
973
Andi Kleena8ab26f2005-04-16 15:25:19 -0700974/*
Andi Kleen312df5f2005-05-16 21:53:28 -0700975 * Make an educated guess if the TSC is trustworthy and synchronized
976 * over all CPUs.
977 */
Shaohua Li396bd502006-02-03 21:51:20 +0100978__cpuinit int unsynchronized_tsc(void)
Andi Kleen312df5f2005-05-16 21:53:28 -0700979{
980#ifdef CONFIG_SMP
981 if (oem_force_hpet_timer())
982 return 1;
983 /* Intel systems are normally all synchronized. Exceptions
984 are handled in the OEM check above. */
985 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
986 return 0;
Andi Kleen312df5f2005-05-16 21:53:28 -0700987#endif
988 /* Assume multi socket systems are not synchronized */
Andi Kleen737c5c32006-01-11 22:45:15 +0100989 return num_present_cpus() > 1;
Andi Kleen312df5f2005-05-16 21:53:28 -0700990}
991
992/*
Andi Kleene8b91772006-02-26 04:18:49 +0100993 * Decide what mode gettimeofday should use.
Andi Kleena8ab26f2005-04-16 15:25:19 -0700994 */
Andi Kleene8b91772006-02-26 04:18:49 +0100995__init static char *time_init_gtod(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700996{
997 char *timetype;
998
Andi Kleen312df5f2005-05-16 21:53:28 -0700999 if (unsynchronized_tsc())
Linus Torvalds1da177e2005-04-16 15:20:36 -07001000 notsc = 1;
1001 if (vxtime.hpet_address && notsc) {
john stultza3a00752005-06-23 00:08:36 -07001002 timetype = hpet_use_timer ? "HPET" : "PIT/HPET";
Chris McDermott33042a92006-02-11 17:55:50 -08001003 if (hpet_use_timer)
1004 vxtime.last = hpet_readl(HPET_T0_CMP) - hpet_tick;
1005 else
1006 vxtime.last = hpet_readl(HPET_COUNTER);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001007 vxtime.mode = VXTIME_HPET;
1008 do_gettimeoffset = do_gettimeoffset_hpet;
Andi Kleen312df5f2005-05-16 21:53:28 -07001009#ifdef CONFIG_X86_PM_TIMER
1010 /* Using PM for gettimeofday is quite slow, but we have no other
1011 choice because the TSC is too unreliable on some systems. */
1012 } else if (pmtmr_ioport && !vxtime.hpet_address && notsc) {
1013 timetype = "PM";
1014 do_gettimeoffset = do_gettimeoffset_pm;
1015 vxtime.mode = VXTIME_PMTMR;
1016 sysctl_vsyscall = 0;
1017 printk(KERN_INFO "Disabling vsyscall due to use of PM timer\n");
1018#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001019 } else {
john stultza3a00752005-06-23 00:08:36 -07001020 timetype = hpet_use_timer ? "HPET/TSC" : "PIT/TSC";
Linus Torvalds1da177e2005-04-16 15:20:36 -07001021 vxtime.mode = VXTIME_TSC;
1022 }
Andi Kleene8b91772006-02-26 04:18:49 +01001023 return timetype;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001024}
1025
1026__setup("report_lost_ticks", time_setup);
1027
1028static long clock_cmos_diff;
1029static unsigned long sleep_start;
1030
Andi Kleen0b913172006-01-11 22:45:33 +01001031/*
1032 * sysfs support for the timer.
1033 */
1034
Pavel Machek0b9c33a2005-04-16 15:25:31 -07001035static int timer_suspend(struct sys_device *dev, pm_message_t state)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001036{
1037 /*
1038 * Estimate time zone so that set_time can update the clock
1039 */
1040 long cmos_time = get_cmos_time();
1041
1042 clock_cmos_diff = -cmos_time;
1043 clock_cmos_diff += get_seconds();
1044 sleep_start = cmos_time;
1045 return 0;
1046}
1047
1048static int timer_resume(struct sys_device *dev)
1049{
1050 unsigned long flags;
1051 unsigned long sec;
1052 unsigned long ctime = get_cmos_time();
1053 unsigned long sleep_length = (ctime - sleep_start) * HZ;
1054
1055 if (vxtime.hpet_address)
1056 hpet_reenable();
1057 else
1058 i8254_timer_resume();
1059
1060 sec = ctime + clock_cmos_diff;
1061 write_seqlock_irqsave(&xtime_lock,flags);
1062 xtime.tv_sec = sec;
1063 xtime.tv_nsec = 0;
Shaohua Li0dd2ea92006-02-03 21:50:56 +01001064 if (vxtime.mode == VXTIME_HPET) {
1065 if (hpet_use_timer)
1066 vxtime.last = hpet_readl(HPET_T0_CMP) - hpet_tick;
1067 else
1068 vxtime.last = hpet_readl(HPET_COUNTER);
1069#ifdef CONFIG_X86_PM_TIMER
1070 } else if (vxtime.mode == VXTIME_PMTMR) {
1071 pmtimer_resume();
1072#endif
1073 } else
1074 vxtime.last_tsc = get_cycles_sync();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001075 write_sequnlock_irqrestore(&xtime_lock,flags);
1076 jiffies += sleep_length;
1077 wall_jiffies += sleep_length;
Shaohua Li0dd2ea92006-02-03 21:50:56 +01001078 monotonic_base += sleep_length * (NSEC_PER_SEC/HZ);
Ingo Molnar8446f1d2005-09-06 15:16:27 -07001079 touch_softlockup_watchdog();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001080 return 0;
1081}
1082
1083static struct sysdev_class timer_sysclass = {
1084 .resume = timer_resume,
1085 .suspend = timer_suspend,
1086 set_kset_name("timer"),
1087};
1088
Linus Torvalds1da177e2005-04-16 15:20:36 -07001089/* XXX this driverfs stuff should probably go elsewhere later -john */
1090static struct sys_device device_timer = {
1091 .id = 0,
1092 .cls = &timer_sysclass,
1093};
1094
1095static int time_init_device(void)
1096{
1097 int error = sysdev_class_register(&timer_sysclass);
1098 if (!error)
1099 error = sysdev_register(&device_timer);
1100 return error;
1101}
1102
1103device_initcall(time_init_device);
1104
1105#ifdef CONFIG_HPET_EMULATE_RTC
1106/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
1107 * is enabled, we support RTC interrupt functionality in software.
1108 * RTC has 3 kinds of interrupts:
1109 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
1110 * is updated
1111 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
1112 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
1113 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
1114 * (1) and (2) above are implemented using polling at a frequency of
1115 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
1116 * overhead. (DEFAULT_RTC_INT_FREQ)
1117 * For (3), we use interrupts at 64Hz or user specified periodic
1118 * frequency, whichever is higher.
1119 */
1120#include <linux/rtc.h>
1121
Linus Torvalds1da177e2005-04-16 15:20:36 -07001122#define DEFAULT_RTC_INT_FREQ 64
1123#define RTC_NUM_INTS 1
1124
1125static unsigned long UIE_on;
1126static unsigned long prev_update_sec;
1127
1128static unsigned long AIE_on;
1129static struct rtc_time alarm_time;
1130
1131static unsigned long PIE_on;
1132static unsigned long PIE_freq = DEFAULT_RTC_INT_FREQ;
1133static unsigned long PIE_count;
1134
1135static unsigned long hpet_rtc_int_freq; /* RTC interrupt frequency */
Clemens Ladisch7811fb82005-10-30 15:03:36 -08001136static unsigned int hpet_t1_cmp; /* cached comparator register */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001137
1138int is_hpet_enabled(void)
1139{
1140 return vxtime.hpet_address != 0;
1141}
1142
1143/*
1144 * Timer 1 for RTC, we do not use periodic interrupt feature,
1145 * even if HPET supports periodic interrupts on Timer 1.
1146 * The reason being, to set up a periodic interrupt in HPET, we need to
1147 * stop the main counter. And if we do that everytime someone diables/enables
1148 * RTC, we will have adverse effect on main kernel timer running on Timer 0.
1149 * So, for the time being, simulate the periodic interrupt in software.
1150 *
1151 * hpet_rtc_timer_init() is called for the first time and during subsequent
1152 * interuppts reinit happens through hpet_rtc_timer_reinit().
1153 */
1154int hpet_rtc_timer_init(void)
1155{
1156 unsigned int cfg, cnt;
1157 unsigned long flags;
1158
1159 if (!is_hpet_enabled())
1160 return 0;
1161 /*
1162 * Set the counter 1 and enable the interrupts.
1163 */
1164 if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
1165 hpet_rtc_int_freq = PIE_freq;
1166 else
1167 hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;
1168
1169 local_irq_save(flags);
1170 cnt = hpet_readl(HPET_COUNTER);
1171 cnt += ((hpet_tick*HZ)/hpet_rtc_int_freq);
1172 hpet_writel(cnt, HPET_T1_CMP);
Clemens Ladisch7811fb82005-10-30 15:03:36 -08001173 hpet_t1_cmp = cnt;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001174 local_irq_restore(flags);
1175
1176 cfg = hpet_readl(HPET_T1_CFG);
Clemens Ladisch5f819942005-10-30 15:03:36 -08001177 cfg &= ~HPET_TN_PERIODIC;
1178 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001179 hpet_writel(cfg, HPET_T1_CFG);
1180
1181 return 1;
1182}
1183
1184static void hpet_rtc_timer_reinit(void)
1185{
1186 unsigned int cfg, cnt;
1187
Clemens Ladischf00c96f2005-10-30 15:03:35 -08001188 if (unlikely(!(PIE_on | AIE_on | UIE_on))) {
1189 cfg = hpet_readl(HPET_T1_CFG);
1190 cfg &= ~HPET_TN_ENABLE;
1191 hpet_writel(cfg, HPET_T1_CFG);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001192 return;
Clemens Ladischf00c96f2005-10-30 15:03:35 -08001193 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001194
1195 if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
1196 hpet_rtc_int_freq = PIE_freq;
1197 else
1198 hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;
1199
1200 /* It is more accurate to use the comparator value than current count.*/
Clemens Ladisch7811fb82005-10-30 15:03:36 -08001201 cnt = hpet_t1_cmp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001202 cnt += hpet_tick*HZ/hpet_rtc_int_freq;
1203 hpet_writel(cnt, HPET_T1_CMP);
Clemens Ladisch7811fb82005-10-30 15:03:36 -08001204 hpet_t1_cmp = cnt;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001205}
1206
1207/*
1208 * The functions below are called from rtc driver.
1209 * Return 0 if HPET is not being used.
1210 * Otherwise do the necessary changes and return 1.
1211 */
1212int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1213{
1214 if (!is_hpet_enabled())
1215 return 0;
1216
1217 if (bit_mask & RTC_UIE)
1218 UIE_on = 0;
1219 if (bit_mask & RTC_PIE)
1220 PIE_on = 0;
1221 if (bit_mask & RTC_AIE)
1222 AIE_on = 0;
1223
1224 return 1;
1225}
1226
1227int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1228{
1229 int timer_init_reqd = 0;
1230
1231 if (!is_hpet_enabled())
1232 return 0;
1233
1234 if (!(PIE_on | AIE_on | UIE_on))
1235 timer_init_reqd = 1;
1236
1237 if (bit_mask & RTC_UIE) {
1238 UIE_on = 1;
1239 }
1240 if (bit_mask & RTC_PIE) {
1241 PIE_on = 1;
1242 PIE_count = 0;
1243 }
1244 if (bit_mask & RTC_AIE) {
1245 AIE_on = 1;
1246 }
1247
1248 if (timer_init_reqd)
1249 hpet_rtc_timer_init();
1250
1251 return 1;
1252}
1253
1254int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
1255{
1256 if (!is_hpet_enabled())
1257 return 0;
1258
1259 alarm_time.tm_hour = hrs;
1260 alarm_time.tm_min = min;
1261 alarm_time.tm_sec = sec;
1262
1263 return 1;
1264}
1265
1266int hpet_set_periodic_freq(unsigned long freq)
1267{
1268 if (!is_hpet_enabled())
1269 return 0;
1270
1271 PIE_freq = freq;
1272 PIE_count = 0;
1273
1274 return 1;
1275}
1276
1277int hpet_rtc_dropped_irq(void)
1278{
1279 if (!is_hpet_enabled())
1280 return 0;
1281
1282 return 1;
1283}
1284
1285irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1286{
1287 struct rtc_time curr_time;
1288 unsigned long rtc_int_flag = 0;
1289 int call_rtc_interrupt = 0;
1290
1291 hpet_rtc_timer_reinit();
1292
1293 if (UIE_on | AIE_on) {
1294 rtc_get_rtc_time(&curr_time);
1295 }
1296 if (UIE_on) {
1297 if (curr_time.tm_sec != prev_update_sec) {
1298 /* Set update int info, call real rtc int routine */
1299 call_rtc_interrupt = 1;
1300 rtc_int_flag = RTC_UF;
1301 prev_update_sec = curr_time.tm_sec;
1302 }
1303 }
1304 if (PIE_on) {
1305 PIE_count++;
1306 if (PIE_count >= hpet_rtc_int_freq/PIE_freq) {
1307 /* Set periodic int info, call real rtc int routine */
1308 call_rtc_interrupt = 1;
1309 rtc_int_flag |= RTC_PF;
1310 PIE_count = 0;
1311 }
1312 }
1313 if (AIE_on) {
1314 if ((curr_time.tm_sec == alarm_time.tm_sec) &&
1315 (curr_time.tm_min == alarm_time.tm_min) &&
1316 (curr_time.tm_hour == alarm_time.tm_hour)) {
1317 /* Set alarm int info, call real rtc int routine */
1318 call_rtc_interrupt = 1;
1319 rtc_int_flag |= RTC_AF;
1320 }
1321 }
1322 if (call_rtc_interrupt) {
1323 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1324 rtc_interrupt(rtc_int_flag, dev_id, regs);
1325 }
1326 return IRQ_HANDLED;
1327}
1328#endif
1329
Linus Torvalds1da177e2005-04-16 15:20:36 -07001330static int __init nohpet_setup(char *s)
1331{
1332 nohpet = 1;
1333 return 0;
1334}
1335
1336__setup("nohpet", nohpet_setup);
1337
Andi Kleen7fd67842006-02-16 23:42:07 +01001338int __init notsc_setup(char *s)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001339{
1340 notsc = 1;
1341 return 0;
1342}
1343
1344__setup("notsc", notsc_setup);