blob: 6d60c40598e754996703e74024cf091d81146deb [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * arch/ppc/kernel/process.c
3 *
4 * Derived from "arch/i386/kernel/process.c"
5 * Copyright (C) 1995 Linus Torvalds
6 *
7 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
8 * Paul Mackerras (paulus@cs.anu.edu.au)
9 *
10 * PowerPC version
11 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
17 *
18 */
19
20#include <linux/config.h>
21#include <linux/errno.h>
22#include <linux/sched.h>
23#include <linux/kernel.h>
24#include <linux/mm.h>
25#include <linux/smp.h>
26#include <linux/smp_lock.h>
27#include <linux/stddef.h>
28#include <linux/unistd.h>
29#include <linux/ptrace.h>
30#include <linux/slab.h>
31#include <linux/user.h>
32#include <linux/elf.h>
33#include <linux/init.h>
34#include <linux/prctl.h>
35#include <linux/init_task.h>
36#include <linux/module.h>
37#include <linux/kallsyms.h>
38#include <linux/mqueue.h>
39#include <linux/hardirq.h>
40
41#include <asm/pgtable.h>
42#include <asm/uaccess.h>
43#include <asm/system.h>
44#include <asm/io.h>
45#include <asm/processor.h>
46#include <asm/mmu.h>
47#include <asm/prom.h>
48
49extern unsigned long _get_SP(void);
50
51struct task_struct *last_task_used_math = NULL;
52struct task_struct *last_task_used_altivec = NULL;
53struct task_struct *last_task_used_spe = NULL;
54
55static struct fs_struct init_fs = INIT_FS;
56static struct files_struct init_files = INIT_FILES;
57static struct signal_struct init_signals = INIT_SIGNALS(init_signals);
58static struct sighand_struct init_sighand = INIT_SIGHAND(init_sighand);
59struct mm_struct init_mm = INIT_MM(init_mm);
60EXPORT_SYMBOL(init_mm);
61
62/* this is 8kB-aligned so we can get to the thread_info struct
63 at the base of it from the stack pointer with 1 integer instruction. */
64union thread_union init_thread_union
65 __attribute__((__section__(".data.init_task"))) =
66{ INIT_THREAD_INFO(init_task) };
67
68/* initial task structure */
69struct task_struct init_task = INIT_TASK(init_task);
70EXPORT_SYMBOL(init_task);
71
72/* only used to get secondary processor up */
73struct task_struct *current_set[NR_CPUS] = {&init_task, };
74
75#undef SHOW_TASK_SWITCHES
76#undef CHECK_STACK
77
78#if defined(CHECK_STACK)
79unsigned long
80kernel_stack_top(struct task_struct *tsk)
81{
82 return ((unsigned long)tsk) + sizeof(union task_union);
83}
84
85unsigned long
86task_top(struct task_struct *tsk)
87{
88 return ((unsigned long)tsk) + sizeof(struct thread_info);
89}
90
91/* check to make sure the kernel stack is healthy */
92int check_stack(struct task_struct *tsk)
93{
94 unsigned long stack_top = kernel_stack_top(tsk);
95 unsigned long tsk_top = task_top(tsk);
96 int ret = 0;
97
98#if 0
99 /* check thread magic */
100 if ( tsk->thread.magic != THREAD_MAGIC )
101 {
102 ret |= 1;
103 printk("thread.magic bad: %08x\n", tsk->thread.magic);
104 }
105#endif
106
107 if ( !tsk )
108 printk("check_stack(): tsk bad tsk %p\n",tsk);
109
110 /* check if stored ksp is bad */
111 if ( (tsk->thread.ksp > stack_top) || (tsk->thread.ksp < tsk_top) )
112 {
113 printk("stack out of bounds: %s/%d\n"
114 " tsk_top %08lx ksp %08lx stack_top %08lx\n",
115 tsk->comm,tsk->pid,
116 tsk_top, tsk->thread.ksp, stack_top);
117 ret |= 2;
118 }
119
120 /* check if stack ptr RIGHT NOW is bad */
121 if ( (tsk == current) && ((_get_SP() > stack_top ) || (_get_SP() < tsk_top)) )
122 {
123 printk("current stack ptr out of bounds: %s/%d\n"
124 " tsk_top %08lx sp %08lx stack_top %08lx\n",
125 current->comm,current->pid,
126 tsk_top, _get_SP(), stack_top);
127 ret |= 4;
128 }
129
130#if 0
131 /* check amount of free stack */
132 for ( i = (unsigned long *)task_top(tsk) ; i < kernel_stack_top(tsk) ; i++ )
133 {
134 if ( !i )
135 printk("check_stack(): i = %p\n", i);
136 if ( *i != 0 )
137 {
138 /* only notify if it's less than 900 bytes */
139 if ( (i - (unsigned long *)task_top(tsk)) < 900 )
140 printk("%d bytes free on stack\n",
141 i - task_top(tsk));
142 break;
143 }
144 }
145#endif
146
147 if (ret)
148 {
149 panic("bad kernel stack");
150 }
151 return(ret);
152}
153#endif /* defined(CHECK_STACK) */
154
Paul Mackerras7ac59c62005-10-17 20:12:39 +1000155/*
156 * Make sure the floating-point register state in the
157 * the thread_struct is up to date for task tsk.
158 */
159void flush_fp_to_thread(struct task_struct *tsk)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700160{
Paul Mackerras7ac59c62005-10-17 20:12:39 +1000161 if (tsk->thread.regs) {
162 /*
163 * We need to disable preemption here because if we didn't,
164 * another process could get scheduled after the regs->msr
165 * test but before we have finished saving the FP registers
166 * to the thread_struct. That process could take over the
167 * FPU, and then when we get scheduled again we would store
168 * bogus values for the remaining FP registers.
169 */
170 preempt_disable();
171 if (tsk->thread.regs->msr & MSR_FP) {
172#ifdef CONFIG_SMP
173 /*
174 * This should only ever be called for current or
175 * for a stopped child process. Since we save away
176 * the FP register state on context switch on SMP,
177 * there is something wrong if a stopped child appears
178 * to still have its FP state in the CPU registers.
179 */
180 BUG_ON(tsk != current);
181#endif
182 giveup_fpu(current);
183 }
184 preempt_enable();
185 }
186}
187
188void enable_kernel_fp(void)
189{
190 WARN_ON(preemptible());
191
192#ifdef CONFIG_SMP
193 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
194 giveup_fpu(current);
195 else
196 giveup_fpu(NULL); /* just enables FP for kernel */
197#else
198 giveup_fpu(last_task_used_math);
199#endif /* CONFIG_SMP */
200}
201EXPORT_SYMBOL(enable_kernel_fp);
202
203int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs)
204{
205 preempt_disable();
206 if (tsk->thread.regs && (tsk->thread.regs->msr & MSR_FP))
207 giveup_fpu(tsk);
208 preempt_enable();
209 memcpy(fpregs, &tsk->thread.fpr[0], sizeof(*fpregs));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700210 return 1;
211}
212
Paul Mackerras7ac59c62005-10-17 20:12:39 +1000213#ifdef CONFIG_ALTIVEC
214void enable_kernel_altivec(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700215{
216 WARN_ON(preemptible());
217
218#ifdef CONFIG_SMP
219 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
220 giveup_altivec(current);
221 else
222 giveup_altivec(NULL); /* just enable AltiVec for kernel - force */
223#else
224 giveup_altivec(last_task_used_altivec);
225#endif /* __SMP __ */
226}
227EXPORT_SYMBOL(enable_kernel_altivec);
Paul Mackerras7ac59c62005-10-17 20:12:39 +1000228
229/*
230 * Make sure the VMX/Altivec register state in the
231 * the thread_struct is up to date for task tsk.
232 */
233void flush_altivec_to_thread(struct task_struct *tsk)
234{
235 if (tsk->thread.regs) {
236 preempt_disable();
237 if (tsk->thread.regs->msr & MSR_VEC) {
238#ifdef CONFIG_SMP
239 BUG_ON(tsk != current);
240#endif
241 giveup_altivec(current);
242 }
243 preempt_enable();
244 }
245}
246
247int dump_altivec(struct pt_regs *regs, elf_vrregset_t *vrregs)
248{
249 if (regs->msr & MSR_VEC)
250 giveup_altivec(current);
251 memcpy(vrregs, &current->thread.vr[0], sizeof(*vrregs));
252 return 1;
253}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700254#endif /* CONFIG_ALTIVEC */
255
256#ifdef CONFIG_SPE
Linus Torvalds1da177e2005-04-16 15:20:36 -0700257void
258enable_kernel_spe(void)
259{
260 WARN_ON(preemptible());
261
262#ifdef CONFIG_SMP
263 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
264 giveup_spe(current);
265 else
266 giveup_spe(NULL); /* just enable SPE for kernel - force */
267#else
268 giveup_spe(last_task_used_spe);
269#endif /* __SMP __ */
270}
271EXPORT_SYMBOL(enable_kernel_spe);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700272
Paul Mackerras7ac59c62005-10-17 20:12:39 +1000273void flush_spe_to_thread(struct task_struct *tsk)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700274{
Paul Mackerras7ac59c62005-10-17 20:12:39 +1000275 if (tsk->thread.regs) {
276 preempt_disable();
277 if (tsk->thread.regs->msr & MSR_SPE) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700278#ifdef CONFIG_SMP
Paul Mackerras7ac59c62005-10-17 20:12:39 +1000279 BUG_ON(tsk != current);
280#endif
281 giveup_spe(current);
282 }
283 preempt_enable();
284 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700285}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700286
Paul Mackerras7ac59c62005-10-17 20:12:39 +1000287int dump_spe(struct pt_regs *regs, elf_vrregset_t *evrregs)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700288{
Paul Mackerras7ac59c62005-10-17 20:12:39 +1000289 if (regs->msr & MSR_SPE)
290 giveup_spe(current);
291 /* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */
292 memcpy(evrregs, &current->thread.evr[0], sizeof(u32) * 35);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700293 return 1;
294}
Paul Mackerras7ac59c62005-10-17 20:12:39 +1000295#endif /* CONFIG_SPE */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700296
297struct task_struct *__switch_to(struct task_struct *prev,
298 struct task_struct *new)
299{
300 struct thread_struct *new_thread, *old_thread;
301 unsigned long s;
302 struct task_struct *last;
303
304 local_irq_save(s);
305#ifdef CHECK_STACK
306 check_stack(prev);
307 check_stack(new);
308#endif
309
310#ifdef CONFIG_SMP
311 /* avoid complexity of lazy save/restore of fpu
312 * by just saving it every time we switch out if
313 * this task used the fpu during the last quantum.
314 *
315 * If it tries to use the fpu again, it'll trap and
316 * reload its fp regs. So we don't have to do a restore
317 * every switch, just a save.
318 * -- Cort
319 */
320 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
321 giveup_fpu(prev);
322#ifdef CONFIG_ALTIVEC
323 /*
324 * If the previous thread used altivec in the last quantum
325 * (thus changing altivec regs) then save them.
326 * We used to check the VRSAVE register but not all apps
327 * set it, so we don't rely on it now (and in fact we need
328 * to save & restore VSCR even if VRSAVE == 0). -- paulus
329 *
330 * On SMP we always save/restore altivec regs just to avoid the
331 * complexity of changing processors.
332 * -- Cort
333 */
334 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_VEC)))
335 giveup_altivec(prev);
336#endif /* CONFIG_ALTIVEC */
337#ifdef CONFIG_SPE
338 /*
339 * If the previous thread used spe in the last quantum
340 * (thus changing spe regs) then save them.
341 *
342 * On SMP we always save/restore spe regs just to avoid the
343 * complexity of changing processors.
344 */
345 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
346 giveup_spe(prev);
347#endif /* CONFIG_SPE */
348#endif /* CONFIG_SMP */
349
350 /* Avoid the trap. On smp this this never happens since
351 * we don't set last_task_used_altivec -- Cort
352 */
353 if (new->thread.regs && last_task_used_altivec == new)
354 new->thread.regs->msr |= MSR_VEC;
355#ifdef CONFIG_SPE
356 /* Avoid the trap. On smp this this never happens since
357 * we don't set last_task_used_spe
358 */
359 if (new->thread.regs && last_task_used_spe == new)
360 new->thread.regs->msr |= MSR_SPE;
361#endif /* CONFIG_SPE */
362 new_thread = &new->thread;
363 old_thread = &current->thread;
364 last = _switch(old_thread, new_thread);
365 local_irq_restore(s);
366 return last;
367}
368
369void show_regs(struct pt_regs * regs)
370{
371 int i, trap;
372
373 printk("NIP: %08lX LR: %08lX SP: %08lX REGS: %p TRAP: %04lx %s\n",
374 regs->nip, regs->link, regs->gpr[1], regs, regs->trap,
375 print_tainted());
376 printk("MSR: %08lx EE: %01x PR: %01x FP: %01x ME: %01x IR/DR: %01x%01x\n",
377 regs->msr, regs->msr&MSR_EE ? 1 : 0, regs->msr&MSR_PR ? 1 : 0,
378 regs->msr & MSR_FP ? 1 : 0,regs->msr&MSR_ME ? 1 : 0,
379 regs->msr&MSR_IR ? 1 : 0,
380 regs->msr&MSR_DR ? 1 : 0);
381 trap = TRAP(regs);
382 if (trap == 0x300 || trap == 0x600)
383 printk("DAR: %08lX, DSISR: %08lX\n", regs->dar, regs->dsisr);
384 printk("TASK = %p[%d] '%s' THREAD: %p\n",
385 current, current->pid, current->comm, current->thread_info);
386 printk("Last syscall: %ld ", current->thread.last_syscall);
387
388#ifdef CONFIG_SMP
389 printk(" CPU: %d", smp_processor_id());
390#endif /* CONFIG_SMP */
391
392 for (i = 0; i < 32; i++) {
393 long r;
394 if ((i % 8) == 0)
395 printk("\n" KERN_INFO "GPR%02d: ", i);
396 if (__get_user(r, &regs->gpr[i]))
397 break;
398 printk("%08lX ", r);
399 if (i == 12 && !FULL_REGS(regs))
400 break;
401 }
402 printk("\n");
403#ifdef CONFIG_KALLSYMS
404 /*
405 * Lookup NIP late so we have the best change of getting the
406 * above info out without failing
407 */
408 printk("NIP [%08lx] ", regs->nip);
409 print_symbol("%s\n", regs->nip);
410 printk("LR [%08lx] ", regs->link);
411 print_symbol("%s\n", regs->link);
412#endif
413 show_stack(current, (unsigned long *) regs->gpr[1]);
414}
415
416void exit_thread(void)
417{
418 if (last_task_used_math == current)
419 last_task_used_math = NULL;
420 if (last_task_used_altivec == current)
421 last_task_used_altivec = NULL;
422#ifdef CONFIG_SPE
423 if (last_task_used_spe == current)
424 last_task_used_spe = NULL;
425#endif
426}
427
428void flush_thread(void)
429{
430 if (last_task_used_math == current)
431 last_task_used_math = NULL;
432 if (last_task_used_altivec == current)
433 last_task_used_altivec = NULL;
434#ifdef CONFIG_SPE
435 if (last_task_used_spe == current)
436 last_task_used_spe = NULL;
437#endif
438}
439
440void
441release_thread(struct task_struct *t)
442{
443}
444
445/*
446 * This gets called before we allocate a new thread and copy
447 * the current task into it.
448 */
449void prepare_to_copy(struct task_struct *tsk)
450{
451 struct pt_regs *regs = tsk->thread.regs;
452
453 if (regs == NULL)
454 return;
455 preempt_disable();
456 if (regs->msr & MSR_FP)
457 giveup_fpu(current);
458#ifdef CONFIG_ALTIVEC
459 if (regs->msr & MSR_VEC)
460 giveup_altivec(current);
461#endif /* CONFIG_ALTIVEC */
462#ifdef CONFIG_SPE
463 if (regs->msr & MSR_SPE)
464 giveup_spe(current);
465#endif /* CONFIG_SPE */
466 preempt_enable();
467}
468
469/*
470 * Copy a thread..
471 */
472int
473copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
474 unsigned long unused,
475 struct task_struct *p, struct pt_regs *regs)
476{
477 struct pt_regs *childregs, *kregs;
478 extern void ret_from_fork(void);
479 unsigned long sp = (unsigned long)p->thread_info + THREAD_SIZE;
480 unsigned long childframe;
481
482 CHECK_FULL_REGS(regs);
483 /* Copy registers */
484 sp -= sizeof(struct pt_regs);
485 childregs = (struct pt_regs *) sp;
486 *childregs = *regs;
487 if ((childregs->msr & MSR_PR) == 0) {
488 /* for kernel thread, set `current' and stackptr in new task */
489 childregs->gpr[1] = sp + sizeof(struct pt_regs);
490 childregs->gpr[2] = (unsigned long) p;
491 p->thread.regs = NULL; /* no user register state */
492 } else {
493 childregs->gpr[1] = usp;
494 p->thread.regs = childregs;
495 if (clone_flags & CLONE_SETTLS)
496 childregs->gpr[2] = childregs->gpr[6];
497 }
498 childregs->gpr[3] = 0; /* Result from fork() */
499 sp -= STACK_FRAME_OVERHEAD;
500 childframe = sp;
501
502 /*
503 * The way this works is that at some point in the future
504 * some task will call _switch to switch to the new task.
505 * That will pop off the stack frame created below and start
506 * the new task running at ret_from_fork. The new task will
507 * do some house keeping and then return from the fork or clone
508 * system call, using the stack frame created above.
509 */
510 sp -= sizeof(struct pt_regs);
511 kregs = (struct pt_regs *) sp;
512 sp -= STACK_FRAME_OVERHEAD;
513 p->thread.ksp = sp;
514 kregs->nip = (unsigned long)ret_from_fork;
515
516 p->thread.last_syscall = -1;
517
518 return 0;
519}
520
521/*
522 * Set up a thread for executing a new program
523 */
524void start_thread(struct pt_regs *regs, unsigned long nip, unsigned long sp)
525{
526 set_fs(USER_DS);
527 memset(regs->gpr, 0, sizeof(regs->gpr));
528 regs->ctr = 0;
529 regs->link = 0;
530 regs->xer = 0;
531 regs->ccr = 0;
532 regs->mq = 0;
533 regs->nip = nip;
534 regs->gpr[1] = sp;
535 regs->msr = MSR_USER;
536 if (last_task_used_math == current)
537 last_task_used_math = NULL;
538 if (last_task_used_altivec == current)
539 last_task_used_altivec = NULL;
540#ifdef CONFIG_SPE
541 if (last_task_used_spe == current)
542 last_task_used_spe = NULL;
543#endif
544 memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
545 current->thread.fpscr = 0;
546#ifdef CONFIG_ALTIVEC
547 memset(current->thread.vr, 0, sizeof(current->thread.vr));
548 memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
549 current->thread.vrsave = 0;
550 current->thread.used_vr = 0;
551#endif /* CONFIG_ALTIVEC */
552#ifdef CONFIG_SPE
553 memset(current->thread.evr, 0, sizeof(current->thread.evr));
554 current->thread.acc = 0;
555 current->thread.spefscr = 0;
556 current->thread.used_spe = 0;
557#endif /* CONFIG_SPE */
558}
559
560#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
561 | PR_FP_EXC_RES | PR_FP_EXC_INV)
562
563int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
564{
565 struct pt_regs *regs = tsk->thread.regs;
566
567 /* This is a bit hairy. If we are an SPE enabled processor
568 * (have embedded fp) we store the IEEE exception enable flags in
569 * fpexc_mode. fpexc_mode is also used for setting FP exception
570 * mode (asyn, precise, disabled) for 'Classic' FP. */
571 if (val & PR_FP_EXC_SW_ENABLE) {
572#ifdef CONFIG_SPE
573 tsk->thread.fpexc_mode = val &
574 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
575#else
576 return -EINVAL;
577#endif
578 } else {
579 /* on a CONFIG_SPE this does not hurt us. The bits that
580 * __pack_fe01 use do not overlap with bits used for
581 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
582 * on CONFIG_SPE implementations are reserved so writing to
583 * them does not change anything */
584 if (val > PR_FP_EXC_PRECISE)
585 return -EINVAL;
586 tsk->thread.fpexc_mode = __pack_fe01(val);
587 if (regs != NULL && (regs->msr & MSR_FP) != 0)
588 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
589 | tsk->thread.fpexc_mode;
590 }
591 return 0;
592}
593
594int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
595{
596 unsigned int val;
597
598 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
599#ifdef CONFIG_SPE
600 val = tsk->thread.fpexc_mode;
601#else
602 return -EINVAL;
603#endif
604 else
605 val = __unpack_fe01(tsk->thread.fpexc_mode);
606 return put_user(val, (unsigned int __user *) adr);
607}
608
609int sys_clone(unsigned long clone_flags, unsigned long usp,
610 int __user *parent_tidp, void __user *child_threadptr,
611 int __user *child_tidp, int p6,
612 struct pt_regs *regs)
613{
614 CHECK_FULL_REGS(regs);
615 if (usp == 0)
616 usp = regs->gpr[1]; /* stack pointer for child */
617 return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
618}
619
Paul Mackerrasfd582ec2005-10-11 22:08:12 +1000620int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
621 unsigned long p4, unsigned long p5, unsigned long p6,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700622 struct pt_regs *regs)
623{
624 CHECK_FULL_REGS(regs);
625 return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
626}
627
Paul Mackerrasfd582ec2005-10-11 22:08:12 +1000628int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
629 unsigned long p4, unsigned long p5, unsigned long p6,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700630 struct pt_regs *regs)
631{
632 CHECK_FULL_REGS(regs);
633 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
634 regs, 0, NULL, NULL);
635}
636
637int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
638 unsigned long a3, unsigned long a4, unsigned long a5,
639 struct pt_regs *regs)
640{
641 int error;
642 char * filename;
643
644 filename = getname((char __user *) a0);
645 error = PTR_ERR(filename);
646 if (IS_ERR(filename))
647 goto out;
648 preempt_disable();
649 if (regs->msr & MSR_FP)
650 giveup_fpu(current);
651#ifdef CONFIG_ALTIVEC
652 if (regs->msr & MSR_VEC)
653 giveup_altivec(current);
654#endif /* CONFIG_ALTIVEC */
655#ifdef CONFIG_SPE
656 if (regs->msr & MSR_SPE)
657 giveup_spe(current);
658#endif /* CONFIG_SPE */
659 preempt_enable();
660 error = do_execve(filename, (char __user *__user *) a1,
661 (char __user *__user *) a2, regs);
662 if (error == 0) {
663 task_lock(current);
664 current->ptrace &= ~PT_DTRACE;
665 task_unlock(current);
666 }
667 putname(filename);
668out:
669 return error;
670}
671
672void dump_stack(void)
673{
674 show_stack(current, NULL);
675}
676
677EXPORT_SYMBOL(dump_stack);
678
679void show_stack(struct task_struct *tsk, unsigned long *stack)
680{
681 unsigned long sp, stack_top, prev_sp, ret;
682 int count = 0;
683 unsigned long next_exc = 0;
684 struct pt_regs *regs;
685 extern char ret_from_except, ret_from_except_full, ret_from_syscall;
686
687 sp = (unsigned long) stack;
688 if (tsk == NULL)
689 tsk = current;
690 if (sp == 0) {
691 if (tsk == current)
692 asm("mr %0,1" : "=r" (sp));
693 else
694 sp = tsk->thread.ksp;
695 }
696
697 prev_sp = (unsigned long) (tsk->thread_info + 1);
698 stack_top = (unsigned long) tsk->thread_info + THREAD_SIZE;
699 while (count < 16 && sp > prev_sp && sp < stack_top && (sp & 3) == 0) {
700 if (count == 0) {
701 printk("Call trace:");
702#ifdef CONFIG_KALLSYMS
703 printk("\n");
704#endif
705 } else {
706 if (next_exc) {
707 ret = next_exc;
708 next_exc = 0;
709 } else
710 ret = *(unsigned long *)(sp + 4);
711 printk(" [%08lx] ", ret);
712#ifdef CONFIG_KALLSYMS
713 print_symbol("%s", ret);
714 printk("\n");
715#endif
716 if (ret == (unsigned long) &ret_from_except
717 || ret == (unsigned long) &ret_from_except_full
718 || ret == (unsigned long) &ret_from_syscall) {
719 /* sp + 16 points to an exception frame */
720 regs = (struct pt_regs *) (sp + 16);
721 if (sp + 16 + sizeof(*regs) <= stack_top)
722 next_exc = regs->nip;
723 }
724 }
725 ++count;
726 sp = *(unsigned long *)sp;
727 }
728#ifndef CONFIG_KALLSYMS
729 if (count > 0)
730 printk("\n");
731#endif
732}
733
734#if 0
735/*
736 * Low level print for debugging - Cort
737 */
738int __init ll_printk(const char *fmt, ...)
739{
740 va_list args;
741 char buf[256];
742 int i;
743
744 va_start(args, fmt);
745 i=vsprintf(buf,fmt,args);
746 ll_puts(buf);
747 va_end(args);
748 return i;
749}
750
751int lines = 24, cols = 80;
752int orig_x = 0, orig_y = 0;
753
754void puthex(unsigned long val)
755{
756 unsigned char buf[10];
757 int i;
758 for (i = 7; i >= 0; i--)
759 {
760 buf[i] = "0123456789ABCDEF"[val & 0x0F];
761 val >>= 4;
762 }
763 buf[8] = '\0';
764 prom_print(buf);
765}
766
767void __init ll_puts(const char *s)
768{
769 int x,y;
770 char *vidmem = (char *)/*(_ISA_MEM_BASE + 0xB8000) */0xD00B8000;
771 char c;
772 extern int mem_init_done;
773
774 if ( mem_init_done ) /* assume this means we can printk */
775 {
776 printk(s);
777 return;
778 }
779
780#if 0
781 if ( have_of )
782 {
783 prom_print(s);
784 return;
785 }
786#endif
787
788 /*
789 * can't ll_puts on chrp without openfirmware yet.
790 * vidmem just needs to be setup for it.
791 * -- Cort
792 */
793 if ( _machine != _MACH_prep )
794 return;
795 x = orig_x;
796 y = orig_y;
797
798 while ( ( c = *s++ ) != '\0' ) {
799 if ( c == '\n' ) {
800 x = 0;
801 if ( ++y >= lines ) {
802 /*scroll();*/
803 /*y--;*/
804 y = 0;
805 }
806 } else {
807 vidmem [ ( x + cols * y ) * 2 ] = c;
808 if ( ++x >= cols ) {
809 x = 0;
810 if ( ++y >= lines ) {
811 /*scroll();*/
812 /*y--;*/
813 y = 0;
814 }
815 }
816 }
817 }
818
819 orig_x = x;
820 orig_y = y;
821}
822#endif
823
824unsigned long get_wchan(struct task_struct *p)
825{
826 unsigned long ip, sp;
827 unsigned long stack_page = (unsigned long) p->thread_info;
828 int count = 0;
829 if (!p || p == current || p->state == TASK_RUNNING)
830 return 0;
831 sp = p->thread.ksp;
832 do {
833 sp = *(unsigned long *)sp;
834 if (sp < stack_page || sp >= stack_page + 8188)
835 return 0;
836 if (count > 0) {
837 ip = *(unsigned long *)(sp + 4);
838 if (!in_sched_functions(ip))
839 return ip;
840 }
841 } while (count++ < 16);
842 return 0;
843}