blob: 8d8e9635b19bdc3c440207a393f264631f92929d [file] [log] [blame]
Steve Kondikf7652b32013-11-26 15:20:51 -08001/* Copyright (c) 2002,2007-2013, The Linux Foundation. All rights reserved.
2 *
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License version 2 and
5 * only version 2 as published by the Free Software Foundation.
6 *
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU General Public License for more details.
11 *
12 */
13
14#include <linux/export.h>
15#include <linux/vmalloc.h>
16#include <linux/memory_alloc.h>
17#include <asm/cacheflush.h>
18#include <linux/slab.h>
19#include <linux/kmemleak.h>
20#include <linux/highmem.h>
21
22#include "kgsl.h"
23#include "kgsl_sharedmem.h"
24#include "kgsl_cffdump.h"
25#include "kgsl_device.h"
26
27DEFINE_MUTEX(kernel_map_global_lock);
28
29/* An attribute for showing per-process memory statistics */
30struct kgsl_mem_entry_attribute {
31 struct attribute attr;
32 int memtype;
33 ssize_t (*show)(struct kgsl_process_private *priv,
34 int type, char *buf);
35};
36
37#define to_mem_entry_attr(a) \
38container_of(a, struct kgsl_mem_entry_attribute, attr)
39
40#define __MEM_ENTRY_ATTR(_type, _name, _show) \
41{ \
42 .attr = { .name = __stringify(_name), .mode = 0444 }, \
43 .memtype = _type, \
44 .show = _show, \
45}
46
47/*
48 * A structure to hold the attributes for a particular memory type.
49 * For each memory type in each process we store the current and maximum
50 * memory usage and display the counts in sysfs. This structure and
51 * the following macro allow us to simplify the definition for those
52 * adding new memory types
53 */
54
55struct mem_entry_stats {
56 int memtype;
57 struct kgsl_mem_entry_attribute attr;
58 struct kgsl_mem_entry_attribute max_attr;
59};
60
61
62#define MEM_ENTRY_STAT(_type, _name) \
63{ \
64 .memtype = _type, \
65 .attr = __MEM_ENTRY_ATTR(_type, _name, mem_entry_show), \
66 .max_attr = __MEM_ENTRY_ATTR(_type, _name##_max, \
67 mem_entry_max_show), \
68}
69
70/**
71 * Given a kobj, find the process structure attached to it
72 */
73
74static struct kgsl_process_private *
75_get_priv_from_kobj(struct kobject *kobj)
76{
77 struct kgsl_process_private *private;
78 unsigned long name;
79
80 if (!kobj)
81 return NULL;
82
83 if (sscanf(kobj->name, "%ld", &name) != 1)
84 return NULL;
85
86 list_for_each_entry(private, &kgsl_driver.process_list, list) {
87 if (private->pid == name)
88 return private;
89 }
90
91 return NULL;
92}
93
94/**
95 * Show the current amount of memory allocated for the given memtype
96 */
97
98static ssize_t
99mem_entry_show(struct kgsl_process_private *priv, int type, char *buf)
100{
101 return snprintf(buf, PAGE_SIZE, "%d\n", priv->stats[type].cur);
102}
103
104/**
105 * Show the maximum memory allocated for the given memtype through the life of
106 * the process
107 */
108
109static ssize_t
110mem_entry_max_show(struct kgsl_process_private *priv, int type, char *buf)
111{
112 return snprintf(buf, PAGE_SIZE, "%d\n", priv->stats[type].max);
113}
114
115
116static void mem_entry_sysfs_release(struct kobject *kobj)
117{
118}
119
120static ssize_t mem_entry_sysfs_show(struct kobject *kobj,
121 struct attribute *attr, char *buf)
122{
123 struct kgsl_mem_entry_attribute *pattr = to_mem_entry_attr(attr);
124 struct kgsl_process_private *priv;
125 ssize_t ret;
126
127 mutex_lock(&kgsl_driver.process_mutex);
128 priv = _get_priv_from_kobj(kobj);
129
130 if (priv && pattr->show)
131 ret = pattr->show(priv, pattr->memtype, buf);
132 else
133 ret = -EIO;
134
135 mutex_unlock(&kgsl_driver.process_mutex);
136 return ret;
137}
138
139static const struct sysfs_ops mem_entry_sysfs_ops = {
140 .show = mem_entry_sysfs_show,
141};
142
143static struct kobj_type ktype_mem_entry = {
144 .sysfs_ops = &mem_entry_sysfs_ops,
145 .default_attrs = NULL,
146 .release = mem_entry_sysfs_release
147};
148
149static struct mem_entry_stats mem_stats[] = {
150 MEM_ENTRY_STAT(KGSL_MEM_ENTRY_KERNEL, kernel),
151 MEM_ENTRY_STAT(KGSL_MEM_ENTRY_PMEM, pmem),
152#ifdef CONFIG_ASHMEM
153 MEM_ENTRY_STAT(KGSL_MEM_ENTRY_ASHMEM, ashmem),
154#endif
155 MEM_ENTRY_STAT(KGSL_MEM_ENTRY_USER, user),
156#ifdef CONFIG_ION
157 MEM_ENTRY_STAT(KGSL_MEM_ENTRY_ION, ion),
158#endif
159};
160
161void
162kgsl_process_uninit_sysfs(struct kgsl_process_private *private)
163{
164 int i;
165
166 for (i = 0; i < ARRAY_SIZE(mem_stats); i++) {
167 sysfs_remove_file(&private->kobj, &mem_stats[i].attr.attr);
168 sysfs_remove_file(&private->kobj,
169 &mem_stats[i].max_attr.attr);
170 }
171
172 kobject_put(&private->kobj);
173}
174
175/**
176 * kgsl_process_init_sysfs() - Initialize and create sysfs files for a process
177 *
178 * @device: Pointer to kgsl device struct
179 * @private: Pointer to the structure for the process
180 *
181 * @returns: 0 on success, error code otherwise
182 *
183 * kgsl_process_init_sysfs() is called at the time of creating the
184 * process struct when a process opens the kgsl device for the first time.
185 * This function creates the sysfs files for the process.
186 */
187int
188kgsl_process_init_sysfs(struct kgsl_device *device,
189 struct kgsl_process_private *private)
190{
191 unsigned char name[16];
192 int i, ret = 0;
193
194 snprintf(name, sizeof(name), "%d", private->pid);
195
196 ret = kobject_init_and_add(&private->kobj, &ktype_mem_entry,
197 kgsl_driver.prockobj, name);
198
199 if (ret)
200 return ret;
201
202 for (i = 0; i < ARRAY_SIZE(mem_stats); i++) {
203 /* We need to check the value of sysfs_create_file, but we
204 * don't really care if it passed or not */
205
206 ret = sysfs_create_file(&private->kobj,
207 &mem_stats[i].attr.attr);
208 ret = sysfs_create_file(&private->kobj,
209 &mem_stats[i].max_attr.attr);
210 }
211 return ret;
212}
213
214static int kgsl_drv_memstat_show(struct device *dev,
215 struct device_attribute *attr,
216 char *buf)
217{
218 unsigned int val = 0;
219
220 if (!strncmp(attr->attr.name, "vmalloc", 7))
221 val = kgsl_driver.stats.vmalloc;
222 else if (!strncmp(attr->attr.name, "vmalloc_max", 11))
223 val = kgsl_driver.stats.vmalloc_max;
224 else if (!strncmp(attr->attr.name, "page_alloc", 10))
225 val = kgsl_driver.stats.page_alloc;
226 else if (!strncmp(attr->attr.name, "page_alloc_max", 14))
227 val = kgsl_driver.stats.page_alloc_max;
228 else if (!strncmp(attr->attr.name, "coherent", 8))
229 val = kgsl_driver.stats.coherent;
230 else if (!strncmp(attr->attr.name, "coherent_max", 12))
231 val = kgsl_driver.stats.coherent_max;
232 else if (!strncmp(attr->attr.name, "mapped", 6))
233 val = kgsl_driver.stats.mapped;
234 else if (!strncmp(attr->attr.name, "mapped_max", 10))
235 val = kgsl_driver.stats.mapped_max;
236
237 return snprintf(buf, PAGE_SIZE, "%u\n", val);
238}
239
240static int kgsl_drv_histogram_show(struct device *dev,
241 struct device_attribute *attr,
242 char *buf)
243{
244 int len = 0;
245 int i;
246
247 for (i = 0; i < 16; i++)
248 len += snprintf(buf + len, PAGE_SIZE - len, "%d ",
249 kgsl_driver.stats.histogram[i]);
250
251 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
252 return len;
253}
254
255static int kgsl_drv_full_cache_threshold_store(struct device *dev,
256 struct device_attribute *attr,
257 const char *buf, size_t count)
258{
259 int ret;
260 unsigned int thresh;
261 ret = sscanf(buf, "%d", &thresh);
262 if (ret != 1)
263 return count;
264
265 kgsl_driver.full_cache_threshold = thresh;
266
267 return count;
268}
269
270static int kgsl_drv_full_cache_threshold_show(struct device *dev,
271 struct device_attribute *attr,
272 char *buf)
273{
274 return snprintf(buf, PAGE_SIZE, "%d\n",
275 kgsl_driver.full_cache_threshold);
276}
277
278DEVICE_ATTR(vmalloc, 0444, kgsl_drv_memstat_show, NULL);
279DEVICE_ATTR(vmalloc_max, 0444, kgsl_drv_memstat_show, NULL);
280DEVICE_ATTR(page_alloc, 0444, kgsl_drv_memstat_show, NULL);
281DEVICE_ATTR(page_alloc_max, 0444, kgsl_drv_memstat_show, NULL);
282DEVICE_ATTR(coherent, 0444, kgsl_drv_memstat_show, NULL);
283DEVICE_ATTR(coherent_max, 0444, kgsl_drv_memstat_show, NULL);
284DEVICE_ATTR(mapped, 0444, kgsl_drv_memstat_show, NULL);
285DEVICE_ATTR(mapped_max, 0444, kgsl_drv_memstat_show, NULL);
286DEVICE_ATTR(histogram, 0444, kgsl_drv_histogram_show, NULL);
287DEVICE_ATTR(full_cache_threshold, 0644,
288 kgsl_drv_full_cache_threshold_show,
289 kgsl_drv_full_cache_threshold_store);
290
291static const struct device_attribute *drv_attr_list[] = {
292 &dev_attr_vmalloc,
293 &dev_attr_vmalloc_max,
294 &dev_attr_page_alloc,
295 &dev_attr_page_alloc_max,
296 &dev_attr_coherent,
297 &dev_attr_coherent_max,
298 &dev_attr_mapped,
299 &dev_attr_mapped_max,
300 &dev_attr_histogram,
301 &dev_attr_full_cache_threshold,
302 NULL
303};
304
305void
306kgsl_sharedmem_uninit_sysfs(void)
307{
308 kgsl_remove_device_sysfs_files(&kgsl_driver.virtdev, drv_attr_list);
309}
310
311int
312kgsl_sharedmem_init_sysfs(void)
313{
314 return kgsl_create_device_sysfs_files(&kgsl_driver.virtdev,
315 drv_attr_list);
316}
317
318#ifdef CONFIG_OUTER_CACHE
319static void _outer_cache_range_op(int op, unsigned long addr, size_t size)
320{
321 switch (op) {
322 case KGSL_CACHE_OP_FLUSH:
323 outer_flush_range(addr, addr + size);
324 break;
325 case KGSL_CACHE_OP_CLEAN:
326 outer_clean_range(addr, addr + size);
327 break;
328 case KGSL_CACHE_OP_INV:
329 outer_inv_range(addr, addr + size);
330 break;
331 }
332}
333
334static void outer_cache_range_op_sg(struct scatterlist *sg, int sglen, int op)
335{
336 struct scatterlist *s;
337 int i;
338
339 for_each_sg(sg, s, sglen, i) {
340 unsigned int paddr = kgsl_get_sg_pa(s);
341 _outer_cache_range_op(op, paddr, s->length);
342 }
343}
344
345#else
346static void outer_cache_range_op_sg(struct scatterlist *sg, int sglen, int op)
347{
348}
349#endif
350
351static int kgsl_page_alloc_vmfault(struct kgsl_memdesc *memdesc,
352 struct vm_area_struct *vma,
353 struct vm_fault *vmf)
354{
355 int i, pgoff;
356 struct scatterlist *s = memdesc->sg;
357 unsigned int offset;
358
359 offset = ((unsigned long) vmf->virtual_address - vma->vm_start);
360
361 if (offset >= memdesc->size)
362 return VM_FAULT_SIGBUS;
363
364 pgoff = offset >> PAGE_SHIFT;
365
366 /*
367 * The sglist might be comprised of mixed blocks of memory depending
368 * on how many 64K pages were allocated. This means we have to do math
369 * to find the actual 4K page to map in user space
370 */
371
372 for (i = 0; i < memdesc->sglen; i++) {
373 int npages = s->length >> PAGE_SHIFT;
374
375 if (pgoff < npages) {
376 struct page *page = sg_page(s);
377
378 page = nth_page(page, pgoff);
379
380 get_page(page);
381 vmf->page = page;
382
383 return 0;
384 }
385
386 pgoff -= npages;
387 s = sg_next(s);
388 }
389
390 return VM_FAULT_SIGBUS;
391}
392
Steve Kondikf7652b32013-11-26 15:20:51 -0800393/*
394 * kgsl_page_alloc_unmap_kernel() - Unmap the memory in memdesc
395 *
396 * @memdesc: The memory descriptor which contains information about the memory
397 *
398 * Unmaps the memory mapped into kernel address space
399 */
400static void kgsl_page_alloc_unmap_kernel(struct kgsl_memdesc *memdesc)
401{
402 mutex_lock(&kernel_map_global_lock);
403 if (!memdesc->hostptr) {
404 BUG_ON(memdesc->hostptr_count);
405 goto done;
406 }
407 memdesc->hostptr_count--;
408 if (memdesc->hostptr_count)
409 goto done;
410 vunmap(memdesc->hostptr);
411 kgsl_driver.stats.vmalloc -= memdesc->size;
412 memdesc->hostptr = NULL;
413done:
414 mutex_unlock(&kernel_map_global_lock);
415}
416
417static void kgsl_page_alloc_free(struct kgsl_memdesc *memdesc)
418{
419 int i = 0;
420 struct scatterlist *sg;
421 int sglen = memdesc->sglen;
422
423 kgsl_driver.stats.page_alloc -= memdesc->size;
424
425 kgsl_page_alloc_unmap_kernel(memdesc);
426 /* we certainly do not expect the hostptr to still be mapped */
427 BUG_ON(memdesc->hostptr);
428
429 if (memdesc->sg)
430 for_each_sg(memdesc->sg, sg, sglen, i)
431 __free_pages(sg_page(sg), get_order(sg->length));
432}
433
434/*
435 * kgsl_page_alloc_map_kernel - Map the memory in memdesc to kernel address
436 * space
437 *
438 * @memdesc - The memory descriptor which contains information about the memory
439 *
440 * Return: 0 on success else error code
441 */
442static int kgsl_page_alloc_map_kernel(struct kgsl_memdesc *memdesc)
443{
444 int ret = 0;
445
446 mutex_lock(&kernel_map_global_lock);
447 if (!memdesc->hostptr) {
448 pgprot_t page_prot = pgprot_writecombine(PAGE_KERNEL);
449 struct page **pages = NULL;
450 struct scatterlist *sg;
451 int npages = PAGE_ALIGN(memdesc->size) >> PAGE_SHIFT;
452 int sglen = memdesc->sglen;
453 int i, count = 0;
454
455 /* create a list of pages to call vmap */
456 pages = vmalloc(npages * sizeof(struct page *));
457 if (!pages) {
458 KGSL_CORE_ERR("vmalloc(%d) failed\n",
459 npages * sizeof(struct page *));
460 ret = -ENOMEM;
461 goto done;
462 }
463
464 for_each_sg(memdesc->sg, sg, sglen, i) {
465 struct page *page = sg_page(sg);
466 int j;
467
468 for (j = 0; j < sg->length >> PAGE_SHIFT; j++)
469 pages[count++] = page++;
470 }
471
472
473 memdesc->hostptr = vmap(pages, count,
474 VM_IOREMAP, page_prot);
475 if (memdesc->hostptr)
476 KGSL_STATS_ADD(memdesc->size, kgsl_driver.stats.vmalloc,
477 kgsl_driver.stats.vmalloc_max);
478 else
479 ret = -ENOMEM;
480 vfree(pages);
481 }
482 if (memdesc->hostptr)
483 memdesc->hostptr_count++;
484done:
485 mutex_unlock(&kernel_map_global_lock);
486
487 return ret;
488}
489
490static int kgsl_contiguous_vmfault(struct kgsl_memdesc *memdesc,
491 struct vm_area_struct *vma,
492 struct vm_fault *vmf)
493{
494 unsigned long offset, pfn;
495 int ret;
496
497 offset = ((unsigned long) vmf->virtual_address - vma->vm_start) >>
498 PAGE_SHIFT;
499
500 pfn = (memdesc->physaddr >> PAGE_SHIFT) + offset;
501 ret = vm_insert_pfn(vma, (unsigned long) vmf->virtual_address, pfn);
502
503 if (ret == -ENOMEM || ret == -EAGAIN)
504 return VM_FAULT_OOM;
505 else if (ret == -EFAULT)
506 return VM_FAULT_SIGBUS;
507
508 return VM_FAULT_NOPAGE;
509}
510
Steve Kondikf7652b32013-11-26 15:20:51 -0800511static void kgsl_coherent_free(struct kgsl_memdesc *memdesc)
512{
513 kgsl_driver.stats.coherent -= memdesc->size;
514 dma_free_coherent(NULL, memdesc->size,
515 memdesc->hostptr, memdesc->physaddr);
516}
517
Ethan Chen7b185902014-11-16 16:48:31 -0800518static void kgsl_cma_coherent_free(struct kgsl_memdesc *memdesc)
519{
520 if (memdesc->hostptr) {
521 kgsl_driver.stats.coherent -= memdesc->size;
522 dma_free_coherent(memdesc->dev, memdesc->size,
523 memdesc->hostptr, memdesc->physaddr);
524 }
525}
526
Steve Kondikf7652b32013-11-26 15:20:51 -0800527/* Global - also used by kgsl_drm.c */
528struct kgsl_memdesc_ops kgsl_page_alloc_ops = {
529 .free = kgsl_page_alloc_free,
Ethan Chen7b185902014-11-16 16:48:31 -0800530 .vmflags = VM_NODUMP | VM_DONTEXPAND | VM_DONTCOPY,
Steve Kondikf7652b32013-11-26 15:20:51 -0800531 .vmfault = kgsl_page_alloc_vmfault,
532 .map_kernel = kgsl_page_alloc_map_kernel,
533 .unmap_kernel = kgsl_page_alloc_unmap_kernel,
534};
535EXPORT_SYMBOL(kgsl_page_alloc_ops);
536
Ethan Chen7b185902014-11-16 16:48:31 -0800537/* CMA ops - used during NOMMU mode */
538static struct kgsl_memdesc_ops kgsl_cma_ops = {
539 .free = kgsl_cma_coherent_free,
540 .vmflags = VM_NODUMP | VM_PFNMAP | VM_DONTEXPAND | VM_DONTCOPY,
Steve Kondikf7652b32013-11-26 15:20:51 -0800541 .vmfault = kgsl_contiguous_vmfault,
Steve Kondikf7652b32013-11-26 15:20:51 -0800542};
543
544static struct kgsl_memdesc_ops kgsl_coherent_ops = {
545 .free = kgsl_coherent_free,
546};
547
548void kgsl_cache_range_op(struct kgsl_memdesc *memdesc, int op)
549{
550 /*
551 * If the buffer is mapped in the kernel operate on that address
552 * otherwise use the user address
553 */
554
555 void *addr = (memdesc->hostptr) ?
556 memdesc->hostptr : (void *) memdesc->useraddr;
557
558 int size = memdesc->size;
559
560 if (addr != NULL) {
561 switch (op) {
562 case KGSL_CACHE_OP_FLUSH:
563 dmac_flush_range(addr, addr + size);
564 break;
565 case KGSL_CACHE_OP_CLEAN:
566 dmac_clean_range(addr, addr + size);
567 break;
568 case KGSL_CACHE_OP_INV:
569 dmac_inv_range(addr, addr + size);
570 break;
571 }
572 }
573 outer_cache_range_op_sg(memdesc->sg, memdesc->sglen, op);
574}
575EXPORT_SYMBOL(kgsl_cache_range_op);
576
577static int
578_kgsl_sharedmem_page_alloc(struct kgsl_memdesc *memdesc,
579 struct kgsl_pagetable *pagetable,
580 size_t size)
581{
582 int pcount = 0, order, ret = 0;
583 int j, len, page_size, sglen_alloc, sglen = 0;
584 struct page **pages = NULL;
585 pgprot_t page_prot = pgprot_writecombine(PAGE_KERNEL);
586 void *ptr;
587 unsigned int align;
588 int step = ((VMALLOC_END - VMALLOC_START)/8) >> PAGE_SHIFT;
589
590 align = (memdesc->flags & KGSL_MEMALIGN_MASK) >> KGSL_MEMALIGN_SHIFT;
591
592 page_size = (align >= ilog2(SZ_64K) && size >= SZ_64K)
593 ? SZ_64K : PAGE_SIZE;
594 /* update align flags for what we actually use */
595 if (page_size != PAGE_SIZE)
596 kgsl_memdesc_set_align(memdesc, ilog2(page_size));
597
598 /*
599 * There needs to be enough room in the sg structure to be able to
600 * service the allocation entirely with PAGE_SIZE sized chunks
601 */
602
603 sglen_alloc = PAGE_ALIGN(size) >> PAGE_SHIFT;
604
Steve Kondikf7652b32013-11-26 15:20:51 -0800605 memdesc->pagetable = pagetable;
606 memdesc->ops = &kgsl_page_alloc_ops;
607
608 memdesc->sglen_alloc = sglen_alloc;
609 memdesc->sg = kgsl_sg_alloc(memdesc->sglen_alloc);
610
611 if (memdesc->sg == NULL) {
612 ret = -ENOMEM;
613 goto done;
614 }
615
616 /*
617 * Allocate space to store the list of pages to send to vmap.
618 * This is an array of pointers so we can t rack 1024 pages per page
619 * of allocation. Since allocations can be as large as the user dares,
620 * we have to use the kmalloc/vmalloc trick here to make sure we can
621 * get the memory we need.
622 */
623
624 if ((memdesc->sglen_alloc * sizeof(struct page *)) > PAGE_SIZE)
625 pages = vmalloc(memdesc->sglen_alloc * sizeof(struct page *));
626 else
627 pages = kmalloc(PAGE_SIZE, GFP_KERNEL);
628
629 if (pages == NULL) {
630 ret = -ENOMEM;
631 goto done;
632 }
633
634 kmemleak_not_leak(memdesc->sg);
635
636 sg_init_table(memdesc->sg, memdesc->sglen_alloc);
637
638 len = size;
639
640 while (len > 0) {
641 struct page *page;
642 unsigned int gfp_mask = __GFP_HIGHMEM;
643 int j;
644
645 /* don't waste space at the end of the allocation*/
646 if (len < page_size)
647 page_size = PAGE_SIZE;
648
649 /*
650 * Don't do some of the more aggressive memory recovery
651 * techniques for large order allocations
652 */
653 if (page_size != PAGE_SIZE)
654 gfp_mask |= __GFP_COMP | __GFP_NORETRY |
655 __GFP_NO_KSWAPD | __GFP_NOWARN;
656 else
657 gfp_mask |= GFP_KERNEL;
658
659 page = alloc_pages(gfp_mask, get_order(page_size));
660
661 if (page == NULL) {
662 if (page_size != PAGE_SIZE) {
663 page_size = PAGE_SIZE;
664 continue;
665 }
666
Ethan Chen7b185902014-11-16 16:48:31 -0800667 /*
668 * Update sglen and memdesc size,as requested allocation
669 * not served fully. So that they can be correctly freed
670 * in kgsl_sharedmem_free().
671 */
672 memdesc->sglen = sglen;
673 memdesc->size = (size - len);
674
Steve Kondikf7652b32013-11-26 15:20:51 -0800675 KGSL_CORE_ERR(
676 "Out of memory: only allocated %dKB of %dKB requested\n",
677 (size - len) >> 10, size >> 10);
678
679 ret = -ENOMEM;
680 goto done;
681 }
682
683 for (j = 0; j < page_size >> PAGE_SHIFT; j++)
684 pages[pcount++] = nth_page(page, j);
685
686 sg_set_page(&memdesc->sg[sglen++], page, page_size, 0);
687 len -= page_size;
688 }
689
690 memdesc->sglen = sglen;
Ethan Chen7b185902014-11-16 16:48:31 -0800691 memdesc->size = size;
Steve Kondikf7652b32013-11-26 15:20:51 -0800692
693 /*
694 * All memory that goes to the user has to be zeroed out before it gets
695 * exposed to userspace. This means that the memory has to be mapped in
696 * the kernel, zeroed (memset) and then unmapped. This also means that
697 * the dcache has to be flushed to ensure coherency between the kernel
698 * and user pages. We used to pass __GFP_ZERO to alloc_page which mapped
699 * zeroed and unmaped each individual page, and then we had to turn
700 * around and call flush_dcache_page() on that page to clear the caches.
701 * This was killing us for performance. Instead, we found it is much
702 * faster to allocate the pages without GFP_ZERO, map a chunk of the
703 * range ('step' pages), memset it, flush it and then unmap
704 * - this results in a factor of 4 improvement for speed for large
705 * buffers. There is a small decrease in speed for small buffers,
706 * but only on the order of a few microseconds at best. The 'step'
707 * size is based on a guess at the amount of free vmalloc space, but
708 * will scale down if there's not enough free space.
709 */
710 for (j = 0; j < pcount; j += step) {
711 step = min(step, pcount - j);
712
713 ptr = vmap(&pages[j], step, VM_IOREMAP, page_prot);
714
715 if (ptr != NULL) {
716 memset(ptr, 0, step * PAGE_SIZE);
717 dmac_flush_range(ptr, ptr + step * PAGE_SIZE);
718 vunmap(ptr);
719 } else {
720 int k;
721 /* Very, very, very slow path */
722
723 for (k = j; k < j + step; k++) {
724 ptr = kmap_atomic(pages[k]);
725 memset(ptr, 0, PAGE_SIZE);
726 dmac_flush_range(ptr, ptr + PAGE_SIZE);
727 kunmap_atomic(ptr);
728 }
729 /* scale down the step size to avoid this path */
730 if (step > 1)
731 step >>= 1;
732 }
733 }
734
735 outer_cache_range_op_sg(memdesc->sg, memdesc->sglen,
736 KGSL_CACHE_OP_FLUSH);
737
Steve Kondikf7652b32013-11-26 15:20:51 -0800738 order = get_order(size);
739
740 if (order < 16)
741 kgsl_driver.stats.histogram[order]++;
742
743done:
Ethan Chen7b185902014-11-16 16:48:31 -0800744 KGSL_STATS_ADD(memdesc->size, kgsl_driver.stats.page_alloc,
745 kgsl_driver.stats.page_alloc_max);
746
Steve Kondikf7652b32013-11-26 15:20:51 -0800747 if ((memdesc->sglen_alloc * sizeof(struct page *)) > PAGE_SIZE)
748 vfree(pages);
749 else
750 kfree(pages);
751
752 if (ret)
753 kgsl_sharedmem_free(memdesc);
754
755 return ret;
756}
757
758int
759kgsl_sharedmem_page_alloc(struct kgsl_memdesc *memdesc,
760 struct kgsl_pagetable *pagetable, size_t size)
761{
762 int ret = 0;
763 BUG_ON(size == 0);
764
765 size = ALIGN(size, PAGE_SIZE * 2);
766 if (size == 0)
767 return -EINVAL;
768
769 ret = _kgsl_sharedmem_page_alloc(memdesc, pagetable, size);
770 if (!ret)
771 ret = kgsl_page_alloc_map_kernel(memdesc);
772 if (ret)
773 kgsl_sharedmem_free(memdesc);
774 return ret;
775}
776EXPORT_SYMBOL(kgsl_sharedmem_page_alloc);
777
778int
779kgsl_sharedmem_page_alloc_user(struct kgsl_memdesc *memdesc,
780 struct kgsl_pagetable *pagetable,
781 size_t size)
782{
783 size = PAGE_ALIGN(size);
784 if (size == 0)
785 return -EINVAL;
786
787 return _kgsl_sharedmem_page_alloc(memdesc, pagetable, size);
788}
789EXPORT_SYMBOL(kgsl_sharedmem_page_alloc_user);
790
791int
792kgsl_sharedmem_alloc_coherent(struct kgsl_memdesc *memdesc, size_t size)
793{
794 int result = 0;
795
796 size = ALIGN(size, PAGE_SIZE);
797 if (size == 0)
798 return -EINVAL;
799
800 memdesc->size = size;
801 memdesc->ops = &kgsl_coherent_ops;
802
803 memdesc->hostptr = dma_alloc_coherent(NULL, size, &memdesc->physaddr,
804 GFP_KERNEL);
805 if (memdesc->hostptr == NULL) {
806 KGSL_CORE_ERR("dma_alloc_coherent(%d) failed\n", size);
807 result = -ENOMEM;
808 goto err;
809 }
810
811 result = memdesc_sg_phys(memdesc, memdesc->physaddr, size);
812 if (result)
813 goto err;
814
815 /* Record statistics */
816
817 KGSL_STATS_ADD(size, kgsl_driver.stats.coherent,
818 kgsl_driver.stats.coherent_max);
819
820err:
821 if (result)
822 kgsl_sharedmem_free(memdesc);
823
824 return result;
825}
826EXPORT_SYMBOL(kgsl_sharedmem_alloc_coherent);
827
828void kgsl_sharedmem_free(struct kgsl_memdesc *memdesc)
829{
830 if (memdesc == NULL || memdesc->size == 0)
831 return;
832
833 if (memdesc->gpuaddr) {
834 kgsl_mmu_unmap(memdesc->pagetable, memdesc);
835 kgsl_mmu_put_gpuaddr(memdesc->pagetable, memdesc);
836 }
837
838 if (memdesc->ops && memdesc->ops->free)
839 memdesc->ops->free(memdesc);
840
841 kgsl_sg_free(memdesc->sg, memdesc->sglen_alloc);
842
843 memset(memdesc, 0, sizeof(*memdesc));
844}
845EXPORT_SYMBOL(kgsl_sharedmem_free);
846
Steve Kondikf7652b32013-11-26 15:20:51 -0800847int
848kgsl_sharedmem_readl(const struct kgsl_memdesc *memdesc,
849 uint32_t *dst,
850 unsigned int offsetbytes)
851{
852 uint32_t *src;
853 BUG_ON(memdesc == NULL || memdesc->hostptr == NULL || dst == NULL);
854 WARN_ON(offsetbytes % sizeof(uint32_t) != 0);
855 if (offsetbytes % sizeof(uint32_t) != 0)
856 return -EINVAL;
857
858 WARN_ON(offsetbytes + sizeof(uint32_t) > memdesc->size);
859 if (offsetbytes + sizeof(uint32_t) > memdesc->size)
860 return -ERANGE;
861 src = (uint32_t *)(memdesc->hostptr + offsetbytes);
862 *dst = *src;
863 return 0;
864}
865EXPORT_SYMBOL(kgsl_sharedmem_readl);
866
867int
868kgsl_sharedmem_writel(struct kgsl_device *device,
869 const struct kgsl_memdesc *memdesc,
870 unsigned int offsetbytes,
871 uint32_t src)
872{
873 uint32_t *dst;
874 BUG_ON(memdesc == NULL || memdesc->hostptr == NULL);
875 WARN_ON(offsetbytes % sizeof(uint32_t) != 0);
876 if (offsetbytes % sizeof(uint32_t) != 0)
877 return -EINVAL;
878
879 WARN_ON(offsetbytes + sizeof(uint32_t) > memdesc->size);
880 if (offsetbytes + sizeof(uint32_t) > memdesc->size)
881 return -ERANGE;
882 kgsl_cffdump_setmem(device,
883 memdesc->gpuaddr + offsetbytes,
884 src, sizeof(uint32_t));
885 dst = (uint32_t *)(memdesc->hostptr + offsetbytes);
886 *dst = src;
887 return 0;
888}
889EXPORT_SYMBOL(kgsl_sharedmem_writel);
890
891int
892kgsl_sharedmem_set(struct kgsl_device *device,
893 const struct kgsl_memdesc *memdesc, unsigned int offsetbytes,
894 unsigned int value, unsigned int sizebytes)
895{
896 BUG_ON(memdesc == NULL || memdesc->hostptr == NULL);
897 BUG_ON(offsetbytes + sizebytes > memdesc->size);
898
899 kgsl_cffdump_setmem(device,
900 memdesc->gpuaddr + offsetbytes, value,
901 sizebytes);
902 memset(memdesc->hostptr + offsetbytes, value, sizebytes);
903 return 0;
904}
905EXPORT_SYMBOL(kgsl_sharedmem_set);
906
907/*
908 * kgsl_sharedmem_map_vma - Map a user vma to physical memory
909 *
910 * @vma - The user vma to map
911 * @memdesc - The memory descriptor which contains information about the
912 * physical memory
913 *
914 * Return: 0 on success else error code
915 */
916int
917kgsl_sharedmem_map_vma(struct vm_area_struct *vma,
918 const struct kgsl_memdesc *memdesc)
919{
920 unsigned long addr = vma->vm_start;
921 unsigned long size = vma->vm_end - vma->vm_start;
922 int ret, i = 0;
923
924 if (!memdesc->sg || (size != memdesc->size) ||
925 (memdesc->sglen != (size / PAGE_SIZE)))
926 return -EINVAL;
927
928 for (; addr < vma->vm_end; addr += PAGE_SIZE, i++) {
929 ret = vm_insert_page(vma, addr, sg_page(&memdesc->sg[i]));
930 if (ret)
931 return ret;
932 }
933 return 0;
934}
935EXPORT_SYMBOL(kgsl_sharedmem_map_vma);
936
937static const char * const memtype_str[] = {
938 [KGSL_MEMTYPE_OBJECTANY] = "any(0)",
939 [KGSL_MEMTYPE_FRAMEBUFFER] = "framebuffer",
940 [KGSL_MEMTYPE_RENDERBUFFER] = "renderbuffer",
941 [KGSL_MEMTYPE_ARRAYBUFFER] = "arraybuffer",
942 [KGSL_MEMTYPE_ELEMENTARRAYBUFFER] = "elementarraybuffer",
943 [KGSL_MEMTYPE_VERTEXARRAYBUFFER] = "vertexarraybuffer",
944 [KGSL_MEMTYPE_TEXTURE] = "texture",
945 [KGSL_MEMTYPE_SURFACE] = "surface",
946 [KGSL_MEMTYPE_EGL_SURFACE] = "egl_surface",
947 [KGSL_MEMTYPE_GL] = "gl",
948 [KGSL_MEMTYPE_CL] = "cl",
949 [KGSL_MEMTYPE_CL_BUFFER_MAP] = "cl_buffer_map",
950 [KGSL_MEMTYPE_CL_BUFFER_NOMAP] = "cl_buffer_nomap",
951 [KGSL_MEMTYPE_CL_IMAGE_MAP] = "cl_image_map",
952 [KGSL_MEMTYPE_CL_IMAGE_NOMAP] = "cl_image_nomap",
953 [KGSL_MEMTYPE_CL_KERNEL_STACK] = "cl_kernel_stack",
954 [KGSL_MEMTYPE_COMMAND] = "command",
955 [KGSL_MEMTYPE_2D] = "2d",
956 [KGSL_MEMTYPE_EGL_IMAGE] = "egl_image",
957 [KGSL_MEMTYPE_EGL_SHADOW] = "egl_shadow",
958 [KGSL_MEMTYPE_MULTISAMPLE] = "egl_multisample",
959 /* KGSL_MEMTYPE_KERNEL handled below, to avoid huge array */
960};
961
962void kgsl_get_memory_usage(char *name, size_t name_size, unsigned int memflags)
963{
964 unsigned char type;
965
966 type = (memflags & KGSL_MEMTYPE_MASK) >> KGSL_MEMTYPE_SHIFT;
967 if (type == KGSL_MEMTYPE_KERNEL)
968 strlcpy(name, "kernel", name_size);
969 else if (type < ARRAY_SIZE(memtype_str) && memtype_str[type] != NULL)
970 strlcpy(name, memtype_str[type], name_size);
971 else
972 snprintf(name, name_size, "unknown(%3d)", type);
973}
974EXPORT_SYMBOL(kgsl_get_memory_usage);
Ethan Chen7b185902014-11-16 16:48:31 -0800975
976int kgsl_cma_alloc_coherent(struct kgsl_device *device,
977 struct kgsl_memdesc *memdesc,
978 struct kgsl_pagetable *pagetable, size_t size)
979{
980 int result = 0;
981
982 if (size == 0)
983 return -EINVAL;
984
985 memdesc->size = size;
986 memdesc->pagetable = pagetable;
987 memdesc->ops = &kgsl_cma_ops;
988 memdesc->dev = device->dev->parent;
989
990 memdesc->hostptr = dma_alloc_coherent(memdesc->dev, size,
991 &memdesc->physaddr, GFP_KERNEL);
992
993 if (memdesc->hostptr == NULL) {
994 result = -ENOMEM;
995 goto err;
996 }
997
998 result = memdesc_sg_phys(memdesc, memdesc->physaddr, size);
999 if (result)
1000 goto err;
1001
1002 /* Record statistics */
1003
1004 KGSL_STATS_ADD(size, kgsl_driver.stats.coherent,
1005 kgsl_driver.stats.coherent_max);
1006
1007err:
1008 if (result)
1009 kgsl_sharedmem_free(memdesc);
1010
1011 return result;
1012}
1013EXPORT_SYMBOL(kgsl_cma_alloc_coherent);