Alok Kataria | bfc0f59 | 2008-07-01 11:43:24 -0700 | [diff] [blame] | 1 | #include <linux/kernel.h> |
Alok Kataria | 0ef9553 | 2008-07-01 11:43:18 -0700 | [diff] [blame] | 2 | #include <linux/sched.h> |
| 3 | #include <linux/init.h> |
| 4 | #include <linux/module.h> |
| 5 | #include <linux/timer.h> |
Alok Kataria | bfc0f59 | 2008-07-01 11:43:24 -0700 | [diff] [blame] | 6 | #include <linux/acpi_pmtmr.h> |
Alok Kataria | 2dbe06f | 2008-07-01 11:43:31 -0700 | [diff] [blame] | 7 | #include <linux/cpufreq.h> |
Alok Kataria | 8fbbc4b | 2008-07-01 11:43:34 -0700 | [diff] [blame] | 8 | #include <linux/dmi.h> |
| 9 | #include <linux/delay.h> |
| 10 | #include <linux/clocksource.h> |
| 11 | #include <linux/percpu.h> |
Alok Kataria | bfc0f59 | 2008-07-01 11:43:24 -0700 | [diff] [blame] | 12 | |
| 13 | #include <asm/hpet.h> |
Alok Kataria | 8fbbc4b | 2008-07-01 11:43:34 -0700 | [diff] [blame] | 14 | #include <asm/timer.h> |
| 15 | #include <asm/vgtod.h> |
| 16 | #include <asm/time.h> |
| 17 | #include <asm/delay.h> |
Alok Kataria | 0ef9553 | 2008-07-01 11:43:18 -0700 | [diff] [blame] | 18 | |
| 19 | unsigned int cpu_khz; /* TSC clocks / usec, not used here */ |
| 20 | EXPORT_SYMBOL(cpu_khz); |
| 21 | unsigned int tsc_khz; |
| 22 | EXPORT_SYMBOL(tsc_khz); |
| 23 | |
| 24 | /* |
| 25 | * TSC can be unstable due to cpufreq or due to unsynced TSCs |
| 26 | */ |
Alok Kataria | 8fbbc4b | 2008-07-01 11:43:34 -0700 | [diff] [blame] | 27 | static int tsc_unstable; |
Alok Kataria | 0ef9553 | 2008-07-01 11:43:18 -0700 | [diff] [blame] | 28 | |
| 29 | /* native_sched_clock() is called before tsc_init(), so |
| 30 | we must start with the TSC soft disabled to prevent |
| 31 | erroneous rdtsc usage on !cpu_has_tsc processors */ |
Alok Kataria | 8fbbc4b | 2008-07-01 11:43:34 -0700 | [diff] [blame] | 32 | static int tsc_disabled = -1; |
Alok Kataria | 0ef9553 | 2008-07-01 11:43:18 -0700 | [diff] [blame] | 33 | |
| 34 | /* |
| 35 | * Scheduler clock - returns current time in nanosec units. |
| 36 | */ |
| 37 | u64 native_sched_clock(void) |
| 38 | { |
| 39 | u64 this_offset; |
| 40 | |
| 41 | /* |
| 42 | * Fall back to jiffies if there's no TSC available: |
| 43 | * ( But note that we still use it if the TSC is marked |
| 44 | * unstable. We do this because unlike Time Of Day, |
| 45 | * the scheduler clock tolerates small errors and it's |
| 46 | * very important for it to be as fast as the platform |
| 47 | * can achive it. ) |
| 48 | */ |
| 49 | if (unlikely(tsc_disabled)) { |
| 50 | /* No locking but a rare wrong value is not a big deal: */ |
| 51 | return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ); |
| 52 | } |
| 53 | |
| 54 | /* read the Time Stamp Counter: */ |
| 55 | rdtscll(this_offset); |
| 56 | |
| 57 | /* return the value in ns */ |
| 58 | return cycles_2_ns(this_offset); |
| 59 | } |
| 60 | |
| 61 | /* We need to define a real function for sched_clock, to override the |
| 62 | weak default version */ |
| 63 | #ifdef CONFIG_PARAVIRT |
| 64 | unsigned long long sched_clock(void) |
| 65 | { |
| 66 | return paravirt_sched_clock(); |
| 67 | } |
| 68 | #else |
| 69 | unsigned long long |
| 70 | sched_clock(void) __attribute__((alias("native_sched_clock"))); |
| 71 | #endif |
| 72 | |
| 73 | int check_tsc_unstable(void) |
| 74 | { |
| 75 | return tsc_unstable; |
| 76 | } |
| 77 | EXPORT_SYMBOL_GPL(check_tsc_unstable); |
| 78 | |
| 79 | #ifdef CONFIG_X86_TSC |
| 80 | int __init notsc_setup(char *str) |
| 81 | { |
| 82 | printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, " |
| 83 | "cannot disable TSC completely.\n"); |
| 84 | tsc_disabled = 1; |
| 85 | return 1; |
| 86 | } |
| 87 | #else |
| 88 | /* |
| 89 | * disable flag for tsc. Takes effect by clearing the TSC cpu flag |
| 90 | * in cpu/common.c |
| 91 | */ |
| 92 | int __init notsc_setup(char *str) |
| 93 | { |
| 94 | setup_clear_cpu_cap(X86_FEATURE_TSC); |
| 95 | return 1; |
| 96 | } |
| 97 | #endif |
| 98 | |
| 99 | __setup("notsc", notsc_setup); |
Alok Kataria | bfc0f59 | 2008-07-01 11:43:24 -0700 | [diff] [blame] | 100 | |
| 101 | #define MAX_RETRIES 5 |
| 102 | #define SMI_TRESHOLD 50000 |
| 103 | |
| 104 | /* |
| 105 | * Read TSC and the reference counters. Take care of SMI disturbance |
| 106 | */ |
Thomas Gleixner | 827014b | 2008-09-04 15:18:53 +0000 | [diff] [blame^] | 107 | static u64 tsc_read_refs(u64 *p, int hpet) |
Alok Kataria | bfc0f59 | 2008-07-01 11:43:24 -0700 | [diff] [blame] | 108 | { |
| 109 | u64 t1, t2; |
| 110 | int i; |
| 111 | |
| 112 | for (i = 0; i < MAX_RETRIES; i++) { |
| 113 | t1 = get_cycles(); |
| 114 | if (hpet) |
Thomas Gleixner | 827014b | 2008-09-04 15:18:53 +0000 | [diff] [blame^] | 115 | *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF; |
Alok Kataria | bfc0f59 | 2008-07-01 11:43:24 -0700 | [diff] [blame] | 116 | else |
Thomas Gleixner | 827014b | 2008-09-04 15:18:53 +0000 | [diff] [blame^] | 117 | *p = acpi_pm_read_early(); |
Alok Kataria | bfc0f59 | 2008-07-01 11:43:24 -0700 | [diff] [blame] | 118 | t2 = get_cycles(); |
| 119 | if ((t2 - t1) < SMI_TRESHOLD) |
| 120 | return t2; |
| 121 | } |
| 122 | return ULLONG_MAX; |
| 123 | } |
| 124 | |
Thomas Gleixner | d683ef7 | 2008-09-04 15:18:48 +0000 | [diff] [blame] | 125 | /* |
| 126 | * Calculate the TSC frequency from HPET reference |
| 127 | */ |
| 128 | static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2) |
| 129 | { |
| 130 | u64 tmp; |
| 131 | |
| 132 | if (hpet2 < hpet1) |
| 133 | hpet2 += 0x100000000ULL; |
| 134 | hpet2 -= hpet1; |
| 135 | tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD)); |
| 136 | do_div(tmp, 1000000); |
| 137 | do_div(deltatsc, tmp); |
| 138 | |
| 139 | return (unsigned long) deltatsc; |
| 140 | } |
| 141 | |
| 142 | /* |
| 143 | * Calculate the TSC frequency from PMTimer reference |
| 144 | */ |
| 145 | static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2) |
| 146 | { |
| 147 | u64 tmp; |
| 148 | |
| 149 | if (!pm1 && !pm2) |
| 150 | return ULONG_MAX; |
| 151 | |
| 152 | if (pm2 < pm1) |
| 153 | pm2 += (u64)ACPI_PM_OVRRUN; |
| 154 | pm2 -= pm1; |
| 155 | tmp = pm2 * 1000000000LL; |
| 156 | do_div(tmp, PMTMR_TICKS_PER_SEC); |
| 157 | do_div(deltatsc, tmp); |
| 158 | |
| 159 | return (unsigned long) deltatsc; |
| 160 | } |
| 161 | |
Thomas Gleixner | cce3e05 | 2008-09-04 15:18:44 +0000 | [diff] [blame] | 162 | #define CAL_MS 50 |
| 163 | #define CAL_LATCH (CLOCK_TICK_RATE / (1000 / CAL_MS)) |
| 164 | #define CAL_PIT_LOOPS 5000 |
| 165 | |
Linus Torvalds | ec0c15a | 2008-09-03 07:30:13 -0700 | [diff] [blame] | 166 | /* |
| 167 | * Try to calibrate the TSC against the Programmable |
| 168 | * Interrupt Timer and return the frequency of the TSC |
| 169 | * in kHz. |
| 170 | * |
| 171 | * Return ULONG_MAX on failure to calibrate. |
| 172 | */ |
| 173 | static unsigned long pit_calibrate_tsc(void) |
| 174 | { |
| 175 | u64 tsc, t1, t2, delta; |
| 176 | unsigned long tscmin, tscmax; |
| 177 | int pitcnt; |
| 178 | |
| 179 | /* Set the Gate high, disable speaker */ |
| 180 | outb((inb(0x61) & ~0x02) | 0x01, 0x61); |
| 181 | |
| 182 | /* |
| 183 | * Setup CTC channel 2* for mode 0, (interrupt on terminal |
| 184 | * count mode), binary count. Set the latch register to 50ms |
| 185 | * (LSB then MSB) to begin countdown. |
| 186 | */ |
| 187 | outb(0xb0, 0x43); |
Thomas Gleixner | cce3e05 | 2008-09-04 15:18:44 +0000 | [diff] [blame] | 188 | outb(CAL_LATCH & 0xff, 0x42); |
| 189 | outb(CAL_LATCH >> 8, 0x42); |
Linus Torvalds | ec0c15a | 2008-09-03 07:30:13 -0700 | [diff] [blame] | 190 | |
| 191 | tsc = t1 = t2 = get_cycles(); |
| 192 | |
| 193 | pitcnt = 0; |
| 194 | tscmax = 0; |
| 195 | tscmin = ULONG_MAX; |
| 196 | while ((inb(0x61) & 0x20) == 0) { |
| 197 | t2 = get_cycles(); |
| 198 | delta = t2 - tsc; |
| 199 | tsc = t2; |
| 200 | if ((unsigned long) delta < tscmin) |
| 201 | tscmin = (unsigned int) delta; |
| 202 | if ((unsigned long) delta > tscmax) |
| 203 | tscmax = (unsigned int) delta; |
| 204 | pitcnt++; |
| 205 | } |
| 206 | |
| 207 | /* |
| 208 | * Sanity checks: |
| 209 | * |
Thomas Gleixner | cce3e05 | 2008-09-04 15:18:44 +0000 | [diff] [blame] | 210 | * If we were not able to read the PIT more than PIT_MIN_LOOPS |
Linus Torvalds | ec0c15a | 2008-09-03 07:30:13 -0700 | [diff] [blame] | 211 | * times, then we have been hit by a massive SMI |
| 212 | * |
| 213 | * If the maximum is 10 times larger than the minimum, |
| 214 | * then we got hit by an SMI as well. |
| 215 | */ |
Thomas Gleixner | cce3e05 | 2008-09-04 15:18:44 +0000 | [diff] [blame] | 216 | if (pitcnt < CAL_PIT_LOOPS || tscmax > 10 * tscmin) |
Linus Torvalds | ec0c15a | 2008-09-03 07:30:13 -0700 | [diff] [blame] | 217 | return ULONG_MAX; |
| 218 | |
| 219 | /* Calculate the PIT value */ |
| 220 | delta = t2 - t1; |
Thomas Gleixner | cce3e05 | 2008-09-04 15:18:44 +0000 | [diff] [blame] | 221 | do_div(delta, CAL_MS); |
Linus Torvalds | ec0c15a | 2008-09-03 07:30:13 -0700 | [diff] [blame] | 222 | return delta; |
| 223 | } |
| 224 | |
| 225 | |
Alok Kataria | bfc0f59 | 2008-07-01 11:43:24 -0700 | [diff] [blame] | 226 | /** |
Alok Kataria | e93ef94 | 2008-07-01 11:43:36 -0700 | [diff] [blame] | 227 | * native_calibrate_tsc - calibrate the tsc on boot |
Alok Kataria | bfc0f59 | 2008-07-01 11:43:24 -0700 | [diff] [blame] | 228 | */ |
Alok Kataria | e93ef94 | 2008-07-01 11:43:36 -0700 | [diff] [blame] | 229 | unsigned long native_calibrate_tsc(void) |
Alok Kataria | bfc0f59 | 2008-07-01 11:43:24 -0700 | [diff] [blame] | 230 | { |
Thomas Gleixner | 827014b | 2008-09-04 15:18:53 +0000 | [diff] [blame^] | 231 | u64 tsc1, tsc2, delta, ref1, ref2; |
Thomas Gleixner | fbb16e2 | 2008-09-03 00:54:47 +0200 | [diff] [blame] | 232 | unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX; |
Linus Torvalds | ec0c15a | 2008-09-03 07:30:13 -0700 | [diff] [blame] | 233 | unsigned long flags; |
| 234 | int hpet = is_hpet_enabled(), i; |
Alok Kataria | bfc0f59 | 2008-07-01 11:43:24 -0700 | [diff] [blame] | 235 | |
| 236 | /* |
Thomas Gleixner | fbb16e2 | 2008-09-03 00:54:47 +0200 | [diff] [blame] | 237 | * Run 5 calibration loops to get the lowest frequency value |
| 238 | * (the best estimate). We use two different calibration modes |
| 239 | * here: |
| 240 | * |
| 241 | * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and |
| 242 | * load a timeout of 50ms. We read the time right after we |
| 243 | * started the timer and wait until the PIT count down reaches |
| 244 | * zero. In each wait loop iteration we read the TSC and check |
| 245 | * the delta to the previous read. We keep track of the min |
| 246 | * and max values of that delta. The delta is mostly defined |
| 247 | * by the IO time of the PIT access, so we can detect when a |
| 248 | * SMI/SMM disturbance happend between the two reads. If the |
| 249 | * maximum time is significantly larger than the minimum time, |
| 250 | * then we discard the result and have another try. |
| 251 | * |
| 252 | * 2) Reference counter. If available we use the HPET or the |
| 253 | * PMTIMER as a reference to check the sanity of that value. |
| 254 | * We use separate TSC readouts and check inside of the |
| 255 | * reference read for a SMI/SMM disturbance. We dicard |
| 256 | * disturbed values here as well. We do that around the PIT |
| 257 | * calibration delay loop as we have to wait for a certain |
| 258 | * amount of time anyway. |
Alok Kataria | bfc0f59 | 2008-07-01 11:43:24 -0700 | [diff] [blame] | 259 | */ |
Thomas Gleixner | fbb16e2 | 2008-09-03 00:54:47 +0200 | [diff] [blame] | 260 | for (i = 0; i < 5; i++) { |
Linus Torvalds | ec0c15a | 2008-09-03 07:30:13 -0700 | [diff] [blame] | 261 | unsigned long tsc_pit_khz; |
Thomas Gleixner | fbb16e2 | 2008-09-03 00:54:47 +0200 | [diff] [blame] | 262 | |
| 263 | /* |
| 264 | * Read the start value and the reference count of |
Linus Torvalds | ec0c15a | 2008-09-03 07:30:13 -0700 | [diff] [blame] | 265 | * hpet/pmtimer when available. Then do the PIT |
| 266 | * calibration, which will take at least 50ms, and |
| 267 | * read the end value. |
Thomas Gleixner | fbb16e2 | 2008-09-03 00:54:47 +0200 | [diff] [blame] | 268 | */ |
Linus Torvalds | ec0c15a | 2008-09-03 07:30:13 -0700 | [diff] [blame] | 269 | local_irq_save(flags); |
Thomas Gleixner | 827014b | 2008-09-04 15:18:53 +0000 | [diff] [blame^] | 270 | tsc1 = tsc_read_refs(&ref1, hpet); |
Linus Torvalds | ec0c15a | 2008-09-03 07:30:13 -0700 | [diff] [blame] | 271 | tsc_pit_khz = pit_calibrate_tsc(); |
Thomas Gleixner | 827014b | 2008-09-04 15:18:53 +0000 | [diff] [blame^] | 272 | tsc2 = tsc_read_refs(&ref2, hpet); |
Thomas Gleixner | fbb16e2 | 2008-09-03 00:54:47 +0200 | [diff] [blame] | 273 | local_irq_restore(flags); |
| 274 | |
Linus Torvalds | ec0c15a | 2008-09-03 07:30:13 -0700 | [diff] [blame] | 275 | /* Pick the lowest PIT TSC calibration so far */ |
| 276 | tsc_pit_min = min(tsc_pit_min, tsc_pit_khz); |
Thomas Gleixner | fbb16e2 | 2008-09-03 00:54:47 +0200 | [diff] [blame] | 277 | |
| 278 | /* hpet or pmtimer available ? */ |
Thomas Gleixner | 827014b | 2008-09-04 15:18:53 +0000 | [diff] [blame^] | 279 | if (!hpet && !ref1 && !ref2) |
Thomas Gleixner | fbb16e2 | 2008-09-03 00:54:47 +0200 | [diff] [blame] | 280 | continue; |
| 281 | |
| 282 | /* Check, whether the sampling was disturbed by an SMI */ |
| 283 | if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX) |
| 284 | continue; |
| 285 | |
| 286 | tsc2 = (tsc2 - tsc1) * 1000000LL; |
Thomas Gleixner | d683ef7 | 2008-09-04 15:18:48 +0000 | [diff] [blame] | 287 | if (hpet) |
Thomas Gleixner | 827014b | 2008-09-04 15:18:53 +0000 | [diff] [blame^] | 288 | tsc2 = calc_hpet_ref(tsc2, ref1, ref2); |
Thomas Gleixner | d683ef7 | 2008-09-04 15:18:48 +0000 | [diff] [blame] | 289 | else |
Thomas Gleixner | 827014b | 2008-09-04 15:18:53 +0000 | [diff] [blame^] | 290 | tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2); |
Thomas Gleixner | fbb16e2 | 2008-09-03 00:54:47 +0200 | [diff] [blame] | 291 | |
Thomas Gleixner | fbb16e2 | 2008-09-03 00:54:47 +0200 | [diff] [blame] | 292 | tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2); |
| 293 | } |
| 294 | |
| 295 | /* |
| 296 | * Now check the results. |
| 297 | */ |
| 298 | if (tsc_pit_min == ULONG_MAX) { |
| 299 | /* PIT gave no useful value */ |
| 300 | printk(KERN_WARNING "TSC: PIT calibration failed due to " |
| 301 | "SMI disturbance.\n"); |
| 302 | |
| 303 | /* We don't have an alternative source, disable TSC */ |
Thomas Gleixner | 827014b | 2008-09-04 15:18:53 +0000 | [diff] [blame^] | 304 | if (!hpet && !ref1 && !ref2) { |
Thomas Gleixner | fbb16e2 | 2008-09-03 00:54:47 +0200 | [diff] [blame] | 305 | printk("TSC: No reference (HPET/PMTIMER) available\n"); |
| 306 | return 0; |
| 307 | } |
| 308 | |
| 309 | /* The alternative source failed as well, disable TSC */ |
| 310 | if (tsc_ref_min == ULONG_MAX) { |
| 311 | printk(KERN_WARNING "TSC: HPET/PMTIMER calibration " |
| 312 | "failed due to SMI disturbance.\n"); |
| 313 | return 0; |
| 314 | } |
| 315 | |
| 316 | /* Use the alternative source */ |
| 317 | printk(KERN_INFO "TSC: using %s reference calibration\n", |
| 318 | hpet ? "HPET" : "PMTIMER"); |
| 319 | |
| 320 | return tsc_ref_min; |
| 321 | } |
| 322 | |
| 323 | /* We don't have an alternative source, use the PIT calibration value */ |
Thomas Gleixner | 827014b | 2008-09-04 15:18:53 +0000 | [diff] [blame^] | 324 | if (!hpet && !ref1 && !ref2) { |
Thomas Gleixner | fbb16e2 | 2008-09-03 00:54:47 +0200 | [diff] [blame] | 325 | printk(KERN_INFO "TSC: Using PIT calibration value\n"); |
| 326 | return tsc_pit_min; |
Alok Kataria | bfc0f59 | 2008-07-01 11:43:24 -0700 | [diff] [blame] | 327 | } |
| 328 | |
Thomas Gleixner | fbb16e2 | 2008-09-03 00:54:47 +0200 | [diff] [blame] | 329 | /* The alternative source failed, use the PIT calibration value */ |
| 330 | if (tsc_ref_min == ULONG_MAX) { |
| 331 | printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed due " |
| 332 | "to SMI disturbance. Using PIT calibration\n"); |
| 333 | return tsc_pit_min; |
Alok Kataria | bfc0f59 | 2008-07-01 11:43:24 -0700 | [diff] [blame] | 334 | } |
| 335 | |
Thomas Gleixner | fbb16e2 | 2008-09-03 00:54:47 +0200 | [diff] [blame] | 336 | /* Check the reference deviation */ |
| 337 | delta = ((u64) tsc_pit_min) * 100; |
| 338 | do_div(delta, tsc_ref_min); |
Alok Kataria | bfc0f59 | 2008-07-01 11:43:24 -0700 | [diff] [blame] | 339 | |
Thomas Gleixner | fbb16e2 | 2008-09-03 00:54:47 +0200 | [diff] [blame] | 340 | /* |
| 341 | * If both calibration results are inside a 5% window, the we |
| 342 | * use the lower frequency of those as it is probably the |
| 343 | * closest estimate. |
| 344 | */ |
| 345 | if (delta >= 95 && delta <= 105) { |
| 346 | printk(KERN_INFO "TSC: PIT calibration confirmed by %s.\n", |
| 347 | hpet ? "HPET" : "PMTIMER"); |
| 348 | printk(KERN_INFO "TSC: using %s calibration value\n", |
| 349 | tsc_pit_min <= tsc_ref_min ? "PIT" : |
| 350 | hpet ? "HPET" : "PMTIMER"); |
| 351 | return tsc_pit_min <= tsc_ref_min ? tsc_pit_min : tsc_ref_min; |
Alok Kataria | bfc0f59 | 2008-07-01 11:43:24 -0700 | [diff] [blame] | 352 | } |
| 353 | |
Thomas Gleixner | fbb16e2 | 2008-09-03 00:54:47 +0200 | [diff] [blame] | 354 | printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n", |
| 355 | hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min); |
Alok Kataria | bfc0f59 | 2008-07-01 11:43:24 -0700 | [diff] [blame] | 356 | |
Thomas Gleixner | fbb16e2 | 2008-09-03 00:54:47 +0200 | [diff] [blame] | 357 | /* |
| 358 | * The calibration values differ too much. In doubt, we use |
| 359 | * the PIT value as we know that there are PMTIMERs around |
| 360 | * running at double speed. |
| 361 | */ |
| 362 | printk(KERN_INFO "TSC: Using PIT calibration value\n"); |
| 363 | return tsc_pit_min; |
Alok Kataria | bfc0f59 | 2008-07-01 11:43:24 -0700 | [diff] [blame] | 364 | } |
| 365 | |
Alok Kataria | bfc0f59 | 2008-07-01 11:43:24 -0700 | [diff] [blame] | 366 | #ifdef CONFIG_X86_32 |
| 367 | /* Only called from the Powernow K7 cpu freq driver */ |
| 368 | int recalibrate_cpu_khz(void) |
| 369 | { |
| 370 | #ifndef CONFIG_SMP |
| 371 | unsigned long cpu_khz_old = cpu_khz; |
| 372 | |
| 373 | if (cpu_has_tsc) { |
Alok Kataria | e93ef94 | 2008-07-01 11:43:36 -0700 | [diff] [blame] | 374 | tsc_khz = calibrate_tsc(); |
| 375 | cpu_khz = tsc_khz; |
Alok Kataria | bfc0f59 | 2008-07-01 11:43:24 -0700 | [diff] [blame] | 376 | cpu_data(0).loops_per_jiffy = |
| 377 | cpufreq_scale(cpu_data(0).loops_per_jiffy, |
| 378 | cpu_khz_old, cpu_khz); |
| 379 | return 0; |
| 380 | } else |
| 381 | return -ENODEV; |
| 382 | #else |
| 383 | return -ENODEV; |
| 384 | #endif |
| 385 | } |
| 386 | |
| 387 | EXPORT_SYMBOL(recalibrate_cpu_khz); |
| 388 | |
| 389 | #endif /* CONFIG_X86_32 */ |
Alok Kataria | 2dbe06f | 2008-07-01 11:43:31 -0700 | [diff] [blame] | 390 | |
| 391 | /* Accelerators for sched_clock() |
| 392 | * convert from cycles(64bits) => nanoseconds (64bits) |
| 393 | * basic equation: |
| 394 | * ns = cycles / (freq / ns_per_sec) |
| 395 | * ns = cycles * (ns_per_sec / freq) |
| 396 | * ns = cycles * (10^9 / (cpu_khz * 10^3)) |
| 397 | * ns = cycles * (10^6 / cpu_khz) |
| 398 | * |
| 399 | * Then we use scaling math (suggested by george@mvista.com) to get: |
| 400 | * ns = cycles * (10^6 * SC / cpu_khz) / SC |
| 401 | * ns = cycles * cyc2ns_scale / SC |
| 402 | * |
| 403 | * And since SC is a constant power of two, we can convert the div |
| 404 | * into a shift. |
| 405 | * |
| 406 | * We can use khz divisor instead of mhz to keep a better precision, since |
| 407 | * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits. |
| 408 | * (mathieu.desnoyers@polymtl.ca) |
| 409 | * |
| 410 | * -johnstul@us.ibm.com "math is hard, lets go shopping!" |
| 411 | */ |
| 412 | |
| 413 | DEFINE_PER_CPU(unsigned long, cyc2ns); |
| 414 | |
Alok Kataria | 8fbbc4b | 2008-07-01 11:43:34 -0700 | [diff] [blame] | 415 | static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu) |
Alok Kataria | 2dbe06f | 2008-07-01 11:43:31 -0700 | [diff] [blame] | 416 | { |
| 417 | unsigned long long tsc_now, ns_now; |
| 418 | unsigned long flags, *scale; |
| 419 | |
| 420 | local_irq_save(flags); |
| 421 | sched_clock_idle_sleep_event(); |
| 422 | |
| 423 | scale = &per_cpu(cyc2ns, cpu); |
| 424 | |
| 425 | rdtscll(tsc_now); |
| 426 | ns_now = __cycles_2_ns(tsc_now); |
| 427 | |
| 428 | if (cpu_khz) |
| 429 | *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz; |
| 430 | |
| 431 | sched_clock_idle_wakeup_event(0); |
| 432 | local_irq_restore(flags); |
| 433 | } |
| 434 | |
| 435 | #ifdef CONFIG_CPU_FREQ |
| 436 | |
| 437 | /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency |
| 438 | * changes. |
| 439 | * |
| 440 | * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's |
| 441 | * not that important because current Opteron setups do not support |
| 442 | * scaling on SMP anyroads. |
| 443 | * |
| 444 | * Should fix up last_tsc too. Currently gettimeofday in the |
| 445 | * first tick after the change will be slightly wrong. |
| 446 | */ |
| 447 | |
| 448 | static unsigned int ref_freq; |
| 449 | static unsigned long loops_per_jiffy_ref; |
| 450 | static unsigned long tsc_khz_ref; |
| 451 | |
| 452 | static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, |
| 453 | void *data) |
| 454 | { |
| 455 | struct cpufreq_freqs *freq = data; |
| 456 | unsigned long *lpj, dummy; |
| 457 | |
| 458 | if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC)) |
| 459 | return 0; |
| 460 | |
| 461 | lpj = &dummy; |
| 462 | if (!(freq->flags & CPUFREQ_CONST_LOOPS)) |
| 463 | #ifdef CONFIG_SMP |
| 464 | lpj = &cpu_data(freq->cpu).loops_per_jiffy; |
| 465 | #else |
| 466 | lpj = &boot_cpu_data.loops_per_jiffy; |
| 467 | #endif |
| 468 | |
| 469 | if (!ref_freq) { |
| 470 | ref_freq = freq->old; |
| 471 | loops_per_jiffy_ref = *lpj; |
| 472 | tsc_khz_ref = tsc_khz; |
| 473 | } |
| 474 | if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || |
| 475 | (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) || |
| 476 | (val == CPUFREQ_RESUMECHANGE)) { |
| 477 | *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new); |
| 478 | |
| 479 | tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new); |
| 480 | if (!(freq->flags & CPUFREQ_CONST_LOOPS)) |
| 481 | mark_tsc_unstable("cpufreq changes"); |
| 482 | } |
| 483 | |
Peter Zijlstra | 52a8968 | 2008-08-25 13:35:06 +0200 | [diff] [blame] | 484 | set_cyc2ns_scale(tsc_khz, freq->cpu); |
Alok Kataria | 2dbe06f | 2008-07-01 11:43:31 -0700 | [diff] [blame] | 485 | |
| 486 | return 0; |
| 487 | } |
| 488 | |
| 489 | static struct notifier_block time_cpufreq_notifier_block = { |
| 490 | .notifier_call = time_cpufreq_notifier |
| 491 | }; |
| 492 | |
| 493 | static int __init cpufreq_tsc(void) |
| 494 | { |
Linus Torvalds | 060700b | 2008-08-24 11:52:06 -0700 | [diff] [blame] | 495 | if (!cpu_has_tsc) |
| 496 | return 0; |
| 497 | if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) |
| 498 | return 0; |
Alok Kataria | 2dbe06f | 2008-07-01 11:43:31 -0700 | [diff] [blame] | 499 | cpufreq_register_notifier(&time_cpufreq_notifier_block, |
| 500 | CPUFREQ_TRANSITION_NOTIFIER); |
| 501 | return 0; |
| 502 | } |
| 503 | |
| 504 | core_initcall(cpufreq_tsc); |
| 505 | |
| 506 | #endif /* CONFIG_CPU_FREQ */ |
Alok Kataria | 8fbbc4b | 2008-07-01 11:43:34 -0700 | [diff] [blame] | 507 | |
| 508 | /* clocksource code */ |
| 509 | |
| 510 | static struct clocksource clocksource_tsc; |
| 511 | |
| 512 | /* |
| 513 | * We compare the TSC to the cycle_last value in the clocksource |
| 514 | * structure to avoid a nasty time-warp. This can be observed in a |
| 515 | * very small window right after one CPU updated cycle_last under |
| 516 | * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which |
| 517 | * is smaller than the cycle_last reference value due to a TSC which |
| 518 | * is slighty behind. This delta is nowhere else observable, but in |
| 519 | * that case it results in a forward time jump in the range of hours |
| 520 | * due to the unsigned delta calculation of the time keeping core |
| 521 | * code, which is necessary to support wrapping clocksources like pm |
| 522 | * timer. |
| 523 | */ |
| 524 | static cycle_t read_tsc(void) |
| 525 | { |
| 526 | cycle_t ret = (cycle_t)get_cycles(); |
| 527 | |
| 528 | return ret >= clocksource_tsc.cycle_last ? |
| 529 | ret : clocksource_tsc.cycle_last; |
| 530 | } |
| 531 | |
Thomas Gleixner | 431ceb8 | 2008-07-15 22:08:04 +0200 | [diff] [blame] | 532 | #ifdef CONFIG_X86_64 |
Alok Kataria | 8fbbc4b | 2008-07-01 11:43:34 -0700 | [diff] [blame] | 533 | static cycle_t __vsyscall_fn vread_tsc(void) |
| 534 | { |
| 535 | cycle_t ret = (cycle_t)vget_cycles(); |
| 536 | |
| 537 | return ret >= __vsyscall_gtod_data.clock.cycle_last ? |
| 538 | ret : __vsyscall_gtod_data.clock.cycle_last; |
| 539 | } |
Thomas Gleixner | 431ceb8 | 2008-07-15 22:08:04 +0200 | [diff] [blame] | 540 | #endif |
Alok Kataria | 8fbbc4b | 2008-07-01 11:43:34 -0700 | [diff] [blame] | 541 | |
| 542 | static struct clocksource clocksource_tsc = { |
| 543 | .name = "tsc", |
| 544 | .rating = 300, |
| 545 | .read = read_tsc, |
| 546 | .mask = CLOCKSOURCE_MASK(64), |
| 547 | .shift = 22, |
| 548 | .flags = CLOCK_SOURCE_IS_CONTINUOUS | |
| 549 | CLOCK_SOURCE_MUST_VERIFY, |
| 550 | #ifdef CONFIG_X86_64 |
| 551 | .vread = vread_tsc, |
| 552 | #endif |
| 553 | }; |
| 554 | |
| 555 | void mark_tsc_unstable(char *reason) |
| 556 | { |
| 557 | if (!tsc_unstable) { |
| 558 | tsc_unstable = 1; |
| 559 | printk("Marking TSC unstable due to %s\n", reason); |
| 560 | /* Change only the rating, when not registered */ |
| 561 | if (clocksource_tsc.mult) |
| 562 | clocksource_change_rating(&clocksource_tsc, 0); |
| 563 | else |
| 564 | clocksource_tsc.rating = 0; |
| 565 | } |
| 566 | } |
| 567 | |
| 568 | EXPORT_SYMBOL_GPL(mark_tsc_unstable); |
| 569 | |
| 570 | static int __init dmi_mark_tsc_unstable(const struct dmi_system_id *d) |
| 571 | { |
| 572 | printk(KERN_NOTICE "%s detected: marking TSC unstable.\n", |
| 573 | d->ident); |
| 574 | tsc_unstable = 1; |
| 575 | return 0; |
| 576 | } |
| 577 | |
| 578 | /* List of systems that have known TSC problems */ |
| 579 | static struct dmi_system_id __initdata bad_tsc_dmi_table[] = { |
| 580 | { |
| 581 | .callback = dmi_mark_tsc_unstable, |
| 582 | .ident = "IBM Thinkpad 380XD", |
| 583 | .matches = { |
| 584 | DMI_MATCH(DMI_BOARD_VENDOR, "IBM"), |
| 585 | DMI_MATCH(DMI_BOARD_NAME, "2635FA0"), |
| 586 | }, |
| 587 | }, |
| 588 | {} |
| 589 | }; |
| 590 | |
| 591 | /* |
| 592 | * Geode_LX - the OLPC CPU has a possibly a very reliable TSC |
| 593 | */ |
| 594 | #ifdef CONFIG_MGEODE_LX |
| 595 | /* RTSC counts during suspend */ |
| 596 | #define RTSC_SUSP 0x100 |
| 597 | |
| 598 | static void __init check_geode_tsc_reliable(void) |
| 599 | { |
| 600 | unsigned long res_low, res_high; |
| 601 | |
| 602 | rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high); |
| 603 | if (res_low & RTSC_SUSP) |
| 604 | clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY; |
| 605 | } |
| 606 | #else |
| 607 | static inline void check_geode_tsc_reliable(void) { } |
| 608 | #endif |
| 609 | |
| 610 | /* |
| 611 | * Make an educated guess if the TSC is trustworthy and synchronized |
| 612 | * over all CPUs. |
| 613 | */ |
| 614 | __cpuinit int unsynchronized_tsc(void) |
| 615 | { |
| 616 | if (!cpu_has_tsc || tsc_unstable) |
| 617 | return 1; |
| 618 | |
| 619 | #ifdef CONFIG_SMP |
| 620 | if (apic_is_clustered_box()) |
| 621 | return 1; |
| 622 | #endif |
| 623 | |
| 624 | if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) |
| 625 | return 0; |
| 626 | /* |
| 627 | * Intel systems are normally all synchronized. |
| 628 | * Exceptions must mark TSC as unstable: |
| 629 | */ |
| 630 | if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) { |
| 631 | /* assume multi socket systems are not synchronized: */ |
| 632 | if (num_possible_cpus() > 1) |
| 633 | tsc_unstable = 1; |
| 634 | } |
| 635 | |
| 636 | return tsc_unstable; |
| 637 | } |
| 638 | |
| 639 | static void __init init_tsc_clocksource(void) |
| 640 | { |
| 641 | clocksource_tsc.mult = clocksource_khz2mult(tsc_khz, |
| 642 | clocksource_tsc.shift); |
| 643 | /* lower the rating if we already know its unstable: */ |
| 644 | if (check_tsc_unstable()) { |
| 645 | clocksource_tsc.rating = 0; |
| 646 | clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS; |
| 647 | } |
| 648 | clocksource_register(&clocksource_tsc); |
| 649 | } |
| 650 | |
| 651 | void __init tsc_init(void) |
| 652 | { |
| 653 | u64 lpj; |
| 654 | int cpu; |
| 655 | |
| 656 | if (!cpu_has_tsc) |
| 657 | return; |
| 658 | |
Alok Kataria | e93ef94 | 2008-07-01 11:43:36 -0700 | [diff] [blame] | 659 | tsc_khz = calibrate_tsc(); |
| 660 | cpu_khz = tsc_khz; |
Alok Kataria | 8fbbc4b | 2008-07-01 11:43:34 -0700 | [diff] [blame] | 661 | |
Alok Kataria | e93ef94 | 2008-07-01 11:43:36 -0700 | [diff] [blame] | 662 | if (!tsc_khz) { |
Alok Kataria | 8fbbc4b | 2008-07-01 11:43:34 -0700 | [diff] [blame] | 663 | mark_tsc_unstable("could not calculate TSC khz"); |
| 664 | return; |
| 665 | } |
| 666 | |
| 667 | #ifdef CONFIG_X86_64 |
| 668 | if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) && |
| 669 | (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)) |
| 670 | cpu_khz = calibrate_cpu(); |
| 671 | #endif |
| 672 | |
| 673 | lpj = ((u64)tsc_khz * 1000); |
| 674 | do_div(lpj, HZ); |
| 675 | lpj_fine = lpj; |
| 676 | |
| 677 | printk("Detected %lu.%03lu MHz processor.\n", |
| 678 | (unsigned long)cpu_khz / 1000, |
| 679 | (unsigned long)cpu_khz % 1000); |
| 680 | |
| 681 | /* |
| 682 | * Secondary CPUs do not run through tsc_init(), so set up |
| 683 | * all the scale factors for all CPUs, assuming the same |
| 684 | * speed as the bootup CPU. (cpufreq notifiers will fix this |
| 685 | * up if their speed diverges) |
| 686 | */ |
| 687 | for_each_possible_cpu(cpu) |
| 688 | set_cyc2ns_scale(cpu_khz, cpu); |
| 689 | |
| 690 | if (tsc_disabled > 0) |
| 691 | return; |
| 692 | |
| 693 | /* now allow native_sched_clock() to use rdtsc */ |
| 694 | tsc_disabled = 0; |
| 695 | |
| 696 | use_tsc_delay(); |
| 697 | /* Check and install the TSC clocksource */ |
| 698 | dmi_check_system(bad_tsc_dmi_table); |
| 699 | |
| 700 | if (unsynchronized_tsc()) |
| 701 | mark_tsc_unstable("TSCs unsynchronized"); |
| 702 | |
| 703 | check_geode_tsc_reliable(); |
| 704 | init_tsc_clocksource(); |
| 705 | } |
| 706 | |