| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 |  | 
|  | 2 | /* JEDEC Flash Interface. | 
|  | 3 | * This is an older type of interface for self programming flash. It is | 
|  | 4 | * commonly use in older AMD chips and is obsolete compared with CFI. | 
|  | 5 | * It is called JEDEC because the JEDEC association distributes the ID codes | 
|  | 6 | * for the chips. | 
|  | 7 | * | 
|  | 8 | * See the AMD flash databook for information on how to operate the interface. | 
|  | 9 | * | 
|  | 10 | * This code does not support anything wider than 8 bit flash chips, I am | 
|  | 11 | * not going to guess how to send commands to them, plus I expect they will | 
|  | 12 | * all speak CFI.. | 
|  | 13 | * | 
|  | 14 | * $Id: jedec.c,v 1.22 2005/01/05 18:05:11 dwmw2 Exp $ | 
|  | 15 | */ | 
|  | 16 |  | 
|  | 17 | #include <linux/init.h> | 
|  | 18 | #include <linux/module.h> | 
|  | 19 | #include <linux/kernel.h> | 
|  | 20 | #include <linux/mtd/jedec.h> | 
|  | 21 | #include <linux/mtd/map.h> | 
|  | 22 | #include <linux/mtd/mtd.h> | 
|  | 23 | #include <linux/mtd/compatmac.h> | 
|  | 24 |  | 
|  | 25 | static struct mtd_info *jedec_probe(struct map_info *); | 
|  | 26 | static int jedec_probe8(struct map_info *map,unsigned long base, | 
|  | 27 | struct jedec_private *priv); | 
|  | 28 | static int jedec_probe16(struct map_info *map,unsigned long base, | 
|  | 29 | struct jedec_private *priv); | 
|  | 30 | static int jedec_probe32(struct map_info *map,unsigned long base, | 
|  | 31 | struct jedec_private *priv); | 
|  | 32 | static void jedec_flash_chip_scan(struct jedec_private *priv,unsigned long start, | 
|  | 33 | unsigned long len); | 
|  | 34 | static int flash_erase(struct mtd_info *mtd, struct erase_info *instr); | 
|  | 35 | static int flash_write(struct mtd_info *mtd, loff_t start, size_t len, | 
|  | 36 | size_t *retlen, const u_char *buf); | 
|  | 37 |  | 
|  | 38 | static unsigned long my_bank_size; | 
|  | 39 |  | 
|  | 40 | /* Listing of parts and sizes. We need this table to learn the sector | 
|  | 41 | size of the chip and the total length */ | 
|  | 42 | static const struct JEDECTable JEDEC_table[] = { | 
|  | 43 | { | 
|  | 44 | .jedec		= 0x013D, | 
|  | 45 | .name		= "AMD Am29F017D", | 
|  | 46 | .size		= 2*1024*1024, | 
|  | 47 | .sectorsize	= 64*1024, | 
|  | 48 | .capabilities	= MTD_CAP_NORFLASH | 
|  | 49 | }, | 
|  | 50 | { | 
|  | 51 | .jedec		= 0x01AD, | 
|  | 52 | .name		= "AMD Am29F016", | 
|  | 53 | .size		= 2*1024*1024, | 
|  | 54 | .sectorsize	= 64*1024, | 
|  | 55 | .capabilities	= MTD_CAP_NORFLASH | 
|  | 56 | }, | 
|  | 57 | { | 
|  | 58 | .jedec		= 0x01D5, | 
|  | 59 | .name		= "AMD Am29F080", | 
|  | 60 | .size		= 1*1024*1024, | 
|  | 61 | .sectorsize	= 64*1024, | 
|  | 62 | .capabilities	= MTD_CAP_NORFLASH | 
|  | 63 | }, | 
|  | 64 | { | 
|  | 65 | .jedec		= 0x01A4, | 
|  | 66 | .name		= "AMD Am29F040", | 
|  | 67 | .size		= 512*1024, | 
|  | 68 | .sectorsize	= 64*1024, | 
|  | 69 | .capabilities	= MTD_CAP_NORFLASH | 
|  | 70 | }, | 
|  | 71 | { | 
|  | 72 | .jedec		= 0x20E3, | 
|  | 73 | .name		= "AMD Am29W040B", | 
|  | 74 | .size		= 512*1024, | 
|  | 75 | .sectorsize	= 64*1024, | 
|  | 76 | .capabilities	= MTD_CAP_NORFLASH | 
|  | 77 | }, | 
|  | 78 | { | 
|  | 79 | .jedec		= 0xC2AD, | 
|  | 80 | .name		= "Macronix MX29F016", | 
|  | 81 | .size		= 2*1024*1024, | 
|  | 82 | .sectorsize	= 64*1024, | 
|  | 83 | .capabilities	= MTD_CAP_NORFLASH | 
|  | 84 | }, | 
|  | 85 | { .jedec = 0x0 } | 
|  | 86 | }; | 
|  | 87 |  | 
|  | 88 | static const struct JEDECTable *jedec_idtoinf(__u8 mfr,__u8 id); | 
|  | 89 | static void jedec_sync(struct mtd_info *mtd) {}; | 
|  | 90 | static int jedec_read(struct mtd_info *mtd, loff_t from, size_t len, | 
|  | 91 | size_t *retlen, u_char *buf); | 
|  | 92 | static int jedec_read_banked(struct mtd_info *mtd, loff_t from, size_t len, | 
|  | 93 | size_t *retlen, u_char *buf); | 
|  | 94 |  | 
|  | 95 | static struct mtd_info *jedec_probe(struct map_info *map); | 
|  | 96 |  | 
|  | 97 |  | 
|  | 98 |  | 
|  | 99 | static struct mtd_chip_driver jedec_chipdrv = { | 
|  | 100 | .probe	= jedec_probe, | 
|  | 101 | .name	= "jedec", | 
|  | 102 | .module	= THIS_MODULE | 
|  | 103 | }; | 
|  | 104 |  | 
|  | 105 | /* Probe entry point */ | 
|  | 106 |  | 
|  | 107 | static struct mtd_info *jedec_probe(struct map_info *map) | 
|  | 108 | { | 
|  | 109 | struct mtd_info *MTD; | 
|  | 110 | struct jedec_private *priv; | 
|  | 111 | unsigned long Base; | 
|  | 112 | unsigned long SectorSize; | 
|  | 113 | unsigned count; | 
|  | 114 | unsigned I,Uniq; | 
|  | 115 | char Part[200]; | 
|  | 116 | memset(&priv,0,sizeof(priv)); | 
|  | 117 |  | 
|  | 118 | MTD = kmalloc(sizeof(struct mtd_info) + sizeof(struct jedec_private), GFP_KERNEL); | 
|  | 119 | if (!MTD) | 
|  | 120 | return NULL; | 
|  | 121 |  | 
|  | 122 | memset(MTD, 0, sizeof(struct mtd_info) + sizeof(struct jedec_private)); | 
|  | 123 | priv = (struct jedec_private *)&MTD[1]; | 
|  | 124 |  | 
|  | 125 | my_bank_size = map->size; | 
|  | 126 |  | 
|  | 127 | if (map->size/my_bank_size > MAX_JEDEC_CHIPS) | 
|  | 128 | { | 
|  | 129 | printk("mtd: Increase MAX_JEDEC_CHIPS, too many banks.\n"); | 
|  | 130 | kfree(MTD); | 
|  | 131 | return NULL; | 
|  | 132 | } | 
|  | 133 |  | 
|  | 134 | for (Base = 0; Base < map->size; Base += my_bank_size) | 
|  | 135 | { | 
|  | 136 | // Perhaps zero could designate all tests? | 
|  | 137 | if (map->buswidth == 0) | 
|  | 138 | map->buswidth = 1; | 
|  | 139 |  | 
|  | 140 | if (map->buswidth == 1){ | 
|  | 141 | if (jedec_probe8(map,Base,priv) == 0) { | 
|  | 142 | printk("did recognize jedec chip\n"); | 
|  | 143 | kfree(MTD); | 
|  | 144 | return NULL; | 
|  | 145 | } | 
|  | 146 | } | 
|  | 147 | if (map->buswidth == 2) | 
|  | 148 | jedec_probe16(map,Base,priv); | 
|  | 149 | if (map->buswidth == 4) | 
|  | 150 | jedec_probe32(map,Base,priv); | 
|  | 151 | } | 
|  | 152 |  | 
|  | 153 | // Get the biggest sector size | 
|  | 154 | SectorSize = 0; | 
|  | 155 | for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) | 
|  | 156 | { | 
|  | 157 | //	   printk("priv->chips[%d].jedec is %x\n",I,priv->chips[I].jedec); | 
|  | 158 | //	   printk("priv->chips[%d].sectorsize is %lx\n",I,priv->chips[I].sectorsize); | 
|  | 159 | if (priv->chips[I].sectorsize > SectorSize) | 
|  | 160 | SectorSize = priv->chips[I].sectorsize; | 
|  | 161 | } | 
|  | 162 |  | 
|  | 163 | // Quickly ensure that the other sector sizes are factors of the largest | 
|  | 164 | for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) | 
|  | 165 | { | 
|  | 166 | if ((SectorSize/priv->chips[I].sectorsize)*priv->chips[I].sectorsize != SectorSize) | 
|  | 167 | { | 
|  | 168 | printk("mtd: Failed. Device has incompatible mixed sector sizes\n"); | 
|  | 169 | kfree(MTD); | 
|  | 170 | return NULL; | 
|  | 171 | } | 
|  | 172 | } | 
|  | 173 |  | 
|  | 174 | /* Generate a part name that includes the number of different chips and | 
|  | 175 | other configuration information */ | 
|  | 176 | count = 1; | 
|  | 177 | strlcpy(Part,map->name,sizeof(Part)-10); | 
|  | 178 | strcat(Part," "); | 
|  | 179 | Uniq = 0; | 
|  | 180 | for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) | 
|  | 181 | { | 
|  | 182 | const struct JEDECTable *JEDEC; | 
|  | 183 |  | 
|  | 184 | if (priv->chips[I+1].jedec == priv->chips[I].jedec) | 
|  | 185 | { | 
|  | 186 | count++; | 
|  | 187 | continue; | 
|  | 188 | } | 
|  | 189 |  | 
|  | 190 | // Locate the chip in the jedec table | 
|  | 191 | JEDEC = jedec_idtoinf(priv->chips[I].jedec >> 8,priv->chips[I].jedec); | 
|  | 192 | if (JEDEC == 0) | 
|  | 193 | { | 
|  | 194 | printk("mtd: Internal Error, JEDEC not set\n"); | 
|  | 195 | kfree(MTD); | 
|  | 196 | return NULL; | 
|  | 197 | } | 
|  | 198 |  | 
|  | 199 | if (Uniq != 0) | 
|  | 200 | strcat(Part,","); | 
|  | 201 | Uniq++; | 
|  | 202 |  | 
|  | 203 | if (count != 1) | 
|  | 204 | sprintf(Part+strlen(Part),"%x*[%s]",count,JEDEC->name); | 
|  | 205 | else | 
|  | 206 | sprintf(Part+strlen(Part),"%s",JEDEC->name); | 
|  | 207 | if (strlen(Part) > sizeof(Part)*2/3) | 
|  | 208 | break; | 
|  | 209 | count = 1; | 
|  | 210 | } | 
|  | 211 |  | 
|  | 212 | /* Determine if the chips are organized in a linear fashion, or if there | 
|  | 213 | are empty banks. Note, the last bank does not count here, only the | 
|  | 214 | first banks are important. Holes on non-bank boundaries can not exist | 
|  | 215 | due to the way the detection algorithm works. */ | 
|  | 216 | if (priv->size < my_bank_size) | 
|  | 217 | my_bank_size = priv->size; | 
|  | 218 | priv->is_banked = 0; | 
|  | 219 | //printk("priv->size is %x, my_bank_size is %x\n",priv->size,my_bank_size); | 
|  | 220 | //printk("priv->bank_fill[0] is %x\n",priv->bank_fill[0]); | 
|  | 221 | if (!priv->size) { | 
|  | 222 | printk("priv->size is zero\n"); | 
|  | 223 | kfree(MTD); | 
|  | 224 | return NULL; | 
|  | 225 | } | 
|  | 226 | if (priv->size/my_bank_size) { | 
|  | 227 | if (priv->size/my_bank_size == 1) { | 
|  | 228 | priv->size = my_bank_size; | 
|  | 229 | } | 
|  | 230 | else { | 
|  | 231 | for (I = 0; I != priv->size/my_bank_size - 1; I++) | 
|  | 232 | { | 
|  | 233 | if (priv->bank_fill[I] != my_bank_size) | 
|  | 234 | priv->is_banked = 1; | 
|  | 235 |  | 
|  | 236 | /* This even could be eliminated, but new de-optimized read/write | 
|  | 237 | functions have to be written */ | 
|  | 238 | printk("priv->bank_fill[%d] is %lx, priv->bank_fill[0] is %lx\n",I,priv->bank_fill[I],priv->bank_fill[0]); | 
|  | 239 | if (priv->bank_fill[I] != priv->bank_fill[0]) | 
|  | 240 | { | 
|  | 241 | printk("mtd: Failed. Cannot handle unsymmetric banking\n"); | 
|  | 242 | kfree(MTD); | 
|  | 243 | return NULL; | 
|  | 244 | } | 
|  | 245 | } | 
|  | 246 | } | 
|  | 247 | } | 
|  | 248 | if (priv->is_banked == 1) | 
|  | 249 | strcat(Part,", banked"); | 
|  | 250 |  | 
|  | 251 | //   printk("Part: '%s'\n",Part); | 
|  | 252 |  | 
|  | 253 | memset(MTD,0,sizeof(*MTD)); | 
|  | 254 | // strlcpy(MTD->name,Part,sizeof(MTD->name)); | 
|  | 255 | MTD->name = map->name; | 
|  | 256 | MTD->type = MTD_NORFLASH; | 
|  | 257 | MTD->flags = MTD_CAP_NORFLASH; | 
|  | 258 | MTD->erasesize = SectorSize*(map->buswidth); | 
|  | 259 | //   printk("MTD->erasesize is %x\n",(unsigned int)MTD->erasesize); | 
|  | 260 | MTD->size = priv->size; | 
|  | 261 | //   printk("MTD->size is %x\n",(unsigned int)MTD->size); | 
|  | 262 | //MTD->module = THIS_MODULE; // ? Maybe this should be the low level module? | 
|  | 263 | MTD->erase = flash_erase; | 
|  | 264 | if (priv->is_banked == 1) | 
|  | 265 | MTD->read = jedec_read_banked; | 
|  | 266 | else | 
|  | 267 | MTD->read = jedec_read; | 
|  | 268 | MTD->write = flash_write; | 
|  | 269 | MTD->sync = jedec_sync; | 
|  | 270 | MTD->priv = map; | 
|  | 271 | map->fldrv_priv = priv; | 
|  | 272 | map->fldrv = &jedec_chipdrv; | 
|  | 273 | __module_get(THIS_MODULE); | 
|  | 274 | return MTD; | 
|  | 275 | } | 
|  | 276 |  | 
|  | 277 | /* Helper for the JEDEC function, JEDEC numbers all have odd parity */ | 
|  | 278 | static int checkparity(u_char C) | 
|  | 279 | { | 
|  | 280 | u_char parity = 0; | 
|  | 281 | while (C != 0) | 
|  | 282 | { | 
|  | 283 | parity ^= C & 1; | 
|  | 284 | C >>= 1; | 
|  | 285 | } | 
|  | 286 |  | 
|  | 287 | return parity == 1; | 
|  | 288 | } | 
|  | 289 |  | 
|  | 290 |  | 
|  | 291 | /* Take an array of JEDEC numbers that represent interleved flash chips | 
|  | 292 | and process them. Check to make sure they are good JEDEC numbers, look | 
|  | 293 | them up and then add them to the chip list */ | 
|  | 294 | static int handle_jedecs(struct map_info *map,__u8 *Mfg,__u8 *Id,unsigned Count, | 
|  | 295 | unsigned long base,struct jedec_private *priv) | 
|  | 296 | { | 
|  | 297 | unsigned I,J; | 
|  | 298 | unsigned long Size; | 
|  | 299 | unsigned long SectorSize; | 
|  | 300 | const struct JEDECTable *JEDEC; | 
|  | 301 |  | 
|  | 302 | // Test #2 JEDEC numbers exhibit odd parity | 
|  | 303 | for (I = 0; I != Count; I++) | 
|  | 304 | { | 
|  | 305 | if (checkparity(Mfg[I]) == 0 || checkparity(Id[I]) == 0) | 
|  | 306 | return 0; | 
|  | 307 | } | 
|  | 308 |  | 
|  | 309 | // Finally, just make sure all the chip sizes are the same | 
|  | 310 | JEDEC = jedec_idtoinf(Mfg[0],Id[0]); | 
|  | 311 |  | 
|  | 312 | if (JEDEC == 0) | 
|  | 313 | { | 
|  | 314 | printk("mtd: Found JEDEC flash chip, but do not have a table entry for %x:%x\n",Mfg[0],Mfg[1]); | 
|  | 315 | return 0; | 
|  | 316 | } | 
|  | 317 |  | 
|  | 318 | Size = JEDEC->size; | 
|  | 319 | SectorSize = JEDEC->sectorsize; | 
|  | 320 | for (I = 0; I != Count; I++) | 
|  | 321 | { | 
|  | 322 | JEDEC = jedec_idtoinf(Mfg[0],Id[0]); | 
|  | 323 | if (JEDEC == 0) | 
|  | 324 | { | 
|  | 325 | printk("mtd: Found JEDEC flash chip, but do not have a table entry for %x:%x\n",Mfg[0],Mfg[1]); | 
|  | 326 | return 0; | 
|  | 327 | } | 
|  | 328 |  | 
|  | 329 | if (Size != JEDEC->size || SectorSize != JEDEC->sectorsize) | 
|  | 330 | { | 
|  | 331 | printk("mtd: Failed. Interleved flash does not have matching characteristics\n"); | 
|  | 332 | return 0; | 
|  | 333 | } | 
|  | 334 | } | 
|  | 335 |  | 
|  | 336 | // Load the Chips | 
|  | 337 | for (I = 0; I != MAX_JEDEC_CHIPS; I++) | 
|  | 338 | { | 
|  | 339 | if (priv->chips[I].jedec == 0) | 
|  | 340 | break; | 
|  | 341 | } | 
|  | 342 |  | 
|  | 343 | if (I + Count > MAX_JEDEC_CHIPS) | 
|  | 344 | { | 
|  | 345 | printk("mtd: Device has too many chips. Increase MAX_JEDEC_CHIPS\n"); | 
|  | 346 | return 0; | 
|  | 347 | } | 
|  | 348 |  | 
|  | 349 | // Add them to the table | 
|  | 350 | for (J = 0; J != Count; J++) | 
|  | 351 | { | 
|  | 352 | unsigned long Bank; | 
|  | 353 |  | 
|  | 354 | JEDEC = jedec_idtoinf(Mfg[J],Id[J]); | 
|  | 355 | priv->chips[I].jedec = (Mfg[J] << 8) | Id[J]; | 
|  | 356 | priv->chips[I].size = JEDEC->size; | 
|  | 357 | priv->chips[I].sectorsize = JEDEC->sectorsize; | 
|  | 358 | priv->chips[I].base = base + J; | 
|  | 359 | priv->chips[I].datashift = J*8; | 
|  | 360 | priv->chips[I].capabilities = JEDEC->capabilities; | 
|  | 361 | priv->chips[I].offset = priv->size + J; | 
|  | 362 |  | 
|  | 363 | // log2 n :| | 
|  | 364 | priv->chips[I].addrshift = 0; | 
|  | 365 | for (Bank = Count; Bank != 1; Bank >>= 1, priv->chips[I].addrshift++); | 
|  | 366 |  | 
|  | 367 | // Determine how filled this bank is. | 
|  | 368 | Bank = base & (~(my_bank_size-1)); | 
|  | 369 | if (priv->bank_fill[Bank/my_bank_size] < base + | 
|  | 370 | (JEDEC->size << priv->chips[I].addrshift) - Bank) | 
|  | 371 | priv->bank_fill[Bank/my_bank_size] =  base + (JEDEC->size << priv->chips[I].addrshift) - Bank; | 
|  | 372 | I++; | 
|  | 373 | } | 
|  | 374 |  | 
|  | 375 | priv->size += priv->chips[I-1].size*Count; | 
|  | 376 |  | 
|  | 377 | return priv->chips[I-1].size; | 
|  | 378 | } | 
|  | 379 |  | 
|  | 380 | /* Lookup the chip information from the JEDEC ID table. */ | 
|  | 381 | static const struct JEDECTable *jedec_idtoinf(__u8 mfr,__u8 id) | 
|  | 382 | { | 
|  | 383 | __u16 Id = (mfr << 8) | id; | 
|  | 384 | unsigned long I = 0; | 
|  | 385 | for (I = 0; JEDEC_table[I].jedec != 0; I++) | 
|  | 386 | if (JEDEC_table[I].jedec == Id) | 
|  | 387 | return JEDEC_table + I; | 
|  | 388 | return NULL; | 
|  | 389 | } | 
|  | 390 |  | 
|  | 391 | // Look for flash using an 8 bit bus interface | 
|  | 392 | static int jedec_probe8(struct map_info *map,unsigned long base, | 
|  | 393 | struct jedec_private *priv) | 
|  | 394 | { | 
|  | 395 | #define flread(x) map_read8(map,base+x) | 
|  | 396 | #define flwrite(v,x) map_write8(map,v,base+x) | 
|  | 397 |  | 
|  | 398 | const unsigned long AutoSel1 = 0xAA; | 
|  | 399 | const unsigned long AutoSel2 = 0x55; | 
|  | 400 | const unsigned long AutoSel3 = 0x90; | 
|  | 401 | const unsigned long Reset = 0xF0; | 
|  | 402 | __u32 OldVal; | 
|  | 403 | __u8 Mfg[1]; | 
|  | 404 | __u8 Id[1]; | 
|  | 405 | unsigned I; | 
|  | 406 | unsigned long Size; | 
|  | 407 |  | 
|  | 408 | // Wait for any write/erase operation to settle | 
|  | 409 | OldVal = flread(base); | 
|  | 410 | for (I = 0; OldVal != flread(base) && I < 10000; I++) | 
|  | 411 | OldVal = flread(base); | 
|  | 412 |  | 
|  | 413 | // Reset the chip | 
|  | 414 | flwrite(Reset,0x555); | 
|  | 415 |  | 
|  | 416 | // Send the sequence | 
|  | 417 | flwrite(AutoSel1,0x555); | 
|  | 418 | flwrite(AutoSel2,0x2AA); | 
|  | 419 | flwrite(AutoSel3,0x555); | 
|  | 420 |  | 
|  | 421 | //  Get the JEDEC numbers | 
|  | 422 | Mfg[0] = flread(0); | 
|  | 423 | Id[0] = flread(1); | 
|  | 424 | //   printk("Mfg is %x, Id is %x\n",Mfg[0],Id[0]); | 
|  | 425 |  | 
|  | 426 | Size = handle_jedecs(map,Mfg,Id,1,base,priv); | 
|  | 427 | //   printk("handle_jedecs Size is %x\n",(unsigned int)Size); | 
|  | 428 | if (Size == 0) | 
|  | 429 | { | 
|  | 430 | flwrite(Reset,0x555); | 
|  | 431 | return 0; | 
|  | 432 | } | 
|  | 433 |  | 
|  | 434 |  | 
|  | 435 | // Reset. | 
|  | 436 | flwrite(Reset,0x555); | 
|  | 437 |  | 
|  | 438 | return 1; | 
|  | 439 |  | 
|  | 440 | #undef flread | 
|  | 441 | #undef flwrite | 
|  | 442 | } | 
|  | 443 |  | 
|  | 444 | // Look for flash using a 16 bit bus interface (ie 2 8-bit chips) | 
|  | 445 | static int jedec_probe16(struct map_info *map,unsigned long base, | 
|  | 446 | struct jedec_private *priv) | 
|  | 447 | { | 
|  | 448 | return 0; | 
|  | 449 | } | 
|  | 450 |  | 
|  | 451 | // Look for flash using a 32 bit bus interface (ie 4 8-bit chips) | 
|  | 452 | static int jedec_probe32(struct map_info *map,unsigned long base, | 
|  | 453 | struct jedec_private *priv) | 
|  | 454 | { | 
|  | 455 | #define flread(x) map_read32(map,base+((x)<<2)) | 
|  | 456 | #define flwrite(v,x) map_write32(map,v,base+((x)<<2)) | 
|  | 457 |  | 
|  | 458 | const unsigned long AutoSel1 = 0xAAAAAAAA; | 
|  | 459 | const unsigned long AutoSel2 = 0x55555555; | 
|  | 460 | const unsigned long AutoSel3 = 0x90909090; | 
|  | 461 | const unsigned long Reset = 0xF0F0F0F0; | 
|  | 462 | __u32 OldVal; | 
|  | 463 | __u8 Mfg[4]; | 
|  | 464 | __u8 Id[4]; | 
|  | 465 | unsigned I; | 
|  | 466 | unsigned long Size; | 
|  | 467 |  | 
|  | 468 | // Wait for any write/erase operation to settle | 
|  | 469 | OldVal = flread(base); | 
|  | 470 | for (I = 0; OldVal != flread(base) && I < 10000; I++) | 
|  | 471 | OldVal = flread(base); | 
|  | 472 |  | 
|  | 473 | // Reset the chip | 
|  | 474 | flwrite(Reset,0x555); | 
|  | 475 |  | 
|  | 476 | // Send the sequence | 
|  | 477 | flwrite(AutoSel1,0x555); | 
|  | 478 | flwrite(AutoSel2,0x2AA); | 
|  | 479 | flwrite(AutoSel3,0x555); | 
|  | 480 |  | 
|  | 481 | // Test #1, JEDEC numbers are readable from 0x??00/0x??01 | 
|  | 482 | if (flread(0) != flread(0x100) || | 
|  | 483 | flread(1) != flread(0x101)) | 
|  | 484 | { | 
|  | 485 | flwrite(Reset,0x555); | 
|  | 486 | return 0; | 
|  | 487 | } | 
|  | 488 |  | 
|  | 489 | // Split up the JEDEC numbers | 
|  | 490 | OldVal = flread(0); | 
|  | 491 | for (I = 0; I != 4; I++) | 
|  | 492 | Mfg[I] = (OldVal >> (I*8)); | 
|  | 493 | OldVal = flread(1); | 
|  | 494 | for (I = 0; I != 4; I++) | 
|  | 495 | Id[I] = (OldVal >> (I*8)); | 
|  | 496 |  | 
|  | 497 | Size = handle_jedecs(map,Mfg,Id,4,base,priv); | 
|  | 498 | if (Size == 0) | 
|  | 499 | { | 
|  | 500 | flwrite(Reset,0x555); | 
|  | 501 | return 0; | 
|  | 502 | } | 
|  | 503 |  | 
|  | 504 | /* Check if there is address wrap around within a single bank, if this | 
|  | 505 | returns JEDEC numbers then we assume that it is wrap around. Notice | 
|  | 506 | we call this routine with the JEDEC return still enabled, if two or | 
|  | 507 | more flashes have a truncated address space the probe test will still | 
|  | 508 | work */ | 
|  | 509 | if (base + (Size<<2)+0x555 < map->size && | 
|  | 510 | base + (Size<<2)+0x555 < (base & (~(my_bank_size-1))) + my_bank_size) | 
|  | 511 | { | 
|  | 512 | if (flread(base+Size) != flread(base+Size + 0x100) || | 
|  | 513 | flread(base+Size + 1) != flread(base+Size + 0x101)) | 
|  | 514 | { | 
|  | 515 | jedec_probe32(map,base+Size,priv); | 
|  | 516 | } | 
|  | 517 | } | 
|  | 518 |  | 
|  | 519 | // Reset. | 
|  | 520 | flwrite(0xF0F0F0F0,0x555); | 
|  | 521 |  | 
|  | 522 | return 1; | 
|  | 523 |  | 
|  | 524 | #undef flread | 
|  | 525 | #undef flwrite | 
|  | 526 | } | 
|  | 527 |  | 
|  | 528 | /* Linear read. */ | 
|  | 529 | static int jedec_read(struct mtd_info *mtd, loff_t from, size_t len, | 
|  | 530 | size_t *retlen, u_char *buf) | 
|  | 531 | { | 
|  | 532 | struct map_info *map = mtd->priv; | 
|  | 533 |  | 
|  | 534 | map_copy_from(map, buf, from, len); | 
|  | 535 | *retlen = len; | 
|  | 536 | return 0; | 
|  | 537 | } | 
|  | 538 |  | 
|  | 539 | /* Banked read. Take special care to jump past the holes in the bank | 
|  | 540 | mapping. This version assumes symetry in the holes.. */ | 
|  | 541 | static int jedec_read_banked(struct mtd_info *mtd, loff_t from, size_t len, | 
|  | 542 | size_t *retlen, u_char *buf) | 
|  | 543 | { | 
|  | 544 | struct map_info *map = mtd->priv; | 
|  | 545 | struct jedec_private *priv = map->fldrv_priv; | 
|  | 546 |  | 
|  | 547 | *retlen = 0; | 
|  | 548 | while (len > 0) | 
|  | 549 | { | 
|  | 550 | // Determine what bank and offset into that bank the first byte is | 
|  | 551 | unsigned long bank = from & (~(priv->bank_fill[0]-1)); | 
|  | 552 | unsigned long offset = from & (priv->bank_fill[0]-1); | 
|  | 553 | unsigned long get = len; | 
|  | 554 | if (priv->bank_fill[0] - offset < len) | 
|  | 555 | get = priv->bank_fill[0] - offset; | 
|  | 556 |  | 
|  | 557 | bank /= priv->bank_fill[0]; | 
|  | 558 | map_copy_from(map,buf + *retlen,bank*my_bank_size + offset,get); | 
|  | 559 |  | 
|  | 560 | len -= get; | 
|  | 561 | *retlen += get; | 
|  | 562 | from += get; | 
|  | 563 | } | 
|  | 564 | return 0; | 
|  | 565 | } | 
|  | 566 |  | 
|  | 567 | /* Pass the flags value that the flash return before it re-entered read | 
|  | 568 | mode. */ | 
|  | 569 | static void jedec_flash_failed(unsigned char code) | 
|  | 570 | { | 
|  | 571 | /* Bit 5 being high indicates that there was an internal device | 
|  | 572 | failure, erasure time limits exceeded or something */ | 
|  | 573 | if ((code & (1 << 5)) != 0) | 
|  | 574 | { | 
|  | 575 | printk("mtd: Internal Flash failure\n"); | 
|  | 576 | return; | 
|  | 577 | } | 
|  | 578 | printk("mtd: Programming didn't take\n"); | 
|  | 579 | } | 
|  | 580 |  | 
|  | 581 | /* This uses the erasure function described in the AMD Flash Handbook, | 
|  | 582 | it will work for flashes with a fixed sector size only. Flashes with | 
|  | 583 | a selection of sector sizes (ie the AMD Am29F800B) will need a different | 
|  | 584 | routine. This routine tries to parallize erasing multiple chips/sectors | 
|  | 585 | where possible */ | 
|  | 586 | static int flash_erase(struct mtd_info *mtd, struct erase_info *instr) | 
|  | 587 | { | 
|  | 588 | // Does IO to the currently selected chip | 
|  | 589 | #define flread(x) map_read8(map,chip->base+((x)<<chip->addrshift)) | 
|  | 590 | #define flwrite(v,x) map_write8(map,v,chip->base+((x)<<chip->addrshift)) | 
|  | 591 |  | 
|  | 592 | unsigned long Time = 0; | 
|  | 593 | unsigned long NoTime = 0; | 
|  | 594 | unsigned long start = instr->addr, len = instr->len; | 
|  | 595 | unsigned int I; | 
|  | 596 | struct map_info *map = mtd->priv; | 
|  | 597 | struct jedec_private *priv = map->fldrv_priv; | 
|  | 598 |  | 
|  | 599 | // Verify the arguments.. | 
|  | 600 | if (start + len > mtd->size || | 
|  | 601 | (start % mtd->erasesize) != 0 || | 
|  | 602 | (len % mtd->erasesize) != 0 || | 
|  | 603 | (len/mtd->erasesize) == 0) | 
|  | 604 | return -EINVAL; | 
|  | 605 |  | 
|  | 606 | jedec_flash_chip_scan(priv,start,len); | 
|  | 607 |  | 
|  | 608 | // Start the erase sequence on each chip | 
|  | 609 | for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) | 
|  | 610 | { | 
|  | 611 | unsigned long off; | 
|  | 612 | struct jedec_flash_chip *chip = priv->chips + I; | 
|  | 613 |  | 
|  | 614 | if (chip->length == 0) | 
|  | 615 | continue; | 
|  | 616 |  | 
|  | 617 | if (chip->start + chip->length > chip->size) | 
|  | 618 | { | 
|  | 619 | printk("DIE\n"); | 
|  | 620 | return -EIO; | 
|  | 621 | } | 
|  | 622 |  | 
|  | 623 | flwrite(0xF0,chip->start + 0x555); | 
|  | 624 | flwrite(0xAA,chip->start + 0x555); | 
|  | 625 | flwrite(0x55,chip->start + 0x2AA); | 
|  | 626 | flwrite(0x80,chip->start + 0x555); | 
|  | 627 | flwrite(0xAA,chip->start + 0x555); | 
|  | 628 | flwrite(0x55,chip->start + 0x2AA); | 
|  | 629 |  | 
|  | 630 | /* Once we start selecting the erase sectors the delay between each | 
|  | 631 | command must not exceed 50us or it will immediately start erasing | 
|  | 632 | and ignore the other sectors */ | 
|  | 633 | for (off = 0; off < len; off += chip->sectorsize) | 
|  | 634 | { | 
|  | 635 | // Check to make sure we didn't timeout | 
|  | 636 | flwrite(0x30,chip->start + off); | 
|  | 637 | if (off == 0) | 
|  | 638 | continue; | 
|  | 639 | if ((flread(chip->start + off) & (1 << 3)) != 0) | 
|  | 640 | { | 
|  | 641 | printk("mtd: Ack! We timed out the erase timer!\n"); | 
|  | 642 | return -EIO; | 
|  | 643 | } | 
|  | 644 | } | 
|  | 645 | } | 
|  | 646 |  | 
|  | 647 | /* We could split this into a timer routine and return early, performing | 
|  | 648 | background erasure.. Maybe later if the need warrents */ | 
|  | 649 |  | 
|  | 650 | /* Poll the flash for erasure completion, specs say this can take as long | 
|  | 651 | as 480 seconds to do all the sectors (for a 2 meg flash). | 
|  | 652 | Erasure time is dependent on chip age, temp and wear.. */ | 
|  | 653 |  | 
|  | 654 | /* This being a generic routine assumes a 32 bit bus. It does read32s | 
|  | 655 | and bundles interleved chips into the same grouping. This will work | 
|  | 656 | for all bus widths */ | 
|  | 657 | Time = 0; | 
|  | 658 | NoTime = 0; | 
|  | 659 | for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) | 
|  | 660 | { | 
|  | 661 | struct jedec_flash_chip *chip = priv->chips + I; | 
|  | 662 | unsigned long off = 0; | 
|  | 663 | unsigned todo[4] = {0,0,0,0}; | 
|  | 664 | unsigned todo_left = 0; | 
|  | 665 | unsigned J; | 
|  | 666 |  | 
|  | 667 | if (chip->length == 0) | 
|  | 668 | continue; | 
|  | 669 |  | 
|  | 670 | /* Find all chips in this data line, realistically this is all | 
|  | 671 | or nothing up to the interleve count */ | 
|  | 672 | for (J = 0; priv->chips[J].jedec != 0 && J < MAX_JEDEC_CHIPS; J++) | 
|  | 673 | { | 
|  | 674 | if ((priv->chips[J].base & (~((1<<chip->addrshift)-1))) == | 
|  | 675 | (chip->base & (~((1<<chip->addrshift)-1)))) | 
|  | 676 | { | 
|  | 677 | todo_left++; | 
|  | 678 | todo[priv->chips[J].base & ((1<<chip->addrshift)-1)] = 1; | 
|  | 679 | } | 
|  | 680 | } | 
|  | 681 |  | 
|  | 682 | /*      printk("todo: %x %x %x %x\n",(short)todo[0],(short)todo[1], | 
|  | 683 | (short)todo[2],(short)todo[3]); | 
|  | 684 | */ | 
|  | 685 | while (1) | 
|  | 686 | { | 
|  | 687 | __u32 Last[4]; | 
|  | 688 | unsigned long Count = 0; | 
|  | 689 |  | 
|  | 690 | /* During erase bit 7 is held low and bit 6 toggles, we watch this, | 
|  | 691 | should it stop toggling or go high then the erase is completed, | 
|  | 692 | or this is not really flash ;> */ | 
|  | 693 | switch (map->buswidth) { | 
|  | 694 | case 1: | 
|  | 695 | Last[0] = map_read8(map,(chip->base >> chip->addrshift) + chip->start + off); | 
|  | 696 | Last[1] = map_read8(map,(chip->base >> chip->addrshift) + chip->start + off); | 
|  | 697 | Last[2] = map_read8(map,(chip->base >> chip->addrshift) + chip->start + off); | 
|  | 698 | break; | 
|  | 699 | case 2: | 
|  | 700 | Last[0] = map_read16(map,(chip->base >> chip->addrshift) + chip->start + off); | 
|  | 701 | Last[1] = map_read16(map,(chip->base >> chip->addrshift) + chip->start + off); | 
|  | 702 | Last[2] = map_read16(map,(chip->base >> chip->addrshift) + chip->start + off); | 
|  | 703 | break; | 
|  | 704 | case 3: | 
|  | 705 | Last[0] = map_read32(map,(chip->base >> chip->addrshift) + chip->start + off); | 
|  | 706 | Last[1] = map_read32(map,(chip->base >> chip->addrshift) + chip->start + off); | 
|  | 707 | Last[2] = map_read32(map,(chip->base >> chip->addrshift) + chip->start + off); | 
|  | 708 | break; | 
|  | 709 | } | 
|  | 710 | Count = 3; | 
|  | 711 | while (todo_left != 0) | 
|  | 712 | { | 
|  | 713 | for (J = 0; J != 4; J++) | 
|  | 714 | { | 
|  | 715 | __u8 Byte1 = (Last[(Count-1)%4] >> (J*8)) & 0xFF; | 
|  | 716 | __u8 Byte2 = (Last[(Count-2)%4] >> (J*8)) & 0xFF; | 
|  | 717 | __u8 Byte3 = (Last[(Count-3)%4] >> (J*8)) & 0xFF; | 
|  | 718 | if (todo[J] == 0) | 
|  | 719 | continue; | 
|  | 720 |  | 
|  | 721 | if ((Byte1 & (1 << 7)) == 0 && Byte1 != Byte2) | 
|  | 722 | { | 
|  | 723 | //		  printk("Check %x %x %x\n",(short)J,(short)Byte1,(short)Byte2); | 
|  | 724 | continue; | 
|  | 725 | } | 
|  | 726 |  | 
|  | 727 | if (Byte1 == Byte2) | 
|  | 728 | { | 
|  | 729 | jedec_flash_failed(Byte3); | 
|  | 730 | return -EIO; | 
|  | 731 | } | 
|  | 732 |  | 
|  | 733 | todo[J] = 0; | 
|  | 734 | todo_left--; | 
|  | 735 | } | 
|  | 736 |  | 
|  | 737 | /*	    if (NoTime == 0) | 
|  | 738 | Time += HZ/10 - schedule_timeout(HZ/10);*/ | 
|  | 739 | NoTime = 0; | 
|  | 740 |  | 
|  | 741 | switch (map->buswidth) { | 
|  | 742 | case 1: | 
|  | 743 | Last[Count % 4] = map_read8(map,(chip->base >> chip->addrshift) + chip->start + off); | 
|  | 744 | break; | 
|  | 745 | case 2: | 
|  | 746 | Last[Count % 4] = map_read16(map,(chip->base >> chip->addrshift) + chip->start + off); | 
|  | 747 | break; | 
|  | 748 | case 4: | 
|  | 749 | Last[Count % 4] = map_read32(map,(chip->base >> chip->addrshift) + chip->start + off); | 
|  | 750 | break; | 
|  | 751 | } | 
|  | 752 | Count++; | 
|  | 753 |  | 
|  | 754 | /*	    // Count time, max of 15s per sector (according to AMD) | 
|  | 755 | if (Time > 15*len/mtd->erasesize*HZ) | 
|  | 756 | { | 
|  | 757 | printk("mtd: Flash Erase Timed out\n"); | 
|  | 758 | return -EIO; | 
|  | 759 | }	    */ | 
|  | 760 | } | 
|  | 761 |  | 
|  | 762 | // Skip to the next chip if we used chip erase | 
|  | 763 | if (chip->length == chip->size) | 
|  | 764 | off = chip->size; | 
|  | 765 | else | 
|  | 766 | off += chip->sectorsize; | 
|  | 767 |  | 
|  | 768 | if (off >= chip->length) | 
|  | 769 | break; | 
|  | 770 | NoTime = 1; | 
|  | 771 | } | 
|  | 772 |  | 
|  | 773 | for (J = 0; priv->chips[J].jedec != 0 && J < MAX_JEDEC_CHIPS; J++) | 
|  | 774 | { | 
|  | 775 | if ((priv->chips[J].base & (~((1<<chip->addrshift)-1))) == | 
|  | 776 | (chip->base & (~((1<<chip->addrshift)-1)))) | 
|  | 777 | priv->chips[J].length = 0; | 
|  | 778 | } | 
|  | 779 | } | 
|  | 780 |  | 
|  | 781 | //printk("done\n"); | 
|  | 782 | instr->state = MTD_ERASE_DONE; | 
|  | 783 | mtd_erase_callback(instr); | 
|  | 784 | return 0; | 
|  | 785 |  | 
|  | 786 | #undef flread | 
|  | 787 | #undef flwrite | 
|  | 788 | } | 
|  | 789 |  | 
|  | 790 | /* This is the simple flash writing function. It writes to every byte, in | 
|  | 791 | sequence. It takes care of how to properly address the flash if | 
|  | 792 | the flash is interleved. It can only be used if all the chips in the | 
|  | 793 | array are identical!*/ | 
|  | 794 | static int flash_write(struct mtd_info *mtd, loff_t start, size_t len, | 
|  | 795 | size_t *retlen, const u_char *buf) | 
|  | 796 | { | 
|  | 797 | /* Does IO to the currently selected chip. It takes the bank addressing | 
|  | 798 | base (which is divisible by the chip size) adds the necessary lower bits | 
|  | 799 | of addrshift (interleave index) and then adds the control register index. */ | 
|  | 800 | #define flread(x) map_read8(map,base+(off&((1<<chip->addrshift)-1))+((x)<<chip->addrshift)) | 
|  | 801 | #define flwrite(v,x) map_write8(map,v,base+(off&((1<<chip->addrshift)-1))+((x)<<chip->addrshift)) | 
|  | 802 |  | 
|  | 803 | struct map_info *map = mtd->priv; | 
|  | 804 | struct jedec_private *priv = map->fldrv_priv; | 
|  | 805 | unsigned long base; | 
|  | 806 | unsigned long off; | 
|  | 807 | size_t save_len = len; | 
|  | 808 |  | 
|  | 809 | if (start + len > mtd->size) | 
|  | 810 | return -EIO; | 
|  | 811 |  | 
|  | 812 | //printk("Here"); | 
|  | 813 |  | 
|  | 814 | //printk("flash_write: start is %x, len is %x\n",start,(unsigned long)len); | 
|  | 815 | while (len != 0) | 
|  | 816 | { | 
|  | 817 | struct jedec_flash_chip *chip = priv->chips; | 
|  | 818 | unsigned long bank; | 
|  | 819 | unsigned long boffset; | 
|  | 820 |  | 
|  | 821 | // Compute the base of the flash. | 
|  | 822 | off = ((unsigned long)start) % (chip->size << chip->addrshift); | 
|  | 823 | base = start - off; | 
|  | 824 |  | 
|  | 825 | // Perform banked addressing translation. | 
|  | 826 | bank = base & (~(priv->bank_fill[0]-1)); | 
|  | 827 | boffset = base & (priv->bank_fill[0]-1); | 
|  | 828 | bank = (bank/priv->bank_fill[0])*my_bank_size; | 
|  | 829 | base = bank + boffset; | 
|  | 830 |  | 
|  | 831 | //  printk("Flasing %X %X %X\n",base,chip->size,len); | 
|  | 832 | // printk("off is %x, compare with %x\n",off,chip->size << chip->addrshift); | 
|  | 833 |  | 
|  | 834 | // Loop over this page | 
|  | 835 | for (; off != (chip->size << chip->addrshift) && len != 0; start++, len--, off++,buf++) | 
|  | 836 | { | 
|  | 837 | unsigned char oldbyte = map_read8(map,base+off); | 
|  | 838 | unsigned char Last[4]; | 
|  | 839 | unsigned long Count = 0; | 
|  | 840 |  | 
|  | 841 | if (oldbyte == *buf) { | 
|  | 842 | //	 printk("oldbyte and *buf is %x,len is %x\n",oldbyte,len); | 
|  | 843 | continue; | 
|  | 844 | } | 
|  | 845 | if (((~oldbyte) & *buf) != 0) | 
|  | 846 | printk("mtd: warn: Trying to set a 0 to a 1\n"); | 
|  | 847 |  | 
|  | 848 | // Write | 
|  | 849 | flwrite(0xAA,0x555); | 
|  | 850 | flwrite(0x55,0x2AA); | 
|  | 851 | flwrite(0xA0,0x555); | 
|  | 852 | map_write8(map,*buf,base + off); | 
|  | 853 | Last[0] = map_read8(map,base + off); | 
|  | 854 | Last[1] = map_read8(map,base + off); | 
|  | 855 | Last[2] = map_read8(map,base + off); | 
|  | 856 |  | 
|  | 857 | /* Wait for the flash to finish the operation. We store the last 4 | 
|  | 858 | status bytes that have been retrieved so we can determine why | 
|  | 859 | it failed. The toggle bits keep toggling when there is a | 
|  | 860 | failure */ | 
|  | 861 | for (Count = 3; Last[(Count - 1) % 4] != Last[(Count - 2) % 4] && | 
|  | 862 | Count < 10000; Count++) | 
|  | 863 | Last[Count % 4] = map_read8(map,base + off); | 
|  | 864 | if (Last[(Count - 1) % 4] != *buf) | 
|  | 865 | { | 
|  | 866 | jedec_flash_failed(Last[(Count - 3) % 4]); | 
|  | 867 | return -EIO; | 
|  | 868 | } | 
|  | 869 | } | 
|  | 870 | } | 
|  | 871 | *retlen = save_len; | 
|  | 872 | return 0; | 
|  | 873 | } | 
|  | 874 |  | 
|  | 875 | /* This is used to enhance the speed of the erase routine, | 
|  | 876 | when things are being done to multiple chips it is possible to | 
|  | 877 | parallize the operations, particularly full memory erases of multi | 
|  | 878 | chip memories benifit */ | 
|  | 879 | static void jedec_flash_chip_scan(struct jedec_private *priv,unsigned long start, | 
|  | 880 | unsigned long len) | 
|  | 881 | { | 
|  | 882 | unsigned int I; | 
|  | 883 |  | 
|  | 884 | // Zero the records | 
|  | 885 | for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) | 
|  | 886 | priv->chips[I].start = priv->chips[I].length = 0; | 
|  | 887 |  | 
|  | 888 | // Intersect the region with each chip | 
|  | 889 | for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) | 
|  | 890 | { | 
|  | 891 | struct jedec_flash_chip *chip = priv->chips + I; | 
|  | 892 | unsigned long ByteStart; | 
|  | 893 | unsigned long ChipEndByte = chip->offset + (chip->size << chip->addrshift); | 
|  | 894 |  | 
|  | 895 | // End is before this chip or the start is after it | 
|  | 896 | if (start+len < chip->offset || | 
|  | 897 | ChipEndByte - (1 << chip->addrshift) < start) | 
|  | 898 | continue; | 
|  | 899 |  | 
|  | 900 | if (start < chip->offset) | 
|  | 901 | { | 
|  | 902 | ByteStart = chip->offset; | 
|  | 903 | chip->start = 0; | 
|  | 904 | } | 
|  | 905 | else | 
|  | 906 | { | 
|  | 907 | chip->start = (start - chip->offset + (1 << chip->addrshift)-1) >> chip->addrshift; | 
|  | 908 | ByteStart = start; | 
|  | 909 | } | 
|  | 910 |  | 
|  | 911 | if (start + len >= ChipEndByte) | 
|  | 912 | chip->length = (ChipEndByte - ByteStart) >> chip->addrshift; | 
|  | 913 | else | 
|  | 914 | chip->length = (start + len - ByteStart + (1 << chip->addrshift)-1) >> chip->addrshift; | 
|  | 915 | } | 
|  | 916 | } | 
|  | 917 |  | 
|  | 918 | int __init jedec_init(void) | 
|  | 919 | { | 
|  | 920 | register_mtd_chip_driver(&jedec_chipdrv); | 
|  | 921 | return 0; | 
|  | 922 | } | 
|  | 923 |  | 
|  | 924 | static void __exit jedec_exit(void) | 
|  | 925 | { | 
|  | 926 | unregister_mtd_chip_driver(&jedec_chipdrv); | 
|  | 927 | } | 
|  | 928 |  | 
|  | 929 | module_init(jedec_init); | 
|  | 930 | module_exit(jedec_exit); | 
|  | 931 |  | 
|  | 932 | MODULE_LICENSE("GPL"); | 
|  | 933 | MODULE_AUTHOR("Jason Gunthorpe <jgg@deltatee.com> et al."); | 
|  | 934 | MODULE_DESCRIPTION("Old MTD chip driver for JEDEC-compliant flash chips"); |