| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /******************************************************************************* | 
|  | 2 |  | 
|  | 3 |  | 
| Malli Chilakala | 2648345 | 2005-04-28 19:44:46 -0700 | [diff] [blame] | 4 | Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5 |  | 
|  | 6 | This program is free software; you can redistribute it and/or modify it | 
|  | 7 | under the terms of the GNU General Public License as published by the Free | 
|  | 8 | Software Foundation; either version 2 of the License, or (at your option) | 
|  | 9 | any later version. | 
|  | 10 |  | 
|  | 11 | This program is distributed in the hope that it will be useful, but WITHOUT | 
|  | 12 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | 13 | FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | 14 | more details. | 
|  | 15 |  | 
|  | 16 | You should have received a copy of the GNU General Public License along with | 
|  | 17 | this program; if not, write to the Free Software Foundation, Inc., 59 | 
|  | 18 | Temple Place - Suite 330, Boston, MA  02111-1307, USA. | 
|  | 19 |  | 
|  | 20 | The full GNU General Public License is included in this distribution in the | 
|  | 21 | file called LICENSE. | 
|  | 22 |  | 
|  | 23 | Contact Information: | 
|  | 24 | Linux NICS <linux.nics@intel.com> | 
|  | 25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | 
|  | 26 |  | 
|  | 27 | *******************************************************************************/ | 
|  | 28 |  | 
|  | 29 | /* e1000_hw.c | 
|  | 30 | * Shared functions for accessing and configuring the MAC | 
|  | 31 | */ | 
|  | 32 |  | 
|  | 33 | #include "e1000_hw.h" | 
|  | 34 |  | 
|  | 35 | static int32_t e1000_set_phy_type(struct e1000_hw *hw); | 
|  | 36 | static void e1000_phy_init_script(struct e1000_hw *hw); | 
|  | 37 | static int32_t e1000_setup_copper_link(struct e1000_hw *hw); | 
|  | 38 | static int32_t e1000_setup_fiber_serdes_link(struct e1000_hw *hw); | 
|  | 39 | static int32_t e1000_adjust_serdes_amplitude(struct e1000_hw *hw); | 
|  | 40 | static int32_t e1000_phy_force_speed_duplex(struct e1000_hw *hw); | 
|  | 41 | static int32_t e1000_config_mac_to_phy(struct e1000_hw *hw); | 
|  | 42 | static void e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl); | 
|  | 43 | static void e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl); | 
|  | 44 | static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, | 
|  | 45 | uint16_t count); | 
|  | 46 | static uint16_t e1000_shift_in_mdi_bits(struct e1000_hw *hw); | 
|  | 47 | static int32_t e1000_phy_reset_dsp(struct e1000_hw *hw); | 
|  | 48 | static int32_t e1000_write_eeprom_spi(struct e1000_hw *hw, uint16_t offset, | 
|  | 49 | uint16_t words, uint16_t *data); | 
|  | 50 | static int32_t e1000_write_eeprom_microwire(struct e1000_hw *hw, | 
|  | 51 | uint16_t offset, uint16_t words, | 
|  | 52 | uint16_t *data); | 
|  | 53 | static int32_t e1000_spi_eeprom_ready(struct e1000_hw *hw); | 
|  | 54 | static void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t *eecd); | 
|  | 55 | static void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t *eecd); | 
|  | 56 | static void e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, | 
|  | 57 | uint16_t count); | 
|  | 58 | static int32_t e1000_write_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr, | 
|  | 59 | uint16_t phy_data); | 
|  | 60 | static int32_t e1000_read_phy_reg_ex(struct e1000_hw *hw,uint32_t reg_addr, | 
|  | 61 | uint16_t *phy_data); | 
|  | 62 | static uint16_t e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count); | 
|  | 63 | static int32_t e1000_acquire_eeprom(struct e1000_hw *hw); | 
|  | 64 | static void e1000_release_eeprom(struct e1000_hw *hw); | 
|  | 65 | static void e1000_standby_eeprom(struct e1000_hw *hw); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 66 | static int32_t e1000_set_vco_speed(struct e1000_hw *hw); | 
|  | 67 | static int32_t e1000_polarity_reversal_workaround(struct e1000_hw *hw); | 
|  | 68 | static int32_t e1000_set_phy_mode(struct e1000_hw *hw); | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 69 | static int32_t e1000_host_if_read_cookie(struct e1000_hw *hw, uint8_t *buffer); | 
|  | 70 | static uint8_t e1000_calculate_mng_checksum(char *buffer, uint32_t length); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 71 |  | 
|  | 72 | /* IGP cable length table */ | 
|  | 73 | static const | 
|  | 74 | uint16_t e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = | 
|  | 75 | { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, | 
|  | 76 | 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25, | 
|  | 77 | 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40, | 
|  | 78 | 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60, | 
|  | 79 | 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90, | 
|  | 80 | 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, | 
|  | 81 | 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, | 
|  | 82 | 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120}; | 
|  | 83 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 84 | static const | 
|  | 85 | uint16_t e1000_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE] = | 
|  | 86 | { 8, 13, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, | 
|  | 87 | 22, 24, 27, 30, 32, 35, 37, 40, 42, 44, 47, 49, 51, 54, 56, 58, | 
|  | 88 | 32, 35, 38, 41, 44, 47, 50, 53, 55, 58, 61, 63, 66, 69, 71, 74, | 
|  | 89 | 43, 47, 51, 54, 58, 61, 64, 67, 71, 74, 77, 80, 82, 85, 88, 90, | 
|  | 90 | 57, 62, 66, 70, 74, 77, 81, 85, 88, 91, 94, 97, 100, 103, 106, 108, | 
|  | 91 | 73, 78, 82, 87, 91, 95, 98, 102, 105, 109, 112, 114, 117, 119, 122, 124, | 
|  | 92 | 91, 96, 101, 105, 109, 113, 116, 119, 122, 125, 127, 128, 128, 128, 128, 128, | 
|  | 93 | 108, 113, 117, 121, 124, 127, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128}; | 
|  | 94 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 95 |  | 
|  | 96 | /****************************************************************************** | 
|  | 97 | * Set the phy type member in the hw struct. | 
|  | 98 | * | 
|  | 99 | * hw - Struct containing variables accessed by shared code | 
|  | 100 | *****************************************************************************/ | 
|  | 101 | int32_t | 
|  | 102 | e1000_set_phy_type(struct e1000_hw *hw) | 
|  | 103 | { | 
|  | 104 | DEBUGFUNC("e1000_set_phy_type"); | 
|  | 105 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 106 | if(hw->mac_type == e1000_undefined) | 
|  | 107 | return -E1000_ERR_PHY_TYPE; | 
|  | 108 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 109 | switch(hw->phy_id) { | 
|  | 110 | case M88E1000_E_PHY_ID: | 
|  | 111 | case M88E1000_I_PHY_ID: | 
|  | 112 | case M88E1011_I_PHY_ID: | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 113 | case M88E1111_I_PHY_ID: | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 114 | hw->phy_type = e1000_phy_m88; | 
|  | 115 | break; | 
|  | 116 | case IGP01E1000_I_PHY_ID: | 
|  | 117 | if(hw->mac_type == e1000_82541 || | 
|  | 118 | hw->mac_type == e1000_82541_rev_2 || | 
|  | 119 | hw->mac_type == e1000_82547 || | 
|  | 120 | hw->mac_type == e1000_82547_rev_2) { | 
|  | 121 | hw->phy_type = e1000_phy_igp; | 
|  | 122 | break; | 
|  | 123 | } | 
|  | 124 | /* Fall Through */ | 
|  | 125 | default: | 
|  | 126 | /* Should never have loaded on this device */ | 
|  | 127 | hw->phy_type = e1000_phy_undefined; | 
|  | 128 | return -E1000_ERR_PHY_TYPE; | 
|  | 129 | } | 
|  | 130 |  | 
|  | 131 | return E1000_SUCCESS; | 
|  | 132 | } | 
|  | 133 |  | 
|  | 134 | /****************************************************************************** | 
|  | 135 | * IGP phy init script - initializes the GbE PHY | 
|  | 136 | * | 
|  | 137 | * hw - Struct containing variables accessed by shared code | 
|  | 138 | *****************************************************************************/ | 
|  | 139 | static void | 
|  | 140 | e1000_phy_init_script(struct e1000_hw *hw) | 
|  | 141 | { | 
|  | 142 | uint32_t ret_val; | 
|  | 143 | uint16_t phy_saved_data; | 
|  | 144 |  | 
|  | 145 | DEBUGFUNC("e1000_phy_init_script"); | 
|  | 146 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 147 | if(hw->phy_init_script) { | 
|  | 148 | msec_delay(20); | 
|  | 149 |  | 
|  | 150 | /* Save off the current value of register 0x2F5B to be restored at | 
|  | 151 | * the end of this routine. */ | 
|  | 152 | ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); | 
|  | 153 |  | 
|  | 154 | /* Disabled the PHY transmitter */ | 
|  | 155 | e1000_write_phy_reg(hw, 0x2F5B, 0x0003); | 
|  | 156 |  | 
|  | 157 | msec_delay(20); | 
|  | 158 |  | 
|  | 159 | e1000_write_phy_reg(hw,0x0000,0x0140); | 
|  | 160 |  | 
|  | 161 | msec_delay(5); | 
|  | 162 |  | 
|  | 163 | switch(hw->mac_type) { | 
|  | 164 | case e1000_82541: | 
|  | 165 | case e1000_82547: | 
|  | 166 | e1000_write_phy_reg(hw, 0x1F95, 0x0001); | 
|  | 167 |  | 
|  | 168 | e1000_write_phy_reg(hw, 0x1F71, 0xBD21); | 
|  | 169 |  | 
|  | 170 | e1000_write_phy_reg(hw, 0x1F79, 0x0018); | 
|  | 171 |  | 
|  | 172 | e1000_write_phy_reg(hw, 0x1F30, 0x1600); | 
|  | 173 |  | 
|  | 174 | e1000_write_phy_reg(hw, 0x1F31, 0x0014); | 
|  | 175 |  | 
|  | 176 | e1000_write_phy_reg(hw, 0x1F32, 0x161C); | 
|  | 177 |  | 
|  | 178 | e1000_write_phy_reg(hw, 0x1F94, 0x0003); | 
|  | 179 |  | 
|  | 180 | e1000_write_phy_reg(hw, 0x1F96, 0x003F); | 
|  | 181 |  | 
|  | 182 | e1000_write_phy_reg(hw, 0x2010, 0x0008); | 
|  | 183 | break; | 
|  | 184 |  | 
|  | 185 | case e1000_82541_rev_2: | 
|  | 186 | case e1000_82547_rev_2: | 
|  | 187 | e1000_write_phy_reg(hw, 0x1F73, 0x0099); | 
|  | 188 | break; | 
|  | 189 | default: | 
|  | 190 | break; | 
|  | 191 | } | 
|  | 192 |  | 
|  | 193 | e1000_write_phy_reg(hw, 0x0000, 0x3300); | 
|  | 194 |  | 
|  | 195 | msec_delay(20); | 
|  | 196 |  | 
|  | 197 | /* Now enable the transmitter */ | 
|  | 198 | e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); | 
|  | 199 |  | 
|  | 200 | if(hw->mac_type == e1000_82547) { | 
|  | 201 | uint16_t fused, fine, coarse; | 
|  | 202 |  | 
|  | 203 | /* Move to analog registers page */ | 
|  | 204 | e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused); | 
|  | 205 |  | 
|  | 206 | if(!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) { | 
|  | 207 | e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused); | 
|  | 208 |  | 
|  | 209 | fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK; | 
|  | 210 | coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK; | 
|  | 211 |  | 
|  | 212 | if(coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) { | 
|  | 213 | coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10; | 
|  | 214 | fine -= IGP01E1000_ANALOG_FUSE_FINE_1; | 
|  | 215 | } else if(coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH) | 
|  | 216 | fine -= IGP01E1000_ANALOG_FUSE_FINE_10; | 
|  | 217 |  | 
|  | 218 | fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) | | 
|  | 219 | (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) | | 
|  | 220 | (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK); | 
|  | 221 |  | 
|  | 222 | e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused); | 
|  | 223 | e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS, | 
|  | 224 | IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL); | 
|  | 225 | } | 
|  | 226 | } | 
|  | 227 | } | 
|  | 228 | } | 
|  | 229 |  | 
|  | 230 | /****************************************************************************** | 
|  | 231 | * Set the mac type member in the hw struct. | 
|  | 232 | * | 
|  | 233 | * hw - Struct containing variables accessed by shared code | 
|  | 234 | *****************************************************************************/ | 
|  | 235 | int32_t | 
|  | 236 | e1000_set_mac_type(struct e1000_hw *hw) | 
|  | 237 | { | 
|  | 238 | DEBUGFUNC("e1000_set_mac_type"); | 
|  | 239 |  | 
|  | 240 | switch (hw->device_id) { | 
|  | 241 | case E1000_DEV_ID_82542: | 
|  | 242 | switch (hw->revision_id) { | 
|  | 243 | case E1000_82542_2_0_REV_ID: | 
|  | 244 | hw->mac_type = e1000_82542_rev2_0; | 
|  | 245 | break; | 
|  | 246 | case E1000_82542_2_1_REV_ID: | 
|  | 247 | hw->mac_type = e1000_82542_rev2_1; | 
|  | 248 | break; | 
|  | 249 | default: | 
|  | 250 | /* Invalid 82542 revision ID */ | 
|  | 251 | return -E1000_ERR_MAC_TYPE; | 
|  | 252 | } | 
|  | 253 | break; | 
|  | 254 | case E1000_DEV_ID_82543GC_FIBER: | 
|  | 255 | case E1000_DEV_ID_82543GC_COPPER: | 
|  | 256 | hw->mac_type = e1000_82543; | 
|  | 257 | break; | 
|  | 258 | case E1000_DEV_ID_82544EI_COPPER: | 
|  | 259 | case E1000_DEV_ID_82544EI_FIBER: | 
|  | 260 | case E1000_DEV_ID_82544GC_COPPER: | 
|  | 261 | case E1000_DEV_ID_82544GC_LOM: | 
|  | 262 | hw->mac_type = e1000_82544; | 
|  | 263 | break; | 
|  | 264 | case E1000_DEV_ID_82540EM: | 
|  | 265 | case E1000_DEV_ID_82540EM_LOM: | 
|  | 266 | case E1000_DEV_ID_82540EP: | 
|  | 267 | case E1000_DEV_ID_82540EP_LOM: | 
|  | 268 | case E1000_DEV_ID_82540EP_LP: | 
|  | 269 | hw->mac_type = e1000_82540; | 
|  | 270 | break; | 
|  | 271 | case E1000_DEV_ID_82545EM_COPPER: | 
|  | 272 | case E1000_DEV_ID_82545EM_FIBER: | 
|  | 273 | hw->mac_type = e1000_82545; | 
|  | 274 | break; | 
|  | 275 | case E1000_DEV_ID_82545GM_COPPER: | 
|  | 276 | case E1000_DEV_ID_82545GM_FIBER: | 
|  | 277 | case E1000_DEV_ID_82545GM_SERDES: | 
|  | 278 | hw->mac_type = e1000_82545_rev_3; | 
|  | 279 | break; | 
|  | 280 | case E1000_DEV_ID_82546EB_COPPER: | 
|  | 281 | case E1000_DEV_ID_82546EB_FIBER: | 
|  | 282 | case E1000_DEV_ID_82546EB_QUAD_COPPER: | 
|  | 283 | hw->mac_type = e1000_82546; | 
|  | 284 | break; | 
|  | 285 | case E1000_DEV_ID_82546GB_COPPER: | 
|  | 286 | case E1000_DEV_ID_82546GB_FIBER: | 
|  | 287 | case E1000_DEV_ID_82546GB_SERDES: | 
|  | 288 | case E1000_DEV_ID_82546GB_PCIE: | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 289 | case E1000_DEV_ID_82546GB_QUAD_COPPER: | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 290 | hw->mac_type = e1000_82546_rev_3; | 
|  | 291 | break; | 
|  | 292 | case E1000_DEV_ID_82541EI: | 
|  | 293 | case E1000_DEV_ID_82541EI_MOBILE: | 
|  | 294 | hw->mac_type = e1000_82541; | 
|  | 295 | break; | 
|  | 296 | case E1000_DEV_ID_82541ER: | 
|  | 297 | case E1000_DEV_ID_82541GI: | 
|  | 298 | case E1000_DEV_ID_82541GI_LF: | 
|  | 299 | case E1000_DEV_ID_82541GI_MOBILE: | 
|  | 300 | hw->mac_type = e1000_82541_rev_2; | 
|  | 301 | break; | 
|  | 302 | case E1000_DEV_ID_82547EI: | 
|  | 303 | hw->mac_type = e1000_82547; | 
|  | 304 | break; | 
|  | 305 | case E1000_DEV_ID_82547GI: | 
|  | 306 | hw->mac_type = e1000_82547_rev_2; | 
|  | 307 | break; | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 308 | case E1000_DEV_ID_82573E: | 
|  | 309 | case E1000_DEV_ID_82573E_IAMT: | 
|  | 310 | hw->mac_type = e1000_82573; | 
|  | 311 | break; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 312 | default: | 
|  | 313 | /* Should never have loaded on this device */ | 
|  | 314 | return -E1000_ERR_MAC_TYPE; | 
|  | 315 | } | 
|  | 316 |  | 
|  | 317 | switch(hw->mac_type) { | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 318 | case e1000_82573: | 
|  | 319 | hw->eeprom_semaphore_present = TRUE; | 
|  | 320 | /* fall through */ | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 321 | case e1000_82541: | 
|  | 322 | case e1000_82547: | 
|  | 323 | case e1000_82541_rev_2: | 
|  | 324 | case e1000_82547_rev_2: | 
|  | 325 | hw->asf_firmware_present = TRUE; | 
|  | 326 | break; | 
|  | 327 | default: | 
|  | 328 | break; | 
|  | 329 | } | 
|  | 330 |  | 
|  | 331 | return E1000_SUCCESS; | 
|  | 332 | } | 
|  | 333 |  | 
|  | 334 | /***************************************************************************** | 
|  | 335 | * Set media type and TBI compatibility. | 
|  | 336 | * | 
|  | 337 | * hw - Struct containing variables accessed by shared code | 
|  | 338 | * **************************************************************************/ | 
|  | 339 | void | 
|  | 340 | e1000_set_media_type(struct e1000_hw *hw) | 
|  | 341 | { | 
|  | 342 | uint32_t status; | 
|  | 343 |  | 
|  | 344 | DEBUGFUNC("e1000_set_media_type"); | 
|  | 345 |  | 
|  | 346 | if(hw->mac_type != e1000_82543) { | 
|  | 347 | /* tbi_compatibility is only valid on 82543 */ | 
|  | 348 | hw->tbi_compatibility_en = FALSE; | 
|  | 349 | } | 
|  | 350 |  | 
|  | 351 | switch (hw->device_id) { | 
|  | 352 | case E1000_DEV_ID_82545GM_SERDES: | 
|  | 353 | case E1000_DEV_ID_82546GB_SERDES: | 
|  | 354 | hw->media_type = e1000_media_type_internal_serdes; | 
|  | 355 | break; | 
|  | 356 | default: | 
| Malli Chilakala | 3893d54 | 2005-06-17 17:44:49 -0700 | [diff] [blame] | 357 | switch (hw->mac_type) { | 
|  | 358 | case e1000_82542_rev2_0: | 
|  | 359 | case e1000_82542_rev2_1: | 
|  | 360 | hw->media_type = e1000_media_type_fiber; | 
|  | 361 | break; | 
|  | 362 | case e1000_82573: | 
|  | 363 | /* The STATUS_TBIMODE bit is reserved or reused for the this | 
|  | 364 | * device. | 
|  | 365 | */ | 
|  | 366 | hw->media_type = e1000_media_type_copper; | 
|  | 367 | break; | 
|  | 368 | default: | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 369 | status = E1000_READ_REG(hw, STATUS); | 
| Malli Chilakala | 3893d54 | 2005-06-17 17:44:49 -0700 | [diff] [blame] | 370 | if (status & E1000_STATUS_TBIMODE) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 371 | hw->media_type = e1000_media_type_fiber; | 
|  | 372 | /* tbi_compatibility not valid on fiber */ | 
|  | 373 | hw->tbi_compatibility_en = FALSE; | 
|  | 374 | } else { | 
|  | 375 | hw->media_type = e1000_media_type_copper; | 
|  | 376 | } | 
| Malli Chilakala | 3893d54 | 2005-06-17 17:44:49 -0700 | [diff] [blame] | 377 | break; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 378 | } | 
|  | 379 | } | 
|  | 380 | } | 
|  | 381 |  | 
|  | 382 | /****************************************************************************** | 
|  | 383 | * Reset the transmit and receive units; mask and clear all interrupts. | 
|  | 384 | * | 
|  | 385 | * hw - Struct containing variables accessed by shared code | 
|  | 386 | *****************************************************************************/ | 
|  | 387 | int32_t | 
|  | 388 | e1000_reset_hw(struct e1000_hw *hw) | 
|  | 389 | { | 
|  | 390 | uint32_t ctrl; | 
|  | 391 | uint32_t ctrl_ext; | 
|  | 392 | uint32_t icr; | 
|  | 393 | uint32_t manc; | 
|  | 394 | uint32_t led_ctrl; | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 395 | uint32_t timeout; | 
|  | 396 | uint32_t extcnf_ctrl; | 
|  | 397 | int32_t ret_val; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 398 |  | 
|  | 399 | DEBUGFUNC("e1000_reset_hw"); | 
|  | 400 |  | 
|  | 401 | /* For 82542 (rev 2.0), disable MWI before issuing a device reset */ | 
|  | 402 | if(hw->mac_type == e1000_82542_rev2_0) { | 
|  | 403 | DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); | 
|  | 404 | e1000_pci_clear_mwi(hw); | 
|  | 405 | } | 
|  | 406 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 407 | if(hw->bus_type == e1000_bus_type_pci_express) { | 
|  | 408 | /* Prevent the PCI-E bus from sticking if there is no TLP connection | 
|  | 409 | * on the last TLP read/write transaction when MAC is reset. | 
|  | 410 | */ | 
|  | 411 | if(e1000_disable_pciex_master(hw) != E1000_SUCCESS) { | 
|  | 412 | DEBUGOUT("PCI-E Master disable polling has failed.\n"); | 
|  | 413 | } | 
|  | 414 | } | 
|  | 415 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 416 | /* Clear interrupt mask to stop board from generating interrupts */ | 
|  | 417 | DEBUGOUT("Masking off all interrupts\n"); | 
|  | 418 | E1000_WRITE_REG(hw, IMC, 0xffffffff); | 
|  | 419 |  | 
|  | 420 | /* Disable the Transmit and Receive units.  Then delay to allow | 
|  | 421 | * any pending transactions to complete before we hit the MAC with | 
|  | 422 | * the global reset. | 
|  | 423 | */ | 
|  | 424 | E1000_WRITE_REG(hw, RCTL, 0); | 
|  | 425 | E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP); | 
|  | 426 | E1000_WRITE_FLUSH(hw); | 
|  | 427 |  | 
|  | 428 | /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */ | 
|  | 429 | hw->tbi_compatibility_on = FALSE; | 
|  | 430 |  | 
|  | 431 | /* Delay to allow any outstanding PCI transactions to complete before | 
|  | 432 | * resetting the device | 
|  | 433 | */ | 
|  | 434 | msec_delay(10); | 
|  | 435 |  | 
|  | 436 | ctrl = E1000_READ_REG(hw, CTRL); | 
|  | 437 |  | 
|  | 438 | /* Must reset the PHY before resetting the MAC */ | 
|  | 439 | if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 440 | E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST)); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 441 | msec_delay(5); | 
|  | 442 | } | 
|  | 443 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 444 | /* Must acquire the MDIO ownership before MAC reset. | 
|  | 445 | * Ownership defaults to firmware after a reset. */ | 
|  | 446 | if(hw->mac_type == e1000_82573) { | 
|  | 447 | timeout = 10; | 
|  | 448 |  | 
|  | 449 | extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); | 
|  | 450 | extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; | 
|  | 451 |  | 
|  | 452 | do { | 
|  | 453 | E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl); | 
|  | 454 | extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); | 
|  | 455 |  | 
|  | 456 | if(extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP) | 
|  | 457 | break; | 
|  | 458 | else | 
|  | 459 | extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; | 
|  | 460 |  | 
|  | 461 | msec_delay(2); | 
|  | 462 | timeout--; | 
|  | 463 | } while(timeout); | 
|  | 464 | } | 
|  | 465 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 466 | /* Issue a global reset to the MAC.  This will reset the chip's | 
|  | 467 | * transmit, receive, DMA, and link units.  It will not effect | 
|  | 468 | * the current PCI configuration.  The global reset bit is self- | 
|  | 469 | * clearing, and should clear within a microsecond. | 
|  | 470 | */ | 
|  | 471 | DEBUGOUT("Issuing a global reset to MAC\n"); | 
|  | 472 |  | 
|  | 473 | switch(hw->mac_type) { | 
|  | 474 | case e1000_82544: | 
|  | 475 | case e1000_82540: | 
|  | 476 | case e1000_82545: | 
|  | 477 | case e1000_82546: | 
|  | 478 | case e1000_82541: | 
|  | 479 | case e1000_82541_rev_2: | 
|  | 480 | /* These controllers can't ack the 64-bit write when issuing the | 
|  | 481 | * reset, so use IO-mapping as a workaround to issue the reset */ | 
|  | 482 | E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST)); | 
|  | 483 | break; | 
|  | 484 | case e1000_82545_rev_3: | 
|  | 485 | case e1000_82546_rev_3: | 
|  | 486 | /* Reset is performed on a shadow of the control register */ | 
|  | 487 | E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST)); | 
|  | 488 | break; | 
|  | 489 | default: | 
|  | 490 | E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST)); | 
|  | 491 | break; | 
|  | 492 | } | 
|  | 493 |  | 
|  | 494 | /* After MAC reset, force reload of EEPROM to restore power-on settings to | 
|  | 495 | * device.  Later controllers reload the EEPROM automatically, so just wait | 
|  | 496 | * for reload to complete. | 
|  | 497 | */ | 
|  | 498 | switch(hw->mac_type) { | 
|  | 499 | case e1000_82542_rev2_0: | 
|  | 500 | case e1000_82542_rev2_1: | 
|  | 501 | case e1000_82543: | 
|  | 502 | case e1000_82544: | 
|  | 503 | /* Wait for reset to complete */ | 
|  | 504 | udelay(10); | 
|  | 505 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); | 
|  | 506 | ctrl_ext |= E1000_CTRL_EXT_EE_RST; | 
|  | 507 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); | 
|  | 508 | E1000_WRITE_FLUSH(hw); | 
|  | 509 | /* Wait for EEPROM reload */ | 
|  | 510 | msec_delay(2); | 
|  | 511 | break; | 
|  | 512 | case e1000_82541: | 
|  | 513 | case e1000_82541_rev_2: | 
|  | 514 | case e1000_82547: | 
|  | 515 | case e1000_82547_rev_2: | 
|  | 516 | /* Wait for EEPROM reload */ | 
|  | 517 | msec_delay(20); | 
|  | 518 | break; | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 519 | case e1000_82573: | 
|  | 520 | udelay(10); | 
|  | 521 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); | 
|  | 522 | ctrl_ext |= E1000_CTRL_EXT_EE_RST; | 
|  | 523 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); | 
|  | 524 | E1000_WRITE_FLUSH(hw); | 
|  | 525 | /* fall through */ | 
|  | 526 | ret_val = e1000_get_auto_rd_done(hw); | 
|  | 527 | if(ret_val) | 
|  | 528 | /* We don't want to continue accessing MAC registers. */ | 
|  | 529 | return ret_val; | 
|  | 530 | break; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 531 | default: | 
|  | 532 | /* Wait for EEPROM reload (it happens automatically) */ | 
|  | 533 | msec_delay(5); | 
|  | 534 | break; | 
|  | 535 | } | 
|  | 536 |  | 
|  | 537 | /* Disable HW ARPs on ASF enabled adapters */ | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 538 | if(hw->mac_type >= e1000_82540 && hw->mac_type <= e1000_82547_rev_2) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 539 | manc = E1000_READ_REG(hw, MANC); | 
|  | 540 | manc &= ~(E1000_MANC_ARP_EN); | 
|  | 541 | E1000_WRITE_REG(hw, MANC, manc); | 
|  | 542 | } | 
|  | 543 |  | 
|  | 544 | if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { | 
|  | 545 | e1000_phy_init_script(hw); | 
|  | 546 |  | 
|  | 547 | /* Configure activity LED after PHY reset */ | 
|  | 548 | led_ctrl = E1000_READ_REG(hw, LEDCTL); | 
|  | 549 | led_ctrl &= IGP_ACTIVITY_LED_MASK; | 
|  | 550 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); | 
|  | 551 | E1000_WRITE_REG(hw, LEDCTL, led_ctrl); | 
|  | 552 | } | 
|  | 553 |  | 
|  | 554 | /* Clear interrupt mask to stop board from generating interrupts */ | 
|  | 555 | DEBUGOUT("Masking off all interrupts\n"); | 
|  | 556 | E1000_WRITE_REG(hw, IMC, 0xffffffff); | 
|  | 557 |  | 
|  | 558 | /* Clear any pending interrupt events. */ | 
|  | 559 | icr = E1000_READ_REG(hw, ICR); | 
|  | 560 |  | 
|  | 561 | /* If MWI was previously enabled, reenable it. */ | 
|  | 562 | if(hw->mac_type == e1000_82542_rev2_0) { | 
|  | 563 | if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) | 
|  | 564 | e1000_pci_set_mwi(hw); | 
|  | 565 | } | 
|  | 566 |  | 
|  | 567 | return E1000_SUCCESS; | 
|  | 568 | } | 
|  | 569 |  | 
|  | 570 | /****************************************************************************** | 
|  | 571 | * Performs basic configuration of the adapter. | 
|  | 572 | * | 
|  | 573 | * hw - Struct containing variables accessed by shared code | 
|  | 574 | * | 
|  | 575 | * Assumes that the controller has previously been reset and is in a | 
|  | 576 | * post-reset uninitialized state. Initializes the receive address registers, | 
|  | 577 | * multicast table, and VLAN filter table. Calls routines to setup link | 
|  | 578 | * configuration and flow control settings. Clears all on-chip counters. Leaves | 
|  | 579 | * the transmit and receive units disabled and uninitialized. | 
|  | 580 | *****************************************************************************/ | 
|  | 581 | int32_t | 
|  | 582 | e1000_init_hw(struct e1000_hw *hw) | 
|  | 583 | { | 
|  | 584 | uint32_t ctrl; | 
|  | 585 | uint32_t i; | 
|  | 586 | int32_t ret_val; | 
|  | 587 | uint16_t pcix_cmd_word; | 
|  | 588 | uint16_t pcix_stat_hi_word; | 
|  | 589 | uint16_t cmd_mmrbc; | 
|  | 590 | uint16_t stat_mmrbc; | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 591 | uint32_t mta_size; | 
|  | 592 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 593 | DEBUGFUNC("e1000_init_hw"); | 
|  | 594 |  | 
|  | 595 | /* Initialize Identification LED */ | 
|  | 596 | ret_val = e1000_id_led_init(hw); | 
|  | 597 | if(ret_val) { | 
|  | 598 | DEBUGOUT("Error Initializing Identification LED\n"); | 
|  | 599 | return ret_val; | 
|  | 600 | } | 
|  | 601 |  | 
|  | 602 | /* Set the media type and TBI compatibility */ | 
|  | 603 | e1000_set_media_type(hw); | 
|  | 604 |  | 
|  | 605 | /* Disabling VLAN filtering. */ | 
|  | 606 | DEBUGOUT("Initializing the IEEE VLAN\n"); | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 607 | if (hw->mac_type < e1000_82545_rev_3) | 
|  | 608 | E1000_WRITE_REG(hw, VET, 0); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 609 | e1000_clear_vfta(hw); | 
|  | 610 |  | 
|  | 611 | /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ | 
|  | 612 | if(hw->mac_type == e1000_82542_rev2_0) { | 
|  | 613 | DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); | 
|  | 614 | e1000_pci_clear_mwi(hw); | 
|  | 615 | E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST); | 
|  | 616 | E1000_WRITE_FLUSH(hw); | 
|  | 617 | msec_delay(5); | 
|  | 618 | } | 
|  | 619 |  | 
|  | 620 | /* Setup the receive address. This involves initializing all of the Receive | 
|  | 621 | * Address Registers (RARs 0 - 15). | 
|  | 622 | */ | 
|  | 623 | e1000_init_rx_addrs(hw); | 
|  | 624 |  | 
|  | 625 | /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ | 
|  | 626 | if(hw->mac_type == e1000_82542_rev2_0) { | 
|  | 627 | E1000_WRITE_REG(hw, RCTL, 0); | 
|  | 628 | E1000_WRITE_FLUSH(hw); | 
|  | 629 | msec_delay(1); | 
|  | 630 | if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) | 
|  | 631 | e1000_pci_set_mwi(hw); | 
|  | 632 | } | 
|  | 633 |  | 
|  | 634 | /* Zero out the Multicast HASH table */ | 
|  | 635 | DEBUGOUT("Zeroing the MTA\n"); | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 636 | mta_size = E1000_MC_TBL_SIZE; | 
|  | 637 | for(i = 0; i < mta_size; i++) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 638 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); | 
|  | 639 |  | 
|  | 640 | /* Set the PCI priority bit correctly in the CTRL register.  This | 
|  | 641 | * determines if the adapter gives priority to receives, or if it | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 642 | * gives equal priority to transmits and receives.  Valid only on | 
|  | 643 | * 82542 and 82543 silicon. | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 644 | */ | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 645 | if(hw->dma_fairness && hw->mac_type <= e1000_82543) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 646 | ctrl = E1000_READ_REG(hw, CTRL); | 
|  | 647 | E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR); | 
|  | 648 | } | 
|  | 649 |  | 
|  | 650 | switch(hw->mac_type) { | 
|  | 651 | case e1000_82545_rev_3: | 
|  | 652 | case e1000_82546_rev_3: | 
|  | 653 | break; | 
|  | 654 | default: | 
|  | 655 | /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */ | 
|  | 656 | if(hw->bus_type == e1000_bus_type_pcix) { | 
|  | 657 | e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word); | 
|  | 658 | e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, | 
|  | 659 | &pcix_stat_hi_word); | 
|  | 660 | cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >> | 
|  | 661 | PCIX_COMMAND_MMRBC_SHIFT; | 
|  | 662 | stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >> | 
|  | 663 | PCIX_STATUS_HI_MMRBC_SHIFT; | 
|  | 664 | if(stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K) | 
|  | 665 | stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K; | 
|  | 666 | if(cmd_mmrbc > stat_mmrbc) { | 
|  | 667 | pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK; | 
|  | 668 | pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT; | 
|  | 669 | e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER, | 
|  | 670 | &pcix_cmd_word); | 
|  | 671 | } | 
|  | 672 | } | 
|  | 673 | break; | 
|  | 674 | } | 
|  | 675 |  | 
|  | 676 | /* Call a subroutine to configure the link and setup flow control. */ | 
|  | 677 | ret_val = e1000_setup_link(hw); | 
|  | 678 |  | 
|  | 679 | /* Set the transmit descriptor write-back policy */ | 
|  | 680 | if(hw->mac_type > e1000_82544) { | 
|  | 681 | ctrl = E1000_READ_REG(hw, TXDCTL); | 
|  | 682 | ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB; | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 683 | switch (hw->mac_type) { | 
|  | 684 | default: | 
|  | 685 | break; | 
|  | 686 | case e1000_82573: | 
|  | 687 | ctrl |= E1000_TXDCTL_COUNT_DESC; | 
|  | 688 | break; | 
|  | 689 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 690 | E1000_WRITE_REG(hw, TXDCTL, ctrl); | 
|  | 691 | } | 
|  | 692 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 693 | if (hw->mac_type == e1000_82573) { | 
|  | 694 | e1000_enable_tx_pkt_filtering(hw); | 
|  | 695 | } | 
|  | 696 |  | 
|  | 697 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 698 | /* Clear all of the statistics registers (clear on read).  It is | 
|  | 699 | * important that we do this after we have tried to establish link | 
|  | 700 | * because the symbol error count will increment wildly if there | 
|  | 701 | * is no link. | 
|  | 702 | */ | 
|  | 703 | e1000_clear_hw_cntrs(hw); | 
|  | 704 |  | 
|  | 705 | return ret_val; | 
|  | 706 | } | 
|  | 707 |  | 
|  | 708 | /****************************************************************************** | 
|  | 709 | * Adjust SERDES output amplitude based on EEPROM setting. | 
|  | 710 | * | 
|  | 711 | * hw - Struct containing variables accessed by shared code. | 
|  | 712 | *****************************************************************************/ | 
|  | 713 | static int32_t | 
|  | 714 | e1000_adjust_serdes_amplitude(struct e1000_hw *hw) | 
|  | 715 | { | 
|  | 716 | uint16_t eeprom_data; | 
|  | 717 | int32_t  ret_val; | 
|  | 718 |  | 
|  | 719 | DEBUGFUNC("e1000_adjust_serdes_amplitude"); | 
|  | 720 |  | 
|  | 721 | if(hw->media_type != e1000_media_type_internal_serdes) | 
|  | 722 | return E1000_SUCCESS; | 
|  | 723 |  | 
|  | 724 | switch(hw->mac_type) { | 
|  | 725 | case e1000_82545_rev_3: | 
|  | 726 | case e1000_82546_rev_3: | 
|  | 727 | break; | 
|  | 728 | default: | 
|  | 729 | return E1000_SUCCESS; | 
|  | 730 | } | 
|  | 731 |  | 
|  | 732 | ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data); | 
|  | 733 | if (ret_val) { | 
|  | 734 | return ret_val; | 
|  | 735 | } | 
|  | 736 |  | 
|  | 737 | if(eeprom_data != EEPROM_RESERVED_WORD) { | 
|  | 738 | /* Adjust SERDES output amplitude only. */ | 
|  | 739 | eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK; | 
|  | 740 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data); | 
|  | 741 | if(ret_val) | 
|  | 742 | return ret_val; | 
|  | 743 | } | 
|  | 744 |  | 
|  | 745 | return E1000_SUCCESS; | 
|  | 746 | } | 
|  | 747 |  | 
|  | 748 | /****************************************************************************** | 
|  | 749 | * Configures flow control and link settings. | 
|  | 750 | * | 
|  | 751 | * hw - Struct containing variables accessed by shared code | 
|  | 752 | * | 
|  | 753 | * Determines which flow control settings to use. Calls the apropriate media- | 
|  | 754 | * specific link configuration function. Configures the flow control settings. | 
|  | 755 | * Assuming the adapter has a valid link partner, a valid link should be | 
|  | 756 | * established. Assumes the hardware has previously been reset and the | 
|  | 757 | * transmitter and receiver are not enabled. | 
|  | 758 | *****************************************************************************/ | 
|  | 759 | int32_t | 
|  | 760 | e1000_setup_link(struct e1000_hw *hw) | 
|  | 761 | { | 
|  | 762 | uint32_t ctrl_ext; | 
|  | 763 | int32_t ret_val; | 
|  | 764 | uint16_t eeprom_data; | 
|  | 765 |  | 
|  | 766 | DEBUGFUNC("e1000_setup_link"); | 
|  | 767 |  | 
|  | 768 | /* Read and store word 0x0F of the EEPROM. This word contains bits | 
|  | 769 | * that determine the hardware's default PAUSE (flow control) mode, | 
|  | 770 | * a bit that determines whether the HW defaults to enabling or | 
|  | 771 | * disabling auto-negotiation, and the direction of the | 
|  | 772 | * SW defined pins. If there is no SW over-ride of the flow | 
|  | 773 | * control setting, then the variable hw->fc will | 
|  | 774 | * be initialized based on a value in the EEPROM. | 
|  | 775 | */ | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 776 | if(e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data)) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 777 | DEBUGOUT("EEPROM Read Error\n"); | 
|  | 778 | return -E1000_ERR_EEPROM; | 
|  | 779 | } | 
|  | 780 |  | 
|  | 781 | if(hw->fc == e1000_fc_default) { | 
|  | 782 | if((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0) | 
|  | 783 | hw->fc = e1000_fc_none; | 
|  | 784 | else if((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == | 
|  | 785 | EEPROM_WORD0F_ASM_DIR) | 
|  | 786 | hw->fc = e1000_fc_tx_pause; | 
|  | 787 | else | 
|  | 788 | hw->fc = e1000_fc_full; | 
|  | 789 | } | 
|  | 790 |  | 
|  | 791 | /* We want to save off the original Flow Control configuration just | 
|  | 792 | * in case we get disconnected and then reconnected into a different | 
|  | 793 | * hub or switch with different Flow Control capabilities. | 
|  | 794 | */ | 
|  | 795 | if(hw->mac_type == e1000_82542_rev2_0) | 
|  | 796 | hw->fc &= (~e1000_fc_tx_pause); | 
|  | 797 |  | 
|  | 798 | if((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1)) | 
|  | 799 | hw->fc &= (~e1000_fc_rx_pause); | 
|  | 800 |  | 
|  | 801 | hw->original_fc = hw->fc; | 
|  | 802 |  | 
|  | 803 | DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc); | 
|  | 804 |  | 
|  | 805 | /* Take the 4 bits from EEPROM word 0x0F that determine the initial | 
|  | 806 | * polarity value for the SW controlled pins, and setup the | 
|  | 807 | * Extended Device Control reg with that info. | 
|  | 808 | * This is needed because one of the SW controlled pins is used for | 
|  | 809 | * signal detection.  So this should be done before e1000_setup_pcs_link() | 
|  | 810 | * or e1000_phy_setup() is called. | 
|  | 811 | */ | 
|  | 812 | if(hw->mac_type == e1000_82543) { | 
|  | 813 | ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) << | 
|  | 814 | SWDPIO__EXT_SHIFT); | 
|  | 815 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); | 
|  | 816 | } | 
|  | 817 |  | 
|  | 818 | /* Call the necessary subroutine to configure the link. */ | 
|  | 819 | ret_val = (hw->media_type == e1000_media_type_copper) ? | 
|  | 820 | e1000_setup_copper_link(hw) : | 
|  | 821 | e1000_setup_fiber_serdes_link(hw); | 
|  | 822 |  | 
|  | 823 | /* Initialize the flow control address, type, and PAUSE timer | 
|  | 824 | * registers to their default values.  This is done even if flow | 
|  | 825 | * control is disabled, because it does not hurt anything to | 
|  | 826 | * initialize these registers. | 
|  | 827 | */ | 
|  | 828 | DEBUGOUT("Initializing the Flow Control address, type and timer regs\n"); | 
|  | 829 |  | 
|  | 830 | E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW); | 
|  | 831 | E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH); | 
|  | 832 | E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE); | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 833 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 834 | E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time); | 
|  | 835 |  | 
|  | 836 | /* Set the flow control receive threshold registers.  Normally, | 
|  | 837 | * these registers will be set to a default threshold that may be | 
|  | 838 | * adjusted later by the driver's runtime code.  However, if the | 
|  | 839 | * ability to transmit pause frames in not enabled, then these | 
|  | 840 | * registers will be set to 0. | 
|  | 841 | */ | 
|  | 842 | if(!(hw->fc & e1000_fc_tx_pause)) { | 
|  | 843 | E1000_WRITE_REG(hw, FCRTL, 0); | 
|  | 844 | E1000_WRITE_REG(hw, FCRTH, 0); | 
|  | 845 | } else { | 
|  | 846 | /* We need to set up the Receive Threshold high and low water marks | 
|  | 847 | * as well as (optionally) enabling the transmission of XON frames. | 
|  | 848 | */ | 
|  | 849 | if(hw->fc_send_xon) { | 
|  | 850 | E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE)); | 
|  | 851 | E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); | 
|  | 852 | } else { | 
|  | 853 | E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water); | 
|  | 854 | E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); | 
|  | 855 | } | 
|  | 856 | } | 
|  | 857 | return ret_val; | 
|  | 858 | } | 
|  | 859 |  | 
|  | 860 | /****************************************************************************** | 
|  | 861 | * Sets up link for a fiber based or serdes based adapter | 
|  | 862 | * | 
|  | 863 | * hw - Struct containing variables accessed by shared code | 
|  | 864 | * | 
|  | 865 | * Manipulates Physical Coding Sublayer functions in order to configure | 
|  | 866 | * link. Assumes the hardware has been previously reset and the transmitter | 
|  | 867 | * and receiver are not enabled. | 
|  | 868 | *****************************************************************************/ | 
|  | 869 | static int32_t | 
|  | 870 | e1000_setup_fiber_serdes_link(struct e1000_hw *hw) | 
|  | 871 | { | 
|  | 872 | uint32_t ctrl; | 
|  | 873 | uint32_t status; | 
|  | 874 | uint32_t txcw = 0; | 
|  | 875 | uint32_t i; | 
|  | 876 | uint32_t signal = 0; | 
|  | 877 | int32_t ret_val; | 
|  | 878 |  | 
|  | 879 | DEBUGFUNC("e1000_setup_fiber_serdes_link"); | 
|  | 880 |  | 
|  | 881 | /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be | 
|  | 882 | * set when the optics detect a signal. On older adapters, it will be | 
|  | 883 | * cleared when there is a signal.  This applies to fiber media only. | 
|  | 884 | * If we're on serdes media, adjust the output amplitude to value set in | 
|  | 885 | * the EEPROM. | 
|  | 886 | */ | 
|  | 887 | ctrl = E1000_READ_REG(hw, CTRL); | 
|  | 888 | if(hw->media_type == e1000_media_type_fiber) | 
|  | 889 | signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; | 
|  | 890 |  | 
|  | 891 | ret_val = e1000_adjust_serdes_amplitude(hw); | 
|  | 892 | if(ret_val) | 
|  | 893 | return ret_val; | 
|  | 894 |  | 
|  | 895 | /* Take the link out of reset */ | 
|  | 896 | ctrl &= ~(E1000_CTRL_LRST); | 
|  | 897 |  | 
|  | 898 | /* Adjust VCO speed to improve BER performance */ | 
|  | 899 | ret_val = e1000_set_vco_speed(hw); | 
|  | 900 | if(ret_val) | 
|  | 901 | return ret_val; | 
|  | 902 |  | 
|  | 903 | e1000_config_collision_dist(hw); | 
|  | 904 |  | 
|  | 905 | /* Check for a software override of the flow control settings, and setup | 
|  | 906 | * the device accordingly.  If auto-negotiation is enabled, then software | 
|  | 907 | * will have to set the "PAUSE" bits to the correct value in the Tranmsit | 
|  | 908 | * Config Word Register (TXCW) and re-start auto-negotiation.  However, if | 
|  | 909 | * auto-negotiation is disabled, then software will have to manually | 
|  | 910 | * configure the two flow control enable bits in the CTRL register. | 
|  | 911 | * | 
|  | 912 | * The possible values of the "fc" parameter are: | 
|  | 913 | *      0:  Flow control is completely disabled | 
|  | 914 | *      1:  Rx flow control is enabled (we can receive pause frames, but | 
|  | 915 | *          not send pause frames). | 
|  | 916 | *      2:  Tx flow control is enabled (we can send pause frames but we do | 
|  | 917 | *          not support receiving pause frames). | 
|  | 918 | *      3:  Both Rx and TX flow control (symmetric) are enabled. | 
|  | 919 | */ | 
|  | 920 | switch (hw->fc) { | 
|  | 921 | case e1000_fc_none: | 
|  | 922 | /* Flow control is completely disabled by a software over-ride. */ | 
|  | 923 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); | 
|  | 924 | break; | 
|  | 925 | case e1000_fc_rx_pause: | 
|  | 926 | /* RX Flow control is enabled and TX Flow control is disabled by a | 
|  | 927 | * software over-ride. Since there really isn't a way to advertise | 
|  | 928 | * that we are capable of RX Pause ONLY, we will advertise that we | 
|  | 929 | * support both symmetric and asymmetric RX PAUSE. Later, we will | 
|  | 930 | *  disable the adapter's ability to send PAUSE frames. | 
|  | 931 | */ | 
|  | 932 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); | 
|  | 933 | break; | 
|  | 934 | case e1000_fc_tx_pause: | 
|  | 935 | /* TX Flow control is enabled, and RX Flow control is disabled, by a | 
|  | 936 | * software over-ride. | 
|  | 937 | */ | 
|  | 938 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); | 
|  | 939 | break; | 
|  | 940 | case e1000_fc_full: | 
|  | 941 | /* Flow control (both RX and TX) is enabled by a software over-ride. */ | 
|  | 942 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); | 
|  | 943 | break; | 
|  | 944 | default: | 
|  | 945 | DEBUGOUT("Flow control param set incorrectly\n"); | 
|  | 946 | return -E1000_ERR_CONFIG; | 
|  | 947 | break; | 
|  | 948 | } | 
|  | 949 |  | 
|  | 950 | /* Since auto-negotiation is enabled, take the link out of reset (the link | 
|  | 951 | * will be in reset, because we previously reset the chip). This will | 
|  | 952 | * restart auto-negotiation.  If auto-neogtiation is successful then the | 
|  | 953 | * link-up status bit will be set and the flow control enable bits (RFCE | 
|  | 954 | * and TFCE) will be set according to their negotiated value. | 
|  | 955 | */ | 
|  | 956 | DEBUGOUT("Auto-negotiation enabled\n"); | 
|  | 957 |  | 
|  | 958 | E1000_WRITE_REG(hw, TXCW, txcw); | 
|  | 959 | E1000_WRITE_REG(hw, CTRL, ctrl); | 
|  | 960 | E1000_WRITE_FLUSH(hw); | 
|  | 961 |  | 
|  | 962 | hw->txcw = txcw; | 
|  | 963 | msec_delay(1); | 
|  | 964 |  | 
|  | 965 | /* If we have a signal (the cable is plugged in) then poll for a "Link-Up" | 
|  | 966 | * indication in the Device Status Register.  Time-out if a link isn't | 
|  | 967 | * seen in 500 milliseconds seconds (Auto-negotiation should complete in | 
|  | 968 | * less than 500 milliseconds even if the other end is doing it in SW). | 
|  | 969 | * For internal serdes, we just assume a signal is present, then poll. | 
|  | 970 | */ | 
|  | 971 | if(hw->media_type == e1000_media_type_internal_serdes || | 
|  | 972 | (E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) { | 
|  | 973 | DEBUGOUT("Looking for Link\n"); | 
|  | 974 | for(i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { | 
|  | 975 | msec_delay(10); | 
|  | 976 | status = E1000_READ_REG(hw, STATUS); | 
|  | 977 | if(status & E1000_STATUS_LU) break; | 
|  | 978 | } | 
|  | 979 | if(i == (LINK_UP_TIMEOUT / 10)) { | 
|  | 980 | DEBUGOUT("Never got a valid link from auto-neg!!!\n"); | 
|  | 981 | hw->autoneg_failed = 1; | 
|  | 982 | /* AutoNeg failed to achieve a link, so we'll call | 
|  | 983 | * e1000_check_for_link. This routine will force the link up if | 
|  | 984 | * we detect a signal. This will allow us to communicate with | 
|  | 985 | * non-autonegotiating link partners. | 
|  | 986 | */ | 
|  | 987 | ret_val = e1000_check_for_link(hw); | 
|  | 988 | if(ret_val) { | 
|  | 989 | DEBUGOUT("Error while checking for link\n"); | 
|  | 990 | return ret_val; | 
|  | 991 | } | 
|  | 992 | hw->autoneg_failed = 0; | 
|  | 993 | } else { | 
|  | 994 | hw->autoneg_failed = 0; | 
|  | 995 | DEBUGOUT("Valid Link Found\n"); | 
|  | 996 | } | 
|  | 997 | } else { | 
|  | 998 | DEBUGOUT("No Signal Detected\n"); | 
|  | 999 | } | 
|  | 1000 | return E1000_SUCCESS; | 
|  | 1001 | } | 
|  | 1002 |  | 
|  | 1003 | /****************************************************************************** | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1004 | * Make sure we have a valid PHY and change PHY mode before link setup. | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1005 | * | 
|  | 1006 | * hw - Struct containing variables accessed by shared code | 
|  | 1007 | ******************************************************************************/ | 
|  | 1008 | static int32_t | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1009 | e1000_copper_link_preconfig(struct e1000_hw *hw) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1010 | { | 
|  | 1011 | uint32_t ctrl; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1012 | int32_t ret_val; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1013 | uint16_t phy_data; | 
|  | 1014 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1015 | DEBUGFUNC("e1000_copper_link_preconfig"); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1016 |  | 
|  | 1017 | ctrl = E1000_READ_REG(hw, CTRL); | 
|  | 1018 | /* With 82543, we need to force speed and duplex on the MAC equal to what | 
|  | 1019 | * the PHY speed and duplex configuration is. In addition, we need to | 
|  | 1020 | * perform a hardware reset on the PHY to take it out of reset. | 
|  | 1021 | */ | 
|  | 1022 | if(hw->mac_type > e1000_82543) { | 
|  | 1023 | ctrl |= E1000_CTRL_SLU; | 
|  | 1024 | ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | 
|  | 1025 | E1000_WRITE_REG(hw, CTRL, ctrl); | 
|  | 1026 | } else { | 
|  | 1027 | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU); | 
|  | 1028 | E1000_WRITE_REG(hw, CTRL, ctrl); | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1029 | ret_val = e1000_phy_hw_reset(hw); | 
|  | 1030 | if(ret_val) | 
|  | 1031 | return ret_val; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1032 | } | 
|  | 1033 |  | 
|  | 1034 | /* Make sure we have a valid PHY */ | 
|  | 1035 | ret_val = e1000_detect_gig_phy(hw); | 
|  | 1036 | if(ret_val) { | 
|  | 1037 | DEBUGOUT("Error, did not detect valid phy.\n"); | 
|  | 1038 | return ret_val; | 
|  | 1039 | } | 
|  | 1040 | DEBUGOUT1("Phy ID = %x \n", hw->phy_id); | 
|  | 1041 |  | 
|  | 1042 | /* Set PHY to class A mode (if necessary) */ | 
|  | 1043 | ret_val = e1000_set_phy_mode(hw); | 
|  | 1044 | if(ret_val) | 
|  | 1045 | return ret_val; | 
|  | 1046 |  | 
|  | 1047 | if((hw->mac_type == e1000_82545_rev_3) || | 
|  | 1048 | (hw->mac_type == e1000_82546_rev_3)) { | 
|  | 1049 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | 
|  | 1050 | phy_data |= 0x00000008; | 
|  | 1051 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | 
|  | 1052 | } | 
|  | 1053 |  | 
|  | 1054 | if(hw->mac_type <= e1000_82543 || | 
|  | 1055 | hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 || | 
|  | 1056 | hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) | 
|  | 1057 | hw->phy_reset_disable = FALSE; | 
|  | 1058 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1059 | return E1000_SUCCESS; | 
|  | 1060 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1061 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1062 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1063 | /******************************************************************** | 
|  | 1064 | * Copper link setup for e1000_phy_igp series. | 
|  | 1065 | * | 
|  | 1066 | * hw - Struct containing variables accessed by shared code | 
|  | 1067 | *********************************************************************/ | 
|  | 1068 | static int32_t | 
|  | 1069 | e1000_copper_link_igp_setup(struct e1000_hw *hw) | 
|  | 1070 | { | 
|  | 1071 | uint32_t led_ctrl; | 
|  | 1072 | int32_t ret_val; | 
|  | 1073 | uint16_t phy_data; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1074 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1075 | DEBUGFUNC("e1000_copper_link_igp_setup"); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1076 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1077 | if (hw->phy_reset_disable) | 
|  | 1078 | return E1000_SUCCESS; | 
|  | 1079 |  | 
|  | 1080 | ret_val = e1000_phy_reset(hw); | 
|  | 1081 | if (ret_val) { | 
|  | 1082 | DEBUGOUT("Error Resetting the PHY\n"); | 
|  | 1083 | return ret_val; | 
|  | 1084 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1085 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1086 | /* Wait 10ms for MAC to configure PHY from eeprom settings */ | 
|  | 1087 | msec_delay(15); | 
|  | 1088 |  | 
|  | 1089 | /* Configure activity LED after PHY reset */ | 
|  | 1090 | led_ctrl = E1000_READ_REG(hw, LEDCTL); | 
|  | 1091 | led_ctrl &= IGP_ACTIVITY_LED_MASK; | 
|  | 1092 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); | 
|  | 1093 | E1000_WRITE_REG(hw, LEDCTL, led_ctrl); | 
|  | 1094 |  | 
|  | 1095 | /* disable lplu d3 during driver init */ | 
|  | 1096 | ret_val = e1000_set_d3_lplu_state(hw, FALSE); | 
|  | 1097 | if (ret_val) { | 
|  | 1098 | DEBUGOUT("Error Disabling LPLU D3\n"); | 
|  | 1099 | return ret_val; | 
|  | 1100 | } | 
|  | 1101 |  | 
|  | 1102 | /* disable lplu d0 during driver init */ | 
|  | 1103 | ret_val = e1000_set_d0_lplu_state(hw, FALSE); | 
|  | 1104 | if (ret_val) { | 
|  | 1105 | DEBUGOUT("Error Disabling LPLU D0\n"); | 
|  | 1106 | return ret_val; | 
|  | 1107 | } | 
|  | 1108 | /* Configure mdi-mdix settings */ | 
|  | 1109 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); | 
|  | 1110 | if (ret_val) | 
|  | 1111 | return ret_val; | 
|  | 1112 |  | 
|  | 1113 | if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { | 
|  | 1114 | hw->dsp_config_state = e1000_dsp_config_disabled; | 
|  | 1115 | /* Force MDI for earlier revs of the IGP PHY */ | 
|  | 1116 | phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | IGP01E1000_PSCR_FORCE_MDI_MDIX); | 
|  | 1117 | hw->mdix = 1; | 
|  | 1118 |  | 
|  | 1119 | } else { | 
|  | 1120 | hw->dsp_config_state = e1000_dsp_config_enabled; | 
|  | 1121 | phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; | 
|  | 1122 |  | 
|  | 1123 | switch (hw->mdix) { | 
|  | 1124 | case 1: | 
|  | 1125 | phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; | 
|  | 1126 | break; | 
|  | 1127 | case 2: | 
|  | 1128 | phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; | 
|  | 1129 | break; | 
|  | 1130 | case 0: | 
|  | 1131 | default: | 
|  | 1132 | phy_data |= IGP01E1000_PSCR_AUTO_MDIX; | 
|  | 1133 | break; | 
|  | 1134 | } | 
|  | 1135 | } | 
|  | 1136 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); | 
|  | 1137 | if(ret_val) | 
|  | 1138 | return ret_val; | 
|  | 1139 |  | 
|  | 1140 | /* set auto-master slave resolution settings */ | 
|  | 1141 | if(hw->autoneg) { | 
|  | 1142 | e1000_ms_type phy_ms_setting = hw->master_slave; | 
|  | 1143 |  | 
|  | 1144 | if(hw->ffe_config_state == e1000_ffe_config_active) | 
|  | 1145 | hw->ffe_config_state = e1000_ffe_config_enabled; | 
|  | 1146 |  | 
|  | 1147 | if(hw->dsp_config_state == e1000_dsp_config_activated) | 
|  | 1148 | hw->dsp_config_state = e1000_dsp_config_enabled; | 
|  | 1149 |  | 
|  | 1150 | /* when autonegotiation advertisment is only 1000Mbps then we | 
|  | 1151 | * should disable SmartSpeed and enable Auto MasterSlave | 
|  | 1152 | * resolution as hardware default. */ | 
|  | 1153 | if(hw->autoneg_advertised == ADVERTISE_1000_FULL) { | 
|  | 1154 | /* Disable SmartSpeed */ | 
|  | 1155 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1156 | if(ret_val) | 
|  | 1157 | return ret_val; | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1158 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | 
|  | 1159 | ret_val = e1000_write_phy_reg(hw, | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1160 | IGP01E1000_PHY_PORT_CONFIG, | 
|  | 1161 | phy_data); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1162 | if(ret_val) | 
|  | 1163 | return ret_val; | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1164 | /* Set auto Master/Slave resolution process */ | 
|  | 1165 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); | 
|  | 1166 | if(ret_val) | 
|  | 1167 | return ret_val; | 
|  | 1168 | phy_data &= ~CR_1000T_MS_ENABLE; | 
|  | 1169 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); | 
|  | 1170 | if(ret_val) | 
|  | 1171 | return ret_val; | 
|  | 1172 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1173 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1174 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); | 
|  | 1175 | if(ret_val) | 
|  | 1176 | return ret_val; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1177 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1178 | /* load defaults for future use */ | 
|  | 1179 | hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ? | 
|  | 1180 | ((phy_data & CR_1000T_MS_VALUE) ? | 
|  | 1181 | e1000_ms_force_master : | 
|  | 1182 | e1000_ms_force_slave) : | 
|  | 1183 | e1000_ms_auto; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1184 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1185 | switch (phy_ms_setting) { | 
|  | 1186 | case e1000_ms_force_master: | 
|  | 1187 | phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); | 
|  | 1188 | break; | 
|  | 1189 | case e1000_ms_force_slave: | 
|  | 1190 | phy_data |= CR_1000T_MS_ENABLE; | 
|  | 1191 | phy_data &= ~(CR_1000T_MS_VALUE); | 
|  | 1192 | break; | 
|  | 1193 | case e1000_ms_auto: | 
|  | 1194 | phy_data &= ~CR_1000T_MS_ENABLE; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1195 | default: | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1196 | break; | 
|  | 1197 | } | 
|  | 1198 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); | 
|  | 1199 | if(ret_val) | 
|  | 1200 | return ret_val; | 
| Malli Chilakala | 2b02893 | 2005-06-17 17:46:06 -0700 | [diff] [blame] | 1201 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1202 |  | 
| Malli Chilakala | 2b02893 | 2005-06-17 17:46:06 -0700 | [diff] [blame] | 1203 | return E1000_SUCCESS; | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1204 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1205 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1206 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1207 | /******************************************************************** | 
|  | 1208 | * Copper link setup for e1000_phy_m88 series. | 
|  | 1209 | * | 
|  | 1210 | * hw - Struct containing variables accessed by shared code | 
|  | 1211 | *********************************************************************/ | 
|  | 1212 | static int32_t | 
|  | 1213 | e1000_copper_link_mgp_setup(struct e1000_hw *hw) | 
|  | 1214 | { | 
|  | 1215 | int32_t ret_val; | 
|  | 1216 | uint16_t phy_data; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1217 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1218 | DEBUGFUNC("e1000_copper_link_mgp_setup"); | 
|  | 1219 |  | 
|  | 1220 | if(hw->phy_reset_disable) | 
|  | 1221 | return E1000_SUCCESS; | 
|  | 1222 |  | 
|  | 1223 | /* Enable CRS on TX. This must be set for half-duplex operation. */ | 
|  | 1224 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | 
|  | 1225 | if(ret_val) | 
|  | 1226 | return ret_val; | 
|  | 1227 |  | 
|  | 1228 | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; | 
|  | 1229 |  | 
|  | 1230 | /* Options: | 
|  | 1231 | *   MDI/MDI-X = 0 (default) | 
|  | 1232 | *   0 - Auto for all speeds | 
|  | 1233 | *   1 - MDI mode | 
|  | 1234 | *   2 - MDI-X mode | 
|  | 1235 | *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) | 
|  | 1236 | */ | 
|  | 1237 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; | 
|  | 1238 |  | 
|  | 1239 | switch (hw->mdix) { | 
|  | 1240 | case 1: | 
|  | 1241 | phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; | 
|  | 1242 | break; | 
|  | 1243 | case 2: | 
|  | 1244 | phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; | 
|  | 1245 | break; | 
|  | 1246 | case 3: | 
|  | 1247 | phy_data |= M88E1000_PSCR_AUTO_X_1000T; | 
|  | 1248 | break; | 
|  | 1249 | case 0: | 
|  | 1250 | default: | 
|  | 1251 | phy_data |= M88E1000_PSCR_AUTO_X_MODE; | 
|  | 1252 | break; | 
|  | 1253 | } | 
|  | 1254 |  | 
|  | 1255 | /* Options: | 
|  | 1256 | *   disable_polarity_correction = 0 (default) | 
|  | 1257 | *       Automatic Correction for Reversed Cable Polarity | 
|  | 1258 | *   0 - Disabled | 
|  | 1259 | *   1 - Enabled | 
|  | 1260 | */ | 
|  | 1261 | phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; | 
|  | 1262 | if(hw->disable_polarity_correction == 1) | 
|  | 1263 | phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; | 
|  | 1264 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | 
|  | 1265 | if(ret_val) | 
|  | 1266 | return ret_val; | 
|  | 1267 |  | 
|  | 1268 | /* Force TX_CLK in the Extended PHY Specific Control Register | 
|  | 1269 | * to 25MHz clock. | 
|  | 1270 | */ | 
|  | 1271 | ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); | 
|  | 1272 | if(ret_val) | 
|  | 1273 | return ret_val; | 
|  | 1274 |  | 
|  | 1275 | phy_data |= M88E1000_EPSCR_TX_CLK_25; | 
|  | 1276 |  | 
|  | 1277 | if (hw->phy_revision < M88E1011_I_REV_4) { | 
|  | 1278 | /* Configure Master and Slave downshift values */ | 
|  | 1279 | phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1280 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1281 | phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1282 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1283 | ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); | 
|  | 1284 | if(ret_val) | 
|  | 1285 | return ret_val; | 
|  | 1286 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1287 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1288 | /* SW Reset the PHY so all changes take effect */ | 
|  | 1289 | ret_val = e1000_phy_reset(hw); | 
|  | 1290 | if(ret_val) { | 
|  | 1291 | DEBUGOUT("Error Resetting the PHY\n"); | 
|  | 1292 | return ret_val; | 
|  | 1293 | } | 
|  | 1294 |  | 
|  | 1295 | return E1000_SUCCESS; | 
|  | 1296 | } | 
|  | 1297 |  | 
|  | 1298 | /******************************************************************** | 
|  | 1299 | * Setup auto-negotiation and flow control advertisements, | 
|  | 1300 | * and then perform auto-negotiation. | 
|  | 1301 | * | 
|  | 1302 | * hw - Struct containing variables accessed by shared code | 
|  | 1303 | *********************************************************************/ | 
|  | 1304 | static int32_t | 
|  | 1305 | e1000_copper_link_autoneg(struct e1000_hw *hw) | 
|  | 1306 | { | 
|  | 1307 | int32_t ret_val; | 
|  | 1308 | uint16_t phy_data; | 
|  | 1309 |  | 
|  | 1310 | DEBUGFUNC("e1000_copper_link_autoneg"); | 
|  | 1311 |  | 
|  | 1312 | /* Perform some bounds checking on the hw->autoneg_advertised | 
|  | 1313 | * parameter.  If this variable is zero, then set it to the default. | 
|  | 1314 | */ | 
|  | 1315 | hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT; | 
|  | 1316 |  | 
|  | 1317 | /* If autoneg_advertised is zero, we assume it was not defaulted | 
|  | 1318 | * by the calling code so we set to advertise full capability. | 
|  | 1319 | */ | 
|  | 1320 | if(hw->autoneg_advertised == 0) | 
|  | 1321 | hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; | 
|  | 1322 |  | 
|  | 1323 | DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); | 
|  | 1324 | ret_val = e1000_phy_setup_autoneg(hw); | 
|  | 1325 | if(ret_val) { | 
|  | 1326 | DEBUGOUT("Error Setting up Auto-Negotiation\n"); | 
|  | 1327 | return ret_val; | 
|  | 1328 | } | 
|  | 1329 | DEBUGOUT("Restarting Auto-Neg\n"); | 
|  | 1330 |  | 
|  | 1331 | /* Restart auto-negotiation by setting the Auto Neg Enable bit and | 
|  | 1332 | * the Auto Neg Restart bit in the PHY control register. | 
|  | 1333 | */ | 
|  | 1334 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); | 
|  | 1335 | if(ret_val) | 
|  | 1336 | return ret_val; | 
|  | 1337 |  | 
|  | 1338 | phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); | 
|  | 1339 | ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); | 
|  | 1340 | if(ret_val) | 
|  | 1341 | return ret_val; | 
|  | 1342 |  | 
|  | 1343 | /* Does the user want to wait for Auto-Neg to complete here, or | 
|  | 1344 | * check at a later time (for example, callback routine). | 
|  | 1345 | */ | 
|  | 1346 | if(hw->wait_autoneg_complete) { | 
|  | 1347 | ret_val = e1000_wait_autoneg(hw); | 
|  | 1348 | if(ret_val) { | 
|  | 1349 | DEBUGOUT("Error while waiting for autoneg to complete\n"); | 
|  | 1350 | return ret_val; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1351 | } | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1352 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1353 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1354 | hw->get_link_status = TRUE; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1355 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1356 | return E1000_SUCCESS; | 
|  | 1357 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1358 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1359 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1360 | /****************************************************************************** | 
|  | 1361 | * Config the MAC and the PHY after link is up. | 
|  | 1362 | *   1) Set up the MAC to the current PHY speed/duplex | 
|  | 1363 | *      if we are on 82543.  If we | 
|  | 1364 | *      are on newer silicon, we only need to configure | 
|  | 1365 | *      collision distance in the Transmit Control Register. | 
|  | 1366 | *   2) Set up flow control on the MAC to that established with | 
|  | 1367 | *      the link partner. | 
|  | 1368 | *   3) Config DSP to improve Gigabit link quality for some PHY revisions. | 
|  | 1369 | * | 
|  | 1370 | * hw - Struct containing variables accessed by shared code | 
|  | 1371 | ******************************************************************************/ | 
|  | 1372 | static int32_t | 
|  | 1373 | e1000_copper_link_postconfig(struct e1000_hw *hw) | 
|  | 1374 | { | 
|  | 1375 | int32_t ret_val; | 
|  | 1376 | DEBUGFUNC("e1000_copper_link_postconfig"); | 
|  | 1377 |  | 
|  | 1378 | if(hw->mac_type >= e1000_82544) { | 
|  | 1379 | e1000_config_collision_dist(hw); | 
|  | 1380 | } else { | 
|  | 1381 | ret_val = e1000_config_mac_to_phy(hw); | 
|  | 1382 | if(ret_val) { | 
|  | 1383 | DEBUGOUT("Error configuring MAC to PHY settings\n"); | 
|  | 1384 | return ret_val; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1385 | } | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1386 | } | 
|  | 1387 | ret_val = e1000_config_fc_after_link_up(hw); | 
|  | 1388 | if(ret_val) { | 
|  | 1389 | DEBUGOUT("Error Configuring Flow Control\n"); | 
|  | 1390 | return ret_val; | 
|  | 1391 | } | 
|  | 1392 |  | 
|  | 1393 | /* Config DSP to improve Giga link quality */ | 
|  | 1394 | if(hw->phy_type == e1000_phy_igp) { | 
|  | 1395 | ret_val = e1000_config_dsp_after_link_change(hw, TRUE); | 
|  | 1396 | if(ret_val) { | 
|  | 1397 | DEBUGOUT("Error Configuring DSP after link up\n"); | 
|  | 1398 | return ret_val; | 
|  | 1399 | } | 
|  | 1400 | } | 
|  | 1401 |  | 
|  | 1402 | return E1000_SUCCESS; | 
|  | 1403 | } | 
|  | 1404 |  | 
|  | 1405 | /****************************************************************************** | 
|  | 1406 | * Detects which PHY is present and setup the speed and duplex | 
|  | 1407 | * | 
|  | 1408 | * hw - Struct containing variables accessed by shared code | 
|  | 1409 | ******************************************************************************/ | 
|  | 1410 | static int32_t | 
|  | 1411 | e1000_setup_copper_link(struct e1000_hw *hw) | 
|  | 1412 | { | 
|  | 1413 | int32_t ret_val; | 
|  | 1414 | uint16_t i; | 
|  | 1415 | uint16_t phy_data; | 
|  | 1416 |  | 
|  | 1417 | DEBUGFUNC("e1000_setup_copper_link"); | 
|  | 1418 |  | 
|  | 1419 | /* Check if it is a valid PHY and set PHY mode if necessary. */ | 
|  | 1420 | ret_val = e1000_copper_link_preconfig(hw); | 
|  | 1421 | if(ret_val) | 
|  | 1422 | return ret_val; | 
|  | 1423 |  | 
|  | 1424 | if (hw->phy_type == e1000_phy_igp || | 
|  | 1425 | hw->phy_type == e1000_phy_igp_2) { | 
|  | 1426 | ret_val = e1000_copper_link_igp_setup(hw); | 
|  | 1427 | if(ret_val) | 
|  | 1428 | return ret_val; | 
|  | 1429 | } else if (hw->phy_type == e1000_phy_m88) { | 
|  | 1430 | ret_val = e1000_copper_link_mgp_setup(hw); | 
|  | 1431 | if(ret_val) | 
|  | 1432 | return ret_val; | 
|  | 1433 | } | 
|  | 1434 |  | 
|  | 1435 | if(hw->autoneg) { | 
|  | 1436 | /* Setup autoneg and flow control advertisement | 
|  | 1437 | * and perform autonegotiation */ | 
|  | 1438 | ret_val = e1000_copper_link_autoneg(hw); | 
|  | 1439 | if(ret_val) | 
|  | 1440 | return ret_val; | 
|  | 1441 | } else { | 
|  | 1442 | /* PHY will be set to 10H, 10F, 100H,or 100F | 
|  | 1443 | * depending on value from forced_speed_duplex. */ | 
|  | 1444 | DEBUGOUT("Forcing speed and duplex\n"); | 
|  | 1445 | ret_val = e1000_phy_force_speed_duplex(hw); | 
|  | 1446 | if(ret_val) { | 
|  | 1447 | DEBUGOUT("Error Forcing Speed and Duplex\n"); | 
|  | 1448 | return ret_val; | 
|  | 1449 | } | 
|  | 1450 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1451 |  | 
|  | 1452 | /* Check link status. Wait up to 100 microseconds for link to become | 
|  | 1453 | * valid. | 
|  | 1454 | */ | 
|  | 1455 | for(i = 0; i < 10; i++) { | 
|  | 1456 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | 
|  | 1457 | if(ret_val) | 
|  | 1458 | return ret_val; | 
|  | 1459 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | 
|  | 1460 | if(ret_val) | 
|  | 1461 | return ret_val; | 
|  | 1462 |  | 
|  | 1463 | if(phy_data & MII_SR_LINK_STATUS) { | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1464 | /* Config the MAC and PHY after link is up */ | 
|  | 1465 | ret_val = e1000_copper_link_postconfig(hw); | 
|  | 1466 | if(ret_val) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1467 | return ret_val; | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1468 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1469 | DEBUGOUT("Valid link established!!!\n"); | 
|  | 1470 | return E1000_SUCCESS; | 
|  | 1471 | } | 
|  | 1472 | udelay(10); | 
|  | 1473 | } | 
|  | 1474 |  | 
|  | 1475 | DEBUGOUT("Unable to establish link!!!\n"); | 
|  | 1476 | return E1000_SUCCESS; | 
|  | 1477 | } | 
|  | 1478 |  | 
|  | 1479 | /****************************************************************************** | 
|  | 1480 | * Configures PHY autoneg and flow control advertisement settings | 
|  | 1481 | * | 
|  | 1482 | * hw - Struct containing variables accessed by shared code | 
|  | 1483 | ******************************************************************************/ | 
|  | 1484 | int32_t | 
|  | 1485 | e1000_phy_setup_autoneg(struct e1000_hw *hw) | 
|  | 1486 | { | 
|  | 1487 | int32_t ret_val; | 
|  | 1488 | uint16_t mii_autoneg_adv_reg; | 
|  | 1489 | uint16_t mii_1000t_ctrl_reg; | 
|  | 1490 |  | 
|  | 1491 | DEBUGFUNC("e1000_phy_setup_autoneg"); | 
|  | 1492 |  | 
|  | 1493 | /* Read the MII Auto-Neg Advertisement Register (Address 4). */ | 
|  | 1494 | ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); | 
|  | 1495 | if(ret_val) | 
|  | 1496 | return ret_val; | 
|  | 1497 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1498 | /* Read the MII 1000Base-T Control Register (Address 9). */ | 
|  | 1499 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); | 
|  | 1500 | if(ret_val) | 
|  | 1501 | return ret_val; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1502 |  | 
|  | 1503 | /* Need to parse both autoneg_advertised and fc and set up | 
|  | 1504 | * the appropriate PHY registers.  First we will parse for | 
|  | 1505 | * autoneg_advertised software override.  Since we can advertise | 
|  | 1506 | * a plethora of combinations, we need to check each bit | 
|  | 1507 | * individually. | 
|  | 1508 | */ | 
|  | 1509 |  | 
|  | 1510 | /* First we clear all the 10/100 mb speed bits in the Auto-Neg | 
|  | 1511 | * Advertisement Register (Address 4) and the 1000 mb speed bits in | 
|  | 1512 | * the  1000Base-T Control Register (Address 9). | 
|  | 1513 | */ | 
|  | 1514 | mii_autoneg_adv_reg &= ~REG4_SPEED_MASK; | 
|  | 1515 | mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; | 
|  | 1516 |  | 
|  | 1517 | DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised); | 
|  | 1518 |  | 
|  | 1519 | /* Do we want to advertise 10 Mb Half Duplex? */ | 
|  | 1520 | if(hw->autoneg_advertised & ADVERTISE_10_HALF) { | 
|  | 1521 | DEBUGOUT("Advertise 10mb Half duplex\n"); | 
|  | 1522 | mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; | 
|  | 1523 | } | 
|  | 1524 |  | 
|  | 1525 | /* Do we want to advertise 10 Mb Full Duplex? */ | 
|  | 1526 | if(hw->autoneg_advertised & ADVERTISE_10_FULL) { | 
|  | 1527 | DEBUGOUT("Advertise 10mb Full duplex\n"); | 
|  | 1528 | mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; | 
|  | 1529 | } | 
|  | 1530 |  | 
|  | 1531 | /* Do we want to advertise 100 Mb Half Duplex? */ | 
|  | 1532 | if(hw->autoneg_advertised & ADVERTISE_100_HALF) { | 
|  | 1533 | DEBUGOUT("Advertise 100mb Half duplex\n"); | 
|  | 1534 | mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; | 
|  | 1535 | } | 
|  | 1536 |  | 
|  | 1537 | /* Do we want to advertise 100 Mb Full Duplex? */ | 
|  | 1538 | if(hw->autoneg_advertised & ADVERTISE_100_FULL) { | 
|  | 1539 | DEBUGOUT("Advertise 100mb Full duplex\n"); | 
|  | 1540 | mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; | 
|  | 1541 | } | 
|  | 1542 |  | 
|  | 1543 | /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ | 
|  | 1544 | if(hw->autoneg_advertised & ADVERTISE_1000_HALF) { | 
|  | 1545 | DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n"); | 
|  | 1546 | } | 
|  | 1547 |  | 
|  | 1548 | /* Do we want to advertise 1000 Mb Full Duplex? */ | 
|  | 1549 | if(hw->autoneg_advertised & ADVERTISE_1000_FULL) { | 
|  | 1550 | DEBUGOUT("Advertise 1000mb Full duplex\n"); | 
|  | 1551 | mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; | 
|  | 1552 | } | 
|  | 1553 |  | 
|  | 1554 | /* Check for a software override of the flow control settings, and | 
|  | 1555 | * setup the PHY advertisement registers accordingly.  If | 
|  | 1556 | * auto-negotiation is enabled, then software will have to set the | 
|  | 1557 | * "PAUSE" bits to the correct value in the Auto-Negotiation | 
|  | 1558 | * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation. | 
|  | 1559 | * | 
|  | 1560 | * The possible values of the "fc" parameter are: | 
|  | 1561 | *      0:  Flow control is completely disabled | 
|  | 1562 | *      1:  Rx flow control is enabled (we can receive pause frames | 
|  | 1563 | *          but not send pause frames). | 
|  | 1564 | *      2:  Tx flow control is enabled (we can send pause frames | 
|  | 1565 | *          but we do not support receiving pause frames). | 
|  | 1566 | *      3:  Both Rx and TX flow control (symmetric) are enabled. | 
|  | 1567 | *  other:  No software override.  The flow control configuration | 
|  | 1568 | *          in the EEPROM is used. | 
|  | 1569 | */ | 
|  | 1570 | switch (hw->fc) { | 
|  | 1571 | case e1000_fc_none: /* 0 */ | 
|  | 1572 | /* Flow control (RX & TX) is completely disabled by a | 
|  | 1573 | * software over-ride. | 
|  | 1574 | */ | 
|  | 1575 | mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | 
|  | 1576 | break; | 
|  | 1577 | case e1000_fc_rx_pause: /* 1 */ | 
|  | 1578 | /* RX Flow control is enabled, and TX Flow control is | 
|  | 1579 | * disabled, by a software over-ride. | 
|  | 1580 | */ | 
|  | 1581 | /* Since there really isn't a way to advertise that we are | 
|  | 1582 | * capable of RX Pause ONLY, we will advertise that we | 
|  | 1583 | * support both symmetric and asymmetric RX PAUSE.  Later | 
|  | 1584 | * (in e1000_config_fc_after_link_up) we will disable the | 
|  | 1585 | *hw's ability to send PAUSE frames. | 
|  | 1586 | */ | 
|  | 1587 | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | 
|  | 1588 | break; | 
|  | 1589 | case e1000_fc_tx_pause: /* 2 */ | 
|  | 1590 | /* TX Flow control is enabled, and RX Flow control is | 
|  | 1591 | * disabled, by a software over-ride. | 
|  | 1592 | */ | 
|  | 1593 | mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; | 
|  | 1594 | mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; | 
|  | 1595 | break; | 
|  | 1596 | case e1000_fc_full: /* 3 */ | 
|  | 1597 | /* Flow control (both RX and TX) is enabled by a software | 
|  | 1598 | * over-ride. | 
|  | 1599 | */ | 
|  | 1600 | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | 
|  | 1601 | break; | 
|  | 1602 | default: | 
|  | 1603 | DEBUGOUT("Flow control param set incorrectly\n"); | 
|  | 1604 | return -E1000_ERR_CONFIG; | 
|  | 1605 | } | 
|  | 1606 |  | 
|  | 1607 | ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); | 
|  | 1608 | if(ret_val) | 
|  | 1609 | return ret_val; | 
|  | 1610 |  | 
|  | 1611 | DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); | 
|  | 1612 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1613 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1614 | if(ret_val) | 
|  | 1615 | return ret_val; | 
|  | 1616 |  | 
|  | 1617 | return E1000_SUCCESS; | 
|  | 1618 | } | 
|  | 1619 |  | 
|  | 1620 | /****************************************************************************** | 
|  | 1621 | * Force PHY speed and duplex settings to hw->forced_speed_duplex | 
|  | 1622 | * | 
|  | 1623 | * hw - Struct containing variables accessed by shared code | 
|  | 1624 | ******************************************************************************/ | 
|  | 1625 | static int32_t | 
|  | 1626 | e1000_phy_force_speed_duplex(struct e1000_hw *hw) | 
|  | 1627 | { | 
|  | 1628 | uint32_t ctrl; | 
|  | 1629 | int32_t ret_val; | 
|  | 1630 | uint16_t mii_ctrl_reg; | 
|  | 1631 | uint16_t mii_status_reg; | 
|  | 1632 | uint16_t phy_data; | 
|  | 1633 | uint16_t i; | 
|  | 1634 |  | 
|  | 1635 | DEBUGFUNC("e1000_phy_force_speed_duplex"); | 
|  | 1636 |  | 
|  | 1637 | /* Turn off Flow control if we are forcing speed and duplex. */ | 
|  | 1638 | hw->fc = e1000_fc_none; | 
|  | 1639 |  | 
|  | 1640 | DEBUGOUT1("hw->fc = %d\n", hw->fc); | 
|  | 1641 |  | 
|  | 1642 | /* Read the Device Control Register. */ | 
|  | 1643 | ctrl = E1000_READ_REG(hw, CTRL); | 
|  | 1644 |  | 
|  | 1645 | /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */ | 
|  | 1646 | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | 
|  | 1647 | ctrl &= ~(DEVICE_SPEED_MASK); | 
|  | 1648 |  | 
|  | 1649 | /* Clear the Auto Speed Detect Enable bit. */ | 
|  | 1650 | ctrl &= ~E1000_CTRL_ASDE; | 
|  | 1651 |  | 
|  | 1652 | /* Read the MII Control Register. */ | 
|  | 1653 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg); | 
|  | 1654 | if(ret_val) | 
|  | 1655 | return ret_val; | 
|  | 1656 |  | 
|  | 1657 | /* We need to disable autoneg in order to force link and duplex. */ | 
|  | 1658 |  | 
|  | 1659 | mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN; | 
|  | 1660 |  | 
|  | 1661 | /* Are we forcing Full or Half Duplex? */ | 
|  | 1662 | if(hw->forced_speed_duplex == e1000_100_full || | 
|  | 1663 | hw->forced_speed_duplex == e1000_10_full) { | 
|  | 1664 | /* We want to force full duplex so we SET the full duplex bits in the | 
|  | 1665 | * Device and MII Control Registers. | 
|  | 1666 | */ | 
|  | 1667 | ctrl |= E1000_CTRL_FD; | 
|  | 1668 | mii_ctrl_reg |= MII_CR_FULL_DUPLEX; | 
|  | 1669 | DEBUGOUT("Full Duplex\n"); | 
|  | 1670 | } else { | 
|  | 1671 | /* We want to force half duplex so we CLEAR the full duplex bits in | 
|  | 1672 | * the Device and MII Control Registers. | 
|  | 1673 | */ | 
|  | 1674 | ctrl &= ~E1000_CTRL_FD; | 
|  | 1675 | mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX; | 
|  | 1676 | DEBUGOUT("Half Duplex\n"); | 
|  | 1677 | } | 
|  | 1678 |  | 
|  | 1679 | /* Are we forcing 100Mbps??? */ | 
|  | 1680 | if(hw->forced_speed_duplex == e1000_100_full || | 
|  | 1681 | hw->forced_speed_duplex == e1000_100_half) { | 
|  | 1682 | /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */ | 
|  | 1683 | ctrl |= E1000_CTRL_SPD_100; | 
|  | 1684 | mii_ctrl_reg |= MII_CR_SPEED_100; | 
|  | 1685 | mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); | 
|  | 1686 | DEBUGOUT("Forcing 100mb "); | 
|  | 1687 | } else { | 
|  | 1688 | /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */ | 
|  | 1689 | ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); | 
|  | 1690 | mii_ctrl_reg |= MII_CR_SPEED_10; | 
|  | 1691 | mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); | 
|  | 1692 | DEBUGOUT("Forcing 10mb "); | 
|  | 1693 | } | 
|  | 1694 |  | 
|  | 1695 | e1000_config_collision_dist(hw); | 
|  | 1696 |  | 
|  | 1697 | /* Write the configured values back to the Device Control Reg. */ | 
|  | 1698 | E1000_WRITE_REG(hw, CTRL, ctrl); | 
|  | 1699 |  | 
|  | 1700 | if (hw->phy_type == e1000_phy_m88) { | 
|  | 1701 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | 
|  | 1702 | if(ret_val) | 
|  | 1703 | return ret_val; | 
|  | 1704 |  | 
|  | 1705 | /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI | 
|  | 1706 | * forced whenever speed are duplex are forced. | 
|  | 1707 | */ | 
|  | 1708 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; | 
|  | 1709 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | 
|  | 1710 | if(ret_val) | 
|  | 1711 | return ret_val; | 
|  | 1712 |  | 
|  | 1713 | DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data); | 
|  | 1714 |  | 
|  | 1715 | /* Need to reset the PHY or these changes will be ignored */ | 
|  | 1716 | mii_ctrl_reg |= MII_CR_RESET; | 
|  | 1717 | } else { | 
|  | 1718 | /* Clear Auto-Crossover to force MDI manually.  IGP requires MDI | 
|  | 1719 | * forced whenever speed or duplex are forced. | 
|  | 1720 | */ | 
|  | 1721 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); | 
|  | 1722 | if(ret_val) | 
|  | 1723 | return ret_val; | 
|  | 1724 |  | 
|  | 1725 | phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; | 
|  | 1726 | phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; | 
|  | 1727 |  | 
|  | 1728 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); | 
|  | 1729 | if(ret_val) | 
|  | 1730 | return ret_val; | 
|  | 1731 | } | 
|  | 1732 |  | 
|  | 1733 | /* Write back the modified PHY MII control register. */ | 
|  | 1734 | ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg); | 
|  | 1735 | if(ret_val) | 
|  | 1736 | return ret_val; | 
|  | 1737 |  | 
|  | 1738 | udelay(1); | 
|  | 1739 |  | 
|  | 1740 | /* The wait_autoneg_complete flag may be a little misleading here. | 
|  | 1741 | * Since we are forcing speed and duplex, Auto-Neg is not enabled. | 
|  | 1742 | * But we do want to delay for a period while forcing only so we | 
|  | 1743 | * don't generate false No Link messages.  So we will wait here | 
|  | 1744 | * only if the user has set wait_autoneg_complete to 1, which is | 
|  | 1745 | * the default. | 
|  | 1746 | */ | 
|  | 1747 | if(hw->wait_autoneg_complete) { | 
|  | 1748 | /* We will wait for autoneg to complete. */ | 
|  | 1749 | DEBUGOUT("Waiting for forced speed/duplex link.\n"); | 
|  | 1750 | mii_status_reg = 0; | 
|  | 1751 |  | 
|  | 1752 | /* We will wait for autoneg to complete or 4.5 seconds to expire. */ | 
|  | 1753 | for(i = PHY_FORCE_TIME; i > 0; i--) { | 
|  | 1754 | /* Read the MII Status Register and wait for Auto-Neg Complete bit | 
|  | 1755 | * to be set. | 
|  | 1756 | */ | 
|  | 1757 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 
|  | 1758 | if(ret_val) | 
|  | 1759 | return ret_val; | 
|  | 1760 |  | 
|  | 1761 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 
|  | 1762 | if(ret_val) | 
|  | 1763 | return ret_val; | 
|  | 1764 |  | 
|  | 1765 | if(mii_status_reg & MII_SR_LINK_STATUS) break; | 
|  | 1766 | msec_delay(100); | 
|  | 1767 | } | 
|  | 1768 | if((i == 0) && | 
|  | 1769 | (hw->phy_type == e1000_phy_m88)) { | 
|  | 1770 | /* We didn't get link.  Reset the DSP and wait again for link. */ | 
|  | 1771 | ret_val = e1000_phy_reset_dsp(hw); | 
|  | 1772 | if(ret_val) { | 
|  | 1773 | DEBUGOUT("Error Resetting PHY DSP\n"); | 
|  | 1774 | return ret_val; | 
|  | 1775 | } | 
|  | 1776 | } | 
|  | 1777 | /* This loop will early-out if the link condition has been met.  */ | 
|  | 1778 | for(i = PHY_FORCE_TIME; i > 0; i--) { | 
|  | 1779 | if(mii_status_reg & MII_SR_LINK_STATUS) break; | 
|  | 1780 | msec_delay(100); | 
|  | 1781 | /* Read the MII Status Register and wait for Auto-Neg Complete bit | 
|  | 1782 | * to be set. | 
|  | 1783 | */ | 
|  | 1784 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 
|  | 1785 | if(ret_val) | 
|  | 1786 | return ret_val; | 
|  | 1787 |  | 
|  | 1788 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 
|  | 1789 | if(ret_val) | 
|  | 1790 | return ret_val; | 
|  | 1791 | } | 
|  | 1792 | } | 
|  | 1793 |  | 
|  | 1794 | if (hw->phy_type == e1000_phy_m88) { | 
|  | 1795 | /* Because we reset the PHY above, we need to re-force TX_CLK in the | 
|  | 1796 | * Extended PHY Specific Control Register to 25MHz clock.  This value | 
|  | 1797 | * defaults back to a 2.5MHz clock when the PHY is reset. | 
|  | 1798 | */ | 
|  | 1799 | ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); | 
|  | 1800 | if(ret_val) | 
|  | 1801 | return ret_val; | 
|  | 1802 |  | 
|  | 1803 | phy_data |= M88E1000_EPSCR_TX_CLK_25; | 
|  | 1804 | ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); | 
|  | 1805 | if(ret_val) | 
|  | 1806 | return ret_val; | 
|  | 1807 |  | 
|  | 1808 | /* In addition, because of the s/w reset above, we need to enable CRS on | 
|  | 1809 | * TX.  This must be set for both full and half duplex operation. | 
|  | 1810 | */ | 
|  | 1811 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | 
|  | 1812 | if(ret_val) | 
|  | 1813 | return ret_val; | 
|  | 1814 |  | 
|  | 1815 | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; | 
|  | 1816 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | 
|  | 1817 | if(ret_val) | 
|  | 1818 | return ret_val; | 
|  | 1819 |  | 
|  | 1820 | if((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) && | 
|  | 1821 | (!hw->autoneg) && | 
|  | 1822 | (hw->forced_speed_duplex == e1000_10_full || | 
|  | 1823 | hw->forced_speed_duplex == e1000_10_half)) { | 
|  | 1824 | ret_val = e1000_polarity_reversal_workaround(hw); | 
|  | 1825 | if(ret_val) | 
|  | 1826 | return ret_val; | 
|  | 1827 | } | 
|  | 1828 | } | 
|  | 1829 | return E1000_SUCCESS; | 
|  | 1830 | } | 
|  | 1831 |  | 
|  | 1832 | /****************************************************************************** | 
|  | 1833 | * Sets the collision distance in the Transmit Control register | 
|  | 1834 | * | 
|  | 1835 | * hw - Struct containing variables accessed by shared code | 
|  | 1836 | * | 
|  | 1837 | * Link should have been established previously. Reads the speed and duplex | 
|  | 1838 | * information from the Device Status register. | 
|  | 1839 | ******************************************************************************/ | 
|  | 1840 | void | 
|  | 1841 | e1000_config_collision_dist(struct e1000_hw *hw) | 
|  | 1842 | { | 
|  | 1843 | uint32_t tctl; | 
|  | 1844 |  | 
|  | 1845 | DEBUGFUNC("e1000_config_collision_dist"); | 
|  | 1846 |  | 
|  | 1847 | tctl = E1000_READ_REG(hw, TCTL); | 
|  | 1848 |  | 
|  | 1849 | tctl &= ~E1000_TCTL_COLD; | 
|  | 1850 | tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; | 
|  | 1851 |  | 
|  | 1852 | E1000_WRITE_REG(hw, TCTL, tctl); | 
|  | 1853 | E1000_WRITE_FLUSH(hw); | 
|  | 1854 | } | 
|  | 1855 |  | 
|  | 1856 | /****************************************************************************** | 
|  | 1857 | * Sets MAC speed and duplex settings to reflect the those in the PHY | 
|  | 1858 | * | 
|  | 1859 | * hw - Struct containing variables accessed by shared code | 
|  | 1860 | * mii_reg - data to write to the MII control register | 
|  | 1861 | * | 
|  | 1862 | * The contents of the PHY register containing the needed information need to | 
|  | 1863 | * be passed in. | 
|  | 1864 | ******************************************************************************/ | 
|  | 1865 | static int32_t | 
|  | 1866 | e1000_config_mac_to_phy(struct e1000_hw *hw) | 
|  | 1867 | { | 
|  | 1868 | uint32_t ctrl; | 
|  | 1869 | int32_t ret_val; | 
|  | 1870 | uint16_t phy_data; | 
|  | 1871 |  | 
|  | 1872 | DEBUGFUNC("e1000_config_mac_to_phy"); | 
|  | 1873 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1874 | /* 82544 or newer MAC, Auto Speed Detection takes care of | 
|  | 1875 | * MAC speed/duplex configuration.*/ | 
|  | 1876 | if (hw->mac_type >= e1000_82544) | 
|  | 1877 | return E1000_SUCCESS; | 
|  | 1878 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1879 | /* Read the Device Control Register and set the bits to Force Speed | 
|  | 1880 | * and Duplex. | 
|  | 1881 | */ | 
|  | 1882 | ctrl = E1000_READ_REG(hw, CTRL); | 
|  | 1883 | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | 
|  | 1884 | ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS); | 
|  | 1885 |  | 
|  | 1886 | /* Set up duplex in the Device Control and Transmit Control | 
|  | 1887 | * registers depending on negotiated values. | 
|  | 1888 | */ | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1889 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); | 
|  | 1890 | if(ret_val) | 
|  | 1891 | return ret_val; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1892 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1893 | if(phy_data & M88E1000_PSSR_DPLX) | 
|  | 1894 | ctrl |= E1000_CTRL_FD; | 
|  | 1895 | else | 
|  | 1896 | ctrl &= ~E1000_CTRL_FD; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1897 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1898 | e1000_config_collision_dist(hw); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1899 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1900 | /* Set up speed in the Device Control register depending on | 
|  | 1901 | * negotiated values. | 
|  | 1902 | */ | 
|  | 1903 | if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) | 
|  | 1904 | ctrl |= E1000_CTRL_SPD_1000; | 
|  | 1905 | else if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) | 
|  | 1906 | ctrl |= E1000_CTRL_SPD_100; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1907 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1908 | /* Write the configured values back to the Device Control Reg. */ | 
|  | 1909 | E1000_WRITE_REG(hw, CTRL, ctrl); | 
|  | 1910 | return E1000_SUCCESS; | 
|  | 1911 | } | 
|  | 1912 |  | 
|  | 1913 | /****************************************************************************** | 
|  | 1914 | * Forces the MAC's flow control settings. | 
|  | 1915 | * | 
|  | 1916 | * hw - Struct containing variables accessed by shared code | 
|  | 1917 | * | 
|  | 1918 | * Sets the TFCE and RFCE bits in the device control register to reflect | 
|  | 1919 | * the adapter settings. TFCE and RFCE need to be explicitly set by | 
|  | 1920 | * software when a Copper PHY is used because autonegotiation is managed | 
|  | 1921 | * by the PHY rather than the MAC. Software must also configure these | 
|  | 1922 | * bits when link is forced on a fiber connection. | 
|  | 1923 | *****************************************************************************/ | 
|  | 1924 | int32_t | 
|  | 1925 | e1000_force_mac_fc(struct e1000_hw *hw) | 
|  | 1926 | { | 
|  | 1927 | uint32_t ctrl; | 
|  | 1928 |  | 
|  | 1929 | DEBUGFUNC("e1000_force_mac_fc"); | 
|  | 1930 |  | 
|  | 1931 | /* Get the current configuration of the Device Control Register */ | 
|  | 1932 | ctrl = E1000_READ_REG(hw, CTRL); | 
|  | 1933 |  | 
|  | 1934 | /* Because we didn't get link via the internal auto-negotiation | 
|  | 1935 | * mechanism (we either forced link or we got link via PHY | 
|  | 1936 | * auto-neg), we have to manually enable/disable transmit an | 
|  | 1937 | * receive flow control. | 
|  | 1938 | * | 
|  | 1939 | * The "Case" statement below enables/disable flow control | 
|  | 1940 | * according to the "hw->fc" parameter. | 
|  | 1941 | * | 
|  | 1942 | * The possible values of the "fc" parameter are: | 
|  | 1943 | *      0:  Flow control is completely disabled | 
|  | 1944 | *      1:  Rx flow control is enabled (we can receive pause | 
|  | 1945 | *          frames but not send pause frames). | 
|  | 1946 | *      2:  Tx flow control is enabled (we can send pause frames | 
|  | 1947 | *          frames but we do not receive pause frames). | 
|  | 1948 | *      3:  Both Rx and TX flow control (symmetric) is enabled. | 
|  | 1949 | *  other:  No other values should be possible at this point. | 
|  | 1950 | */ | 
|  | 1951 |  | 
|  | 1952 | switch (hw->fc) { | 
|  | 1953 | case e1000_fc_none: | 
|  | 1954 | ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); | 
|  | 1955 | break; | 
|  | 1956 | case e1000_fc_rx_pause: | 
|  | 1957 | ctrl &= (~E1000_CTRL_TFCE); | 
|  | 1958 | ctrl |= E1000_CTRL_RFCE; | 
|  | 1959 | break; | 
|  | 1960 | case e1000_fc_tx_pause: | 
|  | 1961 | ctrl &= (~E1000_CTRL_RFCE); | 
|  | 1962 | ctrl |= E1000_CTRL_TFCE; | 
|  | 1963 | break; | 
|  | 1964 | case e1000_fc_full: | 
|  | 1965 | ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); | 
|  | 1966 | break; | 
|  | 1967 | default: | 
|  | 1968 | DEBUGOUT("Flow control param set incorrectly\n"); | 
|  | 1969 | return -E1000_ERR_CONFIG; | 
|  | 1970 | } | 
|  | 1971 |  | 
|  | 1972 | /* Disable TX Flow Control for 82542 (rev 2.0) */ | 
|  | 1973 | if(hw->mac_type == e1000_82542_rev2_0) | 
|  | 1974 | ctrl &= (~E1000_CTRL_TFCE); | 
|  | 1975 |  | 
|  | 1976 | E1000_WRITE_REG(hw, CTRL, ctrl); | 
|  | 1977 | return E1000_SUCCESS; | 
|  | 1978 | } | 
|  | 1979 |  | 
|  | 1980 | /****************************************************************************** | 
|  | 1981 | * Configures flow control settings after link is established | 
|  | 1982 | * | 
|  | 1983 | * hw - Struct containing variables accessed by shared code | 
|  | 1984 | * | 
|  | 1985 | * Should be called immediately after a valid link has been established. | 
|  | 1986 | * Forces MAC flow control settings if link was forced. When in MII/GMII mode | 
|  | 1987 | * and autonegotiation is enabled, the MAC flow control settings will be set | 
|  | 1988 | * based on the flow control negotiated by the PHY. In TBI mode, the TFCE | 
|  | 1989 | * and RFCE bits will be automaticaly set to the negotiated flow control mode. | 
|  | 1990 | *****************************************************************************/ | 
|  | 1991 | int32_t | 
|  | 1992 | e1000_config_fc_after_link_up(struct e1000_hw *hw) | 
|  | 1993 | { | 
|  | 1994 | int32_t ret_val; | 
|  | 1995 | uint16_t mii_status_reg; | 
|  | 1996 | uint16_t mii_nway_adv_reg; | 
|  | 1997 | uint16_t mii_nway_lp_ability_reg; | 
|  | 1998 | uint16_t speed; | 
|  | 1999 | uint16_t duplex; | 
|  | 2000 |  | 
|  | 2001 | DEBUGFUNC("e1000_config_fc_after_link_up"); | 
|  | 2002 |  | 
|  | 2003 | /* Check for the case where we have fiber media and auto-neg failed | 
|  | 2004 | * so we had to force link.  In this case, we need to force the | 
|  | 2005 | * configuration of the MAC to match the "fc" parameter. | 
|  | 2006 | */ | 
|  | 2007 | if(((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) || | 
|  | 2008 | ((hw->media_type == e1000_media_type_internal_serdes) && (hw->autoneg_failed)) || | 
|  | 2009 | ((hw->media_type == e1000_media_type_copper) && (!hw->autoneg))) { | 
|  | 2010 | ret_val = e1000_force_mac_fc(hw); | 
|  | 2011 | if(ret_val) { | 
|  | 2012 | DEBUGOUT("Error forcing flow control settings\n"); | 
|  | 2013 | return ret_val; | 
|  | 2014 | } | 
|  | 2015 | } | 
|  | 2016 |  | 
|  | 2017 | /* Check for the case where we have copper media and auto-neg is | 
|  | 2018 | * enabled.  In this case, we need to check and see if Auto-Neg | 
|  | 2019 | * has completed, and if so, how the PHY and link partner has | 
|  | 2020 | * flow control configured. | 
|  | 2021 | */ | 
|  | 2022 | if((hw->media_type == e1000_media_type_copper) && hw->autoneg) { | 
|  | 2023 | /* Read the MII Status Register and check to see if AutoNeg | 
|  | 2024 | * has completed.  We read this twice because this reg has | 
|  | 2025 | * some "sticky" (latched) bits. | 
|  | 2026 | */ | 
|  | 2027 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 
|  | 2028 | if(ret_val) | 
|  | 2029 | return ret_val; | 
|  | 2030 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 
|  | 2031 | if(ret_val) | 
|  | 2032 | return ret_val; | 
|  | 2033 |  | 
|  | 2034 | if(mii_status_reg & MII_SR_AUTONEG_COMPLETE) { | 
|  | 2035 | /* The AutoNeg process has completed, so we now need to | 
|  | 2036 | * read both the Auto Negotiation Advertisement Register | 
|  | 2037 | * (Address 4) and the Auto_Negotiation Base Page Ability | 
|  | 2038 | * Register (Address 5) to determine how flow control was | 
|  | 2039 | * negotiated. | 
|  | 2040 | */ | 
|  | 2041 | ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, | 
|  | 2042 | &mii_nway_adv_reg); | 
|  | 2043 | if(ret_val) | 
|  | 2044 | return ret_val; | 
|  | 2045 | ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, | 
|  | 2046 | &mii_nway_lp_ability_reg); | 
|  | 2047 | if(ret_val) | 
|  | 2048 | return ret_val; | 
|  | 2049 |  | 
|  | 2050 | /* Two bits in the Auto Negotiation Advertisement Register | 
|  | 2051 | * (Address 4) and two bits in the Auto Negotiation Base | 
|  | 2052 | * Page Ability Register (Address 5) determine flow control | 
|  | 2053 | * for both the PHY and the link partner.  The following | 
|  | 2054 | * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, | 
|  | 2055 | * 1999, describes these PAUSE resolution bits and how flow | 
|  | 2056 | * control is determined based upon these settings. | 
|  | 2057 | * NOTE:  DC = Don't Care | 
|  | 2058 | * | 
|  | 2059 | *   LOCAL DEVICE  |   LINK PARTNER | 
|  | 2060 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution | 
|  | 2061 | *-------|---------|-------|---------|-------------------- | 
|  | 2062 | *   0   |    0    |  DC   |   DC    | e1000_fc_none | 
|  | 2063 | *   0   |    1    |   0   |   DC    | e1000_fc_none | 
|  | 2064 | *   0   |    1    |   1   |    0    | e1000_fc_none | 
|  | 2065 | *   0   |    1    |   1   |    1    | e1000_fc_tx_pause | 
|  | 2066 | *   1   |    0    |   0   |   DC    | e1000_fc_none | 
|  | 2067 | *   1   |   DC    |   1   |   DC    | e1000_fc_full | 
|  | 2068 | *   1   |    1    |   0   |    0    | e1000_fc_none | 
|  | 2069 | *   1   |    1    |   0   |    1    | e1000_fc_rx_pause | 
|  | 2070 | * | 
|  | 2071 | */ | 
|  | 2072 | /* Are both PAUSE bits set to 1?  If so, this implies | 
|  | 2073 | * Symmetric Flow Control is enabled at both ends.  The | 
|  | 2074 | * ASM_DIR bits are irrelevant per the spec. | 
|  | 2075 | * | 
|  | 2076 | * For Symmetric Flow Control: | 
|  | 2077 | * | 
|  | 2078 | *   LOCAL DEVICE  |   LINK PARTNER | 
|  | 2079 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | 
|  | 2080 | *-------|---------|-------|---------|-------------------- | 
|  | 2081 | *   1   |   DC    |   1   |   DC    | e1000_fc_full | 
|  | 2082 | * | 
|  | 2083 | */ | 
|  | 2084 | if((mii_nway_adv_reg & NWAY_AR_PAUSE) && | 
|  | 2085 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { | 
|  | 2086 | /* Now we need to check if the user selected RX ONLY | 
|  | 2087 | * of pause frames.  In this case, we had to advertise | 
|  | 2088 | * FULL flow control because we could not advertise RX | 
|  | 2089 | * ONLY. Hence, we must now check to see if we need to | 
|  | 2090 | * turn OFF  the TRANSMISSION of PAUSE frames. | 
|  | 2091 | */ | 
|  | 2092 | if(hw->original_fc == e1000_fc_full) { | 
|  | 2093 | hw->fc = e1000_fc_full; | 
|  | 2094 | DEBUGOUT("Flow Control = FULL.\r\n"); | 
|  | 2095 | } else { | 
|  | 2096 | hw->fc = e1000_fc_rx_pause; | 
|  | 2097 | DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n"); | 
|  | 2098 | } | 
|  | 2099 | } | 
|  | 2100 | /* For receiving PAUSE frames ONLY. | 
|  | 2101 | * | 
|  | 2102 | *   LOCAL DEVICE  |   LINK PARTNER | 
|  | 2103 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | 
|  | 2104 | *-------|---------|-------|---------|-------------------- | 
|  | 2105 | *   0   |    1    |   1   |    1    | e1000_fc_tx_pause | 
|  | 2106 | * | 
|  | 2107 | */ | 
|  | 2108 | else if(!(mii_nway_adv_reg & NWAY_AR_PAUSE) && | 
|  | 2109 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && | 
|  | 2110 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && | 
|  | 2111 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { | 
|  | 2112 | hw->fc = e1000_fc_tx_pause; | 
|  | 2113 | DEBUGOUT("Flow Control = TX PAUSE frames only.\r\n"); | 
|  | 2114 | } | 
|  | 2115 | /* For transmitting PAUSE frames ONLY. | 
|  | 2116 | * | 
|  | 2117 | *   LOCAL DEVICE  |   LINK PARTNER | 
|  | 2118 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | 
|  | 2119 | *-------|---------|-------|---------|-------------------- | 
|  | 2120 | *   1   |    1    |   0   |    1    | e1000_fc_rx_pause | 
|  | 2121 | * | 
|  | 2122 | */ | 
|  | 2123 | else if((mii_nway_adv_reg & NWAY_AR_PAUSE) && | 
|  | 2124 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && | 
|  | 2125 | !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && | 
|  | 2126 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { | 
|  | 2127 | hw->fc = e1000_fc_rx_pause; | 
|  | 2128 | DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n"); | 
|  | 2129 | } | 
|  | 2130 | /* Per the IEEE spec, at this point flow control should be | 
|  | 2131 | * disabled.  However, we want to consider that we could | 
|  | 2132 | * be connected to a legacy switch that doesn't advertise | 
|  | 2133 | * desired flow control, but can be forced on the link | 
|  | 2134 | * partner.  So if we advertised no flow control, that is | 
|  | 2135 | * what we will resolve to.  If we advertised some kind of | 
|  | 2136 | * receive capability (Rx Pause Only or Full Flow Control) | 
|  | 2137 | * and the link partner advertised none, we will configure | 
|  | 2138 | * ourselves to enable Rx Flow Control only.  We can do | 
|  | 2139 | * this safely for two reasons:  If the link partner really | 
|  | 2140 | * didn't want flow control enabled, and we enable Rx, no | 
|  | 2141 | * harm done since we won't be receiving any PAUSE frames | 
|  | 2142 | * anyway.  If the intent on the link partner was to have | 
|  | 2143 | * flow control enabled, then by us enabling RX only, we | 
|  | 2144 | * can at least receive pause frames and process them. | 
|  | 2145 | * This is a good idea because in most cases, since we are | 
|  | 2146 | * predominantly a server NIC, more times than not we will | 
|  | 2147 | * be asked to delay transmission of packets than asking | 
|  | 2148 | * our link partner to pause transmission of frames. | 
|  | 2149 | */ | 
|  | 2150 | else if((hw->original_fc == e1000_fc_none || | 
|  | 2151 | hw->original_fc == e1000_fc_tx_pause) || | 
|  | 2152 | hw->fc_strict_ieee) { | 
|  | 2153 | hw->fc = e1000_fc_none; | 
|  | 2154 | DEBUGOUT("Flow Control = NONE.\r\n"); | 
|  | 2155 | } else { | 
|  | 2156 | hw->fc = e1000_fc_rx_pause; | 
|  | 2157 | DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n"); | 
|  | 2158 | } | 
|  | 2159 |  | 
|  | 2160 | /* Now we need to do one last check...  If we auto- | 
|  | 2161 | * negotiated to HALF DUPLEX, flow control should not be | 
|  | 2162 | * enabled per IEEE 802.3 spec. | 
|  | 2163 | */ | 
|  | 2164 | ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); | 
|  | 2165 | if(ret_val) { | 
|  | 2166 | DEBUGOUT("Error getting link speed and duplex\n"); | 
|  | 2167 | return ret_val; | 
|  | 2168 | } | 
|  | 2169 |  | 
|  | 2170 | if(duplex == HALF_DUPLEX) | 
|  | 2171 | hw->fc = e1000_fc_none; | 
|  | 2172 |  | 
|  | 2173 | /* Now we call a subroutine to actually force the MAC | 
|  | 2174 | * controller to use the correct flow control settings. | 
|  | 2175 | */ | 
|  | 2176 | ret_val = e1000_force_mac_fc(hw); | 
|  | 2177 | if(ret_val) { | 
|  | 2178 | DEBUGOUT("Error forcing flow control settings\n"); | 
|  | 2179 | return ret_val; | 
|  | 2180 | } | 
|  | 2181 | } else { | 
|  | 2182 | DEBUGOUT("Copper PHY and Auto Neg has not completed.\r\n"); | 
|  | 2183 | } | 
|  | 2184 | } | 
|  | 2185 | return E1000_SUCCESS; | 
|  | 2186 | } | 
|  | 2187 |  | 
|  | 2188 | /****************************************************************************** | 
|  | 2189 | * Checks to see if the link status of the hardware has changed. | 
|  | 2190 | * | 
|  | 2191 | * hw - Struct containing variables accessed by shared code | 
|  | 2192 | * | 
|  | 2193 | * Called by any function that needs to check the link status of the adapter. | 
|  | 2194 | *****************************************************************************/ | 
|  | 2195 | int32_t | 
|  | 2196 | e1000_check_for_link(struct e1000_hw *hw) | 
|  | 2197 | { | 
|  | 2198 | uint32_t rxcw = 0; | 
|  | 2199 | uint32_t ctrl; | 
|  | 2200 | uint32_t status; | 
|  | 2201 | uint32_t rctl; | 
|  | 2202 | uint32_t icr; | 
|  | 2203 | uint32_t signal = 0; | 
|  | 2204 | int32_t ret_val; | 
|  | 2205 | uint16_t phy_data; | 
|  | 2206 |  | 
|  | 2207 | DEBUGFUNC("e1000_check_for_link"); | 
|  | 2208 |  | 
|  | 2209 | ctrl = E1000_READ_REG(hw, CTRL); | 
|  | 2210 | status = E1000_READ_REG(hw, STATUS); | 
|  | 2211 |  | 
|  | 2212 | /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be | 
|  | 2213 | * set when the optics detect a signal. On older adapters, it will be | 
|  | 2214 | * cleared when there is a signal.  This applies to fiber media only. | 
|  | 2215 | */ | 
|  | 2216 | if((hw->media_type == e1000_media_type_fiber) || | 
|  | 2217 | (hw->media_type == e1000_media_type_internal_serdes)) { | 
|  | 2218 | rxcw = E1000_READ_REG(hw, RXCW); | 
|  | 2219 |  | 
|  | 2220 | if(hw->media_type == e1000_media_type_fiber) { | 
|  | 2221 | signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; | 
|  | 2222 | if(status & E1000_STATUS_LU) | 
|  | 2223 | hw->get_link_status = FALSE; | 
|  | 2224 | } | 
|  | 2225 | } | 
|  | 2226 |  | 
|  | 2227 | /* If we have a copper PHY then we only want to go out to the PHY | 
|  | 2228 | * registers to see if Auto-Neg has completed and/or if our link | 
|  | 2229 | * status has changed.  The get_link_status flag will be set if we | 
|  | 2230 | * receive a Link Status Change interrupt or we have Rx Sequence | 
|  | 2231 | * Errors. | 
|  | 2232 | */ | 
|  | 2233 | if((hw->media_type == e1000_media_type_copper) && hw->get_link_status) { | 
|  | 2234 | /* First we want to see if the MII Status Register reports | 
|  | 2235 | * link.  If so, then we want to get the current speed/duplex | 
|  | 2236 | * of the PHY. | 
|  | 2237 | * Read the register twice since the link bit is sticky. | 
|  | 2238 | */ | 
|  | 2239 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | 
|  | 2240 | if(ret_val) | 
|  | 2241 | return ret_val; | 
|  | 2242 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | 
|  | 2243 | if(ret_val) | 
|  | 2244 | return ret_val; | 
|  | 2245 |  | 
|  | 2246 | if(phy_data & MII_SR_LINK_STATUS) { | 
|  | 2247 | hw->get_link_status = FALSE; | 
|  | 2248 | /* Check if there was DownShift, must be checked immediately after | 
|  | 2249 | * link-up */ | 
|  | 2250 | e1000_check_downshift(hw); | 
|  | 2251 |  | 
|  | 2252 | /* If we are on 82544 or 82543 silicon and speed/duplex | 
|  | 2253 | * are forced to 10H or 10F, then we will implement the polarity | 
|  | 2254 | * reversal workaround.  We disable interrupts first, and upon | 
|  | 2255 | * returning, place the devices interrupt state to its previous | 
|  | 2256 | * value except for the link status change interrupt which will | 
|  | 2257 | * happen due to the execution of this workaround. | 
|  | 2258 | */ | 
|  | 2259 |  | 
|  | 2260 | if((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) && | 
|  | 2261 | (!hw->autoneg) && | 
|  | 2262 | (hw->forced_speed_duplex == e1000_10_full || | 
|  | 2263 | hw->forced_speed_duplex == e1000_10_half)) { | 
|  | 2264 | E1000_WRITE_REG(hw, IMC, 0xffffffff); | 
|  | 2265 | ret_val = e1000_polarity_reversal_workaround(hw); | 
|  | 2266 | icr = E1000_READ_REG(hw, ICR); | 
|  | 2267 | E1000_WRITE_REG(hw, ICS, (icr & ~E1000_ICS_LSC)); | 
|  | 2268 | E1000_WRITE_REG(hw, IMS, IMS_ENABLE_MASK); | 
|  | 2269 | } | 
|  | 2270 |  | 
|  | 2271 | } else { | 
|  | 2272 | /* No link detected */ | 
|  | 2273 | e1000_config_dsp_after_link_change(hw, FALSE); | 
|  | 2274 | return 0; | 
|  | 2275 | } | 
|  | 2276 |  | 
|  | 2277 | /* If we are forcing speed/duplex, then we simply return since | 
|  | 2278 | * we have already determined whether we have link or not. | 
|  | 2279 | */ | 
|  | 2280 | if(!hw->autoneg) return -E1000_ERR_CONFIG; | 
|  | 2281 |  | 
|  | 2282 | /* optimize the dsp settings for the igp phy */ | 
|  | 2283 | e1000_config_dsp_after_link_change(hw, TRUE); | 
|  | 2284 |  | 
|  | 2285 | /* We have a M88E1000 PHY and Auto-Neg is enabled.  If we | 
|  | 2286 | * have Si on board that is 82544 or newer, Auto | 
|  | 2287 | * Speed Detection takes care of MAC speed/duplex | 
|  | 2288 | * configuration.  So we only need to configure Collision | 
|  | 2289 | * Distance in the MAC.  Otherwise, we need to force | 
|  | 2290 | * speed/duplex on the MAC to the current PHY speed/duplex | 
|  | 2291 | * settings. | 
|  | 2292 | */ | 
|  | 2293 | if(hw->mac_type >= e1000_82544) | 
|  | 2294 | e1000_config_collision_dist(hw); | 
|  | 2295 | else { | 
|  | 2296 | ret_val = e1000_config_mac_to_phy(hw); | 
|  | 2297 | if(ret_val) { | 
|  | 2298 | DEBUGOUT("Error configuring MAC to PHY settings\n"); | 
|  | 2299 | return ret_val; | 
|  | 2300 | } | 
|  | 2301 | } | 
|  | 2302 |  | 
|  | 2303 | /* Configure Flow Control now that Auto-Neg has completed. First, we | 
|  | 2304 | * need to restore the desired flow control settings because we may | 
|  | 2305 | * have had to re-autoneg with a different link partner. | 
|  | 2306 | */ | 
|  | 2307 | ret_val = e1000_config_fc_after_link_up(hw); | 
|  | 2308 | if(ret_val) { | 
|  | 2309 | DEBUGOUT("Error configuring flow control\n"); | 
|  | 2310 | return ret_val; | 
|  | 2311 | } | 
|  | 2312 |  | 
|  | 2313 | /* At this point we know that we are on copper and we have | 
|  | 2314 | * auto-negotiated link.  These are conditions for checking the link | 
|  | 2315 | * partner capability register.  We use the link speed to determine if | 
|  | 2316 | * TBI compatibility needs to be turned on or off.  If the link is not | 
|  | 2317 | * at gigabit speed, then TBI compatibility is not needed.  If we are | 
|  | 2318 | * at gigabit speed, we turn on TBI compatibility. | 
|  | 2319 | */ | 
|  | 2320 | if(hw->tbi_compatibility_en) { | 
|  | 2321 | uint16_t speed, duplex; | 
|  | 2322 | e1000_get_speed_and_duplex(hw, &speed, &duplex); | 
|  | 2323 | if(speed != SPEED_1000) { | 
|  | 2324 | /* If link speed is not set to gigabit speed, we do not need | 
|  | 2325 | * to enable TBI compatibility. | 
|  | 2326 | */ | 
|  | 2327 | if(hw->tbi_compatibility_on) { | 
|  | 2328 | /* If we previously were in the mode, turn it off. */ | 
|  | 2329 | rctl = E1000_READ_REG(hw, RCTL); | 
|  | 2330 | rctl &= ~E1000_RCTL_SBP; | 
|  | 2331 | E1000_WRITE_REG(hw, RCTL, rctl); | 
|  | 2332 | hw->tbi_compatibility_on = FALSE; | 
|  | 2333 | } | 
|  | 2334 | } else { | 
|  | 2335 | /* If TBI compatibility is was previously off, turn it on. For | 
|  | 2336 | * compatibility with a TBI link partner, we will store bad | 
|  | 2337 | * packets. Some frames have an additional byte on the end and | 
|  | 2338 | * will look like CRC errors to to the hardware. | 
|  | 2339 | */ | 
|  | 2340 | if(!hw->tbi_compatibility_on) { | 
|  | 2341 | hw->tbi_compatibility_on = TRUE; | 
|  | 2342 | rctl = E1000_READ_REG(hw, RCTL); | 
|  | 2343 | rctl |= E1000_RCTL_SBP; | 
|  | 2344 | E1000_WRITE_REG(hw, RCTL, rctl); | 
|  | 2345 | } | 
|  | 2346 | } | 
|  | 2347 | } | 
|  | 2348 | } | 
|  | 2349 | /* If we don't have link (auto-negotiation failed or link partner cannot | 
|  | 2350 | * auto-negotiate), the cable is plugged in (we have signal), and our | 
|  | 2351 | * link partner is not trying to auto-negotiate with us (we are receiving | 
|  | 2352 | * idles or data), we need to force link up. We also need to give | 
|  | 2353 | * auto-negotiation time to complete, in case the cable was just plugged | 
|  | 2354 | * in. The autoneg_failed flag does this. | 
|  | 2355 | */ | 
|  | 2356 | else if((((hw->media_type == e1000_media_type_fiber) && | 
|  | 2357 | ((ctrl & E1000_CTRL_SWDPIN1) == signal)) || | 
|  | 2358 | (hw->media_type == e1000_media_type_internal_serdes)) && | 
|  | 2359 | (!(status & E1000_STATUS_LU)) && | 
|  | 2360 | (!(rxcw & E1000_RXCW_C))) { | 
|  | 2361 | if(hw->autoneg_failed == 0) { | 
|  | 2362 | hw->autoneg_failed = 1; | 
|  | 2363 | return 0; | 
|  | 2364 | } | 
|  | 2365 | DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n"); | 
|  | 2366 |  | 
|  | 2367 | /* Disable auto-negotiation in the TXCW register */ | 
|  | 2368 | E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE)); | 
|  | 2369 |  | 
|  | 2370 | /* Force link-up and also force full-duplex. */ | 
|  | 2371 | ctrl = E1000_READ_REG(hw, CTRL); | 
|  | 2372 | ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); | 
|  | 2373 | E1000_WRITE_REG(hw, CTRL, ctrl); | 
|  | 2374 |  | 
|  | 2375 | /* Configure Flow Control after forcing link up. */ | 
|  | 2376 | ret_val = e1000_config_fc_after_link_up(hw); | 
|  | 2377 | if(ret_val) { | 
|  | 2378 | DEBUGOUT("Error configuring flow control\n"); | 
|  | 2379 | return ret_val; | 
|  | 2380 | } | 
|  | 2381 | } | 
|  | 2382 | /* If we are forcing link and we are receiving /C/ ordered sets, re-enable | 
|  | 2383 | * auto-negotiation in the TXCW register and disable forced link in the | 
|  | 2384 | * Device Control register in an attempt to auto-negotiate with our link | 
|  | 2385 | * partner. | 
|  | 2386 | */ | 
|  | 2387 | else if(((hw->media_type == e1000_media_type_fiber) || | 
|  | 2388 | (hw->media_type == e1000_media_type_internal_serdes)) && | 
|  | 2389 | (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { | 
|  | 2390 | DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\r\n"); | 
|  | 2391 | E1000_WRITE_REG(hw, TXCW, hw->txcw); | 
|  | 2392 | E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU)); | 
|  | 2393 |  | 
|  | 2394 | hw->serdes_link_down = FALSE; | 
|  | 2395 | } | 
|  | 2396 | /* If we force link for non-auto-negotiation switch, check link status | 
|  | 2397 | * based on MAC synchronization for internal serdes media type. | 
|  | 2398 | */ | 
|  | 2399 | else if((hw->media_type == e1000_media_type_internal_serdes) && | 
|  | 2400 | !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) { | 
|  | 2401 | /* SYNCH bit and IV bit are sticky. */ | 
|  | 2402 | udelay(10); | 
|  | 2403 | if(E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) { | 
|  | 2404 | if(!(rxcw & E1000_RXCW_IV)) { | 
|  | 2405 | hw->serdes_link_down = FALSE; | 
|  | 2406 | DEBUGOUT("SERDES: Link is up.\n"); | 
|  | 2407 | } | 
|  | 2408 | } else { | 
|  | 2409 | hw->serdes_link_down = TRUE; | 
|  | 2410 | DEBUGOUT("SERDES: Link is down.\n"); | 
|  | 2411 | } | 
|  | 2412 | } | 
|  | 2413 | if((hw->media_type == e1000_media_type_internal_serdes) && | 
|  | 2414 | (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) { | 
|  | 2415 | hw->serdes_link_down = !(E1000_STATUS_LU & E1000_READ_REG(hw, STATUS)); | 
|  | 2416 | } | 
|  | 2417 | return E1000_SUCCESS; | 
|  | 2418 | } | 
|  | 2419 |  | 
|  | 2420 | /****************************************************************************** | 
|  | 2421 | * Detects the current speed and duplex settings of the hardware. | 
|  | 2422 | * | 
|  | 2423 | * hw - Struct containing variables accessed by shared code | 
|  | 2424 | * speed - Speed of the connection | 
|  | 2425 | * duplex - Duplex setting of the connection | 
|  | 2426 | *****************************************************************************/ | 
|  | 2427 | int32_t | 
|  | 2428 | e1000_get_speed_and_duplex(struct e1000_hw *hw, | 
|  | 2429 | uint16_t *speed, | 
|  | 2430 | uint16_t *duplex) | 
|  | 2431 | { | 
|  | 2432 | uint32_t status; | 
|  | 2433 | int32_t ret_val; | 
|  | 2434 | uint16_t phy_data; | 
|  | 2435 |  | 
|  | 2436 | DEBUGFUNC("e1000_get_speed_and_duplex"); | 
|  | 2437 |  | 
|  | 2438 | if(hw->mac_type >= e1000_82543) { | 
|  | 2439 | status = E1000_READ_REG(hw, STATUS); | 
|  | 2440 | if(status & E1000_STATUS_SPEED_1000) { | 
|  | 2441 | *speed = SPEED_1000; | 
|  | 2442 | DEBUGOUT("1000 Mbs, "); | 
|  | 2443 | } else if(status & E1000_STATUS_SPEED_100) { | 
|  | 2444 | *speed = SPEED_100; | 
|  | 2445 | DEBUGOUT("100 Mbs, "); | 
|  | 2446 | } else { | 
|  | 2447 | *speed = SPEED_10; | 
|  | 2448 | DEBUGOUT("10 Mbs, "); | 
|  | 2449 | } | 
|  | 2450 |  | 
|  | 2451 | if(status & E1000_STATUS_FD) { | 
|  | 2452 | *duplex = FULL_DUPLEX; | 
|  | 2453 | DEBUGOUT("Full Duplex\r\n"); | 
|  | 2454 | } else { | 
|  | 2455 | *duplex = HALF_DUPLEX; | 
|  | 2456 | DEBUGOUT(" Half Duplex\r\n"); | 
|  | 2457 | } | 
|  | 2458 | } else { | 
|  | 2459 | DEBUGOUT("1000 Mbs, Full Duplex\r\n"); | 
|  | 2460 | *speed = SPEED_1000; | 
|  | 2461 | *duplex = FULL_DUPLEX; | 
|  | 2462 | } | 
|  | 2463 |  | 
|  | 2464 | /* IGP01 PHY may advertise full duplex operation after speed downgrade even | 
|  | 2465 | * if it is operating at half duplex.  Here we set the duplex settings to | 
|  | 2466 | * match the duplex in the link partner's capabilities. | 
|  | 2467 | */ | 
|  | 2468 | if(hw->phy_type == e1000_phy_igp && hw->speed_downgraded) { | 
|  | 2469 | ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data); | 
|  | 2470 | if(ret_val) | 
|  | 2471 | return ret_val; | 
|  | 2472 |  | 
|  | 2473 | if(!(phy_data & NWAY_ER_LP_NWAY_CAPS)) | 
|  | 2474 | *duplex = HALF_DUPLEX; | 
|  | 2475 | else { | 
|  | 2476 | ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data); | 
|  | 2477 | if(ret_val) | 
|  | 2478 | return ret_val; | 
|  | 2479 | if((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) || | 
|  | 2480 | (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS))) | 
|  | 2481 | *duplex = HALF_DUPLEX; | 
|  | 2482 | } | 
|  | 2483 | } | 
|  | 2484 |  | 
|  | 2485 | return E1000_SUCCESS; | 
|  | 2486 | } | 
|  | 2487 |  | 
|  | 2488 | /****************************************************************************** | 
|  | 2489 | * Blocks until autoneg completes or times out (~4.5 seconds) | 
|  | 2490 | * | 
|  | 2491 | * hw - Struct containing variables accessed by shared code | 
|  | 2492 | ******************************************************************************/ | 
|  | 2493 | int32_t | 
|  | 2494 | e1000_wait_autoneg(struct e1000_hw *hw) | 
|  | 2495 | { | 
|  | 2496 | int32_t ret_val; | 
|  | 2497 | uint16_t i; | 
|  | 2498 | uint16_t phy_data; | 
|  | 2499 |  | 
|  | 2500 | DEBUGFUNC("e1000_wait_autoneg"); | 
|  | 2501 | DEBUGOUT("Waiting for Auto-Neg to complete.\n"); | 
|  | 2502 |  | 
|  | 2503 | /* We will wait for autoneg to complete or 4.5 seconds to expire. */ | 
|  | 2504 | for(i = PHY_AUTO_NEG_TIME; i > 0; i--) { | 
|  | 2505 | /* Read the MII Status Register and wait for Auto-Neg | 
|  | 2506 | * Complete bit to be set. | 
|  | 2507 | */ | 
|  | 2508 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | 
|  | 2509 | if(ret_val) | 
|  | 2510 | return ret_val; | 
|  | 2511 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | 
|  | 2512 | if(ret_val) | 
|  | 2513 | return ret_val; | 
|  | 2514 | if(phy_data & MII_SR_AUTONEG_COMPLETE) { | 
|  | 2515 | return E1000_SUCCESS; | 
|  | 2516 | } | 
|  | 2517 | msec_delay(100); | 
|  | 2518 | } | 
|  | 2519 | return E1000_SUCCESS; | 
|  | 2520 | } | 
|  | 2521 |  | 
|  | 2522 | /****************************************************************************** | 
|  | 2523 | * Raises the Management Data Clock | 
|  | 2524 | * | 
|  | 2525 | * hw - Struct containing variables accessed by shared code | 
|  | 2526 | * ctrl - Device control register's current value | 
|  | 2527 | ******************************************************************************/ | 
|  | 2528 | static void | 
|  | 2529 | e1000_raise_mdi_clk(struct e1000_hw *hw, | 
|  | 2530 | uint32_t *ctrl) | 
|  | 2531 | { | 
|  | 2532 | /* Raise the clock input to the Management Data Clock (by setting the MDC | 
|  | 2533 | * bit), and then delay 10 microseconds. | 
|  | 2534 | */ | 
|  | 2535 | E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC)); | 
|  | 2536 | E1000_WRITE_FLUSH(hw); | 
|  | 2537 | udelay(10); | 
|  | 2538 | } | 
|  | 2539 |  | 
|  | 2540 | /****************************************************************************** | 
|  | 2541 | * Lowers the Management Data Clock | 
|  | 2542 | * | 
|  | 2543 | * hw - Struct containing variables accessed by shared code | 
|  | 2544 | * ctrl - Device control register's current value | 
|  | 2545 | ******************************************************************************/ | 
|  | 2546 | static void | 
|  | 2547 | e1000_lower_mdi_clk(struct e1000_hw *hw, | 
|  | 2548 | uint32_t *ctrl) | 
|  | 2549 | { | 
|  | 2550 | /* Lower the clock input to the Management Data Clock (by clearing the MDC | 
|  | 2551 | * bit), and then delay 10 microseconds. | 
|  | 2552 | */ | 
|  | 2553 | E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC)); | 
|  | 2554 | E1000_WRITE_FLUSH(hw); | 
|  | 2555 | udelay(10); | 
|  | 2556 | } | 
|  | 2557 |  | 
|  | 2558 | /****************************************************************************** | 
|  | 2559 | * Shifts data bits out to the PHY | 
|  | 2560 | * | 
|  | 2561 | * hw - Struct containing variables accessed by shared code | 
|  | 2562 | * data - Data to send out to the PHY | 
|  | 2563 | * count - Number of bits to shift out | 
|  | 2564 | * | 
|  | 2565 | * Bits are shifted out in MSB to LSB order. | 
|  | 2566 | ******************************************************************************/ | 
|  | 2567 | static void | 
|  | 2568 | e1000_shift_out_mdi_bits(struct e1000_hw *hw, | 
|  | 2569 | uint32_t data, | 
|  | 2570 | uint16_t count) | 
|  | 2571 | { | 
|  | 2572 | uint32_t ctrl; | 
|  | 2573 | uint32_t mask; | 
|  | 2574 |  | 
|  | 2575 | /* We need to shift "count" number of bits out to the PHY. So, the value | 
|  | 2576 | * in the "data" parameter will be shifted out to the PHY one bit at a | 
|  | 2577 | * time. In order to do this, "data" must be broken down into bits. | 
|  | 2578 | */ | 
|  | 2579 | mask = 0x01; | 
|  | 2580 | mask <<= (count - 1); | 
|  | 2581 |  | 
|  | 2582 | ctrl = E1000_READ_REG(hw, CTRL); | 
|  | 2583 |  | 
|  | 2584 | /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ | 
|  | 2585 | ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); | 
|  | 2586 |  | 
|  | 2587 | while(mask) { | 
|  | 2588 | /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and | 
|  | 2589 | * then raising and lowering the Management Data Clock. A "0" is | 
|  | 2590 | * shifted out to the PHY by setting the MDIO bit to "0" and then | 
|  | 2591 | * raising and lowering the clock. | 
|  | 2592 | */ | 
|  | 2593 | if(data & mask) ctrl |= E1000_CTRL_MDIO; | 
|  | 2594 | else ctrl &= ~E1000_CTRL_MDIO; | 
|  | 2595 |  | 
|  | 2596 | E1000_WRITE_REG(hw, CTRL, ctrl); | 
|  | 2597 | E1000_WRITE_FLUSH(hw); | 
|  | 2598 |  | 
|  | 2599 | udelay(10); | 
|  | 2600 |  | 
|  | 2601 | e1000_raise_mdi_clk(hw, &ctrl); | 
|  | 2602 | e1000_lower_mdi_clk(hw, &ctrl); | 
|  | 2603 |  | 
|  | 2604 | mask = mask >> 1; | 
|  | 2605 | } | 
|  | 2606 | } | 
|  | 2607 |  | 
|  | 2608 | /****************************************************************************** | 
|  | 2609 | * Shifts data bits in from the PHY | 
|  | 2610 | * | 
|  | 2611 | * hw - Struct containing variables accessed by shared code | 
|  | 2612 | * | 
|  | 2613 | * Bits are shifted in in MSB to LSB order. | 
|  | 2614 | ******************************************************************************/ | 
|  | 2615 | static uint16_t | 
|  | 2616 | e1000_shift_in_mdi_bits(struct e1000_hw *hw) | 
|  | 2617 | { | 
|  | 2618 | uint32_t ctrl; | 
|  | 2619 | uint16_t data = 0; | 
|  | 2620 | uint8_t i; | 
|  | 2621 |  | 
|  | 2622 | /* In order to read a register from the PHY, we need to shift in a total | 
|  | 2623 | * of 18 bits from the PHY. The first two bit (turnaround) times are used | 
|  | 2624 | * to avoid contention on the MDIO pin when a read operation is performed. | 
|  | 2625 | * These two bits are ignored by us and thrown away. Bits are "shifted in" | 
|  | 2626 | * by raising the input to the Management Data Clock (setting the MDC bit), | 
|  | 2627 | * and then reading the value of the MDIO bit. | 
|  | 2628 | */ | 
|  | 2629 | ctrl = E1000_READ_REG(hw, CTRL); | 
|  | 2630 |  | 
|  | 2631 | /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */ | 
|  | 2632 | ctrl &= ~E1000_CTRL_MDIO_DIR; | 
|  | 2633 | ctrl &= ~E1000_CTRL_MDIO; | 
|  | 2634 |  | 
|  | 2635 | E1000_WRITE_REG(hw, CTRL, ctrl); | 
|  | 2636 | E1000_WRITE_FLUSH(hw); | 
|  | 2637 |  | 
|  | 2638 | /* Raise and Lower the clock before reading in the data. This accounts for | 
|  | 2639 | * the turnaround bits. The first clock occurred when we clocked out the | 
|  | 2640 | * last bit of the Register Address. | 
|  | 2641 | */ | 
|  | 2642 | e1000_raise_mdi_clk(hw, &ctrl); | 
|  | 2643 | e1000_lower_mdi_clk(hw, &ctrl); | 
|  | 2644 |  | 
|  | 2645 | for(data = 0, i = 0; i < 16; i++) { | 
|  | 2646 | data = data << 1; | 
|  | 2647 | e1000_raise_mdi_clk(hw, &ctrl); | 
|  | 2648 | ctrl = E1000_READ_REG(hw, CTRL); | 
|  | 2649 | /* Check to see if we shifted in a "1". */ | 
|  | 2650 | if(ctrl & E1000_CTRL_MDIO) data |= 1; | 
|  | 2651 | e1000_lower_mdi_clk(hw, &ctrl); | 
|  | 2652 | } | 
|  | 2653 |  | 
|  | 2654 | e1000_raise_mdi_clk(hw, &ctrl); | 
|  | 2655 | e1000_lower_mdi_clk(hw, &ctrl); | 
|  | 2656 |  | 
|  | 2657 | return data; | 
|  | 2658 | } | 
|  | 2659 |  | 
|  | 2660 | /***************************************************************************** | 
|  | 2661 | * Reads the value from a PHY register, if the value is on a specific non zero | 
|  | 2662 | * page, sets the page first. | 
|  | 2663 | * hw - Struct containing variables accessed by shared code | 
|  | 2664 | * reg_addr - address of the PHY register to read | 
|  | 2665 | ******************************************************************************/ | 
|  | 2666 | int32_t | 
|  | 2667 | e1000_read_phy_reg(struct e1000_hw *hw, | 
|  | 2668 | uint32_t reg_addr, | 
|  | 2669 | uint16_t *phy_data) | 
|  | 2670 | { | 
|  | 2671 | uint32_t ret_val; | 
|  | 2672 |  | 
|  | 2673 | DEBUGFUNC("e1000_read_phy_reg"); | 
|  | 2674 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 2675 | if((hw->phy_type == e1000_phy_igp || | 
|  | 2676 | hw->phy_type == e1000_phy_igp_2) && | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2677 | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { | 
|  | 2678 | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, | 
|  | 2679 | (uint16_t)reg_addr); | 
|  | 2680 | if(ret_val) { | 
|  | 2681 | return ret_val; | 
|  | 2682 | } | 
|  | 2683 | } | 
|  | 2684 |  | 
|  | 2685 | ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, | 
|  | 2686 | phy_data); | 
|  | 2687 |  | 
|  | 2688 | return ret_val; | 
|  | 2689 | } | 
|  | 2690 |  | 
|  | 2691 | int32_t | 
|  | 2692 | e1000_read_phy_reg_ex(struct e1000_hw *hw, | 
|  | 2693 | uint32_t reg_addr, | 
|  | 2694 | uint16_t *phy_data) | 
|  | 2695 | { | 
|  | 2696 | uint32_t i; | 
|  | 2697 | uint32_t mdic = 0; | 
|  | 2698 | const uint32_t phy_addr = 1; | 
|  | 2699 |  | 
|  | 2700 | DEBUGFUNC("e1000_read_phy_reg_ex"); | 
|  | 2701 |  | 
|  | 2702 | if(reg_addr > MAX_PHY_REG_ADDRESS) { | 
|  | 2703 | DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); | 
|  | 2704 | return -E1000_ERR_PARAM; | 
|  | 2705 | } | 
|  | 2706 |  | 
|  | 2707 | if(hw->mac_type > e1000_82543) { | 
|  | 2708 | /* Set up Op-code, Phy Address, and register address in the MDI | 
|  | 2709 | * Control register.  The MAC will take care of interfacing with the | 
|  | 2710 | * PHY to retrieve the desired data. | 
|  | 2711 | */ | 
|  | 2712 | mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | | 
|  | 2713 | (phy_addr << E1000_MDIC_PHY_SHIFT) | | 
|  | 2714 | (E1000_MDIC_OP_READ)); | 
|  | 2715 |  | 
|  | 2716 | E1000_WRITE_REG(hw, MDIC, mdic); | 
|  | 2717 |  | 
|  | 2718 | /* Poll the ready bit to see if the MDI read completed */ | 
|  | 2719 | for(i = 0; i < 64; i++) { | 
|  | 2720 | udelay(50); | 
|  | 2721 | mdic = E1000_READ_REG(hw, MDIC); | 
|  | 2722 | if(mdic & E1000_MDIC_READY) break; | 
|  | 2723 | } | 
|  | 2724 | if(!(mdic & E1000_MDIC_READY)) { | 
|  | 2725 | DEBUGOUT("MDI Read did not complete\n"); | 
|  | 2726 | return -E1000_ERR_PHY; | 
|  | 2727 | } | 
|  | 2728 | if(mdic & E1000_MDIC_ERROR) { | 
|  | 2729 | DEBUGOUT("MDI Error\n"); | 
|  | 2730 | return -E1000_ERR_PHY; | 
|  | 2731 | } | 
|  | 2732 | *phy_data = (uint16_t) mdic; | 
|  | 2733 | } else { | 
|  | 2734 | /* We must first send a preamble through the MDIO pin to signal the | 
|  | 2735 | * beginning of an MII instruction.  This is done by sending 32 | 
|  | 2736 | * consecutive "1" bits. | 
|  | 2737 | */ | 
|  | 2738 | e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); | 
|  | 2739 |  | 
|  | 2740 | /* Now combine the next few fields that are required for a read | 
|  | 2741 | * operation.  We use this method instead of calling the | 
|  | 2742 | * e1000_shift_out_mdi_bits routine five different times. The format of | 
|  | 2743 | * a MII read instruction consists of a shift out of 14 bits and is | 
|  | 2744 | * defined as follows: | 
|  | 2745 | *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr> | 
|  | 2746 | * followed by a shift in of 18 bits.  This first two bits shifted in | 
|  | 2747 | * are TurnAround bits used to avoid contention on the MDIO pin when a | 
|  | 2748 | * READ operation is performed.  These two bits are thrown away | 
|  | 2749 | * followed by a shift in of 16 bits which contains the desired data. | 
|  | 2750 | */ | 
|  | 2751 | mdic = ((reg_addr) | (phy_addr << 5) | | 
|  | 2752 | (PHY_OP_READ << 10) | (PHY_SOF << 12)); | 
|  | 2753 |  | 
|  | 2754 | e1000_shift_out_mdi_bits(hw, mdic, 14); | 
|  | 2755 |  | 
|  | 2756 | /* Now that we've shifted out the read command to the MII, we need to | 
|  | 2757 | * "shift in" the 16-bit value (18 total bits) of the requested PHY | 
|  | 2758 | * register address. | 
|  | 2759 | */ | 
|  | 2760 | *phy_data = e1000_shift_in_mdi_bits(hw); | 
|  | 2761 | } | 
|  | 2762 | return E1000_SUCCESS; | 
|  | 2763 | } | 
|  | 2764 |  | 
|  | 2765 | /****************************************************************************** | 
|  | 2766 | * Writes a value to a PHY register | 
|  | 2767 | * | 
|  | 2768 | * hw - Struct containing variables accessed by shared code | 
|  | 2769 | * reg_addr - address of the PHY register to write | 
|  | 2770 | * data - data to write to the PHY | 
|  | 2771 | ******************************************************************************/ | 
|  | 2772 | int32_t | 
|  | 2773 | e1000_write_phy_reg(struct e1000_hw *hw, | 
|  | 2774 | uint32_t reg_addr, | 
|  | 2775 | uint16_t phy_data) | 
|  | 2776 | { | 
|  | 2777 | uint32_t ret_val; | 
|  | 2778 |  | 
|  | 2779 | DEBUGFUNC("e1000_write_phy_reg"); | 
|  | 2780 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 2781 | if((hw->phy_type == e1000_phy_igp || | 
|  | 2782 | hw->phy_type == e1000_phy_igp_2) && | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2783 | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { | 
|  | 2784 | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, | 
|  | 2785 | (uint16_t)reg_addr); | 
|  | 2786 | if(ret_val) { | 
|  | 2787 | return ret_val; | 
|  | 2788 | } | 
|  | 2789 | } | 
|  | 2790 |  | 
|  | 2791 | ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, | 
|  | 2792 | phy_data); | 
|  | 2793 |  | 
|  | 2794 | return ret_val; | 
|  | 2795 | } | 
|  | 2796 |  | 
|  | 2797 | int32_t | 
|  | 2798 | e1000_write_phy_reg_ex(struct e1000_hw *hw, | 
|  | 2799 | uint32_t reg_addr, | 
|  | 2800 | uint16_t phy_data) | 
|  | 2801 | { | 
|  | 2802 | uint32_t i; | 
|  | 2803 | uint32_t mdic = 0; | 
|  | 2804 | const uint32_t phy_addr = 1; | 
|  | 2805 |  | 
|  | 2806 | DEBUGFUNC("e1000_write_phy_reg_ex"); | 
|  | 2807 |  | 
|  | 2808 | if(reg_addr > MAX_PHY_REG_ADDRESS) { | 
|  | 2809 | DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); | 
|  | 2810 | return -E1000_ERR_PARAM; | 
|  | 2811 | } | 
|  | 2812 |  | 
|  | 2813 | if(hw->mac_type > e1000_82543) { | 
|  | 2814 | /* Set up Op-code, Phy Address, register address, and data intended | 
|  | 2815 | * for the PHY register in the MDI Control register.  The MAC will take | 
|  | 2816 | * care of interfacing with the PHY to send the desired data. | 
|  | 2817 | */ | 
|  | 2818 | mdic = (((uint32_t) phy_data) | | 
|  | 2819 | (reg_addr << E1000_MDIC_REG_SHIFT) | | 
|  | 2820 | (phy_addr << E1000_MDIC_PHY_SHIFT) | | 
|  | 2821 | (E1000_MDIC_OP_WRITE)); | 
|  | 2822 |  | 
|  | 2823 | E1000_WRITE_REG(hw, MDIC, mdic); | 
|  | 2824 |  | 
|  | 2825 | /* Poll the ready bit to see if the MDI read completed */ | 
|  | 2826 | for(i = 0; i < 640; i++) { | 
|  | 2827 | udelay(5); | 
|  | 2828 | mdic = E1000_READ_REG(hw, MDIC); | 
|  | 2829 | if(mdic & E1000_MDIC_READY) break; | 
|  | 2830 | } | 
|  | 2831 | if(!(mdic & E1000_MDIC_READY)) { | 
|  | 2832 | DEBUGOUT("MDI Write did not complete\n"); | 
|  | 2833 | return -E1000_ERR_PHY; | 
|  | 2834 | } | 
|  | 2835 | } else { | 
|  | 2836 | /* We'll need to use the SW defined pins to shift the write command | 
|  | 2837 | * out to the PHY. We first send a preamble to the PHY to signal the | 
|  | 2838 | * beginning of the MII instruction.  This is done by sending 32 | 
|  | 2839 | * consecutive "1" bits. | 
|  | 2840 | */ | 
|  | 2841 | e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); | 
|  | 2842 |  | 
|  | 2843 | /* Now combine the remaining required fields that will indicate a | 
|  | 2844 | * write operation. We use this method instead of calling the | 
|  | 2845 | * e1000_shift_out_mdi_bits routine for each field in the command. The | 
|  | 2846 | * format of a MII write instruction is as follows: | 
|  | 2847 | * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>. | 
|  | 2848 | */ | 
|  | 2849 | mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) | | 
|  | 2850 | (PHY_OP_WRITE << 12) | (PHY_SOF << 14)); | 
|  | 2851 | mdic <<= 16; | 
|  | 2852 | mdic |= (uint32_t) phy_data; | 
|  | 2853 |  | 
|  | 2854 | e1000_shift_out_mdi_bits(hw, mdic, 32); | 
|  | 2855 | } | 
|  | 2856 |  | 
|  | 2857 | return E1000_SUCCESS; | 
|  | 2858 | } | 
|  | 2859 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 2860 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2861 | /****************************************************************************** | 
|  | 2862 | * Returns the PHY to the power-on reset state | 
|  | 2863 | * | 
|  | 2864 | * hw - Struct containing variables accessed by shared code | 
|  | 2865 | ******************************************************************************/ | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 2866 | int32_t | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2867 | e1000_phy_hw_reset(struct e1000_hw *hw) | 
|  | 2868 | { | 
|  | 2869 | uint32_t ctrl, ctrl_ext; | 
|  | 2870 | uint32_t led_ctrl; | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 2871 | int32_t ret_val; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2872 |  | 
|  | 2873 | DEBUGFUNC("e1000_phy_hw_reset"); | 
|  | 2874 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 2875 | /* In the case of the phy reset being blocked, it's not an error, we | 
|  | 2876 | * simply return success without performing the reset. */ | 
|  | 2877 | ret_val = e1000_check_phy_reset_block(hw); | 
|  | 2878 | if (ret_val) | 
|  | 2879 | return E1000_SUCCESS; | 
|  | 2880 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2881 | DEBUGOUT("Resetting Phy...\n"); | 
|  | 2882 |  | 
|  | 2883 | if(hw->mac_type > e1000_82543) { | 
|  | 2884 | /* Read the device control register and assert the E1000_CTRL_PHY_RST | 
|  | 2885 | * bit. Then, take it out of reset. | 
|  | 2886 | */ | 
|  | 2887 | ctrl = E1000_READ_REG(hw, CTRL); | 
|  | 2888 | E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST); | 
|  | 2889 | E1000_WRITE_FLUSH(hw); | 
|  | 2890 | msec_delay(10); | 
|  | 2891 | E1000_WRITE_REG(hw, CTRL, ctrl); | 
|  | 2892 | E1000_WRITE_FLUSH(hw); | 
|  | 2893 | } else { | 
|  | 2894 | /* Read the Extended Device Control Register, assert the PHY_RESET_DIR | 
|  | 2895 | * bit to put the PHY into reset. Then, take it out of reset. | 
|  | 2896 | */ | 
|  | 2897 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); | 
|  | 2898 | ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; | 
|  | 2899 | ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; | 
|  | 2900 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); | 
|  | 2901 | E1000_WRITE_FLUSH(hw); | 
|  | 2902 | msec_delay(10); | 
|  | 2903 | ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; | 
|  | 2904 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); | 
|  | 2905 | E1000_WRITE_FLUSH(hw); | 
|  | 2906 | } | 
|  | 2907 | udelay(150); | 
|  | 2908 |  | 
|  | 2909 | if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { | 
|  | 2910 | /* Configure activity LED after PHY reset */ | 
|  | 2911 | led_ctrl = E1000_READ_REG(hw, LEDCTL); | 
|  | 2912 | led_ctrl &= IGP_ACTIVITY_LED_MASK; | 
|  | 2913 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); | 
|  | 2914 | E1000_WRITE_REG(hw, LEDCTL, led_ctrl); | 
|  | 2915 | } | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 2916 |  | 
|  | 2917 | /* Wait for FW to finish PHY configuration. */ | 
|  | 2918 | ret_val = e1000_get_phy_cfg_done(hw); | 
|  | 2919 |  | 
|  | 2920 | return ret_val; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2921 | } | 
|  | 2922 |  | 
|  | 2923 | /****************************************************************************** | 
|  | 2924 | * Resets the PHY | 
|  | 2925 | * | 
|  | 2926 | * hw - Struct containing variables accessed by shared code | 
|  | 2927 | * | 
|  | 2928 | * Sets bit 15 of the MII Control regiser | 
|  | 2929 | ******************************************************************************/ | 
|  | 2930 | int32_t | 
|  | 2931 | e1000_phy_reset(struct e1000_hw *hw) | 
|  | 2932 | { | 
|  | 2933 | int32_t ret_val; | 
|  | 2934 | uint16_t phy_data; | 
|  | 2935 |  | 
|  | 2936 | DEBUGFUNC("e1000_phy_reset"); | 
|  | 2937 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 2938 | /* In the case of the phy reset being blocked, it's not an error, we | 
|  | 2939 | * simply return success without performing the reset. */ | 
|  | 2940 | ret_val = e1000_check_phy_reset_block(hw); | 
|  | 2941 | if (ret_val) | 
|  | 2942 | return E1000_SUCCESS; | 
|  | 2943 |  | 
|  | 2944 | switch (hw->mac_type) { | 
|  | 2945 | case e1000_82541_rev_2: | 
|  | 2946 | ret_val = e1000_phy_hw_reset(hw); | 
|  | 2947 | if(ret_val) | 
|  | 2948 | return ret_val; | 
|  | 2949 | break; | 
|  | 2950 | default: | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2951 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); | 
|  | 2952 | if(ret_val) | 
|  | 2953 | return ret_val; | 
|  | 2954 |  | 
|  | 2955 | phy_data |= MII_CR_RESET; | 
|  | 2956 | ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); | 
|  | 2957 | if(ret_val) | 
|  | 2958 | return ret_val; | 
|  | 2959 |  | 
|  | 2960 | udelay(1); | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 2961 | break; | 
|  | 2962 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2963 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 2964 | if(hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2965 | e1000_phy_init_script(hw); | 
|  | 2966 |  | 
|  | 2967 | return E1000_SUCCESS; | 
|  | 2968 | } | 
|  | 2969 |  | 
|  | 2970 | /****************************************************************************** | 
|  | 2971 | * Probes the expected PHY address for known PHY IDs | 
|  | 2972 | * | 
|  | 2973 | * hw - Struct containing variables accessed by shared code | 
|  | 2974 | ******************************************************************************/ | 
|  | 2975 | int32_t | 
|  | 2976 | e1000_detect_gig_phy(struct e1000_hw *hw) | 
|  | 2977 | { | 
|  | 2978 | int32_t phy_init_status, ret_val; | 
|  | 2979 | uint16_t phy_id_high, phy_id_low; | 
|  | 2980 | boolean_t match = FALSE; | 
|  | 2981 |  | 
|  | 2982 | DEBUGFUNC("e1000_detect_gig_phy"); | 
|  | 2983 |  | 
|  | 2984 | /* Read the PHY ID Registers to identify which PHY is onboard. */ | 
|  | 2985 | ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high); | 
|  | 2986 | if(ret_val) | 
|  | 2987 | return ret_val; | 
|  | 2988 |  | 
|  | 2989 | hw->phy_id = (uint32_t) (phy_id_high << 16); | 
|  | 2990 | udelay(20); | 
|  | 2991 | ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low); | 
|  | 2992 | if(ret_val) | 
|  | 2993 | return ret_val; | 
|  | 2994 |  | 
|  | 2995 | hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK); | 
|  | 2996 | hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK; | 
|  | 2997 |  | 
|  | 2998 | switch(hw->mac_type) { | 
|  | 2999 | case e1000_82543: | 
|  | 3000 | if(hw->phy_id == M88E1000_E_PHY_ID) match = TRUE; | 
|  | 3001 | break; | 
|  | 3002 | case e1000_82544: | 
|  | 3003 | if(hw->phy_id == M88E1000_I_PHY_ID) match = TRUE; | 
|  | 3004 | break; | 
|  | 3005 | case e1000_82540: | 
|  | 3006 | case e1000_82545: | 
|  | 3007 | case e1000_82545_rev_3: | 
|  | 3008 | case e1000_82546: | 
|  | 3009 | case e1000_82546_rev_3: | 
|  | 3010 | if(hw->phy_id == M88E1011_I_PHY_ID) match = TRUE; | 
|  | 3011 | break; | 
|  | 3012 | case e1000_82541: | 
|  | 3013 | case e1000_82541_rev_2: | 
|  | 3014 | case e1000_82547: | 
|  | 3015 | case e1000_82547_rev_2: | 
|  | 3016 | if(hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE; | 
|  | 3017 | break; | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3018 | case e1000_82573: | 
|  | 3019 | if(hw->phy_id == M88E1111_I_PHY_ID) match = TRUE; | 
|  | 3020 | break; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3021 | default: | 
|  | 3022 | DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type); | 
|  | 3023 | return -E1000_ERR_CONFIG; | 
|  | 3024 | } | 
|  | 3025 | phy_init_status = e1000_set_phy_type(hw); | 
|  | 3026 |  | 
|  | 3027 | if ((match) && (phy_init_status == E1000_SUCCESS)) { | 
|  | 3028 | DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id); | 
|  | 3029 | return E1000_SUCCESS; | 
|  | 3030 | } | 
|  | 3031 | DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id); | 
|  | 3032 | return -E1000_ERR_PHY; | 
|  | 3033 | } | 
|  | 3034 |  | 
|  | 3035 | /****************************************************************************** | 
|  | 3036 | * Resets the PHY's DSP | 
|  | 3037 | * | 
|  | 3038 | * hw - Struct containing variables accessed by shared code | 
|  | 3039 | ******************************************************************************/ | 
|  | 3040 | static int32_t | 
|  | 3041 | e1000_phy_reset_dsp(struct e1000_hw *hw) | 
|  | 3042 | { | 
|  | 3043 | int32_t ret_val; | 
|  | 3044 | DEBUGFUNC("e1000_phy_reset_dsp"); | 
|  | 3045 |  | 
|  | 3046 | do { | 
|  | 3047 | ret_val = e1000_write_phy_reg(hw, 29, 0x001d); | 
|  | 3048 | if(ret_val) break; | 
|  | 3049 | ret_val = e1000_write_phy_reg(hw, 30, 0x00c1); | 
|  | 3050 | if(ret_val) break; | 
|  | 3051 | ret_val = e1000_write_phy_reg(hw, 30, 0x0000); | 
|  | 3052 | if(ret_val) break; | 
|  | 3053 | ret_val = E1000_SUCCESS; | 
|  | 3054 | } while(0); | 
|  | 3055 |  | 
|  | 3056 | return ret_val; | 
|  | 3057 | } | 
|  | 3058 |  | 
|  | 3059 | /****************************************************************************** | 
|  | 3060 | * Get PHY information from various PHY registers for igp PHY only. | 
|  | 3061 | * | 
|  | 3062 | * hw - Struct containing variables accessed by shared code | 
|  | 3063 | * phy_info - PHY information structure | 
|  | 3064 | ******************************************************************************/ | 
|  | 3065 | int32_t | 
|  | 3066 | e1000_phy_igp_get_info(struct e1000_hw *hw, | 
|  | 3067 | struct e1000_phy_info *phy_info) | 
|  | 3068 | { | 
|  | 3069 | int32_t ret_val; | 
|  | 3070 | uint16_t phy_data, polarity, min_length, max_length, average; | 
|  | 3071 |  | 
|  | 3072 | DEBUGFUNC("e1000_phy_igp_get_info"); | 
|  | 3073 |  | 
|  | 3074 | /* The downshift status is checked only once, after link is established, | 
|  | 3075 | * and it stored in the hw->speed_downgraded parameter. */ | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3076 | phy_info->downshift = (e1000_downshift)hw->speed_downgraded; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3077 |  | 
|  | 3078 | /* IGP01E1000 does not need to support it. */ | 
|  | 3079 | phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal; | 
|  | 3080 |  | 
|  | 3081 | /* IGP01E1000 always correct polarity reversal */ | 
|  | 3082 | phy_info->polarity_correction = e1000_polarity_reversal_enabled; | 
|  | 3083 |  | 
|  | 3084 | /* Check polarity status */ | 
|  | 3085 | ret_val = e1000_check_polarity(hw, &polarity); | 
|  | 3086 | if(ret_val) | 
|  | 3087 | return ret_val; | 
|  | 3088 |  | 
|  | 3089 | phy_info->cable_polarity = polarity; | 
|  | 3090 |  | 
|  | 3091 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data); | 
|  | 3092 | if(ret_val) | 
|  | 3093 | return ret_val; | 
|  | 3094 |  | 
|  | 3095 | phy_info->mdix_mode = (phy_data & IGP01E1000_PSSR_MDIX) >> | 
|  | 3096 | IGP01E1000_PSSR_MDIX_SHIFT; | 
|  | 3097 |  | 
|  | 3098 | if((phy_data & IGP01E1000_PSSR_SPEED_MASK) == | 
|  | 3099 | IGP01E1000_PSSR_SPEED_1000MBPS) { | 
|  | 3100 | /* Local/Remote Receiver Information are only valid at 1000 Mbps */ | 
|  | 3101 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); | 
|  | 3102 | if(ret_val) | 
|  | 3103 | return ret_val; | 
|  | 3104 |  | 
|  | 3105 | phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >> | 
|  | 3106 | SR_1000T_LOCAL_RX_STATUS_SHIFT; | 
|  | 3107 | phy_info->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) >> | 
|  | 3108 | SR_1000T_REMOTE_RX_STATUS_SHIFT; | 
|  | 3109 |  | 
|  | 3110 | /* Get cable length */ | 
|  | 3111 | ret_val = e1000_get_cable_length(hw, &min_length, &max_length); | 
|  | 3112 | if(ret_val) | 
|  | 3113 | return ret_val; | 
|  | 3114 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3115 | /* Translate to old method */ | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3116 | average = (max_length + min_length) / 2; | 
|  | 3117 |  | 
|  | 3118 | if(average <= e1000_igp_cable_length_50) | 
|  | 3119 | phy_info->cable_length = e1000_cable_length_50; | 
|  | 3120 | else if(average <= e1000_igp_cable_length_80) | 
|  | 3121 | phy_info->cable_length = e1000_cable_length_50_80; | 
|  | 3122 | else if(average <= e1000_igp_cable_length_110) | 
|  | 3123 | phy_info->cable_length = e1000_cable_length_80_110; | 
|  | 3124 | else if(average <= e1000_igp_cable_length_140) | 
|  | 3125 | phy_info->cable_length = e1000_cable_length_110_140; | 
|  | 3126 | else | 
|  | 3127 | phy_info->cable_length = e1000_cable_length_140; | 
|  | 3128 | } | 
|  | 3129 |  | 
|  | 3130 | return E1000_SUCCESS; | 
|  | 3131 | } | 
|  | 3132 |  | 
|  | 3133 | /****************************************************************************** | 
|  | 3134 | * Get PHY information from various PHY registers fot m88 PHY only. | 
|  | 3135 | * | 
|  | 3136 | * hw - Struct containing variables accessed by shared code | 
|  | 3137 | * phy_info - PHY information structure | 
|  | 3138 | ******************************************************************************/ | 
|  | 3139 | int32_t | 
|  | 3140 | e1000_phy_m88_get_info(struct e1000_hw *hw, | 
|  | 3141 | struct e1000_phy_info *phy_info) | 
|  | 3142 | { | 
|  | 3143 | int32_t ret_val; | 
|  | 3144 | uint16_t phy_data, polarity; | 
|  | 3145 |  | 
|  | 3146 | DEBUGFUNC("e1000_phy_m88_get_info"); | 
|  | 3147 |  | 
|  | 3148 | /* The downshift status is checked only once, after link is established, | 
|  | 3149 | * and it stored in the hw->speed_downgraded parameter. */ | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3150 | phy_info->downshift = (e1000_downshift)hw->speed_downgraded; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3151 |  | 
|  | 3152 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | 
|  | 3153 | if(ret_val) | 
|  | 3154 | return ret_val; | 
|  | 3155 |  | 
|  | 3156 | phy_info->extended_10bt_distance = | 
|  | 3157 | (phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >> | 
|  | 3158 | M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT; | 
|  | 3159 | phy_info->polarity_correction = | 
|  | 3160 | (phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >> | 
|  | 3161 | M88E1000_PSCR_POLARITY_REVERSAL_SHIFT; | 
|  | 3162 |  | 
|  | 3163 | /* Check polarity status */ | 
|  | 3164 | ret_val = e1000_check_polarity(hw, &polarity); | 
|  | 3165 | if(ret_val) | 
|  | 3166 | return ret_val; | 
|  | 3167 | phy_info->cable_polarity = polarity; | 
|  | 3168 |  | 
|  | 3169 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); | 
|  | 3170 | if(ret_val) | 
|  | 3171 | return ret_val; | 
|  | 3172 |  | 
|  | 3173 | phy_info->mdix_mode = (phy_data & M88E1000_PSSR_MDIX) >> | 
|  | 3174 | M88E1000_PSSR_MDIX_SHIFT; | 
|  | 3175 |  | 
|  | 3176 | if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { | 
|  | 3177 | /* Cable Length Estimation and Local/Remote Receiver Information | 
|  | 3178 | * are only valid at 1000 Mbps. | 
|  | 3179 | */ | 
|  | 3180 | phy_info->cable_length = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >> | 
|  | 3181 | M88E1000_PSSR_CABLE_LENGTH_SHIFT); | 
|  | 3182 |  | 
|  | 3183 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); | 
|  | 3184 | if(ret_val) | 
|  | 3185 | return ret_val; | 
|  | 3186 |  | 
|  | 3187 | phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >> | 
|  | 3188 | SR_1000T_LOCAL_RX_STATUS_SHIFT; | 
|  | 3189 |  | 
|  | 3190 | phy_info->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) >> | 
|  | 3191 | SR_1000T_REMOTE_RX_STATUS_SHIFT; | 
|  | 3192 | } | 
|  | 3193 |  | 
|  | 3194 | return E1000_SUCCESS; | 
|  | 3195 | } | 
|  | 3196 |  | 
|  | 3197 | /****************************************************************************** | 
|  | 3198 | * Get PHY information from various PHY registers | 
|  | 3199 | * | 
|  | 3200 | * hw - Struct containing variables accessed by shared code | 
|  | 3201 | * phy_info - PHY information structure | 
|  | 3202 | ******************************************************************************/ | 
|  | 3203 | int32_t | 
|  | 3204 | e1000_phy_get_info(struct e1000_hw *hw, | 
|  | 3205 | struct e1000_phy_info *phy_info) | 
|  | 3206 | { | 
|  | 3207 | int32_t ret_val; | 
|  | 3208 | uint16_t phy_data; | 
|  | 3209 |  | 
|  | 3210 | DEBUGFUNC("e1000_phy_get_info"); | 
|  | 3211 |  | 
|  | 3212 | phy_info->cable_length = e1000_cable_length_undefined; | 
|  | 3213 | phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined; | 
|  | 3214 | phy_info->cable_polarity = e1000_rev_polarity_undefined; | 
|  | 3215 | phy_info->downshift = e1000_downshift_undefined; | 
|  | 3216 | phy_info->polarity_correction = e1000_polarity_reversal_undefined; | 
|  | 3217 | phy_info->mdix_mode = e1000_auto_x_mode_undefined; | 
|  | 3218 | phy_info->local_rx = e1000_1000t_rx_status_undefined; | 
|  | 3219 | phy_info->remote_rx = e1000_1000t_rx_status_undefined; | 
|  | 3220 |  | 
|  | 3221 | if(hw->media_type != e1000_media_type_copper) { | 
|  | 3222 | DEBUGOUT("PHY info is only valid for copper media\n"); | 
|  | 3223 | return -E1000_ERR_CONFIG; | 
|  | 3224 | } | 
|  | 3225 |  | 
|  | 3226 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | 
|  | 3227 | if(ret_val) | 
|  | 3228 | return ret_val; | 
|  | 3229 |  | 
|  | 3230 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | 
|  | 3231 | if(ret_val) | 
|  | 3232 | return ret_val; | 
|  | 3233 |  | 
|  | 3234 | if((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) { | 
|  | 3235 | DEBUGOUT("PHY info is only valid if link is up\n"); | 
|  | 3236 | return -E1000_ERR_CONFIG; | 
|  | 3237 | } | 
|  | 3238 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3239 | if(hw->phy_type == e1000_phy_igp || | 
|  | 3240 | hw->phy_type == e1000_phy_igp_2) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3241 | return e1000_phy_igp_get_info(hw, phy_info); | 
|  | 3242 | else | 
|  | 3243 | return e1000_phy_m88_get_info(hw, phy_info); | 
|  | 3244 | } | 
|  | 3245 |  | 
|  | 3246 | int32_t | 
|  | 3247 | e1000_validate_mdi_setting(struct e1000_hw *hw) | 
|  | 3248 | { | 
|  | 3249 | DEBUGFUNC("e1000_validate_mdi_settings"); | 
|  | 3250 |  | 
|  | 3251 | if(!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) { | 
|  | 3252 | DEBUGOUT("Invalid MDI setting detected\n"); | 
|  | 3253 | hw->mdix = 1; | 
|  | 3254 | return -E1000_ERR_CONFIG; | 
|  | 3255 | } | 
|  | 3256 | return E1000_SUCCESS; | 
|  | 3257 | } | 
|  | 3258 |  | 
|  | 3259 |  | 
|  | 3260 | /****************************************************************************** | 
|  | 3261 | * Sets up eeprom variables in the hw struct.  Must be called after mac_type | 
|  | 3262 | * is configured. | 
|  | 3263 | * | 
|  | 3264 | * hw - Struct containing variables accessed by shared code | 
|  | 3265 | *****************************************************************************/ | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3266 | int32_t | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3267 | e1000_init_eeprom_params(struct e1000_hw *hw) | 
|  | 3268 | { | 
|  | 3269 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 
|  | 3270 | uint32_t eecd = E1000_READ_REG(hw, EECD); | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3271 | int32_t ret_val = E1000_SUCCESS; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3272 | uint16_t eeprom_size; | 
|  | 3273 |  | 
|  | 3274 | DEBUGFUNC("e1000_init_eeprom_params"); | 
|  | 3275 |  | 
|  | 3276 | switch (hw->mac_type) { | 
|  | 3277 | case e1000_82542_rev2_0: | 
|  | 3278 | case e1000_82542_rev2_1: | 
|  | 3279 | case e1000_82543: | 
|  | 3280 | case e1000_82544: | 
|  | 3281 | eeprom->type = e1000_eeprom_microwire; | 
|  | 3282 | eeprom->word_size = 64; | 
|  | 3283 | eeprom->opcode_bits = 3; | 
|  | 3284 | eeprom->address_bits = 6; | 
|  | 3285 | eeprom->delay_usec = 50; | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3286 | eeprom->use_eerd = FALSE; | 
|  | 3287 | eeprom->use_eewr = FALSE; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3288 | break; | 
|  | 3289 | case e1000_82540: | 
|  | 3290 | case e1000_82545: | 
|  | 3291 | case e1000_82545_rev_3: | 
|  | 3292 | case e1000_82546: | 
|  | 3293 | case e1000_82546_rev_3: | 
|  | 3294 | eeprom->type = e1000_eeprom_microwire; | 
|  | 3295 | eeprom->opcode_bits = 3; | 
|  | 3296 | eeprom->delay_usec = 50; | 
|  | 3297 | if(eecd & E1000_EECD_SIZE) { | 
|  | 3298 | eeprom->word_size = 256; | 
|  | 3299 | eeprom->address_bits = 8; | 
|  | 3300 | } else { | 
|  | 3301 | eeprom->word_size = 64; | 
|  | 3302 | eeprom->address_bits = 6; | 
|  | 3303 | } | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3304 | eeprom->use_eerd = FALSE; | 
|  | 3305 | eeprom->use_eewr = FALSE; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3306 | break; | 
|  | 3307 | case e1000_82541: | 
|  | 3308 | case e1000_82541_rev_2: | 
|  | 3309 | case e1000_82547: | 
|  | 3310 | case e1000_82547_rev_2: | 
|  | 3311 | if (eecd & E1000_EECD_TYPE) { | 
|  | 3312 | eeprom->type = e1000_eeprom_spi; | 
|  | 3313 | eeprom->opcode_bits = 8; | 
|  | 3314 | eeprom->delay_usec = 1; | 
|  | 3315 | if (eecd & E1000_EECD_ADDR_BITS) { | 
|  | 3316 | eeprom->page_size = 32; | 
|  | 3317 | eeprom->address_bits = 16; | 
|  | 3318 | } else { | 
|  | 3319 | eeprom->page_size = 8; | 
|  | 3320 | eeprom->address_bits = 8; | 
|  | 3321 | } | 
|  | 3322 | } else { | 
|  | 3323 | eeprom->type = e1000_eeprom_microwire; | 
|  | 3324 | eeprom->opcode_bits = 3; | 
|  | 3325 | eeprom->delay_usec = 50; | 
|  | 3326 | if (eecd & E1000_EECD_ADDR_BITS) { | 
|  | 3327 | eeprom->word_size = 256; | 
|  | 3328 | eeprom->address_bits = 8; | 
|  | 3329 | } else { | 
|  | 3330 | eeprom->word_size = 64; | 
|  | 3331 | eeprom->address_bits = 6; | 
|  | 3332 | } | 
|  | 3333 | } | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3334 | eeprom->use_eerd = FALSE; | 
|  | 3335 | eeprom->use_eewr = FALSE; | 
|  | 3336 | break; | 
|  | 3337 | case e1000_82573: | 
|  | 3338 | eeprom->type = e1000_eeprom_spi; | 
|  | 3339 | eeprom->opcode_bits = 8; | 
|  | 3340 | eeprom->delay_usec = 1; | 
|  | 3341 | if (eecd & E1000_EECD_ADDR_BITS) { | 
|  | 3342 | eeprom->page_size = 32; | 
|  | 3343 | eeprom->address_bits = 16; | 
|  | 3344 | } else { | 
|  | 3345 | eeprom->page_size = 8; | 
|  | 3346 | eeprom->address_bits = 8; | 
|  | 3347 | } | 
|  | 3348 | eeprom->use_eerd = TRUE; | 
|  | 3349 | eeprom->use_eewr = TRUE; | 
|  | 3350 | if(e1000_is_onboard_nvm_eeprom(hw) == FALSE) { | 
|  | 3351 | eeprom->type = e1000_eeprom_flash; | 
|  | 3352 | eeprom->word_size = 2048; | 
|  | 3353 |  | 
|  | 3354 | /* Ensure that the Autonomous FLASH update bit is cleared due to | 
|  | 3355 | * Flash update issue on parts which use a FLASH for NVM. */ | 
|  | 3356 | eecd &= ~E1000_EECD_AUPDEN; | 
|  | 3357 | E1000_WRITE_REG(hw, EECD, eecd); | 
|  | 3358 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3359 | break; | 
|  | 3360 | default: | 
|  | 3361 | break; | 
|  | 3362 | } | 
|  | 3363 |  | 
|  | 3364 | if (eeprom->type == e1000_eeprom_spi) { | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3365 | /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to | 
|  | 3366 | * 32KB (incremented by powers of 2). | 
|  | 3367 | */ | 
|  | 3368 | if(hw->mac_type <= e1000_82547_rev_2) { | 
|  | 3369 | /* Set to default value for initial eeprom read. */ | 
|  | 3370 | eeprom->word_size = 64; | 
|  | 3371 | ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size); | 
|  | 3372 | if(ret_val) | 
|  | 3373 | return ret_val; | 
|  | 3374 | eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT; | 
|  | 3375 | /* 256B eeprom size was not supported in earlier hardware, so we | 
|  | 3376 | * bump eeprom_size up one to ensure that "1" (which maps to 256B) | 
|  | 3377 | * is never the result used in the shifting logic below. */ | 
|  | 3378 | if(eeprom_size) | 
|  | 3379 | eeprom_size++; | 
|  | 3380 | } else { | 
|  | 3381 | eeprom_size = (uint16_t)((eecd & E1000_EECD_SIZE_EX_MASK) >> | 
|  | 3382 | E1000_EECD_SIZE_EX_SHIFT); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3383 | } | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3384 |  | 
|  | 3385 | eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3386 | } | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3387 | return ret_val; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3388 | } | 
|  | 3389 |  | 
|  | 3390 | /****************************************************************************** | 
|  | 3391 | * Raises the EEPROM's clock input. | 
|  | 3392 | * | 
|  | 3393 | * hw - Struct containing variables accessed by shared code | 
|  | 3394 | * eecd - EECD's current value | 
|  | 3395 | *****************************************************************************/ | 
|  | 3396 | static void | 
|  | 3397 | e1000_raise_ee_clk(struct e1000_hw *hw, | 
|  | 3398 | uint32_t *eecd) | 
|  | 3399 | { | 
|  | 3400 | /* Raise the clock input to the EEPROM (by setting the SK bit), and then | 
|  | 3401 | * wait <delay> microseconds. | 
|  | 3402 | */ | 
|  | 3403 | *eecd = *eecd | E1000_EECD_SK; | 
|  | 3404 | E1000_WRITE_REG(hw, EECD, *eecd); | 
|  | 3405 | E1000_WRITE_FLUSH(hw); | 
|  | 3406 | udelay(hw->eeprom.delay_usec); | 
|  | 3407 | } | 
|  | 3408 |  | 
|  | 3409 | /****************************************************************************** | 
|  | 3410 | * Lowers the EEPROM's clock input. | 
|  | 3411 | * | 
|  | 3412 | * hw - Struct containing variables accessed by shared code | 
|  | 3413 | * eecd - EECD's current value | 
|  | 3414 | *****************************************************************************/ | 
|  | 3415 | static void | 
|  | 3416 | e1000_lower_ee_clk(struct e1000_hw *hw, | 
|  | 3417 | uint32_t *eecd) | 
|  | 3418 | { | 
|  | 3419 | /* Lower the clock input to the EEPROM (by clearing the SK bit), and then | 
|  | 3420 | * wait 50 microseconds. | 
|  | 3421 | */ | 
|  | 3422 | *eecd = *eecd & ~E1000_EECD_SK; | 
|  | 3423 | E1000_WRITE_REG(hw, EECD, *eecd); | 
|  | 3424 | E1000_WRITE_FLUSH(hw); | 
|  | 3425 | udelay(hw->eeprom.delay_usec); | 
|  | 3426 | } | 
|  | 3427 |  | 
|  | 3428 | /****************************************************************************** | 
|  | 3429 | * Shift data bits out to the EEPROM. | 
|  | 3430 | * | 
|  | 3431 | * hw - Struct containing variables accessed by shared code | 
|  | 3432 | * data - data to send to the EEPROM | 
|  | 3433 | * count - number of bits to shift out | 
|  | 3434 | *****************************************************************************/ | 
|  | 3435 | static void | 
|  | 3436 | e1000_shift_out_ee_bits(struct e1000_hw *hw, | 
|  | 3437 | uint16_t data, | 
|  | 3438 | uint16_t count) | 
|  | 3439 | { | 
|  | 3440 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 
|  | 3441 | uint32_t eecd; | 
|  | 3442 | uint32_t mask; | 
|  | 3443 |  | 
|  | 3444 | /* We need to shift "count" bits out to the EEPROM. So, value in the | 
|  | 3445 | * "data" parameter will be shifted out to the EEPROM one bit at a time. | 
|  | 3446 | * In order to do this, "data" must be broken down into bits. | 
|  | 3447 | */ | 
|  | 3448 | mask = 0x01 << (count - 1); | 
|  | 3449 | eecd = E1000_READ_REG(hw, EECD); | 
|  | 3450 | if (eeprom->type == e1000_eeprom_microwire) { | 
|  | 3451 | eecd &= ~E1000_EECD_DO; | 
|  | 3452 | } else if (eeprom->type == e1000_eeprom_spi) { | 
|  | 3453 | eecd |= E1000_EECD_DO; | 
|  | 3454 | } | 
|  | 3455 | do { | 
|  | 3456 | /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1", | 
|  | 3457 | * and then raising and then lowering the clock (the SK bit controls | 
|  | 3458 | * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM | 
|  | 3459 | * by setting "DI" to "0" and then raising and then lowering the clock. | 
|  | 3460 | */ | 
|  | 3461 | eecd &= ~E1000_EECD_DI; | 
|  | 3462 |  | 
|  | 3463 | if(data & mask) | 
|  | 3464 | eecd |= E1000_EECD_DI; | 
|  | 3465 |  | 
|  | 3466 | E1000_WRITE_REG(hw, EECD, eecd); | 
|  | 3467 | E1000_WRITE_FLUSH(hw); | 
|  | 3468 |  | 
|  | 3469 | udelay(eeprom->delay_usec); | 
|  | 3470 |  | 
|  | 3471 | e1000_raise_ee_clk(hw, &eecd); | 
|  | 3472 | e1000_lower_ee_clk(hw, &eecd); | 
|  | 3473 |  | 
|  | 3474 | mask = mask >> 1; | 
|  | 3475 |  | 
|  | 3476 | } while(mask); | 
|  | 3477 |  | 
|  | 3478 | /* We leave the "DI" bit set to "0" when we leave this routine. */ | 
|  | 3479 | eecd &= ~E1000_EECD_DI; | 
|  | 3480 | E1000_WRITE_REG(hw, EECD, eecd); | 
|  | 3481 | } | 
|  | 3482 |  | 
|  | 3483 | /****************************************************************************** | 
|  | 3484 | * Shift data bits in from the EEPROM | 
|  | 3485 | * | 
|  | 3486 | * hw - Struct containing variables accessed by shared code | 
|  | 3487 | *****************************************************************************/ | 
|  | 3488 | static uint16_t | 
|  | 3489 | e1000_shift_in_ee_bits(struct e1000_hw *hw, | 
|  | 3490 | uint16_t count) | 
|  | 3491 | { | 
|  | 3492 | uint32_t eecd; | 
|  | 3493 | uint32_t i; | 
|  | 3494 | uint16_t data; | 
|  | 3495 |  | 
|  | 3496 | /* In order to read a register from the EEPROM, we need to shift 'count' | 
|  | 3497 | * bits in from the EEPROM. Bits are "shifted in" by raising the clock | 
|  | 3498 | * input to the EEPROM (setting the SK bit), and then reading the value of | 
|  | 3499 | * the "DO" bit.  During this "shifting in" process the "DI" bit should | 
|  | 3500 | * always be clear. | 
|  | 3501 | */ | 
|  | 3502 |  | 
|  | 3503 | eecd = E1000_READ_REG(hw, EECD); | 
|  | 3504 |  | 
|  | 3505 | eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); | 
|  | 3506 | data = 0; | 
|  | 3507 |  | 
|  | 3508 | for(i = 0; i < count; i++) { | 
|  | 3509 | data = data << 1; | 
|  | 3510 | e1000_raise_ee_clk(hw, &eecd); | 
|  | 3511 |  | 
|  | 3512 | eecd = E1000_READ_REG(hw, EECD); | 
|  | 3513 |  | 
|  | 3514 | eecd &= ~(E1000_EECD_DI); | 
|  | 3515 | if(eecd & E1000_EECD_DO) | 
|  | 3516 | data |= 1; | 
|  | 3517 |  | 
|  | 3518 | e1000_lower_ee_clk(hw, &eecd); | 
|  | 3519 | } | 
|  | 3520 |  | 
|  | 3521 | return data; | 
|  | 3522 | } | 
|  | 3523 |  | 
|  | 3524 | /****************************************************************************** | 
|  | 3525 | * Prepares EEPROM for access | 
|  | 3526 | * | 
|  | 3527 | * hw - Struct containing variables accessed by shared code | 
|  | 3528 | * | 
|  | 3529 | * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This | 
|  | 3530 | * function should be called before issuing a command to the EEPROM. | 
|  | 3531 | *****************************************************************************/ | 
|  | 3532 | static int32_t | 
|  | 3533 | e1000_acquire_eeprom(struct e1000_hw *hw) | 
|  | 3534 | { | 
|  | 3535 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 
|  | 3536 | uint32_t eecd, i=0; | 
|  | 3537 |  | 
|  | 3538 | DEBUGFUNC("e1000_acquire_eeprom"); | 
|  | 3539 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3540 | if(e1000_get_hw_eeprom_semaphore(hw)) | 
|  | 3541 | return -E1000_ERR_EEPROM; | 
|  | 3542 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3543 | eecd = E1000_READ_REG(hw, EECD); | 
|  | 3544 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3545 | if (hw->mac_type != e1000_82573) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3546 | /* Request EEPROM Access */ | 
|  | 3547 | if(hw->mac_type > e1000_82544) { | 
|  | 3548 | eecd |= E1000_EECD_REQ; | 
|  | 3549 | E1000_WRITE_REG(hw, EECD, eecd); | 
|  | 3550 | eecd = E1000_READ_REG(hw, EECD); | 
|  | 3551 | while((!(eecd & E1000_EECD_GNT)) && | 
|  | 3552 | (i < E1000_EEPROM_GRANT_ATTEMPTS)) { | 
|  | 3553 | i++; | 
|  | 3554 | udelay(5); | 
|  | 3555 | eecd = E1000_READ_REG(hw, EECD); | 
|  | 3556 | } | 
|  | 3557 | if(!(eecd & E1000_EECD_GNT)) { | 
|  | 3558 | eecd &= ~E1000_EECD_REQ; | 
|  | 3559 | E1000_WRITE_REG(hw, EECD, eecd); | 
|  | 3560 | DEBUGOUT("Could not acquire EEPROM grant\n"); | 
|  | 3561 | return -E1000_ERR_EEPROM; | 
|  | 3562 | } | 
|  | 3563 | } | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3564 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3565 |  | 
|  | 3566 | /* Setup EEPROM for Read/Write */ | 
|  | 3567 |  | 
|  | 3568 | if (eeprom->type == e1000_eeprom_microwire) { | 
|  | 3569 | /* Clear SK and DI */ | 
|  | 3570 | eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); | 
|  | 3571 | E1000_WRITE_REG(hw, EECD, eecd); | 
|  | 3572 |  | 
|  | 3573 | /* Set CS */ | 
|  | 3574 | eecd |= E1000_EECD_CS; | 
|  | 3575 | E1000_WRITE_REG(hw, EECD, eecd); | 
|  | 3576 | } else if (eeprom->type == e1000_eeprom_spi) { | 
|  | 3577 | /* Clear SK and CS */ | 
|  | 3578 | eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); | 
|  | 3579 | E1000_WRITE_REG(hw, EECD, eecd); | 
|  | 3580 | udelay(1); | 
|  | 3581 | } | 
|  | 3582 |  | 
|  | 3583 | return E1000_SUCCESS; | 
|  | 3584 | } | 
|  | 3585 |  | 
|  | 3586 | /****************************************************************************** | 
|  | 3587 | * Returns EEPROM to a "standby" state | 
|  | 3588 | * | 
|  | 3589 | * hw - Struct containing variables accessed by shared code | 
|  | 3590 | *****************************************************************************/ | 
|  | 3591 | static void | 
|  | 3592 | e1000_standby_eeprom(struct e1000_hw *hw) | 
|  | 3593 | { | 
|  | 3594 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 
|  | 3595 | uint32_t eecd; | 
|  | 3596 |  | 
|  | 3597 | eecd = E1000_READ_REG(hw, EECD); | 
|  | 3598 |  | 
|  | 3599 | if(eeprom->type == e1000_eeprom_microwire) { | 
|  | 3600 | eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); | 
|  | 3601 | E1000_WRITE_REG(hw, EECD, eecd); | 
|  | 3602 | E1000_WRITE_FLUSH(hw); | 
|  | 3603 | udelay(eeprom->delay_usec); | 
|  | 3604 |  | 
|  | 3605 | /* Clock high */ | 
|  | 3606 | eecd |= E1000_EECD_SK; | 
|  | 3607 | E1000_WRITE_REG(hw, EECD, eecd); | 
|  | 3608 | E1000_WRITE_FLUSH(hw); | 
|  | 3609 | udelay(eeprom->delay_usec); | 
|  | 3610 |  | 
|  | 3611 | /* Select EEPROM */ | 
|  | 3612 | eecd |= E1000_EECD_CS; | 
|  | 3613 | E1000_WRITE_REG(hw, EECD, eecd); | 
|  | 3614 | E1000_WRITE_FLUSH(hw); | 
|  | 3615 | udelay(eeprom->delay_usec); | 
|  | 3616 |  | 
|  | 3617 | /* Clock low */ | 
|  | 3618 | eecd &= ~E1000_EECD_SK; | 
|  | 3619 | E1000_WRITE_REG(hw, EECD, eecd); | 
|  | 3620 | E1000_WRITE_FLUSH(hw); | 
|  | 3621 | udelay(eeprom->delay_usec); | 
|  | 3622 | } else if(eeprom->type == e1000_eeprom_spi) { | 
|  | 3623 | /* Toggle CS to flush commands */ | 
|  | 3624 | eecd |= E1000_EECD_CS; | 
|  | 3625 | E1000_WRITE_REG(hw, EECD, eecd); | 
|  | 3626 | E1000_WRITE_FLUSH(hw); | 
|  | 3627 | udelay(eeprom->delay_usec); | 
|  | 3628 | eecd &= ~E1000_EECD_CS; | 
|  | 3629 | E1000_WRITE_REG(hw, EECD, eecd); | 
|  | 3630 | E1000_WRITE_FLUSH(hw); | 
|  | 3631 | udelay(eeprom->delay_usec); | 
|  | 3632 | } | 
|  | 3633 | } | 
|  | 3634 |  | 
|  | 3635 | /****************************************************************************** | 
|  | 3636 | * Terminates a command by inverting the EEPROM's chip select pin | 
|  | 3637 | * | 
|  | 3638 | * hw - Struct containing variables accessed by shared code | 
|  | 3639 | *****************************************************************************/ | 
|  | 3640 | static void | 
|  | 3641 | e1000_release_eeprom(struct e1000_hw *hw) | 
|  | 3642 | { | 
|  | 3643 | uint32_t eecd; | 
|  | 3644 |  | 
|  | 3645 | DEBUGFUNC("e1000_release_eeprom"); | 
|  | 3646 |  | 
|  | 3647 | eecd = E1000_READ_REG(hw, EECD); | 
|  | 3648 |  | 
|  | 3649 | if (hw->eeprom.type == e1000_eeprom_spi) { | 
|  | 3650 | eecd |= E1000_EECD_CS;  /* Pull CS high */ | 
|  | 3651 | eecd &= ~E1000_EECD_SK; /* Lower SCK */ | 
|  | 3652 |  | 
|  | 3653 | E1000_WRITE_REG(hw, EECD, eecd); | 
|  | 3654 |  | 
|  | 3655 | udelay(hw->eeprom.delay_usec); | 
|  | 3656 | } else if(hw->eeprom.type == e1000_eeprom_microwire) { | 
|  | 3657 | /* cleanup eeprom */ | 
|  | 3658 |  | 
|  | 3659 | /* CS on Microwire is active-high */ | 
|  | 3660 | eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); | 
|  | 3661 |  | 
|  | 3662 | E1000_WRITE_REG(hw, EECD, eecd); | 
|  | 3663 |  | 
|  | 3664 | /* Rising edge of clock */ | 
|  | 3665 | eecd |= E1000_EECD_SK; | 
|  | 3666 | E1000_WRITE_REG(hw, EECD, eecd); | 
|  | 3667 | E1000_WRITE_FLUSH(hw); | 
|  | 3668 | udelay(hw->eeprom.delay_usec); | 
|  | 3669 |  | 
|  | 3670 | /* Falling edge of clock */ | 
|  | 3671 | eecd &= ~E1000_EECD_SK; | 
|  | 3672 | E1000_WRITE_REG(hw, EECD, eecd); | 
|  | 3673 | E1000_WRITE_FLUSH(hw); | 
|  | 3674 | udelay(hw->eeprom.delay_usec); | 
|  | 3675 | } | 
|  | 3676 |  | 
|  | 3677 | /* Stop requesting EEPROM access */ | 
|  | 3678 | if(hw->mac_type > e1000_82544) { | 
|  | 3679 | eecd &= ~E1000_EECD_REQ; | 
|  | 3680 | E1000_WRITE_REG(hw, EECD, eecd); | 
|  | 3681 | } | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3682 |  | 
|  | 3683 | e1000_put_hw_eeprom_semaphore(hw); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3684 | } | 
|  | 3685 |  | 
|  | 3686 | /****************************************************************************** | 
|  | 3687 | * Reads a 16 bit word from the EEPROM. | 
|  | 3688 | * | 
|  | 3689 | * hw - Struct containing variables accessed by shared code | 
|  | 3690 | *****************************************************************************/ | 
|  | 3691 | int32_t | 
|  | 3692 | e1000_spi_eeprom_ready(struct e1000_hw *hw) | 
|  | 3693 | { | 
|  | 3694 | uint16_t retry_count = 0; | 
|  | 3695 | uint8_t spi_stat_reg; | 
|  | 3696 |  | 
|  | 3697 | DEBUGFUNC("e1000_spi_eeprom_ready"); | 
|  | 3698 |  | 
|  | 3699 | /* Read "Status Register" repeatedly until the LSB is cleared.  The | 
|  | 3700 | * EEPROM will signal that the command has been completed by clearing | 
|  | 3701 | * bit 0 of the internal status register.  If it's not cleared within | 
|  | 3702 | * 5 milliseconds, then error out. | 
|  | 3703 | */ | 
|  | 3704 | retry_count = 0; | 
|  | 3705 | do { | 
|  | 3706 | e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI, | 
|  | 3707 | hw->eeprom.opcode_bits); | 
|  | 3708 | spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8); | 
|  | 3709 | if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI)) | 
|  | 3710 | break; | 
|  | 3711 |  | 
|  | 3712 | udelay(5); | 
|  | 3713 | retry_count += 5; | 
|  | 3714 |  | 
|  | 3715 | e1000_standby_eeprom(hw); | 
|  | 3716 | } while(retry_count < EEPROM_MAX_RETRY_SPI); | 
|  | 3717 |  | 
|  | 3718 | /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and | 
|  | 3719 | * only 0-5mSec on 5V devices) | 
|  | 3720 | */ | 
|  | 3721 | if(retry_count >= EEPROM_MAX_RETRY_SPI) { | 
|  | 3722 | DEBUGOUT("SPI EEPROM Status error\n"); | 
|  | 3723 | return -E1000_ERR_EEPROM; | 
|  | 3724 | } | 
|  | 3725 |  | 
|  | 3726 | return E1000_SUCCESS; | 
|  | 3727 | } | 
|  | 3728 |  | 
|  | 3729 | /****************************************************************************** | 
|  | 3730 | * Reads a 16 bit word from the EEPROM. | 
|  | 3731 | * | 
|  | 3732 | * hw - Struct containing variables accessed by shared code | 
|  | 3733 | * offset - offset of  word in the EEPROM to read | 
|  | 3734 | * data - word read from the EEPROM | 
|  | 3735 | * words - number of words to read | 
|  | 3736 | *****************************************************************************/ | 
|  | 3737 | int32_t | 
|  | 3738 | e1000_read_eeprom(struct e1000_hw *hw, | 
|  | 3739 | uint16_t offset, | 
|  | 3740 | uint16_t words, | 
|  | 3741 | uint16_t *data) | 
|  | 3742 | { | 
|  | 3743 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 
|  | 3744 | uint32_t i = 0; | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3745 | int32_t ret_val; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3746 |  | 
|  | 3747 | DEBUGFUNC("e1000_read_eeprom"); | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3748 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3749 | /* A check for invalid values:  offset too large, too many words, and not | 
|  | 3750 | * enough words. | 
|  | 3751 | */ | 
|  | 3752 | if((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) || | 
|  | 3753 | (words == 0)) { | 
|  | 3754 | DEBUGOUT("\"words\" parameter out of bounds\n"); | 
|  | 3755 | return -E1000_ERR_EEPROM; | 
|  | 3756 | } | 
|  | 3757 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3758 | /* FLASH reads without acquiring the semaphore are safe in 82573-based | 
|  | 3759 | * controllers. | 
|  | 3760 | */ | 
|  | 3761 | if ((e1000_is_onboard_nvm_eeprom(hw) == TRUE) || | 
|  | 3762 | (hw->mac_type != e1000_82573)) { | 
|  | 3763 | /* Prepare the EEPROM for reading  */ | 
|  | 3764 | if(e1000_acquire_eeprom(hw) != E1000_SUCCESS) | 
|  | 3765 | return -E1000_ERR_EEPROM; | 
|  | 3766 | } | 
|  | 3767 |  | 
|  | 3768 | if(eeprom->use_eerd == TRUE) { | 
|  | 3769 | ret_val = e1000_read_eeprom_eerd(hw, offset, words, data); | 
|  | 3770 | if ((e1000_is_onboard_nvm_eeprom(hw) == TRUE) || | 
|  | 3771 | (hw->mac_type != e1000_82573)) | 
|  | 3772 | e1000_release_eeprom(hw); | 
|  | 3773 | return ret_val; | 
|  | 3774 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3775 |  | 
|  | 3776 | if(eeprom->type == e1000_eeprom_spi) { | 
|  | 3777 | uint16_t word_in; | 
|  | 3778 | uint8_t read_opcode = EEPROM_READ_OPCODE_SPI; | 
|  | 3779 |  | 
|  | 3780 | if(e1000_spi_eeprom_ready(hw)) { | 
|  | 3781 | e1000_release_eeprom(hw); | 
|  | 3782 | return -E1000_ERR_EEPROM; | 
|  | 3783 | } | 
|  | 3784 |  | 
|  | 3785 | e1000_standby_eeprom(hw); | 
|  | 3786 |  | 
|  | 3787 | /* Some SPI eeproms use the 8th address bit embedded in the opcode */ | 
|  | 3788 | if((eeprom->address_bits == 8) && (offset >= 128)) | 
|  | 3789 | read_opcode |= EEPROM_A8_OPCODE_SPI; | 
|  | 3790 |  | 
|  | 3791 | /* Send the READ command (opcode + addr)  */ | 
|  | 3792 | e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits); | 
|  | 3793 | e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2), eeprom->address_bits); | 
|  | 3794 |  | 
|  | 3795 | /* Read the data.  The address of the eeprom internally increments with | 
|  | 3796 | * each byte (spi) being read, saving on the overhead of eeprom setup | 
|  | 3797 | * and tear-down.  The address counter will roll over if reading beyond | 
|  | 3798 | * the size of the eeprom, thus allowing the entire memory to be read | 
|  | 3799 | * starting from any offset. */ | 
|  | 3800 | for (i = 0; i < words; i++) { | 
|  | 3801 | word_in = e1000_shift_in_ee_bits(hw, 16); | 
|  | 3802 | data[i] = (word_in >> 8) | (word_in << 8); | 
|  | 3803 | } | 
|  | 3804 | } else if(eeprom->type == e1000_eeprom_microwire) { | 
|  | 3805 | for (i = 0; i < words; i++) { | 
|  | 3806 | /* Send the READ command (opcode + addr)  */ | 
|  | 3807 | e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE, | 
|  | 3808 | eeprom->opcode_bits); | 
|  | 3809 | e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i), | 
|  | 3810 | eeprom->address_bits); | 
|  | 3811 |  | 
|  | 3812 | /* Read the data.  For microwire, each word requires the overhead | 
|  | 3813 | * of eeprom setup and tear-down. */ | 
|  | 3814 | data[i] = e1000_shift_in_ee_bits(hw, 16); | 
|  | 3815 | e1000_standby_eeprom(hw); | 
|  | 3816 | } | 
|  | 3817 | } | 
|  | 3818 |  | 
|  | 3819 | /* End this read operation */ | 
|  | 3820 | e1000_release_eeprom(hw); | 
|  | 3821 |  | 
|  | 3822 | return E1000_SUCCESS; | 
|  | 3823 | } | 
|  | 3824 |  | 
|  | 3825 | /****************************************************************************** | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3826 | * Reads a 16 bit word from the EEPROM using the EERD register. | 
|  | 3827 | * | 
|  | 3828 | * hw - Struct containing variables accessed by shared code | 
|  | 3829 | * offset - offset of  word in the EEPROM to read | 
|  | 3830 | * data - word read from the EEPROM | 
|  | 3831 | * words - number of words to read | 
|  | 3832 | *****************************************************************************/ | 
|  | 3833 | int32_t | 
|  | 3834 | e1000_read_eeprom_eerd(struct e1000_hw *hw, | 
|  | 3835 | uint16_t offset, | 
|  | 3836 | uint16_t words, | 
|  | 3837 | uint16_t *data) | 
|  | 3838 | { | 
|  | 3839 | uint32_t i, eerd = 0; | 
|  | 3840 | int32_t error = 0; | 
|  | 3841 |  | 
|  | 3842 | for (i = 0; i < words; i++) { | 
|  | 3843 | eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) + | 
|  | 3844 | E1000_EEPROM_RW_REG_START; | 
|  | 3845 |  | 
|  | 3846 | E1000_WRITE_REG(hw, EERD, eerd); | 
|  | 3847 | error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ); | 
|  | 3848 |  | 
|  | 3849 | if(error) { | 
|  | 3850 | break; | 
|  | 3851 | } | 
|  | 3852 | data[i] = (E1000_READ_REG(hw, EERD) >> E1000_EEPROM_RW_REG_DATA); | 
|  | 3853 |  | 
|  | 3854 | } | 
|  | 3855 |  | 
|  | 3856 | return error; | 
|  | 3857 | } | 
|  | 3858 |  | 
|  | 3859 | /****************************************************************************** | 
|  | 3860 | * Writes a 16 bit word from the EEPROM using the EEWR register. | 
|  | 3861 | * | 
|  | 3862 | * hw - Struct containing variables accessed by shared code | 
|  | 3863 | * offset - offset of  word in the EEPROM to read | 
|  | 3864 | * data - word read from the EEPROM | 
|  | 3865 | * words - number of words to read | 
|  | 3866 | *****************************************************************************/ | 
|  | 3867 | int32_t | 
|  | 3868 | e1000_write_eeprom_eewr(struct e1000_hw *hw, | 
|  | 3869 | uint16_t offset, | 
|  | 3870 | uint16_t words, | 
|  | 3871 | uint16_t *data) | 
|  | 3872 | { | 
|  | 3873 | uint32_t    register_value = 0; | 
|  | 3874 | uint32_t    i              = 0; | 
|  | 3875 | int32_t     error          = 0; | 
|  | 3876 |  | 
|  | 3877 | for (i = 0; i < words; i++) { | 
|  | 3878 | register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) | | 
|  | 3879 | ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) | | 
|  | 3880 | E1000_EEPROM_RW_REG_START; | 
|  | 3881 |  | 
|  | 3882 | error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE); | 
|  | 3883 | if(error) { | 
|  | 3884 | break; | 
|  | 3885 | } | 
|  | 3886 |  | 
|  | 3887 | E1000_WRITE_REG(hw, EEWR, register_value); | 
|  | 3888 |  | 
|  | 3889 | error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE); | 
|  | 3890 |  | 
|  | 3891 | if(error) { | 
|  | 3892 | break; | 
|  | 3893 | } | 
|  | 3894 | } | 
|  | 3895 |  | 
|  | 3896 | return error; | 
|  | 3897 | } | 
|  | 3898 |  | 
|  | 3899 | /****************************************************************************** | 
|  | 3900 | * Polls the status bit (bit 1) of the EERD to determine when the read is done. | 
|  | 3901 | * | 
|  | 3902 | * hw - Struct containing variables accessed by shared code | 
|  | 3903 | *****************************************************************************/ | 
|  | 3904 | int32_t | 
|  | 3905 | e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd) | 
|  | 3906 | { | 
|  | 3907 | uint32_t attempts = 100000; | 
|  | 3908 | uint32_t i, reg = 0; | 
|  | 3909 | int32_t done = E1000_ERR_EEPROM; | 
|  | 3910 |  | 
|  | 3911 | for(i = 0; i < attempts; i++) { | 
|  | 3912 | if(eerd == E1000_EEPROM_POLL_READ) | 
|  | 3913 | reg = E1000_READ_REG(hw, EERD); | 
|  | 3914 | else | 
|  | 3915 | reg = E1000_READ_REG(hw, EEWR); | 
|  | 3916 |  | 
|  | 3917 | if(reg & E1000_EEPROM_RW_REG_DONE) { | 
|  | 3918 | done = E1000_SUCCESS; | 
|  | 3919 | break; | 
|  | 3920 | } | 
|  | 3921 | udelay(5); | 
|  | 3922 | } | 
|  | 3923 |  | 
|  | 3924 | return done; | 
|  | 3925 | } | 
|  | 3926 |  | 
|  | 3927 | /*************************************************************************** | 
|  | 3928 | * Description:     Determines if the onboard NVM is FLASH or EEPROM. | 
|  | 3929 | * | 
|  | 3930 | * hw - Struct containing variables accessed by shared code | 
|  | 3931 | ****************************************************************************/ | 
|  | 3932 | boolean_t | 
|  | 3933 | e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw) | 
|  | 3934 | { | 
|  | 3935 | uint32_t eecd = 0; | 
|  | 3936 |  | 
|  | 3937 | if(hw->mac_type == e1000_82573) { | 
|  | 3938 | eecd = E1000_READ_REG(hw, EECD); | 
|  | 3939 |  | 
|  | 3940 | /* Isolate bits 15 & 16 */ | 
|  | 3941 | eecd = ((eecd >> 15) & 0x03); | 
|  | 3942 |  | 
|  | 3943 | /* If both bits are set, device is Flash type */ | 
|  | 3944 | if(eecd == 0x03) { | 
|  | 3945 | return FALSE; | 
|  | 3946 | } | 
|  | 3947 | } | 
|  | 3948 | return TRUE; | 
|  | 3949 | } | 
|  | 3950 |  | 
|  | 3951 | /****************************************************************************** | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3952 | * Verifies that the EEPROM has a valid checksum | 
|  | 3953 | * | 
|  | 3954 | * hw - Struct containing variables accessed by shared code | 
|  | 3955 | * | 
|  | 3956 | * Reads the first 64 16 bit words of the EEPROM and sums the values read. | 
|  | 3957 | * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is | 
|  | 3958 | * valid. | 
|  | 3959 | *****************************************************************************/ | 
|  | 3960 | int32_t | 
|  | 3961 | e1000_validate_eeprom_checksum(struct e1000_hw *hw) | 
|  | 3962 | { | 
|  | 3963 | uint16_t checksum = 0; | 
|  | 3964 | uint16_t i, eeprom_data; | 
|  | 3965 |  | 
|  | 3966 | DEBUGFUNC("e1000_validate_eeprom_checksum"); | 
|  | 3967 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3968 | if ((hw->mac_type == e1000_82573) && | 
|  | 3969 | (e1000_is_onboard_nvm_eeprom(hw) == FALSE)) { | 
|  | 3970 | /* Check bit 4 of word 10h.  If it is 0, firmware is done updating | 
|  | 3971 | * 10h-12h.  Checksum may need to be fixed. */ | 
|  | 3972 | e1000_read_eeprom(hw, 0x10, 1, &eeprom_data); | 
|  | 3973 | if ((eeprom_data & 0x10) == 0) { | 
|  | 3974 | /* Read 0x23 and check bit 15.  This bit is a 1 when the checksum | 
|  | 3975 | * has already been fixed.  If the checksum is still wrong and this | 
|  | 3976 | * bit is a 1, we need to return bad checksum.  Otherwise, we need | 
|  | 3977 | * to set this bit to a 1 and update the checksum. */ | 
|  | 3978 | e1000_read_eeprom(hw, 0x23, 1, &eeprom_data); | 
|  | 3979 | if ((eeprom_data & 0x8000) == 0) { | 
|  | 3980 | eeprom_data |= 0x8000; | 
|  | 3981 | e1000_write_eeprom(hw, 0x23, 1, &eeprom_data); | 
|  | 3982 | e1000_update_eeprom_checksum(hw); | 
|  | 3983 | } | 
|  | 3984 | } | 
|  | 3985 | } | 
|  | 3986 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3987 | for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { | 
|  | 3988 | if(e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { | 
|  | 3989 | DEBUGOUT("EEPROM Read Error\n"); | 
|  | 3990 | return -E1000_ERR_EEPROM; | 
|  | 3991 | } | 
|  | 3992 | checksum += eeprom_data; | 
|  | 3993 | } | 
|  | 3994 |  | 
|  | 3995 | if(checksum == (uint16_t) EEPROM_SUM) | 
|  | 3996 | return E1000_SUCCESS; | 
|  | 3997 | else { | 
|  | 3998 | DEBUGOUT("EEPROM Checksum Invalid\n"); | 
|  | 3999 | return -E1000_ERR_EEPROM; | 
|  | 4000 | } | 
|  | 4001 | } | 
|  | 4002 |  | 
|  | 4003 | /****************************************************************************** | 
|  | 4004 | * Calculates the EEPROM checksum and writes it to the EEPROM | 
|  | 4005 | * | 
|  | 4006 | * hw - Struct containing variables accessed by shared code | 
|  | 4007 | * | 
|  | 4008 | * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA. | 
|  | 4009 | * Writes the difference to word offset 63 of the EEPROM. | 
|  | 4010 | *****************************************************************************/ | 
|  | 4011 | int32_t | 
|  | 4012 | e1000_update_eeprom_checksum(struct e1000_hw *hw) | 
|  | 4013 | { | 
|  | 4014 | uint16_t checksum = 0; | 
|  | 4015 | uint16_t i, eeprom_data; | 
|  | 4016 |  | 
|  | 4017 | DEBUGFUNC("e1000_update_eeprom_checksum"); | 
|  | 4018 |  | 
|  | 4019 | for(i = 0; i < EEPROM_CHECKSUM_REG; i++) { | 
|  | 4020 | if(e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { | 
|  | 4021 | DEBUGOUT("EEPROM Read Error\n"); | 
|  | 4022 | return -E1000_ERR_EEPROM; | 
|  | 4023 | } | 
|  | 4024 | checksum += eeprom_data; | 
|  | 4025 | } | 
|  | 4026 | checksum = (uint16_t) EEPROM_SUM - checksum; | 
|  | 4027 | if(e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) { | 
|  | 4028 | DEBUGOUT("EEPROM Write Error\n"); | 
|  | 4029 | return -E1000_ERR_EEPROM; | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4030 | } else if (hw->eeprom.type == e1000_eeprom_flash) { | 
|  | 4031 | e1000_commit_shadow_ram(hw); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4032 | } | 
|  | 4033 | return E1000_SUCCESS; | 
|  | 4034 | } | 
|  | 4035 |  | 
|  | 4036 | /****************************************************************************** | 
|  | 4037 | * Parent function for writing words to the different EEPROM types. | 
|  | 4038 | * | 
|  | 4039 | * hw - Struct containing variables accessed by shared code | 
|  | 4040 | * offset - offset within the EEPROM to be written to | 
|  | 4041 | * words - number of words to write | 
|  | 4042 | * data - 16 bit word to be written to the EEPROM | 
|  | 4043 | * | 
|  | 4044 | * If e1000_update_eeprom_checksum is not called after this function, the | 
|  | 4045 | * EEPROM will most likely contain an invalid checksum. | 
|  | 4046 | *****************************************************************************/ | 
|  | 4047 | int32_t | 
|  | 4048 | e1000_write_eeprom(struct e1000_hw *hw, | 
|  | 4049 | uint16_t offset, | 
|  | 4050 | uint16_t words, | 
|  | 4051 | uint16_t *data) | 
|  | 4052 | { | 
|  | 4053 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 
|  | 4054 | int32_t status = 0; | 
|  | 4055 |  | 
|  | 4056 | DEBUGFUNC("e1000_write_eeprom"); | 
|  | 4057 |  | 
|  | 4058 | /* A check for invalid values:  offset too large, too many words, and not | 
|  | 4059 | * enough words. | 
|  | 4060 | */ | 
|  | 4061 | if((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) || | 
|  | 4062 | (words == 0)) { | 
|  | 4063 | DEBUGOUT("\"words\" parameter out of bounds\n"); | 
|  | 4064 | return -E1000_ERR_EEPROM; | 
|  | 4065 | } | 
|  | 4066 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4067 | /* 82573 reads only through eerd */ | 
|  | 4068 | if(eeprom->use_eewr == TRUE) | 
|  | 4069 | return e1000_write_eeprom_eewr(hw, offset, words, data); | 
|  | 4070 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4071 | /* Prepare the EEPROM for writing  */ | 
|  | 4072 | if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) | 
|  | 4073 | return -E1000_ERR_EEPROM; | 
|  | 4074 |  | 
|  | 4075 | if(eeprom->type == e1000_eeprom_microwire) { | 
|  | 4076 | status = e1000_write_eeprom_microwire(hw, offset, words, data); | 
|  | 4077 | } else { | 
|  | 4078 | status = e1000_write_eeprom_spi(hw, offset, words, data); | 
|  | 4079 | msec_delay(10); | 
|  | 4080 | } | 
|  | 4081 |  | 
|  | 4082 | /* Done with writing */ | 
|  | 4083 | e1000_release_eeprom(hw); | 
|  | 4084 |  | 
|  | 4085 | return status; | 
|  | 4086 | } | 
|  | 4087 |  | 
|  | 4088 | /****************************************************************************** | 
|  | 4089 | * Writes a 16 bit word to a given offset in an SPI EEPROM. | 
|  | 4090 | * | 
|  | 4091 | * hw - Struct containing variables accessed by shared code | 
|  | 4092 | * offset - offset within the EEPROM to be written to | 
|  | 4093 | * words - number of words to write | 
|  | 4094 | * data - pointer to array of 8 bit words to be written to the EEPROM | 
|  | 4095 | * | 
|  | 4096 | *****************************************************************************/ | 
|  | 4097 | int32_t | 
|  | 4098 | e1000_write_eeprom_spi(struct e1000_hw *hw, | 
|  | 4099 | uint16_t offset, | 
|  | 4100 | uint16_t words, | 
|  | 4101 | uint16_t *data) | 
|  | 4102 | { | 
|  | 4103 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 
|  | 4104 | uint16_t widx = 0; | 
|  | 4105 |  | 
|  | 4106 | DEBUGFUNC("e1000_write_eeprom_spi"); | 
|  | 4107 |  | 
|  | 4108 | while (widx < words) { | 
|  | 4109 | uint8_t write_opcode = EEPROM_WRITE_OPCODE_SPI; | 
|  | 4110 |  | 
|  | 4111 | if(e1000_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM; | 
|  | 4112 |  | 
|  | 4113 | e1000_standby_eeprom(hw); | 
|  | 4114 |  | 
|  | 4115 | /*  Send the WRITE ENABLE command (8 bit opcode )  */ | 
|  | 4116 | e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI, | 
|  | 4117 | eeprom->opcode_bits); | 
|  | 4118 |  | 
|  | 4119 | e1000_standby_eeprom(hw); | 
|  | 4120 |  | 
|  | 4121 | /* Some SPI eeproms use the 8th address bit embedded in the opcode */ | 
|  | 4122 | if((eeprom->address_bits == 8) && (offset >= 128)) | 
|  | 4123 | write_opcode |= EEPROM_A8_OPCODE_SPI; | 
|  | 4124 |  | 
|  | 4125 | /* Send the Write command (8-bit opcode + addr) */ | 
|  | 4126 | e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits); | 
|  | 4127 |  | 
|  | 4128 | e1000_shift_out_ee_bits(hw, (uint16_t)((offset + widx)*2), | 
|  | 4129 | eeprom->address_bits); | 
|  | 4130 |  | 
|  | 4131 | /* Send the data */ | 
|  | 4132 |  | 
|  | 4133 | /* Loop to allow for up to whole page write (32 bytes) of eeprom */ | 
|  | 4134 | while (widx < words) { | 
|  | 4135 | uint16_t word_out = data[widx]; | 
|  | 4136 | word_out = (word_out >> 8) | (word_out << 8); | 
|  | 4137 | e1000_shift_out_ee_bits(hw, word_out, 16); | 
|  | 4138 | widx++; | 
|  | 4139 |  | 
|  | 4140 | /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE | 
|  | 4141 | * operation, while the smaller eeproms are capable of an 8-byte | 
|  | 4142 | * PAGE WRITE operation.  Break the inner loop to pass new address | 
|  | 4143 | */ | 
|  | 4144 | if((((offset + widx)*2) % eeprom->page_size) == 0) { | 
|  | 4145 | e1000_standby_eeprom(hw); | 
|  | 4146 | break; | 
|  | 4147 | } | 
|  | 4148 | } | 
|  | 4149 | } | 
|  | 4150 |  | 
|  | 4151 | return E1000_SUCCESS; | 
|  | 4152 | } | 
|  | 4153 |  | 
|  | 4154 | /****************************************************************************** | 
|  | 4155 | * Writes a 16 bit word to a given offset in a Microwire EEPROM. | 
|  | 4156 | * | 
|  | 4157 | * hw - Struct containing variables accessed by shared code | 
|  | 4158 | * offset - offset within the EEPROM to be written to | 
|  | 4159 | * words - number of words to write | 
|  | 4160 | * data - pointer to array of 16 bit words to be written to the EEPROM | 
|  | 4161 | * | 
|  | 4162 | *****************************************************************************/ | 
|  | 4163 | int32_t | 
|  | 4164 | e1000_write_eeprom_microwire(struct e1000_hw *hw, | 
|  | 4165 | uint16_t offset, | 
|  | 4166 | uint16_t words, | 
|  | 4167 | uint16_t *data) | 
|  | 4168 | { | 
|  | 4169 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 
|  | 4170 | uint32_t eecd; | 
|  | 4171 | uint16_t words_written = 0; | 
|  | 4172 | uint16_t i = 0; | 
|  | 4173 |  | 
|  | 4174 | DEBUGFUNC("e1000_write_eeprom_microwire"); | 
|  | 4175 |  | 
|  | 4176 | /* Send the write enable command to the EEPROM (3-bit opcode plus | 
|  | 4177 | * 6/8-bit dummy address beginning with 11).  It's less work to include | 
|  | 4178 | * the 11 of the dummy address as part of the opcode than it is to shift | 
|  | 4179 | * it over the correct number of bits for the address.  This puts the | 
|  | 4180 | * EEPROM into write/erase mode. | 
|  | 4181 | */ | 
|  | 4182 | e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE, | 
|  | 4183 | (uint16_t)(eeprom->opcode_bits + 2)); | 
|  | 4184 |  | 
|  | 4185 | e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2)); | 
|  | 4186 |  | 
|  | 4187 | /* Prepare the EEPROM */ | 
|  | 4188 | e1000_standby_eeprom(hw); | 
|  | 4189 |  | 
|  | 4190 | while (words_written < words) { | 
|  | 4191 | /* Send the Write command (3-bit opcode + addr) */ | 
|  | 4192 | e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE, | 
|  | 4193 | eeprom->opcode_bits); | 
|  | 4194 |  | 
|  | 4195 | e1000_shift_out_ee_bits(hw, (uint16_t)(offset + words_written), | 
|  | 4196 | eeprom->address_bits); | 
|  | 4197 |  | 
|  | 4198 | /* Send the data */ | 
|  | 4199 | e1000_shift_out_ee_bits(hw, data[words_written], 16); | 
|  | 4200 |  | 
|  | 4201 | /* Toggle the CS line.  This in effect tells the EEPROM to execute | 
|  | 4202 | * the previous command. | 
|  | 4203 | */ | 
|  | 4204 | e1000_standby_eeprom(hw); | 
|  | 4205 |  | 
|  | 4206 | /* Read DO repeatedly until it is high (equal to '1').  The EEPROM will | 
|  | 4207 | * signal that the command has been completed by raising the DO signal. | 
|  | 4208 | * If DO does not go high in 10 milliseconds, then error out. | 
|  | 4209 | */ | 
|  | 4210 | for(i = 0; i < 200; i++) { | 
|  | 4211 | eecd = E1000_READ_REG(hw, EECD); | 
|  | 4212 | if(eecd & E1000_EECD_DO) break; | 
|  | 4213 | udelay(50); | 
|  | 4214 | } | 
|  | 4215 | if(i == 200) { | 
|  | 4216 | DEBUGOUT("EEPROM Write did not complete\n"); | 
|  | 4217 | return -E1000_ERR_EEPROM; | 
|  | 4218 | } | 
|  | 4219 |  | 
|  | 4220 | /* Recover from write */ | 
|  | 4221 | e1000_standby_eeprom(hw); | 
|  | 4222 |  | 
|  | 4223 | words_written++; | 
|  | 4224 | } | 
|  | 4225 |  | 
|  | 4226 | /* Send the write disable command to the EEPROM (3-bit opcode plus | 
|  | 4227 | * 6/8-bit dummy address beginning with 10).  It's less work to include | 
|  | 4228 | * the 10 of the dummy address as part of the opcode than it is to shift | 
|  | 4229 | * it over the correct number of bits for the address.  This takes the | 
|  | 4230 | * EEPROM out of write/erase mode. | 
|  | 4231 | */ | 
|  | 4232 | e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE, | 
|  | 4233 | (uint16_t)(eeprom->opcode_bits + 2)); | 
|  | 4234 |  | 
|  | 4235 | e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2)); | 
|  | 4236 |  | 
|  | 4237 | return E1000_SUCCESS; | 
|  | 4238 | } | 
|  | 4239 |  | 
|  | 4240 | /****************************************************************************** | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4241 | * Flushes the cached eeprom to NVM. This is done by saving the modified values | 
|  | 4242 | * in the eeprom cache and the non modified values in the currently active bank | 
|  | 4243 | * to the new bank. | 
|  | 4244 | * | 
|  | 4245 | * hw - Struct containing variables accessed by shared code | 
|  | 4246 | * offset - offset of  word in the EEPROM to read | 
|  | 4247 | * data - word read from the EEPROM | 
|  | 4248 | * words - number of words to read | 
|  | 4249 | *****************************************************************************/ | 
|  | 4250 | int32_t | 
|  | 4251 | e1000_commit_shadow_ram(struct e1000_hw *hw) | 
|  | 4252 | { | 
|  | 4253 | uint32_t attempts = 100000; | 
|  | 4254 | uint32_t eecd = 0; | 
|  | 4255 | uint32_t flop = 0; | 
|  | 4256 | uint32_t i = 0; | 
|  | 4257 | int32_t error = E1000_SUCCESS; | 
|  | 4258 |  | 
|  | 4259 | /* The flop register will be used to determine if flash type is STM */ | 
|  | 4260 | flop = E1000_READ_REG(hw, FLOP); | 
|  | 4261 |  | 
|  | 4262 | if (hw->mac_type == e1000_82573) { | 
|  | 4263 | for (i=0; i < attempts; i++) { | 
|  | 4264 | eecd = E1000_READ_REG(hw, EECD); | 
|  | 4265 | if ((eecd & E1000_EECD_FLUPD) == 0) { | 
|  | 4266 | break; | 
|  | 4267 | } | 
|  | 4268 | udelay(5); | 
|  | 4269 | } | 
|  | 4270 |  | 
|  | 4271 | if (i == attempts) { | 
|  | 4272 | return -E1000_ERR_EEPROM; | 
|  | 4273 | } | 
|  | 4274 |  | 
|  | 4275 | /* If STM opcode located in bits 15:8 of flop, reset firmware */ | 
|  | 4276 | if ((flop & 0xFF00) == E1000_STM_OPCODE) { | 
|  | 4277 | E1000_WRITE_REG(hw, HICR, E1000_HICR_FW_RESET); | 
|  | 4278 | } | 
|  | 4279 |  | 
|  | 4280 | /* Perform the flash update */ | 
|  | 4281 | E1000_WRITE_REG(hw, EECD, eecd | E1000_EECD_FLUPD); | 
|  | 4282 |  | 
|  | 4283 | for (i=0; i < attempts; i++) { | 
|  | 4284 | eecd = E1000_READ_REG(hw, EECD); | 
|  | 4285 | if ((eecd & E1000_EECD_FLUPD) == 0) { | 
|  | 4286 | break; | 
|  | 4287 | } | 
|  | 4288 | udelay(5); | 
|  | 4289 | } | 
|  | 4290 |  | 
|  | 4291 | if (i == attempts) { | 
|  | 4292 | return -E1000_ERR_EEPROM; | 
|  | 4293 | } | 
|  | 4294 | } | 
|  | 4295 |  | 
|  | 4296 | return error; | 
|  | 4297 | } | 
|  | 4298 |  | 
|  | 4299 | /****************************************************************************** | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4300 | * Reads the adapter's part number from the EEPROM | 
|  | 4301 | * | 
|  | 4302 | * hw - Struct containing variables accessed by shared code | 
|  | 4303 | * part_num - Adapter's part number | 
|  | 4304 | *****************************************************************************/ | 
|  | 4305 | int32_t | 
|  | 4306 | e1000_read_part_num(struct e1000_hw *hw, | 
|  | 4307 | uint32_t *part_num) | 
|  | 4308 | { | 
|  | 4309 | uint16_t offset = EEPROM_PBA_BYTE_1; | 
|  | 4310 | uint16_t eeprom_data; | 
|  | 4311 |  | 
|  | 4312 | DEBUGFUNC("e1000_read_part_num"); | 
|  | 4313 |  | 
|  | 4314 | /* Get word 0 from EEPROM */ | 
|  | 4315 | if(e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { | 
|  | 4316 | DEBUGOUT("EEPROM Read Error\n"); | 
|  | 4317 | return -E1000_ERR_EEPROM; | 
|  | 4318 | } | 
|  | 4319 | /* Save word 0 in upper half of part_num */ | 
|  | 4320 | *part_num = (uint32_t) (eeprom_data << 16); | 
|  | 4321 |  | 
|  | 4322 | /* Get word 1 from EEPROM */ | 
|  | 4323 | if(e1000_read_eeprom(hw, ++offset, 1, &eeprom_data) < 0) { | 
|  | 4324 | DEBUGOUT("EEPROM Read Error\n"); | 
|  | 4325 | return -E1000_ERR_EEPROM; | 
|  | 4326 | } | 
|  | 4327 | /* Save word 1 in lower half of part_num */ | 
|  | 4328 | *part_num |= eeprom_data; | 
|  | 4329 |  | 
|  | 4330 | return E1000_SUCCESS; | 
|  | 4331 | } | 
|  | 4332 |  | 
|  | 4333 | /****************************************************************************** | 
|  | 4334 | * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the | 
|  | 4335 | * second function of dual function devices | 
|  | 4336 | * | 
|  | 4337 | * hw - Struct containing variables accessed by shared code | 
|  | 4338 | *****************************************************************************/ | 
|  | 4339 | int32_t | 
|  | 4340 | e1000_read_mac_addr(struct e1000_hw * hw) | 
|  | 4341 | { | 
|  | 4342 | uint16_t offset; | 
|  | 4343 | uint16_t eeprom_data, i; | 
|  | 4344 |  | 
|  | 4345 | DEBUGFUNC("e1000_read_mac_addr"); | 
|  | 4346 |  | 
|  | 4347 | for(i = 0; i < NODE_ADDRESS_SIZE; i += 2) { | 
|  | 4348 | offset = i >> 1; | 
|  | 4349 | if(e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { | 
|  | 4350 | DEBUGOUT("EEPROM Read Error\n"); | 
|  | 4351 | return -E1000_ERR_EEPROM; | 
|  | 4352 | } | 
|  | 4353 | hw->perm_mac_addr[i] = (uint8_t) (eeprom_data & 0x00FF); | 
|  | 4354 | hw->perm_mac_addr[i+1] = (uint8_t) (eeprom_data >> 8); | 
|  | 4355 | } | 
|  | 4356 | if(((hw->mac_type == e1000_82546) || (hw->mac_type == e1000_82546_rev_3)) && | 
|  | 4357 | (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) | 
|  | 4358 | hw->perm_mac_addr[5] ^= 0x01; | 
|  | 4359 |  | 
|  | 4360 | for(i = 0; i < NODE_ADDRESS_SIZE; i++) | 
|  | 4361 | hw->mac_addr[i] = hw->perm_mac_addr[i]; | 
|  | 4362 | return E1000_SUCCESS; | 
|  | 4363 | } | 
|  | 4364 |  | 
|  | 4365 | /****************************************************************************** | 
|  | 4366 | * Initializes receive address filters. | 
|  | 4367 | * | 
|  | 4368 | * hw - Struct containing variables accessed by shared code | 
|  | 4369 | * | 
|  | 4370 | * Places the MAC address in receive address register 0 and clears the rest | 
|  | 4371 | * of the receive addresss registers. Clears the multicast table. Assumes | 
|  | 4372 | * the receiver is in reset when the routine is called. | 
|  | 4373 | *****************************************************************************/ | 
|  | 4374 | void | 
|  | 4375 | e1000_init_rx_addrs(struct e1000_hw *hw) | 
|  | 4376 | { | 
|  | 4377 | uint32_t i; | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4378 | uint32_t rar_num; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4379 |  | 
|  | 4380 | DEBUGFUNC("e1000_init_rx_addrs"); | 
|  | 4381 |  | 
|  | 4382 | /* Setup the receive address. */ | 
|  | 4383 | DEBUGOUT("Programming MAC Address into RAR[0]\n"); | 
|  | 4384 |  | 
|  | 4385 | e1000_rar_set(hw, hw->mac_addr, 0); | 
|  | 4386 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4387 | rar_num = E1000_RAR_ENTRIES; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4388 | /* Zero out the other 15 receive addresses. */ | 
|  | 4389 | DEBUGOUT("Clearing RAR[1-15]\n"); | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4390 | for(i = 1; i < rar_num; i++) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4391 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); | 
|  | 4392 | E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); | 
|  | 4393 | } | 
|  | 4394 | } | 
|  | 4395 |  | 
|  | 4396 | /****************************************************************************** | 
|  | 4397 | * Updates the MAC's list of multicast addresses. | 
|  | 4398 | * | 
|  | 4399 | * hw - Struct containing variables accessed by shared code | 
|  | 4400 | * mc_addr_list - the list of new multicast addresses | 
|  | 4401 | * mc_addr_count - number of addresses | 
|  | 4402 | * pad - number of bytes between addresses in the list | 
|  | 4403 | * rar_used_count - offset where to start adding mc addresses into the RAR's | 
|  | 4404 | * | 
|  | 4405 | * The given list replaces any existing list. Clears the last 15 receive | 
|  | 4406 | * address registers and the multicast table. Uses receive address registers | 
|  | 4407 | * for the first 15 multicast addresses, and hashes the rest into the | 
|  | 4408 | * multicast table. | 
|  | 4409 | *****************************************************************************/ | 
|  | 4410 | void | 
|  | 4411 | e1000_mc_addr_list_update(struct e1000_hw *hw, | 
|  | 4412 | uint8_t *mc_addr_list, | 
|  | 4413 | uint32_t mc_addr_count, | 
|  | 4414 | uint32_t pad, | 
|  | 4415 | uint32_t rar_used_count) | 
|  | 4416 | { | 
|  | 4417 | uint32_t hash_value; | 
|  | 4418 | uint32_t i; | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4419 | uint32_t num_rar_entry; | 
|  | 4420 | uint32_t num_mta_entry; | 
|  | 4421 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4422 | DEBUGFUNC("e1000_mc_addr_list_update"); | 
|  | 4423 |  | 
|  | 4424 | /* Set the new number of MC addresses that we are being requested to use. */ | 
|  | 4425 | hw->num_mc_addrs = mc_addr_count; | 
|  | 4426 |  | 
|  | 4427 | /* Clear RAR[1-15] */ | 
|  | 4428 | DEBUGOUT(" Clearing RAR[1-15]\n"); | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4429 | num_rar_entry = E1000_RAR_ENTRIES; | 
|  | 4430 | for(i = rar_used_count; i < num_rar_entry; i++) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4431 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); | 
|  | 4432 | E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); | 
|  | 4433 | } | 
|  | 4434 |  | 
|  | 4435 | /* Clear the MTA */ | 
|  | 4436 | DEBUGOUT(" Clearing MTA\n"); | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4437 | num_mta_entry = E1000_NUM_MTA_REGISTERS; | 
|  | 4438 | for(i = 0; i < num_mta_entry; i++) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4439 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); | 
|  | 4440 | } | 
|  | 4441 |  | 
|  | 4442 | /* Add the new addresses */ | 
|  | 4443 | for(i = 0; i < mc_addr_count; i++) { | 
|  | 4444 | DEBUGOUT(" Adding the multicast addresses:\n"); | 
|  | 4445 | DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i, | 
|  | 4446 | mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad)], | 
|  | 4447 | mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 1], | 
|  | 4448 | mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 2], | 
|  | 4449 | mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 3], | 
|  | 4450 | mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 4], | 
|  | 4451 | mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 5]); | 
|  | 4452 |  | 
|  | 4453 | hash_value = e1000_hash_mc_addr(hw, | 
|  | 4454 | mc_addr_list + | 
|  | 4455 | (i * (ETH_LENGTH_OF_ADDRESS + pad))); | 
|  | 4456 |  | 
|  | 4457 | DEBUGOUT1(" Hash value = 0x%03X\n", hash_value); | 
|  | 4458 |  | 
|  | 4459 | /* Place this multicast address in the RAR if there is room, * | 
|  | 4460 | * else put it in the MTA | 
|  | 4461 | */ | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4462 | if (rar_used_count < num_rar_entry) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4463 | e1000_rar_set(hw, | 
|  | 4464 | mc_addr_list + (i * (ETH_LENGTH_OF_ADDRESS + pad)), | 
|  | 4465 | rar_used_count); | 
|  | 4466 | rar_used_count++; | 
|  | 4467 | } else { | 
|  | 4468 | e1000_mta_set(hw, hash_value); | 
|  | 4469 | } | 
|  | 4470 | } | 
|  | 4471 | DEBUGOUT("MC Update Complete\n"); | 
|  | 4472 | } | 
|  | 4473 |  | 
|  | 4474 | /****************************************************************************** | 
|  | 4475 | * Hashes an address to determine its location in the multicast table | 
|  | 4476 | * | 
|  | 4477 | * hw - Struct containing variables accessed by shared code | 
|  | 4478 | * mc_addr - the multicast address to hash | 
|  | 4479 | *****************************************************************************/ | 
|  | 4480 | uint32_t | 
|  | 4481 | e1000_hash_mc_addr(struct e1000_hw *hw, | 
|  | 4482 | uint8_t *mc_addr) | 
|  | 4483 | { | 
|  | 4484 | uint32_t hash_value = 0; | 
|  | 4485 |  | 
|  | 4486 | /* The portion of the address that is used for the hash table is | 
|  | 4487 | * determined by the mc_filter_type setting. | 
|  | 4488 | */ | 
|  | 4489 | switch (hw->mc_filter_type) { | 
|  | 4490 | /* [0] [1] [2] [3] [4] [5] | 
|  | 4491 | * 01  AA  00  12  34  56 | 
|  | 4492 | * LSB                 MSB | 
|  | 4493 | */ | 
|  | 4494 | case 0: | 
|  | 4495 | /* [47:36] i.e. 0x563 for above example address */ | 
|  | 4496 | hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4)); | 
|  | 4497 | break; | 
|  | 4498 | case 1: | 
|  | 4499 | /* [46:35] i.e. 0xAC6 for above example address */ | 
|  | 4500 | hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5)); | 
|  | 4501 | break; | 
|  | 4502 | case 2: | 
|  | 4503 | /* [45:34] i.e. 0x5D8 for above example address */ | 
|  | 4504 | hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6)); | 
|  | 4505 | break; | 
|  | 4506 | case 3: | 
|  | 4507 | /* [43:32] i.e. 0x634 for above example address */ | 
|  | 4508 | hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8)); | 
|  | 4509 | break; | 
|  | 4510 | } | 
|  | 4511 |  | 
|  | 4512 | hash_value &= 0xFFF; | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4513 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4514 | return hash_value; | 
|  | 4515 | } | 
|  | 4516 |  | 
|  | 4517 | /****************************************************************************** | 
|  | 4518 | * Sets the bit in the multicast table corresponding to the hash value. | 
|  | 4519 | * | 
|  | 4520 | * hw - Struct containing variables accessed by shared code | 
|  | 4521 | * hash_value - Multicast address hash value | 
|  | 4522 | *****************************************************************************/ | 
|  | 4523 | void | 
|  | 4524 | e1000_mta_set(struct e1000_hw *hw, | 
|  | 4525 | uint32_t hash_value) | 
|  | 4526 | { | 
|  | 4527 | uint32_t hash_bit, hash_reg; | 
|  | 4528 | uint32_t mta; | 
|  | 4529 | uint32_t temp; | 
|  | 4530 |  | 
|  | 4531 | /* The MTA is a register array of 128 32-bit registers. | 
|  | 4532 | * It is treated like an array of 4096 bits.  We want to set | 
|  | 4533 | * bit BitArray[hash_value]. So we figure out what register | 
|  | 4534 | * the bit is in, read it, OR in the new bit, then write | 
|  | 4535 | * back the new value.  The register is determined by the | 
|  | 4536 | * upper 7 bits of the hash value and the bit within that | 
|  | 4537 | * register are determined by the lower 5 bits of the value. | 
|  | 4538 | */ | 
|  | 4539 | hash_reg = (hash_value >> 5) & 0x7F; | 
|  | 4540 | hash_bit = hash_value & 0x1F; | 
|  | 4541 |  | 
|  | 4542 | mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg); | 
|  | 4543 |  | 
|  | 4544 | mta |= (1 << hash_bit); | 
|  | 4545 |  | 
|  | 4546 | /* If we are on an 82544 and we are trying to write an odd offset | 
|  | 4547 | * in the MTA, save off the previous entry before writing and | 
|  | 4548 | * restore the old value after writing. | 
|  | 4549 | */ | 
|  | 4550 | if((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) { | 
|  | 4551 | temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1)); | 
|  | 4552 | E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta); | 
|  | 4553 | E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp); | 
|  | 4554 | } else { | 
|  | 4555 | E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta); | 
|  | 4556 | } | 
|  | 4557 | } | 
|  | 4558 |  | 
|  | 4559 | /****************************************************************************** | 
|  | 4560 | * Puts an ethernet address into a receive address register. | 
|  | 4561 | * | 
|  | 4562 | * hw - Struct containing variables accessed by shared code | 
|  | 4563 | * addr - Address to put into receive address register | 
|  | 4564 | * index - Receive address register to write | 
|  | 4565 | *****************************************************************************/ | 
|  | 4566 | void | 
|  | 4567 | e1000_rar_set(struct e1000_hw *hw, | 
|  | 4568 | uint8_t *addr, | 
|  | 4569 | uint32_t index) | 
|  | 4570 | { | 
|  | 4571 | uint32_t rar_low, rar_high; | 
|  | 4572 |  | 
|  | 4573 | /* HW expects these in little endian so we reverse the byte order | 
|  | 4574 | * from network order (big endian) to little endian | 
|  | 4575 | */ | 
|  | 4576 | rar_low = ((uint32_t) addr[0] | | 
|  | 4577 | ((uint32_t) addr[1] << 8) | | 
|  | 4578 | ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24)); | 
|  | 4579 |  | 
|  | 4580 | rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8) | E1000_RAH_AV); | 
|  | 4581 |  | 
|  | 4582 | E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low); | 
|  | 4583 | E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high); | 
|  | 4584 | } | 
|  | 4585 |  | 
|  | 4586 | /****************************************************************************** | 
|  | 4587 | * Writes a value to the specified offset in the VLAN filter table. | 
|  | 4588 | * | 
|  | 4589 | * hw - Struct containing variables accessed by shared code | 
|  | 4590 | * offset - Offset in VLAN filer table to write | 
|  | 4591 | * value - Value to write into VLAN filter table | 
|  | 4592 | *****************************************************************************/ | 
|  | 4593 | void | 
|  | 4594 | e1000_write_vfta(struct e1000_hw *hw, | 
|  | 4595 | uint32_t offset, | 
|  | 4596 | uint32_t value) | 
|  | 4597 | { | 
|  | 4598 | uint32_t temp; | 
|  | 4599 |  | 
|  | 4600 | if((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) { | 
|  | 4601 | temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1)); | 
|  | 4602 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); | 
|  | 4603 | E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp); | 
|  | 4604 | } else { | 
|  | 4605 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); | 
|  | 4606 | } | 
|  | 4607 | } | 
|  | 4608 |  | 
|  | 4609 | /****************************************************************************** | 
|  | 4610 | * Clears the VLAN filer table | 
|  | 4611 | * | 
|  | 4612 | * hw - Struct containing variables accessed by shared code | 
|  | 4613 | *****************************************************************************/ | 
|  | 4614 | void | 
|  | 4615 | e1000_clear_vfta(struct e1000_hw *hw) | 
|  | 4616 | { | 
|  | 4617 | uint32_t offset; | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4618 | uint32_t vfta_value = 0; | 
|  | 4619 | uint32_t vfta_offset = 0; | 
|  | 4620 | uint32_t vfta_bit_in_reg = 0; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4621 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4622 | if (hw->mac_type == e1000_82573) { | 
|  | 4623 | if (hw->mng_cookie.vlan_id != 0) { | 
|  | 4624 | /* The VFTA is a 4096b bit-field, each identifying a single VLAN | 
|  | 4625 | * ID.  The following operations determine which 32b entry | 
|  | 4626 | * (i.e. offset) into the array we want to set the VLAN ID | 
|  | 4627 | * (i.e. bit) of the manageability unit. */ | 
|  | 4628 | vfta_offset = (hw->mng_cookie.vlan_id >> | 
|  | 4629 | E1000_VFTA_ENTRY_SHIFT) & | 
|  | 4630 | E1000_VFTA_ENTRY_MASK; | 
|  | 4631 | vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id & | 
|  | 4632 | E1000_VFTA_ENTRY_BIT_SHIFT_MASK); | 
|  | 4633 | } | 
|  | 4634 | } | 
|  | 4635 | for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { | 
|  | 4636 | /* If the offset we want to clear is the same offset of the | 
|  | 4637 | * manageability VLAN ID, then clear all bits except that of the | 
|  | 4638 | * manageability unit */ | 
|  | 4639 | vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; | 
|  | 4640 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value); | 
|  | 4641 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4642 | } | 
|  | 4643 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4644 | int32_t | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4645 | e1000_id_led_init(struct e1000_hw * hw) | 
|  | 4646 | { | 
|  | 4647 | uint32_t ledctl; | 
|  | 4648 | const uint32_t ledctl_mask = 0x000000FF; | 
|  | 4649 | const uint32_t ledctl_on = E1000_LEDCTL_MODE_LED_ON; | 
|  | 4650 | const uint32_t ledctl_off = E1000_LEDCTL_MODE_LED_OFF; | 
|  | 4651 | uint16_t eeprom_data, i, temp; | 
|  | 4652 | const uint16_t led_mask = 0x0F; | 
|  | 4653 |  | 
|  | 4654 | DEBUGFUNC("e1000_id_led_init"); | 
|  | 4655 |  | 
|  | 4656 | if(hw->mac_type < e1000_82540) { | 
|  | 4657 | /* Nothing to do */ | 
|  | 4658 | return E1000_SUCCESS; | 
|  | 4659 | } | 
|  | 4660 |  | 
|  | 4661 | ledctl = E1000_READ_REG(hw, LEDCTL); | 
|  | 4662 | hw->ledctl_default = ledctl; | 
|  | 4663 | hw->ledctl_mode1 = hw->ledctl_default; | 
|  | 4664 | hw->ledctl_mode2 = hw->ledctl_default; | 
|  | 4665 |  | 
|  | 4666 | if(e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) { | 
|  | 4667 | DEBUGOUT("EEPROM Read Error\n"); | 
|  | 4668 | return -E1000_ERR_EEPROM; | 
|  | 4669 | } | 
|  | 4670 | if((eeprom_data== ID_LED_RESERVED_0000) || | 
|  | 4671 | (eeprom_data == ID_LED_RESERVED_FFFF)) eeprom_data = ID_LED_DEFAULT; | 
|  | 4672 | for(i = 0; i < 4; i++) { | 
|  | 4673 | temp = (eeprom_data >> (i << 2)) & led_mask; | 
|  | 4674 | switch(temp) { | 
|  | 4675 | case ID_LED_ON1_DEF2: | 
|  | 4676 | case ID_LED_ON1_ON2: | 
|  | 4677 | case ID_LED_ON1_OFF2: | 
|  | 4678 | hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | 
|  | 4679 | hw->ledctl_mode1 |= ledctl_on << (i << 3); | 
|  | 4680 | break; | 
|  | 4681 | case ID_LED_OFF1_DEF2: | 
|  | 4682 | case ID_LED_OFF1_ON2: | 
|  | 4683 | case ID_LED_OFF1_OFF2: | 
|  | 4684 | hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | 
|  | 4685 | hw->ledctl_mode1 |= ledctl_off << (i << 3); | 
|  | 4686 | break; | 
|  | 4687 | default: | 
|  | 4688 | /* Do nothing */ | 
|  | 4689 | break; | 
|  | 4690 | } | 
|  | 4691 | switch(temp) { | 
|  | 4692 | case ID_LED_DEF1_ON2: | 
|  | 4693 | case ID_LED_ON1_ON2: | 
|  | 4694 | case ID_LED_OFF1_ON2: | 
|  | 4695 | hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | 
|  | 4696 | hw->ledctl_mode2 |= ledctl_on << (i << 3); | 
|  | 4697 | break; | 
|  | 4698 | case ID_LED_DEF1_OFF2: | 
|  | 4699 | case ID_LED_ON1_OFF2: | 
|  | 4700 | case ID_LED_OFF1_OFF2: | 
|  | 4701 | hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | 
|  | 4702 | hw->ledctl_mode2 |= ledctl_off << (i << 3); | 
|  | 4703 | break; | 
|  | 4704 | default: | 
|  | 4705 | /* Do nothing */ | 
|  | 4706 | break; | 
|  | 4707 | } | 
|  | 4708 | } | 
|  | 4709 | return E1000_SUCCESS; | 
|  | 4710 | } | 
|  | 4711 |  | 
|  | 4712 | /****************************************************************************** | 
|  | 4713 | * Prepares SW controlable LED for use and saves the current state of the LED. | 
|  | 4714 | * | 
|  | 4715 | * hw - Struct containing variables accessed by shared code | 
|  | 4716 | *****************************************************************************/ | 
|  | 4717 | int32_t | 
|  | 4718 | e1000_setup_led(struct e1000_hw *hw) | 
|  | 4719 | { | 
|  | 4720 | uint32_t ledctl; | 
|  | 4721 | int32_t ret_val = E1000_SUCCESS; | 
|  | 4722 |  | 
|  | 4723 | DEBUGFUNC("e1000_setup_led"); | 
|  | 4724 |  | 
|  | 4725 | switch(hw->mac_type) { | 
|  | 4726 | case e1000_82542_rev2_0: | 
|  | 4727 | case e1000_82542_rev2_1: | 
|  | 4728 | case e1000_82543: | 
|  | 4729 | case e1000_82544: | 
|  | 4730 | /* No setup necessary */ | 
|  | 4731 | break; | 
|  | 4732 | case e1000_82541: | 
|  | 4733 | case e1000_82547: | 
|  | 4734 | case e1000_82541_rev_2: | 
|  | 4735 | case e1000_82547_rev_2: | 
|  | 4736 | /* Turn off PHY Smart Power Down (if enabled) */ | 
|  | 4737 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, | 
|  | 4738 | &hw->phy_spd_default); | 
|  | 4739 | if(ret_val) | 
|  | 4740 | return ret_val; | 
|  | 4741 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, | 
|  | 4742 | (uint16_t)(hw->phy_spd_default & | 
|  | 4743 | ~IGP01E1000_GMII_SPD)); | 
|  | 4744 | if(ret_val) | 
|  | 4745 | return ret_val; | 
|  | 4746 | /* Fall Through */ | 
|  | 4747 | default: | 
|  | 4748 | if(hw->media_type == e1000_media_type_fiber) { | 
|  | 4749 | ledctl = E1000_READ_REG(hw, LEDCTL); | 
|  | 4750 | /* Save current LEDCTL settings */ | 
|  | 4751 | hw->ledctl_default = ledctl; | 
|  | 4752 | /* Turn off LED0 */ | 
|  | 4753 | ledctl &= ~(E1000_LEDCTL_LED0_IVRT | | 
|  | 4754 | E1000_LEDCTL_LED0_BLINK | | 
|  | 4755 | E1000_LEDCTL_LED0_MODE_MASK); | 
|  | 4756 | ledctl |= (E1000_LEDCTL_MODE_LED_OFF << | 
|  | 4757 | E1000_LEDCTL_LED0_MODE_SHIFT); | 
|  | 4758 | E1000_WRITE_REG(hw, LEDCTL, ledctl); | 
|  | 4759 | } else if(hw->media_type == e1000_media_type_copper) | 
|  | 4760 | E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1); | 
|  | 4761 | break; | 
|  | 4762 | } | 
|  | 4763 |  | 
|  | 4764 | return E1000_SUCCESS; | 
|  | 4765 | } | 
|  | 4766 |  | 
|  | 4767 | /****************************************************************************** | 
|  | 4768 | * Restores the saved state of the SW controlable LED. | 
|  | 4769 | * | 
|  | 4770 | * hw - Struct containing variables accessed by shared code | 
|  | 4771 | *****************************************************************************/ | 
|  | 4772 | int32_t | 
|  | 4773 | e1000_cleanup_led(struct e1000_hw *hw) | 
|  | 4774 | { | 
|  | 4775 | int32_t ret_val = E1000_SUCCESS; | 
|  | 4776 |  | 
|  | 4777 | DEBUGFUNC("e1000_cleanup_led"); | 
|  | 4778 |  | 
|  | 4779 | switch(hw->mac_type) { | 
|  | 4780 | case e1000_82542_rev2_0: | 
|  | 4781 | case e1000_82542_rev2_1: | 
|  | 4782 | case e1000_82543: | 
|  | 4783 | case e1000_82544: | 
|  | 4784 | /* No cleanup necessary */ | 
|  | 4785 | break; | 
|  | 4786 | case e1000_82541: | 
|  | 4787 | case e1000_82547: | 
|  | 4788 | case e1000_82541_rev_2: | 
|  | 4789 | case e1000_82547_rev_2: | 
|  | 4790 | /* Turn on PHY Smart Power Down (if previously enabled) */ | 
|  | 4791 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, | 
|  | 4792 | hw->phy_spd_default); | 
|  | 4793 | if(ret_val) | 
|  | 4794 | return ret_val; | 
|  | 4795 | /* Fall Through */ | 
|  | 4796 | default: | 
|  | 4797 | /* Restore LEDCTL settings */ | 
|  | 4798 | E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default); | 
|  | 4799 | break; | 
|  | 4800 | } | 
|  | 4801 |  | 
|  | 4802 | return E1000_SUCCESS; | 
|  | 4803 | } | 
|  | 4804 |  | 
|  | 4805 | /****************************************************************************** | 
|  | 4806 | * Turns on the software controllable LED | 
|  | 4807 | * | 
|  | 4808 | * hw - Struct containing variables accessed by shared code | 
|  | 4809 | *****************************************************************************/ | 
|  | 4810 | int32_t | 
|  | 4811 | e1000_led_on(struct e1000_hw *hw) | 
|  | 4812 | { | 
|  | 4813 | uint32_t ctrl = E1000_READ_REG(hw, CTRL); | 
|  | 4814 |  | 
|  | 4815 | DEBUGFUNC("e1000_led_on"); | 
|  | 4816 |  | 
|  | 4817 | switch(hw->mac_type) { | 
|  | 4818 | case e1000_82542_rev2_0: | 
|  | 4819 | case e1000_82542_rev2_1: | 
|  | 4820 | case e1000_82543: | 
|  | 4821 | /* Set SW Defineable Pin 0 to turn on the LED */ | 
|  | 4822 | ctrl |= E1000_CTRL_SWDPIN0; | 
|  | 4823 | ctrl |= E1000_CTRL_SWDPIO0; | 
|  | 4824 | break; | 
|  | 4825 | case e1000_82544: | 
|  | 4826 | if(hw->media_type == e1000_media_type_fiber) { | 
|  | 4827 | /* Set SW Defineable Pin 0 to turn on the LED */ | 
|  | 4828 | ctrl |= E1000_CTRL_SWDPIN0; | 
|  | 4829 | ctrl |= E1000_CTRL_SWDPIO0; | 
|  | 4830 | } else { | 
|  | 4831 | /* Clear SW Defineable Pin 0 to turn on the LED */ | 
|  | 4832 | ctrl &= ~E1000_CTRL_SWDPIN0; | 
|  | 4833 | ctrl |= E1000_CTRL_SWDPIO0; | 
|  | 4834 | } | 
|  | 4835 | break; | 
|  | 4836 | default: | 
|  | 4837 | if(hw->media_type == e1000_media_type_fiber) { | 
|  | 4838 | /* Clear SW Defineable Pin 0 to turn on the LED */ | 
|  | 4839 | ctrl &= ~E1000_CTRL_SWDPIN0; | 
|  | 4840 | ctrl |= E1000_CTRL_SWDPIO0; | 
|  | 4841 | } else if(hw->media_type == e1000_media_type_copper) { | 
|  | 4842 | E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2); | 
|  | 4843 | return E1000_SUCCESS; | 
|  | 4844 | } | 
|  | 4845 | break; | 
|  | 4846 | } | 
|  | 4847 |  | 
|  | 4848 | E1000_WRITE_REG(hw, CTRL, ctrl); | 
|  | 4849 |  | 
|  | 4850 | return E1000_SUCCESS; | 
|  | 4851 | } | 
|  | 4852 |  | 
|  | 4853 | /****************************************************************************** | 
|  | 4854 | * Turns off the software controllable LED | 
|  | 4855 | * | 
|  | 4856 | * hw - Struct containing variables accessed by shared code | 
|  | 4857 | *****************************************************************************/ | 
|  | 4858 | int32_t | 
|  | 4859 | e1000_led_off(struct e1000_hw *hw) | 
|  | 4860 | { | 
|  | 4861 | uint32_t ctrl = E1000_READ_REG(hw, CTRL); | 
|  | 4862 |  | 
|  | 4863 | DEBUGFUNC("e1000_led_off"); | 
|  | 4864 |  | 
|  | 4865 | switch(hw->mac_type) { | 
|  | 4866 | case e1000_82542_rev2_0: | 
|  | 4867 | case e1000_82542_rev2_1: | 
|  | 4868 | case e1000_82543: | 
|  | 4869 | /* Clear SW Defineable Pin 0 to turn off the LED */ | 
|  | 4870 | ctrl &= ~E1000_CTRL_SWDPIN0; | 
|  | 4871 | ctrl |= E1000_CTRL_SWDPIO0; | 
|  | 4872 | break; | 
|  | 4873 | case e1000_82544: | 
|  | 4874 | if(hw->media_type == e1000_media_type_fiber) { | 
|  | 4875 | /* Clear SW Defineable Pin 0 to turn off the LED */ | 
|  | 4876 | ctrl &= ~E1000_CTRL_SWDPIN0; | 
|  | 4877 | ctrl |= E1000_CTRL_SWDPIO0; | 
|  | 4878 | } else { | 
|  | 4879 | /* Set SW Defineable Pin 0 to turn off the LED */ | 
|  | 4880 | ctrl |= E1000_CTRL_SWDPIN0; | 
|  | 4881 | ctrl |= E1000_CTRL_SWDPIO0; | 
|  | 4882 | } | 
|  | 4883 | break; | 
|  | 4884 | default: | 
|  | 4885 | if(hw->media_type == e1000_media_type_fiber) { | 
|  | 4886 | /* Set SW Defineable Pin 0 to turn off the LED */ | 
|  | 4887 | ctrl |= E1000_CTRL_SWDPIN0; | 
|  | 4888 | ctrl |= E1000_CTRL_SWDPIO0; | 
|  | 4889 | } else if(hw->media_type == e1000_media_type_copper) { | 
|  | 4890 | E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1); | 
|  | 4891 | return E1000_SUCCESS; | 
|  | 4892 | } | 
|  | 4893 | break; | 
|  | 4894 | } | 
|  | 4895 |  | 
|  | 4896 | E1000_WRITE_REG(hw, CTRL, ctrl); | 
|  | 4897 |  | 
|  | 4898 | return E1000_SUCCESS; | 
|  | 4899 | } | 
|  | 4900 |  | 
|  | 4901 | /****************************************************************************** | 
|  | 4902 | * Clears all hardware statistics counters. | 
|  | 4903 | * | 
|  | 4904 | * hw - Struct containing variables accessed by shared code | 
|  | 4905 | *****************************************************************************/ | 
|  | 4906 | void | 
|  | 4907 | e1000_clear_hw_cntrs(struct e1000_hw *hw) | 
|  | 4908 | { | 
|  | 4909 | volatile uint32_t temp; | 
|  | 4910 |  | 
|  | 4911 | temp = E1000_READ_REG(hw, CRCERRS); | 
|  | 4912 | temp = E1000_READ_REG(hw, SYMERRS); | 
|  | 4913 | temp = E1000_READ_REG(hw, MPC); | 
|  | 4914 | temp = E1000_READ_REG(hw, SCC); | 
|  | 4915 | temp = E1000_READ_REG(hw, ECOL); | 
|  | 4916 | temp = E1000_READ_REG(hw, MCC); | 
|  | 4917 | temp = E1000_READ_REG(hw, LATECOL); | 
|  | 4918 | temp = E1000_READ_REG(hw, COLC); | 
|  | 4919 | temp = E1000_READ_REG(hw, DC); | 
|  | 4920 | temp = E1000_READ_REG(hw, SEC); | 
|  | 4921 | temp = E1000_READ_REG(hw, RLEC); | 
|  | 4922 | temp = E1000_READ_REG(hw, XONRXC); | 
|  | 4923 | temp = E1000_READ_REG(hw, XONTXC); | 
|  | 4924 | temp = E1000_READ_REG(hw, XOFFRXC); | 
|  | 4925 | temp = E1000_READ_REG(hw, XOFFTXC); | 
|  | 4926 | temp = E1000_READ_REG(hw, FCRUC); | 
|  | 4927 | temp = E1000_READ_REG(hw, PRC64); | 
|  | 4928 | temp = E1000_READ_REG(hw, PRC127); | 
|  | 4929 | temp = E1000_READ_REG(hw, PRC255); | 
|  | 4930 | temp = E1000_READ_REG(hw, PRC511); | 
|  | 4931 | temp = E1000_READ_REG(hw, PRC1023); | 
|  | 4932 | temp = E1000_READ_REG(hw, PRC1522); | 
|  | 4933 | temp = E1000_READ_REG(hw, GPRC); | 
|  | 4934 | temp = E1000_READ_REG(hw, BPRC); | 
|  | 4935 | temp = E1000_READ_REG(hw, MPRC); | 
|  | 4936 | temp = E1000_READ_REG(hw, GPTC); | 
|  | 4937 | temp = E1000_READ_REG(hw, GORCL); | 
|  | 4938 | temp = E1000_READ_REG(hw, GORCH); | 
|  | 4939 | temp = E1000_READ_REG(hw, GOTCL); | 
|  | 4940 | temp = E1000_READ_REG(hw, GOTCH); | 
|  | 4941 | temp = E1000_READ_REG(hw, RNBC); | 
|  | 4942 | temp = E1000_READ_REG(hw, RUC); | 
|  | 4943 | temp = E1000_READ_REG(hw, RFC); | 
|  | 4944 | temp = E1000_READ_REG(hw, ROC); | 
|  | 4945 | temp = E1000_READ_REG(hw, RJC); | 
|  | 4946 | temp = E1000_READ_REG(hw, TORL); | 
|  | 4947 | temp = E1000_READ_REG(hw, TORH); | 
|  | 4948 | temp = E1000_READ_REG(hw, TOTL); | 
|  | 4949 | temp = E1000_READ_REG(hw, TOTH); | 
|  | 4950 | temp = E1000_READ_REG(hw, TPR); | 
|  | 4951 | temp = E1000_READ_REG(hw, TPT); | 
|  | 4952 | temp = E1000_READ_REG(hw, PTC64); | 
|  | 4953 | temp = E1000_READ_REG(hw, PTC127); | 
|  | 4954 | temp = E1000_READ_REG(hw, PTC255); | 
|  | 4955 | temp = E1000_READ_REG(hw, PTC511); | 
|  | 4956 | temp = E1000_READ_REG(hw, PTC1023); | 
|  | 4957 | temp = E1000_READ_REG(hw, PTC1522); | 
|  | 4958 | temp = E1000_READ_REG(hw, MPTC); | 
|  | 4959 | temp = E1000_READ_REG(hw, BPTC); | 
|  | 4960 |  | 
|  | 4961 | if(hw->mac_type < e1000_82543) return; | 
|  | 4962 |  | 
|  | 4963 | temp = E1000_READ_REG(hw, ALGNERRC); | 
|  | 4964 | temp = E1000_READ_REG(hw, RXERRC); | 
|  | 4965 | temp = E1000_READ_REG(hw, TNCRS); | 
|  | 4966 | temp = E1000_READ_REG(hw, CEXTERR); | 
|  | 4967 | temp = E1000_READ_REG(hw, TSCTC); | 
|  | 4968 | temp = E1000_READ_REG(hw, TSCTFC); | 
|  | 4969 |  | 
|  | 4970 | if(hw->mac_type <= e1000_82544) return; | 
|  | 4971 |  | 
|  | 4972 | temp = E1000_READ_REG(hw, MGTPRC); | 
|  | 4973 | temp = E1000_READ_REG(hw, MGTPDC); | 
|  | 4974 | temp = E1000_READ_REG(hw, MGTPTC); | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4975 |  | 
|  | 4976 | if(hw->mac_type <= e1000_82547_rev_2) return; | 
|  | 4977 |  | 
|  | 4978 | temp = E1000_READ_REG(hw, IAC); | 
|  | 4979 | temp = E1000_READ_REG(hw, ICRXOC); | 
|  | 4980 | temp = E1000_READ_REG(hw, ICRXPTC); | 
|  | 4981 | temp = E1000_READ_REG(hw, ICRXATC); | 
|  | 4982 | temp = E1000_READ_REG(hw, ICTXPTC); | 
|  | 4983 | temp = E1000_READ_REG(hw, ICTXATC); | 
|  | 4984 | temp = E1000_READ_REG(hw, ICTXQEC); | 
|  | 4985 | temp = E1000_READ_REG(hw, ICTXQMTC); | 
|  | 4986 | temp = E1000_READ_REG(hw, ICRXDMTC); | 
|  | 4987 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4988 | } | 
|  | 4989 |  | 
|  | 4990 | /****************************************************************************** | 
|  | 4991 | * Resets Adaptive IFS to its default state. | 
|  | 4992 | * | 
|  | 4993 | * hw - Struct containing variables accessed by shared code | 
|  | 4994 | * | 
|  | 4995 | * Call this after e1000_init_hw. You may override the IFS defaults by setting | 
|  | 4996 | * hw->ifs_params_forced to TRUE. However, you must initialize hw-> | 
|  | 4997 | * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio | 
|  | 4998 | * before calling this function. | 
|  | 4999 | *****************************************************************************/ | 
|  | 5000 | void | 
|  | 5001 | e1000_reset_adaptive(struct e1000_hw *hw) | 
|  | 5002 | { | 
|  | 5003 | DEBUGFUNC("e1000_reset_adaptive"); | 
|  | 5004 |  | 
|  | 5005 | if(hw->adaptive_ifs) { | 
|  | 5006 | if(!hw->ifs_params_forced) { | 
|  | 5007 | hw->current_ifs_val = 0; | 
|  | 5008 | hw->ifs_min_val = IFS_MIN; | 
|  | 5009 | hw->ifs_max_val = IFS_MAX; | 
|  | 5010 | hw->ifs_step_size = IFS_STEP; | 
|  | 5011 | hw->ifs_ratio = IFS_RATIO; | 
|  | 5012 | } | 
|  | 5013 | hw->in_ifs_mode = FALSE; | 
|  | 5014 | E1000_WRITE_REG(hw, AIT, 0); | 
|  | 5015 | } else { | 
|  | 5016 | DEBUGOUT("Not in Adaptive IFS mode!\n"); | 
|  | 5017 | } | 
|  | 5018 | } | 
|  | 5019 |  | 
|  | 5020 | /****************************************************************************** | 
|  | 5021 | * Called during the callback/watchdog routine to update IFS value based on | 
|  | 5022 | * the ratio of transmits to collisions. | 
|  | 5023 | * | 
|  | 5024 | * hw - Struct containing variables accessed by shared code | 
|  | 5025 | * tx_packets - Number of transmits since last callback | 
|  | 5026 | * total_collisions - Number of collisions since last callback | 
|  | 5027 | *****************************************************************************/ | 
|  | 5028 | void | 
|  | 5029 | e1000_update_adaptive(struct e1000_hw *hw) | 
|  | 5030 | { | 
|  | 5031 | DEBUGFUNC("e1000_update_adaptive"); | 
|  | 5032 |  | 
|  | 5033 | if(hw->adaptive_ifs) { | 
|  | 5034 | if((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) { | 
|  | 5035 | if(hw->tx_packet_delta > MIN_NUM_XMITS) { | 
|  | 5036 | hw->in_ifs_mode = TRUE; | 
|  | 5037 | if(hw->current_ifs_val < hw->ifs_max_val) { | 
|  | 5038 | if(hw->current_ifs_val == 0) | 
|  | 5039 | hw->current_ifs_val = hw->ifs_min_val; | 
|  | 5040 | else | 
|  | 5041 | hw->current_ifs_val += hw->ifs_step_size; | 
|  | 5042 | E1000_WRITE_REG(hw, AIT, hw->current_ifs_val); | 
|  | 5043 | } | 
|  | 5044 | } | 
|  | 5045 | } else { | 
|  | 5046 | if(hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) { | 
|  | 5047 | hw->current_ifs_val = 0; | 
|  | 5048 | hw->in_ifs_mode = FALSE; | 
|  | 5049 | E1000_WRITE_REG(hw, AIT, 0); | 
|  | 5050 | } | 
|  | 5051 | } | 
|  | 5052 | } else { | 
|  | 5053 | DEBUGOUT("Not in Adaptive IFS mode!\n"); | 
|  | 5054 | } | 
|  | 5055 | } | 
|  | 5056 |  | 
|  | 5057 | /****************************************************************************** | 
|  | 5058 | * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT | 
|  | 5059 | * | 
|  | 5060 | * hw - Struct containing variables accessed by shared code | 
|  | 5061 | * frame_len - The length of the frame in question | 
|  | 5062 | * mac_addr - The Ethernet destination address of the frame in question | 
|  | 5063 | *****************************************************************************/ | 
|  | 5064 | void | 
|  | 5065 | e1000_tbi_adjust_stats(struct e1000_hw *hw, | 
|  | 5066 | struct e1000_hw_stats *stats, | 
|  | 5067 | uint32_t frame_len, | 
|  | 5068 | uint8_t *mac_addr) | 
|  | 5069 | { | 
|  | 5070 | uint64_t carry_bit; | 
|  | 5071 |  | 
|  | 5072 | /* First adjust the frame length. */ | 
|  | 5073 | frame_len--; | 
|  | 5074 | /* We need to adjust the statistics counters, since the hardware | 
|  | 5075 | * counters overcount this packet as a CRC error and undercount | 
|  | 5076 | * the packet as a good packet | 
|  | 5077 | */ | 
|  | 5078 | /* This packet should not be counted as a CRC error.    */ | 
|  | 5079 | stats->crcerrs--; | 
|  | 5080 | /* This packet does count as a Good Packet Received.    */ | 
|  | 5081 | stats->gprc++; | 
|  | 5082 |  | 
|  | 5083 | /* Adjust the Good Octets received counters             */ | 
|  | 5084 | carry_bit = 0x80000000 & stats->gorcl; | 
|  | 5085 | stats->gorcl += frame_len; | 
|  | 5086 | /* If the high bit of Gorcl (the low 32 bits of the Good Octets | 
|  | 5087 | * Received Count) was one before the addition, | 
|  | 5088 | * AND it is zero after, then we lost the carry out, | 
|  | 5089 | * need to add one to Gorch (Good Octets Received Count High). | 
|  | 5090 | * This could be simplified if all environments supported | 
|  | 5091 | * 64-bit integers. | 
|  | 5092 | */ | 
|  | 5093 | if(carry_bit && ((stats->gorcl & 0x80000000) == 0)) | 
|  | 5094 | stats->gorch++; | 
|  | 5095 | /* Is this a broadcast or multicast?  Check broadcast first, | 
|  | 5096 | * since the test for a multicast frame will test positive on | 
|  | 5097 | * a broadcast frame. | 
|  | 5098 | */ | 
|  | 5099 | if((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff)) | 
|  | 5100 | /* Broadcast packet */ | 
|  | 5101 | stats->bprc++; | 
|  | 5102 | else if(*mac_addr & 0x01) | 
|  | 5103 | /* Multicast packet */ | 
|  | 5104 | stats->mprc++; | 
|  | 5105 |  | 
|  | 5106 | if(frame_len == hw->max_frame_size) { | 
|  | 5107 | /* In this case, the hardware has overcounted the number of | 
|  | 5108 | * oversize frames. | 
|  | 5109 | */ | 
|  | 5110 | if(stats->roc > 0) | 
|  | 5111 | stats->roc--; | 
|  | 5112 | } | 
|  | 5113 |  | 
|  | 5114 | /* Adjust the bin counters when the extra byte put the frame in the | 
|  | 5115 | * wrong bin. Remember that the frame_len was adjusted above. | 
|  | 5116 | */ | 
|  | 5117 | if(frame_len == 64) { | 
|  | 5118 | stats->prc64++; | 
|  | 5119 | stats->prc127--; | 
|  | 5120 | } else if(frame_len == 127) { | 
|  | 5121 | stats->prc127++; | 
|  | 5122 | stats->prc255--; | 
|  | 5123 | } else if(frame_len == 255) { | 
|  | 5124 | stats->prc255++; | 
|  | 5125 | stats->prc511--; | 
|  | 5126 | } else if(frame_len == 511) { | 
|  | 5127 | stats->prc511++; | 
|  | 5128 | stats->prc1023--; | 
|  | 5129 | } else if(frame_len == 1023) { | 
|  | 5130 | stats->prc1023++; | 
|  | 5131 | stats->prc1522--; | 
|  | 5132 | } else if(frame_len == 1522) { | 
|  | 5133 | stats->prc1522++; | 
|  | 5134 | } | 
|  | 5135 | } | 
|  | 5136 |  | 
|  | 5137 | /****************************************************************************** | 
|  | 5138 | * Gets the current PCI bus type, speed, and width of the hardware | 
|  | 5139 | * | 
|  | 5140 | * hw - Struct containing variables accessed by shared code | 
|  | 5141 | *****************************************************************************/ | 
|  | 5142 | void | 
|  | 5143 | e1000_get_bus_info(struct e1000_hw *hw) | 
|  | 5144 | { | 
|  | 5145 | uint32_t status; | 
|  | 5146 |  | 
|  | 5147 | switch (hw->mac_type) { | 
|  | 5148 | case e1000_82542_rev2_0: | 
|  | 5149 | case e1000_82542_rev2_1: | 
|  | 5150 | hw->bus_type = e1000_bus_type_unknown; | 
|  | 5151 | hw->bus_speed = e1000_bus_speed_unknown; | 
|  | 5152 | hw->bus_width = e1000_bus_width_unknown; | 
|  | 5153 | break; | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 5154 | case e1000_82573: | 
|  | 5155 | hw->bus_type = e1000_bus_type_pci_express; | 
|  | 5156 | hw->bus_speed = e1000_bus_speed_2500; | 
|  | 5157 | hw->bus_width = e1000_bus_width_pciex_4; | 
|  | 5158 | break; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5159 | default: | 
|  | 5160 | status = E1000_READ_REG(hw, STATUS); | 
|  | 5161 | hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ? | 
|  | 5162 | e1000_bus_type_pcix : e1000_bus_type_pci; | 
|  | 5163 |  | 
|  | 5164 | if(hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) { | 
|  | 5165 | hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ? | 
|  | 5166 | e1000_bus_speed_66 : e1000_bus_speed_120; | 
|  | 5167 | } else if(hw->bus_type == e1000_bus_type_pci) { | 
|  | 5168 | hw->bus_speed = (status & E1000_STATUS_PCI66) ? | 
|  | 5169 | e1000_bus_speed_66 : e1000_bus_speed_33; | 
|  | 5170 | } else { | 
|  | 5171 | switch (status & E1000_STATUS_PCIX_SPEED) { | 
|  | 5172 | case E1000_STATUS_PCIX_SPEED_66: | 
|  | 5173 | hw->bus_speed = e1000_bus_speed_66; | 
|  | 5174 | break; | 
|  | 5175 | case E1000_STATUS_PCIX_SPEED_100: | 
|  | 5176 | hw->bus_speed = e1000_bus_speed_100; | 
|  | 5177 | break; | 
|  | 5178 | case E1000_STATUS_PCIX_SPEED_133: | 
|  | 5179 | hw->bus_speed = e1000_bus_speed_133; | 
|  | 5180 | break; | 
|  | 5181 | default: | 
|  | 5182 | hw->bus_speed = e1000_bus_speed_reserved; | 
|  | 5183 | break; | 
|  | 5184 | } | 
|  | 5185 | } | 
|  | 5186 | hw->bus_width = (status & E1000_STATUS_BUS64) ? | 
|  | 5187 | e1000_bus_width_64 : e1000_bus_width_32; | 
|  | 5188 | break; | 
|  | 5189 | } | 
|  | 5190 | } | 
|  | 5191 | /****************************************************************************** | 
|  | 5192 | * Reads a value from one of the devices registers using port I/O (as opposed | 
|  | 5193 | * memory mapped I/O). Only 82544 and newer devices support port I/O. | 
|  | 5194 | * | 
|  | 5195 | * hw - Struct containing variables accessed by shared code | 
|  | 5196 | * offset - offset to read from | 
|  | 5197 | *****************************************************************************/ | 
|  | 5198 | uint32_t | 
|  | 5199 | e1000_read_reg_io(struct e1000_hw *hw, | 
|  | 5200 | uint32_t offset) | 
|  | 5201 | { | 
|  | 5202 | unsigned long io_addr = hw->io_base; | 
|  | 5203 | unsigned long io_data = hw->io_base + 4; | 
|  | 5204 |  | 
|  | 5205 | e1000_io_write(hw, io_addr, offset); | 
|  | 5206 | return e1000_io_read(hw, io_data); | 
|  | 5207 | } | 
|  | 5208 |  | 
|  | 5209 | /****************************************************************************** | 
|  | 5210 | * Writes a value to one of the devices registers using port I/O (as opposed to | 
|  | 5211 | * memory mapped I/O). Only 82544 and newer devices support port I/O. | 
|  | 5212 | * | 
|  | 5213 | * hw - Struct containing variables accessed by shared code | 
|  | 5214 | * offset - offset to write to | 
|  | 5215 | * value - value to write | 
|  | 5216 | *****************************************************************************/ | 
|  | 5217 | void | 
|  | 5218 | e1000_write_reg_io(struct e1000_hw *hw, | 
|  | 5219 | uint32_t offset, | 
|  | 5220 | uint32_t value) | 
|  | 5221 | { | 
|  | 5222 | unsigned long io_addr = hw->io_base; | 
|  | 5223 | unsigned long io_data = hw->io_base + 4; | 
|  | 5224 |  | 
|  | 5225 | e1000_io_write(hw, io_addr, offset); | 
|  | 5226 | e1000_io_write(hw, io_data, value); | 
|  | 5227 | } | 
|  | 5228 |  | 
|  | 5229 |  | 
|  | 5230 | /****************************************************************************** | 
|  | 5231 | * Estimates the cable length. | 
|  | 5232 | * | 
|  | 5233 | * hw - Struct containing variables accessed by shared code | 
|  | 5234 | * min_length - The estimated minimum length | 
|  | 5235 | * max_length - The estimated maximum length | 
|  | 5236 | * | 
|  | 5237 | * returns: - E1000_ERR_XXX | 
|  | 5238 | *            E1000_SUCCESS | 
|  | 5239 | * | 
|  | 5240 | * This function always returns a ranged length (minimum & maximum). | 
|  | 5241 | * So for M88 phy's, this function interprets the one value returned from the | 
|  | 5242 | * register to the minimum and maximum range. | 
|  | 5243 | * For IGP phy's, the function calculates the range by the AGC registers. | 
|  | 5244 | *****************************************************************************/ | 
|  | 5245 | int32_t | 
|  | 5246 | e1000_get_cable_length(struct e1000_hw *hw, | 
|  | 5247 | uint16_t *min_length, | 
|  | 5248 | uint16_t *max_length) | 
|  | 5249 | { | 
|  | 5250 | int32_t ret_val; | 
|  | 5251 | uint16_t agc_value = 0; | 
|  | 5252 | uint16_t cur_agc, min_agc = IGP01E1000_AGC_LENGTH_TABLE_SIZE; | 
|  | 5253 | uint16_t i, phy_data; | 
|  | 5254 | uint16_t cable_length; | 
|  | 5255 |  | 
|  | 5256 | DEBUGFUNC("e1000_get_cable_length"); | 
|  | 5257 |  | 
|  | 5258 | *min_length = *max_length = 0; | 
|  | 5259 |  | 
|  | 5260 | /* Use old method for Phy older than IGP */ | 
|  | 5261 | if(hw->phy_type == e1000_phy_m88) { | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 5262 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5263 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, | 
|  | 5264 | &phy_data); | 
|  | 5265 | if(ret_val) | 
|  | 5266 | return ret_val; | 
|  | 5267 | cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> | 
|  | 5268 | M88E1000_PSSR_CABLE_LENGTH_SHIFT; | 
|  | 5269 |  | 
|  | 5270 | /* Convert the enum value to ranged values */ | 
|  | 5271 | switch (cable_length) { | 
|  | 5272 | case e1000_cable_length_50: | 
|  | 5273 | *min_length = 0; | 
|  | 5274 | *max_length = e1000_igp_cable_length_50; | 
|  | 5275 | break; | 
|  | 5276 | case e1000_cable_length_50_80: | 
|  | 5277 | *min_length = e1000_igp_cable_length_50; | 
|  | 5278 | *max_length = e1000_igp_cable_length_80; | 
|  | 5279 | break; | 
|  | 5280 | case e1000_cable_length_80_110: | 
|  | 5281 | *min_length = e1000_igp_cable_length_80; | 
|  | 5282 | *max_length = e1000_igp_cable_length_110; | 
|  | 5283 | break; | 
|  | 5284 | case e1000_cable_length_110_140: | 
|  | 5285 | *min_length = e1000_igp_cable_length_110; | 
|  | 5286 | *max_length = e1000_igp_cable_length_140; | 
|  | 5287 | break; | 
|  | 5288 | case e1000_cable_length_140: | 
|  | 5289 | *min_length = e1000_igp_cable_length_140; | 
|  | 5290 | *max_length = e1000_igp_cable_length_170; | 
|  | 5291 | break; | 
|  | 5292 | default: | 
|  | 5293 | return -E1000_ERR_PHY; | 
|  | 5294 | break; | 
|  | 5295 | } | 
|  | 5296 | } else if(hw->phy_type == e1000_phy_igp) { /* For IGP PHY */ | 
|  | 5297 | uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = | 
|  | 5298 | {IGP01E1000_PHY_AGC_A, | 
|  | 5299 | IGP01E1000_PHY_AGC_B, | 
|  | 5300 | IGP01E1000_PHY_AGC_C, | 
|  | 5301 | IGP01E1000_PHY_AGC_D}; | 
|  | 5302 | /* Read the AGC registers for all channels */ | 
|  | 5303 | for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { | 
|  | 5304 |  | 
|  | 5305 | ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data); | 
|  | 5306 | if(ret_val) | 
|  | 5307 | return ret_val; | 
|  | 5308 |  | 
|  | 5309 | cur_agc = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT; | 
|  | 5310 |  | 
|  | 5311 | /* Array bound check. */ | 
|  | 5312 | if((cur_agc >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) || | 
|  | 5313 | (cur_agc == 0)) | 
|  | 5314 | return -E1000_ERR_PHY; | 
|  | 5315 |  | 
|  | 5316 | agc_value += cur_agc; | 
|  | 5317 |  | 
|  | 5318 | /* Update minimal AGC value. */ | 
|  | 5319 | if(min_agc > cur_agc) | 
|  | 5320 | min_agc = cur_agc; | 
|  | 5321 | } | 
|  | 5322 |  | 
|  | 5323 | /* Remove the minimal AGC result for length < 50m */ | 
|  | 5324 | if(agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) { | 
|  | 5325 | agc_value -= min_agc; | 
|  | 5326 |  | 
|  | 5327 | /* Get the average length of the remaining 3 channels */ | 
|  | 5328 | agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1); | 
|  | 5329 | } else { | 
|  | 5330 | /* Get the average length of all the 4 channels. */ | 
|  | 5331 | agc_value /= IGP01E1000_PHY_CHANNEL_NUM; | 
|  | 5332 | } | 
|  | 5333 |  | 
|  | 5334 | /* Set the range of the calculated length. */ | 
|  | 5335 | *min_length = ((e1000_igp_cable_length_table[agc_value] - | 
|  | 5336 | IGP01E1000_AGC_RANGE) > 0) ? | 
|  | 5337 | (e1000_igp_cable_length_table[agc_value] - | 
|  | 5338 | IGP01E1000_AGC_RANGE) : 0; | 
|  | 5339 | *max_length = e1000_igp_cable_length_table[agc_value] + | 
|  | 5340 | IGP01E1000_AGC_RANGE; | 
|  | 5341 | } | 
|  | 5342 |  | 
|  | 5343 | return E1000_SUCCESS; | 
|  | 5344 | } | 
|  | 5345 |  | 
|  | 5346 | /****************************************************************************** | 
|  | 5347 | * Check the cable polarity | 
|  | 5348 | * | 
|  | 5349 | * hw - Struct containing variables accessed by shared code | 
|  | 5350 | * polarity - output parameter : 0 - Polarity is not reversed | 
|  | 5351 | *                               1 - Polarity is reversed. | 
|  | 5352 | * | 
|  | 5353 | * returns: - E1000_ERR_XXX | 
|  | 5354 | *            E1000_SUCCESS | 
|  | 5355 | * | 
|  | 5356 | * For phy's older then IGP, this function simply reads the polarity bit in the | 
|  | 5357 | * Phy Status register.  For IGP phy's, this bit is valid only if link speed is | 
|  | 5358 | * 10 Mbps.  If the link speed is 100 Mbps there is no polarity so this bit will | 
|  | 5359 | * return 0.  If the link speed is 1000 Mbps the polarity status is in the | 
|  | 5360 | * IGP01E1000_PHY_PCS_INIT_REG. | 
|  | 5361 | *****************************************************************************/ | 
|  | 5362 | int32_t | 
|  | 5363 | e1000_check_polarity(struct e1000_hw *hw, | 
|  | 5364 | uint16_t *polarity) | 
|  | 5365 | { | 
|  | 5366 | int32_t ret_val; | 
|  | 5367 | uint16_t phy_data; | 
|  | 5368 |  | 
|  | 5369 | DEBUGFUNC("e1000_check_polarity"); | 
|  | 5370 |  | 
|  | 5371 | if(hw->phy_type == e1000_phy_m88) { | 
|  | 5372 | /* return the Polarity bit in the Status register. */ | 
|  | 5373 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, | 
|  | 5374 | &phy_data); | 
|  | 5375 | if(ret_val) | 
|  | 5376 | return ret_val; | 
|  | 5377 | *polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >> | 
|  | 5378 | M88E1000_PSSR_REV_POLARITY_SHIFT; | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 5379 | } else if(hw->phy_type == e1000_phy_igp || | 
|  | 5380 | hw->phy_type == e1000_phy_igp_2) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5381 | /* Read the Status register to check the speed */ | 
|  | 5382 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, | 
|  | 5383 | &phy_data); | 
|  | 5384 | if(ret_val) | 
|  | 5385 | return ret_val; | 
|  | 5386 |  | 
|  | 5387 | /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to | 
|  | 5388 | * find the polarity status */ | 
|  | 5389 | if((phy_data & IGP01E1000_PSSR_SPEED_MASK) == | 
|  | 5390 | IGP01E1000_PSSR_SPEED_1000MBPS) { | 
|  | 5391 |  | 
|  | 5392 | /* Read the GIG initialization PCS register (0x00B4) */ | 
|  | 5393 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG, | 
|  | 5394 | &phy_data); | 
|  | 5395 | if(ret_val) | 
|  | 5396 | return ret_val; | 
|  | 5397 |  | 
|  | 5398 | /* Check the polarity bits */ | 
|  | 5399 | *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ? 1 : 0; | 
|  | 5400 | } else { | 
|  | 5401 | /* For 10 Mbps, read the polarity bit in the status register. (for | 
|  | 5402 | * 100 Mbps this bit is always 0) */ | 
|  | 5403 | *polarity = phy_data & IGP01E1000_PSSR_POLARITY_REVERSED; | 
|  | 5404 | } | 
|  | 5405 | } | 
|  | 5406 | return E1000_SUCCESS; | 
|  | 5407 | } | 
|  | 5408 |  | 
|  | 5409 | /****************************************************************************** | 
|  | 5410 | * Check if Downshift occured | 
|  | 5411 | * | 
|  | 5412 | * hw - Struct containing variables accessed by shared code | 
|  | 5413 | * downshift - output parameter : 0 - No Downshift ocured. | 
|  | 5414 | *                                1 - Downshift ocured. | 
|  | 5415 | * | 
|  | 5416 | * returns: - E1000_ERR_XXX | 
|  | 5417 | *            E1000_SUCCESS | 
|  | 5418 | * | 
|  | 5419 | * For phy's older then IGP, this function reads the Downshift bit in the Phy | 
|  | 5420 | * Specific Status register.  For IGP phy's, it reads the Downgrade bit in the | 
|  | 5421 | * Link Health register.  In IGP this bit is latched high, so the driver must | 
|  | 5422 | * read it immediately after link is established. | 
|  | 5423 | *****************************************************************************/ | 
|  | 5424 | int32_t | 
|  | 5425 | e1000_check_downshift(struct e1000_hw *hw) | 
|  | 5426 | { | 
|  | 5427 | int32_t ret_val; | 
|  | 5428 | uint16_t phy_data; | 
|  | 5429 |  | 
|  | 5430 | DEBUGFUNC("e1000_check_downshift"); | 
|  | 5431 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 5432 | if(hw->phy_type == e1000_phy_igp || | 
|  | 5433 | hw->phy_type == e1000_phy_igp_2) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5434 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH, | 
|  | 5435 | &phy_data); | 
|  | 5436 | if(ret_val) | 
|  | 5437 | return ret_val; | 
|  | 5438 |  | 
|  | 5439 | hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0; | 
|  | 5440 | } else if(hw->phy_type == e1000_phy_m88) { | 
|  | 5441 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, | 
|  | 5442 | &phy_data); | 
|  | 5443 | if(ret_val) | 
|  | 5444 | return ret_val; | 
|  | 5445 |  | 
|  | 5446 | hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >> | 
|  | 5447 | M88E1000_PSSR_DOWNSHIFT_SHIFT; | 
|  | 5448 | } | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 5449 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5450 | return E1000_SUCCESS; | 
|  | 5451 | } | 
|  | 5452 |  | 
|  | 5453 | /***************************************************************************** | 
|  | 5454 | * | 
|  | 5455 | * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a | 
|  | 5456 | * gigabit link is achieved to improve link quality. | 
|  | 5457 | * | 
|  | 5458 | * hw: Struct containing variables accessed by shared code | 
|  | 5459 | * | 
|  | 5460 | * returns: - E1000_ERR_PHY if fail to read/write the PHY | 
|  | 5461 | *            E1000_SUCCESS at any other case. | 
|  | 5462 | * | 
|  | 5463 | ****************************************************************************/ | 
|  | 5464 |  | 
|  | 5465 | int32_t | 
|  | 5466 | e1000_config_dsp_after_link_change(struct e1000_hw *hw, | 
|  | 5467 | boolean_t link_up) | 
|  | 5468 | { | 
|  | 5469 | int32_t ret_val; | 
|  | 5470 | uint16_t phy_data, phy_saved_data, speed, duplex, i; | 
|  | 5471 | uint16_t dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = | 
|  | 5472 | {IGP01E1000_PHY_AGC_PARAM_A, | 
|  | 5473 | IGP01E1000_PHY_AGC_PARAM_B, | 
|  | 5474 | IGP01E1000_PHY_AGC_PARAM_C, | 
|  | 5475 | IGP01E1000_PHY_AGC_PARAM_D}; | 
|  | 5476 | uint16_t min_length, max_length; | 
|  | 5477 |  | 
|  | 5478 | DEBUGFUNC("e1000_config_dsp_after_link_change"); | 
|  | 5479 |  | 
|  | 5480 | if(hw->phy_type != e1000_phy_igp) | 
|  | 5481 | return E1000_SUCCESS; | 
|  | 5482 |  | 
|  | 5483 | if(link_up) { | 
|  | 5484 | ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); | 
|  | 5485 | if(ret_val) { | 
|  | 5486 | DEBUGOUT("Error getting link speed and duplex\n"); | 
|  | 5487 | return ret_val; | 
|  | 5488 | } | 
|  | 5489 |  | 
|  | 5490 | if(speed == SPEED_1000) { | 
|  | 5491 |  | 
|  | 5492 | e1000_get_cable_length(hw, &min_length, &max_length); | 
|  | 5493 |  | 
|  | 5494 | if((hw->dsp_config_state == e1000_dsp_config_enabled) && | 
|  | 5495 | min_length >= e1000_igp_cable_length_50) { | 
|  | 5496 |  | 
|  | 5497 | for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { | 
|  | 5498 | ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], | 
|  | 5499 | &phy_data); | 
|  | 5500 | if(ret_val) | 
|  | 5501 | return ret_val; | 
|  | 5502 |  | 
|  | 5503 | phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; | 
|  | 5504 |  | 
|  | 5505 | ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i], | 
|  | 5506 | phy_data); | 
|  | 5507 | if(ret_val) | 
|  | 5508 | return ret_val; | 
|  | 5509 | } | 
|  | 5510 | hw->dsp_config_state = e1000_dsp_config_activated; | 
|  | 5511 | } | 
|  | 5512 |  | 
|  | 5513 | if((hw->ffe_config_state == e1000_ffe_config_enabled) && | 
|  | 5514 | (min_length < e1000_igp_cable_length_50)) { | 
|  | 5515 |  | 
|  | 5516 | uint16_t ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20; | 
|  | 5517 | uint32_t idle_errs = 0; | 
|  | 5518 |  | 
|  | 5519 | /* clear previous idle error counts */ | 
|  | 5520 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, | 
|  | 5521 | &phy_data); | 
|  | 5522 | if(ret_val) | 
|  | 5523 | return ret_val; | 
|  | 5524 |  | 
|  | 5525 | for(i = 0; i < ffe_idle_err_timeout; i++) { | 
|  | 5526 | udelay(1000); | 
|  | 5527 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, | 
|  | 5528 | &phy_data); | 
|  | 5529 | if(ret_val) | 
|  | 5530 | return ret_val; | 
|  | 5531 |  | 
|  | 5532 | idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT); | 
|  | 5533 | if(idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) { | 
|  | 5534 | hw->ffe_config_state = e1000_ffe_config_active; | 
|  | 5535 |  | 
|  | 5536 | ret_val = e1000_write_phy_reg(hw, | 
|  | 5537 | IGP01E1000_PHY_DSP_FFE, | 
|  | 5538 | IGP01E1000_PHY_DSP_FFE_CM_CP); | 
|  | 5539 | if(ret_val) | 
|  | 5540 | return ret_val; | 
|  | 5541 | break; | 
|  | 5542 | } | 
|  | 5543 |  | 
|  | 5544 | if(idle_errs) | 
|  | 5545 | ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100; | 
|  | 5546 | } | 
|  | 5547 | } | 
|  | 5548 | } | 
|  | 5549 | } else { | 
|  | 5550 | if(hw->dsp_config_state == e1000_dsp_config_activated) { | 
|  | 5551 | /* Save off the current value of register 0x2F5B to be restored at | 
|  | 5552 | * the end of the routines. */ | 
|  | 5553 | ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); | 
|  | 5554 |  | 
|  | 5555 | if(ret_val) | 
|  | 5556 | return ret_val; | 
|  | 5557 |  | 
|  | 5558 | /* Disable the PHY transmitter */ | 
|  | 5559 | ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); | 
|  | 5560 |  | 
|  | 5561 | if(ret_val) | 
|  | 5562 | return ret_val; | 
|  | 5563 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 5564 | msec_delay_irq(20); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5565 |  | 
|  | 5566 | ret_val = e1000_write_phy_reg(hw, 0x0000, | 
|  | 5567 | IGP01E1000_IEEE_FORCE_GIGA); | 
|  | 5568 | if(ret_val) | 
|  | 5569 | return ret_val; | 
|  | 5570 | for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { | 
|  | 5571 | ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], &phy_data); | 
|  | 5572 | if(ret_val) | 
|  | 5573 | return ret_val; | 
|  | 5574 |  | 
|  | 5575 | phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; | 
|  | 5576 | phy_data |=  IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS; | 
|  | 5577 |  | 
|  | 5578 | ret_val = e1000_write_phy_reg(hw,dsp_reg_array[i], phy_data); | 
|  | 5579 | if(ret_val) | 
|  | 5580 | return ret_val; | 
|  | 5581 | } | 
|  | 5582 |  | 
|  | 5583 | ret_val = e1000_write_phy_reg(hw, 0x0000, | 
|  | 5584 | IGP01E1000_IEEE_RESTART_AUTONEG); | 
|  | 5585 | if(ret_val) | 
|  | 5586 | return ret_val; | 
|  | 5587 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 5588 | msec_delay_irq(20); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5589 |  | 
|  | 5590 | /* Now enable the transmitter */ | 
|  | 5591 | ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); | 
|  | 5592 |  | 
|  | 5593 | if(ret_val) | 
|  | 5594 | return ret_val; | 
|  | 5595 |  | 
|  | 5596 | hw->dsp_config_state = e1000_dsp_config_enabled; | 
|  | 5597 | } | 
|  | 5598 |  | 
|  | 5599 | if(hw->ffe_config_state == e1000_ffe_config_active) { | 
|  | 5600 | /* Save off the current value of register 0x2F5B to be restored at | 
|  | 5601 | * the end of the routines. */ | 
|  | 5602 | ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); | 
|  | 5603 |  | 
|  | 5604 | if(ret_val) | 
|  | 5605 | return ret_val; | 
|  | 5606 |  | 
|  | 5607 | /* Disable the PHY transmitter */ | 
|  | 5608 | ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); | 
|  | 5609 |  | 
|  | 5610 | if(ret_val) | 
|  | 5611 | return ret_val; | 
|  | 5612 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 5613 | msec_delay_irq(20); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5614 |  | 
|  | 5615 | ret_val = e1000_write_phy_reg(hw, 0x0000, | 
|  | 5616 | IGP01E1000_IEEE_FORCE_GIGA); | 
|  | 5617 | if(ret_val) | 
|  | 5618 | return ret_val; | 
|  | 5619 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE, | 
|  | 5620 | IGP01E1000_PHY_DSP_FFE_DEFAULT); | 
|  | 5621 | if(ret_val) | 
|  | 5622 | return ret_val; | 
|  | 5623 |  | 
|  | 5624 | ret_val = e1000_write_phy_reg(hw, 0x0000, | 
|  | 5625 | IGP01E1000_IEEE_RESTART_AUTONEG); | 
|  | 5626 | if(ret_val) | 
|  | 5627 | return ret_val; | 
|  | 5628 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 5629 | msec_delay_irq(20); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5630 |  | 
|  | 5631 | /* Now enable the transmitter */ | 
|  | 5632 | ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); | 
|  | 5633 |  | 
|  | 5634 | if(ret_val) | 
|  | 5635 | return ret_val; | 
|  | 5636 |  | 
|  | 5637 | hw->ffe_config_state = e1000_ffe_config_enabled; | 
|  | 5638 | } | 
|  | 5639 | } | 
|  | 5640 | return E1000_SUCCESS; | 
|  | 5641 | } | 
|  | 5642 |  | 
|  | 5643 | /***************************************************************************** | 
|  | 5644 | * Set PHY to class A mode | 
|  | 5645 | * Assumes the following operations will follow to enable the new class mode. | 
|  | 5646 | *  1. Do a PHY soft reset | 
|  | 5647 | *  2. Restart auto-negotiation or force link. | 
|  | 5648 | * | 
|  | 5649 | * hw - Struct containing variables accessed by shared code | 
|  | 5650 | ****************************************************************************/ | 
|  | 5651 | static int32_t | 
|  | 5652 | e1000_set_phy_mode(struct e1000_hw *hw) | 
|  | 5653 | { | 
|  | 5654 | int32_t ret_val; | 
|  | 5655 | uint16_t eeprom_data; | 
|  | 5656 |  | 
|  | 5657 | DEBUGFUNC("e1000_set_phy_mode"); | 
|  | 5658 |  | 
|  | 5659 | if((hw->mac_type == e1000_82545_rev_3) && | 
|  | 5660 | (hw->media_type == e1000_media_type_copper)) { | 
|  | 5661 | ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data); | 
|  | 5662 | if(ret_val) { | 
|  | 5663 | return ret_val; | 
|  | 5664 | } | 
|  | 5665 |  | 
|  | 5666 | if((eeprom_data != EEPROM_RESERVED_WORD) && | 
|  | 5667 | (eeprom_data & EEPROM_PHY_CLASS_A)) { | 
|  | 5668 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B); | 
|  | 5669 | if(ret_val) | 
|  | 5670 | return ret_val; | 
|  | 5671 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104); | 
|  | 5672 | if(ret_val) | 
|  | 5673 | return ret_val; | 
|  | 5674 |  | 
|  | 5675 | hw->phy_reset_disable = FALSE; | 
|  | 5676 | } | 
|  | 5677 | } | 
|  | 5678 |  | 
|  | 5679 | return E1000_SUCCESS; | 
|  | 5680 | } | 
|  | 5681 |  | 
|  | 5682 | /***************************************************************************** | 
|  | 5683 | * | 
|  | 5684 | * This function sets the lplu state according to the active flag.  When | 
|  | 5685 | * activating lplu this function also disables smart speed and vise versa. | 
|  | 5686 | * lplu will not be activated unless the device autonegotiation advertisment | 
|  | 5687 | * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. | 
|  | 5688 | * hw: Struct containing variables accessed by shared code | 
|  | 5689 | * active - true to enable lplu false to disable lplu. | 
|  | 5690 | * | 
|  | 5691 | * returns: - E1000_ERR_PHY if fail to read/write the PHY | 
|  | 5692 | *            E1000_SUCCESS at any other case. | 
|  | 5693 | * | 
|  | 5694 | ****************************************************************************/ | 
|  | 5695 |  | 
|  | 5696 | int32_t | 
|  | 5697 | e1000_set_d3_lplu_state(struct e1000_hw *hw, | 
|  | 5698 | boolean_t active) | 
|  | 5699 | { | 
|  | 5700 | int32_t ret_val; | 
|  | 5701 | uint16_t phy_data; | 
|  | 5702 | DEBUGFUNC("e1000_set_d3_lplu_state"); | 
|  | 5703 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 5704 | if(hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5705 | return E1000_SUCCESS; | 
|  | 5706 |  | 
|  | 5707 | /* During driver activity LPLU should not be used or it will attain link | 
|  | 5708 | * from the lowest speeds starting from 10Mbps. The capability is used for | 
|  | 5709 | * Dx transitions and states */ | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 5710 | if(hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) { | 
|  | 5711 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5712 | if(ret_val) | 
|  | 5713 | return ret_val; | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 5714 | } else { | 
|  | 5715 | ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); | 
|  | 5716 | if(ret_val) | 
|  | 5717 | return ret_val; | 
|  | 5718 | } | 
|  | 5719 |  | 
|  | 5720 | if(!active) { | 
|  | 5721 | if(hw->mac_type == e1000_82541_rev_2 || | 
|  | 5722 | hw->mac_type == e1000_82547_rev_2) { | 
|  | 5723 | phy_data &= ~IGP01E1000_GMII_FLEX_SPD; | 
|  | 5724 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); | 
|  | 5725 | if(ret_val) | 
|  | 5726 | return ret_val; | 
|  | 5727 | } else { | 
|  | 5728 | phy_data &= ~IGP02E1000_PM_D3_LPLU; | 
|  | 5729 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, | 
|  | 5730 | phy_data); | 
|  | 5731 | if (ret_val) | 
|  | 5732 | return ret_val; | 
|  | 5733 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5734 |  | 
|  | 5735 | /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during | 
|  | 5736 | * Dx states where the power conservation is most important.  During | 
|  | 5737 | * driver activity we should enable SmartSpeed, so performance is | 
|  | 5738 | * maintained. */ | 
|  | 5739 | if (hw->smart_speed == e1000_smart_speed_on) { | 
|  | 5740 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|  | 5741 | &phy_data); | 
|  | 5742 | if(ret_val) | 
|  | 5743 | return ret_val; | 
|  | 5744 |  | 
|  | 5745 | phy_data |= IGP01E1000_PSCFR_SMART_SPEED; | 
|  | 5746 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|  | 5747 | phy_data); | 
|  | 5748 | if(ret_val) | 
|  | 5749 | return ret_val; | 
|  | 5750 | } else if (hw->smart_speed == e1000_smart_speed_off) { | 
|  | 5751 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|  | 5752 | &phy_data); | 
|  | 5753 | if (ret_val) | 
|  | 5754 | return ret_val; | 
|  | 5755 |  | 
|  | 5756 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | 
|  | 5757 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|  | 5758 | phy_data); | 
|  | 5759 | if(ret_val) | 
|  | 5760 | return ret_val; | 
|  | 5761 | } | 
|  | 5762 |  | 
|  | 5763 | } else if((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) || | 
|  | 5764 | (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) || | 
|  | 5765 | (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) { | 
|  | 5766 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 5767 | if(hw->mac_type == e1000_82541_rev_2 || | 
|  | 5768 | hw->mac_type == e1000_82547_rev_2) { | 
|  | 5769 | phy_data |= IGP01E1000_GMII_FLEX_SPD; | 
|  | 5770 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); | 
|  | 5771 | if(ret_val) | 
|  | 5772 | return ret_val; | 
|  | 5773 | } else { | 
|  | 5774 | phy_data |= IGP02E1000_PM_D3_LPLU; | 
|  | 5775 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, | 
|  | 5776 | phy_data); | 
|  | 5777 | if (ret_val) | 
|  | 5778 | return ret_val; | 
|  | 5779 | } | 
|  | 5780 |  | 
|  | 5781 | /* When LPLU is enabled we should disable SmartSpeed */ | 
|  | 5782 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5783 | if(ret_val) | 
|  | 5784 | return ret_val; | 
|  | 5785 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 5786 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | 
|  | 5787 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); | 
|  | 5788 | if(ret_val) | 
|  | 5789 | return ret_val; | 
|  | 5790 |  | 
|  | 5791 | } | 
|  | 5792 | return E1000_SUCCESS; | 
|  | 5793 | } | 
|  | 5794 |  | 
|  | 5795 | /***************************************************************************** | 
|  | 5796 | * | 
|  | 5797 | * This function sets the lplu d0 state according to the active flag.  When | 
|  | 5798 | * activating lplu this function also disables smart speed and vise versa. | 
|  | 5799 | * lplu will not be activated unless the device autonegotiation advertisment | 
|  | 5800 | * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. | 
|  | 5801 | * hw: Struct containing variables accessed by shared code | 
|  | 5802 | * active - true to enable lplu false to disable lplu. | 
|  | 5803 | * | 
|  | 5804 | * returns: - E1000_ERR_PHY if fail to read/write the PHY | 
|  | 5805 | *            E1000_SUCCESS at any other case. | 
|  | 5806 | * | 
|  | 5807 | ****************************************************************************/ | 
|  | 5808 |  | 
|  | 5809 | int32_t | 
|  | 5810 | e1000_set_d0_lplu_state(struct e1000_hw *hw, | 
|  | 5811 | boolean_t active) | 
|  | 5812 | { | 
|  | 5813 | int32_t ret_val; | 
|  | 5814 | uint16_t phy_data; | 
|  | 5815 | DEBUGFUNC("e1000_set_d0_lplu_state"); | 
|  | 5816 |  | 
|  | 5817 | if(hw->mac_type <= e1000_82547_rev_2) | 
|  | 5818 | return E1000_SUCCESS; | 
|  | 5819 |  | 
|  | 5820 | ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); | 
|  | 5821 | if(ret_val) | 
|  | 5822 | return ret_val; | 
|  | 5823 |  | 
|  | 5824 | if (!active) { | 
|  | 5825 | phy_data &= ~IGP02E1000_PM_D0_LPLU; | 
|  | 5826 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); | 
|  | 5827 | if (ret_val) | 
|  | 5828 | return ret_val; | 
|  | 5829 |  | 
|  | 5830 | /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during | 
|  | 5831 | * Dx states where the power conservation is most important.  During | 
|  | 5832 | * driver activity we should enable SmartSpeed, so performance is | 
|  | 5833 | * maintained. */ | 
|  | 5834 | if (hw->smart_speed == e1000_smart_speed_on) { | 
|  | 5835 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|  | 5836 | &phy_data); | 
|  | 5837 | if(ret_val) | 
|  | 5838 | return ret_val; | 
|  | 5839 |  | 
|  | 5840 | phy_data |= IGP01E1000_PSCFR_SMART_SPEED; | 
|  | 5841 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|  | 5842 | phy_data); | 
|  | 5843 | if(ret_val) | 
|  | 5844 | return ret_val; | 
|  | 5845 | } else if (hw->smart_speed == e1000_smart_speed_off) { | 
|  | 5846 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|  | 5847 | &phy_data); | 
|  | 5848 | if (ret_val) | 
|  | 5849 | return ret_val; | 
|  | 5850 |  | 
|  | 5851 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | 
|  | 5852 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|  | 5853 | phy_data); | 
|  | 5854 | if(ret_val) | 
|  | 5855 | return ret_val; | 
|  | 5856 | } | 
|  | 5857 |  | 
|  | 5858 |  | 
|  | 5859 | } else { | 
|  | 5860 |  | 
|  | 5861 | phy_data |= IGP02E1000_PM_D0_LPLU; | 
|  | 5862 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); | 
|  | 5863 | if (ret_val) | 
|  | 5864 | return ret_val; | 
|  | 5865 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5866 | /* When LPLU is enabled we should disable SmartSpeed */ | 
|  | 5867 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); | 
|  | 5868 | if(ret_val) | 
|  | 5869 | return ret_val; | 
|  | 5870 |  | 
|  | 5871 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | 
|  | 5872 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); | 
|  | 5873 | if(ret_val) | 
|  | 5874 | return ret_val; | 
|  | 5875 |  | 
|  | 5876 | } | 
|  | 5877 | return E1000_SUCCESS; | 
|  | 5878 | } | 
|  | 5879 |  | 
|  | 5880 | /****************************************************************************** | 
|  | 5881 | * Change VCO speed register to improve Bit Error Rate performance of SERDES. | 
|  | 5882 | * | 
|  | 5883 | * hw - Struct containing variables accessed by shared code | 
|  | 5884 | *****************************************************************************/ | 
|  | 5885 | static int32_t | 
|  | 5886 | e1000_set_vco_speed(struct e1000_hw *hw) | 
|  | 5887 | { | 
|  | 5888 | int32_t  ret_val; | 
|  | 5889 | uint16_t default_page = 0; | 
|  | 5890 | uint16_t phy_data; | 
|  | 5891 |  | 
|  | 5892 | DEBUGFUNC("e1000_set_vco_speed"); | 
|  | 5893 |  | 
|  | 5894 | switch(hw->mac_type) { | 
|  | 5895 | case e1000_82545_rev_3: | 
|  | 5896 | case e1000_82546_rev_3: | 
|  | 5897 | break; | 
|  | 5898 | default: | 
|  | 5899 | return E1000_SUCCESS; | 
|  | 5900 | } | 
|  | 5901 |  | 
|  | 5902 | /* Set PHY register 30, page 5, bit 8 to 0 */ | 
|  | 5903 |  | 
|  | 5904 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page); | 
|  | 5905 | if(ret_val) | 
|  | 5906 | return ret_val; | 
|  | 5907 |  | 
|  | 5908 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005); | 
|  | 5909 | if(ret_val) | 
|  | 5910 | return ret_val; | 
|  | 5911 |  | 
|  | 5912 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); | 
|  | 5913 | if(ret_val) | 
|  | 5914 | return ret_val; | 
|  | 5915 |  | 
|  | 5916 | phy_data &= ~M88E1000_PHY_VCO_REG_BIT8; | 
|  | 5917 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); | 
|  | 5918 | if(ret_val) | 
|  | 5919 | return ret_val; | 
|  | 5920 |  | 
|  | 5921 | /* Set PHY register 30, page 4, bit 11 to 1 */ | 
|  | 5922 |  | 
|  | 5923 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004); | 
|  | 5924 | if(ret_val) | 
|  | 5925 | return ret_val; | 
|  | 5926 |  | 
|  | 5927 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); | 
|  | 5928 | if(ret_val) | 
|  | 5929 | return ret_val; | 
|  | 5930 |  | 
|  | 5931 | phy_data |= M88E1000_PHY_VCO_REG_BIT11; | 
|  | 5932 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); | 
|  | 5933 | if(ret_val) | 
|  | 5934 | return ret_val; | 
|  | 5935 |  | 
|  | 5936 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page); | 
|  | 5937 | if(ret_val) | 
|  | 5938 | return ret_val; | 
|  | 5939 |  | 
|  | 5940 | return E1000_SUCCESS; | 
|  | 5941 | } | 
|  | 5942 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 5943 |  | 
|  | 5944 | /***************************************************************************** | 
|  | 5945 | * This function reads the cookie from ARC ram. | 
|  | 5946 | * | 
|  | 5947 | * returns: - E1000_SUCCESS . | 
|  | 5948 | ****************************************************************************/ | 
|  | 5949 | int32_t | 
|  | 5950 | e1000_host_if_read_cookie(struct e1000_hw * hw, uint8_t *buffer) | 
|  | 5951 | { | 
|  | 5952 | uint8_t i; | 
|  | 5953 | uint32_t offset = E1000_MNG_DHCP_COOKIE_OFFSET; | 
|  | 5954 | uint8_t length = E1000_MNG_DHCP_COOKIE_LENGTH; | 
|  | 5955 |  | 
|  | 5956 | length = (length >> 2); | 
|  | 5957 | offset = (offset >> 2); | 
|  | 5958 |  | 
|  | 5959 | for (i = 0; i < length; i++) { | 
|  | 5960 | *((uint32_t *) buffer + i) = | 
|  | 5961 | E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset + i); | 
|  | 5962 | } | 
|  | 5963 | return E1000_SUCCESS; | 
|  | 5964 | } | 
|  | 5965 |  | 
|  | 5966 |  | 
|  | 5967 | /***************************************************************************** | 
|  | 5968 | * This function checks whether the HOST IF is enabled for command operaton | 
|  | 5969 | * and also checks whether the previous command is completed. | 
|  | 5970 | * It busy waits in case of previous command is not completed. | 
|  | 5971 | * | 
|  | 5972 | * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or | 
|  | 5973 | *            timeout | 
|  | 5974 | *          - E1000_SUCCESS for success. | 
|  | 5975 | ****************************************************************************/ | 
|  | 5976 | int32_t | 
|  | 5977 | e1000_mng_enable_host_if(struct e1000_hw * hw) | 
|  | 5978 | { | 
|  | 5979 | uint32_t hicr; | 
|  | 5980 | uint8_t i; | 
|  | 5981 |  | 
|  | 5982 | /* Check that the host interface is enabled. */ | 
|  | 5983 | hicr = E1000_READ_REG(hw, HICR); | 
|  | 5984 | if ((hicr & E1000_HICR_EN) == 0) { | 
|  | 5985 | DEBUGOUT("E1000_HOST_EN bit disabled.\n"); | 
|  | 5986 | return -E1000_ERR_HOST_INTERFACE_COMMAND; | 
|  | 5987 | } | 
|  | 5988 | /* check the previous command is completed */ | 
|  | 5989 | for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) { | 
|  | 5990 | hicr = E1000_READ_REG(hw, HICR); | 
|  | 5991 | if (!(hicr & E1000_HICR_C)) | 
|  | 5992 | break; | 
|  | 5993 | msec_delay_irq(1); | 
|  | 5994 | } | 
|  | 5995 |  | 
|  | 5996 | if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) { | 
|  | 5997 | DEBUGOUT("Previous command timeout failed .\n"); | 
|  | 5998 | return -E1000_ERR_HOST_INTERFACE_COMMAND; | 
|  | 5999 | } | 
|  | 6000 | return E1000_SUCCESS; | 
|  | 6001 | } | 
|  | 6002 |  | 
|  | 6003 | /***************************************************************************** | 
|  | 6004 | * This function writes the buffer content at the offset given on the host if. | 
|  | 6005 | * It also does alignment considerations to do the writes in most efficient way. | 
|  | 6006 | * Also fills up the sum of the buffer in *buffer parameter. | 
|  | 6007 | * | 
|  | 6008 | * returns  - E1000_SUCCESS for success. | 
|  | 6009 | ****************************************************************************/ | 
|  | 6010 | int32_t | 
|  | 6011 | e1000_mng_host_if_write(struct e1000_hw * hw, uint8_t *buffer, | 
|  | 6012 | uint16_t length, uint16_t offset, uint8_t *sum) | 
|  | 6013 | { | 
|  | 6014 | uint8_t *tmp; | 
|  | 6015 | uint8_t *bufptr = buffer; | 
|  | 6016 | uint32_t data; | 
|  | 6017 | uint16_t remaining, i, j, prev_bytes; | 
|  | 6018 |  | 
|  | 6019 | /* sum = only sum of the data and it is not checksum */ | 
|  | 6020 |  | 
|  | 6021 | if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) { | 
|  | 6022 | return -E1000_ERR_PARAM; | 
|  | 6023 | } | 
|  | 6024 |  | 
|  | 6025 | tmp = (uint8_t *)&data; | 
|  | 6026 | prev_bytes = offset & 0x3; | 
|  | 6027 | offset &= 0xFFFC; | 
|  | 6028 | offset >>= 2; | 
|  | 6029 |  | 
|  | 6030 | if (prev_bytes) { | 
|  | 6031 | data = E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset); | 
|  | 6032 | for (j = prev_bytes; j < sizeof(uint32_t); j++) { | 
|  | 6033 | *(tmp + j) = *bufptr++; | 
|  | 6034 | *sum += *(tmp + j); | 
|  | 6035 | } | 
|  | 6036 | E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset, data); | 
|  | 6037 | length -= j - prev_bytes; | 
|  | 6038 | offset++; | 
|  | 6039 | } | 
|  | 6040 |  | 
|  | 6041 | remaining = length & 0x3; | 
|  | 6042 | length -= remaining; | 
|  | 6043 |  | 
|  | 6044 | /* Calculate length in DWORDs */ | 
|  | 6045 | length >>= 2; | 
|  | 6046 |  | 
|  | 6047 | /* The device driver writes the relevant command block into the | 
|  | 6048 | * ram area. */ | 
|  | 6049 | for (i = 0; i < length; i++) { | 
|  | 6050 | for (j = 0; j < sizeof(uint32_t); j++) { | 
|  | 6051 | *(tmp + j) = *bufptr++; | 
|  | 6052 | *sum += *(tmp + j); | 
|  | 6053 | } | 
|  | 6054 |  | 
|  | 6055 | E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data); | 
|  | 6056 | } | 
|  | 6057 | if (remaining) { | 
|  | 6058 | for (j = 0; j < sizeof(uint32_t); j++) { | 
|  | 6059 | if (j < remaining) | 
|  | 6060 | *(tmp + j) = *bufptr++; | 
|  | 6061 | else | 
|  | 6062 | *(tmp + j) = 0; | 
|  | 6063 |  | 
|  | 6064 | *sum += *(tmp + j); | 
|  | 6065 | } | 
|  | 6066 | E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data); | 
|  | 6067 | } | 
|  | 6068 |  | 
|  | 6069 | return E1000_SUCCESS; | 
|  | 6070 | } | 
|  | 6071 |  | 
|  | 6072 |  | 
|  | 6073 | /***************************************************************************** | 
|  | 6074 | * This function writes the command header after does the checksum calculation. | 
|  | 6075 | * | 
|  | 6076 | * returns  - E1000_SUCCESS for success. | 
|  | 6077 | ****************************************************************************/ | 
|  | 6078 | int32_t | 
|  | 6079 | e1000_mng_write_cmd_header(struct e1000_hw * hw, | 
|  | 6080 | struct e1000_host_mng_command_header * hdr) | 
|  | 6081 | { | 
|  | 6082 | uint16_t i; | 
|  | 6083 | uint8_t sum; | 
|  | 6084 | uint8_t *buffer; | 
|  | 6085 |  | 
|  | 6086 | /* Write the whole command header structure which includes sum of | 
|  | 6087 | * the buffer */ | 
|  | 6088 |  | 
|  | 6089 | uint16_t length = sizeof(struct e1000_host_mng_command_header); | 
|  | 6090 |  | 
|  | 6091 | sum = hdr->checksum; | 
|  | 6092 | hdr->checksum = 0; | 
|  | 6093 |  | 
|  | 6094 | buffer = (uint8_t *) hdr; | 
|  | 6095 | i = length; | 
|  | 6096 | while(i--) | 
|  | 6097 | sum += buffer[i]; | 
|  | 6098 |  | 
|  | 6099 | hdr->checksum = 0 - sum; | 
|  | 6100 |  | 
|  | 6101 | length >>= 2; | 
|  | 6102 | /* The device driver writes the relevant command block into the ram area. */ | 
|  | 6103 | for (i = 0; i < length; i++) | 
|  | 6104 | E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((uint32_t *) hdr + i)); | 
|  | 6105 |  | 
|  | 6106 | return E1000_SUCCESS; | 
|  | 6107 | } | 
|  | 6108 |  | 
|  | 6109 |  | 
|  | 6110 | /***************************************************************************** | 
|  | 6111 | * This function indicates to ARC that a new command is pending which completes | 
|  | 6112 | * one write operation by the driver. | 
|  | 6113 | * | 
|  | 6114 | * returns  - E1000_SUCCESS for success. | 
|  | 6115 | ****************************************************************************/ | 
|  | 6116 | int32_t | 
|  | 6117 | e1000_mng_write_commit( | 
|  | 6118 | struct e1000_hw * hw) | 
|  | 6119 | { | 
|  | 6120 | uint32_t hicr; | 
|  | 6121 |  | 
|  | 6122 | hicr = E1000_READ_REG(hw, HICR); | 
|  | 6123 | /* Setting this bit tells the ARC that a new command is pending. */ | 
|  | 6124 | E1000_WRITE_REG(hw, HICR, hicr | E1000_HICR_C); | 
|  | 6125 |  | 
|  | 6126 | return E1000_SUCCESS; | 
|  | 6127 | } | 
|  | 6128 |  | 
|  | 6129 |  | 
|  | 6130 | /***************************************************************************** | 
|  | 6131 | * This function checks the mode of the firmware. | 
|  | 6132 | * | 
|  | 6133 | * returns  - TRUE when the mode is IAMT or FALSE. | 
|  | 6134 | ****************************************************************************/ | 
|  | 6135 | boolean_t | 
|  | 6136 | e1000_check_mng_mode( | 
|  | 6137 | struct e1000_hw *hw) | 
|  | 6138 | { | 
|  | 6139 | uint32_t fwsm; | 
|  | 6140 |  | 
|  | 6141 | fwsm = E1000_READ_REG(hw, FWSM); | 
|  | 6142 |  | 
|  | 6143 | if((fwsm & E1000_FWSM_MODE_MASK) == | 
|  | 6144 | (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) | 
|  | 6145 | return TRUE; | 
|  | 6146 |  | 
|  | 6147 | return FALSE; | 
|  | 6148 | } | 
|  | 6149 |  | 
|  | 6150 |  | 
|  | 6151 | /***************************************************************************** | 
|  | 6152 | * This function writes the dhcp info . | 
|  | 6153 | ****************************************************************************/ | 
|  | 6154 | int32_t | 
|  | 6155 | e1000_mng_write_dhcp_info(struct e1000_hw * hw, uint8_t *buffer, | 
|  | 6156 | uint16_t length) | 
|  | 6157 | { | 
|  | 6158 | int32_t ret_val; | 
|  | 6159 | struct e1000_host_mng_command_header hdr; | 
|  | 6160 |  | 
|  | 6161 | hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD; | 
|  | 6162 | hdr.command_length = length; | 
|  | 6163 | hdr.reserved1 = 0; | 
|  | 6164 | hdr.reserved2 = 0; | 
|  | 6165 | hdr.checksum = 0; | 
|  | 6166 |  | 
|  | 6167 | ret_val = e1000_mng_enable_host_if(hw); | 
|  | 6168 | if (ret_val == E1000_SUCCESS) { | 
|  | 6169 | ret_val = e1000_mng_host_if_write(hw, buffer, length, sizeof(hdr), | 
|  | 6170 | &(hdr.checksum)); | 
|  | 6171 | if (ret_val == E1000_SUCCESS) { | 
|  | 6172 | ret_val = e1000_mng_write_cmd_header(hw, &hdr); | 
|  | 6173 | if (ret_val == E1000_SUCCESS) | 
|  | 6174 | ret_val = e1000_mng_write_commit(hw); | 
|  | 6175 | } | 
|  | 6176 | } | 
|  | 6177 | return ret_val; | 
|  | 6178 | } | 
|  | 6179 |  | 
|  | 6180 |  | 
|  | 6181 | /***************************************************************************** | 
|  | 6182 | * This function calculates the checksum. | 
|  | 6183 | * | 
|  | 6184 | * returns  - checksum of buffer contents. | 
|  | 6185 | ****************************************************************************/ | 
|  | 6186 | uint8_t | 
|  | 6187 | e1000_calculate_mng_checksum(char *buffer, uint32_t length) | 
|  | 6188 | { | 
|  | 6189 | uint8_t sum = 0; | 
|  | 6190 | uint32_t i; | 
|  | 6191 |  | 
|  | 6192 | if (!buffer) | 
|  | 6193 | return 0; | 
|  | 6194 |  | 
|  | 6195 | for (i=0; i < length; i++) | 
|  | 6196 | sum += buffer[i]; | 
|  | 6197 |  | 
|  | 6198 | return (uint8_t) (0 - sum); | 
|  | 6199 | } | 
|  | 6200 |  | 
|  | 6201 | /***************************************************************************** | 
|  | 6202 | * This function checks whether tx pkt filtering needs to be enabled or not. | 
|  | 6203 | * | 
|  | 6204 | * returns  - TRUE for packet filtering or FALSE. | 
|  | 6205 | ****************************************************************************/ | 
|  | 6206 | boolean_t | 
|  | 6207 | e1000_enable_tx_pkt_filtering(struct e1000_hw *hw) | 
|  | 6208 | { | 
|  | 6209 | /* called in init as well as watchdog timer functions */ | 
|  | 6210 |  | 
|  | 6211 | int32_t ret_val, checksum; | 
|  | 6212 | boolean_t tx_filter = FALSE; | 
|  | 6213 | struct e1000_host_mng_dhcp_cookie *hdr = &(hw->mng_cookie); | 
|  | 6214 | uint8_t *buffer = (uint8_t *) &(hw->mng_cookie); | 
|  | 6215 |  | 
|  | 6216 | if (e1000_check_mng_mode(hw)) { | 
|  | 6217 | ret_val = e1000_mng_enable_host_if(hw); | 
|  | 6218 | if (ret_val == E1000_SUCCESS) { | 
|  | 6219 | ret_val = e1000_host_if_read_cookie(hw, buffer); | 
|  | 6220 | if (ret_val == E1000_SUCCESS) { | 
|  | 6221 | checksum = hdr->checksum; | 
|  | 6222 | hdr->checksum = 0; | 
|  | 6223 | if ((hdr->signature == E1000_IAMT_SIGNATURE) && | 
|  | 6224 | checksum == e1000_calculate_mng_checksum((char *)buffer, | 
|  | 6225 | E1000_MNG_DHCP_COOKIE_LENGTH)) { | 
|  | 6226 | if (hdr->status & | 
|  | 6227 | E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT) | 
|  | 6228 | tx_filter = TRUE; | 
|  | 6229 | } else | 
|  | 6230 | tx_filter = TRUE; | 
|  | 6231 | } else | 
|  | 6232 | tx_filter = TRUE; | 
|  | 6233 | } | 
|  | 6234 | } | 
|  | 6235 |  | 
|  | 6236 | hw->tx_pkt_filtering = tx_filter; | 
|  | 6237 | return tx_filter; | 
|  | 6238 | } | 
|  | 6239 |  | 
|  | 6240 | /****************************************************************************** | 
|  | 6241 | * Verifies the hardware needs to allow ARPs to be processed by the host | 
|  | 6242 | * | 
|  | 6243 | * hw - Struct containing variables accessed by shared code | 
|  | 6244 | * | 
|  | 6245 | * returns: - TRUE/FALSE | 
|  | 6246 | * | 
|  | 6247 | *****************************************************************************/ | 
|  | 6248 | uint32_t | 
|  | 6249 | e1000_enable_mng_pass_thru(struct e1000_hw *hw) | 
|  | 6250 | { | 
|  | 6251 | uint32_t manc; | 
|  | 6252 | uint32_t fwsm, factps; | 
|  | 6253 |  | 
|  | 6254 | if (hw->asf_firmware_present) { | 
|  | 6255 | manc = E1000_READ_REG(hw, MANC); | 
|  | 6256 |  | 
|  | 6257 | if (!(manc & E1000_MANC_RCV_TCO_EN) || | 
|  | 6258 | !(manc & E1000_MANC_EN_MAC_ADDR_FILTER)) | 
|  | 6259 | return FALSE; | 
|  | 6260 | if (e1000_arc_subsystem_valid(hw) == TRUE) { | 
|  | 6261 | fwsm = E1000_READ_REG(hw, FWSM); | 
|  | 6262 | factps = E1000_READ_REG(hw, FACTPS); | 
|  | 6263 |  | 
|  | 6264 | if (((fwsm & E1000_FWSM_MODE_MASK) == | 
|  | 6265 | (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT)) && | 
|  | 6266 | (factps & E1000_FACTPS_MNGCG)) | 
|  | 6267 | return TRUE; | 
|  | 6268 | } else | 
|  | 6269 | if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN)) | 
|  | 6270 | return TRUE; | 
|  | 6271 | } | 
|  | 6272 | return FALSE; | 
|  | 6273 | } | 
|  | 6274 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 6275 | static int32_t | 
|  | 6276 | e1000_polarity_reversal_workaround(struct e1000_hw *hw) | 
|  | 6277 | { | 
|  | 6278 | int32_t ret_val; | 
|  | 6279 | uint16_t mii_status_reg; | 
|  | 6280 | uint16_t i; | 
|  | 6281 |  | 
|  | 6282 | /* Polarity reversal workaround for forced 10F/10H links. */ | 
|  | 6283 |  | 
|  | 6284 | /* Disable the transmitter on the PHY */ | 
|  | 6285 |  | 
|  | 6286 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); | 
|  | 6287 | if(ret_val) | 
|  | 6288 | return ret_val; | 
|  | 6289 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF); | 
|  | 6290 | if(ret_val) | 
|  | 6291 | return ret_val; | 
|  | 6292 |  | 
|  | 6293 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); | 
|  | 6294 | if(ret_val) | 
|  | 6295 | return ret_val; | 
|  | 6296 |  | 
|  | 6297 | /* This loop will early-out if the NO link condition has been met. */ | 
|  | 6298 | for(i = PHY_FORCE_TIME; i > 0; i--) { | 
|  | 6299 | /* Read the MII Status Register and wait for Link Status bit | 
|  | 6300 | * to be clear. | 
|  | 6301 | */ | 
|  | 6302 |  | 
|  | 6303 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 
|  | 6304 | if(ret_val) | 
|  | 6305 | return ret_val; | 
|  | 6306 |  | 
|  | 6307 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 
|  | 6308 | if(ret_val) | 
|  | 6309 | return ret_val; | 
|  | 6310 |  | 
|  | 6311 | if((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break; | 
|  | 6312 | msec_delay_irq(100); | 
|  | 6313 | } | 
|  | 6314 |  | 
|  | 6315 | /* Recommended delay time after link has been lost */ | 
|  | 6316 | msec_delay_irq(1000); | 
|  | 6317 |  | 
|  | 6318 | /* Now we will re-enable th transmitter on the PHY */ | 
|  | 6319 |  | 
|  | 6320 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); | 
|  | 6321 | if(ret_val) | 
|  | 6322 | return ret_val; | 
|  | 6323 | msec_delay_irq(50); | 
|  | 6324 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0); | 
|  | 6325 | if(ret_val) | 
|  | 6326 | return ret_val; | 
|  | 6327 | msec_delay_irq(50); | 
|  | 6328 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00); | 
|  | 6329 | if(ret_val) | 
|  | 6330 | return ret_val; | 
|  | 6331 | msec_delay_irq(50); | 
|  | 6332 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000); | 
|  | 6333 | if(ret_val) | 
|  | 6334 | return ret_val; | 
|  | 6335 |  | 
|  | 6336 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); | 
|  | 6337 | if(ret_val) | 
|  | 6338 | return ret_val; | 
|  | 6339 |  | 
|  | 6340 | /* This loop will early-out if the link condition has been met. */ | 
|  | 6341 | for(i = PHY_FORCE_TIME; i > 0; i--) { | 
|  | 6342 | /* Read the MII Status Register and wait for Link Status bit | 
|  | 6343 | * to be set. | 
|  | 6344 | */ | 
|  | 6345 |  | 
|  | 6346 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 
|  | 6347 | if(ret_val) | 
|  | 6348 | return ret_val; | 
|  | 6349 |  | 
|  | 6350 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 
|  | 6351 | if(ret_val) | 
|  | 6352 | return ret_val; | 
|  | 6353 |  | 
|  | 6354 | if(mii_status_reg & MII_SR_LINK_STATUS) break; | 
|  | 6355 | msec_delay_irq(100); | 
|  | 6356 | } | 
|  | 6357 | return E1000_SUCCESS; | 
|  | 6358 | } | 
|  | 6359 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 6360 | /*************************************************************************** | 
|  | 6361 | * | 
|  | 6362 | * Disables PCI-Express master access. | 
|  | 6363 | * | 
|  | 6364 | * hw: Struct containing variables accessed by shared code | 
|  | 6365 | * | 
|  | 6366 | * returns: - none. | 
|  | 6367 | * | 
|  | 6368 | ***************************************************************************/ | 
|  | 6369 | void | 
|  | 6370 | e1000_set_pci_express_master_disable(struct e1000_hw *hw) | 
|  | 6371 | { | 
|  | 6372 | uint32_t ctrl; | 
|  | 6373 |  | 
|  | 6374 | DEBUGFUNC("e1000_set_pci_express_master_disable"); | 
|  | 6375 |  | 
|  | 6376 | if (hw->bus_type != e1000_bus_type_pci_express) | 
|  | 6377 | return; | 
|  | 6378 |  | 
|  | 6379 | ctrl = E1000_READ_REG(hw, CTRL); | 
|  | 6380 | ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; | 
|  | 6381 | E1000_WRITE_REG(hw, CTRL, ctrl); | 
|  | 6382 | } | 
|  | 6383 |  | 
|  | 6384 | /*************************************************************************** | 
|  | 6385 | * | 
|  | 6386 | * Enables PCI-Express master access. | 
|  | 6387 | * | 
|  | 6388 | * hw: Struct containing variables accessed by shared code | 
|  | 6389 | * | 
|  | 6390 | * returns: - none. | 
|  | 6391 | * | 
|  | 6392 | ***************************************************************************/ | 
|  | 6393 | void | 
|  | 6394 | e1000_enable_pciex_master(struct e1000_hw *hw) | 
|  | 6395 | { | 
|  | 6396 | uint32_t ctrl; | 
|  | 6397 |  | 
|  | 6398 | DEBUGFUNC("e1000_enable_pciex_master"); | 
|  | 6399 |  | 
|  | 6400 | if (hw->bus_type != e1000_bus_type_pci_express) | 
|  | 6401 | return; | 
|  | 6402 |  | 
|  | 6403 | ctrl = E1000_READ_REG(hw, CTRL); | 
|  | 6404 | ctrl &= ~E1000_CTRL_GIO_MASTER_DISABLE; | 
|  | 6405 | E1000_WRITE_REG(hw, CTRL, ctrl); | 
|  | 6406 | } | 
|  | 6407 |  | 
|  | 6408 | /******************************************************************************* | 
|  | 6409 | * | 
|  | 6410 | * Disables PCI-Express master access and verifies there are no pending requests | 
|  | 6411 | * | 
|  | 6412 | * hw: Struct containing variables accessed by shared code | 
|  | 6413 | * | 
|  | 6414 | * returns: - E1000_ERR_MASTER_REQUESTS_PENDING if master disable bit hasn't | 
|  | 6415 | *            caused the master requests to be disabled. | 
|  | 6416 | *            E1000_SUCCESS master requests disabled. | 
|  | 6417 | * | 
|  | 6418 | ******************************************************************************/ | 
|  | 6419 | int32_t | 
|  | 6420 | e1000_disable_pciex_master(struct e1000_hw *hw) | 
|  | 6421 | { | 
|  | 6422 | int32_t timeout = MASTER_DISABLE_TIMEOUT;   /* 80ms */ | 
|  | 6423 |  | 
|  | 6424 | DEBUGFUNC("e1000_disable_pciex_master"); | 
|  | 6425 |  | 
|  | 6426 | if (hw->bus_type != e1000_bus_type_pci_express) | 
|  | 6427 | return E1000_SUCCESS; | 
|  | 6428 |  | 
|  | 6429 | e1000_set_pci_express_master_disable(hw); | 
|  | 6430 |  | 
|  | 6431 | while(timeout) { | 
|  | 6432 | if(!(E1000_READ_REG(hw, STATUS) & E1000_STATUS_GIO_MASTER_ENABLE)) | 
|  | 6433 | break; | 
|  | 6434 | else | 
|  | 6435 | udelay(100); | 
|  | 6436 | timeout--; | 
|  | 6437 | } | 
|  | 6438 |  | 
|  | 6439 | if(!timeout) { | 
|  | 6440 | DEBUGOUT("Master requests are pending.\n"); | 
|  | 6441 | return -E1000_ERR_MASTER_REQUESTS_PENDING; | 
|  | 6442 | } | 
|  | 6443 |  | 
|  | 6444 | return E1000_SUCCESS; | 
|  | 6445 | } | 
|  | 6446 |  | 
|  | 6447 | /******************************************************************************* | 
|  | 6448 | * | 
|  | 6449 | * Check for EEPROM Auto Read bit done. | 
|  | 6450 | * | 
|  | 6451 | * hw: Struct containing variables accessed by shared code | 
|  | 6452 | * | 
|  | 6453 | * returns: - E1000_ERR_RESET if fail to reset MAC | 
|  | 6454 | *            E1000_SUCCESS at any other case. | 
|  | 6455 | * | 
|  | 6456 | ******************************************************************************/ | 
|  | 6457 | int32_t | 
|  | 6458 | e1000_get_auto_rd_done(struct e1000_hw *hw) | 
|  | 6459 | { | 
|  | 6460 | int32_t timeout = AUTO_READ_DONE_TIMEOUT; | 
|  | 6461 |  | 
|  | 6462 | DEBUGFUNC("e1000_get_auto_rd_done"); | 
|  | 6463 |  | 
|  | 6464 | switch (hw->mac_type) { | 
|  | 6465 | default: | 
|  | 6466 | msec_delay(5); | 
|  | 6467 | break; | 
|  | 6468 | case e1000_82573: | 
|  | 6469 | while(timeout) { | 
|  | 6470 | if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD) break; | 
|  | 6471 | else msec_delay(1); | 
|  | 6472 | timeout--; | 
|  | 6473 | } | 
|  | 6474 |  | 
|  | 6475 | if(!timeout) { | 
|  | 6476 | DEBUGOUT("Auto read by HW from EEPROM has not completed.\n"); | 
|  | 6477 | return -E1000_ERR_RESET; | 
|  | 6478 | } | 
|  | 6479 | break; | 
|  | 6480 | } | 
|  | 6481 |  | 
|  | 6482 | return E1000_SUCCESS; | 
|  | 6483 | } | 
|  | 6484 |  | 
|  | 6485 | /*************************************************************************** | 
|  | 6486 | * Checks if the PHY configuration is done | 
|  | 6487 | * | 
|  | 6488 | * hw: Struct containing variables accessed by shared code | 
|  | 6489 | * | 
|  | 6490 | * returns: - E1000_ERR_RESET if fail to reset MAC | 
|  | 6491 | *            E1000_SUCCESS at any other case. | 
|  | 6492 | * | 
|  | 6493 | ***************************************************************************/ | 
|  | 6494 | int32_t | 
|  | 6495 | e1000_get_phy_cfg_done(struct e1000_hw *hw) | 
|  | 6496 | { | 
|  | 6497 | DEBUGFUNC("e1000_get_phy_cfg_done"); | 
|  | 6498 |  | 
|  | 6499 | /* Simply wait for 10ms */ | 
|  | 6500 | msec_delay(10); | 
|  | 6501 |  | 
|  | 6502 | return E1000_SUCCESS; | 
|  | 6503 | } | 
|  | 6504 |  | 
|  | 6505 | /*************************************************************************** | 
|  | 6506 | * | 
|  | 6507 | * Using the combination of SMBI and SWESMBI semaphore bits when resetting | 
|  | 6508 | * adapter or Eeprom access. | 
|  | 6509 | * | 
|  | 6510 | * hw: Struct containing variables accessed by shared code | 
|  | 6511 | * | 
|  | 6512 | * returns: - E1000_ERR_EEPROM if fail to access EEPROM. | 
|  | 6513 | *            E1000_SUCCESS at any other case. | 
|  | 6514 | * | 
|  | 6515 | ***************************************************************************/ | 
|  | 6516 | int32_t | 
|  | 6517 | e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw) | 
|  | 6518 | { | 
|  | 6519 | int32_t timeout; | 
|  | 6520 | uint32_t swsm; | 
|  | 6521 |  | 
|  | 6522 | DEBUGFUNC("e1000_get_hw_eeprom_semaphore"); | 
|  | 6523 |  | 
|  | 6524 | if(!hw->eeprom_semaphore_present) | 
|  | 6525 | return E1000_SUCCESS; | 
|  | 6526 |  | 
|  | 6527 |  | 
|  | 6528 | /* Get the FW semaphore. */ | 
|  | 6529 | timeout = hw->eeprom.word_size + 1; | 
|  | 6530 | while(timeout) { | 
|  | 6531 | swsm = E1000_READ_REG(hw, SWSM); | 
|  | 6532 | swsm |= E1000_SWSM_SWESMBI; | 
|  | 6533 | E1000_WRITE_REG(hw, SWSM, swsm); | 
|  | 6534 | /* if we managed to set the bit we got the semaphore. */ | 
|  | 6535 | swsm = E1000_READ_REG(hw, SWSM); | 
|  | 6536 | if(swsm & E1000_SWSM_SWESMBI) | 
|  | 6537 | break; | 
|  | 6538 |  | 
|  | 6539 | udelay(50); | 
|  | 6540 | timeout--; | 
|  | 6541 | } | 
|  | 6542 |  | 
|  | 6543 | if(!timeout) { | 
|  | 6544 | /* Release semaphores */ | 
|  | 6545 | e1000_put_hw_eeprom_semaphore(hw); | 
|  | 6546 | DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n"); | 
|  | 6547 | return -E1000_ERR_EEPROM; | 
|  | 6548 | } | 
|  | 6549 |  | 
|  | 6550 | return E1000_SUCCESS; | 
|  | 6551 | } | 
|  | 6552 |  | 
|  | 6553 | /*************************************************************************** | 
|  | 6554 | * This function clears HW semaphore bits. | 
|  | 6555 | * | 
|  | 6556 | * hw: Struct containing variables accessed by shared code | 
|  | 6557 | * | 
|  | 6558 | * returns: - None. | 
|  | 6559 | * | 
|  | 6560 | ***************************************************************************/ | 
|  | 6561 | void | 
|  | 6562 | e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw) | 
|  | 6563 | { | 
|  | 6564 | uint32_t swsm; | 
|  | 6565 |  | 
|  | 6566 | DEBUGFUNC("e1000_put_hw_eeprom_semaphore"); | 
|  | 6567 |  | 
|  | 6568 | if(!hw->eeprom_semaphore_present) | 
|  | 6569 | return; | 
|  | 6570 |  | 
|  | 6571 | swsm = E1000_READ_REG(hw, SWSM); | 
|  | 6572 | /* Release both semaphores. */ | 
|  | 6573 | swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); | 
|  | 6574 | E1000_WRITE_REG(hw, SWSM, swsm); | 
|  | 6575 | } | 
|  | 6576 |  | 
|  | 6577 | /****************************************************************************** | 
|  | 6578 | * Checks if PHY reset is blocked due to SOL/IDER session, for example. | 
|  | 6579 | * Returning E1000_BLK_PHY_RESET isn't necessarily an error.  But it's up to | 
|  | 6580 | * the caller to figure out how to deal with it. | 
|  | 6581 | * | 
|  | 6582 | * hw - Struct containing variables accessed by shared code | 
|  | 6583 | * | 
|  | 6584 | * returns: - E1000_BLK_PHY_RESET | 
|  | 6585 | *            E1000_SUCCESS | 
|  | 6586 | * | 
|  | 6587 | *****************************************************************************/ | 
|  | 6588 | int32_t | 
|  | 6589 | e1000_check_phy_reset_block(struct e1000_hw *hw) | 
|  | 6590 | { | 
|  | 6591 | uint32_t manc = 0; | 
|  | 6592 | if(hw->mac_type > e1000_82547_rev_2) | 
|  | 6593 | manc = E1000_READ_REG(hw, MANC); | 
|  | 6594 | return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? | 
|  | 6595 | E1000_BLK_PHY_RESET : E1000_SUCCESS; | 
|  | 6596 | } | 
|  | 6597 |  | 
|  | 6598 | uint8_t | 
|  | 6599 | e1000_arc_subsystem_valid(struct e1000_hw *hw) | 
|  | 6600 | { | 
|  | 6601 | uint32_t fwsm; | 
|  | 6602 |  | 
|  | 6603 | /* On 8257x silicon, registers in the range of 0x8800 - 0x8FFC | 
|  | 6604 | * may not be provided a DMA clock when no manageability features are | 
|  | 6605 | * enabled.  We do not want to perform any reads/writes to these registers | 
|  | 6606 | * if this is the case.  We read FWSM to determine the manageability mode. | 
|  | 6607 | */ | 
|  | 6608 | switch (hw->mac_type) { | 
|  | 6609 | case e1000_82573: | 
|  | 6610 | fwsm = E1000_READ_REG(hw, FWSM); | 
|  | 6611 | if((fwsm & E1000_FWSM_MODE_MASK) != 0) | 
|  | 6612 | return TRUE; | 
|  | 6613 | break; | 
|  | 6614 | default: | 
|  | 6615 | break; | 
|  | 6616 | } | 
|  | 6617 | return FALSE; | 
|  | 6618 | } | 
|  | 6619 |  | 
|  | 6620 |  | 
|  | 6621 |  |