| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /************************************************************************ | 
|  | 2 | * s2io.c: A Linux PCI-X Ethernet driver for S2IO 10GbE Server NIC | 
|  | 3 | * Copyright(c) 2002-2005 Neterion Inc. | 
|  | 4 |  | 
|  | 5 | * This software may be used and distributed according to the terms of | 
|  | 6 | * the GNU General Public License (GPL), incorporated herein by reference. | 
|  | 7 | * Drivers based on or derived from this code fall under the GPL and must | 
|  | 8 | * retain the authorship, copyright and license notice.  This file is not | 
|  | 9 | * a complete program and may only be used when the entire operating | 
|  | 10 | * system is licensed under the GPL. | 
|  | 11 | * See the file COPYING in this distribution for more information. | 
|  | 12 | * | 
|  | 13 | * Credits: | 
|  | 14 | * Jeff Garzik		: For pointing out the improper error condition | 
|  | 15 | *			  check in the s2io_xmit routine and also some | 
|  | 16 | * 			  issues in the Tx watch dog function. Also for | 
|  | 17 | *			  patiently answering all those innumerable | 
|  | 18 | *			  questions regaring the 2.6 porting issues. | 
|  | 19 | * Stephen Hemminger	: Providing proper 2.6 porting mechanism for some | 
|  | 20 | *			  macros available only in 2.6 Kernel. | 
|  | 21 | * Francois Romieu	: For pointing out all code part that were | 
|  | 22 | *			  deprecated and also styling related comments. | 
|  | 23 | * Grant Grundler	: For helping me get rid of some Architecture | 
|  | 24 | *			  dependent code. | 
|  | 25 | * Christopher Hellwig	: Some more 2.6 specific issues in the driver. | 
|  | 26 | * | 
|  | 27 | * The module loadable parameters that are supported by the driver and a brief | 
|  | 28 | * explaination of all the variables. | 
|  | 29 | * rx_ring_num : This can be used to program the number of receive rings used | 
|  | 30 | * in the driver. | 
|  | 31 | * rx_ring_len: This defines the number of descriptors each ring can have. This | 
|  | 32 | * is also an array of size 8. | 
|  | 33 | * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver. | 
|  | 34 | * tx_fifo_len: This too is an array of 8. Each element defines the number of | 
|  | 35 | * Tx descriptors that can be associated with each corresponding FIFO. | 
|  | 36 | * in PCI Configuration space. | 
|  | 37 | ************************************************************************/ | 
|  | 38 |  | 
|  | 39 | #include <linux/config.h> | 
|  | 40 | #include <linux/module.h> | 
|  | 41 | #include <linux/types.h> | 
|  | 42 | #include <linux/errno.h> | 
|  | 43 | #include <linux/ioport.h> | 
|  | 44 | #include <linux/pci.h> | 
| Domen Puncer | 1e7f0bd | 2005-06-26 18:22:14 -0400 | [diff] [blame] | 45 | #include <linux/dma-mapping.h> | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 46 | #include <linux/kernel.h> | 
|  | 47 | #include <linux/netdevice.h> | 
|  | 48 | #include <linux/etherdevice.h> | 
|  | 49 | #include <linux/skbuff.h> | 
|  | 50 | #include <linux/init.h> | 
|  | 51 | #include <linux/delay.h> | 
|  | 52 | #include <linux/stddef.h> | 
|  | 53 | #include <linux/ioctl.h> | 
|  | 54 | #include <linux/timex.h> | 
|  | 55 | #include <linux/sched.h> | 
|  | 56 | #include <linux/ethtool.h> | 
|  | 57 | #include <linux/version.h> | 
|  | 58 | #include <linux/workqueue.h> | 
|  | 59 |  | 
|  | 60 | #include <asm/io.h> | 
|  | 61 | #include <asm/system.h> | 
|  | 62 | #include <asm/uaccess.h> | 
|  | 63 |  | 
|  | 64 | /* local include */ | 
|  | 65 | #include "s2io.h" | 
|  | 66 | #include "s2io-regs.h" | 
|  | 67 |  | 
|  | 68 | /* S2io Driver name & version. */ | 
|  | 69 | static char s2io_driver_name[] = "s2io"; | 
|  | 70 | static char s2io_driver_version[] = "Version 1.7.7.1"; | 
|  | 71 |  | 
|  | 72 | /* | 
|  | 73 | * Cards with following subsystem_id have a link state indication | 
|  | 74 | * problem, 600B, 600C, 600D, 640B, 640C and 640D. | 
|  | 75 | * macro below identifies these cards given the subsystem_id. | 
|  | 76 | */ | 
|  | 77 | #define CARDS_WITH_FAULTY_LINK_INDICATORS(subid) \ | 
|  | 78 | (((subid >= 0x600B) && (subid <= 0x600D)) || \ | 
|  | 79 | ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0 | 
|  | 80 |  | 
|  | 81 | #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \ | 
|  | 82 | ADAPTER_STATUS_RMAC_LOCAL_FAULT))) | 
|  | 83 | #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status)) | 
|  | 84 | #define PANIC	1 | 
|  | 85 | #define LOW	2 | 
|  | 86 | static inline int rx_buffer_level(nic_t * sp, int rxb_size, int ring) | 
|  | 87 | { | 
|  | 88 | int level = 0; | 
|  | 89 | if ((sp->pkt_cnt[ring] - rxb_size) > 16) { | 
|  | 90 | level = LOW; | 
|  | 91 | if ((sp->pkt_cnt[ring] - rxb_size) < MAX_RXDS_PER_BLOCK) { | 
|  | 92 | level = PANIC; | 
|  | 93 | } | 
|  | 94 | } | 
|  | 95 |  | 
|  | 96 | return level; | 
|  | 97 | } | 
|  | 98 |  | 
|  | 99 | /* Ethtool related variables and Macros. */ | 
|  | 100 | static char s2io_gstrings[][ETH_GSTRING_LEN] = { | 
|  | 101 | "Register test\t(offline)", | 
|  | 102 | "Eeprom test\t(offline)", | 
|  | 103 | "Link test\t(online)", | 
|  | 104 | "RLDRAM test\t(offline)", | 
|  | 105 | "BIST Test\t(offline)" | 
|  | 106 | }; | 
|  | 107 |  | 
|  | 108 | static char ethtool_stats_keys[][ETH_GSTRING_LEN] = { | 
|  | 109 | {"tmac_frms"}, | 
|  | 110 | {"tmac_data_octets"}, | 
|  | 111 | {"tmac_drop_frms"}, | 
|  | 112 | {"tmac_mcst_frms"}, | 
|  | 113 | {"tmac_bcst_frms"}, | 
|  | 114 | {"tmac_pause_ctrl_frms"}, | 
|  | 115 | {"tmac_any_err_frms"}, | 
|  | 116 | {"tmac_vld_ip_octets"}, | 
|  | 117 | {"tmac_vld_ip"}, | 
|  | 118 | {"tmac_drop_ip"}, | 
|  | 119 | {"tmac_icmp"}, | 
|  | 120 | {"tmac_rst_tcp"}, | 
|  | 121 | {"tmac_tcp"}, | 
|  | 122 | {"tmac_udp"}, | 
|  | 123 | {"rmac_vld_frms"}, | 
|  | 124 | {"rmac_data_octets"}, | 
|  | 125 | {"rmac_fcs_err_frms"}, | 
|  | 126 | {"rmac_drop_frms"}, | 
|  | 127 | {"rmac_vld_mcst_frms"}, | 
|  | 128 | {"rmac_vld_bcst_frms"}, | 
|  | 129 | {"rmac_in_rng_len_err_frms"}, | 
|  | 130 | {"rmac_long_frms"}, | 
|  | 131 | {"rmac_pause_ctrl_frms"}, | 
|  | 132 | {"rmac_discarded_frms"}, | 
|  | 133 | {"rmac_usized_frms"}, | 
|  | 134 | {"rmac_osized_frms"}, | 
|  | 135 | {"rmac_frag_frms"}, | 
|  | 136 | {"rmac_jabber_frms"}, | 
|  | 137 | {"rmac_ip"}, | 
|  | 138 | {"rmac_ip_octets"}, | 
|  | 139 | {"rmac_hdr_err_ip"}, | 
|  | 140 | {"rmac_drop_ip"}, | 
|  | 141 | {"rmac_icmp"}, | 
|  | 142 | {"rmac_tcp"}, | 
|  | 143 | {"rmac_udp"}, | 
|  | 144 | {"rmac_err_drp_udp"}, | 
|  | 145 | {"rmac_pause_cnt"}, | 
|  | 146 | {"rmac_accepted_ip"}, | 
|  | 147 | {"rmac_err_tcp"}, | 
|  | 148 | }; | 
|  | 149 |  | 
|  | 150 | #define S2IO_STAT_LEN sizeof(ethtool_stats_keys)/ ETH_GSTRING_LEN | 
|  | 151 | #define S2IO_STAT_STRINGS_LEN S2IO_STAT_LEN * ETH_GSTRING_LEN | 
|  | 152 |  | 
|  | 153 | #define S2IO_TEST_LEN	sizeof(s2io_gstrings) / ETH_GSTRING_LEN | 
|  | 154 | #define S2IO_STRINGS_LEN	S2IO_TEST_LEN * ETH_GSTRING_LEN | 
|  | 155 |  | 
|  | 156 |  | 
|  | 157 | /* | 
|  | 158 | * Constants to be programmed into the Xena's registers, to configure | 
|  | 159 | * the XAUI. | 
|  | 160 | */ | 
|  | 161 |  | 
|  | 162 | #define SWITCH_SIGN	0xA5A5A5A5A5A5A5A5ULL | 
|  | 163 | #define	END_SIGN	0x0 | 
|  | 164 |  | 
|  | 165 | static u64 default_mdio_cfg[] = { | 
|  | 166 | /* Reset PMA PLL */ | 
|  | 167 | 0xC001010000000000ULL, 0xC0010100000000E0ULL, | 
|  | 168 | 0xC0010100008000E4ULL, | 
|  | 169 | /* Remove Reset from PMA PLL */ | 
|  | 170 | 0xC001010000000000ULL, 0xC0010100000000E0ULL, | 
|  | 171 | 0xC0010100000000E4ULL, | 
|  | 172 | END_SIGN | 
|  | 173 | }; | 
|  | 174 |  | 
|  | 175 | static u64 default_dtx_cfg[] = { | 
|  | 176 | 0x8000051500000000ULL, 0x80000515000000E0ULL, | 
|  | 177 | 0x80000515D93500E4ULL, 0x8001051500000000ULL, | 
|  | 178 | 0x80010515000000E0ULL, 0x80010515001E00E4ULL, | 
|  | 179 | 0x8002051500000000ULL, 0x80020515000000E0ULL, | 
|  | 180 | 0x80020515F21000E4ULL, | 
|  | 181 | /* Set PADLOOPBACKN */ | 
|  | 182 | 0x8002051500000000ULL, 0x80020515000000E0ULL, | 
|  | 183 | 0x80020515B20000E4ULL, 0x8003051500000000ULL, | 
|  | 184 | 0x80030515000000E0ULL, 0x80030515B20000E4ULL, | 
|  | 185 | 0x8004051500000000ULL, 0x80040515000000E0ULL, | 
|  | 186 | 0x80040515B20000E4ULL, 0x8005051500000000ULL, | 
|  | 187 | 0x80050515000000E0ULL, 0x80050515B20000E4ULL, | 
|  | 188 | SWITCH_SIGN, | 
|  | 189 | /* Remove PADLOOPBACKN */ | 
|  | 190 | 0x8002051500000000ULL, 0x80020515000000E0ULL, | 
|  | 191 | 0x80020515F20000E4ULL, 0x8003051500000000ULL, | 
|  | 192 | 0x80030515000000E0ULL, 0x80030515F20000E4ULL, | 
|  | 193 | 0x8004051500000000ULL, 0x80040515000000E0ULL, | 
|  | 194 | 0x80040515F20000E4ULL, 0x8005051500000000ULL, | 
|  | 195 | 0x80050515000000E0ULL, 0x80050515F20000E4ULL, | 
|  | 196 | END_SIGN | 
|  | 197 | }; | 
|  | 198 |  | 
|  | 199 |  | 
|  | 200 | /* | 
|  | 201 | * Constants for Fixing the MacAddress problem seen mostly on | 
|  | 202 | * Alpha machines. | 
|  | 203 | */ | 
|  | 204 | static u64 fix_mac[] = { | 
|  | 205 | 0x0060000000000000ULL, 0x0060600000000000ULL, | 
|  | 206 | 0x0040600000000000ULL, 0x0000600000000000ULL, | 
|  | 207 | 0x0020600000000000ULL, 0x0060600000000000ULL, | 
|  | 208 | 0x0020600000000000ULL, 0x0060600000000000ULL, | 
|  | 209 | 0x0020600000000000ULL, 0x0060600000000000ULL, | 
|  | 210 | 0x0020600000000000ULL, 0x0060600000000000ULL, | 
|  | 211 | 0x0020600000000000ULL, 0x0060600000000000ULL, | 
|  | 212 | 0x0020600000000000ULL, 0x0060600000000000ULL, | 
|  | 213 | 0x0020600000000000ULL, 0x0060600000000000ULL, | 
|  | 214 | 0x0020600000000000ULL, 0x0060600000000000ULL, | 
|  | 215 | 0x0020600000000000ULL, 0x0060600000000000ULL, | 
|  | 216 | 0x0020600000000000ULL, 0x0060600000000000ULL, | 
|  | 217 | 0x0020600000000000ULL, 0x0000600000000000ULL, | 
|  | 218 | 0x0040600000000000ULL, 0x0060600000000000ULL, | 
|  | 219 | END_SIGN | 
|  | 220 | }; | 
|  | 221 |  | 
|  | 222 | /* Module Loadable parameters. */ | 
|  | 223 | static unsigned int tx_fifo_num = 1; | 
|  | 224 | static unsigned int tx_fifo_len[MAX_TX_FIFOS] = | 
|  | 225 | {[0 ...(MAX_TX_FIFOS - 1)] = 0 }; | 
|  | 226 | static unsigned int rx_ring_num = 1; | 
|  | 227 | static unsigned int rx_ring_sz[MAX_RX_RINGS] = | 
|  | 228 | {[0 ...(MAX_RX_RINGS - 1)] = 0 }; | 
|  | 229 | static unsigned int Stats_refresh_time = 4; | 
|  | 230 | static unsigned int rmac_pause_time = 65535; | 
|  | 231 | static unsigned int mc_pause_threshold_q0q3 = 187; | 
|  | 232 | static unsigned int mc_pause_threshold_q4q7 = 187; | 
|  | 233 | static unsigned int shared_splits; | 
|  | 234 | static unsigned int tmac_util_period = 5; | 
|  | 235 | static unsigned int rmac_util_period = 5; | 
|  | 236 | #ifndef CONFIG_S2IO_NAPI | 
|  | 237 | static unsigned int indicate_max_pkts; | 
|  | 238 | #endif | 
|  | 239 |  | 
|  | 240 | /* | 
|  | 241 | * S2IO device table. | 
|  | 242 | * This table lists all the devices that this driver supports. | 
|  | 243 | */ | 
|  | 244 | static struct pci_device_id s2io_tbl[] __devinitdata = { | 
|  | 245 | {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN, | 
|  | 246 | PCI_ANY_ID, PCI_ANY_ID}, | 
|  | 247 | {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI, | 
|  | 248 | PCI_ANY_ID, PCI_ANY_ID}, | 
|  | 249 | {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN, | 
|  | 250 | PCI_ANY_ID, PCI_ANY_ID}, | 
|  | 251 | {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI, | 
|  | 252 | PCI_ANY_ID, PCI_ANY_ID}, | 
|  | 253 | {0,} | 
|  | 254 | }; | 
|  | 255 |  | 
|  | 256 | MODULE_DEVICE_TABLE(pci, s2io_tbl); | 
|  | 257 |  | 
|  | 258 | static struct pci_driver s2io_driver = { | 
|  | 259 | .name = "S2IO", | 
|  | 260 | .id_table = s2io_tbl, | 
|  | 261 | .probe = s2io_init_nic, | 
|  | 262 | .remove = __devexit_p(s2io_rem_nic), | 
|  | 263 | }; | 
|  | 264 |  | 
|  | 265 | /* A simplifier macro used both by init and free shared_mem Fns(). */ | 
|  | 266 | #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each) | 
|  | 267 |  | 
|  | 268 | /** | 
|  | 269 | * init_shared_mem - Allocation and Initialization of Memory | 
|  | 270 | * @nic: Device private variable. | 
|  | 271 | * Description: The function allocates all the memory areas shared | 
|  | 272 | * between the NIC and the driver. This includes Tx descriptors, | 
|  | 273 | * Rx descriptors and the statistics block. | 
|  | 274 | */ | 
|  | 275 |  | 
|  | 276 | static int init_shared_mem(struct s2io_nic *nic) | 
|  | 277 | { | 
|  | 278 | u32 size; | 
|  | 279 | void *tmp_v_addr, *tmp_v_addr_next; | 
|  | 280 | dma_addr_t tmp_p_addr, tmp_p_addr_next; | 
|  | 281 | RxD_block_t *pre_rxd_blk = NULL; | 
|  | 282 | int i, j, blk_cnt; | 
|  | 283 | int lst_size, lst_per_page; | 
|  | 284 | struct net_device *dev = nic->dev; | 
|  | 285 | #ifdef CONFIG_2BUFF_MODE | 
|  | 286 | unsigned long tmp; | 
|  | 287 | buffAdd_t *ba; | 
|  | 288 | #endif | 
|  | 289 |  | 
|  | 290 | mac_info_t *mac_control; | 
|  | 291 | struct config_param *config; | 
|  | 292 |  | 
|  | 293 | mac_control = &nic->mac_control; | 
|  | 294 | config = &nic->config; | 
|  | 295 |  | 
|  | 296 |  | 
|  | 297 | /* Allocation and initialization of TXDLs in FIOFs */ | 
|  | 298 | size = 0; | 
|  | 299 | for (i = 0; i < config->tx_fifo_num; i++) { | 
|  | 300 | size += config->tx_cfg[i].fifo_len; | 
|  | 301 | } | 
|  | 302 | if (size > MAX_AVAILABLE_TXDS) { | 
|  | 303 | DBG_PRINT(ERR_DBG, "%s: Total number of Tx FIFOs ", | 
|  | 304 | dev->name); | 
|  | 305 | DBG_PRINT(ERR_DBG, "exceeds the maximum value "); | 
|  | 306 | DBG_PRINT(ERR_DBG, "that can be used\n"); | 
|  | 307 | return FAILURE; | 
|  | 308 | } | 
|  | 309 |  | 
|  | 310 | lst_size = (sizeof(TxD_t) * config->max_txds); | 
|  | 311 | lst_per_page = PAGE_SIZE / lst_size; | 
|  | 312 |  | 
|  | 313 | for (i = 0; i < config->tx_fifo_num; i++) { | 
|  | 314 | int fifo_len = config->tx_cfg[i].fifo_len; | 
|  | 315 | int list_holder_size = fifo_len * sizeof(list_info_hold_t); | 
|  | 316 | nic->list_info[i] = kmalloc(list_holder_size, GFP_KERNEL); | 
|  | 317 | if (!nic->list_info[i]) { | 
|  | 318 | DBG_PRINT(ERR_DBG, | 
|  | 319 | "Malloc failed for list_info\n"); | 
|  | 320 | return -ENOMEM; | 
|  | 321 | } | 
|  | 322 | memset(nic->list_info[i], 0, list_holder_size); | 
|  | 323 | } | 
|  | 324 | for (i = 0; i < config->tx_fifo_num; i++) { | 
|  | 325 | int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len, | 
|  | 326 | lst_per_page); | 
|  | 327 | mac_control->tx_curr_put_info[i].offset = 0; | 
|  | 328 | mac_control->tx_curr_put_info[i].fifo_len = | 
|  | 329 | config->tx_cfg[i].fifo_len - 1; | 
|  | 330 | mac_control->tx_curr_get_info[i].offset = 0; | 
|  | 331 | mac_control->tx_curr_get_info[i].fifo_len = | 
|  | 332 | config->tx_cfg[i].fifo_len - 1; | 
|  | 333 | for (j = 0; j < page_num; j++) { | 
|  | 334 | int k = 0; | 
|  | 335 | dma_addr_t tmp_p; | 
|  | 336 | void *tmp_v; | 
|  | 337 | tmp_v = pci_alloc_consistent(nic->pdev, | 
|  | 338 | PAGE_SIZE, &tmp_p); | 
|  | 339 | if (!tmp_v) { | 
|  | 340 | DBG_PRINT(ERR_DBG, | 
|  | 341 | "pci_alloc_consistent "); | 
|  | 342 | DBG_PRINT(ERR_DBG, "failed for TxDL\n"); | 
|  | 343 | return -ENOMEM; | 
|  | 344 | } | 
|  | 345 | while (k < lst_per_page) { | 
|  | 346 | int l = (j * lst_per_page) + k; | 
|  | 347 | if (l == config->tx_cfg[i].fifo_len) | 
|  | 348 | goto end_txd_alloc; | 
|  | 349 | nic->list_info[i][l].list_virt_addr = | 
|  | 350 | tmp_v + (k * lst_size); | 
|  | 351 | nic->list_info[i][l].list_phy_addr = | 
|  | 352 | tmp_p + (k * lst_size); | 
|  | 353 | k++; | 
|  | 354 | } | 
|  | 355 | } | 
|  | 356 | } | 
|  | 357 | end_txd_alloc: | 
|  | 358 |  | 
|  | 359 | /* Allocation and initialization of RXDs in Rings */ | 
|  | 360 | size = 0; | 
|  | 361 | for (i = 0; i < config->rx_ring_num; i++) { | 
|  | 362 | if (config->rx_cfg[i].num_rxd % (MAX_RXDS_PER_BLOCK + 1)) { | 
|  | 363 | DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name); | 
|  | 364 | DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ", | 
|  | 365 | i); | 
|  | 366 | DBG_PRINT(ERR_DBG, "RxDs per Block"); | 
|  | 367 | return FAILURE; | 
|  | 368 | } | 
|  | 369 | size += config->rx_cfg[i].num_rxd; | 
|  | 370 | nic->block_count[i] = | 
|  | 371 | config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1); | 
|  | 372 | nic->pkt_cnt[i] = | 
|  | 373 | config->rx_cfg[i].num_rxd - nic->block_count[i]; | 
|  | 374 | } | 
|  | 375 |  | 
|  | 376 | for (i = 0; i < config->rx_ring_num; i++) { | 
|  | 377 | mac_control->rx_curr_get_info[i].block_index = 0; | 
|  | 378 | mac_control->rx_curr_get_info[i].offset = 0; | 
|  | 379 | mac_control->rx_curr_get_info[i].ring_len = | 
|  | 380 | config->rx_cfg[i].num_rxd - 1; | 
|  | 381 | mac_control->rx_curr_put_info[i].block_index = 0; | 
|  | 382 | mac_control->rx_curr_put_info[i].offset = 0; | 
|  | 383 | mac_control->rx_curr_put_info[i].ring_len = | 
|  | 384 | config->rx_cfg[i].num_rxd - 1; | 
|  | 385 | blk_cnt = | 
|  | 386 | config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1); | 
|  | 387 | /*  Allocating all the Rx blocks */ | 
|  | 388 | for (j = 0; j < blk_cnt; j++) { | 
|  | 389 | #ifndef CONFIG_2BUFF_MODE | 
|  | 390 | size = (MAX_RXDS_PER_BLOCK + 1) * (sizeof(RxD_t)); | 
|  | 391 | #else | 
|  | 392 | size = SIZE_OF_BLOCK; | 
|  | 393 | #endif | 
|  | 394 | tmp_v_addr = pci_alloc_consistent(nic->pdev, size, | 
|  | 395 | &tmp_p_addr); | 
|  | 396 | if (tmp_v_addr == NULL) { | 
|  | 397 | /* | 
|  | 398 | * In case of failure, free_shared_mem() | 
|  | 399 | * is called, which should free any | 
|  | 400 | * memory that was alloced till the | 
|  | 401 | * failure happened. | 
|  | 402 | */ | 
|  | 403 | nic->rx_blocks[i][j].block_virt_addr = | 
|  | 404 | tmp_v_addr; | 
|  | 405 | return -ENOMEM; | 
|  | 406 | } | 
|  | 407 | memset(tmp_v_addr, 0, size); | 
|  | 408 | nic->rx_blocks[i][j].block_virt_addr = tmp_v_addr; | 
|  | 409 | nic->rx_blocks[i][j].block_dma_addr = tmp_p_addr; | 
|  | 410 | } | 
|  | 411 | /* Interlinking all Rx Blocks */ | 
|  | 412 | for (j = 0; j < blk_cnt; j++) { | 
|  | 413 | tmp_v_addr = nic->rx_blocks[i][j].block_virt_addr; | 
|  | 414 | tmp_v_addr_next = | 
|  | 415 | nic->rx_blocks[i][(j + 1) % | 
|  | 416 | blk_cnt].block_virt_addr; | 
|  | 417 | tmp_p_addr = nic->rx_blocks[i][j].block_dma_addr; | 
|  | 418 | tmp_p_addr_next = | 
|  | 419 | nic->rx_blocks[i][(j + 1) % | 
|  | 420 | blk_cnt].block_dma_addr; | 
|  | 421 |  | 
|  | 422 | pre_rxd_blk = (RxD_block_t *) tmp_v_addr; | 
|  | 423 | pre_rxd_blk->reserved_1 = END_OF_BLOCK;	/* last RxD | 
|  | 424 | * marker. | 
|  | 425 | */ | 
|  | 426 | #ifndef	CONFIG_2BUFF_MODE | 
|  | 427 | pre_rxd_blk->reserved_2_pNext_RxD_block = | 
|  | 428 | (unsigned long) tmp_v_addr_next; | 
|  | 429 | #endif | 
|  | 430 | pre_rxd_blk->pNext_RxD_Blk_physical = | 
|  | 431 | (u64) tmp_p_addr_next; | 
|  | 432 | } | 
|  | 433 | } | 
|  | 434 |  | 
|  | 435 | #ifdef CONFIG_2BUFF_MODE | 
|  | 436 | /* | 
|  | 437 | * Allocation of Storages for buffer addresses in 2BUFF mode | 
|  | 438 | * and the buffers as well. | 
|  | 439 | */ | 
|  | 440 | for (i = 0; i < config->rx_ring_num; i++) { | 
|  | 441 | blk_cnt = | 
|  | 442 | config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1); | 
|  | 443 | nic->ba[i] = kmalloc((sizeof(buffAdd_t *) * blk_cnt), | 
|  | 444 | GFP_KERNEL); | 
|  | 445 | if (!nic->ba[i]) | 
|  | 446 | return -ENOMEM; | 
|  | 447 | for (j = 0; j < blk_cnt; j++) { | 
|  | 448 | int k = 0; | 
|  | 449 | nic->ba[i][j] = kmalloc((sizeof(buffAdd_t) * | 
|  | 450 | (MAX_RXDS_PER_BLOCK + 1)), | 
|  | 451 | GFP_KERNEL); | 
|  | 452 | if (!nic->ba[i][j]) | 
|  | 453 | return -ENOMEM; | 
|  | 454 | while (k != MAX_RXDS_PER_BLOCK) { | 
|  | 455 | ba = &nic->ba[i][j][k]; | 
|  | 456 |  | 
|  | 457 | ba->ba_0_org = kmalloc | 
|  | 458 | (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL); | 
|  | 459 | if (!ba->ba_0_org) | 
|  | 460 | return -ENOMEM; | 
|  | 461 | tmp = (unsigned long) ba->ba_0_org; | 
|  | 462 | tmp += ALIGN_SIZE; | 
|  | 463 | tmp &= ~((unsigned long) ALIGN_SIZE); | 
|  | 464 | ba->ba_0 = (void *) tmp; | 
|  | 465 |  | 
|  | 466 | ba->ba_1_org = kmalloc | 
|  | 467 | (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL); | 
|  | 468 | if (!ba->ba_1_org) | 
|  | 469 | return -ENOMEM; | 
|  | 470 | tmp = (unsigned long) ba->ba_1_org; | 
|  | 471 | tmp += ALIGN_SIZE; | 
|  | 472 | tmp &= ~((unsigned long) ALIGN_SIZE); | 
|  | 473 | ba->ba_1 = (void *) tmp; | 
|  | 474 | k++; | 
|  | 475 | } | 
|  | 476 | } | 
|  | 477 | } | 
|  | 478 | #endif | 
|  | 479 |  | 
|  | 480 | /* Allocation and initialization of Statistics block */ | 
|  | 481 | size = sizeof(StatInfo_t); | 
|  | 482 | mac_control->stats_mem = pci_alloc_consistent | 
|  | 483 | (nic->pdev, size, &mac_control->stats_mem_phy); | 
|  | 484 |  | 
|  | 485 | if (!mac_control->stats_mem) { | 
|  | 486 | /* | 
|  | 487 | * In case of failure, free_shared_mem() is called, which | 
|  | 488 | * should free any memory that was alloced till the | 
|  | 489 | * failure happened. | 
|  | 490 | */ | 
|  | 491 | return -ENOMEM; | 
|  | 492 | } | 
|  | 493 | mac_control->stats_mem_sz = size; | 
|  | 494 |  | 
|  | 495 | tmp_v_addr = mac_control->stats_mem; | 
|  | 496 | mac_control->stats_info = (StatInfo_t *) tmp_v_addr; | 
|  | 497 | memset(tmp_v_addr, 0, size); | 
|  | 498 |  | 
|  | 499 | DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name, | 
|  | 500 | (unsigned long long) tmp_p_addr); | 
|  | 501 |  | 
|  | 502 | return SUCCESS; | 
|  | 503 | } | 
|  | 504 |  | 
|  | 505 | /** | 
|  | 506 | * free_shared_mem - Free the allocated Memory | 
|  | 507 | * @nic:  Device private variable. | 
|  | 508 | * Description: This function is to free all memory locations allocated by | 
|  | 509 | * the init_shared_mem() function and return it to the kernel. | 
|  | 510 | */ | 
|  | 511 |  | 
|  | 512 | static void free_shared_mem(struct s2io_nic *nic) | 
|  | 513 | { | 
|  | 514 | int i, j, blk_cnt, size; | 
|  | 515 | void *tmp_v_addr; | 
|  | 516 | dma_addr_t tmp_p_addr; | 
|  | 517 | mac_info_t *mac_control; | 
|  | 518 | struct config_param *config; | 
|  | 519 | int lst_size, lst_per_page; | 
|  | 520 |  | 
|  | 521 |  | 
|  | 522 | if (!nic) | 
|  | 523 | return; | 
|  | 524 |  | 
|  | 525 | mac_control = &nic->mac_control; | 
|  | 526 | config = &nic->config; | 
|  | 527 |  | 
|  | 528 | lst_size = (sizeof(TxD_t) * config->max_txds); | 
|  | 529 | lst_per_page = PAGE_SIZE / lst_size; | 
|  | 530 |  | 
|  | 531 | for (i = 0; i < config->tx_fifo_num; i++) { | 
|  | 532 | int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len, | 
|  | 533 | lst_per_page); | 
|  | 534 | for (j = 0; j < page_num; j++) { | 
|  | 535 | int mem_blks = (j * lst_per_page); | 
|  | 536 | if (!nic->list_info[i][mem_blks].list_virt_addr) | 
|  | 537 | break; | 
|  | 538 | pci_free_consistent(nic->pdev, PAGE_SIZE, | 
|  | 539 | nic->list_info[i][mem_blks]. | 
|  | 540 | list_virt_addr, | 
|  | 541 | nic->list_info[i][mem_blks]. | 
|  | 542 | list_phy_addr); | 
|  | 543 | } | 
|  | 544 | kfree(nic->list_info[i]); | 
|  | 545 | } | 
|  | 546 |  | 
|  | 547 | #ifndef CONFIG_2BUFF_MODE | 
|  | 548 | size = (MAX_RXDS_PER_BLOCK + 1) * (sizeof(RxD_t)); | 
|  | 549 | #else | 
|  | 550 | size = SIZE_OF_BLOCK; | 
|  | 551 | #endif | 
|  | 552 | for (i = 0; i < config->rx_ring_num; i++) { | 
|  | 553 | blk_cnt = nic->block_count[i]; | 
|  | 554 | for (j = 0; j < blk_cnt; j++) { | 
|  | 555 | tmp_v_addr = nic->rx_blocks[i][j].block_virt_addr; | 
|  | 556 | tmp_p_addr = nic->rx_blocks[i][j].block_dma_addr; | 
|  | 557 | if (tmp_v_addr == NULL) | 
|  | 558 | break; | 
|  | 559 | pci_free_consistent(nic->pdev, size, | 
|  | 560 | tmp_v_addr, tmp_p_addr); | 
|  | 561 | } | 
|  | 562 | } | 
|  | 563 |  | 
|  | 564 | #ifdef CONFIG_2BUFF_MODE | 
|  | 565 | /* Freeing buffer storage addresses in 2BUFF mode. */ | 
|  | 566 | for (i = 0; i < config->rx_ring_num; i++) { | 
|  | 567 | blk_cnt = | 
|  | 568 | config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1); | 
|  | 569 | if (!nic->ba[i]) | 
|  | 570 | goto end_free; | 
|  | 571 | for (j = 0; j < blk_cnt; j++) { | 
|  | 572 | int k = 0; | 
|  | 573 | if (!nic->ba[i][j]) { | 
|  | 574 | kfree(nic->ba[i]); | 
|  | 575 | goto end_free; | 
|  | 576 | } | 
|  | 577 | while (k != MAX_RXDS_PER_BLOCK) { | 
|  | 578 | buffAdd_t *ba = &nic->ba[i][j][k]; | 
|  | 579 | if (!ba || !ba->ba_0_org || !ba->ba_1_org) | 
|  | 580 | { | 
|  | 581 | kfree(nic->ba[i]); | 
|  | 582 | kfree(nic->ba[i][j]); | 
|  | 583 | if(ba->ba_0_org) | 
|  | 584 | kfree(ba->ba_0_org); | 
|  | 585 | if(ba->ba_1_org) | 
|  | 586 | kfree(ba->ba_1_org); | 
|  | 587 | goto end_free; | 
|  | 588 | } | 
|  | 589 | kfree(ba->ba_0_org); | 
|  | 590 | kfree(ba->ba_1_org); | 
|  | 591 | k++; | 
|  | 592 | } | 
|  | 593 | kfree(nic->ba[i][j]); | 
|  | 594 | } | 
|  | 595 | kfree(nic->ba[i]); | 
|  | 596 | } | 
|  | 597 | end_free: | 
|  | 598 | #endif | 
|  | 599 |  | 
|  | 600 | if (mac_control->stats_mem) { | 
|  | 601 | pci_free_consistent(nic->pdev, | 
|  | 602 | mac_control->stats_mem_sz, | 
|  | 603 | mac_control->stats_mem, | 
|  | 604 | mac_control->stats_mem_phy); | 
|  | 605 | } | 
|  | 606 | } | 
|  | 607 |  | 
|  | 608 | /** | 
|  | 609 | *  init_nic - Initialization of hardware | 
|  | 610 | *  @nic: device peivate variable | 
|  | 611 | *  Description: The function sequentially configures every block | 
|  | 612 | *  of the H/W from their reset values. | 
|  | 613 | *  Return Value:  SUCCESS on success and | 
|  | 614 | *  '-1' on failure (endian settings incorrect). | 
|  | 615 | */ | 
|  | 616 |  | 
|  | 617 | static int init_nic(struct s2io_nic *nic) | 
|  | 618 | { | 
|  | 619 | XENA_dev_config_t __iomem *bar0 = nic->bar0; | 
|  | 620 | struct net_device *dev = nic->dev; | 
|  | 621 | register u64 val64 = 0; | 
|  | 622 | void __iomem *add; | 
|  | 623 | u32 time; | 
|  | 624 | int i, j; | 
|  | 625 | mac_info_t *mac_control; | 
|  | 626 | struct config_param *config; | 
|  | 627 | int mdio_cnt = 0, dtx_cnt = 0; | 
|  | 628 | unsigned long long mem_share; | 
|  | 629 |  | 
|  | 630 | mac_control = &nic->mac_control; | 
|  | 631 | config = &nic->config; | 
|  | 632 |  | 
|  | 633 | /* Initialize swapper control register */ | 
|  | 634 | if (s2io_set_swapper(nic)) { | 
|  | 635 | DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n"); | 
|  | 636 | return -1; | 
|  | 637 | } | 
|  | 638 |  | 
|  | 639 | /* Remove XGXS from reset state */ | 
|  | 640 | val64 = 0; | 
|  | 641 | writeq(val64, &bar0->sw_reset); | 
|  | 642 | val64 = readq(&bar0->sw_reset); | 
|  | 643 | msleep(500); | 
|  | 644 |  | 
|  | 645 | /*  Enable Receiving broadcasts */ | 
|  | 646 | add = &bar0->mac_cfg; | 
|  | 647 | val64 = readq(&bar0->mac_cfg); | 
|  | 648 | val64 |= MAC_RMAC_BCAST_ENABLE; | 
|  | 649 | writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); | 
|  | 650 | writel((u32) val64, add); | 
|  | 651 | writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); | 
|  | 652 | writel((u32) (val64 >> 32), (add + 4)); | 
|  | 653 |  | 
|  | 654 | /* Read registers in all blocks */ | 
|  | 655 | val64 = readq(&bar0->mac_int_mask); | 
|  | 656 | val64 = readq(&bar0->mc_int_mask); | 
|  | 657 | val64 = readq(&bar0->xgxs_int_mask); | 
|  | 658 |  | 
|  | 659 | /*  Set MTU */ | 
|  | 660 | val64 = dev->mtu; | 
|  | 661 | writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len); | 
|  | 662 |  | 
|  | 663 | /* | 
|  | 664 | * Configuring the XAUI Interface of Xena. | 
|  | 665 | * *************************************** | 
|  | 666 | * To Configure the Xena's XAUI, one has to write a series | 
|  | 667 | * of 64 bit values into two registers in a particular | 
|  | 668 | * sequence. Hence a macro 'SWITCH_SIGN' has been defined | 
|  | 669 | * which will be defined in the array of configuration values | 
|  | 670 | * (default_dtx_cfg & default_mdio_cfg) at appropriate places | 
|  | 671 | * to switch writing from one regsiter to another. We continue | 
|  | 672 | * writing these values until we encounter the 'END_SIGN' macro. | 
|  | 673 | * For example, After making a series of 21 writes into | 
|  | 674 | * dtx_control register the 'SWITCH_SIGN' appears and hence we | 
|  | 675 | * start writing into mdio_control until we encounter END_SIGN. | 
|  | 676 | */ | 
|  | 677 | while (1) { | 
|  | 678 | dtx_cfg: | 
|  | 679 | while (default_dtx_cfg[dtx_cnt] != END_SIGN) { | 
|  | 680 | if (default_dtx_cfg[dtx_cnt] == SWITCH_SIGN) { | 
|  | 681 | dtx_cnt++; | 
|  | 682 | goto mdio_cfg; | 
|  | 683 | } | 
|  | 684 | SPECIAL_REG_WRITE(default_dtx_cfg[dtx_cnt], | 
|  | 685 | &bar0->dtx_control, UF); | 
|  | 686 | val64 = readq(&bar0->dtx_control); | 
|  | 687 | dtx_cnt++; | 
|  | 688 | } | 
|  | 689 | mdio_cfg: | 
|  | 690 | while (default_mdio_cfg[mdio_cnt] != END_SIGN) { | 
|  | 691 | if (default_mdio_cfg[mdio_cnt] == SWITCH_SIGN) { | 
|  | 692 | mdio_cnt++; | 
|  | 693 | goto dtx_cfg; | 
|  | 694 | } | 
|  | 695 | SPECIAL_REG_WRITE(default_mdio_cfg[mdio_cnt], | 
|  | 696 | &bar0->mdio_control, UF); | 
|  | 697 | val64 = readq(&bar0->mdio_control); | 
|  | 698 | mdio_cnt++; | 
|  | 699 | } | 
|  | 700 | if ((default_dtx_cfg[dtx_cnt] == END_SIGN) && | 
|  | 701 | (default_mdio_cfg[mdio_cnt] == END_SIGN)) { | 
|  | 702 | break; | 
|  | 703 | } else { | 
|  | 704 | goto dtx_cfg; | 
|  | 705 | } | 
|  | 706 | } | 
|  | 707 |  | 
|  | 708 | /*  Tx DMA Initialization */ | 
|  | 709 | val64 = 0; | 
|  | 710 | writeq(val64, &bar0->tx_fifo_partition_0); | 
|  | 711 | writeq(val64, &bar0->tx_fifo_partition_1); | 
|  | 712 | writeq(val64, &bar0->tx_fifo_partition_2); | 
|  | 713 | writeq(val64, &bar0->tx_fifo_partition_3); | 
|  | 714 |  | 
|  | 715 |  | 
|  | 716 | for (i = 0, j = 0; i < config->tx_fifo_num; i++) { | 
|  | 717 | val64 |= | 
|  | 718 | vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19), | 
|  | 719 | 13) | vBIT(config->tx_cfg[i].fifo_priority, | 
|  | 720 | ((i * 32) + 5), 3); | 
|  | 721 |  | 
|  | 722 | if (i == (config->tx_fifo_num - 1)) { | 
|  | 723 | if (i % 2 == 0) | 
|  | 724 | i++; | 
|  | 725 | } | 
|  | 726 |  | 
|  | 727 | switch (i) { | 
|  | 728 | case 1: | 
|  | 729 | writeq(val64, &bar0->tx_fifo_partition_0); | 
|  | 730 | val64 = 0; | 
|  | 731 | break; | 
|  | 732 | case 3: | 
|  | 733 | writeq(val64, &bar0->tx_fifo_partition_1); | 
|  | 734 | val64 = 0; | 
|  | 735 | break; | 
|  | 736 | case 5: | 
|  | 737 | writeq(val64, &bar0->tx_fifo_partition_2); | 
|  | 738 | val64 = 0; | 
|  | 739 | break; | 
|  | 740 | case 7: | 
|  | 741 | writeq(val64, &bar0->tx_fifo_partition_3); | 
|  | 742 | break; | 
|  | 743 | } | 
|  | 744 | } | 
|  | 745 |  | 
|  | 746 | /* Enable Tx FIFO partition 0. */ | 
|  | 747 | val64 = readq(&bar0->tx_fifo_partition_0); | 
|  | 748 | val64 |= BIT(0);	/* To enable the FIFO partition. */ | 
|  | 749 | writeq(val64, &bar0->tx_fifo_partition_0); | 
|  | 750 |  | 
|  | 751 | val64 = readq(&bar0->tx_fifo_partition_0); | 
|  | 752 | DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n", | 
|  | 753 | &bar0->tx_fifo_partition_0, (unsigned long long) val64); | 
|  | 754 |  | 
|  | 755 | /* | 
|  | 756 | * Initialization of Tx_PA_CONFIG register to ignore packet | 
|  | 757 | * integrity checking. | 
|  | 758 | */ | 
|  | 759 | val64 = readq(&bar0->tx_pa_cfg); | 
|  | 760 | val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI | | 
|  | 761 | TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR; | 
|  | 762 | writeq(val64, &bar0->tx_pa_cfg); | 
|  | 763 |  | 
|  | 764 | /* Rx DMA intialization. */ | 
|  | 765 | val64 = 0; | 
|  | 766 | for (i = 0; i < config->rx_ring_num; i++) { | 
|  | 767 | val64 |= | 
|  | 768 | vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)), | 
|  | 769 | 3); | 
|  | 770 | } | 
|  | 771 | writeq(val64, &bar0->rx_queue_priority); | 
|  | 772 |  | 
|  | 773 | /* | 
|  | 774 | * Allocating equal share of memory to all the | 
|  | 775 | * configured Rings. | 
|  | 776 | */ | 
|  | 777 | val64 = 0; | 
|  | 778 | for (i = 0; i < config->rx_ring_num; i++) { | 
|  | 779 | switch (i) { | 
|  | 780 | case 0: | 
|  | 781 | mem_share = (64 / config->rx_ring_num + | 
|  | 782 | 64 % config->rx_ring_num); | 
|  | 783 | val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share); | 
|  | 784 | continue; | 
|  | 785 | case 1: | 
|  | 786 | mem_share = (64 / config->rx_ring_num); | 
|  | 787 | val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share); | 
|  | 788 | continue; | 
|  | 789 | case 2: | 
|  | 790 | mem_share = (64 / config->rx_ring_num); | 
|  | 791 | val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share); | 
|  | 792 | continue; | 
|  | 793 | case 3: | 
|  | 794 | mem_share = (64 / config->rx_ring_num); | 
|  | 795 | val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share); | 
|  | 796 | continue; | 
|  | 797 | case 4: | 
|  | 798 | mem_share = (64 / config->rx_ring_num); | 
|  | 799 | val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share); | 
|  | 800 | continue; | 
|  | 801 | case 5: | 
|  | 802 | mem_share = (64 / config->rx_ring_num); | 
|  | 803 | val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share); | 
|  | 804 | continue; | 
|  | 805 | case 6: | 
|  | 806 | mem_share = (64 / config->rx_ring_num); | 
|  | 807 | val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share); | 
|  | 808 | continue; | 
|  | 809 | case 7: | 
|  | 810 | mem_share = (64 / config->rx_ring_num); | 
|  | 811 | val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share); | 
|  | 812 | continue; | 
|  | 813 | } | 
|  | 814 | } | 
|  | 815 | writeq(val64, &bar0->rx_queue_cfg); | 
|  | 816 |  | 
|  | 817 | /* | 
|  | 818 | * Initializing the Tx round robin registers to 0. | 
|  | 819 | * Filling Tx and Rx round robin registers as per the | 
|  | 820 | * number of FIFOs and Rings is still TODO. | 
|  | 821 | */ | 
|  | 822 | writeq(0, &bar0->tx_w_round_robin_0); | 
|  | 823 | writeq(0, &bar0->tx_w_round_robin_1); | 
|  | 824 | writeq(0, &bar0->tx_w_round_robin_2); | 
|  | 825 | writeq(0, &bar0->tx_w_round_robin_3); | 
|  | 826 | writeq(0, &bar0->tx_w_round_robin_4); | 
|  | 827 |  | 
|  | 828 | /* | 
|  | 829 | * TODO | 
|  | 830 | * Disable Rx steering. Hard coding all packets be steered to | 
|  | 831 | * Queue 0 for now. | 
|  | 832 | */ | 
|  | 833 | val64 = 0x8080808080808080ULL; | 
|  | 834 | writeq(val64, &bar0->rts_qos_steering); | 
|  | 835 |  | 
|  | 836 | /* UDP Fix */ | 
|  | 837 | val64 = 0; | 
|  | 838 | for (i = 1; i < 8; i++) | 
|  | 839 | writeq(val64, &bar0->rts_frm_len_n[i]); | 
|  | 840 |  | 
|  | 841 | /* Set rts_frm_len register for fifo 0 */ | 
|  | 842 | writeq(MAC_RTS_FRM_LEN_SET(dev->mtu + 22), | 
|  | 843 | &bar0->rts_frm_len_n[0]); | 
|  | 844 |  | 
|  | 845 | /* Enable statistics */ | 
|  | 846 | writeq(mac_control->stats_mem_phy, &bar0->stat_addr); | 
|  | 847 | val64 = SET_UPDT_PERIOD(Stats_refresh_time) | | 
|  | 848 | STAT_CFG_STAT_RO | STAT_CFG_STAT_EN; | 
|  | 849 | writeq(val64, &bar0->stat_cfg); | 
|  | 850 |  | 
|  | 851 | /* | 
|  | 852 | * Initializing the sampling rate for the device to calculate the | 
|  | 853 | * bandwidth utilization. | 
|  | 854 | */ | 
|  | 855 | val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) | | 
|  | 856 | MAC_RX_LINK_UTIL_VAL(rmac_util_period); | 
|  | 857 | writeq(val64, &bar0->mac_link_util); | 
|  | 858 |  | 
|  | 859 |  | 
|  | 860 | /* | 
|  | 861 | * Initializing the Transmit and Receive Traffic Interrupt | 
|  | 862 | * Scheme. | 
|  | 863 | */ | 
|  | 864 | /* TTI Initialization. Default Tx timer gets us about | 
|  | 865 | * 250 interrupts per sec. Continuous interrupts are enabled | 
|  | 866 | * by default. | 
|  | 867 | */ | 
|  | 868 | val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078) | | 
|  | 869 | TTI_DATA1_MEM_TX_URNG_A(0xA) | | 
|  | 870 | TTI_DATA1_MEM_TX_URNG_B(0x10) | | 
|  | 871 | TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN | | 
|  | 872 | TTI_DATA1_MEM_TX_TIMER_CI_EN; | 
|  | 873 | writeq(val64, &bar0->tti_data1_mem); | 
|  | 874 |  | 
|  | 875 | val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) | | 
|  | 876 | TTI_DATA2_MEM_TX_UFC_B(0x20) | | 
|  | 877 | TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80); | 
|  | 878 | writeq(val64, &bar0->tti_data2_mem); | 
|  | 879 |  | 
|  | 880 | val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD; | 
|  | 881 | writeq(val64, &bar0->tti_command_mem); | 
|  | 882 |  | 
|  | 883 | /* | 
|  | 884 | * Once the operation completes, the Strobe bit of the command | 
|  | 885 | * register will be reset. We poll for this particular condition | 
|  | 886 | * We wait for a maximum of 500ms for the operation to complete, | 
|  | 887 | * if it's not complete by then we return error. | 
|  | 888 | */ | 
|  | 889 | time = 0; | 
|  | 890 | while (TRUE) { | 
|  | 891 | val64 = readq(&bar0->tti_command_mem); | 
|  | 892 | if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) { | 
|  | 893 | break; | 
|  | 894 | } | 
|  | 895 | if (time > 10) { | 
|  | 896 | DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n", | 
|  | 897 | dev->name); | 
|  | 898 | return -1; | 
|  | 899 | } | 
|  | 900 | msleep(50); | 
|  | 901 | time++; | 
|  | 902 | } | 
|  | 903 |  | 
|  | 904 | /* RTI Initialization */ | 
|  | 905 | val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF) | | 
|  | 906 | RTI_DATA1_MEM_RX_URNG_A(0xA) | | 
|  | 907 | RTI_DATA1_MEM_RX_URNG_B(0x10) | | 
|  | 908 | RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN; | 
|  | 909 |  | 
|  | 910 | writeq(val64, &bar0->rti_data1_mem); | 
|  | 911 |  | 
|  | 912 | val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) | | 
|  | 913 | RTI_DATA2_MEM_RX_UFC_B(0x2) | | 
|  | 914 | RTI_DATA2_MEM_RX_UFC_C(0x40) | RTI_DATA2_MEM_RX_UFC_D(0x80); | 
|  | 915 | writeq(val64, &bar0->rti_data2_mem); | 
|  | 916 |  | 
|  | 917 | val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD; | 
|  | 918 | writeq(val64, &bar0->rti_command_mem); | 
|  | 919 |  | 
|  | 920 | /* | 
|  | 921 | * Once the operation completes, the Strobe bit of the command | 
|  | 922 | * register will be reset. We poll for this particular condition | 
|  | 923 | * We wait for a maximum of 500ms for the operation to complete, | 
|  | 924 | * if it's not complete by then we return error. | 
|  | 925 | */ | 
|  | 926 | time = 0; | 
|  | 927 | while (TRUE) { | 
|  | 928 | val64 = readq(&bar0->rti_command_mem); | 
|  | 929 | if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) { | 
|  | 930 | break; | 
|  | 931 | } | 
|  | 932 | if (time > 10) { | 
|  | 933 | DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n", | 
|  | 934 | dev->name); | 
|  | 935 | return -1; | 
|  | 936 | } | 
|  | 937 | time++; | 
|  | 938 | msleep(50); | 
|  | 939 | } | 
|  | 940 |  | 
|  | 941 | /* | 
|  | 942 | * Initializing proper values as Pause threshold into all | 
|  | 943 | * the 8 Queues on Rx side. | 
|  | 944 | */ | 
|  | 945 | writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3); | 
|  | 946 | writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7); | 
|  | 947 |  | 
|  | 948 | /* Disable RMAC PAD STRIPPING */ | 
|  | 949 | add = &bar0->mac_cfg; | 
|  | 950 | val64 = readq(&bar0->mac_cfg); | 
|  | 951 | val64 &= ~(MAC_CFG_RMAC_STRIP_PAD); | 
|  | 952 | writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); | 
|  | 953 | writel((u32) (val64), add); | 
|  | 954 | writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); | 
|  | 955 | writel((u32) (val64 >> 32), (add + 4)); | 
|  | 956 | val64 = readq(&bar0->mac_cfg); | 
|  | 957 |  | 
|  | 958 | /* | 
|  | 959 | * Set the time value to be inserted in the pause frame | 
|  | 960 | * generated by xena. | 
|  | 961 | */ | 
|  | 962 | val64 = readq(&bar0->rmac_pause_cfg); | 
|  | 963 | val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff)); | 
|  | 964 | val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time); | 
|  | 965 | writeq(val64, &bar0->rmac_pause_cfg); | 
|  | 966 |  | 
|  | 967 | /* | 
|  | 968 | * Set the Threshold Limit for Generating the pause frame | 
|  | 969 | * If the amount of data in any Queue exceeds ratio of | 
|  | 970 | * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256 | 
|  | 971 | * pause frame is generated | 
|  | 972 | */ | 
|  | 973 | val64 = 0; | 
|  | 974 | for (i = 0; i < 4; i++) { | 
|  | 975 | val64 |= | 
|  | 976 | (((u64) 0xFF00 | nic->mac_control. | 
|  | 977 | mc_pause_threshold_q0q3) | 
|  | 978 | << (i * 2 * 8)); | 
|  | 979 | } | 
|  | 980 | writeq(val64, &bar0->mc_pause_thresh_q0q3); | 
|  | 981 |  | 
|  | 982 | val64 = 0; | 
|  | 983 | for (i = 0; i < 4; i++) { | 
|  | 984 | val64 |= | 
|  | 985 | (((u64) 0xFF00 | nic->mac_control. | 
|  | 986 | mc_pause_threshold_q4q7) | 
|  | 987 | << (i * 2 * 8)); | 
|  | 988 | } | 
|  | 989 | writeq(val64, &bar0->mc_pause_thresh_q4q7); | 
|  | 990 |  | 
|  | 991 | /* | 
|  | 992 | * TxDMA will stop Read request if the number of read split has | 
|  | 993 | * exceeded the limit pointed by shared_splits | 
|  | 994 | */ | 
|  | 995 | val64 = readq(&bar0->pic_control); | 
|  | 996 | val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits); | 
|  | 997 | writeq(val64, &bar0->pic_control); | 
|  | 998 |  | 
|  | 999 | return SUCCESS; | 
|  | 1000 | } | 
|  | 1001 |  | 
|  | 1002 | /** | 
|  | 1003 | *  en_dis_able_nic_intrs - Enable or Disable the interrupts | 
|  | 1004 | *  @nic: device private variable, | 
|  | 1005 | *  @mask: A mask indicating which Intr block must be modified and, | 
|  | 1006 | *  @flag: A flag indicating whether to enable or disable the Intrs. | 
|  | 1007 | *  Description: This function will either disable or enable the interrupts | 
|  | 1008 | *  depending on the flag argument. The mask argument can be used to | 
|  | 1009 | *  enable/disable any Intr block. | 
|  | 1010 | *  Return Value: NONE. | 
|  | 1011 | */ | 
|  | 1012 |  | 
|  | 1013 | static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag) | 
|  | 1014 | { | 
|  | 1015 | XENA_dev_config_t __iomem *bar0 = nic->bar0; | 
|  | 1016 | register u64 val64 = 0, temp64 = 0; | 
|  | 1017 |  | 
|  | 1018 | /*  Top level interrupt classification */ | 
|  | 1019 | /*  PIC Interrupts */ | 
|  | 1020 | if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) { | 
|  | 1021 | /*  Enable PIC Intrs in the general intr mask register */ | 
|  | 1022 | val64 = TXPIC_INT_M | PIC_RX_INT_M; | 
|  | 1023 | if (flag == ENABLE_INTRS) { | 
|  | 1024 | temp64 = readq(&bar0->general_int_mask); | 
|  | 1025 | temp64 &= ~((u64) val64); | 
|  | 1026 | writeq(temp64, &bar0->general_int_mask); | 
|  | 1027 | /* | 
|  | 1028 | * Disabled all PCIX, Flash, MDIO, IIC and GPIO | 
|  | 1029 | * interrupts for now. | 
|  | 1030 | * TODO | 
|  | 1031 | */ | 
|  | 1032 | writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask); | 
|  | 1033 | /* | 
|  | 1034 | * No MSI Support is available presently, so TTI and | 
|  | 1035 | * RTI interrupts are also disabled. | 
|  | 1036 | */ | 
|  | 1037 | } else if (flag == DISABLE_INTRS) { | 
|  | 1038 | /* | 
|  | 1039 | * Disable PIC Intrs in the general | 
|  | 1040 | * intr mask register | 
|  | 1041 | */ | 
|  | 1042 | writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask); | 
|  | 1043 | temp64 = readq(&bar0->general_int_mask); | 
|  | 1044 | val64 |= temp64; | 
|  | 1045 | writeq(val64, &bar0->general_int_mask); | 
|  | 1046 | } | 
|  | 1047 | } | 
|  | 1048 |  | 
|  | 1049 | /*  DMA Interrupts */ | 
|  | 1050 | /*  Enabling/Disabling Tx DMA interrupts */ | 
|  | 1051 | if (mask & TX_DMA_INTR) { | 
|  | 1052 | /* Enable TxDMA Intrs in the general intr mask register */ | 
|  | 1053 | val64 = TXDMA_INT_M; | 
|  | 1054 | if (flag == ENABLE_INTRS) { | 
|  | 1055 | temp64 = readq(&bar0->general_int_mask); | 
|  | 1056 | temp64 &= ~((u64) val64); | 
|  | 1057 | writeq(temp64, &bar0->general_int_mask); | 
|  | 1058 | /* | 
|  | 1059 | * Keep all interrupts other than PFC interrupt | 
|  | 1060 | * and PCC interrupt disabled in DMA level. | 
|  | 1061 | */ | 
|  | 1062 | val64 = DISABLE_ALL_INTRS & ~(TXDMA_PFC_INT_M | | 
|  | 1063 | TXDMA_PCC_INT_M); | 
|  | 1064 | writeq(val64, &bar0->txdma_int_mask); | 
|  | 1065 | /* | 
|  | 1066 | * Enable only the MISC error 1 interrupt in PFC block | 
|  | 1067 | */ | 
|  | 1068 | val64 = DISABLE_ALL_INTRS & (~PFC_MISC_ERR_1); | 
|  | 1069 | writeq(val64, &bar0->pfc_err_mask); | 
|  | 1070 | /* | 
|  | 1071 | * Enable only the FB_ECC error interrupt in PCC block | 
|  | 1072 | */ | 
|  | 1073 | val64 = DISABLE_ALL_INTRS & (~PCC_FB_ECC_ERR); | 
|  | 1074 | writeq(val64, &bar0->pcc_err_mask); | 
|  | 1075 | } else if (flag == DISABLE_INTRS) { | 
|  | 1076 | /* | 
|  | 1077 | * Disable TxDMA Intrs in the general intr mask | 
|  | 1078 | * register | 
|  | 1079 | */ | 
|  | 1080 | writeq(DISABLE_ALL_INTRS, &bar0->txdma_int_mask); | 
|  | 1081 | writeq(DISABLE_ALL_INTRS, &bar0->pfc_err_mask); | 
|  | 1082 | temp64 = readq(&bar0->general_int_mask); | 
|  | 1083 | val64 |= temp64; | 
|  | 1084 | writeq(val64, &bar0->general_int_mask); | 
|  | 1085 | } | 
|  | 1086 | } | 
|  | 1087 |  | 
|  | 1088 | /*  Enabling/Disabling Rx DMA interrupts */ | 
|  | 1089 | if (mask & RX_DMA_INTR) { | 
|  | 1090 | /*  Enable RxDMA Intrs in the general intr mask register */ | 
|  | 1091 | val64 = RXDMA_INT_M; | 
|  | 1092 | if (flag == ENABLE_INTRS) { | 
|  | 1093 | temp64 = readq(&bar0->general_int_mask); | 
|  | 1094 | temp64 &= ~((u64) val64); | 
|  | 1095 | writeq(temp64, &bar0->general_int_mask); | 
|  | 1096 | /* | 
|  | 1097 | * All RxDMA block interrupts are disabled for now | 
|  | 1098 | * TODO | 
|  | 1099 | */ | 
|  | 1100 | writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask); | 
|  | 1101 | } else if (flag == DISABLE_INTRS) { | 
|  | 1102 | /* | 
|  | 1103 | * Disable RxDMA Intrs in the general intr mask | 
|  | 1104 | * register | 
|  | 1105 | */ | 
|  | 1106 | writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask); | 
|  | 1107 | temp64 = readq(&bar0->general_int_mask); | 
|  | 1108 | val64 |= temp64; | 
|  | 1109 | writeq(val64, &bar0->general_int_mask); | 
|  | 1110 | } | 
|  | 1111 | } | 
|  | 1112 |  | 
|  | 1113 | /*  MAC Interrupts */ | 
|  | 1114 | /*  Enabling/Disabling MAC interrupts */ | 
|  | 1115 | if (mask & (TX_MAC_INTR | RX_MAC_INTR)) { | 
|  | 1116 | val64 = TXMAC_INT_M | RXMAC_INT_M; | 
|  | 1117 | if (flag == ENABLE_INTRS) { | 
|  | 1118 | temp64 = readq(&bar0->general_int_mask); | 
|  | 1119 | temp64 &= ~((u64) val64); | 
|  | 1120 | writeq(temp64, &bar0->general_int_mask); | 
|  | 1121 | /* | 
|  | 1122 | * All MAC block error interrupts are disabled for now | 
|  | 1123 | * except the link status change interrupt. | 
|  | 1124 | * TODO | 
|  | 1125 | */ | 
|  | 1126 | val64 = MAC_INT_STATUS_RMAC_INT; | 
|  | 1127 | temp64 = readq(&bar0->mac_int_mask); | 
|  | 1128 | temp64 &= ~((u64) val64); | 
|  | 1129 | writeq(temp64, &bar0->mac_int_mask); | 
|  | 1130 |  | 
|  | 1131 | val64 = readq(&bar0->mac_rmac_err_mask); | 
|  | 1132 | val64 &= ~((u64) RMAC_LINK_STATE_CHANGE_INT); | 
|  | 1133 | writeq(val64, &bar0->mac_rmac_err_mask); | 
|  | 1134 | } else if (flag == DISABLE_INTRS) { | 
|  | 1135 | /* | 
|  | 1136 | * Disable MAC Intrs in the general intr mask register | 
|  | 1137 | */ | 
|  | 1138 | writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask); | 
|  | 1139 | writeq(DISABLE_ALL_INTRS, | 
|  | 1140 | &bar0->mac_rmac_err_mask); | 
|  | 1141 |  | 
|  | 1142 | temp64 = readq(&bar0->general_int_mask); | 
|  | 1143 | val64 |= temp64; | 
|  | 1144 | writeq(val64, &bar0->general_int_mask); | 
|  | 1145 | } | 
|  | 1146 | } | 
|  | 1147 |  | 
|  | 1148 | /*  XGXS Interrupts */ | 
|  | 1149 | if (mask & (TX_XGXS_INTR | RX_XGXS_INTR)) { | 
|  | 1150 | val64 = TXXGXS_INT_M | RXXGXS_INT_M; | 
|  | 1151 | if (flag == ENABLE_INTRS) { | 
|  | 1152 | temp64 = readq(&bar0->general_int_mask); | 
|  | 1153 | temp64 &= ~((u64) val64); | 
|  | 1154 | writeq(temp64, &bar0->general_int_mask); | 
|  | 1155 | /* | 
|  | 1156 | * All XGXS block error interrupts are disabled for now | 
|  | 1157 | * TODO | 
|  | 1158 | */ | 
|  | 1159 | writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask); | 
|  | 1160 | } else if (flag == DISABLE_INTRS) { | 
|  | 1161 | /* | 
|  | 1162 | * Disable MC Intrs in the general intr mask register | 
|  | 1163 | */ | 
|  | 1164 | writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask); | 
|  | 1165 | temp64 = readq(&bar0->general_int_mask); | 
|  | 1166 | val64 |= temp64; | 
|  | 1167 | writeq(val64, &bar0->general_int_mask); | 
|  | 1168 | } | 
|  | 1169 | } | 
|  | 1170 |  | 
|  | 1171 | /*  Memory Controller(MC) interrupts */ | 
|  | 1172 | if (mask & MC_INTR) { | 
|  | 1173 | val64 = MC_INT_M; | 
|  | 1174 | if (flag == ENABLE_INTRS) { | 
|  | 1175 | temp64 = readq(&bar0->general_int_mask); | 
|  | 1176 | temp64 &= ~((u64) val64); | 
|  | 1177 | writeq(temp64, &bar0->general_int_mask); | 
|  | 1178 | /* | 
|  | 1179 | * All MC block error interrupts are disabled for now | 
|  | 1180 | * TODO | 
|  | 1181 | */ | 
|  | 1182 | writeq(DISABLE_ALL_INTRS, &bar0->mc_int_mask); | 
|  | 1183 | } else if (flag == DISABLE_INTRS) { | 
|  | 1184 | /* | 
|  | 1185 | * Disable MC Intrs in the general intr mask register | 
|  | 1186 | */ | 
|  | 1187 | writeq(DISABLE_ALL_INTRS, &bar0->mc_int_mask); | 
|  | 1188 | temp64 = readq(&bar0->general_int_mask); | 
|  | 1189 | val64 |= temp64; | 
|  | 1190 | writeq(val64, &bar0->general_int_mask); | 
|  | 1191 | } | 
|  | 1192 | } | 
|  | 1193 |  | 
|  | 1194 |  | 
|  | 1195 | /*  Tx traffic interrupts */ | 
|  | 1196 | if (mask & TX_TRAFFIC_INTR) { | 
|  | 1197 | val64 = TXTRAFFIC_INT_M; | 
|  | 1198 | if (flag == ENABLE_INTRS) { | 
|  | 1199 | temp64 = readq(&bar0->general_int_mask); | 
|  | 1200 | temp64 &= ~((u64) val64); | 
|  | 1201 | writeq(temp64, &bar0->general_int_mask); | 
|  | 1202 | /* | 
|  | 1203 | * Enable all the Tx side interrupts | 
|  | 1204 | * writing 0 Enables all 64 TX interrupt levels | 
|  | 1205 | */ | 
|  | 1206 | writeq(0x0, &bar0->tx_traffic_mask); | 
|  | 1207 | } else if (flag == DISABLE_INTRS) { | 
|  | 1208 | /* | 
|  | 1209 | * Disable Tx Traffic Intrs in the general intr mask | 
|  | 1210 | * register. | 
|  | 1211 | */ | 
|  | 1212 | writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask); | 
|  | 1213 | temp64 = readq(&bar0->general_int_mask); | 
|  | 1214 | val64 |= temp64; | 
|  | 1215 | writeq(val64, &bar0->general_int_mask); | 
|  | 1216 | } | 
|  | 1217 | } | 
|  | 1218 |  | 
|  | 1219 | /*  Rx traffic interrupts */ | 
|  | 1220 | if (mask & RX_TRAFFIC_INTR) { | 
|  | 1221 | val64 = RXTRAFFIC_INT_M; | 
|  | 1222 | if (flag == ENABLE_INTRS) { | 
|  | 1223 | temp64 = readq(&bar0->general_int_mask); | 
|  | 1224 | temp64 &= ~((u64) val64); | 
|  | 1225 | writeq(temp64, &bar0->general_int_mask); | 
|  | 1226 | /* writing 0 Enables all 8 RX interrupt levels */ | 
|  | 1227 | writeq(0x0, &bar0->rx_traffic_mask); | 
|  | 1228 | } else if (flag == DISABLE_INTRS) { | 
|  | 1229 | /* | 
|  | 1230 | * Disable Rx Traffic Intrs in the general intr mask | 
|  | 1231 | * register. | 
|  | 1232 | */ | 
|  | 1233 | writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask); | 
|  | 1234 | temp64 = readq(&bar0->general_int_mask); | 
|  | 1235 | val64 |= temp64; | 
|  | 1236 | writeq(val64, &bar0->general_int_mask); | 
|  | 1237 | } | 
|  | 1238 | } | 
|  | 1239 | } | 
|  | 1240 |  | 
|  | 1241 | /** | 
|  | 1242 | *  verify_xena_quiescence - Checks whether the H/W is ready | 
|  | 1243 | *  @val64 :  Value read from adapter status register. | 
|  | 1244 | *  @flag : indicates if the adapter enable bit was ever written once | 
|  | 1245 | *  before. | 
|  | 1246 | *  Description: Returns whether the H/W is ready to go or not. Depending | 
|  | 1247 | *  on whether adapter enable bit was written or not the comparison | 
|  | 1248 | *  differs and the calling function passes the input argument flag to | 
|  | 1249 | *  indicate this. | 
|  | 1250 | *  Return: 1 If xena is quiescence | 
|  | 1251 | *          0 If Xena is not quiescence | 
|  | 1252 | */ | 
|  | 1253 |  | 
|  | 1254 | static int verify_xena_quiescence(u64 val64, int flag) | 
|  | 1255 | { | 
|  | 1256 | int ret = 0; | 
|  | 1257 | u64 tmp64 = ~((u64) val64); | 
|  | 1258 |  | 
|  | 1259 | if (! | 
|  | 1260 | (tmp64 & | 
|  | 1261 | (ADAPTER_STATUS_TDMA_READY | ADAPTER_STATUS_RDMA_READY | | 
|  | 1262 | ADAPTER_STATUS_PFC_READY | ADAPTER_STATUS_TMAC_BUF_EMPTY | | 
|  | 1263 | ADAPTER_STATUS_PIC_QUIESCENT | ADAPTER_STATUS_MC_DRAM_READY | | 
|  | 1264 | ADAPTER_STATUS_MC_QUEUES_READY | ADAPTER_STATUS_M_PLL_LOCK | | 
|  | 1265 | ADAPTER_STATUS_P_PLL_LOCK))) { | 
|  | 1266 | if (flag == FALSE) { | 
|  | 1267 | if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) && | 
|  | 1268 | ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) == | 
|  | 1269 | ADAPTER_STATUS_RC_PRC_QUIESCENT)) { | 
|  | 1270 |  | 
|  | 1271 | ret = 1; | 
|  | 1272 |  | 
|  | 1273 | } | 
|  | 1274 | } else { | 
|  | 1275 | if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) == | 
|  | 1276 | ADAPTER_STATUS_RMAC_PCC_IDLE) && | 
|  | 1277 | (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) || | 
|  | 1278 | ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) == | 
|  | 1279 | ADAPTER_STATUS_RC_PRC_QUIESCENT))) { | 
|  | 1280 |  | 
|  | 1281 | ret = 1; | 
|  | 1282 |  | 
|  | 1283 | } | 
|  | 1284 | } | 
|  | 1285 | } | 
|  | 1286 |  | 
|  | 1287 | return ret; | 
|  | 1288 | } | 
|  | 1289 |  | 
|  | 1290 | /** | 
|  | 1291 | * fix_mac_address -  Fix for Mac addr problem on Alpha platforms | 
|  | 1292 | * @sp: Pointer to device specifc structure | 
|  | 1293 | * Description : | 
|  | 1294 | * New procedure to clear mac address reading  problems on Alpha platforms | 
|  | 1295 | * | 
|  | 1296 | */ | 
|  | 1297 |  | 
|  | 1298 | static void fix_mac_address(nic_t * sp) | 
|  | 1299 | { | 
|  | 1300 | XENA_dev_config_t __iomem *bar0 = sp->bar0; | 
|  | 1301 | u64 val64; | 
|  | 1302 | int i = 0; | 
|  | 1303 |  | 
|  | 1304 | while (fix_mac[i] != END_SIGN) { | 
|  | 1305 | writeq(fix_mac[i++], &bar0->gpio_control); | 
|  | 1306 | val64 = readq(&bar0->gpio_control); | 
|  | 1307 | } | 
|  | 1308 | } | 
|  | 1309 |  | 
|  | 1310 | /** | 
|  | 1311 | *  start_nic - Turns the device on | 
|  | 1312 | *  @nic : device private variable. | 
|  | 1313 | *  Description: | 
|  | 1314 | *  This function actually turns the device on. Before this  function is | 
|  | 1315 | *  called,all Registers are configured from their reset states | 
|  | 1316 | *  and shared memory is allocated but the NIC is still quiescent. On | 
|  | 1317 | *  calling this function, the device interrupts are cleared and the NIC is | 
|  | 1318 | *  literally switched on by writing into the adapter control register. | 
|  | 1319 | *  Return Value: | 
|  | 1320 | *  SUCCESS on success and -1 on failure. | 
|  | 1321 | */ | 
|  | 1322 |  | 
|  | 1323 | static int start_nic(struct s2io_nic *nic) | 
|  | 1324 | { | 
|  | 1325 | XENA_dev_config_t __iomem *bar0 = nic->bar0; | 
|  | 1326 | struct net_device *dev = nic->dev; | 
|  | 1327 | register u64 val64 = 0; | 
|  | 1328 | u16 interruptible, i; | 
|  | 1329 | u16 subid; | 
|  | 1330 | mac_info_t *mac_control; | 
|  | 1331 | struct config_param *config; | 
|  | 1332 |  | 
|  | 1333 | mac_control = &nic->mac_control; | 
|  | 1334 | config = &nic->config; | 
|  | 1335 |  | 
|  | 1336 | /*  PRC Initialization and configuration */ | 
|  | 1337 | for (i = 0; i < config->rx_ring_num; i++) { | 
|  | 1338 | writeq((u64) nic->rx_blocks[i][0].block_dma_addr, | 
|  | 1339 | &bar0->prc_rxd0_n[i]); | 
|  | 1340 |  | 
|  | 1341 | val64 = readq(&bar0->prc_ctrl_n[i]); | 
|  | 1342 | #ifndef CONFIG_2BUFF_MODE | 
|  | 1343 | val64 |= PRC_CTRL_RC_ENABLED; | 
|  | 1344 | #else | 
|  | 1345 | val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3; | 
|  | 1346 | #endif | 
|  | 1347 | writeq(val64, &bar0->prc_ctrl_n[i]); | 
|  | 1348 | } | 
|  | 1349 |  | 
|  | 1350 | #ifdef CONFIG_2BUFF_MODE | 
|  | 1351 | /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */ | 
|  | 1352 | val64 = readq(&bar0->rx_pa_cfg); | 
|  | 1353 | val64 |= RX_PA_CFG_IGNORE_L2_ERR; | 
|  | 1354 | writeq(val64, &bar0->rx_pa_cfg); | 
|  | 1355 | #endif | 
|  | 1356 |  | 
|  | 1357 | /* | 
|  | 1358 | * Enabling MC-RLDRAM. After enabling the device, we timeout | 
|  | 1359 | * for around 100ms, which is approximately the time required | 
|  | 1360 | * for the device to be ready for operation. | 
|  | 1361 | */ | 
|  | 1362 | val64 = readq(&bar0->mc_rldram_mrs); | 
|  | 1363 | val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE; | 
|  | 1364 | SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); | 
|  | 1365 | val64 = readq(&bar0->mc_rldram_mrs); | 
|  | 1366 |  | 
|  | 1367 | msleep(100);			/* Delay by around 100 ms. */ | 
|  | 1368 |  | 
|  | 1369 | /* Enabling ECC Protection. */ | 
|  | 1370 | val64 = readq(&bar0->adapter_control); | 
|  | 1371 | val64 &= ~ADAPTER_ECC_EN; | 
|  | 1372 | writeq(val64, &bar0->adapter_control); | 
|  | 1373 |  | 
|  | 1374 | /* | 
|  | 1375 | * Clearing any possible Link state change interrupts that | 
|  | 1376 | * could have popped up just before Enabling the card. | 
|  | 1377 | */ | 
|  | 1378 | val64 = readq(&bar0->mac_rmac_err_reg); | 
|  | 1379 | if (val64) | 
|  | 1380 | writeq(val64, &bar0->mac_rmac_err_reg); | 
|  | 1381 |  | 
|  | 1382 | /* | 
|  | 1383 | * Verify if the device is ready to be enabled, if so enable | 
|  | 1384 | * it. | 
|  | 1385 | */ | 
|  | 1386 | val64 = readq(&bar0->adapter_status); | 
|  | 1387 | if (!verify_xena_quiescence(val64, nic->device_enabled_once)) { | 
|  | 1388 | DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name); | 
|  | 1389 | DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n", | 
|  | 1390 | (unsigned long long) val64); | 
|  | 1391 | return FAILURE; | 
|  | 1392 | } | 
|  | 1393 |  | 
|  | 1394 | /*  Enable select interrupts */ | 
|  | 1395 | interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR | TX_MAC_INTR | | 
|  | 1396 | RX_MAC_INTR; | 
|  | 1397 | en_dis_able_nic_intrs(nic, interruptible, ENABLE_INTRS); | 
|  | 1398 |  | 
|  | 1399 | /* | 
|  | 1400 | * With some switches, link might be already up at this point. | 
|  | 1401 | * Because of this weird behavior, when we enable laser, | 
|  | 1402 | * we may not get link. We need to handle this. We cannot | 
|  | 1403 | * figure out which switch is misbehaving. So we are forced to | 
|  | 1404 | * make a global change. | 
|  | 1405 | */ | 
|  | 1406 |  | 
|  | 1407 | /* Enabling Laser. */ | 
|  | 1408 | val64 = readq(&bar0->adapter_control); | 
|  | 1409 | val64 |= ADAPTER_EOI_TX_ON; | 
|  | 1410 | writeq(val64, &bar0->adapter_control); | 
|  | 1411 |  | 
|  | 1412 | /* SXE-002: Initialize link and activity LED */ | 
|  | 1413 | subid = nic->pdev->subsystem_device; | 
|  | 1414 | if ((subid & 0xFF) >= 0x07) { | 
|  | 1415 | val64 = readq(&bar0->gpio_control); | 
|  | 1416 | val64 |= 0x0000800000000000ULL; | 
|  | 1417 | writeq(val64, &bar0->gpio_control); | 
|  | 1418 | val64 = 0x0411040400000000ULL; | 
|  | 1419 | writeq(val64, (void __iomem *) bar0 + 0x2700); | 
|  | 1420 | } | 
|  | 1421 |  | 
|  | 1422 | /* | 
|  | 1423 | * Don't see link state interrupts on certain switches, so | 
|  | 1424 | * directly scheduling a link state task from here. | 
|  | 1425 | */ | 
|  | 1426 | schedule_work(&nic->set_link_task); | 
|  | 1427 |  | 
|  | 1428 | /* | 
|  | 1429 | * Here we are performing soft reset on XGXS to | 
|  | 1430 | * force link down. Since link is already up, we will get | 
|  | 1431 | * link state change interrupt after this reset | 
|  | 1432 | */ | 
|  | 1433 | SPECIAL_REG_WRITE(0x80010515001E0000ULL, &bar0->dtx_control, UF); | 
|  | 1434 | val64 = readq(&bar0->dtx_control); | 
|  | 1435 | udelay(50); | 
|  | 1436 | SPECIAL_REG_WRITE(0x80010515001E00E0ULL, &bar0->dtx_control, UF); | 
|  | 1437 | val64 = readq(&bar0->dtx_control); | 
|  | 1438 | udelay(50); | 
|  | 1439 | SPECIAL_REG_WRITE(0x80070515001F00E4ULL, &bar0->dtx_control, UF); | 
|  | 1440 | val64 = readq(&bar0->dtx_control); | 
|  | 1441 | udelay(50); | 
|  | 1442 |  | 
|  | 1443 | return SUCCESS; | 
|  | 1444 | } | 
|  | 1445 |  | 
|  | 1446 | /** | 
|  | 1447 | *  free_tx_buffers - Free all queued Tx buffers | 
|  | 1448 | *  @nic : device private variable. | 
|  | 1449 | *  Description: | 
|  | 1450 | *  Free all queued Tx buffers. | 
|  | 1451 | *  Return Value: void | 
|  | 1452 | */ | 
|  | 1453 |  | 
|  | 1454 | static void free_tx_buffers(struct s2io_nic *nic) | 
|  | 1455 | { | 
|  | 1456 | struct net_device *dev = nic->dev; | 
|  | 1457 | struct sk_buff *skb; | 
|  | 1458 | TxD_t *txdp; | 
|  | 1459 | int i, j; | 
|  | 1460 | mac_info_t *mac_control; | 
|  | 1461 | struct config_param *config; | 
|  | 1462 | int cnt = 0; | 
|  | 1463 |  | 
|  | 1464 | mac_control = &nic->mac_control; | 
|  | 1465 | config = &nic->config; | 
|  | 1466 |  | 
|  | 1467 | for (i = 0; i < config->tx_fifo_num; i++) { | 
|  | 1468 | for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) { | 
|  | 1469 | txdp = (TxD_t *) nic->list_info[i][j]. | 
|  | 1470 | list_virt_addr; | 
|  | 1471 | skb = | 
|  | 1472 | (struct sk_buff *) ((unsigned long) txdp-> | 
|  | 1473 | Host_Control); | 
|  | 1474 | if (skb == NULL) { | 
|  | 1475 | memset(txdp, 0, sizeof(TxD_t)); | 
|  | 1476 | continue; | 
|  | 1477 | } | 
|  | 1478 | dev_kfree_skb(skb); | 
|  | 1479 | memset(txdp, 0, sizeof(TxD_t)); | 
|  | 1480 | cnt++; | 
|  | 1481 | } | 
|  | 1482 | DBG_PRINT(INTR_DBG, | 
|  | 1483 | "%s:forcibly freeing %d skbs on FIFO%d\n", | 
|  | 1484 | dev->name, cnt, i); | 
|  | 1485 | mac_control->tx_curr_get_info[i].offset = 0; | 
|  | 1486 | mac_control->tx_curr_put_info[i].offset = 0; | 
|  | 1487 | } | 
|  | 1488 | } | 
|  | 1489 |  | 
|  | 1490 | /** | 
|  | 1491 | *   stop_nic -  To stop the nic | 
|  | 1492 | *   @nic ; device private variable. | 
|  | 1493 | *   Description: | 
|  | 1494 | *   This function does exactly the opposite of what the start_nic() | 
|  | 1495 | *   function does. This function is called to stop the device. | 
|  | 1496 | *   Return Value: | 
|  | 1497 | *   void. | 
|  | 1498 | */ | 
|  | 1499 |  | 
|  | 1500 | static void stop_nic(struct s2io_nic *nic) | 
|  | 1501 | { | 
|  | 1502 | XENA_dev_config_t __iomem *bar0 = nic->bar0; | 
|  | 1503 | register u64 val64 = 0; | 
|  | 1504 | u16 interruptible, i; | 
|  | 1505 | mac_info_t *mac_control; | 
|  | 1506 | struct config_param *config; | 
|  | 1507 |  | 
|  | 1508 | mac_control = &nic->mac_control; | 
|  | 1509 | config = &nic->config; | 
|  | 1510 |  | 
|  | 1511 | /*  Disable all interrupts */ | 
|  | 1512 | interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR | TX_MAC_INTR | | 
|  | 1513 | RX_MAC_INTR; | 
|  | 1514 | en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS); | 
|  | 1515 |  | 
|  | 1516 | /*  Disable PRCs */ | 
|  | 1517 | for (i = 0; i < config->rx_ring_num; i++) { | 
|  | 1518 | val64 = readq(&bar0->prc_ctrl_n[i]); | 
|  | 1519 | val64 &= ~((u64) PRC_CTRL_RC_ENABLED); | 
|  | 1520 | writeq(val64, &bar0->prc_ctrl_n[i]); | 
|  | 1521 | } | 
|  | 1522 | } | 
|  | 1523 |  | 
|  | 1524 | /** | 
|  | 1525 | *  fill_rx_buffers - Allocates the Rx side skbs | 
|  | 1526 | *  @nic:  device private variable | 
|  | 1527 | *  @ring_no: ring number | 
|  | 1528 | *  Description: | 
|  | 1529 | *  The function allocates Rx side skbs and puts the physical | 
|  | 1530 | *  address of these buffers into the RxD buffer pointers, so that the NIC | 
|  | 1531 | *  can DMA the received frame into these locations. | 
|  | 1532 | *  The NIC supports 3 receive modes, viz | 
|  | 1533 | *  1. single buffer, | 
|  | 1534 | *  2. three buffer and | 
|  | 1535 | *  3. Five buffer modes. | 
|  | 1536 | *  Each mode defines how many fragments the received frame will be split | 
|  | 1537 | *  up into by the NIC. The frame is split into L3 header, L4 Header, | 
|  | 1538 | *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself | 
|  | 1539 | *  is split into 3 fragments. As of now only single buffer mode is | 
|  | 1540 | *  supported. | 
|  | 1541 | *   Return Value: | 
|  | 1542 | *  SUCCESS on success or an appropriate -ve value on failure. | 
|  | 1543 | */ | 
|  | 1544 |  | 
|  | 1545 | static int fill_rx_buffers(struct s2io_nic *nic, int ring_no) | 
|  | 1546 | { | 
|  | 1547 | struct net_device *dev = nic->dev; | 
|  | 1548 | struct sk_buff *skb; | 
|  | 1549 | RxD_t *rxdp; | 
|  | 1550 | int off, off1, size, block_no, block_no1; | 
|  | 1551 | int offset, offset1; | 
|  | 1552 | u32 alloc_tab = 0; | 
|  | 1553 | u32 alloc_cnt = nic->pkt_cnt[ring_no] - | 
|  | 1554 | atomic_read(&nic->rx_bufs_left[ring_no]); | 
|  | 1555 | mac_info_t *mac_control; | 
|  | 1556 | struct config_param *config; | 
|  | 1557 | #ifdef CONFIG_2BUFF_MODE | 
|  | 1558 | RxD_t *rxdpnext; | 
|  | 1559 | int nextblk; | 
|  | 1560 | unsigned long tmp; | 
|  | 1561 | buffAdd_t *ba; | 
|  | 1562 | dma_addr_t rxdpphys; | 
|  | 1563 | #endif | 
|  | 1564 | #ifndef CONFIG_S2IO_NAPI | 
|  | 1565 | unsigned long flags; | 
|  | 1566 | #endif | 
|  | 1567 |  | 
|  | 1568 | mac_control = &nic->mac_control; | 
|  | 1569 | config = &nic->config; | 
|  | 1570 |  | 
|  | 1571 | size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE + | 
|  | 1572 | HEADER_802_2_SIZE + HEADER_SNAP_SIZE; | 
|  | 1573 |  | 
|  | 1574 | while (alloc_tab < alloc_cnt) { | 
|  | 1575 | block_no = mac_control->rx_curr_put_info[ring_no]. | 
|  | 1576 | block_index; | 
|  | 1577 | block_no1 = mac_control->rx_curr_get_info[ring_no]. | 
|  | 1578 | block_index; | 
|  | 1579 | off = mac_control->rx_curr_put_info[ring_no].offset; | 
|  | 1580 | off1 = mac_control->rx_curr_get_info[ring_no].offset; | 
|  | 1581 | #ifndef CONFIG_2BUFF_MODE | 
|  | 1582 | offset = block_no * (MAX_RXDS_PER_BLOCK + 1) + off; | 
|  | 1583 | offset1 = block_no1 * (MAX_RXDS_PER_BLOCK + 1) + off1; | 
|  | 1584 | #else | 
|  | 1585 | offset = block_no * (MAX_RXDS_PER_BLOCK) + off; | 
|  | 1586 | offset1 = block_no1 * (MAX_RXDS_PER_BLOCK) + off1; | 
|  | 1587 | #endif | 
|  | 1588 |  | 
|  | 1589 | rxdp = nic->rx_blocks[ring_no][block_no]. | 
|  | 1590 | block_virt_addr + off; | 
|  | 1591 | if ((offset == offset1) && (rxdp->Host_Control)) { | 
|  | 1592 | DBG_PRINT(INTR_DBG, "%s: Get and Put", dev->name); | 
|  | 1593 | DBG_PRINT(INTR_DBG, " info equated\n"); | 
|  | 1594 | goto end; | 
|  | 1595 | } | 
|  | 1596 | #ifndef	CONFIG_2BUFF_MODE | 
|  | 1597 | if (rxdp->Control_1 == END_OF_BLOCK) { | 
|  | 1598 | mac_control->rx_curr_put_info[ring_no]. | 
|  | 1599 | block_index++; | 
|  | 1600 | mac_control->rx_curr_put_info[ring_no]. | 
|  | 1601 | block_index %= nic->block_count[ring_no]; | 
|  | 1602 | block_no = mac_control->rx_curr_put_info | 
|  | 1603 | [ring_no].block_index; | 
|  | 1604 | off++; | 
|  | 1605 | off %= (MAX_RXDS_PER_BLOCK + 1); | 
|  | 1606 | mac_control->rx_curr_put_info[ring_no].offset = | 
|  | 1607 | off; | 
|  | 1608 | rxdp = (RxD_t *) ((unsigned long) rxdp->Control_2); | 
|  | 1609 | DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n", | 
|  | 1610 | dev->name, rxdp); | 
|  | 1611 | } | 
|  | 1612 | #ifndef CONFIG_S2IO_NAPI | 
|  | 1613 | spin_lock_irqsave(&nic->put_lock, flags); | 
|  | 1614 | nic->put_pos[ring_no] = | 
|  | 1615 | (block_no * (MAX_RXDS_PER_BLOCK + 1)) + off; | 
|  | 1616 | spin_unlock_irqrestore(&nic->put_lock, flags); | 
|  | 1617 | #endif | 
|  | 1618 | #else | 
|  | 1619 | if (rxdp->Host_Control == END_OF_BLOCK) { | 
|  | 1620 | mac_control->rx_curr_put_info[ring_no]. | 
|  | 1621 | block_index++; | 
|  | 1622 | mac_control->rx_curr_put_info[ring_no]. | 
|  | 1623 | block_index %= nic->block_count[ring_no]; | 
|  | 1624 | block_no = mac_control->rx_curr_put_info | 
|  | 1625 | [ring_no].block_index; | 
|  | 1626 | off = 0; | 
|  | 1627 | DBG_PRINT(INTR_DBG, "%s: block%d at: 0x%llx\n", | 
|  | 1628 | dev->name, block_no, | 
|  | 1629 | (unsigned long long) rxdp->Control_1); | 
|  | 1630 | mac_control->rx_curr_put_info[ring_no].offset = | 
|  | 1631 | off; | 
|  | 1632 | rxdp = nic->rx_blocks[ring_no][block_no]. | 
|  | 1633 | block_virt_addr; | 
|  | 1634 | } | 
|  | 1635 | #ifndef CONFIG_S2IO_NAPI | 
|  | 1636 | spin_lock_irqsave(&nic->put_lock, flags); | 
|  | 1637 | nic->put_pos[ring_no] = (block_no * | 
|  | 1638 | (MAX_RXDS_PER_BLOCK + 1)) + off; | 
|  | 1639 | spin_unlock_irqrestore(&nic->put_lock, flags); | 
|  | 1640 | #endif | 
|  | 1641 | #endif | 
|  | 1642 |  | 
|  | 1643 | #ifndef	CONFIG_2BUFF_MODE | 
|  | 1644 | if (rxdp->Control_1 & RXD_OWN_XENA) | 
|  | 1645 | #else | 
|  | 1646 | if (rxdp->Control_2 & BIT(0)) | 
|  | 1647 | #endif | 
|  | 1648 | { | 
|  | 1649 | mac_control->rx_curr_put_info[ring_no]. | 
|  | 1650 | offset = off; | 
|  | 1651 | goto end; | 
|  | 1652 | } | 
|  | 1653 | #ifdef	CONFIG_2BUFF_MODE | 
|  | 1654 | /* | 
|  | 1655 | * RxDs Spanning cache lines will be replenished only | 
|  | 1656 | * if the succeeding RxD is also owned by Host. It | 
|  | 1657 | * will always be the ((8*i)+3) and ((8*i)+6) | 
|  | 1658 | * descriptors for the 48 byte descriptor. The offending | 
|  | 1659 | * decsriptor is of-course the 3rd descriptor. | 
|  | 1660 | */ | 
|  | 1661 | rxdpphys = nic->rx_blocks[ring_no][block_no]. | 
|  | 1662 | block_dma_addr + (off * sizeof(RxD_t)); | 
|  | 1663 | if (((u64) (rxdpphys)) % 128 > 80) { | 
|  | 1664 | rxdpnext = nic->rx_blocks[ring_no][block_no]. | 
|  | 1665 | block_virt_addr + (off + 1); | 
|  | 1666 | if (rxdpnext->Host_Control == END_OF_BLOCK) { | 
|  | 1667 | nextblk = (block_no + 1) % | 
|  | 1668 | (nic->block_count[ring_no]); | 
|  | 1669 | rxdpnext = nic->rx_blocks[ring_no] | 
|  | 1670 | [nextblk].block_virt_addr; | 
|  | 1671 | } | 
|  | 1672 | if (rxdpnext->Control_2 & BIT(0)) | 
|  | 1673 | goto end; | 
|  | 1674 | } | 
|  | 1675 | #endif | 
|  | 1676 |  | 
|  | 1677 | #ifndef	CONFIG_2BUFF_MODE | 
|  | 1678 | skb = dev_alloc_skb(size + NET_IP_ALIGN); | 
|  | 1679 | #else | 
|  | 1680 | skb = dev_alloc_skb(dev->mtu + ALIGN_SIZE + BUF0_LEN + 4); | 
|  | 1681 | #endif | 
|  | 1682 | if (!skb) { | 
|  | 1683 | DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name); | 
|  | 1684 | DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n"); | 
|  | 1685 | return -ENOMEM; | 
|  | 1686 | } | 
|  | 1687 | #ifndef	CONFIG_2BUFF_MODE | 
|  | 1688 | skb_reserve(skb, NET_IP_ALIGN); | 
|  | 1689 | memset(rxdp, 0, sizeof(RxD_t)); | 
|  | 1690 | rxdp->Buffer0_ptr = pci_map_single | 
|  | 1691 | (nic->pdev, skb->data, size, PCI_DMA_FROMDEVICE); | 
|  | 1692 | rxdp->Control_2 &= (~MASK_BUFFER0_SIZE); | 
|  | 1693 | rxdp->Control_2 |= SET_BUFFER0_SIZE(size); | 
|  | 1694 | rxdp->Host_Control = (unsigned long) (skb); | 
|  | 1695 | rxdp->Control_1 |= RXD_OWN_XENA; | 
|  | 1696 | off++; | 
|  | 1697 | off %= (MAX_RXDS_PER_BLOCK + 1); | 
|  | 1698 | mac_control->rx_curr_put_info[ring_no].offset = off; | 
|  | 1699 | #else | 
|  | 1700 | ba = &nic->ba[ring_no][block_no][off]; | 
|  | 1701 | skb_reserve(skb, BUF0_LEN); | 
| David S. Miller | 689be43 | 2005-06-28 15:25:31 -0700 | [diff] [blame] | 1702 | tmp = ((unsigned long) skb->data & ALIGN_SIZE); | 
|  | 1703 | if (tmp) | 
|  | 1704 | skb_reserve(skb, (ALIGN_SIZE + 1) - tmp); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1705 |  | 
|  | 1706 | memset(rxdp, 0, sizeof(RxD_t)); | 
|  | 1707 | rxdp->Buffer2_ptr = pci_map_single | 
|  | 1708 | (nic->pdev, skb->data, dev->mtu + BUF0_LEN + 4, | 
|  | 1709 | PCI_DMA_FROMDEVICE); | 
|  | 1710 | rxdp->Buffer0_ptr = | 
|  | 1711 | pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN, | 
|  | 1712 | PCI_DMA_FROMDEVICE); | 
|  | 1713 | rxdp->Buffer1_ptr = | 
|  | 1714 | pci_map_single(nic->pdev, ba->ba_1, BUF1_LEN, | 
|  | 1715 | PCI_DMA_FROMDEVICE); | 
|  | 1716 |  | 
|  | 1717 | rxdp->Control_2 = SET_BUFFER2_SIZE(dev->mtu + 4); | 
|  | 1718 | rxdp->Control_2 |= SET_BUFFER0_SIZE(BUF0_LEN); | 
|  | 1719 | rxdp->Control_2 |= SET_BUFFER1_SIZE(1);	/* dummy. */ | 
|  | 1720 | rxdp->Control_2 |= BIT(0);	/* Set Buffer_Empty bit. */ | 
|  | 1721 | rxdp->Host_Control = (u64) ((unsigned long) (skb)); | 
|  | 1722 | rxdp->Control_1 |= RXD_OWN_XENA; | 
|  | 1723 | off++; | 
|  | 1724 | mac_control->rx_curr_put_info[ring_no].offset = off; | 
|  | 1725 | #endif | 
|  | 1726 | atomic_inc(&nic->rx_bufs_left[ring_no]); | 
|  | 1727 | alloc_tab++; | 
|  | 1728 | } | 
|  | 1729 |  | 
|  | 1730 | end: | 
|  | 1731 | return SUCCESS; | 
|  | 1732 | } | 
|  | 1733 |  | 
|  | 1734 | /** | 
|  | 1735 | *  free_rx_buffers - Frees all Rx buffers | 
|  | 1736 | *  @sp: device private variable. | 
|  | 1737 | *  Description: | 
|  | 1738 | *  This function will free all Rx buffers allocated by host. | 
|  | 1739 | *  Return Value: | 
|  | 1740 | *  NONE. | 
|  | 1741 | */ | 
|  | 1742 |  | 
|  | 1743 | static void free_rx_buffers(struct s2io_nic *sp) | 
|  | 1744 | { | 
|  | 1745 | struct net_device *dev = sp->dev; | 
|  | 1746 | int i, j, blk = 0, off, buf_cnt = 0; | 
|  | 1747 | RxD_t *rxdp; | 
|  | 1748 | struct sk_buff *skb; | 
|  | 1749 | mac_info_t *mac_control; | 
|  | 1750 | struct config_param *config; | 
|  | 1751 | #ifdef CONFIG_2BUFF_MODE | 
|  | 1752 | buffAdd_t *ba; | 
|  | 1753 | #endif | 
|  | 1754 |  | 
|  | 1755 | mac_control = &sp->mac_control; | 
|  | 1756 | config = &sp->config; | 
|  | 1757 |  | 
|  | 1758 | for (i = 0; i < config->rx_ring_num; i++) { | 
|  | 1759 | for (j = 0, blk = 0; j < config->rx_cfg[i].num_rxd; j++) { | 
|  | 1760 | off = j % (MAX_RXDS_PER_BLOCK + 1); | 
|  | 1761 | rxdp = sp->rx_blocks[i][blk].block_virt_addr + off; | 
|  | 1762 |  | 
|  | 1763 | #ifndef CONFIG_2BUFF_MODE | 
|  | 1764 | if (rxdp->Control_1 == END_OF_BLOCK) { | 
|  | 1765 | rxdp = | 
|  | 1766 | (RxD_t *) ((unsigned long) rxdp-> | 
|  | 1767 | Control_2); | 
|  | 1768 | j++; | 
|  | 1769 | blk++; | 
|  | 1770 | } | 
|  | 1771 | #else | 
|  | 1772 | if (rxdp->Host_Control == END_OF_BLOCK) { | 
|  | 1773 | blk++; | 
|  | 1774 | continue; | 
|  | 1775 | } | 
|  | 1776 | #endif | 
|  | 1777 |  | 
|  | 1778 | if (!(rxdp->Control_1 & RXD_OWN_XENA)) { | 
|  | 1779 | memset(rxdp, 0, sizeof(RxD_t)); | 
|  | 1780 | continue; | 
|  | 1781 | } | 
|  | 1782 |  | 
|  | 1783 | skb = | 
|  | 1784 | (struct sk_buff *) ((unsigned long) rxdp-> | 
|  | 1785 | Host_Control); | 
|  | 1786 | if (skb) { | 
|  | 1787 | #ifndef CONFIG_2BUFF_MODE | 
|  | 1788 | pci_unmap_single(sp->pdev, (dma_addr_t) | 
|  | 1789 | rxdp->Buffer0_ptr, | 
|  | 1790 | dev->mtu + | 
|  | 1791 | HEADER_ETHERNET_II_802_3_SIZE | 
|  | 1792 | + HEADER_802_2_SIZE + | 
|  | 1793 | HEADER_SNAP_SIZE, | 
|  | 1794 | PCI_DMA_FROMDEVICE); | 
|  | 1795 | #else | 
|  | 1796 | ba = &sp->ba[i][blk][off]; | 
|  | 1797 | pci_unmap_single(sp->pdev, (dma_addr_t) | 
|  | 1798 | rxdp->Buffer0_ptr, | 
|  | 1799 | BUF0_LEN, | 
|  | 1800 | PCI_DMA_FROMDEVICE); | 
|  | 1801 | pci_unmap_single(sp->pdev, (dma_addr_t) | 
|  | 1802 | rxdp->Buffer1_ptr, | 
|  | 1803 | BUF1_LEN, | 
|  | 1804 | PCI_DMA_FROMDEVICE); | 
|  | 1805 | pci_unmap_single(sp->pdev, (dma_addr_t) | 
|  | 1806 | rxdp->Buffer2_ptr, | 
|  | 1807 | dev->mtu + BUF0_LEN + 4, | 
|  | 1808 | PCI_DMA_FROMDEVICE); | 
|  | 1809 | #endif | 
|  | 1810 | dev_kfree_skb(skb); | 
|  | 1811 | atomic_dec(&sp->rx_bufs_left[i]); | 
|  | 1812 | buf_cnt++; | 
|  | 1813 | } | 
|  | 1814 | memset(rxdp, 0, sizeof(RxD_t)); | 
|  | 1815 | } | 
|  | 1816 | mac_control->rx_curr_put_info[i].block_index = 0; | 
|  | 1817 | mac_control->rx_curr_get_info[i].block_index = 0; | 
|  | 1818 | mac_control->rx_curr_put_info[i].offset = 0; | 
|  | 1819 | mac_control->rx_curr_get_info[i].offset = 0; | 
|  | 1820 | atomic_set(&sp->rx_bufs_left[i], 0); | 
|  | 1821 | DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n", | 
|  | 1822 | dev->name, buf_cnt, i); | 
|  | 1823 | } | 
|  | 1824 | } | 
|  | 1825 |  | 
|  | 1826 | /** | 
|  | 1827 | * s2io_poll - Rx interrupt handler for NAPI support | 
|  | 1828 | * @dev : pointer to the device structure. | 
|  | 1829 | * @budget : The number of packets that were budgeted to be processed | 
|  | 1830 | * during  one pass through the 'Poll" function. | 
|  | 1831 | * Description: | 
|  | 1832 | * Comes into picture only if NAPI support has been incorporated. It does | 
|  | 1833 | * the same thing that rx_intr_handler does, but not in a interrupt context | 
|  | 1834 | * also It will process only a given number of packets. | 
|  | 1835 | * Return value: | 
|  | 1836 | * 0 on success and 1 if there are No Rx packets to be processed. | 
|  | 1837 | */ | 
|  | 1838 |  | 
|  | 1839 | #ifdef CONFIG_S2IO_NAPI | 
|  | 1840 | static int s2io_poll(struct net_device *dev, int *budget) | 
|  | 1841 | { | 
|  | 1842 | nic_t *nic = dev->priv; | 
|  | 1843 | XENA_dev_config_t __iomem *bar0 = nic->bar0; | 
|  | 1844 | int pkts_to_process = *budget, pkt_cnt = 0; | 
|  | 1845 | register u64 val64 = 0; | 
|  | 1846 | rx_curr_get_info_t get_info, put_info; | 
|  | 1847 | int i, get_block, put_block, get_offset, put_offset, ring_bufs; | 
|  | 1848 | #ifndef CONFIG_2BUFF_MODE | 
|  | 1849 | u16 val16, cksum; | 
|  | 1850 | #endif | 
|  | 1851 | struct sk_buff *skb; | 
|  | 1852 | RxD_t *rxdp; | 
|  | 1853 | mac_info_t *mac_control; | 
|  | 1854 | struct config_param *config; | 
|  | 1855 | #ifdef CONFIG_2BUFF_MODE | 
|  | 1856 | buffAdd_t *ba; | 
|  | 1857 | #endif | 
|  | 1858 |  | 
|  | 1859 | mac_control = &nic->mac_control; | 
|  | 1860 | config = &nic->config; | 
|  | 1861 |  | 
|  | 1862 | if (pkts_to_process > dev->quota) | 
|  | 1863 | pkts_to_process = dev->quota; | 
|  | 1864 |  | 
|  | 1865 | val64 = readq(&bar0->rx_traffic_int); | 
|  | 1866 | writeq(val64, &bar0->rx_traffic_int); | 
|  | 1867 |  | 
|  | 1868 | for (i = 0; i < config->rx_ring_num; i++) { | 
|  | 1869 | get_info = mac_control->rx_curr_get_info[i]; | 
|  | 1870 | get_block = get_info.block_index; | 
|  | 1871 | put_info = mac_control->rx_curr_put_info[i]; | 
|  | 1872 | put_block = put_info.block_index; | 
|  | 1873 | ring_bufs = config->rx_cfg[i].num_rxd; | 
|  | 1874 | rxdp = nic->rx_blocks[i][get_block].block_virt_addr + | 
|  | 1875 | get_info.offset; | 
|  | 1876 | #ifndef	CONFIG_2BUFF_MODE | 
|  | 1877 | get_offset = (get_block * (MAX_RXDS_PER_BLOCK + 1)) + | 
|  | 1878 | get_info.offset; | 
|  | 1879 | put_offset = (put_block * (MAX_RXDS_PER_BLOCK + 1)) + | 
|  | 1880 | put_info.offset; | 
|  | 1881 | while ((!(rxdp->Control_1 & RXD_OWN_XENA)) && | 
|  | 1882 | (((get_offset + 1) % ring_bufs) != put_offset)) { | 
|  | 1883 | if (--pkts_to_process < 0) { | 
|  | 1884 | goto no_rx; | 
|  | 1885 | } | 
|  | 1886 | if (rxdp->Control_1 == END_OF_BLOCK) { | 
|  | 1887 | rxdp = | 
|  | 1888 | (RxD_t *) ((unsigned long) rxdp-> | 
|  | 1889 | Control_2); | 
|  | 1890 | get_info.offset++; | 
|  | 1891 | get_info.offset %= | 
|  | 1892 | (MAX_RXDS_PER_BLOCK + 1); | 
|  | 1893 | get_block++; | 
|  | 1894 | get_block %= nic->block_count[i]; | 
|  | 1895 | mac_control->rx_curr_get_info[i]. | 
|  | 1896 | offset = get_info.offset; | 
|  | 1897 | mac_control->rx_curr_get_info[i]. | 
|  | 1898 | block_index = get_block; | 
|  | 1899 | continue; | 
|  | 1900 | } | 
|  | 1901 | get_offset = | 
|  | 1902 | (get_block * (MAX_RXDS_PER_BLOCK + 1)) + | 
|  | 1903 | get_info.offset; | 
|  | 1904 | skb = | 
|  | 1905 | (struct sk_buff *) ((unsigned long) rxdp-> | 
|  | 1906 | Host_Control); | 
|  | 1907 | if (skb == NULL) { | 
|  | 1908 | DBG_PRINT(ERR_DBG, "%s: The skb is ", | 
|  | 1909 | dev->name); | 
|  | 1910 | DBG_PRINT(ERR_DBG, "Null in Rx Intr\n"); | 
|  | 1911 | goto no_rx; | 
|  | 1912 | } | 
|  | 1913 | val64 = RXD_GET_BUFFER0_SIZE(rxdp->Control_2); | 
|  | 1914 | val16 = (u16) (val64 >> 48); | 
|  | 1915 | cksum = RXD_GET_L4_CKSUM(rxdp->Control_1); | 
|  | 1916 | pci_unmap_single(nic->pdev, (dma_addr_t) | 
|  | 1917 | rxdp->Buffer0_ptr, | 
|  | 1918 | dev->mtu + | 
|  | 1919 | HEADER_ETHERNET_II_802_3_SIZE + | 
|  | 1920 | HEADER_802_2_SIZE + | 
|  | 1921 | HEADER_SNAP_SIZE, | 
|  | 1922 | PCI_DMA_FROMDEVICE); | 
|  | 1923 | rx_osm_handler(nic, val16, rxdp, i); | 
|  | 1924 | pkt_cnt++; | 
|  | 1925 | get_info.offset++; | 
|  | 1926 | get_info.offset %= (MAX_RXDS_PER_BLOCK + 1); | 
|  | 1927 | rxdp = | 
|  | 1928 | nic->rx_blocks[i][get_block].block_virt_addr + | 
|  | 1929 | get_info.offset; | 
|  | 1930 | mac_control->rx_curr_get_info[i].offset = | 
|  | 1931 | get_info.offset; | 
|  | 1932 | } | 
|  | 1933 | #else | 
|  | 1934 | get_offset = (get_block * (MAX_RXDS_PER_BLOCK + 1)) + | 
|  | 1935 | get_info.offset; | 
|  | 1936 | put_offset = (put_block * (MAX_RXDS_PER_BLOCK + 1)) + | 
|  | 1937 | put_info.offset; | 
|  | 1938 | while (((!(rxdp->Control_1 & RXD_OWN_XENA)) && | 
|  | 1939 | !(rxdp->Control_2 & BIT(0))) && | 
|  | 1940 | (((get_offset + 1) % ring_bufs) != put_offset)) { | 
|  | 1941 | if (--pkts_to_process < 0) { | 
|  | 1942 | goto no_rx; | 
|  | 1943 | } | 
|  | 1944 | skb = (struct sk_buff *) ((unsigned long) | 
|  | 1945 | rxdp->Host_Control); | 
|  | 1946 | if (skb == NULL) { | 
|  | 1947 | DBG_PRINT(ERR_DBG, "%s: The skb is ", | 
|  | 1948 | dev->name); | 
|  | 1949 | DBG_PRINT(ERR_DBG, "Null in Rx Intr\n"); | 
|  | 1950 | goto no_rx; | 
|  | 1951 | } | 
|  | 1952 |  | 
|  | 1953 | pci_unmap_single(nic->pdev, (dma_addr_t) | 
|  | 1954 | rxdp->Buffer0_ptr, | 
|  | 1955 | BUF0_LEN, PCI_DMA_FROMDEVICE); | 
|  | 1956 | pci_unmap_single(nic->pdev, (dma_addr_t) | 
|  | 1957 | rxdp->Buffer1_ptr, | 
|  | 1958 | BUF1_LEN, PCI_DMA_FROMDEVICE); | 
|  | 1959 | pci_unmap_single(nic->pdev, (dma_addr_t) | 
|  | 1960 | rxdp->Buffer2_ptr, | 
|  | 1961 | dev->mtu + BUF0_LEN + 4, | 
|  | 1962 | PCI_DMA_FROMDEVICE); | 
|  | 1963 | ba = &nic->ba[i][get_block][get_info.offset]; | 
|  | 1964 |  | 
|  | 1965 | rx_osm_handler(nic, rxdp, i, ba); | 
|  | 1966 |  | 
|  | 1967 | get_info.offset++; | 
|  | 1968 | mac_control->rx_curr_get_info[i].offset = | 
|  | 1969 | get_info.offset; | 
|  | 1970 | rxdp = | 
|  | 1971 | nic->rx_blocks[i][get_block].block_virt_addr + | 
|  | 1972 | get_info.offset; | 
|  | 1973 |  | 
|  | 1974 | if (get_info.offset && | 
|  | 1975 | (!(get_info.offset % MAX_RXDS_PER_BLOCK))) { | 
|  | 1976 | get_info.offset = 0; | 
|  | 1977 | mac_control->rx_curr_get_info[i]. | 
|  | 1978 | offset = get_info.offset; | 
|  | 1979 | get_block++; | 
|  | 1980 | get_block %= nic->block_count[i]; | 
|  | 1981 | mac_control->rx_curr_get_info[i]. | 
|  | 1982 | block_index = get_block; | 
|  | 1983 | rxdp = | 
|  | 1984 | nic->rx_blocks[i][get_block]. | 
|  | 1985 | block_virt_addr; | 
|  | 1986 | } | 
|  | 1987 | get_offset = | 
|  | 1988 | (get_block * (MAX_RXDS_PER_BLOCK + 1)) + | 
|  | 1989 | get_info.offset; | 
|  | 1990 | pkt_cnt++; | 
|  | 1991 | } | 
|  | 1992 | #endif | 
|  | 1993 | } | 
|  | 1994 | if (!pkt_cnt) | 
|  | 1995 | pkt_cnt = 1; | 
|  | 1996 |  | 
|  | 1997 | dev->quota -= pkt_cnt; | 
|  | 1998 | *budget -= pkt_cnt; | 
|  | 1999 | netif_rx_complete(dev); | 
|  | 2000 |  | 
|  | 2001 | for (i = 0; i < config->rx_ring_num; i++) { | 
|  | 2002 | if (fill_rx_buffers(nic, i) == -ENOMEM) { | 
|  | 2003 | DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name); | 
|  | 2004 | DBG_PRINT(ERR_DBG, " in Rx Poll!!\n"); | 
|  | 2005 | break; | 
|  | 2006 | } | 
|  | 2007 | } | 
|  | 2008 | /* Re enable the Rx interrupts. */ | 
|  | 2009 | en_dis_able_nic_intrs(nic, RX_TRAFFIC_INTR, ENABLE_INTRS); | 
|  | 2010 | return 0; | 
|  | 2011 |  | 
|  | 2012 | no_rx: | 
|  | 2013 | dev->quota -= pkt_cnt; | 
|  | 2014 | *budget -= pkt_cnt; | 
|  | 2015 |  | 
|  | 2016 | for (i = 0; i < config->rx_ring_num; i++) { | 
|  | 2017 | if (fill_rx_buffers(nic, i) == -ENOMEM) { | 
|  | 2018 | DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name); | 
|  | 2019 | DBG_PRINT(ERR_DBG, " in Rx Poll!!\n"); | 
|  | 2020 | break; | 
|  | 2021 | } | 
|  | 2022 | } | 
|  | 2023 | return 1; | 
|  | 2024 | } | 
|  | 2025 | #else | 
|  | 2026 | /** | 
|  | 2027 | *  rx_intr_handler - Rx interrupt handler | 
|  | 2028 | *  @nic: device private variable. | 
|  | 2029 | *  Description: | 
|  | 2030 | *  If the interrupt is because of a received frame or if the | 
|  | 2031 | *  receive ring contains fresh as yet un-processed frames,this function is | 
|  | 2032 | *  called. It picks out the RxD at which place the last Rx processing had | 
|  | 2033 | *  stopped and sends the skb to the OSM's Rx handler and then increments | 
|  | 2034 | *  the offset. | 
|  | 2035 | *  Return Value: | 
|  | 2036 | *  NONE. | 
|  | 2037 | */ | 
|  | 2038 |  | 
|  | 2039 | static void rx_intr_handler(struct s2io_nic *nic) | 
|  | 2040 | { | 
|  | 2041 | struct net_device *dev = (struct net_device *) nic->dev; | 
|  | 2042 | XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0; | 
|  | 2043 | rx_curr_get_info_t get_info, put_info; | 
|  | 2044 | RxD_t *rxdp; | 
|  | 2045 | struct sk_buff *skb; | 
|  | 2046 | #ifndef CONFIG_2BUFF_MODE | 
|  | 2047 | u16 val16, cksum; | 
|  | 2048 | #endif | 
|  | 2049 | register u64 val64 = 0; | 
|  | 2050 | int get_block, get_offset, put_block, put_offset, ring_bufs; | 
|  | 2051 | int i, pkt_cnt = 0; | 
|  | 2052 | mac_info_t *mac_control; | 
|  | 2053 | struct config_param *config; | 
|  | 2054 | #ifdef CONFIG_2BUFF_MODE | 
|  | 2055 | buffAdd_t *ba; | 
|  | 2056 | #endif | 
|  | 2057 |  | 
|  | 2058 | mac_control = &nic->mac_control; | 
|  | 2059 | config = &nic->config; | 
|  | 2060 |  | 
|  | 2061 | /* | 
|  | 2062 | * rx_traffic_int reg is an R1 register, hence we read and write back | 
|  | 2063 | * the samevalue in the register to clear it. | 
|  | 2064 | */ | 
|  | 2065 | val64 = readq(&bar0->rx_traffic_int); | 
|  | 2066 | writeq(val64, &bar0->rx_traffic_int); | 
|  | 2067 |  | 
|  | 2068 | for (i = 0; i < config->rx_ring_num; i++) { | 
|  | 2069 | get_info = mac_control->rx_curr_get_info[i]; | 
|  | 2070 | get_block = get_info.block_index; | 
|  | 2071 | put_info = mac_control->rx_curr_put_info[i]; | 
|  | 2072 | put_block = put_info.block_index; | 
|  | 2073 | ring_bufs = config->rx_cfg[i].num_rxd; | 
|  | 2074 | rxdp = nic->rx_blocks[i][get_block].block_virt_addr + | 
|  | 2075 | get_info.offset; | 
|  | 2076 | #ifndef	CONFIG_2BUFF_MODE | 
|  | 2077 | get_offset = (get_block * (MAX_RXDS_PER_BLOCK + 1)) + | 
|  | 2078 | get_info.offset; | 
|  | 2079 | spin_lock(&nic->put_lock); | 
|  | 2080 | put_offset = nic->put_pos[i]; | 
|  | 2081 | spin_unlock(&nic->put_lock); | 
|  | 2082 | while ((!(rxdp->Control_1 & RXD_OWN_XENA)) && | 
|  | 2083 | (((get_offset + 1) % ring_bufs) != put_offset)) { | 
|  | 2084 | if (rxdp->Control_1 == END_OF_BLOCK) { | 
|  | 2085 | rxdp = (RxD_t *) ((unsigned long) | 
|  | 2086 | rxdp->Control_2); | 
|  | 2087 | get_info.offset++; | 
|  | 2088 | get_info.offset %= | 
|  | 2089 | (MAX_RXDS_PER_BLOCK + 1); | 
|  | 2090 | get_block++; | 
|  | 2091 | get_block %= nic->block_count[i]; | 
|  | 2092 | mac_control->rx_curr_get_info[i]. | 
|  | 2093 | offset = get_info.offset; | 
|  | 2094 | mac_control->rx_curr_get_info[i]. | 
|  | 2095 | block_index = get_block; | 
|  | 2096 | continue; | 
|  | 2097 | } | 
|  | 2098 | get_offset = | 
|  | 2099 | (get_block * (MAX_RXDS_PER_BLOCK + 1)) + | 
|  | 2100 | get_info.offset; | 
|  | 2101 | skb = (struct sk_buff *) ((unsigned long) | 
|  | 2102 | rxdp->Host_Control); | 
|  | 2103 | if (skb == NULL) { | 
|  | 2104 | DBG_PRINT(ERR_DBG, "%s: The skb is ", | 
|  | 2105 | dev->name); | 
|  | 2106 | DBG_PRINT(ERR_DBG, "Null in Rx Intr\n"); | 
|  | 2107 | return; | 
|  | 2108 | } | 
|  | 2109 | val64 = RXD_GET_BUFFER0_SIZE(rxdp->Control_2); | 
|  | 2110 | val16 = (u16) (val64 >> 48); | 
|  | 2111 | cksum = RXD_GET_L4_CKSUM(rxdp->Control_1); | 
|  | 2112 | pci_unmap_single(nic->pdev, (dma_addr_t) | 
|  | 2113 | rxdp->Buffer0_ptr, | 
|  | 2114 | dev->mtu + | 
|  | 2115 | HEADER_ETHERNET_II_802_3_SIZE + | 
|  | 2116 | HEADER_802_2_SIZE + | 
|  | 2117 | HEADER_SNAP_SIZE, | 
|  | 2118 | PCI_DMA_FROMDEVICE); | 
|  | 2119 | rx_osm_handler(nic, val16, rxdp, i); | 
|  | 2120 | get_info.offset++; | 
|  | 2121 | get_info.offset %= (MAX_RXDS_PER_BLOCK + 1); | 
|  | 2122 | rxdp = | 
|  | 2123 | nic->rx_blocks[i][get_block].block_virt_addr + | 
|  | 2124 | get_info.offset; | 
|  | 2125 | mac_control->rx_curr_get_info[i].offset = | 
|  | 2126 | get_info.offset; | 
|  | 2127 | pkt_cnt++; | 
|  | 2128 | if ((indicate_max_pkts) | 
|  | 2129 | && (pkt_cnt > indicate_max_pkts)) | 
|  | 2130 | break; | 
|  | 2131 | } | 
|  | 2132 | #else | 
|  | 2133 | get_offset = (get_block * (MAX_RXDS_PER_BLOCK + 1)) + | 
|  | 2134 | get_info.offset; | 
|  | 2135 | spin_lock(&nic->put_lock); | 
|  | 2136 | put_offset = nic->put_pos[i]; | 
|  | 2137 | spin_unlock(&nic->put_lock); | 
|  | 2138 | while (((!(rxdp->Control_1 & RXD_OWN_XENA)) && | 
|  | 2139 | !(rxdp->Control_2 & BIT(0))) && | 
|  | 2140 | (((get_offset + 1) % ring_bufs) != put_offset)) { | 
|  | 2141 | skb = (struct sk_buff *) ((unsigned long) | 
|  | 2142 | rxdp->Host_Control); | 
|  | 2143 | if (skb == NULL) { | 
|  | 2144 | DBG_PRINT(ERR_DBG, "%s: The skb is ", | 
|  | 2145 | dev->name); | 
|  | 2146 | DBG_PRINT(ERR_DBG, "Null in Rx Intr\n"); | 
|  | 2147 | return; | 
|  | 2148 | } | 
|  | 2149 |  | 
|  | 2150 | pci_unmap_single(nic->pdev, (dma_addr_t) | 
|  | 2151 | rxdp->Buffer0_ptr, | 
|  | 2152 | BUF0_LEN, PCI_DMA_FROMDEVICE); | 
|  | 2153 | pci_unmap_single(nic->pdev, (dma_addr_t) | 
|  | 2154 | rxdp->Buffer1_ptr, | 
|  | 2155 | BUF1_LEN, PCI_DMA_FROMDEVICE); | 
|  | 2156 | pci_unmap_single(nic->pdev, (dma_addr_t) | 
|  | 2157 | rxdp->Buffer2_ptr, | 
|  | 2158 | dev->mtu + BUF0_LEN + 4, | 
|  | 2159 | PCI_DMA_FROMDEVICE); | 
|  | 2160 | ba = &nic->ba[i][get_block][get_info.offset]; | 
|  | 2161 |  | 
|  | 2162 | rx_osm_handler(nic, rxdp, i, ba); | 
|  | 2163 |  | 
|  | 2164 | get_info.offset++; | 
|  | 2165 | mac_control->rx_curr_get_info[i].offset = | 
|  | 2166 | get_info.offset; | 
|  | 2167 | rxdp = | 
|  | 2168 | nic->rx_blocks[i][get_block].block_virt_addr + | 
|  | 2169 | get_info.offset; | 
|  | 2170 |  | 
|  | 2171 | if (get_info.offset && | 
|  | 2172 | (!(get_info.offset % MAX_RXDS_PER_BLOCK))) { | 
|  | 2173 | get_info.offset = 0; | 
|  | 2174 | mac_control->rx_curr_get_info[i]. | 
|  | 2175 | offset = get_info.offset; | 
|  | 2176 | get_block++; | 
|  | 2177 | get_block %= nic->block_count[i]; | 
|  | 2178 | mac_control->rx_curr_get_info[i]. | 
|  | 2179 | block_index = get_block; | 
|  | 2180 | rxdp = | 
|  | 2181 | nic->rx_blocks[i][get_block]. | 
|  | 2182 | block_virt_addr; | 
|  | 2183 | } | 
|  | 2184 | get_offset = | 
|  | 2185 | (get_block * (MAX_RXDS_PER_BLOCK + 1)) + | 
|  | 2186 | get_info.offset; | 
|  | 2187 | pkt_cnt++; | 
|  | 2188 | if ((indicate_max_pkts) | 
|  | 2189 | && (pkt_cnt > indicate_max_pkts)) | 
|  | 2190 | break; | 
|  | 2191 | } | 
|  | 2192 | #endif | 
|  | 2193 | if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts)) | 
|  | 2194 | break; | 
|  | 2195 | } | 
|  | 2196 | } | 
|  | 2197 | #endif | 
|  | 2198 | /** | 
|  | 2199 | *  tx_intr_handler - Transmit interrupt handler | 
|  | 2200 | *  @nic : device private variable | 
|  | 2201 | *  Description: | 
|  | 2202 | *  If an interrupt was raised to indicate DMA complete of the | 
|  | 2203 | *  Tx packet, this function is called. It identifies the last TxD | 
|  | 2204 | *  whose buffer was freed and frees all skbs whose data have already | 
|  | 2205 | *  DMA'ed into the NICs internal memory. | 
|  | 2206 | *  Return Value: | 
|  | 2207 | *  NONE | 
|  | 2208 | */ | 
|  | 2209 |  | 
|  | 2210 | static void tx_intr_handler(struct s2io_nic *nic) | 
|  | 2211 | { | 
|  | 2212 | XENA_dev_config_t __iomem *bar0 = nic->bar0; | 
|  | 2213 | struct net_device *dev = (struct net_device *) nic->dev; | 
|  | 2214 | tx_curr_get_info_t get_info, put_info; | 
|  | 2215 | struct sk_buff *skb; | 
|  | 2216 | TxD_t *txdlp; | 
|  | 2217 | register u64 val64 = 0; | 
|  | 2218 | int i; | 
|  | 2219 | u16 j, frg_cnt; | 
|  | 2220 | mac_info_t *mac_control; | 
|  | 2221 | struct config_param *config; | 
|  | 2222 |  | 
|  | 2223 | mac_control = &nic->mac_control; | 
|  | 2224 | config = &nic->config; | 
|  | 2225 |  | 
|  | 2226 | /* | 
|  | 2227 | * tx_traffic_int reg is an R1 register, hence we read and write | 
|  | 2228 | * back the samevalue in the register to clear it. | 
|  | 2229 | */ | 
|  | 2230 | val64 = readq(&bar0->tx_traffic_int); | 
|  | 2231 | writeq(val64, &bar0->tx_traffic_int); | 
|  | 2232 |  | 
|  | 2233 | for (i = 0; i < config->tx_fifo_num; i++) { | 
|  | 2234 | get_info = mac_control->tx_curr_get_info[i]; | 
|  | 2235 | put_info = mac_control->tx_curr_put_info[i]; | 
|  | 2236 | txdlp = (TxD_t *) nic->list_info[i][get_info.offset]. | 
|  | 2237 | list_virt_addr; | 
|  | 2238 | while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) && | 
|  | 2239 | (get_info.offset != put_info.offset) && | 
|  | 2240 | (txdlp->Host_Control)) { | 
|  | 2241 | /* Check for TxD errors */ | 
|  | 2242 | if (txdlp->Control_1 & TXD_T_CODE) { | 
|  | 2243 | unsigned long long err; | 
|  | 2244 | err = txdlp->Control_1 & TXD_T_CODE; | 
|  | 2245 | DBG_PRINT(ERR_DBG, "***TxD error %llx\n", | 
|  | 2246 | err); | 
|  | 2247 | } | 
|  | 2248 |  | 
|  | 2249 | skb = (struct sk_buff *) ((unsigned long) | 
|  | 2250 | txdlp->Host_Control); | 
|  | 2251 | if (skb == NULL) { | 
|  | 2252 | DBG_PRINT(ERR_DBG, "%s: Null skb ", | 
|  | 2253 | dev->name); | 
|  | 2254 | DBG_PRINT(ERR_DBG, "in Tx Free Intr\n"); | 
|  | 2255 | return; | 
|  | 2256 | } | 
|  | 2257 | nic->tx_pkt_count++; | 
|  | 2258 |  | 
|  | 2259 | frg_cnt = skb_shinfo(skb)->nr_frags; | 
|  | 2260 |  | 
|  | 2261 | /*  For unfragmented skb */ | 
|  | 2262 | pci_unmap_single(nic->pdev, (dma_addr_t) | 
|  | 2263 | txdlp->Buffer_Pointer, | 
|  | 2264 | skb->len - skb->data_len, | 
|  | 2265 | PCI_DMA_TODEVICE); | 
|  | 2266 | if (frg_cnt) { | 
|  | 2267 | TxD_t *temp = txdlp; | 
|  | 2268 | txdlp++; | 
|  | 2269 | for (j = 0; j < frg_cnt; j++, txdlp++) { | 
|  | 2270 | skb_frag_t *frag = | 
|  | 2271 | &skb_shinfo(skb)->frags[j]; | 
|  | 2272 | pci_unmap_page(nic->pdev, | 
|  | 2273 | (dma_addr_t) | 
|  | 2274 | txdlp-> | 
|  | 2275 | Buffer_Pointer, | 
|  | 2276 | frag->size, | 
|  | 2277 | PCI_DMA_TODEVICE); | 
|  | 2278 | } | 
|  | 2279 | txdlp = temp; | 
|  | 2280 | } | 
|  | 2281 | memset(txdlp, 0, | 
|  | 2282 | (sizeof(TxD_t) * config->max_txds)); | 
|  | 2283 |  | 
|  | 2284 | /* Updating the statistics block */ | 
|  | 2285 | nic->stats.tx_packets++; | 
|  | 2286 | nic->stats.tx_bytes += skb->len; | 
|  | 2287 | dev_kfree_skb_irq(skb); | 
|  | 2288 |  | 
|  | 2289 | get_info.offset++; | 
|  | 2290 | get_info.offset %= get_info.fifo_len + 1; | 
|  | 2291 | txdlp = (TxD_t *) nic->list_info[i] | 
|  | 2292 | [get_info.offset].list_virt_addr; | 
|  | 2293 | mac_control->tx_curr_get_info[i].offset = | 
|  | 2294 | get_info.offset; | 
|  | 2295 | } | 
|  | 2296 | } | 
|  | 2297 |  | 
|  | 2298 | spin_lock(&nic->tx_lock); | 
|  | 2299 | if (netif_queue_stopped(dev)) | 
|  | 2300 | netif_wake_queue(dev); | 
|  | 2301 | spin_unlock(&nic->tx_lock); | 
|  | 2302 | } | 
|  | 2303 |  | 
|  | 2304 | /** | 
|  | 2305 | *  alarm_intr_handler - Alarm Interrrupt handler | 
|  | 2306 | *  @nic: device private variable | 
|  | 2307 | *  Description: If the interrupt was neither because of Rx packet or Tx | 
|  | 2308 | *  complete, this function is called. If the interrupt was to indicate | 
|  | 2309 | *  a loss of link, the OSM link status handler is invoked for any other | 
|  | 2310 | *  alarm interrupt the block that raised the interrupt is displayed | 
|  | 2311 | *  and a H/W reset is issued. | 
|  | 2312 | *  Return Value: | 
|  | 2313 | *  NONE | 
|  | 2314 | */ | 
|  | 2315 |  | 
|  | 2316 | static void alarm_intr_handler(struct s2io_nic *nic) | 
|  | 2317 | { | 
|  | 2318 | struct net_device *dev = (struct net_device *) nic->dev; | 
|  | 2319 | XENA_dev_config_t __iomem *bar0 = nic->bar0; | 
|  | 2320 | register u64 val64 = 0, err_reg = 0; | 
|  | 2321 |  | 
|  | 2322 | /* Handling link status change error Intr */ | 
|  | 2323 | err_reg = readq(&bar0->mac_rmac_err_reg); | 
|  | 2324 | writeq(err_reg, &bar0->mac_rmac_err_reg); | 
|  | 2325 | if (err_reg & RMAC_LINK_STATE_CHANGE_INT) { | 
|  | 2326 | schedule_work(&nic->set_link_task); | 
|  | 2327 | } | 
|  | 2328 |  | 
|  | 2329 | /* In case of a serious error, the device will be Reset. */ | 
|  | 2330 | val64 = readq(&bar0->serr_source); | 
|  | 2331 | if (val64 & SERR_SOURCE_ANY) { | 
|  | 2332 | DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name); | 
|  | 2333 | DBG_PRINT(ERR_DBG, "serious error!!\n"); | 
|  | 2334 | netif_stop_queue(dev); | 
|  | 2335 | schedule_work(&nic->rst_timer_task); | 
|  | 2336 | } | 
|  | 2337 |  | 
|  | 2338 | /* | 
|  | 2339 | * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC | 
|  | 2340 | * Error occurs, the adapter will be recycled by disabling the | 
|  | 2341 | * adapter enable bit and enabling it again after the device | 
|  | 2342 | * becomes Quiescent. | 
|  | 2343 | */ | 
|  | 2344 | val64 = readq(&bar0->pcc_err_reg); | 
|  | 2345 | writeq(val64, &bar0->pcc_err_reg); | 
|  | 2346 | if (val64 & PCC_FB_ECC_DB_ERR) { | 
|  | 2347 | u64 ac = readq(&bar0->adapter_control); | 
|  | 2348 | ac &= ~(ADAPTER_CNTL_EN); | 
|  | 2349 | writeq(ac, &bar0->adapter_control); | 
|  | 2350 | ac = readq(&bar0->adapter_control); | 
|  | 2351 | schedule_work(&nic->set_link_task); | 
|  | 2352 | } | 
|  | 2353 |  | 
|  | 2354 | /* Other type of interrupts are not being handled now,  TODO */ | 
|  | 2355 | } | 
|  | 2356 |  | 
|  | 2357 | /** | 
|  | 2358 | *  wait_for_cmd_complete - waits for a command to complete. | 
|  | 2359 | *  @sp : private member of the device structure, which is a pointer to the | 
|  | 2360 | *  s2io_nic structure. | 
|  | 2361 | *  Description: Function that waits for a command to Write into RMAC | 
|  | 2362 | *  ADDR DATA registers to be completed and returns either success or | 
|  | 2363 | *  error depending on whether the command was complete or not. | 
|  | 2364 | *  Return value: | 
|  | 2365 | *   SUCCESS on success and FAILURE on failure. | 
|  | 2366 | */ | 
|  | 2367 |  | 
|  | 2368 | static int wait_for_cmd_complete(nic_t * sp) | 
|  | 2369 | { | 
|  | 2370 | XENA_dev_config_t __iomem *bar0 = sp->bar0; | 
|  | 2371 | int ret = FAILURE, cnt = 0; | 
|  | 2372 | u64 val64; | 
|  | 2373 |  | 
|  | 2374 | while (TRUE) { | 
|  | 2375 | val64 = readq(&bar0->rmac_addr_cmd_mem); | 
|  | 2376 | if (!(val64 & RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) { | 
|  | 2377 | ret = SUCCESS; | 
|  | 2378 | break; | 
|  | 2379 | } | 
|  | 2380 | msleep(50); | 
|  | 2381 | if (cnt++ > 10) | 
|  | 2382 | break; | 
|  | 2383 | } | 
|  | 2384 |  | 
|  | 2385 | return ret; | 
|  | 2386 | } | 
|  | 2387 |  | 
|  | 2388 | /** | 
|  | 2389 | *  s2io_reset - Resets the card. | 
|  | 2390 | *  @sp : private member of the device structure. | 
|  | 2391 | *  Description: Function to Reset the card. This function then also | 
|  | 2392 | *  restores the previously saved PCI configuration space registers as | 
|  | 2393 | *  the card reset also resets the configuration space. | 
|  | 2394 | *  Return value: | 
|  | 2395 | *  void. | 
|  | 2396 | */ | 
|  | 2397 |  | 
|  | 2398 | static void s2io_reset(nic_t * sp) | 
|  | 2399 | { | 
|  | 2400 | XENA_dev_config_t __iomem *bar0 = sp->bar0; | 
|  | 2401 | u64 val64; | 
|  | 2402 | u16 subid; | 
|  | 2403 |  | 
|  | 2404 | val64 = SW_RESET_ALL; | 
|  | 2405 | writeq(val64, &bar0->sw_reset); | 
|  | 2406 |  | 
|  | 2407 | /* | 
|  | 2408 | * At this stage, if the PCI write is indeed completed, the | 
|  | 2409 | * card is reset and so is the PCI Config space of the device. | 
|  | 2410 | * So a read cannot be issued at this stage on any of the | 
|  | 2411 | * registers to ensure the write into "sw_reset" register | 
|  | 2412 | * has gone through. | 
|  | 2413 | * Question: Is there any system call that will explicitly force | 
|  | 2414 | * all the write commands still pending on the bus to be pushed | 
|  | 2415 | * through? | 
|  | 2416 | * As of now I'am just giving a 250ms delay and hoping that the | 
|  | 2417 | * PCI write to sw_reset register is done by this time. | 
|  | 2418 | */ | 
|  | 2419 | msleep(250); | 
|  | 2420 |  | 
|  | 2421 | /* Restore the PCI state saved during initializarion. */ | 
|  | 2422 | pci_restore_state(sp->pdev); | 
|  | 2423 | s2io_init_pci(sp); | 
|  | 2424 |  | 
|  | 2425 | msleep(250); | 
|  | 2426 |  | 
|  | 2427 | /* SXE-002: Configure link and activity LED to turn it off */ | 
|  | 2428 | subid = sp->pdev->subsystem_device; | 
|  | 2429 | if ((subid & 0xFF) >= 0x07) { | 
|  | 2430 | val64 = readq(&bar0->gpio_control); | 
|  | 2431 | val64 |= 0x0000800000000000ULL; | 
|  | 2432 | writeq(val64, &bar0->gpio_control); | 
|  | 2433 | val64 = 0x0411040400000000ULL; | 
|  | 2434 | writeq(val64, (void __iomem *) bar0 + 0x2700); | 
|  | 2435 | } | 
|  | 2436 |  | 
|  | 2437 | sp->device_enabled_once = FALSE; | 
|  | 2438 | } | 
|  | 2439 |  | 
|  | 2440 | /** | 
|  | 2441 | *  s2io_set_swapper - to set the swapper controle on the card | 
|  | 2442 | *  @sp : private member of the device structure, | 
|  | 2443 | *  pointer to the s2io_nic structure. | 
|  | 2444 | *  Description: Function to set the swapper control on the card | 
|  | 2445 | *  correctly depending on the 'endianness' of the system. | 
|  | 2446 | *  Return value: | 
|  | 2447 | *  SUCCESS on success and FAILURE on failure. | 
|  | 2448 | */ | 
|  | 2449 |  | 
|  | 2450 | static int s2io_set_swapper(nic_t * sp) | 
|  | 2451 | { | 
|  | 2452 | struct net_device *dev = sp->dev; | 
|  | 2453 | XENA_dev_config_t __iomem *bar0 = sp->bar0; | 
|  | 2454 | u64 val64, valt, valr; | 
|  | 2455 |  | 
|  | 2456 | /* | 
|  | 2457 | * Set proper endian settings and verify the same by reading | 
|  | 2458 | * the PIF Feed-back register. | 
|  | 2459 | */ | 
|  | 2460 |  | 
|  | 2461 | val64 = readq(&bar0->pif_rd_swapper_fb); | 
|  | 2462 | if (val64 != 0x0123456789ABCDEFULL) { | 
|  | 2463 | int i = 0; | 
|  | 2464 | u64 value[] = { 0xC30000C3C30000C3ULL,   /* FE=1, SE=1 */ | 
|  | 2465 | 0x8100008181000081ULL,  /* FE=1, SE=0 */ | 
|  | 2466 | 0x4200004242000042ULL,  /* FE=0, SE=1 */ | 
|  | 2467 | 0};                     /* FE=0, SE=0 */ | 
|  | 2468 |  | 
|  | 2469 | while(i<4) { | 
|  | 2470 | writeq(value[i], &bar0->swapper_ctrl); | 
|  | 2471 | val64 = readq(&bar0->pif_rd_swapper_fb); | 
|  | 2472 | if (val64 == 0x0123456789ABCDEFULL) | 
|  | 2473 | break; | 
|  | 2474 | i++; | 
|  | 2475 | } | 
|  | 2476 | if (i == 4) { | 
|  | 2477 | DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ", | 
|  | 2478 | dev->name); | 
|  | 2479 | DBG_PRINT(ERR_DBG, "feedback read %llx\n", | 
|  | 2480 | (unsigned long long) val64); | 
|  | 2481 | return FAILURE; | 
|  | 2482 | } | 
|  | 2483 | valr = value[i]; | 
|  | 2484 | } else { | 
|  | 2485 | valr = readq(&bar0->swapper_ctrl); | 
|  | 2486 | } | 
|  | 2487 |  | 
|  | 2488 | valt = 0x0123456789ABCDEFULL; | 
|  | 2489 | writeq(valt, &bar0->xmsi_address); | 
|  | 2490 | val64 = readq(&bar0->xmsi_address); | 
|  | 2491 |  | 
|  | 2492 | if(val64 != valt) { | 
|  | 2493 | int i = 0; | 
|  | 2494 | u64 value[] = { 0x00C3C30000C3C300ULL,  /* FE=1, SE=1 */ | 
|  | 2495 | 0x0081810000818100ULL,  /* FE=1, SE=0 */ | 
|  | 2496 | 0x0042420000424200ULL,  /* FE=0, SE=1 */ | 
|  | 2497 | 0};                     /* FE=0, SE=0 */ | 
|  | 2498 |  | 
|  | 2499 | while(i<4) { | 
|  | 2500 | writeq((value[i] | valr), &bar0->swapper_ctrl); | 
|  | 2501 | writeq(valt, &bar0->xmsi_address); | 
|  | 2502 | val64 = readq(&bar0->xmsi_address); | 
|  | 2503 | if(val64 == valt) | 
|  | 2504 | break; | 
|  | 2505 | i++; | 
|  | 2506 | } | 
|  | 2507 | if(i == 4) { | 
|  | 2508 | DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr "); | 
|  | 2509 | DBG_PRINT(ERR_DBG, "reads:0x%llx\n",val64); | 
|  | 2510 | return FAILURE; | 
|  | 2511 | } | 
|  | 2512 | } | 
|  | 2513 | val64 = readq(&bar0->swapper_ctrl); | 
|  | 2514 | val64 &= 0xFFFF000000000000ULL; | 
|  | 2515 |  | 
|  | 2516 | #ifdef  __BIG_ENDIAN | 
|  | 2517 | /* | 
|  | 2518 | * The device by default set to a big endian format, so a | 
|  | 2519 | * big endian driver need not set anything. | 
|  | 2520 | */ | 
|  | 2521 | val64 |= (SWAPPER_CTRL_TXP_FE | | 
|  | 2522 | SWAPPER_CTRL_TXP_SE | | 
|  | 2523 | SWAPPER_CTRL_TXD_R_FE | | 
|  | 2524 | SWAPPER_CTRL_TXD_W_FE | | 
|  | 2525 | SWAPPER_CTRL_TXF_R_FE | | 
|  | 2526 | SWAPPER_CTRL_RXD_R_FE | | 
|  | 2527 | SWAPPER_CTRL_RXD_W_FE | | 
|  | 2528 | SWAPPER_CTRL_RXF_W_FE | | 
|  | 2529 | SWAPPER_CTRL_XMSI_FE | | 
|  | 2530 | SWAPPER_CTRL_XMSI_SE | | 
|  | 2531 | SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE); | 
|  | 2532 | writeq(val64, &bar0->swapper_ctrl); | 
|  | 2533 | #else | 
|  | 2534 | /* | 
|  | 2535 | * Initially we enable all bits to make it accessible by the | 
|  | 2536 | * driver, then we selectively enable only those bits that | 
|  | 2537 | * we want to set. | 
|  | 2538 | */ | 
|  | 2539 | val64 |= (SWAPPER_CTRL_TXP_FE | | 
|  | 2540 | SWAPPER_CTRL_TXP_SE | | 
|  | 2541 | SWAPPER_CTRL_TXD_R_FE | | 
|  | 2542 | SWAPPER_CTRL_TXD_R_SE | | 
|  | 2543 | SWAPPER_CTRL_TXD_W_FE | | 
|  | 2544 | SWAPPER_CTRL_TXD_W_SE | | 
|  | 2545 | SWAPPER_CTRL_TXF_R_FE | | 
|  | 2546 | SWAPPER_CTRL_RXD_R_FE | | 
|  | 2547 | SWAPPER_CTRL_RXD_R_SE | | 
|  | 2548 | SWAPPER_CTRL_RXD_W_FE | | 
|  | 2549 | SWAPPER_CTRL_RXD_W_SE | | 
|  | 2550 | SWAPPER_CTRL_RXF_W_FE | | 
|  | 2551 | SWAPPER_CTRL_XMSI_FE | | 
|  | 2552 | SWAPPER_CTRL_XMSI_SE | | 
|  | 2553 | SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE); | 
|  | 2554 | writeq(val64, &bar0->swapper_ctrl); | 
|  | 2555 | #endif | 
|  | 2556 | val64 = readq(&bar0->swapper_ctrl); | 
|  | 2557 |  | 
|  | 2558 | /* | 
|  | 2559 | * Verifying if endian settings are accurate by reading a | 
|  | 2560 | * feedback register. | 
|  | 2561 | */ | 
|  | 2562 | val64 = readq(&bar0->pif_rd_swapper_fb); | 
|  | 2563 | if (val64 != 0x0123456789ABCDEFULL) { | 
|  | 2564 | /* Endian settings are incorrect, calls for another dekko. */ | 
|  | 2565 | DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ", | 
|  | 2566 | dev->name); | 
|  | 2567 | DBG_PRINT(ERR_DBG, "feedback read %llx\n", | 
|  | 2568 | (unsigned long long) val64); | 
|  | 2569 | return FAILURE; | 
|  | 2570 | } | 
|  | 2571 |  | 
|  | 2572 | return SUCCESS; | 
|  | 2573 | } | 
|  | 2574 |  | 
|  | 2575 | /* ********************************************************* * | 
|  | 2576 | * Functions defined below concern the OS part of the driver * | 
|  | 2577 | * ********************************************************* */ | 
|  | 2578 |  | 
|  | 2579 | /** | 
|  | 2580 | *  s2io_open - open entry point of the driver | 
|  | 2581 | *  @dev : pointer to the device structure. | 
|  | 2582 | *  Description: | 
|  | 2583 | *  This function is the open entry point of the driver. It mainly calls a | 
|  | 2584 | *  function to allocate Rx buffers and inserts them into the buffer | 
|  | 2585 | *  descriptors and then enables the Rx part of the NIC. | 
|  | 2586 | *  Return value: | 
|  | 2587 | *  0 on success and an appropriate (-)ve integer as defined in errno.h | 
|  | 2588 | *   file on failure. | 
|  | 2589 | */ | 
|  | 2590 |  | 
|  | 2591 | static int s2io_open(struct net_device *dev) | 
|  | 2592 | { | 
|  | 2593 | nic_t *sp = dev->priv; | 
|  | 2594 | int err = 0; | 
|  | 2595 |  | 
|  | 2596 | /* | 
|  | 2597 | * Make sure you have link off by default every time | 
|  | 2598 | * Nic is initialized | 
|  | 2599 | */ | 
|  | 2600 | netif_carrier_off(dev); | 
|  | 2601 | sp->last_link_state = LINK_DOWN; | 
|  | 2602 |  | 
|  | 2603 | /* Initialize H/W and enable interrupts */ | 
|  | 2604 | if (s2io_card_up(sp)) { | 
|  | 2605 | DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n", | 
|  | 2606 | dev->name); | 
|  | 2607 | return -ENODEV; | 
|  | 2608 | } | 
|  | 2609 |  | 
|  | 2610 | /* After proper initialization of H/W, register ISR */ | 
|  | 2611 | err = request_irq((int) sp->irq, s2io_isr, SA_SHIRQ, | 
|  | 2612 | sp->name, dev); | 
|  | 2613 | if (err) { | 
|  | 2614 | s2io_reset(sp); | 
|  | 2615 | DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n", | 
|  | 2616 | dev->name); | 
|  | 2617 | return err; | 
|  | 2618 | } | 
|  | 2619 |  | 
|  | 2620 | if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) { | 
|  | 2621 | DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n"); | 
|  | 2622 | s2io_reset(sp); | 
|  | 2623 | return -ENODEV; | 
|  | 2624 | } | 
|  | 2625 |  | 
|  | 2626 | netif_start_queue(dev); | 
|  | 2627 | return 0; | 
|  | 2628 | } | 
|  | 2629 |  | 
|  | 2630 | /** | 
|  | 2631 | *  s2io_close -close entry point of the driver | 
|  | 2632 | *  @dev : device pointer. | 
|  | 2633 | *  Description: | 
|  | 2634 | *  This is the stop entry point of the driver. It needs to undo exactly | 
|  | 2635 | *  whatever was done by the open entry point,thus it's usually referred to | 
|  | 2636 | *  as the close function.Among other things this function mainly stops the | 
|  | 2637 | *  Rx side of the NIC and frees all the Rx buffers in the Rx rings. | 
|  | 2638 | *  Return value: | 
|  | 2639 | *  0 on success and an appropriate (-)ve integer as defined in errno.h | 
|  | 2640 | *  file on failure. | 
|  | 2641 | */ | 
|  | 2642 |  | 
|  | 2643 | static int s2io_close(struct net_device *dev) | 
|  | 2644 | { | 
|  | 2645 | nic_t *sp = dev->priv; | 
|  | 2646 |  | 
|  | 2647 | flush_scheduled_work(); | 
|  | 2648 | netif_stop_queue(dev); | 
|  | 2649 | /* Reset card, kill tasklet and free Tx and Rx buffers. */ | 
|  | 2650 | s2io_card_down(sp); | 
|  | 2651 |  | 
|  | 2652 | free_irq(dev->irq, dev); | 
|  | 2653 | sp->device_close_flag = TRUE;	/* Device is shut down. */ | 
|  | 2654 | return 0; | 
|  | 2655 | } | 
|  | 2656 |  | 
|  | 2657 | /** | 
|  | 2658 | *  s2io_xmit - Tx entry point of te driver | 
|  | 2659 | *  @skb : the socket buffer containing the Tx data. | 
|  | 2660 | *  @dev : device pointer. | 
|  | 2661 | *  Description : | 
|  | 2662 | *  This function is the Tx entry point of the driver. S2IO NIC supports | 
|  | 2663 | *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO. | 
|  | 2664 | *  NOTE: when device cant queue the pkt,just the trans_start variable will | 
|  | 2665 | *  not be upadted. | 
|  | 2666 | *  Return value: | 
|  | 2667 | *  0 on success & 1 on failure. | 
|  | 2668 | */ | 
|  | 2669 |  | 
|  | 2670 | static int s2io_xmit(struct sk_buff *skb, struct net_device *dev) | 
|  | 2671 | { | 
|  | 2672 | nic_t *sp = dev->priv; | 
|  | 2673 | u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off; | 
|  | 2674 | register u64 val64; | 
|  | 2675 | TxD_t *txdp; | 
|  | 2676 | TxFIFO_element_t __iomem *tx_fifo; | 
|  | 2677 | unsigned long flags; | 
|  | 2678 | #ifdef NETIF_F_TSO | 
|  | 2679 | int mss; | 
|  | 2680 | #endif | 
|  | 2681 | mac_info_t *mac_control; | 
|  | 2682 | struct config_param *config; | 
|  | 2683 | XENA_dev_config_t __iomem *bar0 = sp->bar0; | 
|  | 2684 |  | 
|  | 2685 | mac_control = &sp->mac_control; | 
|  | 2686 | config = &sp->config; | 
|  | 2687 |  | 
|  | 2688 | DBG_PRINT(TX_DBG, "%s: In S2IO Tx routine\n", dev->name); | 
|  | 2689 | spin_lock_irqsave(&sp->tx_lock, flags); | 
|  | 2690 |  | 
|  | 2691 | if (atomic_read(&sp->card_state) == CARD_DOWN) { | 
|  | 2692 | DBG_PRINT(ERR_DBG, "%s: Card going down for reset\n", | 
|  | 2693 | dev->name); | 
|  | 2694 | spin_unlock_irqrestore(&sp->tx_lock, flags); | 
|  | 2695 | return 1; | 
|  | 2696 | } | 
|  | 2697 |  | 
|  | 2698 | queue = 0; | 
|  | 2699 | put_off = (u16) mac_control->tx_curr_put_info[queue].offset; | 
|  | 2700 | get_off = (u16) mac_control->tx_curr_get_info[queue].offset; | 
|  | 2701 | txdp = (TxD_t *) sp->list_info[queue][put_off].list_virt_addr; | 
|  | 2702 |  | 
|  | 2703 | queue_len = mac_control->tx_curr_put_info[queue].fifo_len + 1; | 
|  | 2704 | /* Avoid "put" pointer going beyond "get" pointer */ | 
|  | 2705 | if (txdp->Host_Control || (((put_off + 1) % queue_len) == get_off)) { | 
|  | 2706 | DBG_PRINT(ERR_DBG, "Error in xmit, No free TXDs.\n"); | 
|  | 2707 | netif_stop_queue(dev); | 
|  | 2708 | dev_kfree_skb(skb); | 
|  | 2709 | spin_unlock_irqrestore(&sp->tx_lock, flags); | 
|  | 2710 | return 0; | 
|  | 2711 | } | 
|  | 2712 | #ifdef NETIF_F_TSO | 
|  | 2713 | mss = skb_shinfo(skb)->tso_size; | 
|  | 2714 | if (mss) { | 
|  | 2715 | txdp->Control_1 |= TXD_TCP_LSO_EN; | 
|  | 2716 | txdp->Control_1 |= TXD_TCP_LSO_MSS(mss); | 
|  | 2717 | } | 
|  | 2718 | #endif | 
|  | 2719 |  | 
|  | 2720 | frg_cnt = skb_shinfo(skb)->nr_frags; | 
|  | 2721 | frg_len = skb->len - skb->data_len; | 
|  | 2722 |  | 
|  | 2723 | txdp->Host_Control = (unsigned long) skb; | 
|  | 2724 | txdp->Buffer_Pointer = pci_map_single | 
|  | 2725 | (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE); | 
|  | 2726 | if (skb->ip_summed == CHECKSUM_HW) { | 
|  | 2727 | txdp->Control_2 |= | 
|  | 2728 | (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN | | 
|  | 2729 | TXD_TX_CKO_UDP_EN); | 
|  | 2730 | } | 
|  | 2731 |  | 
|  | 2732 | txdp->Control_2 |= config->tx_intr_type; | 
|  | 2733 |  | 
|  | 2734 | txdp->Control_1 |= (TXD_BUFFER0_SIZE(frg_len) | | 
|  | 2735 | TXD_GATHER_CODE_FIRST); | 
|  | 2736 | txdp->Control_1 |= TXD_LIST_OWN_XENA; | 
|  | 2737 |  | 
|  | 2738 | /* For fragmented SKB. */ | 
|  | 2739 | for (i = 0; i < frg_cnt; i++) { | 
|  | 2740 | skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; | 
|  | 2741 | txdp++; | 
|  | 2742 | txdp->Buffer_Pointer = (u64) pci_map_page | 
|  | 2743 | (sp->pdev, frag->page, frag->page_offset, | 
|  | 2744 | frag->size, PCI_DMA_TODEVICE); | 
|  | 2745 | txdp->Control_1 |= TXD_BUFFER0_SIZE(frag->size); | 
|  | 2746 | } | 
|  | 2747 | txdp->Control_1 |= TXD_GATHER_CODE_LAST; | 
|  | 2748 |  | 
|  | 2749 | tx_fifo = mac_control->tx_FIFO_start[queue]; | 
|  | 2750 | val64 = sp->list_info[queue][put_off].list_phy_addr; | 
|  | 2751 | writeq(val64, &tx_fifo->TxDL_Pointer); | 
|  | 2752 |  | 
|  | 2753 | val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST | | 
|  | 2754 | TX_FIFO_LAST_LIST); | 
|  | 2755 | #ifdef NETIF_F_TSO | 
|  | 2756 | if (mss) | 
|  | 2757 | val64 |= TX_FIFO_SPECIAL_FUNC; | 
|  | 2758 | #endif | 
|  | 2759 | writeq(val64, &tx_fifo->List_Control); | 
|  | 2760 |  | 
|  | 2761 | /* Perform a PCI read to flush previous writes */ | 
|  | 2762 | val64 = readq(&bar0->general_int_status); | 
|  | 2763 |  | 
|  | 2764 | put_off++; | 
|  | 2765 | put_off %= mac_control->tx_curr_put_info[queue].fifo_len + 1; | 
|  | 2766 | mac_control->tx_curr_put_info[queue].offset = put_off; | 
|  | 2767 |  | 
|  | 2768 | /* Avoid "put" pointer going beyond "get" pointer */ | 
|  | 2769 | if (((put_off + 1) % queue_len) == get_off) { | 
|  | 2770 | DBG_PRINT(TX_DBG, | 
|  | 2771 | "No free TxDs for xmit, Put: 0x%x Get:0x%x\n", | 
|  | 2772 | put_off, get_off); | 
|  | 2773 | netif_stop_queue(dev); | 
|  | 2774 | } | 
|  | 2775 |  | 
|  | 2776 | dev->trans_start = jiffies; | 
|  | 2777 | spin_unlock_irqrestore(&sp->tx_lock, flags); | 
|  | 2778 |  | 
|  | 2779 | return 0; | 
|  | 2780 | } | 
|  | 2781 |  | 
|  | 2782 | /** | 
|  | 2783 | *  s2io_isr - ISR handler of the device . | 
|  | 2784 | *  @irq: the irq of the device. | 
|  | 2785 | *  @dev_id: a void pointer to the dev structure of the NIC. | 
|  | 2786 | *  @pt_regs: pointer to the registers pushed on the stack. | 
|  | 2787 | *  Description:  This function is the ISR handler of the device. It | 
|  | 2788 | *  identifies the reason for the interrupt and calls the relevant | 
|  | 2789 | *  service routines. As a contongency measure, this ISR allocates the | 
|  | 2790 | *  recv buffers, if their numbers are below the panic value which is | 
|  | 2791 | *  presently set to 25% of the original number of rcv buffers allocated. | 
|  | 2792 | *  Return value: | 
|  | 2793 | *   IRQ_HANDLED: will be returned if IRQ was handled by this routine | 
|  | 2794 | *   IRQ_NONE: will be returned if interrupt is not from our device | 
|  | 2795 | */ | 
|  | 2796 | static irqreturn_t s2io_isr(int irq, void *dev_id, struct pt_regs *regs) | 
|  | 2797 | { | 
|  | 2798 | struct net_device *dev = (struct net_device *) dev_id; | 
|  | 2799 | nic_t *sp = dev->priv; | 
|  | 2800 | XENA_dev_config_t __iomem *bar0 = sp->bar0; | 
|  | 2801 | #ifndef CONFIG_S2IO_NAPI | 
|  | 2802 | int i, ret; | 
|  | 2803 | #endif | 
|  | 2804 | u64 reason = 0; | 
|  | 2805 | mac_info_t *mac_control; | 
|  | 2806 | struct config_param *config; | 
|  | 2807 |  | 
|  | 2808 | mac_control = &sp->mac_control; | 
|  | 2809 | config = &sp->config; | 
|  | 2810 |  | 
|  | 2811 | /* | 
|  | 2812 | * Identify the cause for interrupt and call the appropriate | 
|  | 2813 | * interrupt handler. Causes for the interrupt could be; | 
|  | 2814 | * 1. Rx of packet. | 
|  | 2815 | * 2. Tx complete. | 
|  | 2816 | * 3. Link down. | 
|  | 2817 | * 4. Error in any functional blocks of the NIC. | 
|  | 2818 | */ | 
|  | 2819 | reason = readq(&bar0->general_int_status); | 
|  | 2820 |  | 
|  | 2821 | if (!reason) { | 
|  | 2822 | /* The interrupt was not raised by Xena. */ | 
|  | 2823 | return IRQ_NONE; | 
|  | 2824 | } | 
|  | 2825 |  | 
|  | 2826 | /* If Intr is because of Tx Traffic */ | 
|  | 2827 | if (reason & GEN_INTR_TXTRAFFIC) { | 
|  | 2828 | tx_intr_handler(sp); | 
|  | 2829 | } | 
|  | 2830 |  | 
|  | 2831 | /* If Intr is because of an error */ | 
|  | 2832 | if (reason & (GEN_ERROR_INTR)) | 
|  | 2833 | alarm_intr_handler(sp); | 
|  | 2834 |  | 
|  | 2835 | #ifdef CONFIG_S2IO_NAPI | 
|  | 2836 | if (reason & GEN_INTR_RXTRAFFIC) { | 
|  | 2837 | if (netif_rx_schedule_prep(dev)) { | 
|  | 2838 | en_dis_able_nic_intrs(sp, RX_TRAFFIC_INTR, | 
|  | 2839 | DISABLE_INTRS); | 
|  | 2840 | __netif_rx_schedule(dev); | 
|  | 2841 | } | 
|  | 2842 | } | 
|  | 2843 | #else | 
|  | 2844 | /* If Intr is because of Rx Traffic */ | 
|  | 2845 | if (reason & GEN_INTR_RXTRAFFIC) { | 
|  | 2846 | rx_intr_handler(sp); | 
|  | 2847 | } | 
|  | 2848 | #endif | 
|  | 2849 |  | 
|  | 2850 | /* | 
|  | 2851 | * If the Rx buffer count is below the panic threshold then | 
|  | 2852 | * reallocate the buffers from the interrupt handler itself, | 
|  | 2853 | * else schedule a tasklet to reallocate the buffers. | 
|  | 2854 | */ | 
|  | 2855 | #ifndef CONFIG_S2IO_NAPI | 
|  | 2856 | for (i = 0; i < config->rx_ring_num; i++) { | 
|  | 2857 | int rxb_size = atomic_read(&sp->rx_bufs_left[i]); | 
|  | 2858 | int level = rx_buffer_level(sp, rxb_size, i); | 
|  | 2859 |  | 
|  | 2860 | if ((level == PANIC) && (!TASKLET_IN_USE)) { | 
|  | 2861 | DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", dev->name); | 
|  | 2862 | DBG_PRINT(INTR_DBG, "PANIC levels\n"); | 
|  | 2863 | if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) { | 
|  | 2864 | DBG_PRINT(ERR_DBG, "%s:Out of memory", | 
|  | 2865 | dev->name); | 
|  | 2866 | DBG_PRINT(ERR_DBG, " in ISR!!\n"); | 
|  | 2867 | clear_bit(0, (&sp->tasklet_status)); | 
|  | 2868 | return IRQ_HANDLED; | 
|  | 2869 | } | 
|  | 2870 | clear_bit(0, (&sp->tasklet_status)); | 
|  | 2871 | } else if (level == LOW) { | 
|  | 2872 | tasklet_schedule(&sp->task); | 
|  | 2873 | } | 
|  | 2874 | } | 
|  | 2875 | #endif | 
|  | 2876 |  | 
|  | 2877 | return IRQ_HANDLED; | 
|  | 2878 | } | 
|  | 2879 |  | 
|  | 2880 | /** | 
|  | 2881 | *  s2io_get_stats - Updates the device statistics structure. | 
|  | 2882 | *  @dev : pointer to the device structure. | 
|  | 2883 | *  Description: | 
|  | 2884 | *  This function updates the device statistics structure in the s2io_nic | 
|  | 2885 | *  structure and returns a pointer to the same. | 
|  | 2886 | *  Return value: | 
|  | 2887 | *  pointer to the updated net_device_stats structure. | 
|  | 2888 | */ | 
|  | 2889 |  | 
|  | 2890 | static struct net_device_stats *s2io_get_stats(struct net_device *dev) | 
|  | 2891 | { | 
|  | 2892 | nic_t *sp = dev->priv; | 
|  | 2893 | mac_info_t *mac_control; | 
|  | 2894 | struct config_param *config; | 
|  | 2895 |  | 
|  | 2896 | mac_control = &sp->mac_control; | 
|  | 2897 | config = &sp->config; | 
|  | 2898 |  | 
|  | 2899 | sp->stats.tx_errors = mac_control->stats_info->tmac_any_err_frms; | 
|  | 2900 | sp->stats.rx_errors = mac_control->stats_info->rmac_drop_frms; | 
|  | 2901 | sp->stats.multicast = mac_control->stats_info->rmac_vld_mcst_frms; | 
|  | 2902 | sp->stats.rx_length_errors = | 
|  | 2903 | mac_control->stats_info->rmac_long_frms; | 
|  | 2904 |  | 
|  | 2905 | return (&sp->stats); | 
|  | 2906 | } | 
|  | 2907 |  | 
|  | 2908 | /** | 
|  | 2909 | *  s2io_set_multicast - entry point for multicast address enable/disable. | 
|  | 2910 | *  @dev : pointer to the device structure | 
|  | 2911 | *  Description: | 
|  | 2912 | *  This function is a driver entry point which gets called by the kernel | 
|  | 2913 | *  whenever multicast addresses must be enabled/disabled. This also gets | 
|  | 2914 | *  called to set/reset promiscuous mode. Depending on the deivce flag, we | 
|  | 2915 | *  determine, if multicast address must be enabled or if promiscuous mode | 
|  | 2916 | *  is to be disabled etc. | 
|  | 2917 | *  Return value: | 
|  | 2918 | *  void. | 
|  | 2919 | */ | 
|  | 2920 |  | 
|  | 2921 | static void s2io_set_multicast(struct net_device *dev) | 
|  | 2922 | { | 
|  | 2923 | int i, j, prev_cnt; | 
|  | 2924 | struct dev_mc_list *mclist; | 
|  | 2925 | nic_t *sp = dev->priv; | 
|  | 2926 | XENA_dev_config_t __iomem *bar0 = sp->bar0; | 
|  | 2927 | u64 val64 = 0, multi_mac = 0x010203040506ULL, mask = | 
|  | 2928 | 0xfeffffffffffULL; | 
|  | 2929 | u64 dis_addr = 0xffffffffffffULL, mac_addr = 0; | 
|  | 2930 | void __iomem *add; | 
|  | 2931 |  | 
|  | 2932 | if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) { | 
|  | 2933 | /*  Enable all Multicast addresses */ | 
|  | 2934 | writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac), | 
|  | 2935 | &bar0->rmac_addr_data0_mem); | 
|  | 2936 | writeq(RMAC_ADDR_DATA1_MEM_MASK(mask), | 
|  | 2937 | &bar0->rmac_addr_data1_mem); | 
|  | 2938 | val64 = RMAC_ADDR_CMD_MEM_WE | | 
|  | 2939 | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | | 
|  | 2940 | RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET); | 
|  | 2941 | writeq(val64, &bar0->rmac_addr_cmd_mem); | 
|  | 2942 | /* Wait till command completes */ | 
|  | 2943 | wait_for_cmd_complete(sp); | 
|  | 2944 |  | 
|  | 2945 | sp->m_cast_flg = 1; | 
|  | 2946 | sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET; | 
|  | 2947 | } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) { | 
|  | 2948 | /*  Disable all Multicast addresses */ | 
|  | 2949 | writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr), | 
|  | 2950 | &bar0->rmac_addr_data0_mem); | 
|  | 2951 | val64 = RMAC_ADDR_CMD_MEM_WE | | 
|  | 2952 | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | | 
|  | 2953 | RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos); | 
|  | 2954 | writeq(val64, &bar0->rmac_addr_cmd_mem); | 
|  | 2955 | /* Wait till command completes */ | 
|  | 2956 | wait_for_cmd_complete(sp); | 
|  | 2957 |  | 
|  | 2958 | sp->m_cast_flg = 0; | 
|  | 2959 | sp->all_multi_pos = 0; | 
|  | 2960 | } | 
|  | 2961 |  | 
|  | 2962 | if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) { | 
|  | 2963 | /*  Put the NIC into promiscuous mode */ | 
|  | 2964 | add = &bar0->mac_cfg; | 
|  | 2965 | val64 = readq(&bar0->mac_cfg); | 
|  | 2966 | val64 |= MAC_CFG_RMAC_PROM_ENABLE; | 
|  | 2967 |  | 
|  | 2968 | writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); | 
|  | 2969 | writel((u32) val64, add); | 
|  | 2970 | writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); | 
|  | 2971 | writel((u32) (val64 >> 32), (add + 4)); | 
|  | 2972 |  | 
|  | 2973 | val64 = readq(&bar0->mac_cfg); | 
|  | 2974 | sp->promisc_flg = 1; | 
|  | 2975 | DBG_PRINT(ERR_DBG, "%s: entered promiscuous mode\n", | 
|  | 2976 | dev->name); | 
|  | 2977 | } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) { | 
|  | 2978 | /*  Remove the NIC from promiscuous mode */ | 
|  | 2979 | add = &bar0->mac_cfg; | 
|  | 2980 | val64 = readq(&bar0->mac_cfg); | 
|  | 2981 | val64 &= ~MAC_CFG_RMAC_PROM_ENABLE; | 
|  | 2982 |  | 
|  | 2983 | writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); | 
|  | 2984 | writel((u32) val64, add); | 
|  | 2985 | writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); | 
|  | 2986 | writel((u32) (val64 >> 32), (add + 4)); | 
|  | 2987 |  | 
|  | 2988 | val64 = readq(&bar0->mac_cfg); | 
|  | 2989 | sp->promisc_flg = 0; | 
|  | 2990 | DBG_PRINT(ERR_DBG, "%s: left promiscuous mode\n", | 
|  | 2991 | dev->name); | 
|  | 2992 | } | 
|  | 2993 |  | 
|  | 2994 | /*  Update individual M_CAST address list */ | 
|  | 2995 | if ((!sp->m_cast_flg) && dev->mc_count) { | 
|  | 2996 | if (dev->mc_count > | 
|  | 2997 | (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) { | 
|  | 2998 | DBG_PRINT(ERR_DBG, "%s: No more Rx filters ", | 
|  | 2999 | dev->name); | 
|  | 3000 | DBG_PRINT(ERR_DBG, "can be added, please enable "); | 
|  | 3001 | DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n"); | 
|  | 3002 | return; | 
|  | 3003 | } | 
|  | 3004 |  | 
|  | 3005 | prev_cnt = sp->mc_addr_count; | 
|  | 3006 | sp->mc_addr_count = dev->mc_count; | 
|  | 3007 |  | 
|  | 3008 | /* Clear out the previous list of Mc in the H/W. */ | 
|  | 3009 | for (i = 0; i < prev_cnt; i++) { | 
|  | 3010 | writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr), | 
|  | 3011 | &bar0->rmac_addr_data0_mem); | 
|  | 3012 | writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL), | 
|  | 3013 | &bar0->rmac_addr_data1_mem); | 
|  | 3014 | val64 = RMAC_ADDR_CMD_MEM_WE | | 
|  | 3015 | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | | 
|  | 3016 | RMAC_ADDR_CMD_MEM_OFFSET | 
|  | 3017 | (MAC_MC_ADDR_START_OFFSET + i); | 
|  | 3018 | writeq(val64, &bar0->rmac_addr_cmd_mem); | 
|  | 3019 |  | 
|  | 3020 | /* Wait for command completes */ | 
|  | 3021 | if (wait_for_cmd_complete(sp)) { | 
|  | 3022 | DBG_PRINT(ERR_DBG, "%s: Adding ", | 
|  | 3023 | dev->name); | 
|  | 3024 | DBG_PRINT(ERR_DBG, "Multicasts failed\n"); | 
|  | 3025 | return; | 
|  | 3026 | } | 
|  | 3027 | } | 
|  | 3028 |  | 
|  | 3029 | /* Create the new Rx filter list and update the same in H/W. */ | 
|  | 3030 | for (i = 0, mclist = dev->mc_list; i < dev->mc_count; | 
|  | 3031 | i++, mclist = mclist->next) { | 
|  | 3032 | memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr, | 
|  | 3033 | ETH_ALEN); | 
|  | 3034 | for (j = 0; j < ETH_ALEN; j++) { | 
|  | 3035 | mac_addr |= mclist->dmi_addr[j]; | 
|  | 3036 | mac_addr <<= 8; | 
|  | 3037 | } | 
|  | 3038 | mac_addr >>= 8; | 
|  | 3039 | writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr), | 
|  | 3040 | &bar0->rmac_addr_data0_mem); | 
|  | 3041 | writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL), | 
|  | 3042 | &bar0->rmac_addr_data1_mem); | 
|  | 3043 |  | 
|  | 3044 | val64 = RMAC_ADDR_CMD_MEM_WE | | 
|  | 3045 | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | | 
|  | 3046 | RMAC_ADDR_CMD_MEM_OFFSET | 
|  | 3047 | (i + MAC_MC_ADDR_START_OFFSET); | 
|  | 3048 | writeq(val64, &bar0->rmac_addr_cmd_mem); | 
|  | 3049 |  | 
|  | 3050 | /* Wait for command completes */ | 
|  | 3051 | if (wait_for_cmd_complete(sp)) { | 
|  | 3052 | DBG_PRINT(ERR_DBG, "%s: Adding ", | 
|  | 3053 | dev->name); | 
|  | 3054 | DBG_PRINT(ERR_DBG, "Multicasts failed\n"); | 
|  | 3055 | return; | 
|  | 3056 | } | 
|  | 3057 | } | 
|  | 3058 | } | 
|  | 3059 | } | 
|  | 3060 |  | 
|  | 3061 | /** | 
|  | 3062 | *  s2io_set_mac_addr - Programs the Xframe mac address | 
|  | 3063 | *  @dev : pointer to the device structure. | 
|  | 3064 | *  @addr: a uchar pointer to the new mac address which is to be set. | 
|  | 3065 | *  Description : This procedure will program the Xframe to receive | 
|  | 3066 | *  frames with new Mac Address | 
|  | 3067 | *  Return value: SUCCESS on success and an appropriate (-)ve integer | 
|  | 3068 | *  as defined in errno.h file on failure. | 
|  | 3069 | */ | 
|  | 3070 |  | 
|  | 3071 | int s2io_set_mac_addr(struct net_device *dev, u8 * addr) | 
|  | 3072 | { | 
|  | 3073 | nic_t *sp = dev->priv; | 
|  | 3074 | XENA_dev_config_t __iomem *bar0 = sp->bar0; | 
|  | 3075 | register u64 val64, mac_addr = 0; | 
|  | 3076 | int i; | 
|  | 3077 |  | 
|  | 3078 | /* | 
|  | 3079 | * Set the new MAC address as the new unicast filter and reflect this | 
|  | 3080 | * change on the device address registered with the OS. It will be | 
|  | 3081 | * at offset 0. | 
|  | 3082 | */ | 
|  | 3083 | for (i = 0; i < ETH_ALEN; i++) { | 
|  | 3084 | mac_addr <<= 8; | 
|  | 3085 | mac_addr |= addr[i]; | 
|  | 3086 | } | 
|  | 3087 |  | 
|  | 3088 | writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr), | 
|  | 3089 | &bar0->rmac_addr_data0_mem); | 
|  | 3090 |  | 
|  | 3091 | val64 = | 
|  | 3092 | RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | | 
|  | 3093 | RMAC_ADDR_CMD_MEM_OFFSET(0); | 
|  | 3094 | writeq(val64, &bar0->rmac_addr_cmd_mem); | 
|  | 3095 | /* Wait till command completes */ | 
|  | 3096 | if (wait_for_cmd_complete(sp)) { | 
|  | 3097 | DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name); | 
|  | 3098 | return FAILURE; | 
|  | 3099 | } | 
|  | 3100 |  | 
|  | 3101 | return SUCCESS; | 
|  | 3102 | } | 
|  | 3103 |  | 
|  | 3104 | /** | 
|  | 3105 | * s2io_ethtool_sset - Sets different link parameters. | 
|  | 3106 | * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure. | 
|  | 3107 | * @info: pointer to the structure with parameters given by ethtool to set | 
|  | 3108 | * link information. | 
|  | 3109 | * Description: | 
|  | 3110 | * The function sets different link parameters provided by the user onto | 
|  | 3111 | * the NIC. | 
|  | 3112 | * Return value: | 
|  | 3113 | * 0 on success. | 
|  | 3114 | */ | 
|  | 3115 |  | 
|  | 3116 | static int s2io_ethtool_sset(struct net_device *dev, | 
|  | 3117 | struct ethtool_cmd *info) | 
|  | 3118 | { | 
|  | 3119 | nic_t *sp = dev->priv; | 
|  | 3120 | if ((info->autoneg == AUTONEG_ENABLE) || | 
|  | 3121 | (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL)) | 
|  | 3122 | return -EINVAL; | 
|  | 3123 | else { | 
|  | 3124 | s2io_close(sp->dev); | 
|  | 3125 | s2io_open(sp->dev); | 
|  | 3126 | } | 
|  | 3127 |  | 
|  | 3128 | return 0; | 
|  | 3129 | } | 
|  | 3130 |  | 
|  | 3131 | /** | 
|  | 3132 | * s2io_ethtol_gset - Return link specific information. | 
|  | 3133 | * @sp : private member of the device structure, pointer to the | 
|  | 3134 | *      s2io_nic structure. | 
|  | 3135 | * @info : pointer to the structure with parameters given by ethtool | 
|  | 3136 | * to return link information. | 
|  | 3137 | * Description: | 
|  | 3138 | * Returns link specific information like speed, duplex etc.. to ethtool. | 
|  | 3139 | * Return value : | 
|  | 3140 | * return 0 on success. | 
|  | 3141 | */ | 
|  | 3142 |  | 
|  | 3143 | static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info) | 
|  | 3144 | { | 
|  | 3145 | nic_t *sp = dev->priv; | 
|  | 3146 | info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE); | 
|  | 3147 | info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE); | 
|  | 3148 | info->port = PORT_FIBRE; | 
|  | 3149 | /* info->transceiver?? TODO */ | 
|  | 3150 |  | 
|  | 3151 | if (netif_carrier_ok(sp->dev)) { | 
|  | 3152 | info->speed = 10000; | 
|  | 3153 | info->duplex = DUPLEX_FULL; | 
|  | 3154 | } else { | 
|  | 3155 | info->speed = -1; | 
|  | 3156 | info->duplex = -1; | 
|  | 3157 | } | 
|  | 3158 |  | 
|  | 3159 | info->autoneg = AUTONEG_DISABLE; | 
|  | 3160 | return 0; | 
|  | 3161 | } | 
|  | 3162 |  | 
|  | 3163 | /** | 
|  | 3164 | * s2io_ethtool_gdrvinfo - Returns driver specific information. | 
|  | 3165 | * @sp : private member of the device structure, which is a pointer to the | 
|  | 3166 | * s2io_nic structure. | 
|  | 3167 | * @info : pointer to the structure with parameters given by ethtool to | 
|  | 3168 | * return driver information. | 
|  | 3169 | * Description: | 
|  | 3170 | * Returns driver specefic information like name, version etc.. to ethtool. | 
|  | 3171 | * Return value: | 
|  | 3172 | *  void | 
|  | 3173 | */ | 
|  | 3174 |  | 
|  | 3175 | static void s2io_ethtool_gdrvinfo(struct net_device *dev, | 
|  | 3176 | struct ethtool_drvinfo *info) | 
|  | 3177 | { | 
|  | 3178 | nic_t *sp = dev->priv; | 
|  | 3179 |  | 
|  | 3180 | strncpy(info->driver, s2io_driver_name, sizeof(s2io_driver_name)); | 
|  | 3181 | strncpy(info->version, s2io_driver_version, | 
|  | 3182 | sizeof(s2io_driver_version)); | 
|  | 3183 | strncpy(info->fw_version, "", 32); | 
|  | 3184 | strncpy(info->bus_info, pci_name(sp->pdev), 32); | 
|  | 3185 | info->regdump_len = XENA_REG_SPACE; | 
|  | 3186 | info->eedump_len = XENA_EEPROM_SPACE; | 
|  | 3187 | info->testinfo_len = S2IO_TEST_LEN; | 
|  | 3188 | info->n_stats = S2IO_STAT_LEN; | 
|  | 3189 | } | 
|  | 3190 |  | 
|  | 3191 | /** | 
|  | 3192 | *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer. | 
|  | 3193 | *  @sp: private member of the device structure, which is a pointer to the | 
|  | 3194 | *  s2io_nic structure. | 
|  | 3195 | *  @regs : pointer to the structure with parameters given by ethtool for | 
|  | 3196 | *  dumping the registers. | 
|  | 3197 | *  @reg_space: The input argumnet into which all the registers are dumped. | 
|  | 3198 | *  Description: | 
|  | 3199 | *  Dumps the entire register space of xFrame NIC into the user given | 
|  | 3200 | *  buffer area. | 
|  | 3201 | * Return value : | 
|  | 3202 | * void . | 
|  | 3203 | */ | 
|  | 3204 |  | 
|  | 3205 | static void s2io_ethtool_gregs(struct net_device *dev, | 
|  | 3206 | struct ethtool_regs *regs, void *space) | 
|  | 3207 | { | 
|  | 3208 | int i; | 
|  | 3209 | u64 reg; | 
|  | 3210 | u8 *reg_space = (u8 *) space; | 
|  | 3211 | nic_t *sp = dev->priv; | 
|  | 3212 |  | 
|  | 3213 | regs->len = XENA_REG_SPACE; | 
|  | 3214 | regs->version = sp->pdev->subsystem_device; | 
|  | 3215 |  | 
|  | 3216 | for (i = 0; i < regs->len; i += 8) { | 
|  | 3217 | reg = readq(sp->bar0 + i); | 
|  | 3218 | memcpy((reg_space + i), ®, 8); | 
|  | 3219 | } | 
|  | 3220 | } | 
|  | 3221 |  | 
|  | 3222 | /** | 
|  | 3223 | *  s2io_phy_id  - timer function that alternates adapter LED. | 
|  | 3224 | *  @data : address of the private member of the device structure, which | 
|  | 3225 | *  is a pointer to the s2io_nic structure, provided as an u32. | 
|  | 3226 | * Description: This is actually the timer function that alternates the | 
|  | 3227 | * adapter LED bit of the adapter control bit to set/reset every time on | 
|  | 3228 | * invocation. The timer is set for 1/2 a second, hence tha NIC blinks | 
|  | 3229 | *  once every second. | 
|  | 3230 | */ | 
|  | 3231 | static void s2io_phy_id(unsigned long data) | 
|  | 3232 | { | 
|  | 3233 | nic_t *sp = (nic_t *) data; | 
|  | 3234 | XENA_dev_config_t __iomem *bar0 = sp->bar0; | 
|  | 3235 | u64 val64 = 0; | 
|  | 3236 | u16 subid; | 
|  | 3237 |  | 
|  | 3238 | subid = sp->pdev->subsystem_device; | 
|  | 3239 | if ((subid & 0xFF) >= 0x07) { | 
|  | 3240 | val64 = readq(&bar0->gpio_control); | 
|  | 3241 | val64 ^= GPIO_CTRL_GPIO_0; | 
|  | 3242 | writeq(val64, &bar0->gpio_control); | 
|  | 3243 | } else { | 
|  | 3244 | val64 = readq(&bar0->adapter_control); | 
|  | 3245 | val64 ^= ADAPTER_LED_ON; | 
|  | 3246 | writeq(val64, &bar0->adapter_control); | 
|  | 3247 | } | 
|  | 3248 |  | 
|  | 3249 | mod_timer(&sp->id_timer, jiffies + HZ / 2); | 
|  | 3250 | } | 
|  | 3251 |  | 
|  | 3252 | /** | 
|  | 3253 | * s2io_ethtool_idnic - To physically identify the nic on the system. | 
|  | 3254 | * @sp : private member of the device structure, which is a pointer to the | 
|  | 3255 | * s2io_nic structure. | 
|  | 3256 | * @id : pointer to the structure with identification parameters given by | 
|  | 3257 | * ethtool. | 
|  | 3258 | * Description: Used to physically identify the NIC on the system. | 
|  | 3259 | * The Link LED will blink for a time specified by the user for | 
|  | 3260 | * identification. | 
|  | 3261 | * NOTE: The Link has to be Up to be able to blink the LED. Hence | 
|  | 3262 | * identification is possible only if it's link is up. | 
|  | 3263 | * Return value: | 
|  | 3264 | * int , returns 0 on success | 
|  | 3265 | */ | 
|  | 3266 |  | 
|  | 3267 | static int s2io_ethtool_idnic(struct net_device *dev, u32 data) | 
|  | 3268 | { | 
|  | 3269 | u64 val64 = 0, last_gpio_ctrl_val; | 
|  | 3270 | nic_t *sp = dev->priv; | 
|  | 3271 | XENA_dev_config_t __iomem *bar0 = sp->bar0; | 
|  | 3272 | u16 subid; | 
|  | 3273 |  | 
|  | 3274 | subid = sp->pdev->subsystem_device; | 
|  | 3275 | last_gpio_ctrl_val = readq(&bar0->gpio_control); | 
|  | 3276 | if ((subid & 0xFF) < 0x07) { | 
|  | 3277 | val64 = readq(&bar0->adapter_control); | 
|  | 3278 | if (!(val64 & ADAPTER_CNTL_EN)) { | 
|  | 3279 | printk(KERN_ERR | 
|  | 3280 | "Adapter Link down, cannot blink LED\n"); | 
|  | 3281 | return -EFAULT; | 
|  | 3282 | } | 
|  | 3283 | } | 
|  | 3284 | if (sp->id_timer.function == NULL) { | 
|  | 3285 | init_timer(&sp->id_timer); | 
|  | 3286 | sp->id_timer.function = s2io_phy_id; | 
|  | 3287 | sp->id_timer.data = (unsigned long) sp; | 
|  | 3288 | } | 
|  | 3289 | mod_timer(&sp->id_timer, jiffies); | 
|  | 3290 | if (data) | 
|  | 3291 | msleep(data * 1000); | 
|  | 3292 | else | 
|  | 3293 | msleep(0xFFFFFFFF); | 
|  | 3294 | del_timer_sync(&sp->id_timer); | 
|  | 3295 |  | 
|  | 3296 | if (CARDS_WITH_FAULTY_LINK_INDICATORS(subid)) { | 
|  | 3297 | writeq(last_gpio_ctrl_val, &bar0->gpio_control); | 
|  | 3298 | last_gpio_ctrl_val = readq(&bar0->gpio_control); | 
|  | 3299 | } | 
|  | 3300 |  | 
|  | 3301 | return 0; | 
|  | 3302 | } | 
|  | 3303 |  | 
|  | 3304 | /** | 
|  | 3305 | * s2io_ethtool_getpause_data -Pause frame frame generation and reception. | 
|  | 3306 | * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure. | 
|  | 3307 | * @ep : pointer to the structure with pause parameters given by ethtool. | 
|  | 3308 | * Description: | 
|  | 3309 | * Returns the Pause frame generation and reception capability of the NIC. | 
|  | 3310 | * Return value: | 
|  | 3311 | *  void | 
|  | 3312 | */ | 
|  | 3313 | static void s2io_ethtool_getpause_data(struct net_device *dev, | 
|  | 3314 | struct ethtool_pauseparam *ep) | 
|  | 3315 | { | 
|  | 3316 | u64 val64; | 
|  | 3317 | nic_t *sp = dev->priv; | 
|  | 3318 | XENA_dev_config_t __iomem *bar0 = sp->bar0; | 
|  | 3319 |  | 
|  | 3320 | val64 = readq(&bar0->rmac_pause_cfg); | 
|  | 3321 | if (val64 & RMAC_PAUSE_GEN_ENABLE) | 
|  | 3322 | ep->tx_pause = TRUE; | 
|  | 3323 | if (val64 & RMAC_PAUSE_RX_ENABLE) | 
|  | 3324 | ep->rx_pause = TRUE; | 
|  | 3325 | ep->autoneg = FALSE; | 
|  | 3326 | } | 
|  | 3327 |  | 
|  | 3328 | /** | 
|  | 3329 | * s2io_ethtool_setpause_data -  set/reset pause frame generation. | 
|  | 3330 | * @sp : private member of the device structure, which is a pointer to the | 
|  | 3331 | *      s2io_nic structure. | 
|  | 3332 | * @ep : pointer to the structure with pause parameters given by ethtool. | 
|  | 3333 | * Description: | 
|  | 3334 | * It can be used to set or reset Pause frame generation or reception | 
|  | 3335 | * support of the NIC. | 
|  | 3336 | * Return value: | 
|  | 3337 | * int, returns 0 on Success | 
|  | 3338 | */ | 
|  | 3339 |  | 
|  | 3340 | static int s2io_ethtool_setpause_data(struct net_device *dev, | 
|  | 3341 | struct ethtool_pauseparam *ep) | 
|  | 3342 | { | 
|  | 3343 | u64 val64; | 
|  | 3344 | nic_t *sp = dev->priv; | 
|  | 3345 | XENA_dev_config_t __iomem *bar0 = sp->bar0; | 
|  | 3346 |  | 
|  | 3347 | val64 = readq(&bar0->rmac_pause_cfg); | 
|  | 3348 | if (ep->tx_pause) | 
|  | 3349 | val64 |= RMAC_PAUSE_GEN_ENABLE; | 
|  | 3350 | else | 
|  | 3351 | val64 &= ~RMAC_PAUSE_GEN_ENABLE; | 
|  | 3352 | if (ep->rx_pause) | 
|  | 3353 | val64 |= RMAC_PAUSE_RX_ENABLE; | 
|  | 3354 | else | 
|  | 3355 | val64 &= ~RMAC_PAUSE_RX_ENABLE; | 
|  | 3356 | writeq(val64, &bar0->rmac_pause_cfg); | 
|  | 3357 | return 0; | 
|  | 3358 | } | 
|  | 3359 |  | 
|  | 3360 | /** | 
|  | 3361 | * read_eeprom - reads 4 bytes of data from user given offset. | 
|  | 3362 | * @sp : private member of the device structure, which is a pointer to the | 
|  | 3363 | *      s2io_nic structure. | 
|  | 3364 | * @off : offset at which the data must be written | 
|  | 3365 | * @data : Its an output parameter where the data read at the given | 
|  | 3366 | * 	offset is stored. | 
|  | 3367 | * Description: | 
|  | 3368 | * Will read 4 bytes of data from the user given offset and return the | 
|  | 3369 | * read data. | 
|  | 3370 | * NOTE: Will allow to read only part of the EEPROM visible through the | 
|  | 3371 | *   I2C bus. | 
|  | 3372 | * Return value: | 
|  | 3373 | *  -1 on failure and 0 on success. | 
|  | 3374 | */ | 
|  | 3375 |  | 
|  | 3376 | #define S2IO_DEV_ID		5 | 
|  | 3377 | static int read_eeprom(nic_t * sp, int off, u32 * data) | 
|  | 3378 | { | 
|  | 3379 | int ret = -1; | 
|  | 3380 | u32 exit_cnt = 0; | 
|  | 3381 | u64 val64; | 
|  | 3382 | XENA_dev_config_t __iomem *bar0 = sp->bar0; | 
|  | 3383 |  | 
|  | 3384 | val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) | | 
|  | 3385 | I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ | | 
|  | 3386 | I2C_CONTROL_CNTL_START; | 
|  | 3387 | SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF); | 
|  | 3388 |  | 
|  | 3389 | while (exit_cnt < 5) { | 
|  | 3390 | val64 = readq(&bar0->i2c_control); | 
|  | 3391 | if (I2C_CONTROL_CNTL_END(val64)) { | 
|  | 3392 | *data = I2C_CONTROL_GET_DATA(val64); | 
|  | 3393 | ret = 0; | 
|  | 3394 | break; | 
|  | 3395 | } | 
|  | 3396 | msleep(50); | 
|  | 3397 | exit_cnt++; | 
|  | 3398 | } | 
|  | 3399 |  | 
|  | 3400 | return ret; | 
|  | 3401 | } | 
|  | 3402 |  | 
|  | 3403 | /** | 
|  | 3404 | *  write_eeprom - actually writes the relevant part of the data value. | 
|  | 3405 | *  @sp : private member of the device structure, which is a pointer to the | 
|  | 3406 | *       s2io_nic structure. | 
|  | 3407 | *  @off : offset at which the data must be written | 
|  | 3408 | *  @data : The data that is to be written | 
|  | 3409 | *  @cnt : Number of bytes of the data that are actually to be written into | 
|  | 3410 | *  the Eeprom. (max of 3) | 
|  | 3411 | * Description: | 
|  | 3412 | *  Actually writes the relevant part of the data value into the Eeprom | 
|  | 3413 | *  through the I2C bus. | 
|  | 3414 | * Return value: | 
|  | 3415 | *  0 on success, -1 on failure. | 
|  | 3416 | */ | 
|  | 3417 |  | 
|  | 3418 | static int write_eeprom(nic_t * sp, int off, u32 data, int cnt) | 
|  | 3419 | { | 
|  | 3420 | int exit_cnt = 0, ret = -1; | 
|  | 3421 | u64 val64; | 
|  | 3422 | XENA_dev_config_t __iomem *bar0 = sp->bar0; | 
|  | 3423 |  | 
|  | 3424 | val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) | | 
|  | 3425 | I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA(data) | | 
|  | 3426 | I2C_CONTROL_CNTL_START; | 
|  | 3427 | SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF); | 
|  | 3428 |  | 
|  | 3429 | while (exit_cnt < 5) { | 
|  | 3430 | val64 = readq(&bar0->i2c_control); | 
|  | 3431 | if (I2C_CONTROL_CNTL_END(val64)) { | 
|  | 3432 | if (!(val64 & I2C_CONTROL_NACK)) | 
|  | 3433 | ret = 0; | 
|  | 3434 | break; | 
|  | 3435 | } | 
|  | 3436 | msleep(50); | 
|  | 3437 | exit_cnt++; | 
|  | 3438 | } | 
|  | 3439 |  | 
|  | 3440 | return ret; | 
|  | 3441 | } | 
|  | 3442 |  | 
|  | 3443 | /** | 
|  | 3444 | *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom. | 
|  | 3445 | *  @sp : private member of the device structure, which is a pointer to the *       s2io_nic structure. | 
|  | 3446 | *  @eeprom : pointer to the user level structure provided by ethtool, | 
|  | 3447 | *  containing all relevant information. | 
|  | 3448 | *  @data_buf : user defined value to be written into Eeprom. | 
|  | 3449 | *  Description: Reads the values stored in the Eeprom at given offset | 
|  | 3450 | *  for a given length. Stores these values int the input argument data | 
|  | 3451 | *  buffer 'data_buf' and returns these to the caller (ethtool.) | 
|  | 3452 | *  Return value: | 
|  | 3453 | *  int  0 on success | 
|  | 3454 | */ | 
|  | 3455 |  | 
|  | 3456 | static int s2io_ethtool_geeprom(struct net_device *dev, | 
|  | 3457 | struct ethtool_eeprom *eeprom, u8 * data_buf) | 
|  | 3458 | { | 
|  | 3459 | u32 data, i, valid; | 
|  | 3460 | nic_t *sp = dev->priv; | 
|  | 3461 |  | 
|  | 3462 | eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16); | 
|  | 3463 |  | 
|  | 3464 | if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE)) | 
|  | 3465 | eeprom->len = XENA_EEPROM_SPACE - eeprom->offset; | 
|  | 3466 |  | 
|  | 3467 | for (i = 0; i < eeprom->len; i += 4) { | 
|  | 3468 | if (read_eeprom(sp, (eeprom->offset + i), &data)) { | 
|  | 3469 | DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n"); | 
|  | 3470 | return -EFAULT; | 
|  | 3471 | } | 
|  | 3472 | valid = INV(data); | 
|  | 3473 | memcpy((data_buf + i), &valid, 4); | 
|  | 3474 | } | 
|  | 3475 | return 0; | 
|  | 3476 | } | 
|  | 3477 |  | 
|  | 3478 | /** | 
|  | 3479 | *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom | 
|  | 3480 | *  @sp : private member of the device structure, which is a pointer to the | 
|  | 3481 | *  s2io_nic structure. | 
|  | 3482 | *  @eeprom : pointer to the user level structure provided by ethtool, | 
|  | 3483 | *  containing all relevant information. | 
|  | 3484 | *  @data_buf ; user defined value to be written into Eeprom. | 
|  | 3485 | *  Description: | 
|  | 3486 | *  Tries to write the user provided value in the Eeprom, at the offset | 
|  | 3487 | *  given by the user. | 
|  | 3488 | *  Return value: | 
|  | 3489 | *  0 on success, -EFAULT on failure. | 
|  | 3490 | */ | 
|  | 3491 |  | 
|  | 3492 | static int s2io_ethtool_seeprom(struct net_device *dev, | 
|  | 3493 | struct ethtool_eeprom *eeprom, | 
|  | 3494 | u8 * data_buf) | 
|  | 3495 | { | 
|  | 3496 | int len = eeprom->len, cnt = 0; | 
|  | 3497 | u32 valid = 0, data; | 
|  | 3498 | nic_t *sp = dev->priv; | 
|  | 3499 |  | 
|  | 3500 | if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) { | 
|  | 3501 | DBG_PRINT(ERR_DBG, | 
|  | 3502 | "ETHTOOL_WRITE_EEPROM Err: Magic value "); | 
|  | 3503 | DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n", | 
|  | 3504 | eeprom->magic); | 
|  | 3505 | return -EFAULT; | 
|  | 3506 | } | 
|  | 3507 |  | 
|  | 3508 | while (len) { | 
|  | 3509 | data = (u32) data_buf[cnt] & 0x000000FF; | 
|  | 3510 | if (data) { | 
|  | 3511 | valid = (u32) (data << 24); | 
|  | 3512 | } else | 
|  | 3513 | valid = data; | 
|  | 3514 |  | 
|  | 3515 | if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) { | 
|  | 3516 | DBG_PRINT(ERR_DBG, | 
|  | 3517 | "ETHTOOL_WRITE_EEPROM Err: Cannot "); | 
|  | 3518 | DBG_PRINT(ERR_DBG, | 
|  | 3519 | "write into the specified offset\n"); | 
|  | 3520 | return -EFAULT; | 
|  | 3521 | } | 
|  | 3522 | cnt++; | 
|  | 3523 | len--; | 
|  | 3524 | } | 
|  | 3525 |  | 
|  | 3526 | return 0; | 
|  | 3527 | } | 
|  | 3528 |  | 
|  | 3529 | /** | 
|  | 3530 | * s2io_register_test - reads and writes into all clock domains. | 
|  | 3531 | * @sp : private member of the device structure, which is a pointer to the | 
|  | 3532 | * s2io_nic structure. | 
|  | 3533 | * @data : variable that returns the result of each of the test conducted b | 
|  | 3534 | * by the driver. | 
|  | 3535 | * Description: | 
|  | 3536 | * Read and write into all clock domains. The NIC has 3 clock domains, | 
|  | 3537 | * see that registers in all the three regions are accessible. | 
|  | 3538 | * Return value: | 
|  | 3539 | * 0 on success. | 
|  | 3540 | */ | 
|  | 3541 |  | 
|  | 3542 | static int s2io_register_test(nic_t * sp, uint64_t * data) | 
|  | 3543 | { | 
|  | 3544 | XENA_dev_config_t __iomem *bar0 = sp->bar0; | 
|  | 3545 | u64 val64 = 0; | 
|  | 3546 | int fail = 0; | 
|  | 3547 |  | 
|  | 3548 | val64 = readq(&bar0->pcc_enable); | 
|  | 3549 | if (val64 != 0xff00000000000000ULL) { | 
|  | 3550 | fail = 1; | 
|  | 3551 | DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n"); | 
|  | 3552 | } | 
|  | 3553 |  | 
|  | 3554 | val64 = readq(&bar0->rmac_pause_cfg); | 
|  | 3555 | if (val64 != 0xc000ffff00000000ULL) { | 
|  | 3556 | fail = 1; | 
|  | 3557 | DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n"); | 
|  | 3558 | } | 
|  | 3559 |  | 
|  | 3560 | val64 = readq(&bar0->rx_queue_cfg); | 
|  | 3561 | if (val64 != 0x0808080808080808ULL) { | 
|  | 3562 | fail = 1; | 
|  | 3563 | DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n"); | 
|  | 3564 | } | 
|  | 3565 |  | 
|  | 3566 | val64 = readq(&bar0->xgxs_efifo_cfg); | 
|  | 3567 | if (val64 != 0x000000001923141EULL) { | 
|  | 3568 | fail = 1; | 
|  | 3569 | DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n"); | 
|  | 3570 | } | 
|  | 3571 |  | 
|  | 3572 | val64 = 0x5A5A5A5A5A5A5A5AULL; | 
|  | 3573 | writeq(val64, &bar0->xmsi_data); | 
|  | 3574 | val64 = readq(&bar0->xmsi_data); | 
|  | 3575 | if (val64 != 0x5A5A5A5A5A5A5A5AULL) { | 
|  | 3576 | fail = 1; | 
|  | 3577 | DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n"); | 
|  | 3578 | } | 
|  | 3579 |  | 
|  | 3580 | val64 = 0xA5A5A5A5A5A5A5A5ULL; | 
|  | 3581 | writeq(val64, &bar0->xmsi_data); | 
|  | 3582 | val64 = readq(&bar0->xmsi_data); | 
|  | 3583 | if (val64 != 0xA5A5A5A5A5A5A5A5ULL) { | 
|  | 3584 | fail = 1; | 
|  | 3585 | DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n"); | 
|  | 3586 | } | 
|  | 3587 |  | 
|  | 3588 | *data = fail; | 
|  | 3589 | return 0; | 
|  | 3590 | } | 
|  | 3591 |  | 
|  | 3592 | /** | 
|  | 3593 | * s2io_eeprom_test - to verify that EEprom in the xena can be programmed. | 
|  | 3594 | * @sp : private member of the device structure, which is a pointer to the | 
|  | 3595 | * s2io_nic structure. | 
|  | 3596 | * @data:variable that returns the result of each of the test conducted by | 
|  | 3597 | * the driver. | 
|  | 3598 | * Description: | 
|  | 3599 | * Verify that EEPROM in the xena can be programmed using I2C_CONTROL | 
|  | 3600 | * register. | 
|  | 3601 | * Return value: | 
|  | 3602 | * 0 on success. | 
|  | 3603 | */ | 
|  | 3604 |  | 
|  | 3605 | static int s2io_eeprom_test(nic_t * sp, uint64_t * data) | 
|  | 3606 | { | 
|  | 3607 | int fail = 0; | 
|  | 3608 | u32 ret_data; | 
|  | 3609 |  | 
|  | 3610 | /* Test Write Error at offset 0 */ | 
|  | 3611 | if (!write_eeprom(sp, 0, 0, 3)) | 
|  | 3612 | fail = 1; | 
|  | 3613 |  | 
|  | 3614 | /* Test Write at offset 4f0 */ | 
|  | 3615 | if (write_eeprom(sp, 0x4F0, 0x01234567, 3)) | 
|  | 3616 | fail = 1; | 
|  | 3617 | if (read_eeprom(sp, 0x4F0, &ret_data)) | 
|  | 3618 | fail = 1; | 
|  | 3619 |  | 
|  | 3620 | if (ret_data != 0x01234567) | 
|  | 3621 | fail = 1; | 
|  | 3622 |  | 
|  | 3623 | /* Reset the EEPROM data go FFFF */ | 
|  | 3624 | write_eeprom(sp, 0x4F0, 0xFFFFFFFF, 3); | 
|  | 3625 |  | 
|  | 3626 | /* Test Write Request Error at offset 0x7c */ | 
|  | 3627 | if (!write_eeprom(sp, 0x07C, 0, 3)) | 
|  | 3628 | fail = 1; | 
|  | 3629 |  | 
|  | 3630 | /* Test Write Request at offset 0x7fc */ | 
|  | 3631 | if (write_eeprom(sp, 0x7FC, 0x01234567, 3)) | 
|  | 3632 | fail = 1; | 
|  | 3633 | if (read_eeprom(sp, 0x7FC, &ret_data)) | 
|  | 3634 | fail = 1; | 
|  | 3635 |  | 
|  | 3636 | if (ret_data != 0x01234567) | 
|  | 3637 | fail = 1; | 
|  | 3638 |  | 
|  | 3639 | /* Reset the EEPROM data go FFFF */ | 
|  | 3640 | write_eeprom(sp, 0x7FC, 0xFFFFFFFF, 3); | 
|  | 3641 |  | 
|  | 3642 | /* Test Write Error at offset 0x80 */ | 
|  | 3643 | if (!write_eeprom(sp, 0x080, 0, 3)) | 
|  | 3644 | fail = 1; | 
|  | 3645 |  | 
|  | 3646 | /* Test Write Error at offset 0xfc */ | 
|  | 3647 | if (!write_eeprom(sp, 0x0FC, 0, 3)) | 
|  | 3648 | fail = 1; | 
|  | 3649 |  | 
|  | 3650 | /* Test Write Error at offset 0x100 */ | 
|  | 3651 | if (!write_eeprom(sp, 0x100, 0, 3)) | 
|  | 3652 | fail = 1; | 
|  | 3653 |  | 
|  | 3654 | /* Test Write Error at offset 4ec */ | 
|  | 3655 | if (!write_eeprom(sp, 0x4EC, 0, 3)) | 
|  | 3656 | fail = 1; | 
|  | 3657 |  | 
|  | 3658 | *data = fail; | 
|  | 3659 | return 0; | 
|  | 3660 | } | 
|  | 3661 |  | 
|  | 3662 | /** | 
|  | 3663 | * s2io_bist_test - invokes the MemBist test of the card . | 
|  | 3664 | * @sp : private member of the device structure, which is a pointer to the | 
|  | 3665 | * s2io_nic structure. | 
|  | 3666 | * @data:variable that returns the result of each of the test conducted by | 
|  | 3667 | * the driver. | 
|  | 3668 | * Description: | 
|  | 3669 | * This invokes the MemBist test of the card. We give around | 
|  | 3670 | * 2 secs time for the Test to complete. If it's still not complete | 
|  | 3671 | * within this peiod, we consider that the test failed. | 
|  | 3672 | * Return value: | 
|  | 3673 | * 0 on success and -1 on failure. | 
|  | 3674 | */ | 
|  | 3675 |  | 
|  | 3676 | static int s2io_bist_test(nic_t * sp, uint64_t * data) | 
|  | 3677 | { | 
|  | 3678 | u8 bist = 0; | 
|  | 3679 | int cnt = 0, ret = -1; | 
|  | 3680 |  | 
|  | 3681 | pci_read_config_byte(sp->pdev, PCI_BIST, &bist); | 
|  | 3682 | bist |= PCI_BIST_START; | 
|  | 3683 | pci_write_config_word(sp->pdev, PCI_BIST, bist); | 
|  | 3684 |  | 
|  | 3685 | while (cnt < 20) { | 
|  | 3686 | pci_read_config_byte(sp->pdev, PCI_BIST, &bist); | 
|  | 3687 | if (!(bist & PCI_BIST_START)) { | 
|  | 3688 | *data = (bist & PCI_BIST_CODE_MASK); | 
|  | 3689 | ret = 0; | 
|  | 3690 | break; | 
|  | 3691 | } | 
|  | 3692 | msleep(100); | 
|  | 3693 | cnt++; | 
|  | 3694 | } | 
|  | 3695 |  | 
|  | 3696 | return ret; | 
|  | 3697 | } | 
|  | 3698 |  | 
|  | 3699 | /** | 
|  | 3700 | * s2io-link_test - verifies the link state of the nic | 
|  | 3701 | * @sp ; private member of the device structure, which is a pointer to the | 
|  | 3702 | * s2io_nic structure. | 
|  | 3703 | * @data: variable that returns the result of each of the test conducted by | 
|  | 3704 | * the driver. | 
|  | 3705 | * Description: | 
|  | 3706 | * The function verifies the link state of the NIC and updates the input | 
|  | 3707 | * argument 'data' appropriately. | 
|  | 3708 | * Return value: | 
|  | 3709 | * 0 on success. | 
|  | 3710 | */ | 
|  | 3711 |  | 
|  | 3712 | static int s2io_link_test(nic_t * sp, uint64_t * data) | 
|  | 3713 | { | 
|  | 3714 | XENA_dev_config_t __iomem *bar0 = sp->bar0; | 
|  | 3715 | u64 val64; | 
|  | 3716 |  | 
|  | 3717 | val64 = readq(&bar0->adapter_status); | 
|  | 3718 | if (val64 & ADAPTER_STATUS_RMAC_LOCAL_FAULT) | 
|  | 3719 | *data = 1; | 
|  | 3720 |  | 
|  | 3721 | return 0; | 
|  | 3722 | } | 
|  | 3723 |  | 
|  | 3724 | /** | 
|  | 3725 | * s2io_rldram_test - offline test for access to the RldRam chip on the NIC | 
|  | 3726 | * @sp - private member of the device structure, which is a pointer to the | 
|  | 3727 | * s2io_nic structure. | 
|  | 3728 | * @data - variable that returns the result of each of the test | 
|  | 3729 | * conducted by the driver. | 
|  | 3730 | * Description: | 
|  | 3731 | *  This is one of the offline test that tests the read and write | 
|  | 3732 | *  access to the RldRam chip on the NIC. | 
|  | 3733 | * Return value: | 
|  | 3734 | *  0 on success. | 
|  | 3735 | */ | 
|  | 3736 |  | 
|  | 3737 | static int s2io_rldram_test(nic_t * sp, uint64_t * data) | 
|  | 3738 | { | 
|  | 3739 | XENA_dev_config_t __iomem *bar0 = sp->bar0; | 
|  | 3740 | u64 val64; | 
|  | 3741 | int cnt, iteration = 0, test_pass = 0; | 
|  | 3742 |  | 
|  | 3743 | val64 = readq(&bar0->adapter_control); | 
|  | 3744 | val64 &= ~ADAPTER_ECC_EN; | 
|  | 3745 | writeq(val64, &bar0->adapter_control); | 
|  | 3746 |  | 
|  | 3747 | val64 = readq(&bar0->mc_rldram_test_ctrl); | 
|  | 3748 | val64 |= MC_RLDRAM_TEST_MODE; | 
|  | 3749 | writeq(val64, &bar0->mc_rldram_test_ctrl); | 
|  | 3750 |  | 
|  | 3751 | val64 = readq(&bar0->mc_rldram_mrs); | 
|  | 3752 | val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE; | 
|  | 3753 | SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); | 
|  | 3754 |  | 
|  | 3755 | val64 |= MC_RLDRAM_MRS_ENABLE; | 
|  | 3756 | SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); | 
|  | 3757 |  | 
|  | 3758 | while (iteration < 2) { | 
|  | 3759 | val64 = 0x55555555aaaa0000ULL; | 
|  | 3760 | if (iteration == 1) { | 
|  | 3761 | val64 ^= 0xFFFFFFFFFFFF0000ULL; | 
|  | 3762 | } | 
|  | 3763 | writeq(val64, &bar0->mc_rldram_test_d0); | 
|  | 3764 |  | 
|  | 3765 | val64 = 0xaaaa5a5555550000ULL; | 
|  | 3766 | if (iteration == 1) { | 
|  | 3767 | val64 ^= 0xFFFFFFFFFFFF0000ULL; | 
|  | 3768 | } | 
|  | 3769 | writeq(val64, &bar0->mc_rldram_test_d1); | 
|  | 3770 |  | 
|  | 3771 | val64 = 0x55aaaaaaaa5a0000ULL; | 
|  | 3772 | if (iteration == 1) { | 
|  | 3773 | val64 ^= 0xFFFFFFFFFFFF0000ULL; | 
|  | 3774 | } | 
|  | 3775 | writeq(val64, &bar0->mc_rldram_test_d2); | 
|  | 3776 |  | 
|  | 3777 | val64 = (u64) (0x0000003fffff0000ULL); | 
|  | 3778 | writeq(val64, &bar0->mc_rldram_test_add); | 
|  | 3779 |  | 
|  | 3780 |  | 
|  | 3781 | val64 = MC_RLDRAM_TEST_MODE; | 
|  | 3782 | writeq(val64, &bar0->mc_rldram_test_ctrl); | 
|  | 3783 |  | 
|  | 3784 | val64 |= | 
|  | 3785 | MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE | | 
|  | 3786 | MC_RLDRAM_TEST_GO; | 
|  | 3787 | writeq(val64, &bar0->mc_rldram_test_ctrl); | 
|  | 3788 |  | 
|  | 3789 | for (cnt = 0; cnt < 5; cnt++) { | 
|  | 3790 | val64 = readq(&bar0->mc_rldram_test_ctrl); | 
|  | 3791 | if (val64 & MC_RLDRAM_TEST_DONE) | 
|  | 3792 | break; | 
|  | 3793 | msleep(200); | 
|  | 3794 | } | 
|  | 3795 |  | 
|  | 3796 | if (cnt == 5) | 
|  | 3797 | break; | 
|  | 3798 |  | 
|  | 3799 | val64 = MC_RLDRAM_TEST_MODE; | 
|  | 3800 | writeq(val64, &bar0->mc_rldram_test_ctrl); | 
|  | 3801 |  | 
|  | 3802 | val64 |= MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO; | 
|  | 3803 | writeq(val64, &bar0->mc_rldram_test_ctrl); | 
|  | 3804 |  | 
|  | 3805 | for (cnt = 0; cnt < 5; cnt++) { | 
|  | 3806 | val64 = readq(&bar0->mc_rldram_test_ctrl); | 
|  | 3807 | if (val64 & MC_RLDRAM_TEST_DONE) | 
|  | 3808 | break; | 
|  | 3809 | msleep(500); | 
|  | 3810 | } | 
|  | 3811 |  | 
|  | 3812 | if (cnt == 5) | 
|  | 3813 | break; | 
|  | 3814 |  | 
|  | 3815 | val64 = readq(&bar0->mc_rldram_test_ctrl); | 
|  | 3816 | if (val64 & MC_RLDRAM_TEST_PASS) | 
|  | 3817 | test_pass = 1; | 
|  | 3818 |  | 
|  | 3819 | iteration++; | 
|  | 3820 | } | 
|  | 3821 |  | 
|  | 3822 | if (!test_pass) | 
|  | 3823 | *data = 1; | 
|  | 3824 | else | 
|  | 3825 | *data = 0; | 
|  | 3826 |  | 
|  | 3827 | return 0; | 
|  | 3828 | } | 
|  | 3829 |  | 
|  | 3830 | /** | 
|  | 3831 | *  s2io_ethtool_test - conducts 6 tsets to determine the health of card. | 
|  | 3832 | *  @sp : private member of the device structure, which is a pointer to the | 
|  | 3833 | *  s2io_nic structure. | 
|  | 3834 | *  @ethtest : pointer to a ethtool command specific structure that will be | 
|  | 3835 | *  returned to the user. | 
|  | 3836 | *  @data : variable that returns the result of each of the test | 
|  | 3837 | * conducted by the driver. | 
|  | 3838 | * Description: | 
|  | 3839 | *  This function conducts 6 tests ( 4 offline and 2 online) to determine | 
|  | 3840 | *  the health of the card. | 
|  | 3841 | * Return value: | 
|  | 3842 | *  void | 
|  | 3843 | */ | 
|  | 3844 |  | 
|  | 3845 | static void s2io_ethtool_test(struct net_device *dev, | 
|  | 3846 | struct ethtool_test *ethtest, | 
|  | 3847 | uint64_t * data) | 
|  | 3848 | { | 
|  | 3849 | nic_t *sp = dev->priv; | 
|  | 3850 | int orig_state = netif_running(sp->dev); | 
|  | 3851 |  | 
|  | 3852 | if (ethtest->flags == ETH_TEST_FL_OFFLINE) { | 
|  | 3853 | /* Offline Tests. */ | 
|  | 3854 | if (orig_state) { | 
|  | 3855 | s2io_close(sp->dev); | 
|  | 3856 | s2io_set_swapper(sp); | 
|  | 3857 | } else | 
|  | 3858 | s2io_set_swapper(sp); | 
|  | 3859 |  | 
|  | 3860 | if (s2io_register_test(sp, &data[0])) | 
|  | 3861 | ethtest->flags |= ETH_TEST_FL_FAILED; | 
|  | 3862 |  | 
|  | 3863 | s2io_reset(sp); | 
|  | 3864 | s2io_set_swapper(sp); | 
|  | 3865 |  | 
|  | 3866 | if (s2io_rldram_test(sp, &data[3])) | 
|  | 3867 | ethtest->flags |= ETH_TEST_FL_FAILED; | 
|  | 3868 |  | 
|  | 3869 | s2io_reset(sp); | 
|  | 3870 | s2io_set_swapper(sp); | 
|  | 3871 |  | 
|  | 3872 | if (s2io_eeprom_test(sp, &data[1])) | 
|  | 3873 | ethtest->flags |= ETH_TEST_FL_FAILED; | 
|  | 3874 |  | 
|  | 3875 | if (s2io_bist_test(sp, &data[4])) | 
|  | 3876 | ethtest->flags |= ETH_TEST_FL_FAILED; | 
|  | 3877 |  | 
|  | 3878 | if (orig_state) | 
|  | 3879 | s2io_open(sp->dev); | 
|  | 3880 |  | 
|  | 3881 | data[2] = 0; | 
|  | 3882 | } else { | 
|  | 3883 | /* Online Tests. */ | 
|  | 3884 | if (!orig_state) { | 
|  | 3885 | DBG_PRINT(ERR_DBG, | 
|  | 3886 | "%s: is not up, cannot run test\n", | 
|  | 3887 | dev->name); | 
|  | 3888 | data[0] = -1; | 
|  | 3889 | data[1] = -1; | 
|  | 3890 | data[2] = -1; | 
|  | 3891 | data[3] = -1; | 
|  | 3892 | data[4] = -1; | 
|  | 3893 | } | 
|  | 3894 |  | 
|  | 3895 | if (s2io_link_test(sp, &data[2])) | 
|  | 3896 | ethtest->flags |= ETH_TEST_FL_FAILED; | 
|  | 3897 |  | 
|  | 3898 | data[0] = 0; | 
|  | 3899 | data[1] = 0; | 
|  | 3900 | data[3] = 0; | 
|  | 3901 | data[4] = 0; | 
|  | 3902 | } | 
|  | 3903 | } | 
|  | 3904 |  | 
|  | 3905 | static void s2io_get_ethtool_stats(struct net_device *dev, | 
|  | 3906 | struct ethtool_stats *estats, | 
|  | 3907 | u64 * tmp_stats) | 
|  | 3908 | { | 
|  | 3909 | int i = 0; | 
|  | 3910 | nic_t *sp = dev->priv; | 
|  | 3911 | StatInfo_t *stat_info = sp->mac_control.stats_info; | 
|  | 3912 |  | 
|  | 3913 | tmp_stats[i++] = le32_to_cpu(stat_info->tmac_frms); | 
|  | 3914 | tmp_stats[i++] = le32_to_cpu(stat_info->tmac_data_octets); | 
|  | 3915 | tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms); | 
|  | 3916 | tmp_stats[i++] = le32_to_cpu(stat_info->tmac_mcst_frms); | 
|  | 3917 | tmp_stats[i++] = le32_to_cpu(stat_info->tmac_bcst_frms); | 
|  | 3918 | tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms); | 
|  | 3919 | tmp_stats[i++] = le32_to_cpu(stat_info->tmac_any_err_frms); | 
|  | 3920 | tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets); | 
|  | 3921 | tmp_stats[i++] = le32_to_cpu(stat_info->tmac_vld_ip); | 
|  | 3922 | tmp_stats[i++] = le32_to_cpu(stat_info->tmac_drop_ip); | 
|  | 3923 | tmp_stats[i++] = le32_to_cpu(stat_info->tmac_icmp); | 
|  | 3924 | tmp_stats[i++] = le32_to_cpu(stat_info->tmac_rst_tcp); | 
|  | 3925 | tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp); | 
|  | 3926 | tmp_stats[i++] = le32_to_cpu(stat_info->tmac_udp); | 
|  | 3927 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_vld_frms); | 
|  | 3928 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_data_octets); | 
|  | 3929 | tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms); | 
|  | 3930 | tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms); | 
|  | 3931 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_vld_mcst_frms); | 
|  | 3932 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_vld_bcst_frms); | 
|  | 3933 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms); | 
|  | 3934 | tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms); | 
|  | 3935 | tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms); | 
|  | 3936 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_discarded_frms); | 
|  | 3937 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_usized_frms); | 
|  | 3938 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_osized_frms); | 
|  | 3939 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_frag_frms); | 
|  | 3940 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_jabber_frms); | 
|  | 3941 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ip); | 
|  | 3942 | tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets); | 
|  | 3943 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip); | 
|  | 3944 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_drop_ip); | 
|  | 3945 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_icmp); | 
|  | 3946 | tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp); | 
|  | 3947 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_udp); | 
|  | 3948 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_drp_udp); | 
|  | 3949 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pause_cnt); | 
|  | 3950 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_accepted_ip); | 
|  | 3951 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp); | 
|  | 3952 | } | 
|  | 3953 |  | 
|  | 3954 | static int s2io_ethtool_get_regs_len(struct net_device *dev) | 
|  | 3955 | { | 
|  | 3956 | return (XENA_REG_SPACE); | 
|  | 3957 | } | 
|  | 3958 |  | 
|  | 3959 |  | 
|  | 3960 | static u32 s2io_ethtool_get_rx_csum(struct net_device * dev) | 
|  | 3961 | { | 
|  | 3962 | nic_t *sp = dev->priv; | 
|  | 3963 |  | 
|  | 3964 | return (sp->rx_csum); | 
|  | 3965 | } | 
|  | 3966 |  | 
|  | 3967 | static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data) | 
|  | 3968 | { | 
|  | 3969 | nic_t *sp = dev->priv; | 
|  | 3970 |  | 
|  | 3971 | if (data) | 
|  | 3972 | sp->rx_csum = 1; | 
|  | 3973 | else | 
|  | 3974 | sp->rx_csum = 0; | 
|  | 3975 |  | 
|  | 3976 | return 0; | 
|  | 3977 | } | 
|  | 3978 |  | 
|  | 3979 | static int s2io_get_eeprom_len(struct net_device *dev) | 
|  | 3980 | { | 
|  | 3981 | return (XENA_EEPROM_SPACE); | 
|  | 3982 | } | 
|  | 3983 |  | 
|  | 3984 | static int s2io_ethtool_self_test_count(struct net_device *dev) | 
|  | 3985 | { | 
|  | 3986 | return (S2IO_TEST_LEN); | 
|  | 3987 | } | 
|  | 3988 |  | 
|  | 3989 | static void s2io_ethtool_get_strings(struct net_device *dev, | 
|  | 3990 | u32 stringset, u8 * data) | 
|  | 3991 | { | 
|  | 3992 | switch (stringset) { | 
|  | 3993 | case ETH_SS_TEST: | 
|  | 3994 | memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN); | 
|  | 3995 | break; | 
|  | 3996 | case ETH_SS_STATS: | 
|  | 3997 | memcpy(data, ðtool_stats_keys, | 
|  | 3998 | sizeof(ethtool_stats_keys)); | 
|  | 3999 | } | 
|  | 4000 | } | 
|  | 4001 |  | 
|  | 4002 | static int s2io_ethtool_get_stats_count(struct net_device *dev) | 
|  | 4003 | { | 
|  | 4004 | return (S2IO_STAT_LEN); | 
|  | 4005 | } | 
|  | 4006 |  | 
|  | 4007 | static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data) | 
|  | 4008 | { | 
|  | 4009 | if (data) | 
|  | 4010 | dev->features |= NETIF_F_IP_CSUM; | 
|  | 4011 | else | 
|  | 4012 | dev->features &= ~NETIF_F_IP_CSUM; | 
|  | 4013 |  | 
|  | 4014 | return 0; | 
|  | 4015 | } | 
|  | 4016 |  | 
|  | 4017 |  | 
|  | 4018 | static struct ethtool_ops netdev_ethtool_ops = { | 
|  | 4019 | .get_settings = s2io_ethtool_gset, | 
|  | 4020 | .set_settings = s2io_ethtool_sset, | 
|  | 4021 | .get_drvinfo = s2io_ethtool_gdrvinfo, | 
|  | 4022 | .get_regs_len = s2io_ethtool_get_regs_len, | 
|  | 4023 | .get_regs = s2io_ethtool_gregs, | 
|  | 4024 | .get_link = ethtool_op_get_link, | 
|  | 4025 | .get_eeprom_len = s2io_get_eeprom_len, | 
|  | 4026 | .get_eeprom = s2io_ethtool_geeprom, | 
|  | 4027 | .set_eeprom = s2io_ethtool_seeprom, | 
|  | 4028 | .get_pauseparam = s2io_ethtool_getpause_data, | 
|  | 4029 | .set_pauseparam = s2io_ethtool_setpause_data, | 
|  | 4030 | .get_rx_csum = s2io_ethtool_get_rx_csum, | 
|  | 4031 | .set_rx_csum = s2io_ethtool_set_rx_csum, | 
|  | 4032 | .get_tx_csum = ethtool_op_get_tx_csum, | 
|  | 4033 | .set_tx_csum = s2io_ethtool_op_set_tx_csum, | 
|  | 4034 | .get_sg = ethtool_op_get_sg, | 
|  | 4035 | .set_sg = ethtool_op_set_sg, | 
|  | 4036 | #ifdef NETIF_F_TSO | 
|  | 4037 | .get_tso = ethtool_op_get_tso, | 
|  | 4038 | .set_tso = ethtool_op_set_tso, | 
|  | 4039 | #endif | 
|  | 4040 | .self_test_count = s2io_ethtool_self_test_count, | 
|  | 4041 | .self_test = s2io_ethtool_test, | 
|  | 4042 | .get_strings = s2io_ethtool_get_strings, | 
|  | 4043 | .phys_id = s2io_ethtool_idnic, | 
|  | 4044 | .get_stats_count = s2io_ethtool_get_stats_count, | 
|  | 4045 | .get_ethtool_stats = s2io_get_ethtool_stats | 
|  | 4046 | }; | 
|  | 4047 |  | 
|  | 4048 | /** | 
|  | 4049 | *  s2io_ioctl - Entry point for the Ioctl | 
|  | 4050 | *  @dev :  Device pointer. | 
|  | 4051 | *  @ifr :  An IOCTL specefic structure, that can contain a pointer to | 
|  | 4052 | *  a proprietary structure used to pass information to the driver. | 
|  | 4053 | *  @cmd :  This is used to distinguish between the different commands that | 
|  | 4054 | *  can be passed to the IOCTL functions. | 
|  | 4055 | *  Description: | 
|  | 4056 | *  This function has support for ethtool, adding multiple MAC addresses on | 
|  | 4057 | *  the NIC and some DBG commands for the util tool. | 
|  | 4058 | *  Return value: | 
|  | 4059 | *  Currently the IOCTL supports no operations, hence by default this | 
|  | 4060 | *  function returns OP NOT SUPPORTED value. | 
|  | 4061 | */ | 
|  | 4062 |  | 
|  | 4063 | static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) | 
|  | 4064 | { | 
|  | 4065 | return -EOPNOTSUPP; | 
|  | 4066 | } | 
|  | 4067 |  | 
|  | 4068 | /** | 
|  | 4069 | *  s2io_change_mtu - entry point to change MTU size for the device. | 
|  | 4070 | *   @dev : device pointer. | 
|  | 4071 | *   @new_mtu : the new MTU size for the device. | 
|  | 4072 | *   Description: A driver entry point to change MTU size for the device. | 
|  | 4073 | *   Before changing the MTU the device must be stopped. | 
|  | 4074 | *  Return value: | 
|  | 4075 | *   0 on success and an appropriate (-)ve integer as defined in errno.h | 
|  | 4076 | *   file on failure. | 
|  | 4077 | */ | 
|  | 4078 |  | 
|  | 4079 | static int s2io_change_mtu(struct net_device *dev, int new_mtu) | 
|  | 4080 | { | 
|  | 4081 | nic_t *sp = dev->priv; | 
|  | 4082 | XENA_dev_config_t __iomem *bar0 = sp->bar0; | 
|  | 4083 | register u64 val64; | 
|  | 4084 |  | 
|  | 4085 | if (netif_running(dev)) { | 
|  | 4086 | DBG_PRINT(ERR_DBG, "%s: Must be stopped to ", dev->name); | 
|  | 4087 | DBG_PRINT(ERR_DBG, "change its MTU \n"); | 
|  | 4088 | return -EBUSY; | 
|  | 4089 | } | 
|  | 4090 |  | 
|  | 4091 | if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) { | 
|  | 4092 | DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", | 
|  | 4093 | dev->name); | 
|  | 4094 | return -EPERM; | 
|  | 4095 | } | 
|  | 4096 |  | 
|  | 4097 | /* Set the new MTU into the PYLD register of the NIC */ | 
|  | 4098 | val64 = new_mtu; | 
|  | 4099 | writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len); | 
|  | 4100 |  | 
|  | 4101 | dev->mtu = new_mtu; | 
|  | 4102 |  | 
|  | 4103 | return 0; | 
|  | 4104 | } | 
|  | 4105 |  | 
|  | 4106 | /** | 
|  | 4107 | *  s2io_tasklet - Bottom half of the ISR. | 
|  | 4108 | *  @dev_adr : address of the device structure in dma_addr_t format. | 
|  | 4109 | *  Description: | 
|  | 4110 | *  This is the tasklet or the bottom half of the ISR. This is | 
|  | 4111 | *  an extension of the ISR which is scheduled by the scheduler to be run | 
|  | 4112 | *  when the load on the CPU is low. All low priority tasks of the ISR can | 
|  | 4113 | *  be pushed into the tasklet. For now the tasklet is used only to | 
|  | 4114 | *  replenish the Rx buffers in the Rx buffer descriptors. | 
|  | 4115 | *  Return value: | 
|  | 4116 | *  void. | 
|  | 4117 | */ | 
|  | 4118 |  | 
|  | 4119 | static void s2io_tasklet(unsigned long dev_addr) | 
|  | 4120 | { | 
|  | 4121 | struct net_device *dev = (struct net_device *) dev_addr; | 
|  | 4122 | nic_t *sp = dev->priv; | 
|  | 4123 | int i, ret; | 
|  | 4124 | mac_info_t *mac_control; | 
|  | 4125 | struct config_param *config; | 
|  | 4126 |  | 
|  | 4127 | mac_control = &sp->mac_control; | 
|  | 4128 | config = &sp->config; | 
|  | 4129 |  | 
|  | 4130 | if (!TASKLET_IN_USE) { | 
|  | 4131 | for (i = 0; i < config->rx_ring_num; i++) { | 
|  | 4132 | ret = fill_rx_buffers(sp, i); | 
|  | 4133 | if (ret == -ENOMEM) { | 
|  | 4134 | DBG_PRINT(ERR_DBG, "%s: Out of ", | 
|  | 4135 | dev->name); | 
|  | 4136 | DBG_PRINT(ERR_DBG, "memory in tasklet\n"); | 
|  | 4137 | break; | 
|  | 4138 | } else if (ret == -EFILL) { | 
|  | 4139 | DBG_PRINT(ERR_DBG, | 
|  | 4140 | "%s: Rx Ring %d is full\n", | 
|  | 4141 | dev->name, i); | 
|  | 4142 | break; | 
|  | 4143 | } | 
|  | 4144 | } | 
|  | 4145 | clear_bit(0, (&sp->tasklet_status)); | 
|  | 4146 | } | 
|  | 4147 | } | 
|  | 4148 |  | 
|  | 4149 | /** | 
|  | 4150 | * s2io_set_link - Set the LInk status | 
|  | 4151 | * @data: long pointer to device private structue | 
|  | 4152 | * Description: Sets the link status for the adapter | 
|  | 4153 | */ | 
|  | 4154 |  | 
|  | 4155 | static void s2io_set_link(unsigned long data) | 
|  | 4156 | { | 
|  | 4157 | nic_t *nic = (nic_t *) data; | 
|  | 4158 | struct net_device *dev = nic->dev; | 
|  | 4159 | XENA_dev_config_t __iomem *bar0 = nic->bar0; | 
|  | 4160 | register u64 val64; | 
|  | 4161 | u16 subid; | 
|  | 4162 |  | 
|  | 4163 | if (test_and_set_bit(0, &(nic->link_state))) { | 
|  | 4164 | /* The card is being reset, no point doing anything */ | 
|  | 4165 | return; | 
|  | 4166 | } | 
|  | 4167 |  | 
|  | 4168 | subid = nic->pdev->subsystem_device; | 
|  | 4169 | /* | 
|  | 4170 | * Allow a small delay for the NICs self initiated | 
|  | 4171 | * cleanup to complete. | 
|  | 4172 | */ | 
|  | 4173 | msleep(100); | 
|  | 4174 |  | 
|  | 4175 | val64 = readq(&bar0->adapter_status); | 
|  | 4176 | if (verify_xena_quiescence(val64, nic->device_enabled_once)) { | 
|  | 4177 | if (LINK_IS_UP(val64)) { | 
|  | 4178 | val64 = readq(&bar0->adapter_control); | 
|  | 4179 | val64 |= ADAPTER_CNTL_EN; | 
|  | 4180 | writeq(val64, &bar0->adapter_control); | 
|  | 4181 | if (CARDS_WITH_FAULTY_LINK_INDICATORS(subid)) { | 
|  | 4182 | val64 = readq(&bar0->gpio_control); | 
|  | 4183 | val64 |= GPIO_CTRL_GPIO_0; | 
|  | 4184 | writeq(val64, &bar0->gpio_control); | 
|  | 4185 | val64 = readq(&bar0->gpio_control); | 
|  | 4186 | } else { | 
|  | 4187 | val64 |= ADAPTER_LED_ON; | 
|  | 4188 | writeq(val64, &bar0->adapter_control); | 
|  | 4189 | } | 
|  | 4190 | val64 = readq(&bar0->adapter_status); | 
|  | 4191 | if (!LINK_IS_UP(val64)) { | 
|  | 4192 | DBG_PRINT(ERR_DBG, "%s:", dev->name); | 
|  | 4193 | DBG_PRINT(ERR_DBG, " Link down"); | 
|  | 4194 | DBG_PRINT(ERR_DBG, "after "); | 
|  | 4195 | DBG_PRINT(ERR_DBG, "enabling "); | 
|  | 4196 | DBG_PRINT(ERR_DBG, "device \n"); | 
|  | 4197 | } | 
|  | 4198 | if (nic->device_enabled_once == FALSE) { | 
|  | 4199 | nic->device_enabled_once = TRUE; | 
|  | 4200 | } | 
|  | 4201 | s2io_link(nic, LINK_UP); | 
|  | 4202 | } else { | 
|  | 4203 | if (CARDS_WITH_FAULTY_LINK_INDICATORS(subid)) { | 
|  | 4204 | val64 = readq(&bar0->gpio_control); | 
|  | 4205 | val64 &= ~GPIO_CTRL_GPIO_0; | 
|  | 4206 | writeq(val64, &bar0->gpio_control); | 
|  | 4207 | val64 = readq(&bar0->gpio_control); | 
|  | 4208 | } | 
|  | 4209 | s2io_link(nic, LINK_DOWN); | 
|  | 4210 | } | 
|  | 4211 | } else {		/* NIC is not Quiescent. */ | 
|  | 4212 | DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name); | 
|  | 4213 | DBG_PRINT(ERR_DBG, "device is not Quiescent\n"); | 
|  | 4214 | netif_stop_queue(dev); | 
|  | 4215 | } | 
|  | 4216 | clear_bit(0, &(nic->link_state)); | 
|  | 4217 | } | 
|  | 4218 |  | 
|  | 4219 | static void s2io_card_down(nic_t * sp) | 
|  | 4220 | { | 
|  | 4221 | int cnt = 0; | 
|  | 4222 | XENA_dev_config_t __iomem *bar0 = sp->bar0; | 
|  | 4223 | unsigned long flags; | 
|  | 4224 | register u64 val64 = 0; | 
|  | 4225 |  | 
|  | 4226 | /* If s2io_set_link task is executing, wait till it completes. */ | 
|  | 4227 | while (test_and_set_bit(0, &(sp->link_state))) | 
|  | 4228 | msleep(50); | 
|  | 4229 | atomic_set(&sp->card_state, CARD_DOWN); | 
|  | 4230 |  | 
|  | 4231 | /* disable Tx and Rx traffic on the NIC */ | 
|  | 4232 | stop_nic(sp); | 
|  | 4233 |  | 
|  | 4234 | /* Kill tasklet. */ | 
|  | 4235 | tasklet_kill(&sp->task); | 
|  | 4236 |  | 
|  | 4237 | /* Check if the device is Quiescent and then Reset the NIC */ | 
|  | 4238 | do { | 
|  | 4239 | val64 = readq(&bar0->adapter_status); | 
|  | 4240 | if (verify_xena_quiescence(val64, sp->device_enabled_once)) { | 
|  | 4241 | break; | 
|  | 4242 | } | 
|  | 4243 |  | 
|  | 4244 | msleep(50); | 
|  | 4245 | cnt++; | 
|  | 4246 | if (cnt == 10) { | 
|  | 4247 | DBG_PRINT(ERR_DBG, | 
|  | 4248 | "s2io_close:Device not Quiescent "); | 
|  | 4249 | DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n", | 
|  | 4250 | (unsigned long long) val64); | 
|  | 4251 | break; | 
|  | 4252 | } | 
|  | 4253 | } while (1); | 
|  | 4254 | spin_lock_irqsave(&sp->tx_lock, flags); | 
|  | 4255 | s2io_reset(sp); | 
|  | 4256 |  | 
|  | 4257 | /* Free all unused Tx and Rx buffers */ | 
|  | 4258 | free_tx_buffers(sp); | 
|  | 4259 | free_rx_buffers(sp); | 
|  | 4260 |  | 
|  | 4261 | spin_unlock_irqrestore(&sp->tx_lock, flags); | 
|  | 4262 | clear_bit(0, &(sp->link_state)); | 
|  | 4263 | } | 
|  | 4264 |  | 
|  | 4265 | static int s2io_card_up(nic_t * sp) | 
|  | 4266 | { | 
|  | 4267 | int i, ret; | 
|  | 4268 | mac_info_t *mac_control; | 
|  | 4269 | struct config_param *config; | 
|  | 4270 | struct net_device *dev = (struct net_device *) sp->dev; | 
|  | 4271 |  | 
|  | 4272 | /* Initialize the H/W I/O registers */ | 
|  | 4273 | if (init_nic(sp) != 0) { | 
|  | 4274 | DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n", | 
|  | 4275 | dev->name); | 
|  | 4276 | return -ENODEV; | 
|  | 4277 | } | 
|  | 4278 |  | 
|  | 4279 | /* | 
|  | 4280 | * Initializing the Rx buffers. For now we are considering only 1 | 
|  | 4281 | * Rx ring and initializing buffers into 30 Rx blocks | 
|  | 4282 | */ | 
|  | 4283 | mac_control = &sp->mac_control; | 
|  | 4284 | config = &sp->config; | 
|  | 4285 |  | 
|  | 4286 | for (i = 0; i < config->rx_ring_num; i++) { | 
|  | 4287 | if ((ret = fill_rx_buffers(sp, i))) { | 
|  | 4288 | DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n", | 
|  | 4289 | dev->name); | 
|  | 4290 | s2io_reset(sp); | 
|  | 4291 | free_rx_buffers(sp); | 
|  | 4292 | return -ENOMEM; | 
|  | 4293 | } | 
|  | 4294 | DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i, | 
|  | 4295 | atomic_read(&sp->rx_bufs_left[i])); | 
|  | 4296 | } | 
|  | 4297 |  | 
|  | 4298 | /* Setting its receive mode */ | 
|  | 4299 | s2io_set_multicast(dev); | 
|  | 4300 |  | 
|  | 4301 | /* Enable tasklet for the device */ | 
|  | 4302 | tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev); | 
|  | 4303 |  | 
|  | 4304 | /* Enable Rx Traffic and interrupts on the NIC */ | 
|  | 4305 | if (start_nic(sp)) { | 
|  | 4306 | DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name); | 
|  | 4307 | tasklet_kill(&sp->task); | 
|  | 4308 | s2io_reset(sp); | 
|  | 4309 | free_irq(dev->irq, dev); | 
|  | 4310 | free_rx_buffers(sp); | 
|  | 4311 | return -ENODEV; | 
|  | 4312 | } | 
|  | 4313 |  | 
|  | 4314 | atomic_set(&sp->card_state, CARD_UP); | 
|  | 4315 | return 0; | 
|  | 4316 | } | 
|  | 4317 |  | 
|  | 4318 | /** | 
|  | 4319 | * s2io_restart_nic - Resets the NIC. | 
|  | 4320 | * @data : long pointer to the device private structure | 
|  | 4321 | * Description: | 
|  | 4322 | * This function is scheduled to be run by the s2io_tx_watchdog | 
|  | 4323 | * function after 0.5 secs to reset the NIC. The idea is to reduce | 
|  | 4324 | * the run time of the watch dog routine which is run holding a | 
|  | 4325 | * spin lock. | 
|  | 4326 | */ | 
|  | 4327 |  | 
|  | 4328 | static void s2io_restart_nic(unsigned long data) | 
|  | 4329 | { | 
|  | 4330 | struct net_device *dev = (struct net_device *) data; | 
|  | 4331 | nic_t *sp = dev->priv; | 
|  | 4332 |  | 
|  | 4333 | s2io_card_down(sp); | 
|  | 4334 | if (s2io_card_up(sp)) { | 
|  | 4335 | DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", | 
|  | 4336 | dev->name); | 
|  | 4337 | } | 
|  | 4338 | netif_wake_queue(dev); | 
|  | 4339 | DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", | 
|  | 4340 | dev->name); | 
|  | 4341 | } | 
|  | 4342 |  | 
|  | 4343 | /** | 
|  | 4344 | *  s2io_tx_watchdog - Watchdog for transmit side. | 
|  | 4345 | *  @dev : Pointer to net device structure | 
|  | 4346 | *  Description: | 
|  | 4347 | *  This function is triggered if the Tx Queue is stopped | 
|  | 4348 | *  for a pre-defined amount of time when the Interface is still up. | 
|  | 4349 | *  If the Interface is jammed in such a situation, the hardware is | 
|  | 4350 | *  reset (by s2io_close) and restarted again (by s2io_open) to | 
|  | 4351 | *  overcome any problem that might have been caused in the hardware. | 
|  | 4352 | *  Return value: | 
|  | 4353 | *  void | 
|  | 4354 | */ | 
|  | 4355 |  | 
|  | 4356 | static void s2io_tx_watchdog(struct net_device *dev) | 
|  | 4357 | { | 
|  | 4358 | nic_t *sp = dev->priv; | 
|  | 4359 |  | 
|  | 4360 | if (netif_carrier_ok(dev)) { | 
|  | 4361 | schedule_work(&sp->rst_timer_task); | 
|  | 4362 | } | 
|  | 4363 | } | 
|  | 4364 |  | 
|  | 4365 | /** | 
|  | 4366 | *   rx_osm_handler - To perform some OS related operations on SKB. | 
|  | 4367 | *   @sp: private member of the device structure,pointer to s2io_nic structure. | 
|  | 4368 | *   @skb : the socket buffer pointer. | 
|  | 4369 | *   @len : length of the packet | 
|  | 4370 | *   @cksum : FCS checksum of the frame. | 
|  | 4371 | *   @ring_no : the ring from which this RxD was extracted. | 
|  | 4372 | *   Description: | 
|  | 4373 | *   This function is called by the Tx interrupt serivce routine to perform | 
|  | 4374 | *   some OS related operations on the SKB before passing it to the upper | 
|  | 4375 | *   layers. It mainly checks if the checksum is OK, if so adds it to the | 
|  | 4376 | *   SKBs cksum variable, increments the Rx packet count and passes the SKB | 
|  | 4377 | *   to the upper layer. If the checksum is wrong, it increments the Rx | 
|  | 4378 | *   packet error count, frees the SKB and returns error. | 
|  | 4379 | *   Return value: | 
|  | 4380 | *   SUCCESS on success and -1 on failure. | 
|  | 4381 | */ | 
|  | 4382 | #ifndef CONFIG_2BUFF_MODE | 
|  | 4383 | static int rx_osm_handler(nic_t * sp, u16 len, RxD_t * rxdp, int ring_no) | 
|  | 4384 | #else | 
|  | 4385 | static int rx_osm_handler(nic_t * sp, RxD_t * rxdp, int ring_no, | 
|  | 4386 | buffAdd_t * ba) | 
|  | 4387 | #endif | 
|  | 4388 | { | 
|  | 4389 | struct net_device *dev = (struct net_device *) sp->dev; | 
|  | 4390 | struct sk_buff *skb = | 
|  | 4391 | (struct sk_buff *) ((unsigned long) rxdp->Host_Control); | 
|  | 4392 | u16 l3_csum, l4_csum; | 
|  | 4393 | #ifdef CONFIG_2BUFF_MODE | 
|  | 4394 | int buf0_len, buf2_len; | 
|  | 4395 | unsigned char *buff; | 
|  | 4396 | #endif | 
|  | 4397 |  | 
|  | 4398 | l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1); | 
|  | 4399 | if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && (sp->rx_csum)) { | 
|  | 4400 | l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1); | 
|  | 4401 | if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) { | 
|  | 4402 | /* | 
|  | 4403 | * NIC verifies if the Checksum of the received | 
|  | 4404 | * frame is Ok or not and accordingly returns | 
|  | 4405 | * a flag in the RxD. | 
|  | 4406 | */ | 
|  | 4407 | skb->ip_summed = CHECKSUM_UNNECESSARY; | 
|  | 4408 | } else { | 
|  | 4409 | /* | 
|  | 4410 | * Packet with erroneous checksum, let the | 
|  | 4411 | * upper layers deal with it. | 
|  | 4412 | */ | 
|  | 4413 | skb->ip_summed = CHECKSUM_NONE; | 
|  | 4414 | } | 
|  | 4415 | } else { | 
|  | 4416 | skb->ip_summed = CHECKSUM_NONE; | 
|  | 4417 | } | 
|  | 4418 |  | 
|  | 4419 | if (rxdp->Control_1 & RXD_T_CODE) { | 
|  | 4420 | unsigned long long err = rxdp->Control_1 & RXD_T_CODE; | 
|  | 4421 | DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n", | 
|  | 4422 | dev->name, err); | 
|  | 4423 | } | 
|  | 4424 | #ifdef CONFIG_2BUFF_MODE | 
|  | 4425 | buf0_len = RXD_GET_BUFFER0_SIZE(rxdp->Control_2); | 
|  | 4426 | buf2_len = RXD_GET_BUFFER2_SIZE(rxdp->Control_2); | 
|  | 4427 | #endif | 
|  | 4428 |  | 
|  | 4429 | skb->dev = dev; | 
|  | 4430 | #ifndef CONFIG_2BUFF_MODE | 
|  | 4431 | skb_put(skb, len); | 
|  | 4432 | skb->protocol = eth_type_trans(skb, dev); | 
|  | 4433 | #else | 
|  | 4434 | buff = skb_push(skb, buf0_len); | 
|  | 4435 | memcpy(buff, ba->ba_0, buf0_len); | 
|  | 4436 | skb_put(skb, buf2_len); | 
|  | 4437 | skb->protocol = eth_type_trans(skb, dev); | 
|  | 4438 | #endif | 
|  | 4439 |  | 
|  | 4440 | #ifdef CONFIG_S2IO_NAPI | 
|  | 4441 | netif_receive_skb(skb); | 
|  | 4442 | #else | 
|  | 4443 | netif_rx(skb); | 
|  | 4444 | #endif | 
|  | 4445 |  | 
|  | 4446 | dev->last_rx = jiffies; | 
|  | 4447 | sp->rx_pkt_count++; | 
|  | 4448 | sp->stats.rx_packets++; | 
|  | 4449 | #ifndef CONFIG_2BUFF_MODE | 
|  | 4450 | sp->stats.rx_bytes += len; | 
|  | 4451 | #else | 
|  | 4452 | sp->stats.rx_bytes += buf0_len + buf2_len; | 
|  | 4453 | #endif | 
|  | 4454 |  | 
|  | 4455 | atomic_dec(&sp->rx_bufs_left[ring_no]); | 
|  | 4456 | rxdp->Host_Control = 0; | 
|  | 4457 | return SUCCESS; | 
|  | 4458 | } | 
|  | 4459 |  | 
|  | 4460 | /** | 
|  | 4461 | *  s2io_link - stops/starts the Tx queue. | 
|  | 4462 | *  @sp : private member of the device structure, which is a pointer to the | 
|  | 4463 | *  s2io_nic structure. | 
|  | 4464 | *  @link : inidicates whether link is UP/DOWN. | 
|  | 4465 | *  Description: | 
|  | 4466 | *  This function stops/starts the Tx queue depending on whether the link | 
|  | 4467 | *  status of the NIC is is down or up. This is called by the Alarm | 
|  | 4468 | *  interrupt handler whenever a link change interrupt comes up. | 
|  | 4469 | *  Return value: | 
|  | 4470 | *  void. | 
|  | 4471 | */ | 
|  | 4472 |  | 
|  | 4473 | static void s2io_link(nic_t * sp, int link) | 
|  | 4474 | { | 
|  | 4475 | struct net_device *dev = (struct net_device *) sp->dev; | 
|  | 4476 |  | 
|  | 4477 | if (link != sp->last_link_state) { | 
|  | 4478 | if (link == LINK_DOWN) { | 
|  | 4479 | DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name); | 
|  | 4480 | netif_carrier_off(dev); | 
|  | 4481 | } else { | 
|  | 4482 | DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name); | 
|  | 4483 | netif_carrier_on(dev); | 
|  | 4484 | } | 
|  | 4485 | } | 
|  | 4486 | sp->last_link_state = link; | 
|  | 4487 | } | 
|  | 4488 |  | 
|  | 4489 | /** | 
|  | 4490 | *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers . | 
|  | 4491 | *  @sp : private member of the device structure, which is a pointer to the | 
|  | 4492 | *  s2io_nic structure. | 
|  | 4493 | *  Description: | 
|  | 4494 | *  This function initializes a few of the PCI and PCI-X configuration registers | 
|  | 4495 | *  with recommended values. | 
|  | 4496 | *  Return value: | 
|  | 4497 | *  void | 
|  | 4498 | */ | 
|  | 4499 |  | 
|  | 4500 | static void s2io_init_pci(nic_t * sp) | 
|  | 4501 | { | 
|  | 4502 | u16 pci_cmd = 0; | 
|  | 4503 |  | 
|  | 4504 | /* Enable Data Parity Error Recovery in PCI-X command register. */ | 
|  | 4505 | pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, | 
|  | 4506 | &(sp->pcix_cmd)); | 
|  | 4507 | pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, | 
|  | 4508 | (sp->pcix_cmd | 1)); | 
|  | 4509 | pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, | 
|  | 4510 | &(sp->pcix_cmd)); | 
|  | 4511 |  | 
|  | 4512 | /* Set the PErr Response bit in PCI command register. */ | 
|  | 4513 | pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd); | 
|  | 4514 | pci_write_config_word(sp->pdev, PCI_COMMAND, | 
|  | 4515 | (pci_cmd | PCI_COMMAND_PARITY)); | 
|  | 4516 | pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd); | 
|  | 4517 |  | 
|  | 4518 | /* Set MMRB count to 1024 in PCI-X Command register. */ | 
|  | 4519 | sp->pcix_cmd &= 0xFFF3; | 
|  | 4520 | pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, (sp->pcix_cmd | (0x1 << 2)));	/* MMRBC 1K */ | 
|  | 4521 | pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, | 
|  | 4522 | &(sp->pcix_cmd)); | 
|  | 4523 |  | 
|  | 4524 | /*  Setting Maximum outstanding splits based on system type. */ | 
|  | 4525 | sp->pcix_cmd &= 0xFF8F; | 
|  | 4526 |  | 
|  | 4527 | sp->pcix_cmd |= XENA_MAX_OUTSTANDING_SPLITS(0x1);	/* 2 splits. */ | 
|  | 4528 | pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, | 
|  | 4529 | sp->pcix_cmd); | 
|  | 4530 | pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, | 
|  | 4531 | &(sp->pcix_cmd)); | 
|  | 4532 | /* Forcibly disabling relaxed ordering capability of the card. */ | 
|  | 4533 | sp->pcix_cmd &= 0xfffd; | 
|  | 4534 | pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, | 
|  | 4535 | sp->pcix_cmd); | 
|  | 4536 | pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, | 
|  | 4537 | &(sp->pcix_cmd)); | 
|  | 4538 | } | 
|  | 4539 |  | 
|  | 4540 | MODULE_AUTHOR("Raghavendra Koushik <raghavendra.koushik@neterion.com>"); | 
|  | 4541 | MODULE_LICENSE("GPL"); | 
|  | 4542 | module_param(tx_fifo_num, int, 0); | 
|  | 4543 | module_param_array(tx_fifo_len, int, NULL, 0); | 
|  | 4544 | module_param(rx_ring_num, int, 0); | 
|  | 4545 | module_param_array(rx_ring_sz, int, NULL, 0); | 
|  | 4546 | module_param(Stats_refresh_time, int, 0); | 
|  | 4547 | module_param(rmac_pause_time, int, 0); | 
|  | 4548 | module_param(mc_pause_threshold_q0q3, int, 0); | 
|  | 4549 | module_param(mc_pause_threshold_q4q7, int, 0); | 
|  | 4550 | module_param(shared_splits, int, 0); | 
|  | 4551 | module_param(tmac_util_period, int, 0); | 
|  | 4552 | module_param(rmac_util_period, int, 0); | 
|  | 4553 | #ifndef CONFIG_S2IO_NAPI | 
|  | 4554 | module_param(indicate_max_pkts, int, 0); | 
|  | 4555 | #endif | 
|  | 4556 | /** | 
|  | 4557 | *  s2io_init_nic - Initialization of the adapter . | 
|  | 4558 | *  @pdev : structure containing the PCI related information of the device. | 
|  | 4559 | *  @pre: List of PCI devices supported by the driver listed in s2io_tbl. | 
|  | 4560 | *  Description: | 
|  | 4561 | *  The function initializes an adapter identified by the pci_dec structure. | 
|  | 4562 | *  All OS related initialization including memory and device structure and | 
|  | 4563 | *  initlaization of the device private variable is done. Also the swapper | 
|  | 4564 | *  control register is initialized to enable read and write into the I/O | 
|  | 4565 | *  registers of the device. | 
|  | 4566 | *  Return value: | 
|  | 4567 | *  returns 0 on success and negative on failure. | 
|  | 4568 | */ | 
|  | 4569 |  | 
|  | 4570 | static int __devinit | 
|  | 4571 | s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre) | 
|  | 4572 | { | 
|  | 4573 | nic_t *sp; | 
|  | 4574 | struct net_device *dev; | 
|  | 4575 | char *dev_name = "S2IO 10GE NIC"; | 
|  | 4576 | int i, j, ret; | 
|  | 4577 | int dma_flag = FALSE; | 
|  | 4578 | u32 mac_up, mac_down; | 
|  | 4579 | u64 val64 = 0, tmp64 = 0; | 
|  | 4580 | XENA_dev_config_t __iomem *bar0 = NULL; | 
|  | 4581 | u16 subid; | 
|  | 4582 | mac_info_t *mac_control; | 
|  | 4583 | struct config_param *config; | 
|  | 4584 |  | 
|  | 4585 |  | 
|  | 4586 | DBG_PRINT(ERR_DBG, "Loading S2IO driver with %s\n", | 
|  | 4587 | s2io_driver_version); | 
|  | 4588 |  | 
|  | 4589 | if ((ret = pci_enable_device(pdev))) { | 
|  | 4590 | DBG_PRINT(ERR_DBG, | 
|  | 4591 | "s2io_init_nic: pci_enable_device failed\n"); | 
|  | 4592 | return ret; | 
|  | 4593 | } | 
|  | 4594 |  | 
| Domen Puncer | 1e7f0bd | 2005-06-26 18:22:14 -0400 | [diff] [blame] | 4595 | if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4596 | DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n"); | 
|  | 4597 | dma_flag = TRUE; | 
|  | 4598 |  | 
|  | 4599 | if (pci_set_consistent_dma_mask | 
| Domen Puncer | 1e7f0bd | 2005-06-26 18:22:14 -0400 | [diff] [blame] | 4600 | (pdev, DMA_64BIT_MASK)) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4601 | DBG_PRINT(ERR_DBG, | 
|  | 4602 | "Unable to obtain 64bit DMA for \ | 
|  | 4603 | consistent allocations\n"); | 
|  | 4604 | pci_disable_device(pdev); | 
|  | 4605 | return -ENOMEM; | 
|  | 4606 | } | 
| Domen Puncer | 1e7f0bd | 2005-06-26 18:22:14 -0400 | [diff] [blame] | 4607 | } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4608 | DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n"); | 
|  | 4609 | } else { | 
|  | 4610 | pci_disable_device(pdev); | 
|  | 4611 | return -ENOMEM; | 
|  | 4612 | } | 
|  | 4613 |  | 
|  | 4614 | if (pci_request_regions(pdev, s2io_driver_name)) { | 
|  | 4615 | DBG_PRINT(ERR_DBG, "Request Regions failed\n"), | 
|  | 4616 | pci_disable_device(pdev); | 
|  | 4617 | return -ENODEV; | 
|  | 4618 | } | 
|  | 4619 |  | 
|  | 4620 | dev = alloc_etherdev(sizeof(nic_t)); | 
|  | 4621 | if (dev == NULL) { | 
|  | 4622 | DBG_PRINT(ERR_DBG, "Device allocation failed\n"); | 
|  | 4623 | pci_disable_device(pdev); | 
|  | 4624 | pci_release_regions(pdev); | 
|  | 4625 | return -ENODEV; | 
|  | 4626 | } | 
|  | 4627 |  | 
|  | 4628 | pci_set_master(pdev); | 
|  | 4629 | pci_set_drvdata(pdev, dev); | 
|  | 4630 | SET_MODULE_OWNER(dev); | 
|  | 4631 | SET_NETDEV_DEV(dev, &pdev->dev); | 
|  | 4632 |  | 
|  | 4633 | /*  Private member variable initialized to s2io NIC structure */ | 
|  | 4634 | sp = dev->priv; | 
|  | 4635 | memset(sp, 0, sizeof(nic_t)); | 
|  | 4636 | sp->dev = dev; | 
|  | 4637 | sp->pdev = pdev; | 
|  | 4638 | sp->vendor_id = pdev->vendor; | 
|  | 4639 | sp->device_id = pdev->device; | 
|  | 4640 | sp->high_dma_flag = dma_flag; | 
|  | 4641 | sp->irq = pdev->irq; | 
|  | 4642 | sp->device_enabled_once = FALSE; | 
|  | 4643 | strcpy(sp->name, dev_name); | 
|  | 4644 |  | 
|  | 4645 | /* Initialize some PCI/PCI-X fields of the NIC. */ | 
|  | 4646 | s2io_init_pci(sp); | 
|  | 4647 |  | 
|  | 4648 | /* | 
|  | 4649 | * Setting the device configuration parameters. | 
|  | 4650 | * Most of these parameters can be specified by the user during | 
|  | 4651 | * module insertion as they are module loadable parameters. If | 
|  | 4652 | * these parameters are not not specified during load time, they | 
|  | 4653 | * are initialized with default values. | 
|  | 4654 | */ | 
|  | 4655 | mac_control = &sp->mac_control; | 
|  | 4656 | config = &sp->config; | 
|  | 4657 |  | 
|  | 4658 | /* Tx side parameters. */ | 
|  | 4659 | tx_fifo_len[0] = DEFAULT_FIFO_LEN;	/* Default value. */ | 
|  | 4660 | config->tx_fifo_num = tx_fifo_num; | 
|  | 4661 | for (i = 0; i < MAX_TX_FIFOS; i++) { | 
|  | 4662 | config->tx_cfg[i].fifo_len = tx_fifo_len[i]; | 
|  | 4663 | config->tx_cfg[i].fifo_priority = i; | 
|  | 4664 | } | 
|  | 4665 |  | 
|  | 4666 | config->tx_intr_type = TXD_INT_TYPE_UTILZ; | 
|  | 4667 | for (i = 0; i < config->tx_fifo_num; i++) { | 
|  | 4668 | config->tx_cfg[i].f_no_snoop = | 
|  | 4669 | (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER); | 
|  | 4670 | if (config->tx_cfg[i].fifo_len < 65) { | 
|  | 4671 | config->tx_intr_type = TXD_INT_TYPE_PER_LIST; | 
|  | 4672 | break; | 
|  | 4673 | } | 
|  | 4674 | } | 
|  | 4675 | config->max_txds = MAX_SKB_FRAGS; | 
|  | 4676 |  | 
|  | 4677 | /* Rx side parameters. */ | 
|  | 4678 | rx_ring_sz[0] = SMALL_BLK_CNT;	/* Default value. */ | 
|  | 4679 | config->rx_ring_num = rx_ring_num; | 
|  | 4680 | for (i = 0; i < MAX_RX_RINGS; i++) { | 
|  | 4681 | config->rx_cfg[i].num_rxd = rx_ring_sz[i] * | 
|  | 4682 | (MAX_RXDS_PER_BLOCK + 1); | 
|  | 4683 | config->rx_cfg[i].ring_priority = i; | 
|  | 4684 | } | 
|  | 4685 |  | 
|  | 4686 | for (i = 0; i < rx_ring_num; i++) { | 
|  | 4687 | config->rx_cfg[i].ring_org = RING_ORG_BUFF1; | 
|  | 4688 | config->rx_cfg[i].f_no_snoop = | 
|  | 4689 | (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER); | 
|  | 4690 | } | 
|  | 4691 |  | 
|  | 4692 | /*  Setting Mac Control parameters */ | 
|  | 4693 | mac_control->rmac_pause_time = rmac_pause_time; | 
|  | 4694 | mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3; | 
|  | 4695 | mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7; | 
|  | 4696 |  | 
|  | 4697 |  | 
|  | 4698 | /* Initialize Ring buffer parameters. */ | 
|  | 4699 | for (i = 0; i < config->rx_ring_num; i++) | 
|  | 4700 | atomic_set(&sp->rx_bufs_left[i], 0); | 
|  | 4701 |  | 
|  | 4702 | /*  initialize the shared memory used by the NIC and the host */ | 
|  | 4703 | if (init_shared_mem(sp)) { | 
|  | 4704 | DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", | 
|  | 4705 | dev->name); | 
|  | 4706 | ret = -ENOMEM; | 
|  | 4707 | goto mem_alloc_failed; | 
|  | 4708 | } | 
|  | 4709 |  | 
|  | 4710 | sp->bar0 = ioremap(pci_resource_start(pdev, 0), | 
|  | 4711 | pci_resource_len(pdev, 0)); | 
|  | 4712 | if (!sp->bar0) { | 
|  | 4713 | DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem1\n", | 
|  | 4714 | dev->name); | 
|  | 4715 | ret = -ENOMEM; | 
|  | 4716 | goto bar0_remap_failed; | 
|  | 4717 | } | 
|  | 4718 |  | 
|  | 4719 | sp->bar1 = ioremap(pci_resource_start(pdev, 2), | 
|  | 4720 | pci_resource_len(pdev, 2)); | 
|  | 4721 | if (!sp->bar1) { | 
|  | 4722 | DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem2\n", | 
|  | 4723 | dev->name); | 
|  | 4724 | ret = -ENOMEM; | 
|  | 4725 | goto bar1_remap_failed; | 
|  | 4726 | } | 
|  | 4727 |  | 
|  | 4728 | dev->irq = pdev->irq; | 
|  | 4729 | dev->base_addr = (unsigned long) sp->bar0; | 
|  | 4730 |  | 
|  | 4731 | /* Initializing the BAR1 address as the start of the FIFO pointer. */ | 
|  | 4732 | for (j = 0; j < MAX_TX_FIFOS; j++) { | 
|  | 4733 | mac_control->tx_FIFO_start[j] = (TxFIFO_element_t __iomem *) | 
|  | 4734 | (sp->bar1 + (j * 0x00020000)); | 
|  | 4735 | } | 
|  | 4736 |  | 
|  | 4737 | /*  Driver entry points */ | 
|  | 4738 | dev->open = &s2io_open; | 
|  | 4739 | dev->stop = &s2io_close; | 
|  | 4740 | dev->hard_start_xmit = &s2io_xmit; | 
|  | 4741 | dev->get_stats = &s2io_get_stats; | 
|  | 4742 | dev->set_multicast_list = &s2io_set_multicast; | 
|  | 4743 | dev->do_ioctl = &s2io_ioctl; | 
|  | 4744 | dev->change_mtu = &s2io_change_mtu; | 
|  | 4745 | SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops); | 
|  | 4746 | /* | 
|  | 4747 | * will use eth_mac_addr() for  dev->set_mac_address | 
|  | 4748 | * mac address will be set every time dev->open() is called | 
|  | 4749 | */ | 
|  | 4750 | #ifdef CONFIG_S2IO_NAPI | 
|  | 4751 | dev->poll = s2io_poll; | 
|  | 4752 | dev->weight = 90; | 
|  | 4753 | #endif | 
|  | 4754 |  | 
|  | 4755 | dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM; | 
|  | 4756 | if (sp->high_dma_flag == TRUE) | 
|  | 4757 | dev->features |= NETIF_F_HIGHDMA; | 
|  | 4758 | #ifdef NETIF_F_TSO | 
|  | 4759 | dev->features |= NETIF_F_TSO; | 
|  | 4760 | #endif | 
|  | 4761 |  | 
|  | 4762 | dev->tx_timeout = &s2io_tx_watchdog; | 
|  | 4763 | dev->watchdog_timeo = WATCH_DOG_TIMEOUT; | 
|  | 4764 | INIT_WORK(&sp->rst_timer_task, | 
|  | 4765 | (void (*)(void *)) s2io_restart_nic, dev); | 
|  | 4766 | INIT_WORK(&sp->set_link_task, | 
|  | 4767 | (void (*)(void *)) s2io_set_link, sp); | 
|  | 4768 |  | 
|  | 4769 | pci_save_state(sp->pdev); | 
|  | 4770 |  | 
|  | 4771 | /* Setting swapper control on the NIC, for proper reset operation */ | 
|  | 4772 | if (s2io_set_swapper(sp)) { | 
|  | 4773 | DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n", | 
|  | 4774 | dev->name); | 
|  | 4775 | ret = -EAGAIN; | 
|  | 4776 | goto set_swap_failed; | 
|  | 4777 | } | 
|  | 4778 |  | 
|  | 4779 | /* Fix for all "FFs" MAC address problems observed on Alpha platforms */ | 
|  | 4780 | fix_mac_address(sp); | 
|  | 4781 | s2io_reset(sp); | 
|  | 4782 |  | 
|  | 4783 | /* | 
|  | 4784 | * Setting swapper control on the NIC, so the MAC address can be read. | 
|  | 4785 | */ | 
|  | 4786 | if (s2io_set_swapper(sp)) { | 
|  | 4787 | DBG_PRINT(ERR_DBG, | 
|  | 4788 | "%s: S2IO: swapper settings are wrong\n", | 
|  | 4789 | dev->name); | 
|  | 4790 | ret = -EAGAIN; | 
|  | 4791 | goto set_swap_failed; | 
|  | 4792 | } | 
|  | 4793 |  | 
|  | 4794 | /* | 
|  | 4795 | * MAC address initialization. | 
|  | 4796 | * For now only one mac address will be read and used. | 
|  | 4797 | */ | 
|  | 4798 | bar0 = sp->bar0; | 
|  | 4799 | val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | | 
|  | 4800 | RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET); | 
|  | 4801 | writeq(val64, &bar0->rmac_addr_cmd_mem); | 
|  | 4802 | wait_for_cmd_complete(sp); | 
|  | 4803 |  | 
|  | 4804 | tmp64 = readq(&bar0->rmac_addr_data0_mem); | 
|  | 4805 | mac_down = (u32) tmp64; | 
|  | 4806 | mac_up = (u32) (tmp64 >> 32); | 
|  | 4807 |  | 
|  | 4808 | memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN)); | 
|  | 4809 |  | 
|  | 4810 | sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up); | 
|  | 4811 | sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8); | 
|  | 4812 | sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16); | 
|  | 4813 | sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24); | 
|  | 4814 | sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16); | 
|  | 4815 | sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24); | 
|  | 4816 |  | 
|  | 4817 | DBG_PRINT(INIT_DBG, | 
|  | 4818 | "DEFAULT MAC ADDR:0x%02x-%02x-%02x-%02x-%02x-%02x\n", | 
|  | 4819 | sp->def_mac_addr[0].mac_addr[0], | 
|  | 4820 | sp->def_mac_addr[0].mac_addr[1], | 
|  | 4821 | sp->def_mac_addr[0].mac_addr[2], | 
|  | 4822 | sp->def_mac_addr[0].mac_addr[3], | 
|  | 4823 | sp->def_mac_addr[0].mac_addr[4], | 
|  | 4824 | sp->def_mac_addr[0].mac_addr[5]); | 
|  | 4825 |  | 
|  | 4826 | /*  Set the factory defined MAC address initially   */ | 
|  | 4827 | dev->addr_len = ETH_ALEN; | 
|  | 4828 | memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN); | 
|  | 4829 |  | 
|  | 4830 | /* | 
|  | 4831 | * Initialize the tasklet status and link state flags | 
|  | 4832 | * and the card statte parameter | 
|  | 4833 | */ | 
|  | 4834 | atomic_set(&(sp->card_state), 0); | 
|  | 4835 | sp->tasklet_status = 0; | 
|  | 4836 | sp->link_state = 0; | 
|  | 4837 |  | 
|  | 4838 |  | 
|  | 4839 | /* Initialize spinlocks */ | 
|  | 4840 | spin_lock_init(&sp->tx_lock); | 
|  | 4841 | #ifndef CONFIG_S2IO_NAPI | 
|  | 4842 | spin_lock_init(&sp->put_lock); | 
|  | 4843 | #endif | 
|  | 4844 |  | 
|  | 4845 | /* | 
|  | 4846 | * SXE-002: Configure link and activity LED to init state | 
|  | 4847 | * on driver load. | 
|  | 4848 | */ | 
|  | 4849 | subid = sp->pdev->subsystem_device; | 
|  | 4850 | if ((subid & 0xFF) >= 0x07) { | 
|  | 4851 | val64 = readq(&bar0->gpio_control); | 
|  | 4852 | val64 |= 0x0000800000000000ULL; | 
|  | 4853 | writeq(val64, &bar0->gpio_control); | 
|  | 4854 | val64 = 0x0411040400000000ULL; | 
|  | 4855 | writeq(val64, (void __iomem *) bar0 + 0x2700); | 
|  | 4856 | val64 = readq(&bar0->gpio_control); | 
|  | 4857 | } | 
|  | 4858 |  | 
|  | 4859 | sp->rx_csum = 1;	/* Rx chksum verify enabled by default */ | 
|  | 4860 |  | 
|  | 4861 | if (register_netdev(dev)) { | 
|  | 4862 | DBG_PRINT(ERR_DBG, "Device registration failed\n"); | 
|  | 4863 | ret = -ENODEV; | 
|  | 4864 | goto register_failed; | 
|  | 4865 | } | 
|  | 4866 |  | 
|  | 4867 | /* | 
|  | 4868 | * Make Link state as off at this point, when the Link change | 
|  | 4869 | * interrupt comes the state will be automatically changed to | 
|  | 4870 | * the right state. | 
|  | 4871 | */ | 
|  | 4872 | netif_carrier_off(dev); | 
|  | 4873 | sp->last_link_state = LINK_DOWN; | 
|  | 4874 |  | 
|  | 4875 | return 0; | 
|  | 4876 |  | 
|  | 4877 | register_failed: | 
|  | 4878 | set_swap_failed: | 
|  | 4879 | iounmap(sp->bar1); | 
|  | 4880 | bar1_remap_failed: | 
|  | 4881 | iounmap(sp->bar0); | 
|  | 4882 | bar0_remap_failed: | 
|  | 4883 | mem_alloc_failed: | 
|  | 4884 | free_shared_mem(sp); | 
|  | 4885 | pci_disable_device(pdev); | 
|  | 4886 | pci_release_regions(pdev); | 
|  | 4887 | pci_set_drvdata(pdev, NULL); | 
|  | 4888 | free_netdev(dev); | 
|  | 4889 |  | 
|  | 4890 | return ret; | 
|  | 4891 | } | 
|  | 4892 |  | 
|  | 4893 | /** | 
|  | 4894 | * s2io_rem_nic - Free the PCI device | 
|  | 4895 | * @pdev: structure containing the PCI related information of the device. | 
|  | 4896 | * Description: This function is called by the Pci subsystem to release a | 
|  | 4897 | * PCI device and free up all resource held up by the device. This could | 
|  | 4898 | * be in response to a Hot plug event or when the driver is to be removed | 
|  | 4899 | * from memory. | 
|  | 4900 | */ | 
|  | 4901 |  | 
|  | 4902 | static void __devexit s2io_rem_nic(struct pci_dev *pdev) | 
|  | 4903 | { | 
|  | 4904 | struct net_device *dev = | 
|  | 4905 | (struct net_device *) pci_get_drvdata(pdev); | 
|  | 4906 | nic_t *sp; | 
|  | 4907 |  | 
|  | 4908 | if (dev == NULL) { | 
|  | 4909 | DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n"); | 
|  | 4910 | return; | 
|  | 4911 | } | 
|  | 4912 |  | 
|  | 4913 | sp = dev->priv; | 
|  | 4914 | unregister_netdev(dev); | 
|  | 4915 |  | 
|  | 4916 | free_shared_mem(sp); | 
|  | 4917 | iounmap(sp->bar0); | 
|  | 4918 | iounmap(sp->bar1); | 
|  | 4919 | pci_disable_device(pdev); | 
|  | 4920 | pci_release_regions(pdev); | 
|  | 4921 | pci_set_drvdata(pdev, NULL); | 
|  | 4922 |  | 
|  | 4923 | free_netdev(dev); | 
|  | 4924 | } | 
|  | 4925 |  | 
|  | 4926 | /** | 
|  | 4927 | * s2io_starter - Entry point for the driver | 
|  | 4928 | * Description: This function is the entry point for the driver. It verifies | 
|  | 4929 | * the module loadable parameters and initializes PCI configuration space. | 
|  | 4930 | */ | 
|  | 4931 |  | 
|  | 4932 | int __init s2io_starter(void) | 
|  | 4933 | { | 
|  | 4934 | return pci_module_init(&s2io_driver); | 
|  | 4935 | } | 
|  | 4936 |  | 
|  | 4937 | /** | 
|  | 4938 | * s2io_closer - Cleanup routine for the driver | 
|  | 4939 | * Description: This function is the cleanup routine for the driver. It unregist * ers the driver. | 
|  | 4940 | */ | 
|  | 4941 |  | 
|  | 4942 | static void s2io_closer(void) | 
|  | 4943 | { | 
|  | 4944 | pci_unregister_driver(&s2io_driver); | 
|  | 4945 | DBG_PRINT(INIT_DBG, "cleanup done\n"); | 
|  | 4946 | } | 
|  | 4947 |  | 
|  | 4948 | module_init(s2io_starter); | 
|  | 4949 | module_exit(s2io_closer); |