| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /****************************************************************************** | 
|  | 2 | * | 
|  | 3 | * Name:	skgeinit.c | 
|  | 4 | * Project:	Gigabit Ethernet Adapters, Common Modules | 
|  | 5 | * Version:	$Revision: 1.97 $ | 
|  | 6 | * Date:	$Date: 2003/10/02 16:45:31 $ | 
|  | 7 | * Purpose:	Contains functions to initialize the adapter | 
|  | 8 | * | 
|  | 9 | ******************************************************************************/ | 
|  | 10 |  | 
|  | 11 | /****************************************************************************** | 
|  | 12 | * | 
|  | 13 | *	(C)Copyright 1998-2002 SysKonnect. | 
|  | 14 | *	(C)Copyright 2002-2003 Marvell. | 
|  | 15 | * | 
|  | 16 | *	This program is free software; you can redistribute it and/or modify | 
|  | 17 | *	it under the terms of the GNU General Public License as published by | 
|  | 18 | *	the Free Software Foundation; either version 2 of the License, or | 
|  | 19 | *	(at your option) any later version. | 
|  | 20 | * | 
|  | 21 | *	The information in this file is provided "AS IS" without warranty. | 
|  | 22 | * | 
|  | 23 | ******************************************************************************/ | 
|  | 24 |  | 
|  | 25 | #include "h/skdrv1st.h" | 
|  | 26 | #include "h/skdrv2nd.h" | 
|  | 27 |  | 
|  | 28 | /* global variables ***********************************************************/ | 
|  | 29 |  | 
|  | 30 | /* local variables ************************************************************/ | 
|  | 31 |  | 
|  | 32 | #if (defined(DEBUG) || ((!defined(LINT)) && (!defined(SK_SLIM)))) | 
|  | 33 | static const char SysKonnectFileId[] = | 
|  | 34 | "@(#) $Id: skgeinit.c,v 1.97 2003/10/02 16:45:31 rschmidt Exp $ (C) Marvell."; | 
|  | 35 | #endif | 
|  | 36 |  | 
|  | 37 | struct s_QOffTab { | 
|  | 38 | int	RxQOff;		/* Receive Queue Address Offset */ | 
|  | 39 | int	XsQOff;		/* Sync Tx Queue Address Offset */ | 
|  | 40 | int	XaQOff;		/* Async Tx Queue Address Offset */ | 
|  | 41 | }; | 
|  | 42 | static struct s_QOffTab QOffTab[] = { | 
|  | 43 | {Q_R1, Q_XS1, Q_XA1}, {Q_R2, Q_XS2, Q_XA2} | 
|  | 44 | }; | 
|  | 45 |  | 
|  | 46 | struct s_Config { | 
|  | 47 | char	ScanString[8]; | 
|  | 48 | SK_U32	Value; | 
|  | 49 | }; | 
|  | 50 |  | 
|  | 51 | static struct s_Config OemConfig = { | 
|  | 52 | {'O','E','M','_','C','o','n','f'}, | 
|  | 53 | #ifdef SK_OEM_CONFIG | 
|  | 54 | OEM_CONFIG_VALUE, | 
|  | 55 | #else | 
|  | 56 | 0, | 
|  | 57 | #endif | 
|  | 58 | }; | 
|  | 59 |  | 
|  | 60 | /****************************************************************************** | 
|  | 61 | * | 
|  | 62 | *	SkGePollRxD() - Enable / Disable Descriptor Polling of RxD Ring | 
|  | 63 | * | 
|  | 64 | * Description: | 
|  | 65 | *	Enable or disable the descriptor polling of the receive descriptor | 
|  | 66 | *	ring (RxD) for port 'Port'. | 
|  | 67 | *	The new configuration is *not* saved over any SkGeStopPort() and | 
|  | 68 | *	SkGeInitPort() calls. | 
|  | 69 | * | 
|  | 70 | * Returns: | 
|  | 71 | *	nothing | 
|  | 72 | */ | 
|  | 73 | void SkGePollRxD( | 
|  | 74 | SK_AC	*pAC,		/* adapter context */ | 
|  | 75 | SK_IOC	IoC,		/* IO context */ | 
|  | 76 | int		Port,		/* Port Index (MAC_1 + n) */ | 
|  | 77 | SK_BOOL PollRxD)	/* SK_TRUE (enable pol.), SK_FALSE (disable pol.) */ | 
|  | 78 | { | 
|  | 79 | SK_GEPORT *pPrt; | 
|  | 80 |  | 
|  | 81 | pPrt = &pAC->GIni.GP[Port]; | 
|  | 82 |  | 
|  | 83 | SK_OUT32(IoC, Q_ADDR(pPrt->PRxQOff, Q_CSR), (PollRxD) ? | 
|  | 84 | CSR_ENA_POL : CSR_DIS_POL); | 
|  | 85 | }	/* SkGePollRxD */ | 
|  | 86 |  | 
|  | 87 |  | 
|  | 88 | /****************************************************************************** | 
|  | 89 | * | 
|  | 90 | *	SkGePollTxD() - Enable / Disable Descriptor Polling of TxD Rings | 
|  | 91 | * | 
|  | 92 | * Description: | 
|  | 93 | *	Enable or disable the descriptor polling of the transmit descriptor | 
|  | 94 | *	ring(s) (TxD) for port 'Port'. | 
|  | 95 | *	The new configuration is *not* saved over any SkGeStopPort() and | 
|  | 96 | *	SkGeInitPort() calls. | 
|  | 97 | * | 
|  | 98 | * Returns: | 
|  | 99 | *	nothing | 
|  | 100 | */ | 
|  | 101 | void SkGePollTxD( | 
|  | 102 | SK_AC	*pAC,		/* adapter context */ | 
|  | 103 | SK_IOC	IoC,		/* IO context */ | 
|  | 104 | int		Port,		/* Port Index (MAC_1 + n) */ | 
|  | 105 | SK_BOOL PollTxD)	/* SK_TRUE (enable pol.), SK_FALSE (disable pol.) */ | 
|  | 106 | { | 
|  | 107 | SK_GEPORT *pPrt; | 
|  | 108 | SK_U32	DWord; | 
|  | 109 |  | 
|  | 110 | pPrt = &pAC->GIni.GP[Port]; | 
|  | 111 |  | 
|  | 112 | DWord = (SK_U32)(PollTxD ? CSR_ENA_POL : CSR_DIS_POL); | 
|  | 113 |  | 
|  | 114 | if (pPrt->PXSQSize != 0) { | 
|  | 115 | SK_OUT32(IoC, Q_ADDR(pPrt->PXsQOff, Q_CSR), DWord); | 
|  | 116 | } | 
|  | 117 |  | 
|  | 118 | if (pPrt->PXAQSize != 0) { | 
|  | 119 | SK_OUT32(IoC, Q_ADDR(pPrt->PXaQOff, Q_CSR), DWord); | 
|  | 120 | } | 
|  | 121 | }	/* SkGePollTxD */ | 
|  | 122 |  | 
|  | 123 |  | 
|  | 124 | /****************************************************************************** | 
|  | 125 | * | 
|  | 126 | *	SkGeYellowLED() - Switch the yellow LED on or off. | 
|  | 127 | * | 
|  | 128 | * Description: | 
|  | 129 | *	Switch the yellow LED on or off. | 
|  | 130 | * | 
|  | 131 | * Note: | 
|  | 132 | *	This function may be called any time after SkGeInit(Level 1). | 
|  | 133 | * | 
|  | 134 | * Returns: | 
|  | 135 | *	nothing | 
|  | 136 | */ | 
|  | 137 | void SkGeYellowLED( | 
|  | 138 | SK_AC	*pAC,		/* adapter context */ | 
|  | 139 | SK_IOC	IoC,		/* IO context */ | 
|  | 140 | int		State)		/* yellow LED state, 0 = OFF, 0 != ON */ | 
|  | 141 | { | 
|  | 142 | if (State == 0) { | 
|  | 143 | /* Switch yellow LED OFF */ | 
|  | 144 | SK_OUT8(IoC, B0_LED, LED_STAT_OFF); | 
|  | 145 | } | 
|  | 146 | else { | 
|  | 147 | /* Switch yellow LED ON */ | 
|  | 148 | SK_OUT8(IoC, B0_LED, LED_STAT_ON); | 
|  | 149 | } | 
|  | 150 | }	/* SkGeYellowLED */ | 
|  | 151 |  | 
|  | 152 |  | 
|  | 153 | #if (!defined(SK_SLIM) || defined(GENESIS)) | 
|  | 154 | /****************************************************************************** | 
|  | 155 | * | 
|  | 156 | *	SkGeXmitLED() - Modify the Operational Mode of a transmission LED. | 
|  | 157 | * | 
|  | 158 | * Description: | 
|  | 159 | *	The Rx or Tx LED which is specified by 'Led' will be | 
|  | 160 | *	enabled, disabled or switched on in test mode. | 
|  | 161 | * | 
|  | 162 | * Note: | 
|  | 163 | *	'Led' must contain the address offset of the LEDs INI register. | 
|  | 164 | * | 
|  | 165 | * Usage: | 
|  | 166 | *	SkGeXmitLED(pAC, IoC, MR_ADDR(Port, TX_LED_INI), SK_LED_ENA); | 
|  | 167 | * | 
|  | 168 | * Returns: | 
|  | 169 | *	nothing | 
|  | 170 | */ | 
|  | 171 | void SkGeXmitLED( | 
|  | 172 | SK_AC	*pAC,		/* adapter context */ | 
|  | 173 | SK_IOC	IoC,		/* IO context */ | 
|  | 174 | int		Led,		/* offset to the LED Init Value register */ | 
|  | 175 | int		Mode)		/* Mode may be SK_LED_DIS, SK_LED_ENA, SK_LED_TST */ | 
|  | 176 | { | 
|  | 177 | SK_U32	LedIni; | 
|  | 178 |  | 
|  | 179 | switch (Mode) { | 
|  | 180 | case SK_LED_ENA: | 
|  | 181 | LedIni = SK_XMIT_DUR * (SK_U32)pAC->GIni.GIHstClkFact / 100; | 
|  | 182 | SK_OUT32(IoC, Led + XMIT_LED_INI, LedIni); | 
|  | 183 | SK_OUT8(IoC, Led + XMIT_LED_CTRL, LED_START); | 
|  | 184 | break; | 
|  | 185 | case SK_LED_TST: | 
|  | 186 | SK_OUT8(IoC, Led + XMIT_LED_TST, LED_T_ON); | 
|  | 187 | SK_OUT32(IoC, Led + XMIT_LED_CNT, 100); | 
|  | 188 | SK_OUT8(IoC, Led + XMIT_LED_CTRL, LED_START); | 
|  | 189 | break; | 
|  | 190 | case SK_LED_DIS: | 
|  | 191 | default: | 
|  | 192 | /* | 
|  | 193 | * Do NOT stop the LED Timer here. The LED might be | 
|  | 194 | * in on state. But it needs to go off. | 
|  | 195 | */ | 
|  | 196 | SK_OUT32(IoC, Led + XMIT_LED_CNT, 0); | 
|  | 197 | SK_OUT8(IoC, Led + XMIT_LED_TST, LED_T_OFF); | 
|  | 198 | break; | 
|  | 199 | } | 
|  | 200 |  | 
|  | 201 | /* | 
|  | 202 | * 1000BT: The Transmit LED is driven by the PHY. | 
|  | 203 | * But the default LED configuration is used for | 
|  | 204 | * Level One and Broadcom PHYs. | 
|  | 205 | * (Broadcom: It may be that PHY_B_PEC_EN_LTR has to be set.) | 
|  | 206 | * (In this case it has to be added here. But we will see. XXX) | 
|  | 207 | */ | 
|  | 208 | }	/* SkGeXmitLED */ | 
|  | 209 | #endif	/* !SK_SLIM || GENESIS */ | 
|  | 210 |  | 
|  | 211 |  | 
|  | 212 | /****************************************************************************** | 
|  | 213 | * | 
|  | 214 | *	DoCalcAddr() - Calculates the start and the end address of a queue. | 
|  | 215 | * | 
|  | 216 | * Description: | 
|  | 217 | *	This function calculates the start and the end address of a queue. | 
|  | 218 | *  Afterwards the 'StartVal' is incremented to the next start position. | 
|  | 219 | *	If the port is already initialized the calculated values | 
|  | 220 | *	will be checked against the configured values and an | 
|  | 221 | *	error will be returned, if they are not equal. | 
|  | 222 | *	If the port is not initialized the values will be written to | 
|  | 223 | *	*StartAdr and *EndAddr. | 
|  | 224 | * | 
|  | 225 | * Returns: | 
|  | 226 | *	0:	success | 
|  | 227 | *	1:	configuration error | 
|  | 228 | */ | 
|  | 229 | static int DoCalcAddr( | 
|  | 230 | SK_AC		*pAC, 				/* adapter context */ | 
|  | 231 | SK_GEPORT	SK_FAR *pPrt,		/* port index */ | 
|  | 232 | int			QuSize,				/* size of the queue to configure in kB */ | 
|  | 233 | SK_U32		SK_FAR *StartVal,	/* start value for address calculation */ | 
|  | 234 | SK_U32		SK_FAR *QuStartAddr,/* start addr to calculate */ | 
|  | 235 | SK_U32		SK_FAR *QuEndAddr)	/* end address to calculate */ | 
|  | 236 | { | 
|  | 237 | SK_U32	EndVal; | 
|  | 238 | SK_U32	NextStart; | 
|  | 239 | int		Rtv; | 
|  | 240 |  | 
|  | 241 | Rtv = 0; | 
|  | 242 | if (QuSize == 0) { | 
|  | 243 | EndVal = *StartVal; | 
|  | 244 | NextStart = EndVal; | 
|  | 245 | } | 
|  | 246 | else { | 
|  | 247 | EndVal = *StartVal + ((SK_U32)QuSize * 1024) - 1; | 
|  | 248 | NextStart = EndVal + 1; | 
|  | 249 | } | 
|  | 250 |  | 
|  | 251 | if (pPrt->PState >= SK_PRT_INIT) { | 
|  | 252 | if (*StartVal != *QuStartAddr || EndVal != *QuEndAddr) { | 
|  | 253 | Rtv = 1; | 
|  | 254 | } | 
|  | 255 | } | 
|  | 256 | else { | 
|  | 257 | *QuStartAddr = *StartVal; | 
|  | 258 | *QuEndAddr = EndVal; | 
|  | 259 | } | 
|  | 260 |  | 
|  | 261 | *StartVal = NextStart; | 
|  | 262 | return(Rtv); | 
|  | 263 | }	/* DoCalcAddr */ | 
|  | 264 |  | 
|  | 265 | /****************************************************************************** | 
|  | 266 | * | 
|  | 267 | *	SkGeInitAssignRamToQueues() - allocate default queue sizes | 
|  | 268 | * | 
|  | 269 | * Description: | 
|  | 270 | *	This function assigns the memory to the different queues and ports. | 
|  | 271 | *	When DualNet is set to SK_TRUE all ports get the same amount of memory. | 
|  | 272 | *  Otherwise the first port gets most of the memory and all the | 
|  | 273 | *	other ports just the required minimum. | 
|  | 274 | *	This function can only be called when pAC->GIni.GIRamSize and | 
|  | 275 | *	pAC->GIni.GIMacsFound have been initialized, usually this happens | 
|  | 276 | *	at init level 1 | 
|  | 277 | * | 
|  | 278 | * Returns: | 
|  | 279 | *	0 - ok | 
|  | 280 | *	1 - invalid input values | 
|  | 281 | *	2 - not enough memory | 
|  | 282 | */ | 
|  | 283 |  | 
|  | 284 | int SkGeInitAssignRamToQueues( | 
|  | 285 | SK_AC	*pAC,			/* Adapter context */ | 
|  | 286 | int		ActivePort,		/* Active Port in RLMT mode */ | 
|  | 287 | SK_BOOL	DualNet)		/* adapter context */ | 
|  | 288 | { | 
|  | 289 | int	i; | 
|  | 290 | int	UsedKilobytes;			/* memory already assigned */ | 
|  | 291 | int	ActivePortKilobytes;	/* memory available for active port */ | 
|  | 292 | SK_GEPORT *pGePort; | 
|  | 293 |  | 
|  | 294 | UsedKilobytes = 0; | 
|  | 295 |  | 
|  | 296 | if (ActivePort >= pAC->GIni.GIMacsFound) { | 
|  | 297 | SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_INIT, | 
|  | 298 | ("SkGeInitAssignRamToQueues: ActivePort (%d) invalid\n", | 
|  | 299 | ActivePort)); | 
|  | 300 | return(1); | 
|  | 301 | } | 
|  | 302 | if (((pAC->GIni.GIMacsFound * (SK_MIN_RXQ_SIZE + SK_MIN_TXQ_SIZE)) + | 
|  | 303 | ((RAM_QUOTA_SYNC == 0) ? 0 : SK_MIN_TXQ_SIZE)) > pAC->GIni.GIRamSize) { | 
|  | 304 | SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_INIT, | 
|  | 305 | ("SkGeInitAssignRamToQueues: Not enough memory (%d)\n", | 
|  | 306 | pAC->GIni.GIRamSize)); | 
|  | 307 | return(2); | 
|  | 308 | } | 
|  | 309 |  | 
|  | 310 | if (DualNet) { | 
|  | 311 | /* every port gets the same amount of memory */ | 
|  | 312 | ActivePortKilobytes = pAC->GIni.GIRamSize / pAC->GIni.GIMacsFound; | 
|  | 313 | for (i = 0; i < pAC->GIni.GIMacsFound; i++) { | 
|  | 314 |  | 
|  | 315 | pGePort = &pAC->GIni.GP[i]; | 
|  | 316 |  | 
|  | 317 | /* take away the minimum memory for active queues */ | 
|  | 318 | ActivePortKilobytes -= (SK_MIN_RXQ_SIZE + SK_MIN_TXQ_SIZE); | 
|  | 319 |  | 
|  | 320 | /* receive queue gets the minimum + 80% of the rest */ | 
|  | 321 | pGePort->PRxQSize = (int) (ROUND_QUEUE_SIZE_KB(( | 
|  | 322 | ActivePortKilobytes * (unsigned long) RAM_QUOTA_RX) / 100)) | 
|  | 323 | + SK_MIN_RXQ_SIZE; | 
|  | 324 |  | 
|  | 325 | ActivePortKilobytes -= (pGePort->PRxQSize - SK_MIN_RXQ_SIZE); | 
|  | 326 |  | 
|  | 327 | /* synchronous transmit queue */ | 
|  | 328 | pGePort->PXSQSize = 0; | 
|  | 329 |  | 
|  | 330 | /* asynchronous transmit queue */ | 
|  | 331 | pGePort->PXAQSize = (int) ROUND_QUEUE_SIZE_KB(ActivePortKilobytes + | 
|  | 332 | SK_MIN_TXQ_SIZE); | 
|  | 333 | } | 
|  | 334 | } | 
|  | 335 | else { | 
|  | 336 | /* Rlmt Mode or single link adapter */ | 
|  | 337 |  | 
|  | 338 | /* Set standby queue size defaults for all standby ports */ | 
|  | 339 | for (i = 0; i < pAC->GIni.GIMacsFound; i++) { | 
|  | 340 |  | 
|  | 341 | if (i != ActivePort) { | 
|  | 342 | pGePort = &pAC->GIni.GP[i]; | 
|  | 343 |  | 
|  | 344 | pGePort->PRxQSize = SK_MIN_RXQ_SIZE; | 
|  | 345 | pGePort->PXAQSize = SK_MIN_TXQ_SIZE; | 
|  | 346 | pGePort->PXSQSize = 0; | 
|  | 347 |  | 
|  | 348 | /* Count used RAM */ | 
|  | 349 | UsedKilobytes += pGePort->PRxQSize + pGePort->PXAQSize; | 
|  | 350 | } | 
|  | 351 | } | 
|  | 352 | /* what's left? */ | 
|  | 353 | ActivePortKilobytes = pAC->GIni.GIRamSize - UsedKilobytes; | 
|  | 354 |  | 
|  | 355 | /* assign it to the active port */ | 
|  | 356 | /* first take away the minimum memory */ | 
|  | 357 | ActivePortKilobytes -= (SK_MIN_RXQ_SIZE + SK_MIN_TXQ_SIZE); | 
|  | 358 | pGePort = &pAC->GIni.GP[ActivePort]; | 
|  | 359 |  | 
|  | 360 | /* receive queue get's the minimum + 80% of the rest */ | 
|  | 361 | pGePort->PRxQSize = (int) (ROUND_QUEUE_SIZE_KB((ActivePortKilobytes * | 
|  | 362 | (unsigned long) RAM_QUOTA_RX) / 100)) + SK_MIN_RXQ_SIZE; | 
|  | 363 |  | 
|  | 364 | ActivePortKilobytes -= (pGePort->PRxQSize - SK_MIN_RXQ_SIZE); | 
|  | 365 |  | 
|  | 366 | /* synchronous transmit queue */ | 
|  | 367 | pGePort->PXSQSize = 0; | 
|  | 368 |  | 
|  | 369 | /* asynchronous transmit queue */ | 
|  | 370 | pGePort->PXAQSize = (int) ROUND_QUEUE_SIZE_KB(ActivePortKilobytes) + | 
|  | 371 | SK_MIN_TXQ_SIZE; | 
|  | 372 | } | 
|  | 373 | #ifdef VCPU | 
|  | 374 | VCPUprintf(0, "PRxQSize=%u, PXSQSize=%u, PXAQSize=%u\n", | 
|  | 375 | pGePort->PRxQSize, pGePort->PXSQSize, pGePort->PXAQSize); | 
|  | 376 | #endif /* VCPU */ | 
|  | 377 |  | 
|  | 378 | return(0); | 
|  | 379 | }	/* SkGeInitAssignRamToQueues */ | 
|  | 380 |  | 
|  | 381 | /****************************************************************************** | 
|  | 382 | * | 
|  | 383 | *	SkGeCheckQSize() - Checks the Adapters Queue Size Configuration | 
|  | 384 | * | 
|  | 385 | * Description: | 
|  | 386 | *	This function verifies the Queue Size Configuration specified | 
|  | 387 | *	in the variables PRxQSize, PXSQSize, and PXAQSize of all | 
|  | 388 | *	used ports. | 
|  | 389 | *	This requirements must be fullfilled to have a valid configuration: | 
|  | 390 | *		- The size of all queues must not exceed GIRamSize. | 
|  | 391 | *		- The queue sizes must be specified in units of 8 kB. | 
|  | 392 | *		- The size of Rx queues of available ports must not be | 
|  | 393 | *		  smaller than 16 kB. | 
|  | 394 | *		- The size of at least one Tx queue (synch. or asynch.) | 
|  | 395 | *        of available ports must not be smaller than 16 kB | 
|  | 396 | *        when Jumbo Frames are used. | 
|  | 397 | *		- The RAM start and end addresses must not be changed | 
|  | 398 | *		  for ports which are already initialized. | 
|  | 399 | *	Furthermore SkGeCheckQSize() defines the Start and End Addresses | 
|  | 400 | *  of all ports and stores them into the HWAC port	structure. | 
|  | 401 | * | 
|  | 402 | * Returns: | 
|  | 403 | *	0:	Queue Size Configuration valid | 
|  | 404 | *	1:	Queue Size Configuration invalid | 
|  | 405 | */ | 
|  | 406 | static int SkGeCheckQSize( | 
|  | 407 | SK_AC	 *pAC,		/* adapter context */ | 
|  | 408 | int		 Port)		/* port index */ | 
|  | 409 | { | 
|  | 410 | SK_GEPORT *pPrt; | 
|  | 411 | int	i; | 
|  | 412 | int	Rtv; | 
|  | 413 | int	Rtv2; | 
|  | 414 | SK_U32	StartAddr; | 
|  | 415 | #ifndef SK_SLIM | 
|  | 416 | int	UsedMem;	/* total memory used (max. found ports) */ | 
|  | 417 | #endif | 
|  | 418 |  | 
|  | 419 | Rtv = 0; | 
|  | 420 |  | 
|  | 421 | #ifndef SK_SLIM | 
|  | 422 |  | 
|  | 423 | UsedMem = 0; | 
|  | 424 | for (i = 0; i < pAC->GIni.GIMacsFound; i++) { | 
|  | 425 | pPrt = &pAC->GIni.GP[i]; | 
|  | 426 |  | 
|  | 427 | if ((pPrt->PRxQSize & QZ_UNITS) != 0 || | 
|  | 428 | (pPrt->PXSQSize & QZ_UNITS) != 0 || | 
|  | 429 | (pPrt->PXAQSize & QZ_UNITS) != 0) { | 
|  | 430 |  | 
|  | 431 | SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E012, SKERR_HWI_E012MSG); | 
|  | 432 | return(1); | 
|  | 433 | } | 
|  | 434 |  | 
|  | 435 | if (i == Port && pPrt->PRxQSize < SK_MIN_RXQ_SIZE) { | 
|  | 436 | SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E011, SKERR_HWI_E011MSG); | 
|  | 437 | return(1); | 
|  | 438 | } | 
|  | 439 |  | 
|  | 440 | /* | 
|  | 441 | * the size of at least one Tx queue (synch. or asynch.) has to be > 0. | 
|  | 442 | * if Jumbo Frames are used, this size has to be >= 16 kB. | 
|  | 443 | */ | 
|  | 444 | if ((i == Port && pPrt->PXSQSize == 0 && pPrt->PXAQSize == 0) || | 
|  | 445 | (pAC->GIni.GIPortUsage == SK_JUMBO_LINK && | 
|  | 446 | ((pPrt->PXSQSize > 0 && pPrt->PXSQSize < SK_MIN_TXQ_SIZE) || | 
|  | 447 | (pPrt->PXAQSize > 0 && pPrt->PXAQSize < SK_MIN_TXQ_SIZE)))) { | 
|  | 448 | SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E023, SKERR_HWI_E023MSG); | 
|  | 449 | return(1); | 
|  | 450 | } | 
|  | 451 |  | 
|  | 452 | UsedMem += pPrt->PRxQSize + pPrt->PXSQSize + pPrt->PXAQSize; | 
|  | 453 | } | 
|  | 454 |  | 
|  | 455 | if (UsedMem > pAC->GIni.GIRamSize) { | 
|  | 456 | SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E012, SKERR_HWI_E012MSG); | 
|  | 457 | return(1); | 
|  | 458 | } | 
|  | 459 | #endif	/* !SK_SLIM */ | 
|  | 460 |  | 
|  | 461 | /* Now start address calculation */ | 
|  | 462 | StartAddr = pAC->GIni.GIRamOffs; | 
|  | 463 | for (i = 0; i < pAC->GIni.GIMacsFound; i++) { | 
|  | 464 | pPrt = &pAC->GIni.GP[i]; | 
|  | 465 |  | 
|  | 466 | /* Calculate/Check values for the receive queue */ | 
|  | 467 | Rtv2 = DoCalcAddr(pAC, pPrt, pPrt->PRxQSize, &StartAddr, | 
|  | 468 | &pPrt->PRxQRamStart, &pPrt->PRxQRamEnd); | 
|  | 469 | Rtv |= Rtv2; | 
|  | 470 |  | 
|  | 471 | /* Calculate/Check values for the synchronous Tx queue */ | 
|  | 472 | Rtv2 = DoCalcAddr(pAC, pPrt, pPrt->PXSQSize, &StartAddr, | 
|  | 473 | &pPrt->PXsQRamStart, &pPrt->PXsQRamEnd); | 
|  | 474 | Rtv |= Rtv2; | 
|  | 475 |  | 
|  | 476 | /* Calculate/Check values for the asynchronous Tx queue */ | 
|  | 477 | Rtv2 = DoCalcAddr(pAC, pPrt, pPrt->PXAQSize, &StartAddr, | 
|  | 478 | &pPrt->PXaQRamStart, &pPrt->PXaQRamEnd); | 
|  | 479 | Rtv |= Rtv2; | 
|  | 480 |  | 
|  | 481 | if (Rtv) { | 
|  | 482 | SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E013, SKERR_HWI_E013MSG); | 
|  | 483 | return(1); | 
|  | 484 | } | 
|  | 485 | } | 
|  | 486 |  | 
|  | 487 | return(0); | 
|  | 488 | }	/* SkGeCheckQSize */ | 
|  | 489 |  | 
|  | 490 |  | 
|  | 491 | #ifdef GENESIS | 
|  | 492 | /****************************************************************************** | 
|  | 493 | * | 
|  | 494 | *	SkGeInitMacArb() - Initialize the MAC Arbiter | 
|  | 495 | * | 
|  | 496 | * Description: | 
|  | 497 | *	This function initializes the MAC Arbiter. | 
|  | 498 | *	It must not be called if there is still an | 
|  | 499 | *	initialized or active port. | 
|  | 500 | * | 
|  | 501 | * Returns: | 
|  | 502 | *	nothing | 
|  | 503 | */ | 
|  | 504 | static void SkGeInitMacArb( | 
|  | 505 | SK_AC	*pAC,		/* adapter context */ | 
|  | 506 | SK_IOC	IoC)		/* IO context */ | 
|  | 507 | { | 
|  | 508 | /* release local reset */ | 
|  | 509 | SK_OUT16(IoC, B3_MA_TO_CTRL, MA_RST_CLR); | 
|  | 510 |  | 
|  | 511 | /* configure timeout values */ | 
|  | 512 | SK_OUT8(IoC, B3_MA_TOINI_RX1, SK_MAC_TO_53); | 
|  | 513 | SK_OUT8(IoC, B3_MA_TOINI_RX2, SK_MAC_TO_53); | 
|  | 514 | SK_OUT8(IoC, B3_MA_TOINI_TX1, SK_MAC_TO_53); | 
|  | 515 | SK_OUT8(IoC, B3_MA_TOINI_TX2, SK_MAC_TO_53); | 
|  | 516 |  | 
|  | 517 | SK_OUT8(IoC, B3_MA_RCINI_RX1, 0); | 
|  | 518 | SK_OUT8(IoC, B3_MA_RCINI_RX2, 0); | 
|  | 519 | SK_OUT8(IoC, B3_MA_RCINI_TX1, 0); | 
|  | 520 | SK_OUT8(IoC, B3_MA_RCINI_TX2, 0); | 
|  | 521 |  | 
|  | 522 | /* recovery values are needed for XMAC II Rev. B2 only */ | 
|  | 523 | /* Fast Output Enable Mode was intended to use with Rev. B2, but now? */ | 
|  | 524 |  | 
|  | 525 | /* | 
|  | 526 | * There is no start or enable button to push, therefore | 
|  | 527 | * the MAC arbiter is configured and enabled now. | 
|  | 528 | */ | 
|  | 529 | }	/* SkGeInitMacArb */ | 
|  | 530 |  | 
|  | 531 |  | 
|  | 532 | /****************************************************************************** | 
|  | 533 | * | 
|  | 534 | *	SkGeInitPktArb() - Initialize the Packet Arbiter | 
|  | 535 | * | 
|  | 536 | * Description: | 
|  | 537 | *	This function initializes the Packet Arbiter. | 
|  | 538 | *	It must not be called if there is still an | 
|  | 539 | *	initialized or active port. | 
|  | 540 | * | 
|  | 541 | * Returns: | 
|  | 542 | *	nothing | 
|  | 543 | */ | 
|  | 544 | static void SkGeInitPktArb( | 
|  | 545 | SK_AC	*pAC,		/* adapter context */ | 
|  | 546 | SK_IOC	IoC)		/* IO context */ | 
|  | 547 | { | 
|  | 548 | /* release local reset */ | 
|  | 549 | SK_OUT16(IoC, B3_PA_CTRL, PA_RST_CLR); | 
|  | 550 |  | 
|  | 551 | /* configure timeout values */ | 
|  | 552 | SK_OUT16(IoC, B3_PA_TOINI_RX1, SK_PKT_TO_MAX); | 
|  | 553 | SK_OUT16(IoC, B3_PA_TOINI_RX2, SK_PKT_TO_MAX); | 
|  | 554 | SK_OUT16(IoC, B3_PA_TOINI_TX1, SK_PKT_TO_MAX); | 
|  | 555 | SK_OUT16(IoC, B3_PA_TOINI_TX2, SK_PKT_TO_MAX); | 
|  | 556 |  | 
|  | 557 | /* | 
|  | 558 | * enable timeout timers if jumbo frames not used | 
|  | 559 | * NOTE: the packet arbiter timeout interrupt is needed for | 
|  | 560 | * half duplex hangup workaround | 
|  | 561 | */ | 
|  | 562 | if (pAC->GIni.GIPortUsage != SK_JUMBO_LINK) { | 
|  | 563 | if (pAC->GIni.GIMacsFound == 1) { | 
|  | 564 | SK_OUT16(IoC, B3_PA_CTRL, PA_ENA_TO_TX1); | 
|  | 565 | } | 
|  | 566 | else { | 
|  | 567 | SK_OUT16(IoC, B3_PA_CTRL, PA_ENA_TO_TX1 | PA_ENA_TO_TX2); | 
|  | 568 | } | 
|  | 569 | } | 
|  | 570 | }	/* SkGeInitPktArb */ | 
|  | 571 | #endif /* GENESIS */ | 
|  | 572 |  | 
|  | 573 |  | 
|  | 574 | /****************************************************************************** | 
|  | 575 | * | 
|  | 576 | *	SkGeInitMacFifo() - Initialize the MAC FIFOs | 
|  | 577 | * | 
|  | 578 | * Description: | 
|  | 579 | *	Initialize all MAC FIFOs of the specified port | 
|  | 580 | * | 
|  | 581 | * Returns: | 
|  | 582 | *	nothing | 
|  | 583 | */ | 
|  | 584 | static void SkGeInitMacFifo( | 
|  | 585 | SK_AC	*pAC,		/* adapter context */ | 
|  | 586 | SK_IOC	IoC,		/* IO context */ | 
|  | 587 | int		Port)		/* Port Index (MAC_1 + n) */ | 
|  | 588 | { | 
|  | 589 | SK_U16	Word; | 
|  | 590 | #ifdef VCPU | 
|  | 591 | SK_U32	DWord; | 
|  | 592 | #endif /* VCPU */ | 
|  | 593 | /* | 
|  | 594 | * For each FIFO: | 
|  | 595 | *	- release local reset | 
|  | 596 | *	- use default value for MAC FIFO size | 
|  | 597 | *	- setup defaults for the control register | 
|  | 598 | *	- enable the FIFO | 
|  | 599 | */ | 
|  | 600 |  | 
|  | 601 | #ifdef GENESIS | 
|  | 602 | if (pAC->GIni.GIGenesis) { | 
|  | 603 | /* Configure Rx MAC FIFO */ | 
|  | 604 | SK_OUT8(IoC, MR_ADDR(Port, RX_MFF_CTRL2), MFF_RST_CLR); | 
|  | 605 | SK_OUT16(IoC, MR_ADDR(Port, RX_MFF_CTRL1), MFF_RX_CTRL_DEF); | 
|  | 606 | SK_OUT8(IoC, MR_ADDR(Port, RX_MFF_CTRL2), MFF_ENA_OP_MD); | 
|  | 607 |  | 
|  | 608 | /* Configure Tx MAC FIFO */ | 
|  | 609 | SK_OUT8(IoC, MR_ADDR(Port, TX_MFF_CTRL2), MFF_RST_CLR); | 
|  | 610 | SK_OUT16(IoC, MR_ADDR(Port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF); | 
|  | 611 | SK_OUT8(IoC, MR_ADDR(Port, TX_MFF_CTRL2), MFF_ENA_OP_MD); | 
|  | 612 |  | 
|  | 613 | /* Enable frame flushing if jumbo frames used */ | 
|  | 614 | if (pAC->GIni.GIPortUsage == SK_JUMBO_LINK) { | 
|  | 615 | SK_OUT16(IoC, MR_ADDR(Port, RX_MFF_CTRL1), MFF_ENA_FLUSH); | 
|  | 616 | } | 
|  | 617 | } | 
|  | 618 | #endif /* GENESIS */ | 
|  | 619 |  | 
|  | 620 | #ifdef YUKON | 
|  | 621 | if (pAC->GIni.GIYukon) { | 
|  | 622 | /* set Rx GMAC FIFO Flush Mask */ | 
|  | 623 | SK_OUT16(IoC, MR_ADDR(Port, RX_GMF_FL_MSK), (SK_U16)RX_FF_FL_DEF_MSK); | 
|  | 624 |  | 
|  | 625 | Word = (SK_U16)GMF_RX_CTRL_DEF; | 
|  | 626 |  | 
|  | 627 | /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */ | 
|  | 628 | if (pAC->GIni.GIYukonLite && pAC->GIni.GIChipId == CHIP_ID_YUKON) { | 
|  | 629 |  | 
|  | 630 | Word &= ~GMF_RX_F_FL_ON; | 
|  | 631 | } | 
|  | 632 |  | 
|  | 633 | /* Configure Rx MAC FIFO */ | 
|  | 634 | SK_OUT8(IoC, MR_ADDR(Port, RX_GMF_CTRL_T), (SK_U8)GMF_RST_CLR); | 
|  | 635 | SK_OUT16(IoC, MR_ADDR(Port, RX_GMF_CTRL_T), Word); | 
|  | 636 |  | 
|  | 637 | /* set Rx GMAC FIFO Flush Threshold (default: 0x0a -> 56 bytes) */ | 
|  | 638 | SK_OUT16(IoC, MR_ADDR(Port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF); | 
|  | 639 |  | 
|  | 640 | /* Configure Tx MAC FIFO */ | 
|  | 641 | SK_OUT8(IoC, MR_ADDR(Port, TX_GMF_CTRL_T), (SK_U8)GMF_RST_CLR); | 
|  | 642 | SK_OUT16(IoC, MR_ADDR(Port, TX_GMF_CTRL_T), (SK_U16)GMF_TX_CTRL_DEF); | 
|  | 643 |  | 
|  | 644 | #ifdef VCPU | 
|  | 645 | SK_IN32(IoC, MR_ADDR(Port, RX_GMF_AF_THR), &DWord); | 
|  | 646 | SK_IN32(IoC, MR_ADDR(Port, TX_GMF_AE_THR), &DWord); | 
|  | 647 | #endif /* VCPU */ | 
|  | 648 |  | 
|  | 649 | /* set Tx GMAC FIFO Almost Empty Threshold */ | 
|  | 650 | /*		SK_OUT32(IoC, MR_ADDR(Port, TX_GMF_AE_THR), 0); */ | 
|  | 651 | } | 
|  | 652 | #endif /* YUKON */ | 
|  | 653 |  | 
|  | 654 | }	/* SkGeInitMacFifo */ | 
|  | 655 |  | 
|  | 656 | #ifdef	SK_LNK_SYNC_CNT | 
|  | 657 | /****************************************************************************** | 
|  | 658 | * | 
|  | 659 | *	SkGeLoadLnkSyncCnt() - Load the Link Sync Counter and starts counting | 
|  | 660 | * | 
|  | 661 | * Description: | 
|  | 662 | *	This function starts the Link Sync Counter of the specified | 
|  | 663 | *	port and enables the generation of an Link Sync IRQ. | 
|  | 664 | *	The Link Sync Counter may be used to detect an active link, | 
|  | 665 | *	if autonegotiation is not used. | 
|  | 666 | * | 
|  | 667 | * Note: | 
|  | 668 | *	o To ensure receiving the Link Sync Event the LinkSyncCounter | 
|  | 669 | *	  should be initialized BEFORE clearing the XMAC's reset! | 
|  | 670 | *	o Enable IS_LNK_SYNC_M1 and IS_LNK_SYNC_M2 after calling this | 
|  | 671 | *	  function. | 
|  | 672 | * | 
|  | 673 | * Returns: | 
|  | 674 | *	nothing | 
|  | 675 | */ | 
|  | 676 | void SkGeLoadLnkSyncCnt( | 
|  | 677 | SK_AC	*pAC,		/* adapter context */ | 
|  | 678 | SK_IOC	IoC,		/* IO context */ | 
|  | 679 | int		Port,		/* Port Index (MAC_1 + n) */ | 
|  | 680 | SK_U32	CntVal)		/* Counter value */ | 
|  | 681 | { | 
|  | 682 | SK_U32	OrgIMsk; | 
|  | 683 | SK_U32	NewIMsk; | 
|  | 684 | SK_U32	ISrc; | 
|  | 685 | SK_BOOL	IrqPend; | 
|  | 686 |  | 
|  | 687 | /* stop counter */ | 
|  | 688 | SK_OUT8(IoC, MR_ADDR(Port, LNK_SYNC_CTRL), LED_STOP); | 
|  | 689 |  | 
|  | 690 | /* | 
|  | 691 | * ASIC problem: | 
|  | 692 | * Each time starting the Link Sync Counter an IRQ is generated | 
|  | 693 | * by the adapter. See problem report entry from 21.07.98 | 
|  | 694 | * | 
|  | 695 | * Workaround:	Disable Link Sync IRQ and clear the unexpeced IRQ | 
|  | 696 | *		if no IRQ is already pending. | 
|  | 697 | */ | 
|  | 698 | IrqPend = SK_FALSE; | 
|  | 699 | SK_IN32(IoC, B0_ISRC, &ISrc); | 
|  | 700 | SK_IN32(IoC, B0_IMSK, &OrgIMsk); | 
|  | 701 | if (Port == MAC_1) { | 
|  | 702 | NewIMsk = OrgIMsk & ~IS_LNK_SYNC_M1; | 
|  | 703 | if ((ISrc & IS_LNK_SYNC_M1) != 0) { | 
|  | 704 | IrqPend = SK_TRUE; | 
|  | 705 | } | 
|  | 706 | } | 
|  | 707 | else { | 
|  | 708 | NewIMsk = OrgIMsk & ~IS_LNK_SYNC_M2; | 
|  | 709 | if ((ISrc & IS_LNK_SYNC_M2) != 0) { | 
|  | 710 | IrqPend = SK_TRUE; | 
|  | 711 | } | 
|  | 712 | } | 
|  | 713 | if (!IrqPend) { | 
|  | 714 | SK_OUT32(IoC, B0_IMSK, NewIMsk); | 
|  | 715 | } | 
|  | 716 |  | 
|  | 717 | /* load counter */ | 
|  | 718 | SK_OUT32(IoC, MR_ADDR(Port, LNK_SYNC_INI), CntVal); | 
|  | 719 |  | 
|  | 720 | /* start counter */ | 
|  | 721 | SK_OUT8(IoC, MR_ADDR(Port, LNK_SYNC_CTRL), LED_START); | 
|  | 722 |  | 
|  | 723 | if (!IrqPend) { | 
|  | 724 | /* clear the unexpected IRQ, and restore the interrupt mask */ | 
|  | 725 | SK_OUT8(IoC, MR_ADDR(Port, LNK_SYNC_CTRL), LED_CLR_IRQ); | 
|  | 726 | SK_OUT32(IoC, B0_IMSK, OrgIMsk); | 
|  | 727 | } | 
|  | 728 | }	/* SkGeLoadLnkSyncCnt*/ | 
|  | 729 | #endif	/* SK_LNK_SYNC_CNT */ | 
|  | 730 |  | 
|  | 731 | #if defined(SK_DIAG) || defined(SK_CFG_SYNC) | 
|  | 732 | /****************************************************************************** | 
|  | 733 | * | 
|  | 734 | *	SkGeCfgSync() - Configure synchronous bandwidth for this port. | 
|  | 735 | * | 
|  | 736 | * Description: | 
|  | 737 | *	This function may be used to configure synchronous bandwidth | 
|  | 738 | *	to the specified port. This may be done any time after | 
|  | 739 | *	initializing the port. The configuration values are NOT saved | 
|  | 740 | *	in the HWAC port structure and will be overwritten any | 
|  | 741 | *	time when stopping and starting the port. | 
|  | 742 | *	Any values for the synchronous configuration will be ignored | 
|  | 743 | *	if the size of the synchronous queue is zero! | 
|  | 744 | * | 
|  | 745 | *	The default configuration for the synchronous service is | 
|  | 746 | *	TXA_ENA_FSYNC. This means if the size of | 
|  | 747 | *	the synchronous queue is unequal zero but no specific | 
|  | 748 | *	synchronous bandwidth is configured, the synchronous queue | 
|  | 749 | *	will always have the 'unlimited' transmit priority! | 
|  | 750 | * | 
|  | 751 | *	This mode will be restored if the synchronous bandwidth is | 
|  | 752 | *	deallocated ('IntTime' = 0 and 'LimCount' = 0). | 
|  | 753 | * | 
|  | 754 | * Returns: | 
|  | 755 | *	0:	success | 
|  | 756 | *	1:	parameter configuration error | 
|  | 757 | *	2:	try to configure quality of service although no | 
|  | 758 | *		synchronous queue is configured | 
|  | 759 | */ | 
|  | 760 | int SkGeCfgSync( | 
|  | 761 | SK_AC	*pAC,		/* adapter context */ | 
|  | 762 | SK_IOC	IoC,		/* IO context */ | 
|  | 763 | int		Port,		/* Port Index (MAC_1 + n) */ | 
|  | 764 | SK_U32	IntTime,	/* Interval Timer Value in units of 8ns */ | 
|  | 765 | SK_U32	LimCount,	/* Number of bytes to transfer during IntTime */ | 
|  | 766 | int		SyncMode)	/* Sync Mode: TXA_ENA_ALLOC | TXA_DIS_ALLOC | 0 */ | 
|  | 767 | { | 
|  | 768 | int Rtv; | 
|  | 769 |  | 
|  | 770 | Rtv = 0; | 
|  | 771 |  | 
|  | 772 | /* check the parameters */ | 
|  | 773 | if (LimCount > IntTime || | 
|  | 774 | (LimCount == 0 && IntTime != 0) || | 
|  | 775 | (LimCount != 0 && IntTime == 0)) { | 
|  | 776 |  | 
|  | 777 | SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E010, SKERR_HWI_E010MSG); | 
|  | 778 | return(1); | 
|  | 779 | } | 
|  | 780 |  | 
|  | 781 | if (pAC->GIni.GP[Port].PXSQSize == 0) { | 
|  | 782 | SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E009, SKERR_HWI_E009MSG); | 
|  | 783 | return(2); | 
|  | 784 | } | 
|  | 785 |  | 
|  | 786 | /* calculate register values */ | 
|  | 787 | IntTime = (IntTime / 2) * pAC->GIni.GIHstClkFact / 100; | 
|  | 788 | LimCount = LimCount / 8; | 
|  | 789 |  | 
|  | 790 | if (IntTime > TXA_MAX_VAL || LimCount > TXA_MAX_VAL) { | 
|  | 791 | SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E010, SKERR_HWI_E010MSG); | 
|  | 792 | return(1); | 
|  | 793 | } | 
|  | 794 |  | 
|  | 795 | /* | 
|  | 796 | * - Enable 'Force Sync' to ensure the synchronous queue | 
|  | 797 | *   has the priority while configuring the new values. | 
|  | 798 | * - Also 'disable alloc' to ensure the settings complies | 
|  | 799 | *   to the SyncMode parameter. | 
|  | 800 | * - Disable 'Rate Control' to configure the new values. | 
|  | 801 | * - write IntTime and LimCount | 
|  | 802 | * - start 'Rate Control' and disable 'Force Sync' | 
|  | 803 | *   if Interval Timer or Limit Counter not zero. | 
|  | 804 | */ | 
|  | 805 | SK_OUT8(IoC, MR_ADDR(Port, TXA_CTRL), | 
|  | 806 | TXA_ENA_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC); | 
|  | 807 |  | 
|  | 808 | SK_OUT32(IoC, MR_ADDR(Port, TXA_ITI_INI), IntTime); | 
|  | 809 | SK_OUT32(IoC, MR_ADDR(Port, TXA_LIM_INI), LimCount); | 
|  | 810 |  | 
|  | 811 | SK_OUT8(IoC, MR_ADDR(Port, TXA_CTRL), | 
|  | 812 | (SK_U8)(SyncMode & (TXA_ENA_ALLOC | TXA_DIS_ALLOC))); | 
|  | 813 |  | 
|  | 814 | if (IntTime != 0 || LimCount != 0) { | 
|  | 815 | SK_OUT8(IoC, MR_ADDR(Port, TXA_CTRL), TXA_DIS_FSYNC | TXA_START_RC); | 
|  | 816 | } | 
|  | 817 |  | 
|  | 818 | return(0); | 
|  | 819 | }	/* SkGeCfgSync */ | 
|  | 820 | #endif /* SK_DIAG || SK_CFG_SYNC*/ | 
|  | 821 |  | 
|  | 822 |  | 
|  | 823 | /****************************************************************************** | 
|  | 824 | * | 
|  | 825 | *	DoInitRamQueue() - Initialize the RAM Buffer Address of a single Queue | 
|  | 826 | * | 
|  | 827 | * Desccription: | 
|  | 828 | *	If the queue is used, enable and initialize it. | 
|  | 829 | *	Make sure the queue is still reset, if it is not used. | 
|  | 830 | * | 
|  | 831 | * Returns: | 
|  | 832 | *	nothing | 
|  | 833 | */ | 
|  | 834 | static void DoInitRamQueue( | 
|  | 835 | SK_AC	*pAC,			/* adapter context */ | 
|  | 836 | SK_IOC	IoC,			/* IO context */ | 
|  | 837 | int		QuIoOffs,		/* Queue IO Address Offset */ | 
|  | 838 | SK_U32	QuStartAddr,	/* Queue Start Address */ | 
|  | 839 | SK_U32	QuEndAddr,		/* Queue End Address */ | 
|  | 840 | int		QuType)			/* Queue Type (SK_RX_SRAM_Q|SK_RX_BRAM_Q|SK_TX_RAM_Q) */ | 
|  | 841 | { | 
|  | 842 | SK_U32	RxUpThresVal; | 
|  | 843 | SK_U32	RxLoThresVal; | 
|  | 844 |  | 
|  | 845 | if (QuStartAddr != QuEndAddr) { | 
|  | 846 | /* calculate thresholds, assume we have a big Rx queue */ | 
|  | 847 | RxUpThresVal = (QuEndAddr + 1 - QuStartAddr - SK_RB_ULPP) / 8; | 
|  | 848 | RxLoThresVal = (QuEndAddr + 1 - QuStartAddr - SK_RB_LLPP_B)/8; | 
|  | 849 |  | 
|  | 850 | /* build HW address format */ | 
|  | 851 | QuStartAddr = QuStartAddr / 8; | 
|  | 852 | QuEndAddr = QuEndAddr / 8; | 
|  | 853 |  | 
|  | 854 | /* release local reset */ | 
|  | 855 | SK_OUT8(IoC, RB_ADDR(QuIoOffs, RB_CTRL), RB_RST_CLR); | 
|  | 856 |  | 
|  | 857 | /* configure addresses */ | 
|  | 858 | SK_OUT32(IoC, RB_ADDR(QuIoOffs, RB_START), QuStartAddr); | 
|  | 859 | SK_OUT32(IoC, RB_ADDR(QuIoOffs, RB_END), QuEndAddr); | 
|  | 860 | SK_OUT32(IoC, RB_ADDR(QuIoOffs, RB_WP), QuStartAddr); | 
|  | 861 | SK_OUT32(IoC, RB_ADDR(QuIoOffs, RB_RP), QuStartAddr); | 
|  | 862 |  | 
|  | 863 | switch (QuType) { | 
|  | 864 | case SK_RX_SRAM_Q: | 
|  | 865 | /* configure threshold for small Rx Queue */ | 
|  | 866 | RxLoThresVal += (SK_RB_LLPP_B - SK_RB_LLPP_S) / 8; | 
|  | 867 |  | 
|  | 868 | /* continue with SK_RX_BRAM_Q */ | 
|  | 869 | case SK_RX_BRAM_Q: | 
|  | 870 | /* write threshold for Rx Queue */ | 
|  | 871 |  | 
|  | 872 | SK_OUT32(IoC, RB_ADDR(QuIoOffs, RB_RX_UTPP), RxUpThresVal); | 
|  | 873 | SK_OUT32(IoC, RB_ADDR(QuIoOffs, RB_RX_LTPP), RxLoThresVal); | 
|  | 874 |  | 
|  | 875 | /* the high priority threshold not used */ | 
|  | 876 | break; | 
|  | 877 | case SK_TX_RAM_Q: | 
|  | 878 | /* | 
|  | 879 | * Do NOT use Store & Forward under normal operation due to | 
|  | 880 | * performance optimization (GENESIS only). | 
|  | 881 | * But if Jumbo Frames are configured (XMAC Tx FIFO is only 4 kB) | 
|  | 882 | * or YUKON is used ((GMAC Tx FIFO is only 1 kB) | 
|  | 883 | * we NEED Store & Forward of the RAM buffer. | 
|  | 884 | */ | 
|  | 885 | if (pAC->GIni.GIPortUsage == SK_JUMBO_LINK || | 
|  | 886 | pAC->GIni.GIYukon) { | 
|  | 887 | /* enable Store & Forward Mode for the Tx Side */ | 
|  | 888 | SK_OUT8(IoC, RB_ADDR(QuIoOffs, RB_CTRL), RB_ENA_STFWD); | 
|  | 889 | } | 
|  | 890 | break; | 
|  | 891 | } | 
|  | 892 |  | 
|  | 893 | /* set queue operational */ | 
|  | 894 | SK_OUT8(IoC, RB_ADDR(QuIoOffs, RB_CTRL), RB_ENA_OP_MD); | 
|  | 895 | } | 
|  | 896 | else { | 
|  | 897 | /* ensure the queue is still disabled */ | 
|  | 898 | SK_OUT8(IoC, RB_ADDR(QuIoOffs, RB_CTRL), RB_RST_SET); | 
|  | 899 | } | 
|  | 900 | }	/* DoInitRamQueue */ | 
|  | 901 |  | 
|  | 902 |  | 
|  | 903 | /****************************************************************************** | 
|  | 904 | * | 
|  | 905 | *	SkGeInitRamBufs() - Initialize the RAM Buffer Queues | 
|  | 906 | * | 
|  | 907 | * Description: | 
|  | 908 | *	Initialize all RAM Buffer Queues of the specified port | 
|  | 909 | * | 
|  | 910 | * Returns: | 
|  | 911 | *	nothing | 
|  | 912 | */ | 
|  | 913 | static void SkGeInitRamBufs( | 
|  | 914 | SK_AC	*pAC,		/* adapter context */ | 
|  | 915 | SK_IOC	IoC,		/* IO context */ | 
|  | 916 | int		Port)		/* Port Index (MAC_1 + n) */ | 
|  | 917 | { | 
|  | 918 | SK_GEPORT *pPrt; | 
|  | 919 | int RxQType; | 
|  | 920 |  | 
|  | 921 | pPrt = &pAC->GIni.GP[Port]; | 
|  | 922 |  | 
|  | 923 | if (pPrt->PRxQSize == SK_MIN_RXQ_SIZE) { | 
|  | 924 | RxQType = SK_RX_SRAM_Q; 	/* small Rx Queue */ | 
|  | 925 | } | 
|  | 926 | else { | 
|  | 927 | RxQType = SK_RX_BRAM_Q;		/* big Rx Queue */ | 
|  | 928 | } | 
|  | 929 |  | 
|  | 930 | DoInitRamQueue(pAC, IoC, pPrt->PRxQOff, pPrt->PRxQRamStart, | 
|  | 931 | pPrt->PRxQRamEnd, RxQType); | 
|  | 932 |  | 
|  | 933 | DoInitRamQueue(pAC, IoC, pPrt->PXsQOff, pPrt->PXsQRamStart, | 
|  | 934 | pPrt->PXsQRamEnd, SK_TX_RAM_Q); | 
|  | 935 |  | 
|  | 936 | DoInitRamQueue(pAC, IoC, pPrt->PXaQOff, pPrt->PXaQRamStart, | 
|  | 937 | pPrt->PXaQRamEnd, SK_TX_RAM_Q); | 
|  | 938 |  | 
|  | 939 | }	/* SkGeInitRamBufs */ | 
|  | 940 |  | 
|  | 941 |  | 
|  | 942 | /****************************************************************************** | 
|  | 943 | * | 
|  | 944 | *	SkGeInitRamIface() - Initialize the RAM Interface | 
|  | 945 | * | 
|  | 946 | * Description: | 
|  | 947 | *	This function initializes the Adapters RAM Interface. | 
|  | 948 | * | 
|  | 949 | * Note: | 
|  | 950 | *	This function is used in the diagnostics. | 
|  | 951 | * | 
|  | 952 | * Returns: | 
|  | 953 | *	nothing | 
|  | 954 | */ | 
|  | 955 | void SkGeInitRamIface( | 
|  | 956 | SK_AC	*pAC,		/* adapter context */ | 
|  | 957 | SK_IOC	IoC)		/* IO context */ | 
|  | 958 | { | 
|  | 959 | /* release local reset */ | 
|  | 960 | SK_OUT16(IoC, B3_RI_CTRL, RI_RST_CLR); | 
|  | 961 |  | 
|  | 962 | /* configure timeout values */ | 
|  | 963 | SK_OUT8(IoC, B3_RI_WTO_R1, SK_RI_TO_53); | 
|  | 964 | SK_OUT8(IoC, B3_RI_WTO_XA1, SK_RI_TO_53); | 
|  | 965 | SK_OUT8(IoC, B3_RI_WTO_XS1, SK_RI_TO_53); | 
|  | 966 | SK_OUT8(IoC, B3_RI_RTO_R1, SK_RI_TO_53); | 
|  | 967 | SK_OUT8(IoC, B3_RI_RTO_XA1, SK_RI_TO_53); | 
|  | 968 | SK_OUT8(IoC, B3_RI_RTO_XS1, SK_RI_TO_53); | 
|  | 969 | SK_OUT8(IoC, B3_RI_WTO_R2, SK_RI_TO_53); | 
|  | 970 | SK_OUT8(IoC, B3_RI_WTO_XA2, SK_RI_TO_53); | 
|  | 971 | SK_OUT8(IoC, B3_RI_WTO_XS2, SK_RI_TO_53); | 
|  | 972 | SK_OUT8(IoC, B3_RI_RTO_R2, SK_RI_TO_53); | 
|  | 973 | SK_OUT8(IoC, B3_RI_RTO_XA2, SK_RI_TO_53); | 
|  | 974 | SK_OUT8(IoC, B3_RI_RTO_XS2, SK_RI_TO_53); | 
|  | 975 |  | 
|  | 976 | }	/* SkGeInitRamIface */ | 
|  | 977 |  | 
|  | 978 |  | 
|  | 979 | /****************************************************************************** | 
|  | 980 | * | 
|  | 981 | *	SkGeInitBmu() - Initialize the BMU state machines | 
|  | 982 | * | 
|  | 983 | * Description: | 
|  | 984 | *	Initialize all BMU state machines of the specified port | 
|  | 985 | * | 
|  | 986 | * Returns: | 
|  | 987 | *	nothing | 
|  | 988 | */ | 
|  | 989 | static void SkGeInitBmu( | 
|  | 990 | SK_AC	*pAC,		/* adapter context */ | 
|  | 991 | SK_IOC	IoC,		/* IO context */ | 
|  | 992 | int		Port)		/* Port Index (MAC_1 + n) */ | 
|  | 993 | { | 
|  | 994 | SK_GEPORT	*pPrt; | 
|  | 995 | SK_U32		RxWm; | 
|  | 996 | SK_U32		TxWm; | 
|  | 997 |  | 
|  | 998 | pPrt = &pAC->GIni.GP[Port]; | 
|  | 999 |  | 
|  | 1000 | RxWm = SK_BMU_RX_WM; | 
|  | 1001 | TxWm = SK_BMU_TX_WM; | 
|  | 1002 |  | 
|  | 1003 | if (!pAC->GIni.GIPciSlot64 && !pAC->GIni.GIPciClock66) { | 
|  | 1004 | /* for better performance */ | 
|  | 1005 | RxWm /= 2; | 
|  | 1006 | TxWm /= 2; | 
|  | 1007 | } | 
|  | 1008 |  | 
|  | 1009 | /* Rx Queue: Release all local resets and set the watermark */ | 
|  | 1010 | SK_OUT32(IoC, Q_ADDR(pPrt->PRxQOff, Q_CSR), CSR_CLR_RESET); | 
|  | 1011 | SK_OUT32(IoC, Q_ADDR(pPrt->PRxQOff, Q_F), RxWm); | 
|  | 1012 |  | 
|  | 1013 | /* | 
|  | 1014 | * Tx Queue: Release all local resets if the queue is used ! | 
|  | 1015 | * 		set watermark | 
|  | 1016 | */ | 
|  | 1017 | if (pPrt->PXSQSize != 0) { | 
|  | 1018 | SK_OUT32(IoC, Q_ADDR(pPrt->PXsQOff, Q_CSR), CSR_CLR_RESET); | 
|  | 1019 | SK_OUT32(IoC, Q_ADDR(pPrt->PXsQOff, Q_F), TxWm); | 
|  | 1020 | } | 
|  | 1021 |  | 
|  | 1022 | if (pPrt->PXAQSize != 0) { | 
|  | 1023 | SK_OUT32(IoC, Q_ADDR(pPrt->PXaQOff, Q_CSR), CSR_CLR_RESET); | 
|  | 1024 | SK_OUT32(IoC, Q_ADDR(pPrt->PXaQOff, Q_F), TxWm); | 
|  | 1025 | } | 
|  | 1026 | /* | 
|  | 1027 | * Do NOT enable the descriptor poll timers here, because | 
|  | 1028 | * the descriptor addresses are not specified yet. | 
|  | 1029 | */ | 
|  | 1030 | }	/* SkGeInitBmu */ | 
|  | 1031 |  | 
|  | 1032 |  | 
|  | 1033 | /****************************************************************************** | 
|  | 1034 | * | 
|  | 1035 | *	TestStopBit() -	Test the stop bit of the queue | 
|  | 1036 | * | 
|  | 1037 | * Description: | 
|  | 1038 | *	Stopping a queue is not as simple as it seems to be. | 
|  | 1039 | *	If descriptor polling is enabled, it may happen | 
|  | 1040 | *	that RX/TX stop is done and SV idle is NOT set. | 
|  | 1041 | *	In this case we have to issue another stop command. | 
|  | 1042 | * | 
|  | 1043 | * Returns: | 
|  | 1044 | *	The queues control status register | 
|  | 1045 | */ | 
|  | 1046 | static SK_U32 TestStopBit( | 
|  | 1047 | SK_AC	*pAC,		/* Adapter Context */ | 
|  | 1048 | SK_IOC	IoC,		/* IO Context */ | 
|  | 1049 | int		QuIoOffs)	/* Queue IO Address Offset */ | 
|  | 1050 | { | 
|  | 1051 | SK_U32	QuCsr;	/* CSR contents */ | 
|  | 1052 |  | 
|  | 1053 | SK_IN32(IoC, Q_ADDR(QuIoOffs, Q_CSR), &QuCsr); | 
|  | 1054 |  | 
|  | 1055 | if ((QuCsr & (CSR_STOP | CSR_SV_IDLE)) == 0) { | 
|  | 1056 | /* Stop Descriptor overridden by start command */ | 
|  | 1057 | SK_OUT32(IoC, Q_ADDR(QuIoOffs, Q_CSR), CSR_STOP); | 
|  | 1058 |  | 
|  | 1059 | SK_IN32(IoC, Q_ADDR(QuIoOffs, Q_CSR), &QuCsr); | 
|  | 1060 | } | 
|  | 1061 |  | 
|  | 1062 | return(QuCsr); | 
|  | 1063 | }	/* TestStopBit */ | 
|  | 1064 |  | 
|  | 1065 |  | 
|  | 1066 | /****************************************************************************** | 
|  | 1067 | * | 
|  | 1068 | *	SkGeStopPort() - Stop the Rx/Tx activity of the port 'Port'. | 
|  | 1069 | * | 
|  | 1070 | * Description: | 
|  | 1071 | *	After calling this function the descriptor rings and Rx and Tx | 
|  | 1072 | *	queues of this port may be reconfigured. | 
|  | 1073 | * | 
|  | 1074 | *	It is possible to stop the receive and transmit path separate or | 
|  | 1075 | *	both together. | 
|  | 1076 | * | 
|  | 1077 | *	Dir =	SK_STOP_TX 	Stops the transmit path only and resets the MAC. | 
|  | 1078 | *				The receive queue is still active and | 
|  | 1079 | *				the pending Rx frames may be still transferred | 
|  | 1080 | *				into the RxD. | 
|  | 1081 | *		SK_STOP_RX	Stop the receive path. The tansmit path | 
|  | 1082 | *				has to be stopped once before. | 
|  | 1083 | *		SK_STOP_ALL	SK_STOP_TX + SK_STOP_RX | 
|  | 1084 | * | 
|  | 1085 | *	RstMode = SK_SOFT_RST	Resets the MAC. The PHY is still alive. | 
|  | 1086 | *			SK_HARD_RST	Resets the MAC and the PHY. | 
|  | 1087 | * | 
|  | 1088 | * Example: | 
|  | 1089 | *	1) A Link Down event was signaled for a port. Therefore the activity | 
|  | 1090 | *	of this port should be stopped and a hardware reset should be issued | 
|  | 1091 | *	to enable the workaround of XMAC Errata #2. But the received frames | 
|  | 1092 | *	should not be discarded. | 
|  | 1093 | *		... | 
|  | 1094 | *		SkGeStopPort(pAC, IoC, Port, SK_STOP_TX, SK_HARD_RST); | 
|  | 1095 | *		(transfer all pending Rx frames) | 
|  | 1096 | *		SkGeStopPort(pAC, IoC, Port, SK_STOP_RX, SK_HARD_RST); | 
|  | 1097 | *		... | 
|  | 1098 | * | 
|  | 1099 | *	2) An event was issued which request the driver to switch | 
|  | 1100 | *	the 'virtual active' link to an other already active port | 
|  | 1101 | *	as soon as possible. The frames in the receive queue of this | 
|  | 1102 | *	port may be lost. But the PHY must not be reset during this | 
|  | 1103 | *	event. | 
|  | 1104 | *		... | 
|  | 1105 | *		SkGeStopPort(pAC, IoC, Port, SK_STOP_ALL, SK_SOFT_RST); | 
|  | 1106 | *		... | 
|  | 1107 | * | 
|  | 1108 | * Extended Description: | 
|  | 1109 | *	If SK_STOP_TX is set, | 
|  | 1110 | *		o disable the MAC's receive and transmitter to prevent | 
|  | 1111 | *		  from sending incomplete frames | 
|  | 1112 | *		o stop the port's transmit queues before terminating the | 
|  | 1113 | *		  BMUs to prevent from performing incomplete PCI cycles | 
|  | 1114 | *		  on the PCI bus | 
|  | 1115 | *		- The network Rx and Tx activity and PCI Tx transfer is | 
|  | 1116 | *		  disabled now. | 
|  | 1117 | *		o reset the MAC depending on the RstMode | 
|  | 1118 | *		o Stop Interval Timer and Limit Counter of Tx Arbiter, | 
|  | 1119 | *		  also disable Force Sync bit and Enable Alloc bit. | 
|  | 1120 | *		o perform a local reset of the port's Tx path | 
|  | 1121 | *			- reset the PCI FIFO of the async Tx queue | 
|  | 1122 | *			- reset the PCI FIFO of the sync Tx queue | 
|  | 1123 | *			- reset the RAM Buffer async Tx queue | 
|  | 1124 | *			- reset the RAM Buffer sync Tx queue | 
|  | 1125 | *			- reset the MAC Tx FIFO | 
|  | 1126 | *		o switch Link and Tx LED off, stop the LED counters | 
|  | 1127 | * | 
|  | 1128 | *	If SK_STOP_RX is set, | 
|  | 1129 | *		o stop the port's receive queue | 
|  | 1130 | *		- The path data transfer activity is fully stopped now. | 
|  | 1131 | *		o perform a local reset of the port's Rx path | 
|  | 1132 | *			- reset the PCI FIFO of the Rx queue | 
|  | 1133 | *			- reset the RAM Buffer receive queue | 
|  | 1134 | *			- reset the MAC Rx FIFO | 
|  | 1135 | *		o switch Rx LED off, stop the LED counter | 
|  | 1136 | * | 
|  | 1137 | *	If all ports are stopped, | 
|  | 1138 | *		o reset the RAM Interface. | 
|  | 1139 | * | 
|  | 1140 | * Notes: | 
|  | 1141 | *	o This function may be called during the driver states RESET_PORT and | 
|  | 1142 | *	  SWITCH_PORT. | 
|  | 1143 | */ | 
|  | 1144 | void SkGeStopPort( | 
|  | 1145 | SK_AC	*pAC,	/* adapter context */ | 
|  | 1146 | SK_IOC	IoC,	/* I/O context */ | 
|  | 1147 | int		Port,	/* port to stop (MAC_1 + n) */ | 
|  | 1148 | int		Dir,	/* Direction to Stop (SK_STOP_RX, SK_STOP_TX, SK_STOP_ALL) */ | 
|  | 1149 | int		RstMode)/* Reset Mode (SK_SOFT_RST, SK_HARD_RST) */ | 
|  | 1150 | { | 
|  | 1151 | #ifndef SK_DIAG | 
|  | 1152 | SK_EVPARA Para; | 
|  | 1153 | #endif /* !SK_DIAG */ | 
|  | 1154 | SK_GEPORT *pPrt; | 
|  | 1155 | SK_U32	DWord; | 
|  | 1156 | SK_U32	XsCsr; | 
|  | 1157 | SK_U32	XaCsr; | 
|  | 1158 | SK_U64	ToutStart; | 
|  | 1159 | int		i; | 
|  | 1160 | int		ToutCnt; | 
|  | 1161 |  | 
|  | 1162 | pPrt = &pAC->GIni.GP[Port]; | 
|  | 1163 |  | 
|  | 1164 | if ((Dir & SK_STOP_TX) != 0) { | 
|  | 1165 | /* disable receiver and transmitter */ | 
|  | 1166 | SkMacRxTxDisable(pAC, IoC, Port); | 
|  | 1167 |  | 
|  | 1168 | /* stop both transmit queues */ | 
|  | 1169 | /* | 
|  | 1170 | * If the BMU is in the reset state CSR_STOP will terminate | 
|  | 1171 | * immediately. | 
|  | 1172 | */ | 
|  | 1173 | SK_OUT32(IoC, Q_ADDR(pPrt->PXsQOff, Q_CSR), CSR_STOP); | 
|  | 1174 | SK_OUT32(IoC, Q_ADDR(pPrt->PXaQOff, Q_CSR), CSR_STOP); | 
|  | 1175 |  | 
|  | 1176 | ToutStart = SkOsGetTime(pAC); | 
|  | 1177 | ToutCnt = 0; | 
|  | 1178 | do { | 
|  | 1179 | /* | 
|  | 1180 | * Clear packet arbiter timeout to make sure | 
|  | 1181 | * this loop will terminate. | 
|  | 1182 | */ | 
|  | 1183 | SK_OUT16(IoC, B3_PA_CTRL, (SK_U16)((Port == MAC_1) ? | 
|  | 1184 | PA_CLR_TO_TX1 : PA_CLR_TO_TX2)); | 
|  | 1185 |  | 
|  | 1186 | /* | 
|  | 1187 | * If the transfer stucks at the MAC the STOP command will not | 
|  | 1188 | * terminate if we don't flush the XMAC's transmit FIFO ! | 
|  | 1189 | */ | 
|  | 1190 | SkMacFlushTxFifo(pAC, IoC, Port); | 
|  | 1191 |  | 
|  | 1192 | XsCsr = TestStopBit(pAC, IoC, pPrt->PXsQOff); | 
|  | 1193 | XaCsr = TestStopBit(pAC, IoC, pPrt->PXaQOff); | 
|  | 1194 |  | 
|  | 1195 | if (SkOsGetTime(pAC) - ToutStart > (SK_TICKS_PER_SEC / 18)) { | 
|  | 1196 | /* | 
|  | 1197 | * Timeout of 1/18 second reached. | 
|  | 1198 | * This needs to be checked at 1/18 sec only. | 
|  | 1199 | */ | 
|  | 1200 | ToutCnt++; | 
|  | 1201 | if (ToutCnt > 1) { | 
|  | 1202 | /* Might be a problem when the driver event handler | 
|  | 1203 | * calls StopPort again. XXX. | 
|  | 1204 | */ | 
|  | 1205 |  | 
|  | 1206 | /* Fatal Error, Loop aborted */ | 
|  | 1207 | SK_ERR_LOG(pAC, SK_ERRCL_HW, SKERR_HWI_E018, | 
|  | 1208 | SKERR_HWI_E018MSG); | 
|  | 1209 | #ifndef SK_DIAG | 
|  | 1210 | Para.Para64 = Port; | 
|  | 1211 | SkEventQueue(pAC, SKGE_DRV, SK_DRV_PORT_FAIL, Para); | 
|  | 1212 | #endif /* !SK_DIAG */ | 
|  | 1213 | return; | 
|  | 1214 | } | 
|  | 1215 | /* | 
|  | 1216 | * Cache incoherency workaround: Assume a start command | 
|  | 1217 | * has been lost while sending the frame. | 
|  | 1218 | */ | 
|  | 1219 | ToutStart = SkOsGetTime(pAC); | 
|  | 1220 |  | 
|  | 1221 | if ((XsCsr & CSR_STOP) != 0) { | 
|  | 1222 | SK_OUT32(IoC, Q_ADDR(pPrt->PXsQOff, Q_CSR), CSR_START); | 
|  | 1223 | } | 
|  | 1224 | if ((XaCsr & CSR_STOP) != 0) { | 
|  | 1225 | SK_OUT32(IoC, Q_ADDR(pPrt->PXaQOff, Q_CSR), CSR_START); | 
|  | 1226 | } | 
|  | 1227 | } | 
|  | 1228 |  | 
|  | 1229 | /* | 
|  | 1230 | * Because of the ASIC problem report entry from 21.08.1998 it is | 
|  | 1231 | * required to wait until CSR_STOP is reset and CSR_SV_IDLE is set. | 
|  | 1232 | */ | 
|  | 1233 | } while ((XsCsr & (CSR_STOP | CSR_SV_IDLE)) != CSR_SV_IDLE || | 
|  | 1234 | (XaCsr & (CSR_STOP | CSR_SV_IDLE)) != CSR_SV_IDLE); | 
|  | 1235 |  | 
|  | 1236 | /* Reset the MAC depending on the RstMode */ | 
|  | 1237 | if (RstMode == SK_SOFT_RST) { | 
|  | 1238 | SkMacSoftRst(pAC, IoC, Port); | 
|  | 1239 | } | 
|  | 1240 | else { | 
|  | 1241 | SkMacHardRst(pAC, IoC, Port); | 
|  | 1242 | } | 
|  | 1243 |  | 
|  | 1244 | /* Disable Force Sync bit and Enable Alloc bit */ | 
|  | 1245 | SK_OUT8(IoC, MR_ADDR(Port, TXA_CTRL), | 
|  | 1246 | TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC); | 
|  | 1247 |  | 
|  | 1248 | /* Stop Interval Timer and Limit Counter of Tx Arbiter */ | 
|  | 1249 | SK_OUT32(IoC, MR_ADDR(Port, TXA_ITI_INI), 0L); | 
|  | 1250 | SK_OUT32(IoC, MR_ADDR(Port, TXA_LIM_INI), 0L); | 
|  | 1251 |  | 
|  | 1252 | /* Perform a local reset of the port's Tx path */ | 
|  | 1253 |  | 
|  | 1254 | /* Reset the PCI FIFO of the async Tx queue */ | 
|  | 1255 | SK_OUT32(IoC, Q_ADDR(pPrt->PXaQOff, Q_CSR), CSR_SET_RESET); | 
|  | 1256 | /* Reset the PCI FIFO of the sync Tx queue */ | 
|  | 1257 | SK_OUT32(IoC, Q_ADDR(pPrt->PXsQOff, Q_CSR), CSR_SET_RESET); | 
|  | 1258 | /* Reset the RAM Buffer async Tx queue */ | 
|  | 1259 | SK_OUT8(IoC, RB_ADDR(pPrt->PXaQOff, RB_CTRL), RB_RST_SET); | 
|  | 1260 | /* Reset the RAM Buffer sync Tx queue */ | 
|  | 1261 | SK_OUT8(IoC, RB_ADDR(pPrt->PXsQOff, RB_CTRL), RB_RST_SET); | 
|  | 1262 |  | 
|  | 1263 | /* Reset Tx MAC FIFO */ | 
|  | 1264 | #ifdef GENESIS | 
|  | 1265 | if (pAC->GIni.GIGenesis) { | 
|  | 1266 | /* Note: MFF_RST_SET does NOT reset the XMAC ! */ | 
|  | 1267 | SK_OUT8(IoC, MR_ADDR(Port, TX_MFF_CTRL2), MFF_RST_SET); | 
|  | 1268 |  | 
|  | 1269 | /* switch Link and Tx LED off, stop the LED counters */ | 
|  | 1270 | /* Link LED is switched off by the RLMT and the Diag itself */ | 
|  | 1271 | SkGeXmitLED(pAC, IoC, MR_ADDR(Port, TX_LED_INI), SK_LED_DIS); | 
|  | 1272 | } | 
|  | 1273 | #endif /* GENESIS */ | 
|  | 1274 |  | 
|  | 1275 | #ifdef YUKON | 
|  | 1276 | if (pAC->GIni.GIYukon) { | 
|  | 1277 | /* Reset TX MAC FIFO */ | 
|  | 1278 | SK_OUT8(IoC, MR_ADDR(Port, TX_GMF_CTRL_T), (SK_U8)GMF_RST_SET); | 
|  | 1279 | } | 
|  | 1280 | #endif /* YUKON */ | 
|  | 1281 | } | 
|  | 1282 |  | 
|  | 1283 | if ((Dir & SK_STOP_RX) != 0) { | 
|  | 1284 | /* | 
|  | 1285 | * The RX Stop Command will not terminate if no buffers | 
|  | 1286 | * are queued in the RxD ring. But it will always reach | 
|  | 1287 | * the Idle state. Therefore we can use this feature to | 
|  | 1288 | * stop the transfer of received packets. | 
|  | 1289 | */ | 
|  | 1290 | /* stop the port's receive queue */ | 
|  | 1291 | SK_OUT32(IoC, Q_ADDR(pPrt->PRxQOff, Q_CSR), CSR_STOP); | 
|  | 1292 |  | 
|  | 1293 | i = 100; | 
|  | 1294 | do { | 
|  | 1295 | /* | 
|  | 1296 | * Clear packet arbiter timeout to make sure | 
|  | 1297 | * this loop will terminate | 
|  | 1298 | */ | 
|  | 1299 | SK_OUT16(IoC, B3_PA_CTRL, (SK_U16)((Port == MAC_1) ? | 
|  | 1300 | PA_CLR_TO_RX1 : PA_CLR_TO_RX2)); | 
|  | 1301 |  | 
|  | 1302 | DWord = TestStopBit(pAC, IoC, pPrt->PRxQOff); | 
|  | 1303 |  | 
|  | 1304 | /* timeout if i==0 (bug fix for #10748) */ | 
|  | 1305 | if (--i == 0) { | 
|  | 1306 | SK_ERR_LOG(pAC, SK_ERRCL_HW, SKERR_HWI_E024, | 
|  | 1307 | SKERR_HWI_E024MSG); | 
|  | 1308 | break; | 
|  | 1309 | } | 
|  | 1310 | /* | 
|  | 1311 | * because of the ASIC problem report entry from 21.08.98 | 
|  | 1312 | * it is required to wait until CSR_STOP is reset and | 
|  | 1313 | * CSR_SV_IDLE is set. | 
|  | 1314 | */ | 
|  | 1315 | } while ((DWord & (CSR_STOP | CSR_SV_IDLE)) != CSR_SV_IDLE); | 
|  | 1316 |  | 
|  | 1317 | /* The path data transfer activity is fully stopped now */ | 
|  | 1318 |  | 
|  | 1319 | /* Perform a local reset of the port's Rx path */ | 
|  | 1320 |  | 
|  | 1321 | /*	Reset the PCI FIFO of the Rx queue */ | 
|  | 1322 | SK_OUT32(IoC, Q_ADDR(pPrt->PRxQOff, Q_CSR), CSR_SET_RESET); | 
|  | 1323 | /* Reset the RAM Buffer receive queue */ | 
|  | 1324 | SK_OUT8(IoC, RB_ADDR(pPrt->PRxQOff, RB_CTRL), RB_RST_SET); | 
|  | 1325 |  | 
|  | 1326 | /* Reset Rx MAC FIFO */ | 
|  | 1327 | #ifdef GENESIS | 
|  | 1328 | if (pAC->GIni.GIGenesis) { | 
|  | 1329 |  | 
|  | 1330 | SK_OUT8(IoC, MR_ADDR(Port, RX_MFF_CTRL2), MFF_RST_SET); | 
|  | 1331 |  | 
|  | 1332 | /* switch Rx LED off, stop the LED counter */ | 
|  | 1333 | SkGeXmitLED(pAC, IoC, MR_ADDR(Port, RX_LED_INI), SK_LED_DIS); | 
|  | 1334 | } | 
|  | 1335 | #endif /* GENESIS */ | 
|  | 1336 |  | 
|  | 1337 | #ifdef YUKON | 
|  | 1338 | if (pAC->GIni.GIYukon) { | 
|  | 1339 | /* Reset Rx MAC FIFO */ | 
|  | 1340 | SK_OUT8(IoC, MR_ADDR(Port, RX_GMF_CTRL_T), (SK_U8)GMF_RST_SET); | 
|  | 1341 | } | 
|  | 1342 | #endif /* YUKON */ | 
|  | 1343 | } | 
|  | 1344 | }	/* SkGeStopPort */ | 
|  | 1345 |  | 
|  | 1346 |  | 
|  | 1347 | /****************************************************************************** | 
|  | 1348 | * | 
|  | 1349 | *	SkGeInit0() - Level 0 Initialization | 
|  | 1350 | * | 
|  | 1351 | * Description: | 
|  | 1352 | *	- Initialize the BMU address offsets | 
|  | 1353 | * | 
|  | 1354 | * Returns: | 
|  | 1355 | *	nothing | 
|  | 1356 | */ | 
|  | 1357 | static void SkGeInit0( | 
|  | 1358 | SK_AC	*pAC,		/* adapter context */ | 
|  | 1359 | SK_IOC	IoC)		/* IO context */ | 
|  | 1360 | { | 
|  | 1361 | int i; | 
|  | 1362 | SK_GEPORT *pPrt; | 
|  | 1363 |  | 
|  | 1364 | for (i = 0; i < SK_MAX_MACS; i++) { | 
|  | 1365 | pPrt = &pAC->GIni.GP[i]; | 
|  | 1366 |  | 
|  | 1367 | pPrt->PState = SK_PRT_RESET; | 
|  | 1368 | pPrt->PRxQOff = QOffTab[i].RxQOff; | 
|  | 1369 | pPrt->PXsQOff = QOffTab[i].XsQOff; | 
|  | 1370 | pPrt->PXaQOff = QOffTab[i].XaQOff; | 
|  | 1371 | pPrt->PCheckPar = SK_FALSE; | 
|  | 1372 | pPrt->PIsave = 0; | 
|  | 1373 | pPrt->PPrevShorts = 0; | 
|  | 1374 | pPrt->PLinkResCt = 0; | 
|  | 1375 | pPrt->PAutoNegTOCt = 0; | 
|  | 1376 | pPrt->PPrevRx = 0; | 
|  | 1377 | pPrt->PPrevFcs = 0; | 
|  | 1378 | pPrt->PRxLim = SK_DEF_RX_WA_LIM; | 
|  | 1379 | pPrt->PLinkMode = (SK_U8)SK_LMODE_AUTOFULL; | 
|  | 1380 | pPrt->PLinkSpeedCap = (SK_U8)SK_LSPEED_CAP_1000MBPS; | 
|  | 1381 | pPrt->PLinkSpeed = (SK_U8)SK_LSPEED_1000MBPS; | 
|  | 1382 | pPrt->PLinkSpeedUsed = (SK_U8)SK_LSPEED_STAT_UNKNOWN; | 
|  | 1383 | pPrt->PLinkModeConf = (SK_U8)SK_LMODE_AUTOSENSE; | 
|  | 1384 | pPrt->PFlowCtrlMode = (SK_U8)SK_FLOW_MODE_SYM_OR_REM; | 
|  | 1385 | pPrt->PLinkCap = (SK_U8)(SK_LMODE_CAP_HALF | SK_LMODE_CAP_FULL | | 
|  | 1386 | SK_LMODE_CAP_AUTOHALF | SK_LMODE_CAP_AUTOFULL); | 
|  | 1387 | pPrt->PLinkModeStatus = (SK_U8)SK_LMODE_STAT_UNKNOWN; | 
|  | 1388 | pPrt->PFlowCtrlCap = (SK_U8)SK_FLOW_MODE_SYM_OR_REM; | 
|  | 1389 | pPrt->PFlowCtrlStatus = (SK_U8)SK_FLOW_STAT_NONE; | 
|  | 1390 | pPrt->PMSCap = 0; | 
|  | 1391 | pPrt->PMSMode = (SK_U8)SK_MS_MODE_AUTO; | 
|  | 1392 | pPrt->PMSStatus = (SK_U8)SK_MS_STAT_UNSET; | 
|  | 1393 | pPrt->PLipaAutoNeg = (SK_U8)SK_LIPA_UNKNOWN; | 
|  | 1394 | pPrt->PAutoNegFail = SK_FALSE; | 
|  | 1395 | pPrt->PHWLinkUp = SK_FALSE; | 
|  | 1396 | pPrt->PLinkBroken = SK_TRUE; /* See WA code */ | 
|  | 1397 | pPrt->PPhyPowerState = PHY_PM_OPERATIONAL_MODE; | 
|  | 1398 | pPrt->PMacColThres = TX_COL_DEF; | 
|  | 1399 | pPrt->PMacJamLen = TX_JAM_LEN_DEF; | 
|  | 1400 | pPrt->PMacJamIpgVal	= TX_JAM_IPG_DEF; | 
|  | 1401 | pPrt->PMacJamIpgData = TX_IPG_JAM_DEF; | 
|  | 1402 | pPrt->PMacIpgData = IPG_DATA_DEF; | 
|  | 1403 | pPrt->PMacLimit4 = SK_FALSE; | 
|  | 1404 | } | 
|  | 1405 |  | 
|  | 1406 | pAC->GIni.GIPortUsage = SK_RED_LINK; | 
|  | 1407 | pAC->GIni.GILedBlinkCtrl = (SK_U16)OemConfig.Value; | 
|  | 1408 | pAC->GIni.GIValIrqMask = IS_ALL_MSK; | 
|  | 1409 |  | 
|  | 1410 | }	/* SkGeInit0*/ | 
|  | 1411 |  | 
|  | 1412 | #ifdef SK_PCI_RESET | 
|  | 1413 |  | 
|  | 1414 | /****************************************************************************** | 
|  | 1415 | * | 
|  | 1416 | *	SkGePciReset() - Reset PCI interface | 
|  | 1417 | * | 
|  | 1418 | * Description: | 
|  | 1419 | *	o Read PCI configuration. | 
|  | 1420 | *	o Change power state to 3. | 
|  | 1421 | *	o Change power state to 0. | 
|  | 1422 | *	o Restore PCI configuration. | 
|  | 1423 | * | 
|  | 1424 | * Returns: | 
|  | 1425 | *	0:	Success. | 
|  | 1426 | *	1:	Power state could not be changed to 3. | 
|  | 1427 | */ | 
|  | 1428 | static int SkGePciReset( | 
|  | 1429 | SK_AC	*pAC,		/* adapter context */ | 
|  | 1430 | SK_IOC	IoC)		/* IO context */ | 
|  | 1431 | { | 
|  | 1432 | int		i; | 
|  | 1433 | SK_U16	PmCtlSts; | 
|  | 1434 | SK_U32	Bp1; | 
|  | 1435 | SK_U32	Bp2; | 
|  | 1436 | SK_U16	PciCmd; | 
|  | 1437 | SK_U8	Cls; | 
|  | 1438 | SK_U8	Lat; | 
|  | 1439 | SK_U8	ConfigSpace[PCI_CFG_SIZE]; | 
|  | 1440 |  | 
|  | 1441 | /* | 
|  | 1442 | * Note: Switching to D3 state is like a software reset. | 
|  | 1443 | *		 Switching from D3 to D0 is a hardware reset. | 
|  | 1444 | *		 We have to save and restore the configuration space. | 
|  | 1445 | */ | 
|  | 1446 | for (i = 0; i < PCI_CFG_SIZE; i++) { | 
|  | 1447 | SkPciReadCfgDWord(pAC, i*4, &ConfigSpace[i]); | 
|  | 1448 | } | 
|  | 1449 |  | 
|  | 1450 | /* We know the RAM Interface Arbiter is enabled. */ | 
|  | 1451 | SkPciWriteCfgWord(pAC, PCI_PM_CTL_STS, PCI_PM_STATE_D3); | 
|  | 1452 | SkPciReadCfgWord(pAC, PCI_PM_CTL_STS, &PmCtlSts); | 
|  | 1453 |  | 
|  | 1454 | if ((PmCtlSts & PCI_PM_STATE_MSK) != PCI_PM_STATE_D3) { | 
|  | 1455 | return(1); | 
|  | 1456 | } | 
|  | 1457 |  | 
|  | 1458 | /* Return to D0 state. */ | 
|  | 1459 | SkPciWriteCfgWord(pAC, PCI_PM_CTL_STS, PCI_PM_STATE_D0); | 
|  | 1460 |  | 
|  | 1461 | /* Check for D0 state. */ | 
|  | 1462 | SkPciReadCfgWord(pAC, PCI_PM_CTL_STS, &PmCtlSts); | 
|  | 1463 |  | 
|  | 1464 | if ((PmCtlSts & PCI_PM_STATE_MSK) != PCI_PM_STATE_D0) { | 
|  | 1465 | return(1); | 
|  | 1466 | } | 
|  | 1467 |  | 
|  | 1468 | /* Check PCI Config Registers. */ | 
|  | 1469 | SkPciReadCfgWord(pAC, PCI_COMMAND, &PciCmd); | 
|  | 1470 | SkPciReadCfgByte(pAC, PCI_CACHE_LSZ, &Cls); | 
|  | 1471 | SkPciReadCfgDWord(pAC, PCI_BASE_1ST, &Bp1); | 
|  | 1472 | SkPciReadCfgDWord(pAC, PCI_BASE_2ND, &Bp2); | 
|  | 1473 | SkPciReadCfgByte(pAC, PCI_LAT_TIM, &Lat); | 
|  | 1474 |  | 
|  | 1475 | if (PciCmd != 0 || Cls != (SK_U8)0 || Lat != (SK_U8)0 || | 
|  | 1476 | (Bp1 & 0xfffffff0L) != 0 || Bp2 != 1) { | 
|  | 1477 | return(1); | 
|  | 1478 | } | 
|  | 1479 |  | 
|  | 1480 | /* Restore PCI Config Space. */ | 
|  | 1481 | for (i = 0; i < PCI_CFG_SIZE; i++) { | 
|  | 1482 | SkPciWriteCfgDWord(pAC, i*4, ConfigSpace[i]); | 
|  | 1483 | } | 
|  | 1484 |  | 
|  | 1485 | return(0); | 
|  | 1486 | }	/* SkGePciReset */ | 
|  | 1487 |  | 
|  | 1488 | #endif /* SK_PCI_RESET */ | 
|  | 1489 |  | 
|  | 1490 | /****************************************************************************** | 
|  | 1491 | * | 
|  | 1492 | *	SkGeInit1() - Level 1 Initialization | 
|  | 1493 | * | 
|  | 1494 | * Description: | 
|  | 1495 | *	o Do a software reset. | 
|  | 1496 | *	o Clear all reset bits. | 
|  | 1497 | *	o Verify that the detected hardware is present. | 
|  | 1498 | *	  Return an error if not. | 
|  | 1499 | *	o Get the hardware configuration | 
|  | 1500 | *		+ Read the number of MACs/Ports. | 
|  | 1501 | *		+ Read the RAM size. | 
|  | 1502 | *		+ Read the PCI Revision Id. | 
|  | 1503 | *		+ Find out the adapters host clock speed | 
|  | 1504 | *		+ Read and check the PHY type | 
|  | 1505 | * | 
|  | 1506 | * Returns: | 
|  | 1507 | *	0:	success | 
|  | 1508 | *	5:	Unexpected PHY type detected | 
|  | 1509 | *	6:	HW self test failed | 
|  | 1510 | */ | 
|  | 1511 | static int SkGeInit1( | 
|  | 1512 | SK_AC	*pAC,		/* adapter context */ | 
|  | 1513 | SK_IOC	IoC)		/* IO context */ | 
|  | 1514 | { | 
|  | 1515 | SK_U8	Byte; | 
|  | 1516 | SK_U16	Word; | 
|  | 1517 | SK_U16	CtrlStat; | 
|  | 1518 | SK_U32	DWord; | 
|  | 1519 | int	RetVal; | 
|  | 1520 | int	i; | 
|  | 1521 |  | 
|  | 1522 | RetVal = 0; | 
|  | 1523 |  | 
|  | 1524 | /* save CLK_RUN bits (YUKON-Lite) */ | 
|  | 1525 | SK_IN16(IoC, B0_CTST, &CtrlStat); | 
|  | 1526 |  | 
|  | 1527 | #ifdef SK_PCI_RESET | 
|  | 1528 | (void)SkGePciReset(pAC, IoC); | 
|  | 1529 | #endif /* SK_PCI_RESET */ | 
|  | 1530 |  | 
|  | 1531 | /* do the SW-reset */ | 
|  | 1532 | SK_OUT8(IoC, B0_CTST, CS_RST_SET); | 
|  | 1533 |  | 
|  | 1534 | /* release the SW-reset */ | 
|  | 1535 | SK_OUT8(IoC, B0_CTST, CS_RST_CLR); | 
|  | 1536 |  | 
|  | 1537 | /* reset all error bits in the PCI STATUS register */ | 
|  | 1538 | /* | 
|  | 1539 | * Note: PCI Cfg cycles cannot be used, because they are not | 
|  | 1540 | *		 available on some platforms after 'boot time'. | 
|  | 1541 | */ | 
|  | 1542 | SK_IN16(IoC, PCI_C(PCI_STATUS), &Word); | 
|  | 1543 |  | 
|  | 1544 | SK_OUT8(IoC, B2_TST_CTRL1, TST_CFG_WRITE_ON); | 
|  | 1545 | SK_OUT16(IoC, PCI_C(PCI_STATUS), (SK_U16)(Word | PCI_ERRBITS)); | 
|  | 1546 | SK_OUT8(IoC, B2_TST_CTRL1, TST_CFG_WRITE_OFF); | 
|  | 1547 |  | 
|  | 1548 | /* release Master Reset */ | 
|  | 1549 | SK_OUT8(IoC, B0_CTST, CS_MRST_CLR); | 
|  | 1550 |  | 
|  | 1551 | #ifdef CLK_RUN | 
|  | 1552 | CtrlStat |= CS_CLK_RUN_ENA; | 
|  | 1553 | #endif /* CLK_RUN */ | 
|  | 1554 |  | 
|  | 1555 | /* restore CLK_RUN bits */ | 
|  | 1556 | SK_OUT16(IoC, B0_CTST, (SK_U16)(CtrlStat & | 
|  | 1557 | (CS_CLK_RUN_HOT | CS_CLK_RUN_RST | CS_CLK_RUN_ENA))); | 
|  | 1558 |  | 
|  | 1559 | /* read Chip Identification Number */ | 
|  | 1560 | SK_IN8(IoC, B2_CHIP_ID, &Byte); | 
|  | 1561 | pAC->GIni.GIChipId = Byte; | 
|  | 1562 |  | 
|  | 1563 | /* read number of MACs */ | 
|  | 1564 | SK_IN8(IoC, B2_MAC_CFG, &Byte); | 
|  | 1565 | pAC->GIni.GIMacsFound = (Byte & CFG_SNG_MAC) ? 1 : 2; | 
|  | 1566 |  | 
|  | 1567 | /* get Chip Revision Number */ | 
|  | 1568 | pAC->GIni.GIChipRev = (SK_U8)((Byte & CFG_CHIP_R_MSK) >> 4); | 
|  | 1569 |  | 
|  | 1570 | /* get diff. PCI parameters */ | 
|  | 1571 | SK_IN16(IoC, B0_CTST, &CtrlStat); | 
|  | 1572 |  | 
|  | 1573 | /* read the adapters RAM size */ | 
|  | 1574 | SK_IN8(IoC, B2_E_0, &Byte); | 
|  | 1575 |  | 
|  | 1576 | pAC->GIni.GIGenesis = SK_FALSE; | 
|  | 1577 | pAC->GIni.GIYukon = SK_FALSE; | 
|  | 1578 | pAC->GIni.GIYukonLite = SK_FALSE; | 
|  | 1579 |  | 
|  | 1580 | #ifdef GENESIS | 
|  | 1581 | if (pAC->GIni.GIChipId == CHIP_ID_GENESIS) { | 
|  | 1582 |  | 
|  | 1583 | pAC->GIni.GIGenesis = SK_TRUE; | 
|  | 1584 |  | 
|  | 1585 | if (Byte == (SK_U8)3) { | 
|  | 1586 | /* special case: 4 x 64k x 36, offset = 0x80000 */ | 
|  | 1587 | pAC->GIni.GIRamSize = 1024; | 
|  | 1588 | pAC->GIni.GIRamOffs = (SK_U32)512 * 1024; | 
|  | 1589 | } | 
|  | 1590 | else { | 
|  | 1591 | pAC->GIni.GIRamSize = (int)Byte * 512; | 
|  | 1592 | pAC->GIni.GIRamOffs = 0; | 
|  | 1593 | } | 
|  | 1594 | /* all GE adapters work with 53.125 MHz host clock */ | 
|  | 1595 | pAC->GIni.GIHstClkFact = SK_FACT_53; | 
|  | 1596 |  | 
|  | 1597 | /* set Descr. Poll Timer Init Value to 250 ms */ | 
|  | 1598 | pAC->GIni.GIPollTimerVal = | 
|  | 1599 | SK_DPOLL_DEF * (SK_U32)pAC->GIni.GIHstClkFact / 100; | 
|  | 1600 | } | 
|  | 1601 | #endif /* GENESIS */ | 
|  | 1602 |  | 
|  | 1603 | #ifdef YUKON | 
|  | 1604 | if (pAC->GIni.GIChipId != CHIP_ID_GENESIS) { | 
|  | 1605 |  | 
|  | 1606 | pAC->GIni.GIYukon = SK_TRUE; | 
|  | 1607 |  | 
|  | 1608 | pAC->GIni.GIRamSize = (Byte == (SK_U8)0) ? 128 : (int)Byte * 4; | 
|  | 1609 |  | 
|  | 1610 | pAC->GIni.GIRamOffs = 0; | 
|  | 1611 |  | 
|  | 1612 | /* WA for chip Rev. A */ | 
|  | 1613 | pAC->GIni.GIWolOffs = (pAC->GIni.GIChipId == CHIP_ID_YUKON && | 
|  | 1614 | pAC->GIni.GIChipRev == 0) ? WOL_REG_OFFS : 0; | 
|  | 1615 |  | 
|  | 1616 | /* get PM Capabilities of PCI config space */ | 
|  | 1617 | SK_IN16(IoC, PCI_C(PCI_PM_CAP_REG), &Word); | 
|  | 1618 |  | 
|  | 1619 | /* check if VAUX is available */ | 
|  | 1620 | if (((CtrlStat & CS_VAUX_AVAIL) != 0) && | 
|  | 1621 | /* check also if PME from D3cold is set */ | 
|  | 1622 | ((Word & PCI_PME_D3C_SUP) != 0)) { | 
|  | 1623 | /* set entry in GE init struct */ | 
|  | 1624 | pAC->GIni.GIVauxAvail = SK_TRUE; | 
|  | 1625 | } | 
|  | 1626 |  | 
|  | 1627 | if (pAC->GIni.GIChipId == CHIP_ID_YUKON_LITE) { | 
|  | 1628 | /* this is Rev. A1 */ | 
|  | 1629 | pAC->GIni.GIYukonLite = SK_TRUE; | 
|  | 1630 | } | 
|  | 1631 | else { | 
|  | 1632 | /* save Flash-Address Register */ | 
|  | 1633 | SK_IN32(IoC, B2_FAR, &DWord); | 
|  | 1634 |  | 
|  | 1635 | /* test Flash-Address Register */ | 
|  | 1636 | SK_OUT8(IoC, B2_FAR + 3, 0xff); | 
|  | 1637 | SK_IN8(IoC, B2_FAR + 3, &Byte); | 
|  | 1638 |  | 
|  | 1639 | if (Byte != 0) { | 
|  | 1640 | /* this is Rev. A0 */ | 
|  | 1641 | pAC->GIni.GIYukonLite = SK_TRUE; | 
|  | 1642 |  | 
|  | 1643 | /* restore Flash-Address Register */ | 
|  | 1644 | SK_OUT32(IoC, B2_FAR, DWord); | 
|  | 1645 | } | 
|  | 1646 | } | 
|  | 1647 |  | 
|  | 1648 | /* switch power to VCC (WA for VAUX problem) */ | 
|  | 1649 | SK_OUT8(IoC, B0_POWER_CTRL, (SK_U8)(PC_VAUX_ENA | PC_VCC_ENA | | 
|  | 1650 | PC_VAUX_OFF | PC_VCC_ON)); | 
|  | 1651 |  | 
|  | 1652 | /* read the Interrupt source */ | 
|  | 1653 | SK_IN32(IoC, B0_ISRC, &DWord); | 
|  | 1654 |  | 
|  | 1655 | if ((DWord & IS_HW_ERR) != 0) { | 
|  | 1656 | /* read the HW Error Interrupt source */ | 
|  | 1657 | SK_IN32(IoC, B0_HWE_ISRC, &DWord); | 
|  | 1658 |  | 
|  | 1659 | if ((DWord & IS_IRQ_SENSOR) != 0) { | 
|  | 1660 | /* disable HW Error IRQ */ | 
|  | 1661 | pAC->GIni.GIValIrqMask &= ~IS_HW_ERR; | 
|  | 1662 | } | 
|  | 1663 | } | 
|  | 1664 |  | 
|  | 1665 | for (i = 0; i < pAC->GIni.GIMacsFound; i++) { | 
|  | 1666 | /* set GMAC Link Control reset */ | 
|  | 1667 | SK_OUT16(IoC, MR_ADDR(i, GMAC_LINK_CTRL), GMLC_RST_SET); | 
|  | 1668 |  | 
|  | 1669 | /* clear GMAC Link Control reset */ | 
|  | 1670 | SK_OUT16(IoC, MR_ADDR(i, GMAC_LINK_CTRL), GMLC_RST_CLR); | 
|  | 1671 | } | 
|  | 1672 | /* all YU chips work with 78.125 MHz host clock */ | 
|  | 1673 | pAC->GIni.GIHstClkFact = SK_FACT_78; | 
|  | 1674 |  | 
|  | 1675 | pAC->GIni.GIPollTimerVal = SK_DPOLL_MAX;	/* 215 ms */ | 
|  | 1676 | } | 
|  | 1677 | #endif /* YUKON */ | 
|  | 1678 |  | 
|  | 1679 | /* check if 64-bit PCI Slot is present */ | 
|  | 1680 | pAC->GIni.GIPciSlot64 = (SK_BOOL)((CtrlStat & CS_BUS_SLOT_SZ) != 0); | 
|  | 1681 |  | 
|  | 1682 | /* check if 66 MHz PCI Clock is active */ | 
|  | 1683 | pAC->GIni.GIPciClock66 = (SK_BOOL)((CtrlStat & CS_BUS_CLOCK) != 0); | 
|  | 1684 |  | 
|  | 1685 | /* read PCI HW Revision Id. */ | 
|  | 1686 | SK_IN8(IoC, PCI_C(PCI_REV_ID), &Byte); | 
|  | 1687 | pAC->GIni.GIPciHwRev = Byte; | 
|  | 1688 |  | 
|  | 1689 | /* read the PMD type */ | 
|  | 1690 | SK_IN8(IoC, B2_PMD_TYP, &Byte); | 
|  | 1691 | pAC->GIni.GICopperType = (SK_U8)(Byte == 'T'); | 
|  | 1692 |  | 
|  | 1693 | /* read the PHY type */ | 
|  | 1694 | SK_IN8(IoC, B2_E_1, &Byte); | 
|  | 1695 |  | 
|  | 1696 | Byte &= 0x0f;	/* the PHY type is stored in the lower nibble */ | 
|  | 1697 | for (i = 0; i < pAC->GIni.GIMacsFound; i++) { | 
|  | 1698 |  | 
|  | 1699 | #ifdef GENESIS | 
|  | 1700 | if (pAC->GIni.GIGenesis) { | 
|  | 1701 | switch (Byte) { | 
|  | 1702 | case SK_PHY_XMAC: | 
|  | 1703 | pAC->GIni.GP[i].PhyAddr = PHY_ADDR_XMAC; | 
|  | 1704 | break; | 
|  | 1705 | case SK_PHY_BCOM: | 
|  | 1706 | pAC->GIni.GP[i].PhyAddr = PHY_ADDR_BCOM; | 
|  | 1707 | pAC->GIni.GP[i].PMSCap = (SK_U8)(SK_MS_CAP_AUTO | | 
|  | 1708 | SK_MS_CAP_MASTER | SK_MS_CAP_SLAVE); | 
|  | 1709 | break; | 
|  | 1710 | #ifdef OTHER_PHY | 
|  | 1711 | case SK_PHY_LONE: | 
|  | 1712 | pAC->GIni.GP[i].PhyAddr = PHY_ADDR_LONE; | 
|  | 1713 | break; | 
|  | 1714 | case SK_PHY_NAT: | 
|  | 1715 | pAC->GIni.GP[i].PhyAddr = PHY_ADDR_NAT; | 
|  | 1716 | break; | 
|  | 1717 | #endif /* OTHER_PHY */ | 
|  | 1718 | default: | 
|  | 1719 | /* ERROR: unexpected PHY type detected */ | 
|  | 1720 | RetVal = 5; | 
|  | 1721 | break; | 
|  | 1722 | } | 
|  | 1723 | } | 
|  | 1724 | #endif /* GENESIS */ | 
|  | 1725 |  | 
|  | 1726 | #ifdef YUKON | 
|  | 1727 | if (pAC->GIni.GIYukon) { | 
|  | 1728 |  | 
|  | 1729 | if (Byte < (SK_U8)SK_PHY_MARV_COPPER) { | 
|  | 1730 | /* if this field is not initialized */ | 
|  | 1731 | Byte = (SK_U8)SK_PHY_MARV_COPPER; | 
|  | 1732 |  | 
|  | 1733 | pAC->GIni.GICopperType = SK_TRUE; | 
|  | 1734 | } | 
|  | 1735 |  | 
|  | 1736 | pAC->GIni.GP[i].PhyAddr = PHY_ADDR_MARV; | 
|  | 1737 |  | 
|  | 1738 | if (pAC->GIni.GICopperType) { | 
|  | 1739 |  | 
|  | 1740 | pAC->GIni.GP[i].PLinkSpeedCap = (SK_U8)(SK_LSPEED_CAP_AUTO | | 
|  | 1741 | SK_LSPEED_CAP_10MBPS | SK_LSPEED_CAP_100MBPS | | 
|  | 1742 | SK_LSPEED_CAP_1000MBPS); | 
|  | 1743 |  | 
|  | 1744 | pAC->GIni.GP[i].PLinkSpeed = (SK_U8)SK_LSPEED_AUTO; | 
|  | 1745 |  | 
|  | 1746 | pAC->GIni.GP[i].PMSCap = (SK_U8)(SK_MS_CAP_AUTO | | 
|  | 1747 | SK_MS_CAP_MASTER | SK_MS_CAP_SLAVE); | 
|  | 1748 | } | 
|  | 1749 | else { | 
|  | 1750 | Byte = (SK_U8)SK_PHY_MARV_FIBER; | 
|  | 1751 | } | 
|  | 1752 | } | 
|  | 1753 | #endif /* YUKON */ | 
|  | 1754 |  | 
|  | 1755 | pAC->GIni.GP[i].PhyType = (int)Byte; | 
|  | 1756 |  | 
|  | 1757 | SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_INIT, | 
|  | 1758 | ("PHY type: %d  PHY addr: %04x\n", Byte, | 
|  | 1759 | pAC->GIni.GP[i].PhyAddr)); | 
|  | 1760 | } | 
|  | 1761 |  | 
|  | 1762 | /* get MAC Type & set function pointers dependent on */ | 
|  | 1763 | #ifdef GENESIS | 
|  | 1764 | if (pAC->GIni.GIGenesis) { | 
|  | 1765 |  | 
|  | 1766 | pAC->GIni.GIMacType = SK_MAC_XMAC; | 
|  | 1767 |  | 
|  | 1768 | pAC->GIni.GIFunc.pFnMacUpdateStats	= SkXmUpdateStats; | 
|  | 1769 | pAC->GIni.GIFunc.pFnMacStatistic	= SkXmMacStatistic; | 
|  | 1770 | pAC->GIni.GIFunc.pFnMacResetCounter	= SkXmResetCounter; | 
|  | 1771 | pAC->GIni.GIFunc.pFnMacOverflow		= SkXmOverflowStatus; | 
|  | 1772 | } | 
|  | 1773 | #endif /* GENESIS */ | 
|  | 1774 |  | 
|  | 1775 | #ifdef YUKON | 
|  | 1776 | if (pAC->GIni.GIYukon) { | 
|  | 1777 |  | 
|  | 1778 | pAC->GIni.GIMacType = SK_MAC_GMAC; | 
|  | 1779 |  | 
|  | 1780 | pAC->GIni.GIFunc.pFnMacUpdateStats	= SkGmUpdateStats; | 
|  | 1781 | pAC->GIni.GIFunc.pFnMacStatistic	= SkGmMacStatistic; | 
|  | 1782 | pAC->GIni.GIFunc.pFnMacResetCounter	= SkGmResetCounter; | 
|  | 1783 | pAC->GIni.GIFunc.pFnMacOverflow		= SkGmOverflowStatus; | 
|  | 1784 |  | 
|  | 1785 | #ifdef SPECIAL_HANDLING | 
|  | 1786 | if (pAC->GIni.GIChipId == CHIP_ID_YUKON) { | 
|  | 1787 | /* check HW self test result */ | 
|  | 1788 | SK_IN8(IoC, B2_E_3, &Byte); | 
|  | 1789 | if (Byte & B2_E3_RES_MASK) { | 
|  | 1790 | RetVal = 6; | 
|  | 1791 | } | 
|  | 1792 | } | 
|  | 1793 | #endif | 
|  | 1794 | } | 
|  | 1795 | #endif /* YUKON */ | 
|  | 1796 |  | 
|  | 1797 | return(RetVal); | 
|  | 1798 | }	/* SkGeInit1 */ | 
|  | 1799 |  | 
|  | 1800 |  | 
|  | 1801 | /****************************************************************************** | 
|  | 1802 | * | 
|  | 1803 | *	SkGeInit2() - Level 2 Initialization | 
|  | 1804 | * | 
|  | 1805 | * Description: | 
|  | 1806 | *	- start the Blink Source Counter | 
|  | 1807 | *	- start the Descriptor Poll Timer | 
|  | 1808 | *	- configure the MAC-Arbiter | 
|  | 1809 | *	- configure the Packet-Arbiter | 
|  | 1810 | *	- enable the Tx Arbiters | 
|  | 1811 | *	- enable the RAM Interface Arbiter | 
|  | 1812 | * | 
|  | 1813 | * Returns: | 
|  | 1814 | *	nothing | 
|  | 1815 | */ | 
|  | 1816 | static void SkGeInit2( | 
|  | 1817 | SK_AC	*pAC,		/* adapter context */ | 
|  | 1818 | SK_IOC	IoC)		/* IO context */ | 
|  | 1819 | { | 
|  | 1820 | #ifdef GENESIS | 
|  | 1821 | SK_U32	DWord; | 
|  | 1822 | #endif /* GENESIS */ | 
|  | 1823 | int		i; | 
|  | 1824 |  | 
|  | 1825 | /* start the Descriptor Poll Timer */ | 
|  | 1826 | if (pAC->GIni.GIPollTimerVal != 0) { | 
|  | 1827 | if (pAC->GIni.GIPollTimerVal > SK_DPOLL_MAX) { | 
|  | 1828 | pAC->GIni.GIPollTimerVal = SK_DPOLL_MAX; | 
|  | 1829 |  | 
|  | 1830 | SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E017, SKERR_HWI_E017MSG); | 
|  | 1831 | } | 
|  | 1832 | SK_OUT32(IoC, B28_DPT_INI, pAC->GIni.GIPollTimerVal); | 
|  | 1833 | SK_OUT8(IoC, B28_DPT_CTRL, DPT_START); | 
|  | 1834 | } | 
|  | 1835 |  | 
|  | 1836 | #ifdef GENESIS | 
|  | 1837 | if (pAC->GIni.GIGenesis) { | 
|  | 1838 | /* start the Blink Source Counter */ | 
|  | 1839 | DWord = SK_BLK_DUR * (SK_U32)pAC->GIni.GIHstClkFact / 100; | 
|  | 1840 |  | 
|  | 1841 | SK_OUT32(IoC, B2_BSC_INI, DWord); | 
|  | 1842 | SK_OUT8(IoC, B2_BSC_CTRL, BSC_START); | 
|  | 1843 |  | 
|  | 1844 | /* | 
|  | 1845 | * Configure the MAC Arbiter and the Packet Arbiter. | 
|  | 1846 | * They will be started once and never be stopped. | 
|  | 1847 | */ | 
|  | 1848 | SkGeInitMacArb(pAC, IoC); | 
|  | 1849 |  | 
|  | 1850 | SkGeInitPktArb(pAC, IoC); | 
|  | 1851 | } | 
|  | 1852 | #endif /* GENESIS */ | 
|  | 1853 |  | 
|  | 1854 | #ifdef YUKON | 
|  | 1855 | if (pAC->GIni.GIYukon) { | 
|  | 1856 | /* start Time Stamp Timer */ | 
|  | 1857 | SK_OUT8(IoC, GMAC_TI_ST_CTRL, (SK_U8)GMT_ST_START); | 
|  | 1858 | } | 
|  | 1859 | #endif /* YUKON */ | 
|  | 1860 |  | 
|  | 1861 | /* enable the Tx Arbiters */ | 
|  | 1862 | for (i = 0; i < pAC->GIni.GIMacsFound; i++) { | 
|  | 1863 | SK_OUT8(IoC, MR_ADDR(i, TXA_CTRL), TXA_ENA_ARB); | 
|  | 1864 | } | 
|  | 1865 |  | 
|  | 1866 | /* enable the RAM Interface Arbiter */ | 
|  | 1867 | SkGeInitRamIface(pAC, IoC); | 
|  | 1868 |  | 
|  | 1869 | }	/* SkGeInit2 */ | 
|  | 1870 |  | 
|  | 1871 | /****************************************************************************** | 
|  | 1872 | * | 
|  | 1873 | *	SkGeInit() - Initialize the GE Adapter with the specified level. | 
|  | 1874 | * | 
|  | 1875 | * Description: | 
|  | 1876 | *	Level	0:	Initialize the Module structures. | 
|  | 1877 | *	Level	1:	Generic Hardware Initialization. The IOP/MemBase pointer has | 
|  | 1878 | *				to be set before calling this level. | 
|  | 1879 | * | 
|  | 1880 | *			o Do a software reset. | 
|  | 1881 | *			o Clear all reset bits. | 
|  | 1882 | *			o Verify that the detected hardware is present. | 
|  | 1883 | *			  Return an error if not. | 
|  | 1884 | *			o Get the hardware configuration | 
|  | 1885 | *				+ Set GIMacsFound with the number of MACs. | 
|  | 1886 | *				+ Store the RAM size in GIRamSize. | 
|  | 1887 | *				+ Save the PCI Revision ID in GIPciHwRev. | 
|  | 1888 | *			o return an error | 
|  | 1889 | *				if Number of MACs > SK_MAX_MACS | 
|  | 1890 | * | 
|  | 1891 | *			After returning from Level 0 the adapter | 
|  | 1892 | *			may be accessed with IO operations. | 
|  | 1893 | * | 
|  | 1894 | *	Level	2:	start the Blink Source Counter | 
|  | 1895 | * | 
|  | 1896 | * Returns: | 
|  | 1897 | *	0:	success | 
|  | 1898 | *	1:	Number of MACs exceeds SK_MAX_MACS	(after level 1) | 
|  | 1899 | *	2:	Adapter not present or not accessible | 
|  | 1900 | *	3:	Illegal initialization level | 
|  | 1901 | *	4:	Initialization Level 1 Call missing | 
|  | 1902 | *	5:	Unexpected PHY type detected | 
|  | 1903 | *	6:	HW self test failed | 
|  | 1904 | */ | 
|  | 1905 | int	SkGeInit( | 
|  | 1906 | SK_AC	*pAC,		/* adapter context */ | 
|  | 1907 | SK_IOC	IoC,		/* IO context */ | 
|  | 1908 | int		Level)		/* initialization level */ | 
|  | 1909 | { | 
|  | 1910 | int		RetVal;		/* return value */ | 
|  | 1911 | SK_U32	DWord; | 
|  | 1912 |  | 
|  | 1913 | RetVal = 0; | 
|  | 1914 | SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_INIT, | 
|  | 1915 | ("SkGeInit(Level %d)\n", Level)); | 
|  | 1916 |  | 
|  | 1917 | switch (Level) { | 
|  | 1918 | case SK_INIT_DATA: | 
|  | 1919 | /* Initialization Level 0 */ | 
|  | 1920 | SkGeInit0(pAC, IoC); | 
|  | 1921 | pAC->GIni.GILevel = SK_INIT_DATA; | 
|  | 1922 | break; | 
|  | 1923 |  | 
|  | 1924 | case SK_INIT_IO: | 
|  | 1925 | /* Initialization Level 1 */ | 
|  | 1926 | RetVal = SkGeInit1(pAC, IoC); | 
|  | 1927 | if (RetVal != 0) { | 
|  | 1928 | break; | 
|  | 1929 | } | 
|  | 1930 |  | 
|  | 1931 | /* check if the adapter seems to be accessible */ | 
|  | 1932 | SK_OUT32(IoC, B2_IRQM_INI, SK_TEST_VAL); | 
|  | 1933 | SK_IN32(IoC, B2_IRQM_INI, &DWord); | 
|  | 1934 | SK_OUT32(IoC, B2_IRQM_INI, 0L); | 
|  | 1935 |  | 
|  | 1936 | if (DWord != SK_TEST_VAL) { | 
|  | 1937 | RetVal = 2; | 
|  | 1938 | break; | 
|  | 1939 | } | 
|  | 1940 |  | 
|  | 1941 | /* check if the number of GIMacsFound matches SK_MAX_MACS */ | 
|  | 1942 | if (pAC->GIni.GIMacsFound > SK_MAX_MACS) { | 
|  | 1943 | RetVal = 1; | 
|  | 1944 | break; | 
|  | 1945 | } | 
|  | 1946 |  | 
|  | 1947 | /* Level 1 successfully passed */ | 
|  | 1948 | pAC->GIni.GILevel = SK_INIT_IO; | 
|  | 1949 | break; | 
|  | 1950 |  | 
|  | 1951 | case SK_INIT_RUN: | 
|  | 1952 | /* Initialization Level 2 */ | 
|  | 1953 | if (pAC->GIni.GILevel != SK_INIT_IO) { | 
|  | 1954 | #ifndef SK_DIAG | 
|  | 1955 | SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E002, SKERR_HWI_E002MSG); | 
|  | 1956 | #endif /* !SK_DIAG */ | 
|  | 1957 | RetVal = 4; | 
|  | 1958 | break; | 
|  | 1959 | } | 
|  | 1960 | SkGeInit2(pAC, IoC); | 
|  | 1961 |  | 
|  | 1962 | /* Level 2 successfully passed */ | 
|  | 1963 | pAC->GIni.GILevel = SK_INIT_RUN; | 
|  | 1964 | break; | 
|  | 1965 |  | 
|  | 1966 | default: | 
|  | 1967 | SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E003, SKERR_HWI_E003MSG); | 
|  | 1968 | RetVal = 3; | 
|  | 1969 | break; | 
|  | 1970 | } | 
|  | 1971 |  | 
|  | 1972 | return(RetVal); | 
|  | 1973 | }	/* SkGeInit */ | 
|  | 1974 |  | 
|  | 1975 |  | 
|  | 1976 | /****************************************************************************** | 
|  | 1977 | * | 
|  | 1978 | *	SkGeDeInit() - Deinitialize the adapter | 
|  | 1979 | * | 
|  | 1980 | * Description: | 
|  | 1981 | *	All ports of the adapter will be stopped if not already done. | 
|  | 1982 | *	Do a software reset and switch off all LEDs. | 
|  | 1983 | * | 
|  | 1984 | * Returns: | 
|  | 1985 | *	nothing | 
|  | 1986 | */ | 
|  | 1987 | void SkGeDeInit( | 
|  | 1988 | SK_AC	*pAC,		/* adapter context */ | 
|  | 1989 | SK_IOC	IoC)		/* IO context */ | 
|  | 1990 | { | 
|  | 1991 | int	i; | 
|  | 1992 | SK_U16	Word; | 
|  | 1993 |  | 
|  | 1994 | #ifdef SK_PHY_LP_MODE | 
|  | 1995 | SK_U8	Byte; | 
|  | 1996 | SK_U16	PmCtlSts; | 
|  | 1997 | #endif /* SK_PHY_LP_MODE */ | 
|  | 1998 |  | 
|  | 1999 | #if (!defined(SK_SLIM) && !defined(VCPU)) | 
|  | 2000 | /* ensure I2C is ready */ | 
|  | 2001 | SkI2cWaitIrq(pAC, IoC); | 
|  | 2002 | #endif | 
|  | 2003 |  | 
|  | 2004 | /* stop all current transfer activity */ | 
|  | 2005 | for (i = 0; i < pAC->GIni.GIMacsFound; i++) { | 
|  | 2006 | if (pAC->GIni.GP[i].PState != SK_PRT_STOP && | 
|  | 2007 | pAC->GIni.GP[i].PState != SK_PRT_RESET) { | 
|  | 2008 |  | 
|  | 2009 | SkGeStopPort(pAC, IoC, i, SK_STOP_ALL, SK_HARD_RST); | 
|  | 2010 | } | 
|  | 2011 | } | 
|  | 2012 |  | 
|  | 2013 | #ifdef SK_PHY_LP_MODE | 
|  | 2014 | /* | 
|  | 2015 | * for power saving purposes within mobile environments | 
|  | 2016 | * we set the PHY to coma mode and switch to D3 power state. | 
|  | 2017 | */ | 
|  | 2018 | if (pAC->GIni.GIYukonLite && | 
|  | 2019 | pAC->GIni.GIChipRev == CHIP_REV_YU_LITE_A3) { | 
|  | 2020 |  | 
|  | 2021 | /* for all ports switch PHY to coma mode */ | 
|  | 2022 | for (i = 0; i < pAC->GIni.GIMacsFound; i++) { | 
|  | 2023 |  | 
|  | 2024 | SkGmEnterLowPowerMode(pAC, IoC, i, PHY_PM_DEEP_SLEEP); | 
|  | 2025 | } | 
|  | 2026 |  | 
|  | 2027 | if (pAC->GIni.GIVauxAvail) { | 
|  | 2028 | /* switch power to VAUX */ | 
|  | 2029 | Byte = PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF; | 
|  | 2030 |  | 
|  | 2031 | SK_OUT8(IoC, B0_POWER_CTRL, Byte); | 
|  | 2032 | } | 
|  | 2033 |  | 
|  | 2034 | /* switch to D3 state */ | 
|  | 2035 | SK_IN16(IoC, PCI_C(PCI_PM_CTL_STS), &PmCtlSts); | 
|  | 2036 |  | 
|  | 2037 | PmCtlSts |= PCI_PM_STATE_D3; | 
|  | 2038 |  | 
|  | 2039 | SK_OUT8(IoC, B2_TST_CTRL1, TST_CFG_WRITE_ON); | 
|  | 2040 |  | 
|  | 2041 | SK_OUT16(IoC, PCI_C(PCI_PM_CTL_STS), PmCtlSts); | 
|  | 2042 | } | 
|  | 2043 | #endif /* SK_PHY_LP_MODE */ | 
|  | 2044 |  | 
|  | 2045 | /* Reset all bits in the PCI STATUS register */ | 
|  | 2046 | /* | 
|  | 2047 | * Note: PCI Cfg cycles cannot be used, because they are not | 
|  | 2048 | *	 available on some platforms after 'boot time'. | 
|  | 2049 | */ | 
|  | 2050 | SK_IN16(IoC, PCI_C(PCI_STATUS), &Word); | 
|  | 2051 |  | 
|  | 2052 | SK_OUT8(IoC, B2_TST_CTRL1, TST_CFG_WRITE_ON); | 
|  | 2053 | SK_OUT16(IoC, PCI_C(PCI_STATUS), (SK_U16)(Word | PCI_ERRBITS)); | 
|  | 2054 | SK_OUT8(IoC, B2_TST_CTRL1, TST_CFG_WRITE_OFF); | 
|  | 2055 |  | 
|  | 2056 | /* do the reset, all LEDs are switched off now */ | 
|  | 2057 | SK_OUT8(IoC, B0_CTST, CS_RST_SET); | 
|  | 2058 |  | 
|  | 2059 | pAC->GIni.GILevel = SK_INIT_DATA; | 
|  | 2060 | }	/* SkGeDeInit */ | 
|  | 2061 |  | 
|  | 2062 |  | 
|  | 2063 | /****************************************************************************** | 
|  | 2064 | * | 
|  | 2065 | *	SkGeInitPort()	Initialize the specified port. | 
|  | 2066 | * | 
|  | 2067 | * Description: | 
|  | 2068 | *	PRxQSize, PXSQSize, and PXAQSize has to be | 
|  | 2069 | *	configured for the specified port before calling this function. | 
|  | 2070 | *  The descriptor rings has to be initialized too. | 
|  | 2071 | * | 
|  | 2072 | *	o (Re)configure queues of the specified port. | 
|  | 2073 | *	o configure the MAC of the specified port. | 
|  | 2074 | *	o put ASIC and MAC(s) in operational mode. | 
|  | 2075 | *	o initialize Rx/Tx and Sync LED | 
|  | 2076 | *	o initialize RAM Buffers and MAC FIFOs | 
|  | 2077 | * | 
|  | 2078 | *	The port is ready to connect when returning. | 
|  | 2079 | * | 
|  | 2080 | * Note: | 
|  | 2081 | *	The MAC's Rx and Tx state machine is still disabled when returning. | 
|  | 2082 | * | 
|  | 2083 | * Returns: | 
|  | 2084 | *	0:	success | 
|  | 2085 | *	1:	Queue size initialization error. The configured values | 
|  | 2086 | *		for PRxQSize, PXSQSize, or PXAQSize are invalid for one | 
|  | 2087 | *		or more queues. The specified port was NOT initialized. | 
|  | 2088 | *		An error log entry was generated. | 
|  | 2089 | *	2:	The port has to be stopped before it can be initialized again. | 
|  | 2090 | */ | 
|  | 2091 | int SkGeInitPort( | 
|  | 2092 | SK_AC	*pAC,		/* adapter context */ | 
|  | 2093 | SK_IOC	IoC,		/* IO context */ | 
|  | 2094 | int		Port)		/* Port to configure */ | 
|  | 2095 | { | 
|  | 2096 | SK_GEPORT *pPrt; | 
|  | 2097 |  | 
|  | 2098 | pPrt = &pAC->GIni.GP[Port]; | 
|  | 2099 |  | 
|  | 2100 | if (SkGeCheckQSize(pAC, Port) != 0) { | 
|  | 2101 | SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E004, SKERR_HWI_E004MSG); | 
|  | 2102 | return(1); | 
|  | 2103 | } | 
|  | 2104 |  | 
|  | 2105 | if (pPrt->PState == SK_PRT_INIT || pPrt->PState == SK_PRT_RUN) { | 
|  | 2106 | SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E005, SKERR_HWI_E005MSG); | 
|  | 2107 | return(2); | 
|  | 2108 | } | 
|  | 2109 |  | 
|  | 2110 | /* configuration ok, initialize the Port now */ | 
|  | 2111 |  | 
|  | 2112 | #ifdef GENESIS | 
|  | 2113 | if (pAC->GIni.GIGenesis) { | 
|  | 2114 | /* initialize Rx, Tx and Link LED */ | 
|  | 2115 | /* | 
|  | 2116 | * If 1000BT Phy needs LED initialization than swap | 
|  | 2117 | * LED and XMAC initialization order | 
|  | 2118 | */ | 
|  | 2119 | SkGeXmitLED(pAC, IoC, MR_ADDR(Port, TX_LED_INI), SK_LED_ENA); | 
|  | 2120 | SkGeXmitLED(pAC, IoC, MR_ADDR(Port, RX_LED_INI), SK_LED_ENA); | 
|  | 2121 | /* The Link LED is initialized by RLMT or Diagnostics itself */ | 
|  | 2122 |  | 
|  | 2123 | SkXmInitMac(pAC, IoC, Port); | 
|  | 2124 | } | 
|  | 2125 | #endif /* GENESIS */ | 
|  | 2126 |  | 
|  | 2127 | #ifdef YUKON | 
|  | 2128 | if (pAC->GIni.GIYukon) { | 
|  | 2129 |  | 
|  | 2130 | SkGmInitMac(pAC, IoC, Port); | 
|  | 2131 | } | 
|  | 2132 | #endif /* YUKON */ | 
|  | 2133 |  | 
|  | 2134 | /* do NOT initialize the Link Sync Counter */ | 
|  | 2135 |  | 
|  | 2136 | SkGeInitMacFifo(pAC, IoC, Port); | 
|  | 2137 |  | 
|  | 2138 | SkGeInitRamBufs(pAC, IoC, Port); | 
|  | 2139 |  | 
|  | 2140 | if (pPrt->PXSQSize != 0) { | 
|  | 2141 | /* enable Force Sync bit if synchronous queue available */ | 
|  | 2142 | SK_OUT8(IoC, MR_ADDR(Port, TXA_CTRL), TXA_ENA_FSYNC); | 
|  | 2143 | } | 
|  | 2144 |  | 
|  | 2145 | SkGeInitBmu(pAC, IoC, Port); | 
|  | 2146 |  | 
|  | 2147 | /* mark port as initialized */ | 
|  | 2148 | pPrt->PState = SK_PRT_INIT; | 
|  | 2149 |  | 
|  | 2150 | return(0); | 
|  | 2151 | }	/* SkGeInitPort */ |