| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | *  linux/drivers/video/pxafb.c | 
|  | 3 | * | 
|  | 4 | *  Copyright (C) 1999 Eric A. Thomas. | 
|  | 5 | *  Copyright (C) 2004 Jean-Frederic Clere. | 
|  | 6 | *  Copyright (C) 2004 Ian Campbell. | 
|  | 7 | *  Copyright (C) 2004 Jeff Lackey. | 
|  | 8 | *   Based on sa1100fb.c Copyright (C) 1999 Eric A. Thomas | 
|  | 9 | *  which in turn is | 
|  | 10 | *   Based on acornfb.c Copyright (C) Russell King. | 
|  | 11 | * | 
|  | 12 | * This file is subject to the terms and conditions of the GNU General Public | 
|  | 13 | * License.  See the file COPYING in the main directory of this archive for | 
|  | 14 | * more details. | 
|  | 15 | * | 
|  | 16 | *	        Intel PXA250/210 LCD Controller Frame Buffer Driver | 
|  | 17 | * | 
|  | 18 | * Please direct your questions and comments on this driver to the following | 
|  | 19 | * email address: | 
|  | 20 | * | 
|  | 21 | *	linux-arm-kernel@lists.arm.linux.org.uk | 
|  | 22 | * | 
|  | 23 | */ | 
|  | 24 |  | 
|  | 25 | #include <linux/config.h> | 
|  | 26 | #include <linux/module.h> | 
|  | 27 | #include <linux/moduleparam.h> | 
|  | 28 | #include <linux/kernel.h> | 
|  | 29 | #include <linux/sched.h> | 
|  | 30 | #include <linux/errno.h> | 
|  | 31 | #include <linux/string.h> | 
|  | 32 | #include <linux/interrupt.h> | 
|  | 33 | #include <linux/slab.h> | 
|  | 34 | #include <linux/fb.h> | 
|  | 35 | #include <linux/delay.h> | 
|  | 36 | #include <linux/init.h> | 
|  | 37 | #include <linux/ioport.h> | 
|  | 38 | #include <linux/cpufreq.h> | 
|  | 39 | #include <linux/device.h> | 
|  | 40 | #include <linux/dma-mapping.h> | 
|  | 41 |  | 
|  | 42 | #include <asm/hardware.h> | 
|  | 43 | #include <asm/io.h> | 
|  | 44 | #include <asm/irq.h> | 
|  | 45 | #include <asm/uaccess.h> | 
| Nicolas Pitre | bf1b8ab | 2005-06-23 21:56:45 +0100 | [diff] [blame] | 46 | #include <asm/div64.h> | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 47 | #include <asm/arch/pxa-regs.h> | 
|  | 48 | #include <asm/arch/bitfield.h> | 
|  | 49 | #include <asm/arch/pxafb.h> | 
|  | 50 |  | 
|  | 51 | /* | 
|  | 52 | * Complain if VAR is out of range. | 
|  | 53 | */ | 
|  | 54 | #define DEBUG_VAR 1 | 
|  | 55 |  | 
|  | 56 | #include "pxafb.h" | 
|  | 57 |  | 
|  | 58 | /* Bits which should not be set in machine configuration structures */ | 
|  | 59 | #define LCCR0_INVALID_CONFIG_MASK (LCCR0_OUM|LCCR0_BM|LCCR0_QDM|LCCR0_DIS|LCCR0_EFM|LCCR0_IUM|LCCR0_SFM|LCCR0_LDM|LCCR0_ENB) | 
|  | 60 | #define LCCR3_INVALID_CONFIG_MASK (LCCR3_HSP|LCCR3_VSP|LCCR3_PCD|LCCR3_BPP) | 
|  | 61 |  | 
|  | 62 | static void (*pxafb_backlight_power)(int); | 
|  | 63 | static void (*pxafb_lcd_power)(int); | 
|  | 64 |  | 
|  | 65 | static int pxafb_activate_var(struct fb_var_screeninfo *var, struct pxafb_info *); | 
|  | 66 | static void set_ctrlr_state(struct pxafb_info *fbi, u_int state); | 
|  | 67 |  | 
|  | 68 | #ifdef CONFIG_FB_PXA_PARAMETERS | 
|  | 69 | #define PXAFB_OPTIONS_SIZE 256 | 
|  | 70 | static char g_options[PXAFB_OPTIONS_SIZE] __initdata = ""; | 
|  | 71 | #endif | 
|  | 72 |  | 
|  | 73 | static inline void pxafb_schedule_work(struct pxafb_info *fbi, u_int state) | 
|  | 74 | { | 
|  | 75 | unsigned long flags; | 
|  | 76 |  | 
|  | 77 | local_irq_save(flags); | 
|  | 78 | /* | 
|  | 79 | * We need to handle two requests being made at the same time. | 
|  | 80 | * There are two important cases: | 
|  | 81 | *  1. When we are changing VT (C_REENABLE) while unblanking (C_ENABLE) | 
|  | 82 | *     We must perform the unblanking, which will do our REENABLE for us. | 
|  | 83 | *  2. When we are blanking, but immediately unblank before we have | 
|  | 84 | *     blanked.  We do the "REENABLE" thing here as well, just to be sure. | 
|  | 85 | */ | 
|  | 86 | if (fbi->task_state == C_ENABLE && state == C_REENABLE) | 
|  | 87 | state = (u_int) -1; | 
|  | 88 | if (fbi->task_state == C_DISABLE && state == C_ENABLE) | 
|  | 89 | state = C_REENABLE; | 
|  | 90 |  | 
|  | 91 | if (state != (u_int)-1) { | 
|  | 92 | fbi->task_state = state; | 
|  | 93 | schedule_work(&fbi->task); | 
|  | 94 | } | 
|  | 95 | local_irq_restore(flags); | 
|  | 96 | } | 
|  | 97 |  | 
|  | 98 | static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf) | 
|  | 99 | { | 
|  | 100 | chan &= 0xffff; | 
|  | 101 | chan >>= 16 - bf->length; | 
|  | 102 | return chan << bf->offset; | 
|  | 103 | } | 
|  | 104 |  | 
|  | 105 | static int | 
|  | 106 | pxafb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue, | 
|  | 107 | u_int trans, struct fb_info *info) | 
|  | 108 | { | 
|  | 109 | struct pxafb_info *fbi = (struct pxafb_info *)info; | 
|  | 110 | u_int val, ret = 1; | 
|  | 111 |  | 
|  | 112 | if (regno < fbi->palette_size) { | 
|  | 113 | if (fbi->fb.var.grayscale) { | 
|  | 114 | val = ((blue >> 8) & 0x00ff); | 
|  | 115 | } else { | 
|  | 116 | val  = ((red   >>  0) & 0xf800); | 
|  | 117 | val |= ((green >>  5) & 0x07e0); | 
|  | 118 | val |= ((blue  >> 11) & 0x001f); | 
|  | 119 | } | 
|  | 120 | fbi->palette_cpu[regno] = val; | 
|  | 121 | ret = 0; | 
|  | 122 | } | 
|  | 123 | return ret; | 
|  | 124 | } | 
|  | 125 |  | 
|  | 126 | static int | 
|  | 127 | pxafb_setcolreg(u_int regno, u_int red, u_int green, u_int blue, | 
|  | 128 | u_int trans, struct fb_info *info) | 
|  | 129 | { | 
|  | 130 | struct pxafb_info *fbi = (struct pxafb_info *)info; | 
|  | 131 | unsigned int val; | 
|  | 132 | int ret = 1; | 
|  | 133 |  | 
|  | 134 | /* | 
|  | 135 | * If inverse mode was selected, invert all the colours | 
|  | 136 | * rather than the register number.  The register number | 
|  | 137 | * is what you poke into the framebuffer to produce the | 
|  | 138 | * colour you requested. | 
|  | 139 | */ | 
|  | 140 | if (fbi->cmap_inverse) { | 
|  | 141 | red   = 0xffff - red; | 
|  | 142 | green = 0xffff - green; | 
|  | 143 | blue  = 0xffff - blue; | 
|  | 144 | } | 
|  | 145 |  | 
|  | 146 | /* | 
|  | 147 | * If greyscale is true, then we convert the RGB value | 
|  | 148 | * to greyscale no matter what visual we are using. | 
|  | 149 | */ | 
|  | 150 | if (fbi->fb.var.grayscale) | 
|  | 151 | red = green = blue = (19595 * red + 38470 * green + | 
|  | 152 | 7471 * blue) >> 16; | 
|  | 153 |  | 
|  | 154 | switch (fbi->fb.fix.visual) { | 
|  | 155 | case FB_VISUAL_TRUECOLOR: | 
|  | 156 | /* | 
|  | 157 | * 16-bit True Colour.  We encode the RGB value | 
|  | 158 | * according to the RGB bitfield information. | 
|  | 159 | */ | 
|  | 160 | if (regno < 16) { | 
|  | 161 | u32 *pal = fbi->fb.pseudo_palette; | 
|  | 162 |  | 
|  | 163 | val  = chan_to_field(red, &fbi->fb.var.red); | 
|  | 164 | val |= chan_to_field(green, &fbi->fb.var.green); | 
|  | 165 | val |= chan_to_field(blue, &fbi->fb.var.blue); | 
|  | 166 |  | 
|  | 167 | pal[regno] = val; | 
|  | 168 | ret = 0; | 
|  | 169 | } | 
|  | 170 | break; | 
|  | 171 |  | 
|  | 172 | case FB_VISUAL_STATIC_PSEUDOCOLOR: | 
|  | 173 | case FB_VISUAL_PSEUDOCOLOR: | 
|  | 174 | ret = pxafb_setpalettereg(regno, red, green, blue, trans, info); | 
|  | 175 | break; | 
|  | 176 | } | 
|  | 177 |  | 
|  | 178 | return ret; | 
|  | 179 | } | 
|  | 180 |  | 
|  | 181 | /* | 
|  | 182 | *  pxafb_bpp_to_lccr3(): | 
|  | 183 | *    Convert a bits per pixel value to the correct bit pattern for LCCR3 | 
|  | 184 | */ | 
|  | 185 | static int pxafb_bpp_to_lccr3(struct fb_var_screeninfo *var) | 
|  | 186 | { | 
|  | 187 | int ret = 0; | 
|  | 188 | switch (var->bits_per_pixel) { | 
|  | 189 | case 1:  ret = LCCR3_1BPP; break; | 
|  | 190 | case 2:  ret = LCCR3_2BPP; break; | 
|  | 191 | case 4:  ret = LCCR3_4BPP; break; | 
|  | 192 | case 8:  ret = LCCR3_8BPP; break; | 
|  | 193 | case 16: ret = LCCR3_16BPP; break; | 
|  | 194 | } | 
|  | 195 | return ret; | 
|  | 196 | } | 
|  | 197 |  | 
|  | 198 | #ifdef CONFIG_CPU_FREQ | 
|  | 199 | /* | 
|  | 200 | *  pxafb_display_dma_period() | 
|  | 201 | *    Calculate the minimum period (in picoseconds) between two DMA | 
|  | 202 | *    requests for the LCD controller.  If we hit this, it means we're | 
|  | 203 | *    doing nothing but LCD DMA. | 
|  | 204 | */ | 
|  | 205 | static unsigned int pxafb_display_dma_period(struct fb_var_screeninfo *var) | 
|  | 206 | { | 
|  | 207 | /* | 
|  | 208 | * Period = pixclock * bits_per_byte * bytes_per_transfer | 
|  | 209 | *              / memory_bits_per_pixel; | 
|  | 210 | */ | 
|  | 211 | return var->pixclock * 8 * 16 / var->bits_per_pixel; | 
|  | 212 | } | 
|  | 213 |  | 
|  | 214 | extern unsigned int get_clk_frequency_khz(int info); | 
|  | 215 | #endif | 
|  | 216 |  | 
|  | 217 | /* | 
|  | 218 | *  pxafb_check_var(): | 
|  | 219 | *    Get the video params out of 'var'. If a value doesn't fit, round it up, | 
|  | 220 | *    if it's too big, return -EINVAL. | 
|  | 221 | * | 
|  | 222 | *    Round up in the following order: bits_per_pixel, xres, | 
|  | 223 | *    yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale, | 
|  | 224 | *    bitfields, horizontal timing, vertical timing. | 
|  | 225 | */ | 
|  | 226 | static int pxafb_check_var(struct fb_var_screeninfo *var, struct fb_info *info) | 
|  | 227 | { | 
|  | 228 | struct pxafb_info *fbi = (struct pxafb_info *)info; | 
|  | 229 |  | 
|  | 230 | if (var->xres < MIN_XRES) | 
|  | 231 | var->xres = MIN_XRES; | 
|  | 232 | if (var->yres < MIN_YRES) | 
|  | 233 | var->yres = MIN_YRES; | 
|  | 234 | if (var->xres > fbi->max_xres) | 
|  | 235 | var->xres = fbi->max_xres; | 
|  | 236 | if (var->yres > fbi->max_yres) | 
|  | 237 | var->yres = fbi->max_yres; | 
|  | 238 | var->xres_virtual = | 
|  | 239 | max(var->xres_virtual, var->xres); | 
|  | 240 | var->yres_virtual = | 
|  | 241 | max(var->yres_virtual, var->yres); | 
|  | 242 |  | 
|  | 243 | /* | 
|  | 244 | * Setup the RGB parameters for this display. | 
|  | 245 | * | 
|  | 246 | * The pixel packing format is described on page 7-11 of the | 
|  | 247 | * PXA2XX Developer's Manual. | 
|  | 248 | */ | 
|  | 249 | if (var->bits_per_pixel == 16) { | 
|  | 250 | var->red.offset   = 11; var->red.length   = 5; | 
|  | 251 | var->green.offset = 5;  var->green.length = 6; | 
|  | 252 | var->blue.offset  = 0;  var->blue.length  = 5; | 
|  | 253 | var->transp.offset = var->transp.length = 0; | 
|  | 254 | } else { | 
|  | 255 | var->red.offset = var->green.offset = var->blue.offset = var->transp.offset = 0; | 
|  | 256 | var->red.length   = 8; | 
|  | 257 | var->green.length = 8; | 
|  | 258 | var->blue.length  = 8; | 
|  | 259 | var->transp.length = 0; | 
|  | 260 | } | 
|  | 261 |  | 
|  | 262 | #ifdef CONFIG_CPU_FREQ | 
|  | 263 | DPRINTK("dma period = %d ps, clock = %d kHz\n", | 
|  | 264 | pxafb_display_dma_period(var), | 
|  | 265 | get_clk_frequency_khz(0)); | 
|  | 266 | #endif | 
|  | 267 |  | 
|  | 268 | return 0; | 
|  | 269 | } | 
|  | 270 |  | 
|  | 271 | static inline void pxafb_set_truecolor(u_int is_true_color) | 
|  | 272 | { | 
|  | 273 | DPRINTK("true_color = %d\n", is_true_color); | 
|  | 274 | // do your machine-specific setup if needed | 
|  | 275 | } | 
|  | 276 |  | 
|  | 277 | /* | 
|  | 278 | * pxafb_set_par(): | 
|  | 279 | *	Set the user defined part of the display for the specified console | 
|  | 280 | */ | 
|  | 281 | static int pxafb_set_par(struct fb_info *info) | 
|  | 282 | { | 
|  | 283 | struct pxafb_info *fbi = (struct pxafb_info *)info; | 
|  | 284 | struct fb_var_screeninfo *var = &info->var; | 
|  | 285 | unsigned long palette_mem_size; | 
|  | 286 |  | 
|  | 287 | DPRINTK("set_par\n"); | 
|  | 288 |  | 
|  | 289 | if (var->bits_per_pixel == 16) | 
|  | 290 | fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR; | 
|  | 291 | else if (!fbi->cmap_static) | 
|  | 292 | fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR; | 
|  | 293 | else { | 
|  | 294 | /* | 
|  | 295 | * Some people have weird ideas about wanting static | 
|  | 296 | * pseudocolor maps.  I suspect their user space | 
|  | 297 | * applications are broken. | 
|  | 298 | */ | 
|  | 299 | fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR; | 
|  | 300 | } | 
|  | 301 |  | 
|  | 302 | fbi->fb.fix.line_length = var->xres_virtual * | 
|  | 303 | var->bits_per_pixel / 8; | 
|  | 304 | if (var->bits_per_pixel == 16) | 
|  | 305 | fbi->palette_size = 0; | 
|  | 306 | else | 
|  | 307 | fbi->palette_size = var->bits_per_pixel == 1 ? 4 : 1 << var->bits_per_pixel; | 
|  | 308 |  | 
|  | 309 | palette_mem_size = fbi->palette_size * sizeof(u16); | 
|  | 310 |  | 
|  | 311 | DPRINTK("palette_mem_size = 0x%08lx\n", (u_long) palette_mem_size); | 
|  | 312 |  | 
|  | 313 | fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size); | 
|  | 314 | fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size; | 
|  | 315 |  | 
|  | 316 | /* | 
|  | 317 | * Set (any) board control register to handle new color depth | 
|  | 318 | */ | 
|  | 319 | pxafb_set_truecolor(fbi->fb.fix.visual == FB_VISUAL_TRUECOLOR); | 
|  | 320 |  | 
|  | 321 | if (fbi->fb.var.bits_per_pixel == 16) | 
|  | 322 | fb_dealloc_cmap(&fbi->fb.cmap); | 
|  | 323 | else | 
|  | 324 | fb_alloc_cmap(&fbi->fb.cmap, 1<<fbi->fb.var.bits_per_pixel, 0); | 
|  | 325 |  | 
|  | 326 | pxafb_activate_var(var, fbi); | 
|  | 327 |  | 
|  | 328 | return 0; | 
|  | 329 | } | 
|  | 330 |  | 
|  | 331 | /* | 
|  | 332 | * Formal definition of the VESA spec: | 
|  | 333 | *  On | 
|  | 334 | *  	This refers to the state of the display when it is in full operation | 
|  | 335 | *  Stand-By | 
|  | 336 | *  	This defines an optional operating state of minimal power reduction with | 
|  | 337 | *  	the shortest recovery time | 
|  | 338 | *  Suspend | 
|  | 339 | *  	This refers to a level of power management in which substantial power | 
|  | 340 | *  	reduction is achieved by the display.  The display can have a longer | 
|  | 341 | *  	recovery time from this state than from the Stand-by state | 
|  | 342 | *  Off | 
|  | 343 | *  	This indicates that the display is consuming the lowest level of power | 
|  | 344 | *  	and is non-operational. Recovery from this state may optionally require | 
|  | 345 | *  	the user to manually power on the monitor | 
|  | 346 | * | 
|  | 347 | *  Now, the fbdev driver adds an additional state, (blank), where they | 
|  | 348 | *  turn off the video (maybe by colormap tricks), but don't mess with the | 
|  | 349 | *  video itself: think of it semantically between on and Stand-By. | 
|  | 350 | * | 
|  | 351 | *  So here's what we should do in our fbdev blank routine: | 
|  | 352 | * | 
|  | 353 | *  	VESA_NO_BLANKING (mode 0)	Video on,  front/back light on | 
|  | 354 | *  	VESA_VSYNC_SUSPEND (mode 1)  	Video on,  front/back light off | 
|  | 355 | *  	VESA_HSYNC_SUSPEND (mode 2)  	Video on,  front/back light off | 
|  | 356 | *  	VESA_POWERDOWN (mode 3)		Video off, front/back light off | 
|  | 357 | * | 
|  | 358 | *  This will match the matrox implementation. | 
|  | 359 | */ | 
|  | 360 |  | 
|  | 361 | /* | 
|  | 362 | * pxafb_blank(): | 
|  | 363 | *	Blank the display by setting all palette values to zero.  Note, the | 
|  | 364 | * 	16 bpp mode does not really use the palette, so this will not | 
|  | 365 | *      blank the display in all modes. | 
|  | 366 | */ | 
|  | 367 | static int pxafb_blank(int blank, struct fb_info *info) | 
|  | 368 | { | 
|  | 369 | struct pxafb_info *fbi = (struct pxafb_info *)info; | 
|  | 370 | int i; | 
|  | 371 |  | 
|  | 372 | DPRINTK("pxafb_blank: blank=%d\n", blank); | 
|  | 373 |  | 
|  | 374 | switch (blank) { | 
|  | 375 | case FB_BLANK_POWERDOWN: | 
|  | 376 | case FB_BLANK_VSYNC_SUSPEND: | 
|  | 377 | case FB_BLANK_HSYNC_SUSPEND: | 
|  | 378 | case FB_BLANK_NORMAL: | 
|  | 379 | if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR || | 
|  | 380 | fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR) | 
|  | 381 | for (i = 0; i < fbi->palette_size; i++) | 
|  | 382 | pxafb_setpalettereg(i, 0, 0, 0, 0, info); | 
|  | 383 |  | 
|  | 384 | pxafb_schedule_work(fbi, C_DISABLE); | 
|  | 385 | //TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); | 
|  | 386 | break; | 
|  | 387 |  | 
|  | 388 | case FB_BLANK_UNBLANK: | 
|  | 389 | //TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); | 
|  | 390 | if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR || | 
|  | 391 | fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR) | 
|  | 392 | fb_set_cmap(&fbi->fb.cmap, info); | 
|  | 393 | pxafb_schedule_work(fbi, C_ENABLE); | 
|  | 394 | } | 
|  | 395 | return 0; | 
|  | 396 | } | 
|  | 397 |  | 
|  | 398 | static int pxafb_mmap(struct fb_info *info, struct file *file, | 
|  | 399 | struct vm_area_struct *vma) | 
|  | 400 | { | 
|  | 401 | struct pxafb_info *fbi = (struct pxafb_info *)info; | 
|  | 402 | unsigned long off = vma->vm_pgoff << PAGE_SHIFT; | 
|  | 403 |  | 
|  | 404 | if (off < info->fix.smem_len) { | 
|  | 405 | vma->vm_pgoff += 1; | 
|  | 406 | return dma_mmap_writecombine(fbi->dev, vma, fbi->map_cpu, | 
|  | 407 | fbi->map_dma, fbi->map_size); | 
|  | 408 | } | 
|  | 409 | return -EINVAL; | 
|  | 410 | } | 
|  | 411 |  | 
|  | 412 | static struct fb_ops pxafb_ops = { | 
|  | 413 | .owner		= THIS_MODULE, | 
|  | 414 | .fb_check_var	= pxafb_check_var, | 
|  | 415 | .fb_set_par	= pxafb_set_par, | 
|  | 416 | .fb_setcolreg	= pxafb_setcolreg, | 
|  | 417 | .fb_fillrect	= cfb_fillrect, | 
|  | 418 | .fb_copyarea	= cfb_copyarea, | 
|  | 419 | .fb_imageblit	= cfb_imageblit, | 
|  | 420 | .fb_blank	= pxafb_blank, | 
|  | 421 | .fb_cursor	= soft_cursor, | 
|  | 422 | .fb_mmap	= pxafb_mmap, | 
|  | 423 | }; | 
|  | 424 |  | 
|  | 425 | /* | 
|  | 426 | * Calculate the PCD value from the clock rate (in picoseconds). | 
|  | 427 | * We take account of the PPCR clock setting. | 
|  | 428 | * From PXA Developer's Manual: | 
|  | 429 | * | 
|  | 430 | *   PixelClock =      LCLK | 
|  | 431 | *                ------------- | 
|  | 432 | *                2 ( PCD + 1 ) | 
|  | 433 | * | 
|  | 434 | *   PCD =      LCLK | 
|  | 435 | *         ------------- - 1 | 
|  | 436 | *         2(PixelClock) | 
|  | 437 | * | 
|  | 438 | * Where: | 
|  | 439 | *   LCLK = LCD/Memory Clock | 
|  | 440 | *   PCD = LCCR3[7:0] | 
|  | 441 | * | 
|  | 442 | * PixelClock here is in Hz while the pixclock argument given is the | 
|  | 443 | * period in picoseconds. Hence PixelClock = 1 / ( pixclock * 10^-12 ) | 
|  | 444 | * | 
|  | 445 | * The function get_lclk_frequency_10khz returns LCLK in units of | 
|  | 446 | * 10khz. Calling the result of this function lclk gives us the | 
|  | 447 | * following | 
|  | 448 | * | 
|  | 449 | *    PCD = (lclk * 10^4 ) * ( pixclock * 10^-12 ) | 
|  | 450 | *          -------------------------------------- - 1 | 
|  | 451 | *                          2 | 
|  | 452 | * | 
|  | 453 | * Factoring the 10^4 and 10^-12 out gives 10^-8 == 1 / 100000000 as used below. | 
|  | 454 | */ | 
|  | 455 | static inline unsigned int get_pcd(unsigned int pixclock) | 
|  | 456 | { | 
|  | 457 | unsigned long long pcd; | 
|  | 458 |  | 
|  | 459 | /* FIXME: Need to take into account Double Pixel Clock mode | 
|  | 460 | * (DPC) bit? or perhaps set it based on the various clock | 
|  | 461 | * speeds */ | 
|  | 462 |  | 
|  | 463 | pcd = (unsigned long long)get_lcdclk_frequency_10khz() * pixclock; | 
| Nicolas Pitre | bf1b8ab | 2005-06-23 21:56:45 +0100 | [diff] [blame] | 464 | do_div(pcd, 100000000 * 2); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 465 | /* no need for this, since we should subtract 1 anyway. they cancel */ | 
|  | 466 | /* pcd += 1; */ /* make up for integer math truncations */ | 
|  | 467 | return (unsigned int)pcd; | 
|  | 468 | } | 
|  | 469 |  | 
|  | 470 | /* | 
|  | 471 | * pxafb_activate_var(): | 
|  | 472 | *	Configures LCD Controller based on entries in var parameter.  Settings are | 
|  | 473 | *	only written to the controller if changes were made. | 
|  | 474 | */ | 
|  | 475 | static int pxafb_activate_var(struct fb_var_screeninfo *var, struct pxafb_info *fbi) | 
|  | 476 | { | 
|  | 477 | struct pxafb_lcd_reg new_regs; | 
|  | 478 | u_long flags; | 
|  | 479 | u_int lines_per_panel, pcd = get_pcd(var->pixclock); | 
|  | 480 |  | 
|  | 481 | DPRINTK("Configuring PXA LCD\n"); | 
|  | 482 |  | 
|  | 483 | DPRINTK("var: xres=%d hslen=%d lm=%d rm=%d\n", | 
|  | 484 | var->xres, var->hsync_len, | 
|  | 485 | var->left_margin, var->right_margin); | 
|  | 486 | DPRINTK("var: yres=%d vslen=%d um=%d bm=%d\n", | 
|  | 487 | var->yres, var->vsync_len, | 
|  | 488 | var->upper_margin, var->lower_margin); | 
|  | 489 | DPRINTK("var: pixclock=%d pcd=%d\n", var->pixclock, pcd); | 
|  | 490 |  | 
|  | 491 | #if DEBUG_VAR | 
|  | 492 | if (var->xres < 16        || var->xres > 1024) | 
|  | 493 | printk(KERN_ERR "%s: invalid xres %d\n", | 
|  | 494 | fbi->fb.fix.id, var->xres); | 
|  | 495 | switch(var->bits_per_pixel) { | 
|  | 496 | case 1: | 
|  | 497 | case 2: | 
|  | 498 | case 4: | 
|  | 499 | case 8: | 
|  | 500 | case 16: | 
|  | 501 | break; | 
|  | 502 | default: | 
|  | 503 | printk(KERN_ERR "%s: invalid bit depth %d\n", | 
|  | 504 | fbi->fb.fix.id, var->bits_per_pixel); | 
|  | 505 | break; | 
|  | 506 | } | 
|  | 507 | if (var->hsync_len < 1    || var->hsync_len > 64) | 
|  | 508 | printk(KERN_ERR "%s: invalid hsync_len %d\n", | 
|  | 509 | fbi->fb.fix.id, var->hsync_len); | 
|  | 510 | if (var->left_margin < 1  || var->left_margin > 255) | 
|  | 511 | printk(KERN_ERR "%s: invalid left_margin %d\n", | 
|  | 512 | fbi->fb.fix.id, var->left_margin); | 
|  | 513 | if (var->right_margin < 1 || var->right_margin > 255) | 
|  | 514 | printk(KERN_ERR "%s: invalid right_margin %d\n", | 
|  | 515 | fbi->fb.fix.id, var->right_margin); | 
|  | 516 | if (var->yres < 1         || var->yres > 1024) | 
|  | 517 | printk(KERN_ERR "%s: invalid yres %d\n", | 
|  | 518 | fbi->fb.fix.id, var->yres); | 
|  | 519 | if (var->vsync_len < 1    || var->vsync_len > 64) | 
|  | 520 | printk(KERN_ERR "%s: invalid vsync_len %d\n", | 
|  | 521 | fbi->fb.fix.id, var->vsync_len); | 
|  | 522 | if (var->upper_margin < 0 || var->upper_margin > 255) | 
|  | 523 | printk(KERN_ERR "%s: invalid upper_margin %d\n", | 
|  | 524 | fbi->fb.fix.id, var->upper_margin); | 
|  | 525 | if (var->lower_margin < 0 || var->lower_margin > 255) | 
|  | 526 | printk(KERN_ERR "%s: invalid lower_margin %d\n", | 
|  | 527 | fbi->fb.fix.id, var->lower_margin); | 
|  | 528 | #endif | 
|  | 529 |  | 
|  | 530 | new_regs.lccr0 = fbi->lccr0 | | 
|  | 531 | (LCCR0_LDM | LCCR0_SFM | LCCR0_IUM | LCCR0_EFM | | 
|  | 532 | LCCR0_QDM | LCCR0_BM  | LCCR0_OUM); | 
|  | 533 |  | 
|  | 534 | new_regs.lccr1 = | 
|  | 535 | LCCR1_DisWdth(var->xres) + | 
|  | 536 | LCCR1_HorSnchWdth(var->hsync_len) + | 
|  | 537 | LCCR1_BegLnDel(var->left_margin) + | 
|  | 538 | LCCR1_EndLnDel(var->right_margin); | 
|  | 539 |  | 
|  | 540 | /* | 
|  | 541 | * If we have a dual scan LCD, we need to halve | 
|  | 542 | * the YRES parameter. | 
|  | 543 | */ | 
|  | 544 | lines_per_panel = var->yres; | 
|  | 545 | if ((fbi->lccr0 & LCCR0_SDS) == LCCR0_Dual) | 
|  | 546 | lines_per_panel /= 2; | 
|  | 547 |  | 
|  | 548 | new_regs.lccr2 = | 
|  | 549 | LCCR2_DisHght(lines_per_panel) + | 
|  | 550 | LCCR2_VrtSnchWdth(var->vsync_len) + | 
|  | 551 | LCCR2_BegFrmDel(var->upper_margin) + | 
|  | 552 | LCCR2_EndFrmDel(var->lower_margin); | 
|  | 553 |  | 
|  | 554 | new_regs.lccr3 = fbi->lccr3 | | 
|  | 555 | pxafb_bpp_to_lccr3(var) | | 
|  | 556 | (var->sync & FB_SYNC_HOR_HIGH_ACT ? LCCR3_HorSnchH : LCCR3_HorSnchL) | | 
|  | 557 | (var->sync & FB_SYNC_VERT_HIGH_ACT ? LCCR3_VrtSnchH : LCCR3_VrtSnchL); | 
|  | 558 |  | 
|  | 559 | if (pcd) | 
|  | 560 | new_regs.lccr3 |= LCCR3_PixClkDiv(pcd); | 
|  | 561 |  | 
|  | 562 | DPRINTK("nlccr0 = 0x%08x\n", new_regs.lccr0); | 
|  | 563 | DPRINTK("nlccr1 = 0x%08x\n", new_regs.lccr1); | 
|  | 564 | DPRINTK("nlccr2 = 0x%08x\n", new_regs.lccr2); | 
|  | 565 | DPRINTK("nlccr3 = 0x%08x\n", new_regs.lccr3); | 
|  | 566 |  | 
|  | 567 | /* Update shadow copy atomically */ | 
|  | 568 | local_irq_save(flags); | 
|  | 569 |  | 
|  | 570 | /* setup dma descriptors */ | 
|  | 571 | fbi->dmadesc_fblow_cpu = (struct pxafb_dma_descriptor *)((unsigned int)fbi->palette_cpu - 3*16); | 
|  | 572 | fbi->dmadesc_fbhigh_cpu = (struct pxafb_dma_descriptor *)((unsigned int)fbi->palette_cpu - 2*16); | 
|  | 573 | fbi->dmadesc_palette_cpu = (struct pxafb_dma_descriptor *)((unsigned int)fbi->palette_cpu - 1*16); | 
|  | 574 |  | 
|  | 575 | fbi->dmadesc_fblow_dma = fbi->palette_dma - 3*16; | 
|  | 576 | fbi->dmadesc_fbhigh_dma = fbi->palette_dma - 2*16; | 
|  | 577 | fbi->dmadesc_palette_dma = fbi->palette_dma - 1*16; | 
|  | 578 |  | 
|  | 579 | #define BYTES_PER_PANEL (lines_per_panel * fbi->fb.fix.line_length) | 
|  | 580 |  | 
|  | 581 | /* populate descriptors */ | 
|  | 582 | fbi->dmadesc_fblow_cpu->fdadr = fbi->dmadesc_fblow_dma; | 
|  | 583 | fbi->dmadesc_fblow_cpu->fsadr = fbi->screen_dma + BYTES_PER_PANEL; | 
|  | 584 | fbi->dmadesc_fblow_cpu->fidr  = 0; | 
|  | 585 | fbi->dmadesc_fblow_cpu->ldcmd = BYTES_PER_PANEL; | 
|  | 586 |  | 
|  | 587 | fbi->fdadr1 = fbi->dmadesc_fblow_dma; /* only used in dual-panel mode */ | 
|  | 588 |  | 
|  | 589 | fbi->dmadesc_fbhigh_cpu->fsadr = fbi->screen_dma; | 
|  | 590 | fbi->dmadesc_fbhigh_cpu->fidr = 0; | 
|  | 591 | fbi->dmadesc_fbhigh_cpu->ldcmd = BYTES_PER_PANEL; | 
|  | 592 |  | 
|  | 593 | fbi->dmadesc_palette_cpu->fsadr = fbi->palette_dma; | 
|  | 594 | fbi->dmadesc_palette_cpu->fidr  = 0; | 
|  | 595 | fbi->dmadesc_palette_cpu->ldcmd = (fbi->palette_size * 2) | LDCMD_PAL; | 
|  | 596 |  | 
|  | 597 | if (var->bits_per_pixel == 16) { | 
|  | 598 | /* palette shouldn't be loaded in true-color mode */ | 
|  | 599 | fbi->dmadesc_fbhigh_cpu->fdadr = fbi->dmadesc_fbhigh_dma; | 
|  | 600 | fbi->fdadr0 = fbi->dmadesc_fbhigh_dma; /* no pal just fbhigh */ | 
|  | 601 | /* init it to something, even though we won't be using it */ | 
|  | 602 | fbi->dmadesc_palette_cpu->fdadr = fbi->dmadesc_palette_dma; | 
|  | 603 | } else { | 
|  | 604 | fbi->dmadesc_palette_cpu->fdadr = fbi->dmadesc_fbhigh_dma; | 
|  | 605 | fbi->dmadesc_fbhigh_cpu->fdadr = fbi->dmadesc_palette_dma; | 
|  | 606 | fbi->fdadr0 = fbi->dmadesc_palette_dma; /* flips back and forth between pal and fbhigh */ | 
|  | 607 | } | 
|  | 608 |  | 
|  | 609 | #if 0 | 
|  | 610 | DPRINTK("fbi->dmadesc_fblow_cpu = 0x%p\n", fbi->dmadesc_fblow_cpu); | 
|  | 611 | DPRINTK("fbi->dmadesc_fbhigh_cpu = 0x%p\n", fbi->dmadesc_fbhigh_cpu); | 
|  | 612 | DPRINTK("fbi->dmadesc_palette_cpu = 0x%p\n", fbi->dmadesc_palette_cpu); | 
|  | 613 | DPRINTK("fbi->dmadesc_fblow_dma = 0x%x\n", fbi->dmadesc_fblow_dma); | 
|  | 614 | DPRINTK("fbi->dmadesc_fbhigh_dma = 0x%x\n", fbi->dmadesc_fbhigh_dma); | 
|  | 615 | DPRINTK("fbi->dmadesc_palette_dma = 0x%x\n", fbi->dmadesc_palette_dma); | 
|  | 616 |  | 
|  | 617 | DPRINTK("fbi->dmadesc_fblow_cpu->fdadr = 0x%x\n", fbi->dmadesc_fblow_cpu->fdadr); | 
|  | 618 | DPRINTK("fbi->dmadesc_fbhigh_cpu->fdadr = 0x%x\n", fbi->dmadesc_fbhigh_cpu->fdadr); | 
|  | 619 | DPRINTK("fbi->dmadesc_palette_cpu->fdadr = 0x%x\n", fbi->dmadesc_palette_cpu->fdadr); | 
|  | 620 |  | 
|  | 621 | DPRINTK("fbi->dmadesc_fblow_cpu->fsadr = 0x%x\n", fbi->dmadesc_fblow_cpu->fsadr); | 
|  | 622 | DPRINTK("fbi->dmadesc_fbhigh_cpu->fsadr = 0x%x\n", fbi->dmadesc_fbhigh_cpu->fsadr); | 
|  | 623 | DPRINTK("fbi->dmadesc_palette_cpu->fsadr = 0x%x\n", fbi->dmadesc_palette_cpu->fsadr); | 
|  | 624 |  | 
|  | 625 | DPRINTK("fbi->dmadesc_fblow_cpu->ldcmd = 0x%x\n", fbi->dmadesc_fblow_cpu->ldcmd); | 
|  | 626 | DPRINTK("fbi->dmadesc_fbhigh_cpu->ldcmd = 0x%x\n", fbi->dmadesc_fbhigh_cpu->ldcmd); | 
|  | 627 | DPRINTK("fbi->dmadesc_palette_cpu->ldcmd = 0x%x\n", fbi->dmadesc_palette_cpu->ldcmd); | 
|  | 628 | #endif | 
|  | 629 |  | 
|  | 630 | fbi->reg_lccr0 = new_regs.lccr0; | 
|  | 631 | fbi->reg_lccr1 = new_regs.lccr1; | 
|  | 632 | fbi->reg_lccr2 = new_regs.lccr2; | 
|  | 633 | fbi->reg_lccr3 = new_regs.lccr3; | 
|  | 634 | local_irq_restore(flags); | 
|  | 635 |  | 
|  | 636 | /* | 
|  | 637 | * Only update the registers if the controller is enabled | 
|  | 638 | * and something has changed. | 
|  | 639 | */ | 
|  | 640 | if ((LCCR0  != fbi->reg_lccr0) || (LCCR1  != fbi->reg_lccr1) || | 
|  | 641 | (LCCR2  != fbi->reg_lccr2) || (LCCR3  != fbi->reg_lccr3) || | 
|  | 642 | (FDADR0 != fbi->fdadr0)    || (FDADR1 != fbi->fdadr1)) | 
|  | 643 | pxafb_schedule_work(fbi, C_REENABLE); | 
|  | 644 |  | 
|  | 645 | return 0; | 
|  | 646 | } | 
|  | 647 |  | 
|  | 648 | /* | 
|  | 649 | * NOTE!  The following functions are purely helpers for set_ctrlr_state. | 
|  | 650 | * Do not call them directly; set_ctrlr_state does the correct serialisation | 
|  | 651 | * to ensure that things happen in the right way 100% of time time. | 
|  | 652 | *	-- rmk | 
|  | 653 | */ | 
|  | 654 | static inline void __pxafb_backlight_power(struct pxafb_info *fbi, int on) | 
|  | 655 | { | 
|  | 656 | DPRINTK("backlight o%s\n", on ? "n" : "ff"); | 
|  | 657 |  | 
|  | 658 | if (pxafb_backlight_power) | 
|  | 659 | pxafb_backlight_power(on); | 
|  | 660 | } | 
|  | 661 |  | 
|  | 662 | static inline void __pxafb_lcd_power(struct pxafb_info *fbi, int on) | 
|  | 663 | { | 
|  | 664 | DPRINTK("LCD power o%s\n", on ? "n" : "ff"); | 
|  | 665 |  | 
|  | 666 | if (pxafb_lcd_power) | 
|  | 667 | pxafb_lcd_power(on); | 
|  | 668 | } | 
|  | 669 |  | 
|  | 670 | static void pxafb_setup_gpio(struct pxafb_info *fbi) | 
|  | 671 | { | 
|  | 672 | int gpio, ldd_bits; | 
|  | 673 | unsigned int lccr0 = fbi->lccr0; | 
|  | 674 |  | 
|  | 675 | /* | 
|  | 676 | * setup is based on type of panel supported | 
|  | 677 | */ | 
|  | 678 |  | 
|  | 679 | /* 4 bit interface */ | 
|  | 680 | if ((lccr0 & LCCR0_CMS) == LCCR0_Mono && | 
|  | 681 | (lccr0 & LCCR0_SDS) == LCCR0_Sngl && | 
|  | 682 | (lccr0 & LCCR0_DPD) == LCCR0_4PixMono) | 
|  | 683 | ldd_bits = 4; | 
|  | 684 |  | 
|  | 685 | /* 8 bit interface */ | 
|  | 686 | else if (((lccr0 & LCCR0_CMS) == LCCR0_Mono && | 
|  | 687 | ((lccr0 & LCCR0_SDS) == LCCR0_Dual || (lccr0 & LCCR0_DPD) == LCCR0_8PixMono)) || | 
|  | 688 | ((lccr0 & LCCR0_CMS) == LCCR0_Color && | 
|  | 689 | (lccr0 & LCCR0_PAS) == LCCR0_Pas && (lccr0 & LCCR0_SDS) == LCCR0_Sngl)) | 
|  | 690 | ldd_bits = 8; | 
|  | 691 |  | 
|  | 692 | /* 16 bit interface */ | 
|  | 693 | else if ((lccr0 & LCCR0_CMS) == LCCR0_Color && | 
|  | 694 | ((lccr0 & LCCR0_SDS) == LCCR0_Dual || (lccr0 & LCCR0_PAS) == LCCR0_Act)) | 
|  | 695 | ldd_bits = 16; | 
|  | 696 |  | 
|  | 697 | else { | 
|  | 698 | printk(KERN_ERR "pxafb_setup_gpio: unable to determine bits per pixel\n"); | 
|  | 699 | return; | 
|  | 700 | } | 
|  | 701 |  | 
|  | 702 | for (gpio = 58; ldd_bits; gpio++, ldd_bits--) | 
|  | 703 | pxa_gpio_mode(gpio | GPIO_ALT_FN_2_OUT); | 
|  | 704 | pxa_gpio_mode(GPIO74_LCD_FCLK_MD); | 
|  | 705 | pxa_gpio_mode(GPIO75_LCD_LCLK_MD); | 
|  | 706 | pxa_gpio_mode(GPIO76_LCD_PCLK_MD); | 
|  | 707 | pxa_gpio_mode(GPIO77_LCD_ACBIAS_MD); | 
|  | 708 | } | 
|  | 709 |  | 
|  | 710 | static void pxafb_enable_controller(struct pxafb_info *fbi) | 
|  | 711 | { | 
|  | 712 | DPRINTK("Enabling LCD controller\n"); | 
|  | 713 | DPRINTK("fdadr0 0x%08x\n", (unsigned int) fbi->fdadr0); | 
|  | 714 | DPRINTK("fdadr1 0x%08x\n", (unsigned int) fbi->fdadr1); | 
|  | 715 | DPRINTK("reg_lccr0 0x%08x\n", (unsigned int) fbi->reg_lccr0); | 
|  | 716 | DPRINTK("reg_lccr1 0x%08x\n", (unsigned int) fbi->reg_lccr1); | 
|  | 717 | DPRINTK("reg_lccr2 0x%08x\n", (unsigned int) fbi->reg_lccr2); | 
|  | 718 | DPRINTK("reg_lccr3 0x%08x\n", (unsigned int) fbi->reg_lccr3); | 
|  | 719 |  | 
|  | 720 | /* Sequence from 11.7.10 */ | 
|  | 721 | LCCR3 = fbi->reg_lccr3; | 
|  | 722 | LCCR2 = fbi->reg_lccr2; | 
|  | 723 | LCCR1 = fbi->reg_lccr1; | 
|  | 724 | LCCR0 = fbi->reg_lccr0 & ~LCCR0_ENB; | 
|  | 725 |  | 
|  | 726 | FDADR0 = fbi->fdadr0; | 
|  | 727 | FDADR1 = fbi->fdadr1; | 
|  | 728 | LCCR0 |= LCCR0_ENB; | 
|  | 729 |  | 
|  | 730 | DPRINTK("FDADR0 0x%08x\n", (unsigned int) FDADR0); | 
|  | 731 | DPRINTK("FDADR1 0x%08x\n", (unsigned int) FDADR1); | 
|  | 732 | DPRINTK("LCCR0 0x%08x\n", (unsigned int) LCCR0); | 
|  | 733 | DPRINTK("LCCR1 0x%08x\n", (unsigned int) LCCR1); | 
|  | 734 | DPRINTK("LCCR2 0x%08x\n", (unsigned int) LCCR2); | 
|  | 735 | DPRINTK("LCCR3 0x%08x\n", (unsigned int) LCCR3); | 
|  | 736 | } | 
|  | 737 |  | 
|  | 738 | static void pxafb_disable_controller(struct pxafb_info *fbi) | 
|  | 739 | { | 
|  | 740 | DECLARE_WAITQUEUE(wait, current); | 
|  | 741 |  | 
|  | 742 | DPRINTK("Disabling LCD controller\n"); | 
|  | 743 |  | 
|  | 744 | set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | 745 | add_wait_queue(&fbi->ctrlr_wait, &wait); | 
|  | 746 |  | 
|  | 747 | LCSR = 0xffffffff;	/* Clear LCD Status Register */ | 
|  | 748 | LCCR0 &= ~LCCR0_LDM;	/* Enable LCD Disable Done Interrupt */ | 
|  | 749 | LCCR0 |= LCCR0_DIS;	/* Disable LCD Controller */ | 
|  | 750 |  | 
|  | 751 | schedule_timeout(20 * HZ / 1000); | 
|  | 752 | remove_wait_queue(&fbi->ctrlr_wait, &wait); | 
|  | 753 | } | 
|  | 754 |  | 
|  | 755 | /* | 
|  | 756 | *  pxafb_handle_irq: Handle 'LCD DONE' interrupts. | 
|  | 757 | */ | 
|  | 758 | static irqreturn_t pxafb_handle_irq(int irq, void *dev_id, struct pt_regs *regs) | 
|  | 759 | { | 
|  | 760 | struct pxafb_info *fbi = dev_id; | 
|  | 761 | unsigned int lcsr = LCSR; | 
|  | 762 |  | 
|  | 763 | if (lcsr & LCSR_LDD) { | 
|  | 764 | LCCR0 |= LCCR0_LDM; | 
|  | 765 | wake_up(&fbi->ctrlr_wait); | 
|  | 766 | } | 
|  | 767 |  | 
|  | 768 | LCSR = lcsr; | 
|  | 769 | return IRQ_HANDLED; | 
|  | 770 | } | 
|  | 771 |  | 
|  | 772 | /* | 
|  | 773 | * This function must be called from task context only, since it will | 
|  | 774 | * sleep when disabling the LCD controller, or if we get two contending | 
|  | 775 | * processes trying to alter state. | 
|  | 776 | */ | 
|  | 777 | static void set_ctrlr_state(struct pxafb_info *fbi, u_int state) | 
|  | 778 | { | 
|  | 779 | u_int old_state; | 
|  | 780 |  | 
|  | 781 | down(&fbi->ctrlr_sem); | 
|  | 782 |  | 
|  | 783 | old_state = fbi->state; | 
|  | 784 |  | 
|  | 785 | /* | 
|  | 786 | * Hack around fbcon initialisation. | 
|  | 787 | */ | 
|  | 788 | if (old_state == C_STARTUP && state == C_REENABLE) | 
|  | 789 | state = C_ENABLE; | 
|  | 790 |  | 
|  | 791 | switch (state) { | 
|  | 792 | case C_DISABLE_CLKCHANGE: | 
|  | 793 | /* | 
|  | 794 | * Disable controller for clock change.  If the | 
|  | 795 | * controller is already disabled, then do nothing. | 
|  | 796 | */ | 
|  | 797 | if (old_state != C_DISABLE && old_state != C_DISABLE_PM) { | 
|  | 798 | fbi->state = state; | 
|  | 799 | //TODO __pxafb_lcd_power(fbi, 0); | 
|  | 800 | pxafb_disable_controller(fbi); | 
|  | 801 | } | 
|  | 802 | break; | 
|  | 803 |  | 
|  | 804 | case C_DISABLE_PM: | 
|  | 805 | case C_DISABLE: | 
|  | 806 | /* | 
|  | 807 | * Disable controller | 
|  | 808 | */ | 
|  | 809 | if (old_state != C_DISABLE) { | 
|  | 810 | fbi->state = state; | 
|  | 811 | __pxafb_backlight_power(fbi, 0); | 
|  | 812 | __pxafb_lcd_power(fbi, 0); | 
|  | 813 | if (old_state != C_DISABLE_CLKCHANGE) | 
|  | 814 | pxafb_disable_controller(fbi); | 
|  | 815 | } | 
|  | 816 | break; | 
|  | 817 |  | 
|  | 818 | case C_ENABLE_CLKCHANGE: | 
|  | 819 | /* | 
|  | 820 | * Enable the controller after clock change.  Only | 
|  | 821 | * do this if we were disabled for the clock change. | 
|  | 822 | */ | 
|  | 823 | if (old_state == C_DISABLE_CLKCHANGE) { | 
|  | 824 | fbi->state = C_ENABLE; | 
|  | 825 | pxafb_enable_controller(fbi); | 
|  | 826 | //TODO __pxafb_lcd_power(fbi, 1); | 
|  | 827 | } | 
|  | 828 | break; | 
|  | 829 |  | 
|  | 830 | case C_REENABLE: | 
|  | 831 | /* | 
|  | 832 | * Re-enable the controller only if it was already | 
|  | 833 | * enabled.  This is so we reprogram the control | 
|  | 834 | * registers. | 
|  | 835 | */ | 
|  | 836 | if (old_state == C_ENABLE) { | 
|  | 837 | pxafb_disable_controller(fbi); | 
|  | 838 | pxafb_setup_gpio(fbi); | 
|  | 839 | pxafb_enable_controller(fbi); | 
|  | 840 | } | 
|  | 841 | break; | 
|  | 842 |  | 
|  | 843 | case C_ENABLE_PM: | 
|  | 844 | /* | 
|  | 845 | * Re-enable the controller after PM.  This is not | 
|  | 846 | * perfect - think about the case where we were doing | 
|  | 847 | * a clock change, and we suspended half-way through. | 
|  | 848 | */ | 
|  | 849 | if (old_state != C_DISABLE_PM) | 
|  | 850 | break; | 
|  | 851 | /* fall through */ | 
|  | 852 |  | 
|  | 853 | case C_ENABLE: | 
|  | 854 | /* | 
|  | 855 | * Power up the LCD screen, enable controller, and | 
|  | 856 | * turn on the backlight. | 
|  | 857 | */ | 
|  | 858 | if (old_state != C_ENABLE) { | 
|  | 859 | fbi->state = C_ENABLE; | 
|  | 860 | pxafb_setup_gpio(fbi); | 
|  | 861 | pxafb_enable_controller(fbi); | 
|  | 862 | __pxafb_lcd_power(fbi, 1); | 
|  | 863 | __pxafb_backlight_power(fbi, 1); | 
|  | 864 | } | 
|  | 865 | break; | 
|  | 866 | } | 
|  | 867 | up(&fbi->ctrlr_sem); | 
|  | 868 | } | 
|  | 869 |  | 
|  | 870 | /* | 
|  | 871 | * Our LCD controller task (which is called when we blank or unblank) | 
|  | 872 | * via keventd. | 
|  | 873 | */ | 
|  | 874 | static void pxafb_task(void *dummy) | 
|  | 875 | { | 
|  | 876 | struct pxafb_info *fbi = dummy; | 
|  | 877 | u_int state = xchg(&fbi->task_state, -1); | 
|  | 878 |  | 
|  | 879 | set_ctrlr_state(fbi, state); | 
|  | 880 | } | 
|  | 881 |  | 
|  | 882 | #ifdef CONFIG_CPU_FREQ | 
|  | 883 | /* | 
|  | 884 | * CPU clock speed change handler.  We need to adjust the LCD timing | 
|  | 885 | * parameters when the CPU clock is adjusted by the power management | 
|  | 886 | * subsystem. | 
|  | 887 | * | 
|  | 888 | * TODO: Determine why f->new != 10*get_lclk_frequency_10khz() | 
|  | 889 | */ | 
|  | 890 | static int | 
|  | 891 | pxafb_freq_transition(struct notifier_block *nb, unsigned long val, void *data) | 
|  | 892 | { | 
|  | 893 | struct pxafb_info *fbi = TO_INF(nb, freq_transition); | 
|  | 894 | //TODO struct cpufreq_freqs *f = data; | 
|  | 895 | u_int pcd; | 
|  | 896 |  | 
|  | 897 | switch (val) { | 
|  | 898 | case CPUFREQ_PRECHANGE: | 
|  | 899 | set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE); | 
|  | 900 | break; | 
|  | 901 |  | 
|  | 902 | case CPUFREQ_POSTCHANGE: | 
|  | 903 | pcd = get_pcd(fbi->fb.var.pixclock); | 
|  | 904 | fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) | LCCR3_PixClkDiv(pcd); | 
|  | 905 | set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE); | 
|  | 906 | break; | 
|  | 907 | } | 
|  | 908 | return 0; | 
|  | 909 | } | 
|  | 910 |  | 
|  | 911 | static int | 
|  | 912 | pxafb_freq_policy(struct notifier_block *nb, unsigned long val, void *data) | 
|  | 913 | { | 
|  | 914 | struct pxafb_info *fbi = TO_INF(nb, freq_policy); | 
|  | 915 | struct fb_var_screeninfo *var = &fbi->fb.var; | 
|  | 916 | struct cpufreq_policy *policy = data; | 
|  | 917 |  | 
|  | 918 | switch (val) { | 
|  | 919 | case CPUFREQ_ADJUST: | 
|  | 920 | case CPUFREQ_INCOMPATIBLE: | 
|  | 921 | printk(KERN_DEBUG "min dma period: %d ps, " | 
|  | 922 | "new clock %d kHz\n", pxafb_display_dma_period(var), | 
|  | 923 | policy->max); | 
|  | 924 | // TODO: fill in min/max values | 
|  | 925 | break; | 
|  | 926 | #if 0 | 
|  | 927 | case CPUFREQ_NOTIFY: | 
|  | 928 | printk(KERN_ERR "%s: got CPUFREQ_NOTIFY\n", __FUNCTION__); | 
|  | 929 | do {} while(0); | 
|  | 930 | /* todo: panic if min/max values aren't fulfilled | 
|  | 931 | * [can't really happen unless there's a bug in the | 
|  | 932 | * CPU policy verification process * | 
|  | 933 | */ | 
|  | 934 | break; | 
|  | 935 | #endif | 
|  | 936 | } | 
|  | 937 | return 0; | 
|  | 938 | } | 
|  | 939 | #endif | 
|  | 940 |  | 
|  | 941 | #ifdef CONFIG_PM | 
|  | 942 | /* | 
|  | 943 | * Power management hooks.  Note that we won't be called from IRQ context, | 
|  | 944 | * unlike the blank functions above, so we may sleep. | 
|  | 945 | */ | 
| Pavel Machek | 9bfd354 | 2005-04-16 15:25:36 -0700 | [diff] [blame] | 946 | static int pxafb_suspend(struct device *dev, pm_message_t state, u32 level) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 947 | { | 
|  | 948 | struct pxafb_info *fbi = dev_get_drvdata(dev); | 
|  | 949 |  | 
|  | 950 | if (level == SUSPEND_DISABLE || level == SUSPEND_POWER_DOWN) | 
|  | 951 | set_ctrlr_state(fbi, C_DISABLE_PM); | 
|  | 952 | return 0; | 
|  | 953 | } | 
|  | 954 |  | 
|  | 955 | static int pxafb_resume(struct device *dev, u32 level) | 
|  | 956 | { | 
|  | 957 | struct pxafb_info *fbi = dev_get_drvdata(dev); | 
|  | 958 |  | 
|  | 959 | if (level == RESUME_ENABLE) | 
|  | 960 | set_ctrlr_state(fbi, C_ENABLE_PM); | 
|  | 961 | return 0; | 
|  | 962 | } | 
|  | 963 | #else | 
|  | 964 | #define pxafb_suspend	NULL | 
|  | 965 | #define pxafb_resume	NULL | 
|  | 966 | #endif | 
|  | 967 |  | 
|  | 968 | /* | 
|  | 969 | * pxafb_map_video_memory(): | 
|  | 970 | *      Allocates the DRAM memory for the frame buffer.  This buffer is | 
|  | 971 | *	remapped into a non-cached, non-buffered, memory region to | 
|  | 972 | *      allow palette and pixel writes to occur without flushing the | 
|  | 973 | *      cache.  Once this area is remapped, all virtual memory | 
|  | 974 | *      access to the video memory should occur at the new region. | 
|  | 975 | */ | 
|  | 976 | static int __init pxafb_map_video_memory(struct pxafb_info *fbi) | 
|  | 977 | { | 
|  | 978 | u_long palette_mem_size; | 
|  | 979 |  | 
|  | 980 | /* | 
|  | 981 | * We reserve one page for the palette, plus the size | 
|  | 982 | * of the framebuffer. | 
|  | 983 | */ | 
|  | 984 | fbi->map_size = PAGE_ALIGN(fbi->fb.fix.smem_len + PAGE_SIZE); | 
|  | 985 | fbi->map_cpu = dma_alloc_writecombine(fbi->dev, fbi->map_size, | 
|  | 986 | &fbi->map_dma, GFP_KERNEL); | 
|  | 987 |  | 
|  | 988 | if (fbi->map_cpu) { | 
|  | 989 | /* prevent initial garbage on screen */ | 
|  | 990 | memset(fbi->map_cpu, 0, fbi->map_size); | 
|  | 991 | fbi->fb.screen_base = fbi->map_cpu + PAGE_SIZE; | 
|  | 992 | fbi->screen_dma = fbi->map_dma + PAGE_SIZE; | 
|  | 993 | /* | 
|  | 994 | * FIXME: this is actually the wrong thing to place in | 
|  | 995 | * smem_start.  But fbdev suffers from the problem that | 
|  | 996 | * it needs an API which doesn't exist (in this case, | 
|  | 997 | * dma_writecombine_mmap) | 
|  | 998 | */ | 
|  | 999 | fbi->fb.fix.smem_start = fbi->screen_dma; | 
|  | 1000 |  | 
|  | 1001 | fbi->palette_size = fbi->fb.var.bits_per_pixel == 8 ? 256 : 16; | 
|  | 1002 |  | 
|  | 1003 | palette_mem_size = fbi->palette_size * sizeof(u16); | 
|  | 1004 | DPRINTK("palette_mem_size = 0x%08lx\n", (u_long) palette_mem_size); | 
|  | 1005 |  | 
|  | 1006 | fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size); | 
|  | 1007 | fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size; | 
|  | 1008 | } | 
|  | 1009 |  | 
|  | 1010 | return fbi->map_cpu ? 0 : -ENOMEM; | 
|  | 1011 | } | 
|  | 1012 |  | 
|  | 1013 | static struct pxafb_info * __init pxafb_init_fbinfo(struct device *dev) | 
|  | 1014 | { | 
|  | 1015 | struct pxafb_info *fbi; | 
|  | 1016 | void *addr; | 
|  | 1017 | struct pxafb_mach_info *inf = dev->platform_data; | 
|  | 1018 |  | 
|  | 1019 | /* Alloc the pxafb_info and pseudo_palette in one step */ | 
|  | 1020 | fbi = kmalloc(sizeof(struct pxafb_info) + sizeof(u32) * 16, GFP_KERNEL); | 
|  | 1021 | if (!fbi) | 
|  | 1022 | return NULL; | 
|  | 1023 |  | 
|  | 1024 | memset(fbi, 0, sizeof(struct pxafb_info)); | 
|  | 1025 | fbi->dev = dev; | 
|  | 1026 |  | 
|  | 1027 | strcpy(fbi->fb.fix.id, PXA_NAME); | 
|  | 1028 |  | 
|  | 1029 | fbi->fb.fix.type	= FB_TYPE_PACKED_PIXELS; | 
|  | 1030 | fbi->fb.fix.type_aux	= 0; | 
|  | 1031 | fbi->fb.fix.xpanstep	= 0; | 
|  | 1032 | fbi->fb.fix.ypanstep	= 0; | 
|  | 1033 | fbi->fb.fix.ywrapstep	= 0; | 
|  | 1034 | fbi->fb.fix.accel	= FB_ACCEL_NONE; | 
|  | 1035 |  | 
|  | 1036 | fbi->fb.var.nonstd	= 0; | 
|  | 1037 | fbi->fb.var.activate	= FB_ACTIVATE_NOW; | 
|  | 1038 | fbi->fb.var.height	= -1; | 
|  | 1039 | fbi->fb.var.width	= -1; | 
|  | 1040 | fbi->fb.var.accel_flags	= 0; | 
|  | 1041 | fbi->fb.var.vmode	= FB_VMODE_NONINTERLACED; | 
|  | 1042 |  | 
|  | 1043 | fbi->fb.fbops		= &pxafb_ops; | 
|  | 1044 | fbi->fb.flags		= FBINFO_DEFAULT; | 
|  | 1045 | fbi->fb.node		= -1; | 
|  | 1046 |  | 
|  | 1047 | addr = fbi; | 
|  | 1048 | addr = addr + sizeof(struct pxafb_info); | 
|  | 1049 | fbi->fb.pseudo_palette	= addr; | 
|  | 1050 |  | 
|  | 1051 | fbi->max_xres			= inf->xres; | 
|  | 1052 | fbi->fb.var.xres		= inf->xres; | 
|  | 1053 | fbi->fb.var.xres_virtual	= inf->xres; | 
|  | 1054 | fbi->max_yres			= inf->yres; | 
|  | 1055 | fbi->fb.var.yres		= inf->yres; | 
|  | 1056 | fbi->fb.var.yres_virtual	= inf->yres; | 
|  | 1057 | fbi->max_bpp			= inf->bpp; | 
|  | 1058 | fbi->fb.var.bits_per_pixel	= inf->bpp; | 
|  | 1059 | fbi->fb.var.pixclock		= inf->pixclock; | 
|  | 1060 | fbi->fb.var.hsync_len		= inf->hsync_len; | 
|  | 1061 | fbi->fb.var.left_margin		= inf->left_margin; | 
|  | 1062 | fbi->fb.var.right_margin	= inf->right_margin; | 
|  | 1063 | fbi->fb.var.vsync_len		= inf->vsync_len; | 
|  | 1064 | fbi->fb.var.upper_margin	= inf->upper_margin; | 
|  | 1065 | fbi->fb.var.lower_margin	= inf->lower_margin; | 
|  | 1066 | fbi->fb.var.sync		= inf->sync; | 
|  | 1067 | fbi->fb.var.grayscale		= inf->cmap_greyscale; | 
|  | 1068 | fbi->cmap_inverse		= inf->cmap_inverse; | 
|  | 1069 | fbi->cmap_static		= inf->cmap_static; | 
|  | 1070 | fbi->lccr0			= inf->lccr0; | 
|  | 1071 | fbi->lccr3			= inf->lccr3; | 
|  | 1072 | fbi->state			= C_STARTUP; | 
|  | 1073 | fbi->task_state			= (u_char)-1; | 
|  | 1074 | fbi->fb.fix.smem_len		= fbi->max_xres * fbi->max_yres * | 
|  | 1075 | fbi->max_bpp / 8; | 
|  | 1076 |  | 
|  | 1077 | init_waitqueue_head(&fbi->ctrlr_wait); | 
|  | 1078 | INIT_WORK(&fbi->task, pxafb_task, fbi); | 
|  | 1079 | init_MUTEX(&fbi->ctrlr_sem); | 
|  | 1080 |  | 
|  | 1081 | return fbi; | 
|  | 1082 | } | 
|  | 1083 |  | 
|  | 1084 | #ifdef CONFIG_FB_PXA_PARAMETERS | 
|  | 1085 | static int __init pxafb_parse_options(struct device *dev, char *options) | 
|  | 1086 | { | 
|  | 1087 | struct pxafb_mach_info *inf = dev->platform_data; | 
|  | 1088 | char *this_opt; | 
|  | 1089 |  | 
|  | 1090 | if (!options || !*options) | 
|  | 1091 | return 0; | 
|  | 1092 |  | 
|  | 1093 | dev_dbg(dev, "options are \"%s\"\n", options ? options : "null"); | 
|  | 1094 |  | 
|  | 1095 | /* could be made table driven or similar?... */ | 
|  | 1096 | while ((this_opt = strsep(&options, ",")) != NULL) { | 
|  | 1097 | if (!strncmp(this_opt, "mode:", 5)) { | 
|  | 1098 | const char *name = this_opt+5; | 
|  | 1099 | unsigned int namelen = strlen(name); | 
|  | 1100 | int res_specified = 0, bpp_specified = 0; | 
|  | 1101 | unsigned int xres = 0, yres = 0, bpp = 0; | 
|  | 1102 | int yres_specified = 0; | 
|  | 1103 | int i; | 
|  | 1104 | for (i = namelen-1; i >= 0; i--) { | 
|  | 1105 | switch (name[i]) { | 
|  | 1106 | case '-': | 
|  | 1107 | namelen = i; | 
|  | 1108 | if (!bpp_specified && !yres_specified) { | 
|  | 1109 | bpp = simple_strtoul(&name[i+1], NULL, 0); | 
|  | 1110 | bpp_specified = 1; | 
|  | 1111 | } else | 
|  | 1112 | goto done; | 
|  | 1113 | break; | 
|  | 1114 | case 'x': | 
|  | 1115 | if (!yres_specified) { | 
|  | 1116 | yres = simple_strtoul(&name[i+1], NULL, 0); | 
|  | 1117 | yres_specified = 1; | 
|  | 1118 | } else | 
|  | 1119 | goto done; | 
|  | 1120 | break; | 
|  | 1121 | case '0'...'9': | 
|  | 1122 | break; | 
|  | 1123 | default: | 
|  | 1124 | goto done; | 
|  | 1125 | } | 
|  | 1126 | } | 
|  | 1127 | if (i < 0 && yres_specified) { | 
|  | 1128 | xres = simple_strtoul(name, NULL, 0); | 
|  | 1129 | res_specified = 1; | 
|  | 1130 | } | 
|  | 1131 | done: | 
|  | 1132 | if (res_specified) { | 
|  | 1133 | dev_info(dev, "overriding resolution: %dx%d\n", xres, yres); | 
|  | 1134 | inf->xres = xres; inf->yres = yres; | 
|  | 1135 | } | 
|  | 1136 | if (bpp_specified) | 
|  | 1137 | switch (bpp) { | 
|  | 1138 | case 1: | 
|  | 1139 | case 2: | 
|  | 1140 | case 4: | 
|  | 1141 | case 8: | 
|  | 1142 | case 16: | 
|  | 1143 | inf->bpp = bpp; | 
|  | 1144 | dev_info(dev, "overriding bit depth: %d\n", bpp); | 
|  | 1145 | break; | 
|  | 1146 | default: | 
|  | 1147 | dev_err(dev, "Depth %d is not valid\n", bpp); | 
|  | 1148 | } | 
|  | 1149 | } else if (!strncmp(this_opt, "pixclock:", 9)) { | 
|  | 1150 | inf->pixclock = simple_strtoul(this_opt+9, NULL, 0); | 
|  | 1151 | dev_info(dev, "override pixclock: %ld\n", inf->pixclock); | 
|  | 1152 | } else if (!strncmp(this_opt, "left:", 5)) { | 
|  | 1153 | inf->left_margin = simple_strtoul(this_opt+5, NULL, 0); | 
|  | 1154 | dev_info(dev, "override left: %u\n", inf->left_margin); | 
|  | 1155 | } else if (!strncmp(this_opt, "right:", 6)) { | 
|  | 1156 | inf->right_margin = simple_strtoul(this_opt+6, NULL, 0); | 
|  | 1157 | dev_info(dev, "override right: %u\n", inf->right_margin); | 
|  | 1158 | } else if (!strncmp(this_opt, "upper:", 6)) { | 
|  | 1159 | inf->upper_margin = simple_strtoul(this_opt+6, NULL, 0); | 
|  | 1160 | dev_info(dev, "override upper: %u\n", inf->upper_margin); | 
|  | 1161 | } else if (!strncmp(this_opt, "lower:", 6)) { | 
|  | 1162 | inf->lower_margin = simple_strtoul(this_opt+6, NULL, 0); | 
|  | 1163 | dev_info(dev, "override lower: %u\n", inf->lower_margin); | 
|  | 1164 | } else if (!strncmp(this_opt, "hsynclen:", 9)) { | 
|  | 1165 | inf->hsync_len = simple_strtoul(this_opt+9, NULL, 0); | 
|  | 1166 | dev_info(dev, "override hsynclen: %u\n", inf->hsync_len); | 
|  | 1167 | } else if (!strncmp(this_opt, "vsynclen:", 9)) { | 
|  | 1168 | inf->vsync_len = simple_strtoul(this_opt+9, NULL, 0); | 
|  | 1169 | dev_info(dev, "override vsynclen: %u\n", inf->vsync_len); | 
|  | 1170 | } else if (!strncmp(this_opt, "hsync:", 6)) { | 
|  | 1171 | if (simple_strtoul(this_opt+6, NULL, 0) == 0) { | 
|  | 1172 | dev_info(dev, "override hsync: Active Low\n"); | 
|  | 1173 | inf->sync &= ~FB_SYNC_HOR_HIGH_ACT; | 
|  | 1174 | } else { | 
|  | 1175 | dev_info(dev, "override hsync: Active High\n"); | 
|  | 1176 | inf->sync |= FB_SYNC_HOR_HIGH_ACT; | 
|  | 1177 | } | 
|  | 1178 | } else if (!strncmp(this_opt, "vsync:", 6)) { | 
|  | 1179 | if (simple_strtoul(this_opt+6, NULL, 0) == 0) { | 
|  | 1180 | dev_info(dev, "override vsync: Active Low\n"); | 
|  | 1181 | inf->sync &= ~FB_SYNC_VERT_HIGH_ACT; | 
|  | 1182 | } else { | 
|  | 1183 | dev_info(dev, "override vsync: Active High\n"); | 
|  | 1184 | inf->sync |= FB_SYNC_VERT_HIGH_ACT; | 
|  | 1185 | } | 
|  | 1186 | } else if (!strncmp(this_opt, "dpc:", 4)) { | 
|  | 1187 | if (simple_strtoul(this_opt+4, NULL, 0) == 0) { | 
|  | 1188 | dev_info(dev, "override double pixel clock: false\n"); | 
|  | 1189 | inf->lccr3 &= ~LCCR3_DPC; | 
|  | 1190 | } else { | 
|  | 1191 | dev_info(dev, "override double pixel clock: true\n"); | 
|  | 1192 | inf->lccr3 |= LCCR3_DPC; | 
|  | 1193 | } | 
|  | 1194 | } else if (!strncmp(this_opt, "outputen:", 9)) { | 
|  | 1195 | if (simple_strtoul(this_opt+9, NULL, 0) == 0) { | 
|  | 1196 | dev_info(dev, "override output enable: active low\n"); | 
|  | 1197 | inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnL; | 
|  | 1198 | } else { | 
|  | 1199 | dev_info(dev, "override output enable: active high\n"); | 
|  | 1200 | inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnH; | 
|  | 1201 | } | 
|  | 1202 | } else if (!strncmp(this_opt, "pixclockpol:", 12)) { | 
|  | 1203 | if (simple_strtoul(this_opt+12, NULL, 0) == 0) { | 
|  | 1204 | dev_info(dev, "override pixel clock polarity: falling edge\n"); | 
|  | 1205 | inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixFlEdg; | 
|  | 1206 | } else { | 
|  | 1207 | dev_info(dev, "override pixel clock polarity: rising edge\n"); | 
|  | 1208 | inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixRsEdg; | 
|  | 1209 | } | 
|  | 1210 | } else if (!strncmp(this_opt, "color", 5)) { | 
|  | 1211 | inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Color; | 
|  | 1212 | } else if (!strncmp(this_opt, "mono", 4)) { | 
|  | 1213 | inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Mono; | 
|  | 1214 | } else if (!strncmp(this_opt, "active", 6)) { | 
|  | 1215 | inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Act; | 
|  | 1216 | } else if (!strncmp(this_opt, "passive", 7)) { | 
|  | 1217 | inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Pas; | 
|  | 1218 | } else if (!strncmp(this_opt, "single", 6)) { | 
|  | 1219 | inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Sngl; | 
|  | 1220 | } else if (!strncmp(this_opt, "dual", 4)) { | 
|  | 1221 | inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Dual; | 
|  | 1222 | } else if (!strncmp(this_opt, "4pix", 4)) { | 
|  | 1223 | inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_4PixMono; | 
|  | 1224 | } else if (!strncmp(this_opt, "8pix", 4)) { | 
|  | 1225 | inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_8PixMono; | 
|  | 1226 | } else { | 
|  | 1227 | dev_err(dev, "unknown option: %s\n", this_opt); | 
|  | 1228 | return -EINVAL; | 
|  | 1229 | } | 
|  | 1230 | } | 
|  | 1231 | return 0; | 
|  | 1232 |  | 
|  | 1233 | } | 
|  | 1234 | #endif | 
|  | 1235 |  | 
|  | 1236 | int __init pxafb_probe(struct device *dev) | 
|  | 1237 | { | 
|  | 1238 | struct pxafb_info *fbi; | 
|  | 1239 | struct pxafb_mach_info *inf; | 
|  | 1240 | int ret; | 
|  | 1241 |  | 
|  | 1242 | dev_dbg(dev, "pxafb_probe\n"); | 
|  | 1243 |  | 
|  | 1244 | inf = dev->platform_data; | 
|  | 1245 | ret = -ENOMEM; | 
|  | 1246 | fbi = NULL; | 
|  | 1247 | if (!inf) | 
|  | 1248 | goto failed; | 
|  | 1249 |  | 
|  | 1250 | #ifdef CONFIG_FB_PXA_PARAMETERS | 
|  | 1251 | ret = pxafb_parse_options(dev, g_options); | 
|  | 1252 | if (ret < 0) | 
|  | 1253 | goto failed; | 
|  | 1254 | #endif | 
|  | 1255 |  | 
|  | 1256 | #ifdef DEBUG_VAR | 
|  | 1257 | /* Check for various illegal bit-combinations. Currently only | 
|  | 1258 | * a warning is given. */ | 
|  | 1259 |  | 
|  | 1260 | if (inf->lccr0 & LCCR0_INVALID_CONFIG_MASK) | 
|  | 1261 | dev_warn(dev, "machine LCCR0 setting contains illegal bits: %08x\n", | 
|  | 1262 | inf->lccr0 & LCCR0_INVALID_CONFIG_MASK); | 
|  | 1263 | if (inf->lccr3 & LCCR3_INVALID_CONFIG_MASK) | 
|  | 1264 | dev_warn(dev, "machine LCCR3 setting contains illegal bits: %08x\n", | 
|  | 1265 | inf->lccr3 & LCCR3_INVALID_CONFIG_MASK); | 
|  | 1266 | if (inf->lccr0 & LCCR0_DPD && | 
|  | 1267 | ((inf->lccr0 & LCCR0_PAS) != LCCR0_Pas || | 
|  | 1268 | (inf->lccr0 & LCCR0_SDS) != LCCR0_Sngl || | 
|  | 1269 | (inf->lccr0 & LCCR0_CMS) != LCCR0_Mono)) | 
|  | 1270 | dev_warn(dev, "Double Pixel Data (DPD) mode is only valid in passive mono" | 
|  | 1271 | " single panel mode\n"); | 
|  | 1272 | if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Act && | 
|  | 1273 | (inf->lccr0 & LCCR0_SDS) == LCCR0_Dual) | 
|  | 1274 | dev_warn(dev, "Dual panel only valid in passive mode\n"); | 
|  | 1275 | if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Pas && | 
|  | 1276 | (inf->upper_margin || inf->lower_margin)) | 
|  | 1277 | dev_warn(dev, "Upper and lower margins must be 0 in passive mode\n"); | 
|  | 1278 | #endif | 
|  | 1279 |  | 
|  | 1280 | dev_dbg(dev, "got a %dx%dx%d LCD\n",inf->xres, inf->yres, inf->bpp); | 
|  | 1281 | if (inf->xres == 0 || inf->yres == 0 || inf->bpp == 0) { | 
|  | 1282 | dev_err(dev, "Invalid resolution or bit depth\n"); | 
|  | 1283 | ret = -EINVAL; | 
|  | 1284 | goto failed; | 
|  | 1285 | } | 
|  | 1286 | pxafb_backlight_power = inf->pxafb_backlight_power; | 
|  | 1287 | pxafb_lcd_power = inf->pxafb_lcd_power; | 
|  | 1288 | fbi = pxafb_init_fbinfo(dev); | 
|  | 1289 | if (!fbi) { | 
|  | 1290 | dev_err(dev, "Failed to initialize framebuffer device\n"); | 
|  | 1291 | ret = -ENOMEM; // only reason for pxafb_init_fbinfo to fail is kmalloc | 
|  | 1292 | goto failed; | 
|  | 1293 | } | 
|  | 1294 |  | 
|  | 1295 | /* Initialize video memory */ | 
|  | 1296 | ret = pxafb_map_video_memory(fbi); | 
|  | 1297 | if (ret) { | 
|  | 1298 | dev_err(dev, "Failed to allocate video RAM: %d\n", ret); | 
|  | 1299 | ret = -ENOMEM; | 
|  | 1300 | goto failed; | 
|  | 1301 | } | 
|  | 1302 | /* enable LCD controller clock */ | 
|  | 1303 | pxa_set_cken(CKEN16_LCD, 1); | 
|  | 1304 |  | 
|  | 1305 | ret = request_irq(IRQ_LCD, pxafb_handle_irq, SA_INTERRUPT, "LCD", fbi); | 
|  | 1306 | if (ret) { | 
|  | 1307 | dev_err(dev, "request_irq failed: %d\n", ret); | 
|  | 1308 | ret = -EBUSY; | 
|  | 1309 | goto failed; | 
|  | 1310 | } | 
|  | 1311 |  | 
|  | 1312 | /* | 
|  | 1313 | * This makes sure that our colour bitfield | 
|  | 1314 | * descriptors are correctly initialised. | 
|  | 1315 | */ | 
|  | 1316 | pxafb_check_var(&fbi->fb.var, &fbi->fb); | 
|  | 1317 | pxafb_set_par(&fbi->fb); | 
|  | 1318 |  | 
|  | 1319 | dev_set_drvdata(dev, fbi); | 
|  | 1320 |  | 
|  | 1321 | ret = register_framebuffer(&fbi->fb); | 
|  | 1322 | if (ret < 0) { | 
|  | 1323 | dev_err(dev, "Failed to register framebuffer device: %d\n", ret); | 
|  | 1324 | goto failed; | 
|  | 1325 | } | 
|  | 1326 |  | 
|  | 1327 | #ifdef CONFIG_PM | 
|  | 1328 | // TODO | 
|  | 1329 | #endif | 
|  | 1330 |  | 
|  | 1331 | #ifdef CONFIG_CPU_FREQ | 
|  | 1332 | fbi->freq_transition.notifier_call = pxafb_freq_transition; | 
|  | 1333 | fbi->freq_policy.notifier_call = pxafb_freq_policy; | 
|  | 1334 | cpufreq_register_notifier(&fbi->freq_transition, CPUFREQ_TRANSITION_NOTIFIER); | 
|  | 1335 | cpufreq_register_notifier(&fbi->freq_policy, CPUFREQ_POLICY_NOTIFIER); | 
|  | 1336 | #endif | 
|  | 1337 |  | 
|  | 1338 | /* | 
|  | 1339 | * Ok, now enable the LCD controller | 
|  | 1340 | */ | 
|  | 1341 | set_ctrlr_state(fbi, C_ENABLE); | 
|  | 1342 |  | 
|  | 1343 | return 0; | 
|  | 1344 |  | 
|  | 1345 | failed: | 
|  | 1346 | dev_set_drvdata(dev, NULL); | 
|  | 1347 | kfree(fbi); | 
|  | 1348 | return ret; | 
|  | 1349 | } | 
|  | 1350 |  | 
|  | 1351 | static struct device_driver pxafb_driver = { | 
|  | 1352 | .name		= "pxa2xx-fb", | 
|  | 1353 | .bus		= &platform_bus_type, | 
|  | 1354 | .probe		= pxafb_probe, | 
|  | 1355 | #ifdef CONFIG_PM | 
|  | 1356 | .suspend	= pxafb_suspend, | 
|  | 1357 | .resume		= pxafb_resume, | 
|  | 1358 | #endif | 
|  | 1359 | }; | 
|  | 1360 |  | 
|  | 1361 | #ifndef MODULE | 
|  | 1362 | int __devinit pxafb_setup(char *options) | 
|  | 1363 | { | 
|  | 1364 | # ifdef CONFIG_FB_PXA_PARAMETERS | 
|  | 1365 | strlcpy(g_options, options, sizeof(g_options)); | 
|  | 1366 | # endif | 
|  | 1367 | return 0; | 
|  | 1368 | } | 
|  | 1369 | #else | 
|  | 1370 | # ifdef CONFIG_FB_PXA_PARAMETERS | 
|  | 1371 | module_param_string(options, g_options, sizeof(g_options), 0); | 
|  | 1372 | MODULE_PARM_DESC(options, "LCD parameters (see Documentation/fb/pxafb.txt)"); | 
|  | 1373 | # endif | 
|  | 1374 | #endif | 
|  | 1375 |  | 
|  | 1376 | int __devinit pxafb_init(void) | 
|  | 1377 | { | 
|  | 1378 | #ifndef MODULE | 
|  | 1379 | char *option = NULL; | 
|  | 1380 |  | 
|  | 1381 | if (fb_get_options("pxafb", &option)) | 
|  | 1382 | return -ENODEV; | 
|  | 1383 | pxafb_setup(option); | 
|  | 1384 | #endif | 
|  | 1385 | return driver_register(&pxafb_driver); | 
|  | 1386 | } | 
|  | 1387 |  | 
|  | 1388 | module_init(pxafb_init); | 
|  | 1389 |  | 
|  | 1390 | MODULE_DESCRIPTION("loadable framebuffer driver for PXA"); | 
|  | 1391 | MODULE_LICENSE("GPL"); |