| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* -*- linux-c -*- | 
|  | 2 | * INET		802.1Q VLAN | 
|  | 3 | *		Ethernet-type device handling. | 
|  | 4 | * | 
|  | 5 | * Authors:	Ben Greear <greearb@candelatech.com> | 
|  | 6 | *              Please send support related email to: vlan@scry.wanfear.com | 
|  | 7 | *              VLAN Home Page: http://www.candelatech.com/~greear/vlan.html | 
|  | 8 | * | 
|  | 9 | * Fixes:       Mar 22 2001: Martin Bokaemper <mbokaemper@unispherenetworks.com> | 
|  | 10 | *                - reset skb->pkt_type on incoming packets when MAC was changed | 
|  | 11 | *                - see that changed MAC is saddr for outgoing packets | 
|  | 12 | *              Oct 20, 2001:  Ard van Breeman: | 
|  | 13 | *                - Fix MC-list, finally. | 
|  | 14 | *                - Flush MC-list on VLAN destroy. | 
|  | 15 | * | 
|  | 16 | * | 
|  | 17 | *		This program is free software; you can redistribute it and/or | 
|  | 18 | *		modify it under the terms of the GNU General Public License | 
|  | 19 | *		as published by the Free Software Foundation; either version | 
|  | 20 | *		2 of the License, or (at your option) any later version. | 
|  | 21 | */ | 
|  | 22 |  | 
|  | 23 | #include <linux/module.h> | 
|  | 24 | #include <linux/mm.h> | 
|  | 25 | #include <linux/in.h> | 
|  | 26 | #include <linux/init.h> | 
|  | 27 | #include <asm/uaccess.h> /* for copy_from_user */ | 
|  | 28 | #include <linux/skbuff.h> | 
|  | 29 | #include <linux/netdevice.h> | 
|  | 30 | #include <linux/etherdevice.h> | 
|  | 31 | #include <net/datalink.h> | 
|  | 32 | #include <net/p8022.h> | 
|  | 33 | #include <net/arp.h> | 
|  | 34 |  | 
|  | 35 | #include "vlan.h" | 
|  | 36 | #include "vlanproc.h" | 
|  | 37 | #include <linux/if_vlan.h> | 
|  | 38 | #include <net/ip.h> | 
|  | 39 |  | 
|  | 40 | /* | 
|  | 41 | *	Rebuild the Ethernet MAC header. This is called after an ARP | 
|  | 42 | *	(or in future other address resolution) has completed on this | 
|  | 43 | *	sk_buff. We now let ARP fill in the other fields. | 
|  | 44 | * | 
|  | 45 | *	This routine CANNOT use cached dst->neigh! | 
|  | 46 | *	Really, it is used only when dst->neigh is wrong. | 
|  | 47 | * | 
|  | 48 | * TODO:  This needs a checkup, I'm ignorant here. --BLG | 
|  | 49 | */ | 
|  | 50 | int vlan_dev_rebuild_header(struct sk_buff *skb) | 
|  | 51 | { | 
|  | 52 | struct net_device *dev = skb->dev; | 
|  | 53 | struct vlan_ethhdr *veth = (struct vlan_ethhdr *)(skb->data); | 
|  | 54 |  | 
|  | 55 | switch (veth->h_vlan_encapsulated_proto) { | 
|  | 56 | #ifdef CONFIG_INET | 
|  | 57 | case __constant_htons(ETH_P_IP): | 
|  | 58 |  | 
|  | 59 | /* TODO:  Confirm this will work with VLAN headers... */ | 
|  | 60 | return arp_find(veth->h_dest, skb); | 
|  | 61 | #endif | 
|  | 62 | default: | 
|  | 63 | printk(VLAN_DBG | 
|  | 64 | "%s: unable to resolve type %X addresses.\n", | 
|  | 65 | dev->name, (int)veth->h_vlan_encapsulated_proto); | 
|  | 66 |  | 
|  | 67 | memcpy(veth->h_source, dev->dev_addr, ETH_ALEN); | 
|  | 68 | break; | 
|  | 69 | }; | 
|  | 70 |  | 
|  | 71 | return 0; | 
|  | 72 | } | 
|  | 73 |  | 
|  | 74 | static inline struct sk_buff *vlan_check_reorder_header(struct sk_buff *skb) | 
|  | 75 | { | 
|  | 76 | if (VLAN_DEV_INFO(skb->dev)->flags & 1) { | 
|  | 77 | if (skb_shared(skb) || skb_cloned(skb)) { | 
|  | 78 | struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); | 
|  | 79 | kfree_skb(skb); | 
|  | 80 | skb = nskb; | 
|  | 81 | } | 
|  | 82 | if (skb) { | 
|  | 83 | /* Lifted from Gleb's VLAN code... */ | 
|  | 84 | memmove(skb->data - ETH_HLEN, | 
|  | 85 | skb->data - VLAN_ETH_HLEN, 12); | 
|  | 86 | skb->mac.raw += VLAN_HLEN; | 
|  | 87 | } | 
|  | 88 | } | 
|  | 89 |  | 
|  | 90 | return skb; | 
|  | 91 | } | 
|  | 92 |  | 
|  | 93 | /* | 
|  | 94 | *	Determine the packet's protocol ID. The rule here is that we | 
|  | 95 | *	assume 802.3 if the type field is short enough to be a length. | 
|  | 96 | *	This is normal practice and works for any 'now in use' protocol. | 
|  | 97 | * | 
|  | 98 | *  Also, at this point we assume that we ARE dealing exclusively with | 
|  | 99 | *  VLAN packets, or packets that should be made into VLAN packets based | 
|  | 100 | *  on a default VLAN ID. | 
|  | 101 | * | 
|  | 102 | *  NOTE:  Should be similar to ethernet/eth.c. | 
|  | 103 | * | 
|  | 104 | *  SANITY NOTE:  This method is called when a packet is moving up the stack | 
|  | 105 | *                towards userland.  To get here, it would have already passed | 
|  | 106 | *                through the ethernet/eth.c eth_type_trans() method. | 
|  | 107 | *  SANITY NOTE 2: We are referencing to the VLAN_HDR frields, which MAY be | 
|  | 108 | *                 stored UNALIGNED in the memory.  RISC systems don't like | 
|  | 109 | *                 such cases very much... | 
|  | 110 | *  SANITY NOTE 2a:  According to Dave Miller & Alexey, it will always be aligned, | 
|  | 111 | *                 so there doesn't need to be any of the unaligned stuff.  It has | 
|  | 112 | *                 been commented out now...  --Ben | 
|  | 113 | * | 
|  | 114 | */ | 
|  | 115 | int vlan_skb_recv(struct sk_buff *skb, struct net_device *dev, | 
|  | 116 | struct packet_type* ptype) | 
|  | 117 | { | 
|  | 118 | unsigned char *rawp = NULL; | 
|  | 119 | struct vlan_hdr *vhdr = (struct vlan_hdr *)(skb->data); | 
|  | 120 | unsigned short vid; | 
|  | 121 | struct net_device_stats *stats; | 
|  | 122 | unsigned short vlan_TCI; | 
|  | 123 | unsigned short proto; | 
|  | 124 |  | 
|  | 125 | /* vlan_TCI = ntohs(get_unaligned(&vhdr->h_vlan_TCI)); */ | 
|  | 126 | vlan_TCI = ntohs(vhdr->h_vlan_TCI); | 
|  | 127 |  | 
|  | 128 | vid = (vlan_TCI & VLAN_VID_MASK); | 
|  | 129 |  | 
|  | 130 | #ifdef VLAN_DEBUG | 
|  | 131 | printk(VLAN_DBG "%s: skb: %p vlan_id: %hx\n", | 
|  | 132 | __FUNCTION__, skb, vid); | 
|  | 133 | #endif | 
|  | 134 |  | 
|  | 135 | /* Ok, we will find the correct VLAN device, strip the header, | 
|  | 136 | * and then go on as usual. | 
|  | 137 | */ | 
|  | 138 |  | 
|  | 139 | /* We have 12 bits of vlan ID. | 
|  | 140 | * | 
|  | 141 | * We must not drop allow preempt until we hold a | 
|  | 142 | * reference to the device (netif_rx does that) or we | 
|  | 143 | * fail. | 
|  | 144 | */ | 
|  | 145 |  | 
|  | 146 | rcu_read_lock(); | 
|  | 147 | skb->dev = __find_vlan_dev(dev, vid); | 
|  | 148 | if (!skb->dev) { | 
|  | 149 | rcu_read_unlock(); | 
|  | 150 |  | 
|  | 151 | #ifdef VLAN_DEBUG | 
|  | 152 | printk(VLAN_DBG "%s: ERROR: No net_device for VID: %i on dev: %s [%i]\n", | 
|  | 153 | __FUNCTION__, (unsigned int)(vid), dev->name, dev->ifindex); | 
|  | 154 | #endif | 
|  | 155 | kfree_skb(skb); | 
|  | 156 | return -1; | 
|  | 157 | } | 
|  | 158 |  | 
|  | 159 | skb->dev->last_rx = jiffies; | 
|  | 160 |  | 
|  | 161 | /* Bump the rx counters for the VLAN device. */ | 
|  | 162 | stats = vlan_dev_get_stats(skb->dev); | 
|  | 163 | stats->rx_packets++; | 
|  | 164 | stats->rx_bytes += skb->len; | 
|  | 165 |  | 
|  | 166 | skb_pull(skb, VLAN_HLEN); /* take off the VLAN header (4 bytes currently) */ | 
|  | 167 |  | 
|  | 168 | /* Ok, lets check to make sure the device (dev) we | 
|  | 169 | * came in on is what this VLAN is attached to. | 
|  | 170 | */ | 
|  | 171 |  | 
|  | 172 | if (dev != VLAN_DEV_INFO(skb->dev)->real_dev) { | 
|  | 173 | rcu_read_unlock(); | 
|  | 174 |  | 
|  | 175 | #ifdef VLAN_DEBUG | 
|  | 176 | printk(VLAN_DBG "%s: dropping skb: %p because came in on wrong device, dev: %s  real_dev: %s, skb_dev: %s\n", | 
|  | 177 | __FUNCTION__, skb, dev->name, | 
|  | 178 | VLAN_DEV_INFO(skb->dev)->real_dev->name, | 
|  | 179 | skb->dev->name); | 
|  | 180 | #endif | 
|  | 181 | kfree_skb(skb); | 
|  | 182 | stats->rx_errors++; | 
|  | 183 | return -1; | 
|  | 184 | } | 
|  | 185 |  | 
|  | 186 | /* | 
|  | 187 | * Deal with ingress priority mapping. | 
|  | 188 | */ | 
|  | 189 | skb->priority = vlan_get_ingress_priority(skb->dev, ntohs(vhdr->h_vlan_TCI)); | 
|  | 190 |  | 
|  | 191 | #ifdef VLAN_DEBUG | 
|  | 192 | printk(VLAN_DBG "%s: priority: %lu  for TCI: %hu (hbo)\n", | 
|  | 193 | __FUNCTION__, (unsigned long)(skb->priority), | 
|  | 194 | ntohs(vhdr->h_vlan_TCI)); | 
|  | 195 | #endif | 
|  | 196 |  | 
|  | 197 | /* The ethernet driver already did the pkt_type calculations | 
|  | 198 | * for us... | 
|  | 199 | */ | 
|  | 200 | switch (skb->pkt_type) { | 
|  | 201 | case PACKET_BROADCAST: /* Yeah, stats collect these together.. */ | 
|  | 202 | // stats->broadcast ++; // no such counter :-( | 
|  | 203 | break; | 
|  | 204 |  | 
|  | 205 | case PACKET_MULTICAST: | 
|  | 206 | stats->multicast++; | 
|  | 207 | break; | 
|  | 208 |  | 
|  | 209 | case PACKET_OTHERHOST: | 
|  | 210 | /* Our lower layer thinks this is not local, let's make sure. | 
|  | 211 | * This allows the VLAN to have a different MAC than the underlying | 
|  | 212 | * device, and still route correctly. | 
|  | 213 | */ | 
|  | 214 | if (memcmp(eth_hdr(skb)->h_dest, skb->dev->dev_addr, ETH_ALEN) == 0) { | 
|  | 215 | /* It is for our (changed) MAC-address! */ | 
|  | 216 | skb->pkt_type = PACKET_HOST; | 
|  | 217 | } | 
|  | 218 | break; | 
|  | 219 | default: | 
|  | 220 | break; | 
|  | 221 | }; | 
|  | 222 |  | 
|  | 223 | /*  Was a VLAN packet, grab the encapsulated protocol, which the layer | 
|  | 224 | * three protocols care about. | 
|  | 225 | */ | 
|  | 226 | /* proto = get_unaligned(&vhdr->h_vlan_encapsulated_proto); */ | 
|  | 227 | proto = vhdr->h_vlan_encapsulated_proto; | 
|  | 228 |  | 
|  | 229 | skb->protocol = proto; | 
|  | 230 | if (ntohs(proto) >= 1536) { | 
|  | 231 | /* place it back on the queue to be handled by | 
|  | 232 | * true layer 3 protocols. | 
|  | 233 | */ | 
|  | 234 |  | 
|  | 235 | /* See if we are configured to re-write the VLAN header | 
|  | 236 | * to make it look like ethernet... | 
|  | 237 | */ | 
|  | 238 | skb = vlan_check_reorder_header(skb); | 
|  | 239 |  | 
|  | 240 | /* Can be null if skb-clone fails when re-ordering */ | 
|  | 241 | if (skb) { | 
|  | 242 | netif_rx(skb); | 
|  | 243 | } else { | 
|  | 244 | /* TODO:  Add a more specific counter here. */ | 
|  | 245 | stats->rx_errors++; | 
|  | 246 | } | 
|  | 247 | rcu_read_unlock(); | 
|  | 248 | return 0; | 
|  | 249 | } | 
|  | 250 |  | 
|  | 251 | rawp = skb->data; | 
|  | 252 |  | 
|  | 253 | /* | 
|  | 254 | * This is a magic hack to spot IPX packets. Older Novell breaks | 
|  | 255 | * the protocol design and runs IPX over 802.3 without an 802.2 LLC | 
|  | 256 | * layer. We look for FFFF which isn't a used 802.2 SSAP/DSAP. This | 
|  | 257 | * won't work for fault tolerant netware but does for the rest. | 
|  | 258 | */ | 
|  | 259 | if (*(unsigned short *)rawp == 0xFFFF) { | 
|  | 260 | skb->protocol = __constant_htons(ETH_P_802_3); | 
|  | 261 | /* place it back on the queue to be handled by true layer 3 protocols. | 
|  | 262 | */ | 
|  | 263 |  | 
|  | 264 | /* See if we are configured to re-write the VLAN header | 
|  | 265 | * to make it look like ethernet... | 
|  | 266 | */ | 
|  | 267 | skb = vlan_check_reorder_header(skb); | 
|  | 268 |  | 
|  | 269 | /* Can be null if skb-clone fails when re-ordering */ | 
|  | 270 | if (skb) { | 
|  | 271 | netif_rx(skb); | 
|  | 272 | } else { | 
|  | 273 | /* TODO:  Add a more specific counter here. */ | 
|  | 274 | stats->rx_errors++; | 
|  | 275 | } | 
|  | 276 | rcu_read_unlock(); | 
|  | 277 | return 0; | 
|  | 278 | } | 
|  | 279 |  | 
|  | 280 | /* | 
|  | 281 | *	Real 802.2 LLC | 
|  | 282 | */ | 
|  | 283 | skb->protocol = __constant_htons(ETH_P_802_2); | 
|  | 284 | /* place it back on the queue to be handled by upper layer protocols. | 
|  | 285 | */ | 
|  | 286 |  | 
|  | 287 | /* See if we are configured to re-write the VLAN header | 
|  | 288 | * to make it look like ethernet... | 
|  | 289 | */ | 
|  | 290 | skb = vlan_check_reorder_header(skb); | 
|  | 291 |  | 
|  | 292 | /* Can be null if skb-clone fails when re-ordering */ | 
|  | 293 | if (skb) { | 
|  | 294 | netif_rx(skb); | 
|  | 295 | } else { | 
|  | 296 | /* TODO:  Add a more specific counter here. */ | 
|  | 297 | stats->rx_errors++; | 
|  | 298 | } | 
|  | 299 | rcu_read_unlock(); | 
|  | 300 | return 0; | 
|  | 301 | } | 
|  | 302 |  | 
|  | 303 | static inline unsigned short vlan_dev_get_egress_qos_mask(struct net_device* dev, | 
|  | 304 | struct sk_buff* skb) | 
|  | 305 | { | 
|  | 306 | struct vlan_priority_tci_mapping *mp = | 
|  | 307 | VLAN_DEV_INFO(dev)->egress_priority_map[(skb->priority & 0xF)]; | 
|  | 308 |  | 
|  | 309 | while (mp) { | 
|  | 310 | if (mp->priority == skb->priority) { | 
|  | 311 | return mp->vlan_qos; /* This should already be shifted to mask | 
|  | 312 | * correctly with the VLAN's TCI | 
|  | 313 | */ | 
|  | 314 | } | 
|  | 315 | mp = mp->next; | 
|  | 316 | } | 
|  | 317 | return 0; | 
|  | 318 | } | 
|  | 319 |  | 
|  | 320 | /* | 
|  | 321 | *	Create the VLAN header for an arbitrary protocol layer | 
|  | 322 | * | 
|  | 323 | *	saddr=NULL	means use device source address | 
|  | 324 | *	daddr=NULL	means leave destination address (eg unresolved arp) | 
|  | 325 | * | 
|  | 326 | *  This is called when the SKB is moving down the stack towards the | 
|  | 327 | *  physical devices. | 
|  | 328 | */ | 
|  | 329 | int vlan_dev_hard_header(struct sk_buff *skb, struct net_device *dev, | 
|  | 330 | unsigned short type, void *daddr, void *saddr, | 
|  | 331 | unsigned len) | 
|  | 332 | { | 
|  | 333 | struct vlan_hdr *vhdr; | 
|  | 334 | unsigned short veth_TCI = 0; | 
|  | 335 | int rc = 0; | 
|  | 336 | int build_vlan_header = 0; | 
|  | 337 | struct net_device *vdev = dev; /* save this for the bottom of the method */ | 
|  | 338 |  | 
|  | 339 | #ifdef VLAN_DEBUG | 
|  | 340 | printk(VLAN_DBG "%s: skb: %p type: %hx len: %x vlan_id: %hx, daddr: %p\n", | 
|  | 341 | __FUNCTION__, skb, type, len, VLAN_DEV_INFO(dev)->vlan_id, daddr); | 
|  | 342 | #endif | 
|  | 343 |  | 
|  | 344 | /* build vlan header only if re_order_header flag is NOT set.  This | 
|  | 345 | * fixes some programs that get confused when they see a VLAN device | 
|  | 346 | * sending a frame that is VLAN encoded (the consensus is that the VLAN | 
|  | 347 | * device should look completely like an Ethernet device when the | 
|  | 348 | * REORDER_HEADER flag is set)	The drawback to this is some extra | 
|  | 349 | * header shuffling in the hard_start_xmit.  Users can turn off this | 
|  | 350 | * REORDER behaviour with the vconfig tool. | 
|  | 351 | */ | 
|  | 352 | build_vlan_header = ((VLAN_DEV_INFO(dev)->flags & 1) == 0); | 
|  | 353 |  | 
|  | 354 | if (build_vlan_header) { | 
|  | 355 | vhdr = (struct vlan_hdr *) skb_push(skb, VLAN_HLEN); | 
|  | 356 |  | 
|  | 357 | /* build the four bytes that make this a VLAN header. */ | 
|  | 358 |  | 
|  | 359 | /* Now, construct the second two bytes. This field looks something | 
|  | 360 | * like: | 
|  | 361 | * usr_priority: 3 bits	 (high bits) | 
|  | 362 | * CFI		 1 bit | 
|  | 363 | * VLAN ID	 12 bits (low bits) | 
|  | 364 | * | 
|  | 365 | */ | 
|  | 366 | veth_TCI = VLAN_DEV_INFO(dev)->vlan_id; | 
|  | 367 | veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb); | 
|  | 368 |  | 
|  | 369 | vhdr->h_vlan_TCI = htons(veth_TCI); | 
|  | 370 |  | 
|  | 371 | /* | 
|  | 372 | *  Set the protocol type. | 
|  | 373 | *  For a packet of type ETH_P_802_3 we put the length in here instead. | 
|  | 374 | *  It is up to the 802.2 layer to carry protocol information. | 
|  | 375 | */ | 
|  | 376 |  | 
|  | 377 | if (type != ETH_P_802_3) { | 
|  | 378 | vhdr->h_vlan_encapsulated_proto = htons(type); | 
|  | 379 | } else { | 
|  | 380 | vhdr->h_vlan_encapsulated_proto = htons(len); | 
|  | 381 | } | 
|  | 382 | } | 
|  | 383 |  | 
|  | 384 | /* Before delegating work to the lower layer, enter our MAC-address */ | 
|  | 385 | if (saddr == NULL) | 
|  | 386 | saddr = dev->dev_addr; | 
|  | 387 |  | 
|  | 388 | dev = VLAN_DEV_INFO(dev)->real_dev; | 
|  | 389 |  | 
|  | 390 | /* MPLS can send us skbuffs w/out enough space.	 This check will grow the | 
|  | 391 | * skb if it doesn't have enough headroom.  Not a beautiful solution, so | 
|  | 392 | * I'll tick a counter so that users can know it's happening...	 If they | 
|  | 393 | * care... | 
|  | 394 | */ | 
|  | 395 |  | 
|  | 396 | /* NOTE:  This may still break if the underlying device is not the final | 
|  | 397 | * device (and thus there are more headers to add...)  It should work for | 
|  | 398 | * good-ole-ethernet though. | 
|  | 399 | */ | 
|  | 400 | if (skb_headroom(skb) < dev->hard_header_len) { | 
|  | 401 | struct sk_buff *sk_tmp = skb; | 
|  | 402 | skb = skb_realloc_headroom(sk_tmp, dev->hard_header_len); | 
|  | 403 | kfree_skb(sk_tmp); | 
|  | 404 | if (skb == NULL) { | 
|  | 405 | struct net_device_stats *stats = vlan_dev_get_stats(vdev); | 
|  | 406 | stats->tx_dropped++; | 
|  | 407 | return -ENOMEM; | 
|  | 408 | } | 
|  | 409 | VLAN_DEV_INFO(vdev)->cnt_inc_headroom_on_tx++; | 
|  | 410 | #ifdef VLAN_DEBUG | 
|  | 411 | printk(VLAN_DBG "%s: %s: had to grow skb.\n", __FUNCTION__, vdev->name); | 
|  | 412 | #endif | 
|  | 413 | } | 
|  | 414 |  | 
|  | 415 | if (build_vlan_header) { | 
|  | 416 | /* Now make the underlying real hard header */ | 
|  | 417 | rc = dev->hard_header(skb, dev, ETH_P_8021Q, daddr, saddr, len + VLAN_HLEN); | 
|  | 418 |  | 
|  | 419 | if (rc > 0) { | 
|  | 420 | rc += VLAN_HLEN; | 
|  | 421 | } else if (rc < 0) { | 
|  | 422 | rc -= VLAN_HLEN; | 
|  | 423 | } | 
|  | 424 | } else { | 
|  | 425 | /* If here, then we'll just make a normal looking ethernet frame, | 
|  | 426 | * but, the hard_start_xmit method will insert the tag (it has to | 
|  | 427 | * be able to do this for bridged and other skbs that don't come | 
|  | 428 | * down the protocol stack in an orderly manner. | 
|  | 429 | */ | 
|  | 430 | rc = dev->hard_header(skb, dev, type, daddr, saddr, len); | 
|  | 431 | } | 
|  | 432 |  | 
|  | 433 | return rc; | 
|  | 434 | } | 
|  | 435 |  | 
|  | 436 | int vlan_dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) | 
|  | 437 | { | 
|  | 438 | struct net_device_stats *stats = vlan_dev_get_stats(dev); | 
|  | 439 | struct vlan_ethhdr *veth = (struct vlan_ethhdr *)(skb->data); | 
|  | 440 |  | 
|  | 441 | /* Handle non-VLAN frames if they are sent to us, for example by DHCP. | 
|  | 442 | * | 
|  | 443 | * NOTE: THIS ASSUMES DIX ETHERNET, SPECIFICALLY NOT SUPPORTING | 
|  | 444 | * OTHER THINGS LIKE FDDI/TokenRing/802.3 SNAPs... | 
|  | 445 | */ | 
|  | 446 |  | 
|  | 447 | if (veth->h_vlan_proto != __constant_htons(ETH_P_8021Q)) { | 
|  | 448 | int orig_headroom = skb_headroom(skb); | 
|  | 449 | unsigned short veth_TCI; | 
|  | 450 |  | 
|  | 451 | /* This is not a VLAN frame...but we can fix that! */ | 
|  | 452 | VLAN_DEV_INFO(dev)->cnt_encap_on_xmit++; | 
|  | 453 |  | 
|  | 454 | #ifdef VLAN_DEBUG | 
|  | 455 | printk(VLAN_DBG "%s: proto to encap: 0x%hx (hbo)\n", | 
|  | 456 | __FUNCTION__, htons(veth->h_vlan_proto)); | 
|  | 457 | #endif | 
|  | 458 | /* Construct the second two bytes. This field looks something | 
|  | 459 | * like: | 
|  | 460 | * usr_priority: 3 bits	 (high bits) | 
|  | 461 | * CFI		 1 bit | 
|  | 462 | * VLAN ID	 12 bits (low bits) | 
|  | 463 | */ | 
|  | 464 | veth_TCI = VLAN_DEV_INFO(dev)->vlan_id; | 
|  | 465 | veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb); | 
|  | 466 |  | 
|  | 467 | skb = __vlan_put_tag(skb, veth_TCI); | 
|  | 468 | if (!skb) { | 
|  | 469 | stats->tx_dropped++; | 
|  | 470 | return 0; | 
|  | 471 | } | 
|  | 472 |  | 
|  | 473 | if (orig_headroom < VLAN_HLEN) { | 
|  | 474 | VLAN_DEV_INFO(dev)->cnt_inc_headroom_on_tx++; | 
|  | 475 | } | 
|  | 476 | } | 
|  | 477 |  | 
|  | 478 | #ifdef VLAN_DEBUG | 
|  | 479 | printk(VLAN_DBG "%s: about to send skb: %p to dev: %s\n", | 
|  | 480 | __FUNCTION__, skb, skb->dev->name); | 
|  | 481 | printk(VLAN_DBG "  %2hx.%2hx.%2hx.%2xh.%2hx.%2hx %2hx.%2hx.%2hx.%2hx.%2hx.%2hx %4hx %4hx %4hx\n", | 
|  | 482 | veth->h_dest[0], veth->h_dest[1], veth->h_dest[2], veth->h_dest[3], veth->h_dest[4], veth->h_dest[5], | 
|  | 483 | veth->h_source[0], veth->h_source[1], veth->h_source[2], veth->h_source[3], veth->h_source[4], veth->h_source[5], | 
|  | 484 | veth->h_vlan_proto, veth->h_vlan_TCI, veth->h_vlan_encapsulated_proto); | 
|  | 485 | #endif | 
|  | 486 |  | 
|  | 487 | stats->tx_packets++; /* for statics only */ | 
|  | 488 | stats->tx_bytes += skb->len; | 
|  | 489 |  | 
|  | 490 | skb->dev = VLAN_DEV_INFO(dev)->real_dev; | 
|  | 491 | dev_queue_xmit(skb); | 
|  | 492 |  | 
|  | 493 | return 0; | 
|  | 494 | } | 
|  | 495 |  | 
|  | 496 | int vlan_dev_hwaccel_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) | 
|  | 497 | { | 
|  | 498 | struct net_device_stats *stats = vlan_dev_get_stats(dev); | 
|  | 499 | unsigned short veth_TCI; | 
|  | 500 |  | 
|  | 501 | /* Construct the second two bytes. This field looks something | 
|  | 502 | * like: | 
|  | 503 | * usr_priority: 3 bits	 (high bits) | 
|  | 504 | * CFI		 1 bit | 
|  | 505 | * VLAN ID	 12 bits (low bits) | 
|  | 506 | */ | 
|  | 507 | veth_TCI = VLAN_DEV_INFO(dev)->vlan_id; | 
|  | 508 | veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb); | 
|  | 509 | skb = __vlan_hwaccel_put_tag(skb, veth_TCI); | 
|  | 510 |  | 
|  | 511 | stats->tx_packets++; | 
|  | 512 | stats->tx_bytes += skb->len; | 
|  | 513 |  | 
|  | 514 | skb->dev = VLAN_DEV_INFO(dev)->real_dev; | 
|  | 515 | dev_queue_xmit(skb); | 
|  | 516 |  | 
|  | 517 | return 0; | 
|  | 518 | } | 
|  | 519 |  | 
|  | 520 | int vlan_dev_change_mtu(struct net_device *dev, int new_mtu) | 
|  | 521 | { | 
|  | 522 | /* TODO: gotta make sure the underlying layer can handle it, | 
|  | 523 | * maybe an IFF_VLAN_CAPABLE flag for devices? | 
|  | 524 | */ | 
|  | 525 | if (VLAN_DEV_INFO(dev)->real_dev->mtu < new_mtu) | 
|  | 526 | return -ERANGE; | 
|  | 527 |  | 
|  | 528 | dev->mtu = new_mtu; | 
|  | 529 |  | 
|  | 530 | return 0; | 
|  | 531 | } | 
|  | 532 |  | 
|  | 533 | int vlan_dev_set_ingress_priority(char *dev_name, __u32 skb_prio, short vlan_prio) | 
|  | 534 | { | 
|  | 535 | struct net_device *dev = dev_get_by_name(dev_name); | 
|  | 536 |  | 
|  | 537 | if (dev) { | 
|  | 538 | if (dev->priv_flags & IFF_802_1Q_VLAN) { | 
|  | 539 | /* see if a priority mapping exists.. */ | 
|  | 540 | VLAN_DEV_INFO(dev)->ingress_priority_map[vlan_prio & 0x7] = skb_prio; | 
|  | 541 | dev_put(dev); | 
|  | 542 | return 0; | 
|  | 543 | } | 
|  | 544 |  | 
|  | 545 | dev_put(dev); | 
|  | 546 | } | 
|  | 547 | return -EINVAL; | 
|  | 548 | } | 
|  | 549 |  | 
|  | 550 | int vlan_dev_set_egress_priority(char *dev_name, __u32 skb_prio, short vlan_prio) | 
|  | 551 | { | 
|  | 552 | struct net_device *dev = dev_get_by_name(dev_name); | 
|  | 553 | struct vlan_priority_tci_mapping *mp = NULL; | 
|  | 554 | struct vlan_priority_tci_mapping *np; | 
|  | 555 |  | 
|  | 556 | if (dev) { | 
|  | 557 | if (dev->priv_flags & IFF_802_1Q_VLAN) { | 
|  | 558 | /* See if a priority mapping exists.. */ | 
|  | 559 | mp = VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF]; | 
|  | 560 | while (mp) { | 
|  | 561 | if (mp->priority == skb_prio) { | 
|  | 562 | mp->vlan_qos = ((vlan_prio << 13) & 0xE000); | 
|  | 563 | dev_put(dev); | 
|  | 564 | return 0; | 
|  | 565 | } | 
|  | 566 | mp = mp->next; | 
|  | 567 | } | 
|  | 568 |  | 
|  | 569 | /* Create a new mapping then. */ | 
|  | 570 | mp = VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF]; | 
|  | 571 | np = kmalloc(sizeof(struct vlan_priority_tci_mapping), GFP_KERNEL); | 
|  | 572 | if (np) { | 
|  | 573 | np->next = mp; | 
|  | 574 | np->priority = skb_prio; | 
|  | 575 | np->vlan_qos = ((vlan_prio << 13) & 0xE000); | 
|  | 576 | VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF] = np; | 
|  | 577 | dev_put(dev); | 
|  | 578 | return 0; | 
|  | 579 | } else { | 
|  | 580 | dev_put(dev); | 
|  | 581 | return -ENOBUFS; | 
|  | 582 | } | 
|  | 583 | } | 
|  | 584 | dev_put(dev); | 
|  | 585 | } | 
|  | 586 | return -EINVAL; | 
|  | 587 | } | 
|  | 588 |  | 
|  | 589 | /* Flags are defined in the vlan_dev_info class in include/linux/if_vlan.h file. */ | 
|  | 590 | int vlan_dev_set_vlan_flag(char *dev_name, __u32 flag, short flag_val) | 
|  | 591 | { | 
|  | 592 | struct net_device *dev = dev_get_by_name(dev_name); | 
|  | 593 |  | 
|  | 594 | if (dev) { | 
|  | 595 | if (dev->priv_flags & IFF_802_1Q_VLAN) { | 
|  | 596 | /* verify flag is supported */ | 
|  | 597 | if (flag == 1) { | 
|  | 598 | if (flag_val) { | 
|  | 599 | VLAN_DEV_INFO(dev)->flags |= 1; | 
|  | 600 | } else { | 
|  | 601 | VLAN_DEV_INFO(dev)->flags &= ~1; | 
|  | 602 | } | 
|  | 603 | dev_put(dev); | 
|  | 604 | return 0; | 
|  | 605 | } else { | 
|  | 606 | printk(KERN_ERR  "%s: flag %i is not valid.\n", | 
|  | 607 | __FUNCTION__, (int)(flag)); | 
|  | 608 | dev_put(dev); | 
|  | 609 | return -EINVAL; | 
|  | 610 | } | 
|  | 611 | } else { | 
|  | 612 | printk(KERN_ERR | 
|  | 613 | "%s: %s is not a vlan device, priv_flags: %hX.\n", | 
|  | 614 | __FUNCTION__, dev->name, dev->priv_flags); | 
|  | 615 | dev_put(dev); | 
|  | 616 | } | 
|  | 617 | } else { | 
|  | 618 | printk(KERN_ERR  "%s: Could not find device: %s\n", | 
|  | 619 | __FUNCTION__, dev_name); | 
|  | 620 | } | 
|  | 621 |  | 
|  | 622 | return -EINVAL; | 
|  | 623 | } | 
|  | 624 |  | 
|  | 625 |  | 
|  | 626 | int vlan_dev_get_realdev_name(const char *dev_name, char* result) | 
|  | 627 | { | 
|  | 628 | struct net_device *dev = dev_get_by_name(dev_name); | 
|  | 629 | int rv = 0; | 
|  | 630 | if (dev) { | 
|  | 631 | if (dev->priv_flags & IFF_802_1Q_VLAN) { | 
|  | 632 | strncpy(result, VLAN_DEV_INFO(dev)->real_dev->name, 23); | 
|  | 633 | rv = 0; | 
|  | 634 | } else { | 
|  | 635 | rv = -EINVAL; | 
|  | 636 | } | 
|  | 637 | dev_put(dev); | 
|  | 638 | } else { | 
|  | 639 | rv = -ENODEV; | 
|  | 640 | } | 
|  | 641 | return rv; | 
|  | 642 | } | 
|  | 643 |  | 
|  | 644 | int vlan_dev_get_vid(const char *dev_name, unsigned short* result) | 
|  | 645 | { | 
|  | 646 | struct net_device *dev = dev_get_by_name(dev_name); | 
|  | 647 | int rv = 0; | 
|  | 648 | if (dev) { | 
|  | 649 | if (dev->priv_flags & IFF_802_1Q_VLAN) { | 
|  | 650 | *result = VLAN_DEV_INFO(dev)->vlan_id; | 
|  | 651 | rv = 0; | 
|  | 652 | } else { | 
|  | 653 | rv = -EINVAL; | 
|  | 654 | } | 
|  | 655 | dev_put(dev); | 
|  | 656 | } else { | 
|  | 657 | rv = -ENODEV; | 
|  | 658 | } | 
|  | 659 | return rv; | 
|  | 660 | } | 
|  | 661 |  | 
|  | 662 |  | 
|  | 663 | int vlan_dev_set_mac_address(struct net_device *dev, void *addr_struct_p) | 
|  | 664 | { | 
|  | 665 | struct sockaddr *addr = (struct sockaddr *)(addr_struct_p); | 
|  | 666 | int i; | 
|  | 667 |  | 
|  | 668 | if (netif_running(dev)) | 
|  | 669 | return -EBUSY; | 
|  | 670 |  | 
|  | 671 | memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); | 
|  | 672 |  | 
|  | 673 | printk("%s: Setting MAC address to ", dev->name); | 
|  | 674 | for (i = 0; i < 6; i++) | 
|  | 675 | printk(" %2.2x", dev->dev_addr[i]); | 
|  | 676 | printk(".\n"); | 
|  | 677 |  | 
|  | 678 | if (memcmp(VLAN_DEV_INFO(dev)->real_dev->dev_addr, | 
|  | 679 | dev->dev_addr, | 
|  | 680 | dev->addr_len) != 0) { | 
|  | 681 | if (!(VLAN_DEV_INFO(dev)->real_dev->flags & IFF_PROMISC)) { | 
|  | 682 | int flgs = VLAN_DEV_INFO(dev)->real_dev->flags; | 
|  | 683 |  | 
|  | 684 | /* Increment our in-use promiscuity counter */ | 
|  | 685 | dev_set_promiscuity(VLAN_DEV_INFO(dev)->real_dev, 1); | 
|  | 686 |  | 
|  | 687 | /* Make PROMISC visible to the user. */ | 
|  | 688 | flgs |= IFF_PROMISC; | 
|  | 689 | printk("VLAN (%s):  Setting underlying device (%s) to promiscious mode.\n", | 
|  | 690 | dev->name, VLAN_DEV_INFO(dev)->real_dev->name); | 
|  | 691 | dev_change_flags(VLAN_DEV_INFO(dev)->real_dev, flgs); | 
|  | 692 | } | 
|  | 693 | } else { | 
|  | 694 | printk("VLAN (%s):  Underlying device (%s) has same MAC, not checking promiscious mode.\n", | 
|  | 695 | dev->name, VLAN_DEV_INFO(dev)->real_dev->name); | 
|  | 696 | } | 
|  | 697 |  | 
|  | 698 | return 0; | 
|  | 699 | } | 
|  | 700 |  | 
|  | 701 | static inline int vlan_dmi_equals(struct dev_mc_list *dmi1, | 
|  | 702 | struct dev_mc_list *dmi2) | 
|  | 703 | { | 
|  | 704 | return ((dmi1->dmi_addrlen == dmi2->dmi_addrlen) && | 
|  | 705 | (memcmp(dmi1->dmi_addr, dmi2->dmi_addr, dmi1->dmi_addrlen) == 0)); | 
|  | 706 | } | 
|  | 707 |  | 
|  | 708 | /** dmi is a single entry into a dev_mc_list, a single node.  mc_list is | 
|  | 709 | *  an entire list, and we'll iterate through it. | 
|  | 710 | */ | 
|  | 711 | static int vlan_should_add_mc(struct dev_mc_list *dmi, struct dev_mc_list *mc_list) | 
|  | 712 | { | 
|  | 713 | struct dev_mc_list *idmi; | 
|  | 714 |  | 
|  | 715 | for (idmi = mc_list; idmi != NULL; ) { | 
|  | 716 | if (vlan_dmi_equals(dmi, idmi)) { | 
|  | 717 | if (dmi->dmi_users > idmi->dmi_users) | 
|  | 718 | return 1; | 
|  | 719 | else | 
|  | 720 | return 0; | 
|  | 721 | } else { | 
|  | 722 | idmi = idmi->next; | 
|  | 723 | } | 
|  | 724 | } | 
|  | 725 |  | 
|  | 726 | return 1; | 
|  | 727 | } | 
|  | 728 |  | 
|  | 729 | static inline void vlan_destroy_mc_list(struct dev_mc_list *mc_list) | 
|  | 730 | { | 
|  | 731 | struct dev_mc_list *dmi = mc_list; | 
|  | 732 | struct dev_mc_list *next; | 
|  | 733 |  | 
|  | 734 | while(dmi) { | 
|  | 735 | next = dmi->next; | 
|  | 736 | kfree(dmi); | 
|  | 737 | dmi = next; | 
|  | 738 | } | 
|  | 739 | } | 
|  | 740 |  | 
|  | 741 | static void vlan_copy_mc_list(struct dev_mc_list *mc_list, struct vlan_dev_info *vlan_info) | 
|  | 742 | { | 
|  | 743 | struct dev_mc_list *dmi, *new_dmi; | 
|  | 744 |  | 
|  | 745 | vlan_destroy_mc_list(vlan_info->old_mc_list); | 
|  | 746 | vlan_info->old_mc_list = NULL; | 
|  | 747 |  | 
|  | 748 | for (dmi = mc_list; dmi != NULL; dmi = dmi->next) { | 
|  | 749 | new_dmi = kmalloc(sizeof(*new_dmi), GFP_ATOMIC); | 
|  | 750 | if (new_dmi == NULL) { | 
|  | 751 | printk(KERN_ERR "vlan: cannot allocate memory. " | 
|  | 752 | "Multicast may not work properly from now.\n"); | 
|  | 753 | return; | 
|  | 754 | } | 
|  | 755 |  | 
|  | 756 | /* Copy whole structure, then make new 'next' pointer */ | 
|  | 757 | *new_dmi = *dmi; | 
|  | 758 | new_dmi->next = vlan_info->old_mc_list; | 
|  | 759 | vlan_info->old_mc_list = new_dmi; | 
|  | 760 | } | 
|  | 761 | } | 
|  | 762 |  | 
|  | 763 | static void vlan_flush_mc_list(struct net_device *dev) | 
|  | 764 | { | 
|  | 765 | struct dev_mc_list *dmi = dev->mc_list; | 
|  | 766 |  | 
|  | 767 | while (dmi) { | 
|  | 768 | printk(KERN_DEBUG "%s: del %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address from vlan interface\n", | 
|  | 769 | dev->name, | 
|  | 770 | dmi->dmi_addr[0], | 
|  | 771 | dmi->dmi_addr[1], | 
|  | 772 | dmi->dmi_addr[2], | 
|  | 773 | dmi->dmi_addr[3], | 
|  | 774 | dmi->dmi_addr[4], | 
|  | 775 | dmi->dmi_addr[5]); | 
|  | 776 | dev_mc_delete(dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); | 
|  | 777 | dmi = dev->mc_list; | 
|  | 778 | } | 
|  | 779 |  | 
|  | 780 | /* dev->mc_list is NULL by the time we get here. */ | 
|  | 781 | vlan_destroy_mc_list(VLAN_DEV_INFO(dev)->old_mc_list); | 
|  | 782 | VLAN_DEV_INFO(dev)->old_mc_list = NULL; | 
|  | 783 | } | 
|  | 784 |  | 
|  | 785 | int vlan_dev_open(struct net_device *dev) | 
|  | 786 | { | 
|  | 787 | if (!(VLAN_DEV_INFO(dev)->real_dev->flags & IFF_UP)) | 
|  | 788 | return -ENETDOWN; | 
|  | 789 |  | 
|  | 790 | return 0; | 
|  | 791 | } | 
|  | 792 |  | 
|  | 793 | int vlan_dev_stop(struct net_device *dev) | 
|  | 794 | { | 
|  | 795 | vlan_flush_mc_list(dev); | 
|  | 796 | return 0; | 
|  | 797 | } | 
|  | 798 |  | 
|  | 799 | int vlan_dev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) | 
|  | 800 | { | 
|  | 801 | struct net_device *real_dev = VLAN_DEV_INFO(dev)->real_dev; | 
|  | 802 | struct ifreq ifrr; | 
|  | 803 | int err = -EOPNOTSUPP; | 
|  | 804 |  | 
|  | 805 | strncpy(ifrr.ifr_name, real_dev->name, IFNAMSIZ); | 
|  | 806 | ifrr.ifr_ifru = ifr->ifr_ifru; | 
|  | 807 |  | 
|  | 808 | switch(cmd) { | 
|  | 809 | case SIOCGMIIPHY: | 
|  | 810 | case SIOCGMIIREG: | 
|  | 811 | case SIOCSMIIREG: | 
|  | 812 | if (real_dev->do_ioctl && netif_device_present(real_dev)) | 
|  | 813 | err = real_dev->do_ioctl(real_dev, &ifrr, cmd); | 
|  | 814 | break; | 
|  | 815 |  | 
|  | 816 | case SIOCETHTOOL: | 
|  | 817 | err = dev_ethtool(&ifrr); | 
|  | 818 | } | 
|  | 819 |  | 
|  | 820 | if (!err) | 
|  | 821 | ifr->ifr_ifru = ifrr.ifr_ifru; | 
|  | 822 |  | 
|  | 823 | return err; | 
|  | 824 | } | 
|  | 825 |  | 
|  | 826 | /** Taken from Gleb + Lennert's VLAN code, and modified... */ | 
|  | 827 | void vlan_dev_set_multicast_list(struct net_device *vlan_dev) | 
|  | 828 | { | 
|  | 829 | struct dev_mc_list *dmi; | 
|  | 830 | struct net_device *real_dev; | 
|  | 831 | int inc; | 
|  | 832 |  | 
|  | 833 | if (vlan_dev && (vlan_dev->priv_flags & IFF_802_1Q_VLAN)) { | 
|  | 834 | /* Then it's a real vlan device, as far as we can tell.. */ | 
|  | 835 | real_dev = VLAN_DEV_INFO(vlan_dev)->real_dev; | 
|  | 836 |  | 
|  | 837 | /* compare the current promiscuity to the last promisc we had.. */ | 
|  | 838 | inc = vlan_dev->promiscuity - VLAN_DEV_INFO(vlan_dev)->old_promiscuity; | 
|  | 839 | if (inc) { | 
|  | 840 | printk(KERN_INFO "%s: dev_set_promiscuity(master, %d)\n", | 
|  | 841 | vlan_dev->name, inc); | 
|  | 842 | dev_set_promiscuity(real_dev, inc); /* found in dev.c */ | 
|  | 843 | VLAN_DEV_INFO(vlan_dev)->old_promiscuity = vlan_dev->promiscuity; | 
|  | 844 | } | 
|  | 845 |  | 
|  | 846 | inc = vlan_dev->allmulti - VLAN_DEV_INFO(vlan_dev)->old_allmulti; | 
|  | 847 | if (inc) { | 
|  | 848 | printk(KERN_INFO "%s: dev_set_allmulti(master, %d)\n", | 
|  | 849 | vlan_dev->name, inc); | 
|  | 850 | dev_set_allmulti(real_dev, inc); /* dev.c */ | 
|  | 851 | VLAN_DEV_INFO(vlan_dev)->old_allmulti = vlan_dev->allmulti; | 
|  | 852 | } | 
|  | 853 |  | 
|  | 854 | /* looking for addresses to add to master's list */ | 
|  | 855 | for (dmi = vlan_dev->mc_list; dmi != NULL; dmi = dmi->next) { | 
|  | 856 | if (vlan_should_add_mc(dmi, VLAN_DEV_INFO(vlan_dev)->old_mc_list)) { | 
|  | 857 | dev_mc_add(real_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); | 
|  | 858 | printk(KERN_DEBUG "%s: add %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address to master interface\n", | 
|  | 859 | vlan_dev->name, | 
|  | 860 | dmi->dmi_addr[0], | 
|  | 861 | dmi->dmi_addr[1], | 
|  | 862 | dmi->dmi_addr[2], | 
|  | 863 | dmi->dmi_addr[3], | 
|  | 864 | dmi->dmi_addr[4], | 
|  | 865 | dmi->dmi_addr[5]); | 
|  | 866 | } | 
|  | 867 | } | 
|  | 868 |  | 
|  | 869 | /* looking for addresses to delete from master's list */ | 
|  | 870 | for (dmi = VLAN_DEV_INFO(vlan_dev)->old_mc_list; dmi != NULL; dmi = dmi->next) { | 
|  | 871 | if (vlan_should_add_mc(dmi, vlan_dev->mc_list)) { | 
|  | 872 | /* if we think we should add it to the new list, then we should really | 
|  | 873 | * delete it from the real list on the underlying device. | 
|  | 874 | */ | 
|  | 875 | dev_mc_delete(real_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); | 
|  | 876 | printk(KERN_DEBUG "%s: del %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address from master interface\n", | 
|  | 877 | vlan_dev->name, | 
|  | 878 | dmi->dmi_addr[0], | 
|  | 879 | dmi->dmi_addr[1], | 
|  | 880 | dmi->dmi_addr[2], | 
|  | 881 | dmi->dmi_addr[3], | 
|  | 882 | dmi->dmi_addr[4], | 
|  | 883 | dmi->dmi_addr[5]); | 
|  | 884 | } | 
|  | 885 | } | 
|  | 886 |  | 
|  | 887 | /* save multicast list */ | 
|  | 888 | vlan_copy_mc_list(vlan_dev->mc_list, VLAN_DEV_INFO(vlan_dev)); | 
|  | 889 | } | 
|  | 890 | } |