blob: b0d037ea367d2f4884f106987366c5e07932fefa [file] [log] [blame]
Casey Leedombe839e32010-06-25 12:14:15 +00001/*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
4 *
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36#include <linux/version.h>
37#include <linux/module.h>
38#include <linux/moduleparam.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/dma-mapping.h>
42#include <linux/netdevice.h>
43#include <linux/etherdevice.h>
44#include <linux/debugfs.h>
45#include <linux/ethtool.h>
46
47#include "t4vf_common.h"
48#include "t4vf_defs.h"
49
50#include "../cxgb4/t4_regs.h"
51#include "../cxgb4/t4_msg.h"
52
53/*
54 * Generic information about the driver.
55 */
56#define DRV_VERSION "1.0.0"
57#define DRV_DESC "Chelsio T4 Virtual Function (VF) Network Driver"
58
59/*
60 * Module Parameters.
61 * ==================
62 */
63
64/*
65 * Default ethtool "message level" for adapters.
66 */
67#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
68 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
69 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
70
71static int dflt_msg_enable = DFLT_MSG_ENABLE;
72
73module_param(dflt_msg_enable, int, 0644);
74MODULE_PARM_DESC(dflt_msg_enable,
75 "default adapter ethtool message level bitmap");
76
77/*
78 * The driver uses the best interrupt scheme available on a platform in the
79 * order MSI-X then MSI. This parameter determines which of these schemes the
80 * driver may consider as follows:
81 *
82 * msi = 2: choose from among MSI-X and MSI
83 * msi = 1: only consider MSI interrupts
84 *
85 * Note that unlike the Physical Function driver, this Virtual Function driver
86 * does _not_ support legacy INTx interrupts (this limitation is mandated by
87 * the PCI-E SR-IOV standard).
88 */
89#define MSI_MSIX 2
90#define MSI_MSI 1
91#define MSI_DEFAULT MSI_MSIX
92
93static int msi = MSI_DEFAULT;
94
95module_param(msi, int, 0644);
96MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI");
97
98/*
99 * Fundamental constants.
100 * ======================
101 */
102
103enum {
104 MAX_TXQ_ENTRIES = 16384,
105 MAX_RSPQ_ENTRIES = 16384,
106 MAX_RX_BUFFERS = 16384,
107
108 MIN_TXQ_ENTRIES = 32,
109 MIN_RSPQ_ENTRIES = 128,
110 MIN_FL_ENTRIES = 16,
111
112 /*
113 * For purposes of manipulating the Free List size we need to
114 * recognize that Free Lists are actually Egress Queues (the host
115 * produces free buffers which the hardware consumes), Egress Queues
116 * indices are all in units of Egress Context Units bytes, and free
117 * list entries are 64-bit PCI DMA addresses. And since the state of
118 * the Producer Index == the Consumer Index implies an EMPTY list, we
119 * always have at least one Egress Unit's worth of Free List entries
120 * unused. See sge.c for more details ...
121 */
122 EQ_UNIT = SGE_EQ_IDXSIZE,
123 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
124 MIN_FL_RESID = FL_PER_EQ_UNIT,
125};
126
127/*
128 * Global driver state.
129 * ====================
130 */
131
132static struct dentry *cxgb4vf_debugfs_root;
133
134/*
135 * OS "Callback" functions.
136 * ========================
137 */
138
139/*
140 * The link status has changed on the indicated "port" (Virtual Interface).
141 */
142void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok)
143{
144 struct net_device *dev = adapter->port[pidx];
145
146 /*
147 * If the port is disabled or the current recorded "link up"
148 * status matches the new status, just return.
149 */
150 if (!netif_running(dev) || link_ok == netif_carrier_ok(dev))
151 return;
152
153 /*
154 * Tell the OS that the link status has changed and print a short
155 * informative message on the console about the event.
156 */
157 if (link_ok) {
158 const char *s;
159 const char *fc;
160 const struct port_info *pi = netdev_priv(dev);
161
162 netif_carrier_on(dev);
163
164 switch (pi->link_cfg.speed) {
165 case SPEED_10000:
166 s = "10Gbps";
167 break;
168
169 case SPEED_1000:
170 s = "1000Mbps";
171 break;
172
173 case SPEED_100:
174 s = "100Mbps";
175 break;
176
177 default:
178 s = "unknown";
179 break;
180 }
181
182 switch (pi->link_cfg.fc) {
183 case PAUSE_RX:
184 fc = "RX";
185 break;
186
187 case PAUSE_TX:
188 fc = "TX";
189 break;
190
191 case PAUSE_RX|PAUSE_TX:
192 fc = "RX/TX";
193 break;
194
195 default:
196 fc = "no";
197 break;
198 }
199
200 printk(KERN_INFO "%s: link up, %s, full-duplex, %s PAUSE\n",
201 dev->name, s, fc);
202 } else {
203 netif_carrier_off(dev);
204 printk(KERN_INFO "%s: link down\n", dev->name);
205 }
206}
207
208/*
209 * Net device operations.
210 * ======================
211 */
212
213/*
214 * Record our new VLAN Group and enable/disable hardware VLAN Tag extraction
215 * based on whether the specified VLAN Group pointer is NULL or not.
216 */
217static void cxgb4vf_vlan_rx_register(struct net_device *dev,
218 struct vlan_group *grp)
219{
220 struct port_info *pi = netdev_priv(dev);
221
222 pi->vlan_grp = grp;
223 t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1, grp != NULL, 0);
224}
225
226/*
227 * Perform the MAC and PHY actions needed to enable a "port" (Virtual
228 * Interface).
229 */
230static int link_start(struct net_device *dev)
231{
232 int ret;
233 struct port_info *pi = netdev_priv(dev);
234
235 /*
236 * We do not set address filters and promiscuity here, the stack does
237 * that step explicitly.
238 */
239 ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, -1,
240 true);
241 if (ret == 0) {
242 ret = t4vf_change_mac(pi->adapter, pi->viid,
243 pi->xact_addr_filt, dev->dev_addr, true);
244 if (ret >= 0) {
245 pi->xact_addr_filt = ret;
246 ret = 0;
247 }
248 }
249
250 /*
251 * We don't need to actually "start the link" itself since the
252 * firmware will do that for us when the first Virtual Interface
253 * is enabled on a port.
254 */
255 if (ret == 0)
256 ret = t4vf_enable_vi(pi->adapter, pi->viid, true, true);
257 return ret;
258}
259
260/*
261 * Name the MSI-X interrupts.
262 */
263static void name_msix_vecs(struct adapter *adapter)
264{
265 int namelen = sizeof(adapter->msix_info[0].desc) - 1;
266 int pidx;
267
268 /*
269 * Firmware events.
270 */
271 snprintf(adapter->msix_info[MSIX_FW].desc, namelen,
272 "%s-FWeventq", adapter->name);
273 adapter->msix_info[MSIX_FW].desc[namelen] = 0;
274
275 /*
276 * Ethernet queues.
277 */
278 for_each_port(adapter, pidx) {
279 struct net_device *dev = adapter->port[pidx];
280 const struct port_info *pi = netdev_priv(dev);
281 int qs, msi;
282
Casey Leedomcaedda32010-11-11 09:30:40 +0000283 for (qs = 0, msi = MSIX_IQFLINT; qs < pi->nqsets; qs++, msi++) {
Casey Leedombe839e32010-06-25 12:14:15 +0000284 snprintf(adapter->msix_info[msi].desc, namelen,
285 "%s-%d", dev->name, qs);
286 adapter->msix_info[msi].desc[namelen] = 0;
287 }
288 }
289}
290
291/*
292 * Request all of our MSI-X resources.
293 */
294static int request_msix_queue_irqs(struct adapter *adapter)
295{
296 struct sge *s = &adapter->sge;
297 int rxq, msi, err;
298
299 /*
300 * Firmware events.
301 */
302 err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix,
303 0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq);
304 if (err)
305 return err;
306
307 /*
308 * Ethernet queues.
309 */
Casey Leedomcaedda32010-11-11 09:30:40 +0000310 msi = MSIX_IQFLINT;
Casey Leedombe839e32010-06-25 12:14:15 +0000311 for_each_ethrxq(s, rxq) {
312 err = request_irq(adapter->msix_info[msi].vec,
313 t4vf_sge_intr_msix, 0,
314 adapter->msix_info[msi].desc,
315 &s->ethrxq[rxq].rspq);
316 if (err)
317 goto err_free_irqs;
318 msi++;
319 }
320 return 0;
321
322err_free_irqs:
323 while (--rxq >= 0)
324 free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq);
325 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
326 return err;
327}
328
329/*
330 * Free our MSI-X resources.
331 */
332static void free_msix_queue_irqs(struct adapter *adapter)
333{
334 struct sge *s = &adapter->sge;
335 int rxq, msi;
336
337 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
Casey Leedomcaedda32010-11-11 09:30:40 +0000338 msi = MSIX_IQFLINT;
Casey Leedombe839e32010-06-25 12:14:15 +0000339 for_each_ethrxq(s, rxq)
340 free_irq(adapter->msix_info[msi++].vec,
341 &s->ethrxq[rxq].rspq);
342}
343
344/*
345 * Turn on NAPI and start up interrupts on a response queue.
346 */
347static void qenable(struct sge_rspq *rspq)
348{
349 napi_enable(&rspq->napi);
350
351 /*
352 * 0-increment the Going To Sleep register to start the timer and
353 * enable interrupts.
354 */
355 t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
356 CIDXINC(0) |
357 SEINTARM(rspq->intr_params) |
358 INGRESSQID(rspq->cntxt_id));
359}
360
361/*
362 * Enable NAPI scheduling and interrupt generation for all Receive Queues.
363 */
364static void enable_rx(struct adapter *adapter)
365{
366 int rxq;
367 struct sge *s = &adapter->sge;
368
369 for_each_ethrxq(s, rxq)
370 qenable(&s->ethrxq[rxq].rspq);
371 qenable(&s->fw_evtq);
372
373 /*
374 * The interrupt queue doesn't use NAPI so we do the 0-increment of
375 * its Going To Sleep register here to get it started.
376 */
377 if (adapter->flags & USING_MSI)
378 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
379 CIDXINC(0) |
380 SEINTARM(s->intrq.intr_params) |
381 INGRESSQID(s->intrq.cntxt_id));
382
383}
384
385/*
386 * Wait until all NAPI handlers are descheduled.
387 */
388static void quiesce_rx(struct adapter *adapter)
389{
390 struct sge *s = &adapter->sge;
391 int rxq;
392
393 for_each_ethrxq(s, rxq)
394 napi_disable(&s->ethrxq[rxq].rspq.napi);
395 napi_disable(&s->fw_evtq.napi);
396}
397
398/*
399 * Response queue handler for the firmware event queue.
400 */
401static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp,
402 const struct pkt_gl *gl)
403{
404 /*
405 * Extract response opcode and get pointer to CPL message body.
406 */
407 struct adapter *adapter = rspq->adapter;
408 u8 opcode = ((const struct rss_header *)rsp)->opcode;
409 void *cpl = (void *)(rsp + 1);
410
411 switch (opcode) {
412 case CPL_FW6_MSG: {
413 /*
414 * We've received an asynchronous message from the firmware.
415 */
416 const struct cpl_fw6_msg *fw_msg = cpl;
417 if (fw_msg->type == FW6_TYPE_CMD_RPL)
418 t4vf_handle_fw_rpl(adapter, fw_msg->data);
419 break;
420 }
421
422 case CPL_SGE_EGR_UPDATE: {
423 /*
Casey Leedom7f9dd2f2010-07-12 14:39:07 -0700424 * We've received an Egress Queue Status Update message. We
425 * get these, if the SGE is configured to send these when the
426 * firmware passes certain points in processing our TX
427 * Ethernet Queue or if we make an explicit request for one.
428 * We use these updates to determine when we may need to
429 * restart a TX Ethernet Queue which was stopped for lack of
430 * free TX Queue Descriptors ...
Casey Leedombe839e32010-06-25 12:14:15 +0000431 */
432 const struct cpl_sge_egr_update *p = (void *)cpl;
433 unsigned int qid = EGR_QID(be32_to_cpu(p->opcode_qid));
434 struct sge *s = &adapter->sge;
435 struct sge_txq *tq;
436 struct sge_eth_txq *txq;
437 unsigned int eq_idx;
Casey Leedombe839e32010-06-25 12:14:15 +0000438
439 /*
440 * Perform sanity checking on the Queue ID to make sure it
441 * really refers to one of our TX Ethernet Egress Queues which
442 * is active and matches the queue's ID. None of these error
443 * conditions should ever happen so we may want to either make
444 * them fatal and/or conditionalized under DEBUG.
445 */
446 eq_idx = EQ_IDX(s, qid);
447 if (unlikely(eq_idx >= MAX_EGRQ)) {
448 dev_err(adapter->pdev_dev,
449 "Egress Update QID %d out of range\n", qid);
450 break;
451 }
452 tq = s->egr_map[eq_idx];
453 if (unlikely(tq == NULL)) {
454 dev_err(adapter->pdev_dev,
455 "Egress Update QID %d TXQ=NULL\n", qid);
456 break;
457 }
458 txq = container_of(tq, struct sge_eth_txq, q);
459 if (unlikely(tq->abs_id != qid)) {
460 dev_err(adapter->pdev_dev,
461 "Egress Update QID %d refers to TXQ %d\n",
462 qid, tq->abs_id);
463 break;
464 }
465
466 /*
Casey Leedombe839e32010-06-25 12:14:15 +0000467 * Restart a stopped TX Queue which has less than half of its
468 * TX ring in use ...
469 */
470 txq->q.restarts++;
471 netif_tx_wake_queue(txq->txq);
472 break;
473 }
474
475 default:
476 dev_err(adapter->pdev_dev,
477 "unexpected CPL %#x on FW event queue\n", opcode);
478 }
479
480 return 0;
481}
482
483/*
484 * Allocate SGE TX/RX response queues. Determine how many sets of SGE queues
485 * to use and initializes them. We support multiple "Queue Sets" per port if
486 * we have MSI-X, otherwise just one queue set per port.
487 */
488static int setup_sge_queues(struct adapter *adapter)
489{
490 struct sge *s = &adapter->sge;
491 int err, pidx, msix;
492
493 /*
494 * Clear "Queue Set" Free List Starving and TX Queue Mapping Error
495 * state.
496 */
497 bitmap_zero(s->starving_fl, MAX_EGRQ);
498
499 /*
500 * If we're using MSI interrupt mode we need to set up a "forwarded
501 * interrupt" queue which we'll set up with our MSI vector. The rest
502 * of the ingress queues will be set up to forward their interrupts to
503 * this queue ... This must be first since t4vf_sge_alloc_rxq() uses
504 * the intrq's queue ID as the interrupt forwarding queue for the
505 * subsequent calls ...
506 */
507 if (adapter->flags & USING_MSI) {
508 err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false,
509 adapter->port[0], 0, NULL, NULL);
510 if (err)
511 goto err_free_queues;
512 }
513
514 /*
515 * Allocate our ingress queue for asynchronous firmware messages.
516 */
517 err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0],
518 MSIX_FW, NULL, fwevtq_handler);
519 if (err)
520 goto err_free_queues;
521
522 /*
523 * Allocate each "port"'s initial Queue Sets. These can be changed
524 * later on ... up to the point where any interface on the adapter is
525 * brought up at which point lots of things get nailed down
526 * permanently ...
527 */
Casey Leedomcaedda32010-11-11 09:30:40 +0000528 msix = MSIX_IQFLINT;
Casey Leedombe839e32010-06-25 12:14:15 +0000529 for_each_port(adapter, pidx) {
530 struct net_device *dev = adapter->port[pidx];
531 struct port_info *pi = netdev_priv(dev);
532 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
533 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
Casey Leedombe839e32010-06-25 12:14:15 +0000534 int qs;
535
Casey Leedomc8639a82010-07-19 17:53:48 -0700536 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
Casey Leedombe839e32010-06-25 12:14:15 +0000537 err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false,
538 dev, msix++,
539 &rxq->fl, t4vf_ethrx_handler);
540 if (err)
541 goto err_free_queues;
542
543 err = t4vf_sge_alloc_eth_txq(adapter, txq, dev,
544 netdev_get_tx_queue(dev, qs),
545 s->fw_evtq.cntxt_id);
546 if (err)
547 goto err_free_queues;
548
549 rxq->rspq.idx = qs;
550 memset(&rxq->stats, 0, sizeof(rxq->stats));
551 }
552 }
553
554 /*
555 * Create the reverse mappings for the queues.
556 */
557 s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id;
558 s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id;
559 IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq;
560 for_each_port(adapter, pidx) {
561 struct net_device *dev = adapter->port[pidx];
562 struct port_info *pi = netdev_priv(dev);
563 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
564 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
Casey Leedombe839e32010-06-25 12:14:15 +0000565 int qs;
566
Casey Leedomc8639a82010-07-19 17:53:48 -0700567 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
Casey Leedombe839e32010-06-25 12:14:15 +0000568 IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq;
569 EQ_MAP(s, txq->q.abs_id) = &txq->q;
570
571 /*
572 * The FW_IQ_CMD doesn't return the Absolute Queue IDs
573 * for Free Lists but since all of the Egress Queues
574 * (including Free Lists) have Relative Queue IDs
575 * which are computed as Absolute - Base Queue ID, we
576 * can synthesize the Absolute Queue IDs for the Free
577 * Lists. This is useful for debugging purposes when
578 * we want to dump Queue Contexts via the PF Driver.
579 */
580 rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base;
581 EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl;
582 }
583 }
584 return 0;
585
586err_free_queues:
587 t4vf_free_sge_resources(adapter);
588 return err;
589}
590
591/*
592 * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive
593 * queues. We configure the RSS CPU lookup table to distribute to the number
594 * of HW receive queues, and the response queue lookup table to narrow that
595 * down to the response queues actually configured for each "port" (Virtual
596 * Interface). We always configure the RSS mapping for all ports since the
597 * mapping table has plenty of entries.
598 */
599static int setup_rss(struct adapter *adapter)
600{
601 int pidx;
602
603 for_each_port(adapter, pidx) {
604 struct port_info *pi = adap2pinfo(adapter, pidx);
605 struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
606 u16 rss[MAX_PORT_QSETS];
607 int qs, err;
608
609 for (qs = 0; qs < pi->nqsets; qs++)
610 rss[qs] = rxq[qs].rspq.abs_id;
611
612 err = t4vf_config_rss_range(adapter, pi->viid,
613 0, pi->rss_size, rss, pi->nqsets);
614 if (err)
615 return err;
616
617 /*
618 * Perform Global RSS Mode-specific initialization.
619 */
620 switch (adapter->params.rss.mode) {
621 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL:
622 /*
623 * If Tunnel All Lookup isn't specified in the global
624 * RSS Configuration, then we need to specify a
625 * default Ingress Queue for any ingress packets which
626 * aren't hashed. We'll use our first ingress queue
627 * ...
628 */
629 if (!adapter->params.rss.u.basicvirtual.tnlalllookup) {
630 union rss_vi_config config;
631 err = t4vf_read_rss_vi_config(adapter,
632 pi->viid,
633 &config);
634 if (err)
635 return err;
636 config.basicvirtual.defaultq =
637 rxq[0].rspq.abs_id;
638 err = t4vf_write_rss_vi_config(adapter,
639 pi->viid,
640 &config);
641 if (err)
642 return err;
643 }
644 break;
645 }
646 }
647
648 return 0;
649}
650
651/*
652 * Bring the adapter up. Called whenever we go from no "ports" open to having
653 * one open. This function performs the actions necessary to make an adapter
654 * operational, such as completing the initialization of HW modules, and
655 * enabling interrupts. Must be called with the rtnl lock held. (Note that
656 * this is called "cxgb_up" in the PF Driver.)
657 */
658static int adapter_up(struct adapter *adapter)
659{
660 int err;
661
662 /*
663 * If this is the first time we've been called, perform basic
664 * adapter setup. Once we've done this, many of our adapter
665 * parameters can no longer be changed ...
666 */
667 if ((adapter->flags & FULL_INIT_DONE) == 0) {
668 err = setup_sge_queues(adapter);
669 if (err)
670 return err;
671 err = setup_rss(adapter);
672 if (err) {
673 t4vf_free_sge_resources(adapter);
674 return err;
675 }
676
677 if (adapter->flags & USING_MSIX)
678 name_msix_vecs(adapter);
679 adapter->flags |= FULL_INIT_DONE;
680 }
681
682 /*
683 * Acquire our interrupt resources. We only support MSI-X and MSI.
684 */
685 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
686 if (adapter->flags & USING_MSIX)
687 err = request_msix_queue_irqs(adapter);
688 else
689 err = request_irq(adapter->pdev->irq,
690 t4vf_intr_handler(adapter), 0,
691 adapter->name, adapter);
692 if (err) {
693 dev_err(adapter->pdev_dev, "request_irq failed, err %d\n",
694 err);
695 return err;
696 }
697
698 /*
699 * Enable NAPI ingress processing and return success.
700 */
701 enable_rx(adapter);
702 t4vf_sge_start(adapter);
703 return 0;
704}
705
706/*
707 * Bring the adapter down. Called whenever the last "port" (Virtual
708 * Interface) closed. (Note that this routine is called "cxgb_down" in the PF
709 * Driver.)
710 */
711static void adapter_down(struct adapter *adapter)
712{
713 /*
714 * Free interrupt resources.
715 */
716 if (adapter->flags & USING_MSIX)
717 free_msix_queue_irqs(adapter);
718 else
719 free_irq(adapter->pdev->irq, adapter);
720
721 /*
722 * Wait for NAPI handlers to finish.
723 */
724 quiesce_rx(adapter);
725}
726
727/*
728 * Start up a net device.
729 */
730static int cxgb4vf_open(struct net_device *dev)
731{
732 int err;
733 struct port_info *pi = netdev_priv(dev);
734 struct adapter *adapter = pi->adapter;
735
736 /*
737 * If this is the first interface that we're opening on the "adapter",
738 * bring the "adapter" up now.
739 */
740 if (adapter->open_device_map == 0) {
741 err = adapter_up(adapter);
742 if (err)
743 return err;
744 }
745
746 /*
747 * Note that this interface is up and start everything up ...
748 */
Ben Hutchings003ab672010-09-27 08:26:10 +0000749 netif_set_real_num_tx_queues(dev, pi->nqsets);
750 err = netif_set_real_num_rx_queues(dev, pi->nqsets);
751 if (err)
Casey Leedom343a8d12011-01-11 15:44:40 -0800752 goto err_unwind;
Casey Leedome7a37952010-11-11 09:06:52 +0000753 err = link_start(dev);
754 if (err)
Casey Leedom343a8d12011-01-11 15:44:40 -0800755 goto err_unwind;
756
Casey Leedombe839e32010-06-25 12:14:15 +0000757 netif_tx_start_all_queues(dev);
Casey Leedom343a8d12011-01-11 15:44:40 -0800758 set_bit(pi->port_id, &adapter->open_device_map);
Casey Leedombe839e32010-06-25 12:14:15 +0000759 return 0;
Casey Leedom343a8d12011-01-11 15:44:40 -0800760
761err_unwind:
762 if (adapter->open_device_map == 0)
763 adapter_down(adapter);
764 return err;
Casey Leedombe839e32010-06-25 12:14:15 +0000765}
766
767/*
768 * Shut down a net device. This routine is called "cxgb_close" in the PF
769 * Driver ...
770 */
771static int cxgb4vf_stop(struct net_device *dev)
772{
Casey Leedombe839e32010-06-25 12:14:15 +0000773 struct port_info *pi = netdev_priv(dev);
774 struct adapter *adapter = pi->adapter;
775
776 netif_tx_stop_all_queues(dev);
777 netif_carrier_off(dev);
Casey Leedom343a8d12011-01-11 15:44:40 -0800778 t4vf_enable_vi(adapter, pi->viid, false, false);
Casey Leedombe839e32010-06-25 12:14:15 +0000779 pi->link_cfg.link_ok = 0;
780
781 clear_bit(pi->port_id, &adapter->open_device_map);
782 if (adapter->open_device_map == 0)
783 adapter_down(adapter);
784 return 0;
785}
786
787/*
788 * Translate our basic statistics into the standard "ifconfig" statistics.
789 */
790static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev)
791{
792 struct t4vf_port_stats stats;
793 struct port_info *pi = netdev2pinfo(dev);
794 struct adapter *adapter = pi->adapter;
795 struct net_device_stats *ns = &dev->stats;
796 int err;
797
798 spin_lock(&adapter->stats_lock);
799 err = t4vf_get_port_stats(adapter, pi->pidx, &stats);
800 spin_unlock(&adapter->stats_lock);
801
802 memset(ns, 0, sizeof(*ns));
803 if (err)
804 return ns;
805
806 ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes +
807 stats.tx_ucast_bytes + stats.tx_offload_bytes);
808 ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames +
809 stats.tx_ucast_frames + stats.tx_offload_frames);
810 ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes +
811 stats.rx_ucast_bytes);
812 ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames +
813 stats.rx_ucast_frames);
814 ns->multicast = stats.rx_mcast_frames;
815 ns->tx_errors = stats.tx_drop_frames;
816 ns->rx_errors = stats.rx_err_frames;
817
818 return ns;
819}
820
821/*
Casey Leedom42eb59d2010-11-24 12:23:57 +0000822 * Collect up to maxaddrs worth of a netdevice's unicast addresses, starting
823 * at a specified offset within the list, into an array of addrss pointers and
824 * return the number collected.
Casey Leedombe839e32010-06-25 12:14:15 +0000825 */
Casey Leedom42eb59d2010-11-24 12:23:57 +0000826static inline unsigned int collect_netdev_uc_list_addrs(const struct net_device *dev,
827 const u8 **addr,
828 unsigned int offset,
829 unsigned int maxaddrs)
Casey Leedombe839e32010-06-25 12:14:15 +0000830{
Casey Leedom42eb59d2010-11-24 12:23:57 +0000831 unsigned int index = 0;
Casey Leedombe839e32010-06-25 12:14:15 +0000832 unsigned int naddr = 0;
833 const struct netdev_hw_addr *ha;
834
Casey Leedom42eb59d2010-11-24 12:23:57 +0000835 for_each_dev_addr(dev, ha)
836 if (index++ >= offset) {
837 addr[naddr++] = ha->addr;
838 if (naddr >= maxaddrs)
839 break;
840 }
Casey Leedombe839e32010-06-25 12:14:15 +0000841 return naddr;
842}
843
844/*
Casey Leedom42eb59d2010-11-24 12:23:57 +0000845 * Collect up to maxaddrs worth of a netdevice's multicast addresses, starting
846 * at a specified offset within the list, into an array of addrss pointers and
847 * return the number collected.
Casey Leedombe839e32010-06-25 12:14:15 +0000848 */
Casey Leedom42eb59d2010-11-24 12:23:57 +0000849static inline unsigned int collect_netdev_mc_list_addrs(const struct net_device *dev,
850 const u8 **addr,
851 unsigned int offset,
852 unsigned int maxaddrs)
Casey Leedombe839e32010-06-25 12:14:15 +0000853{
Casey Leedom42eb59d2010-11-24 12:23:57 +0000854 unsigned int index = 0;
Casey Leedombe839e32010-06-25 12:14:15 +0000855 unsigned int naddr = 0;
856 const struct netdev_hw_addr *ha;
857
Casey Leedom42eb59d2010-11-24 12:23:57 +0000858 netdev_for_each_mc_addr(ha, dev)
859 if (index++ >= offset) {
860 addr[naddr++] = ha->addr;
861 if (naddr >= maxaddrs)
862 break;
863 }
Casey Leedombe839e32010-06-25 12:14:15 +0000864 return naddr;
865}
866
867/*
868 * Configure the exact and hash address filters to handle a port's multicast
869 * and secondary unicast MAC addresses.
870 */
871static int set_addr_filters(const struct net_device *dev, bool sleep)
872{
873 u64 mhash = 0;
874 u64 uhash = 0;
875 bool free = true;
Casey Leedom42eb59d2010-11-24 12:23:57 +0000876 unsigned int offset, naddr;
Casey Leedombe839e32010-06-25 12:14:15 +0000877 const u8 *addr[7];
Casey Leedom42eb59d2010-11-24 12:23:57 +0000878 int ret;
Casey Leedombe839e32010-06-25 12:14:15 +0000879 const struct port_info *pi = netdev_priv(dev);
880
881 /* first do the secondary unicast addresses */
Casey Leedom42eb59d2010-11-24 12:23:57 +0000882 for (offset = 0; ; offset += naddr) {
883 naddr = collect_netdev_uc_list_addrs(dev, addr, offset,
884 ARRAY_SIZE(addr));
885 if (naddr == 0)
886 break;
887
Casey Leedombe839e32010-06-25 12:14:15 +0000888 ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free,
Casey Leedom42eb59d2010-11-24 12:23:57 +0000889 naddr, addr, NULL, &uhash, sleep);
Casey Leedombe839e32010-06-25 12:14:15 +0000890 if (ret < 0)
891 return ret;
892
893 free = false;
894 }
895
896 /* next set up the multicast addresses */
Casey Leedom42eb59d2010-11-24 12:23:57 +0000897 for (offset = 0; ; offset += naddr) {
898 naddr = collect_netdev_mc_list_addrs(dev, addr, offset,
899 ARRAY_SIZE(addr));
900 if (naddr == 0)
901 break;
902
Casey Leedombe839e32010-06-25 12:14:15 +0000903 ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free,
Casey Leedom42eb59d2010-11-24 12:23:57 +0000904 naddr, addr, NULL, &mhash, sleep);
Casey Leedombe839e32010-06-25 12:14:15 +0000905 if (ret < 0)
906 return ret;
Casey Leedom42eb59d2010-11-24 12:23:57 +0000907 free = false;
Casey Leedombe839e32010-06-25 12:14:15 +0000908 }
909
910 return t4vf_set_addr_hash(pi->adapter, pi->viid, uhash != 0,
911 uhash | mhash, sleep);
912}
913
914/*
915 * Set RX properties of a port, such as promiscruity, address filters, and MTU.
916 * If @mtu is -1 it is left unchanged.
917 */
918static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
919{
920 int ret;
921 struct port_info *pi = netdev_priv(dev);
922
923 ret = set_addr_filters(dev, sleep_ok);
924 if (ret == 0)
925 ret = t4vf_set_rxmode(pi->adapter, pi->viid, -1,
926 (dev->flags & IFF_PROMISC) != 0,
927 (dev->flags & IFF_ALLMULTI) != 0,
928 1, -1, sleep_ok);
929 return ret;
930}
931
932/*
933 * Set the current receive modes on the device.
934 */
935static void cxgb4vf_set_rxmode(struct net_device *dev)
936{
937 /* unfortunately we can't return errors to the stack */
938 set_rxmode(dev, -1, false);
939}
940
941/*
942 * Find the entry in the interrupt holdoff timer value array which comes
943 * closest to the specified interrupt holdoff value.
944 */
945static int closest_timer(const struct sge *s, int us)
946{
947 int i, timer_idx = 0, min_delta = INT_MAX;
948
949 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
950 int delta = us - s->timer_val[i];
951 if (delta < 0)
952 delta = -delta;
953 if (delta < min_delta) {
954 min_delta = delta;
955 timer_idx = i;
956 }
957 }
958 return timer_idx;
959}
960
961static int closest_thres(const struct sge *s, int thres)
962{
963 int i, delta, pktcnt_idx = 0, min_delta = INT_MAX;
964
965 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
966 delta = thres - s->counter_val[i];
967 if (delta < 0)
968 delta = -delta;
969 if (delta < min_delta) {
970 min_delta = delta;
971 pktcnt_idx = i;
972 }
973 }
974 return pktcnt_idx;
975}
976
977/*
978 * Return a queue's interrupt hold-off time in us. 0 means no timer.
979 */
980static unsigned int qtimer_val(const struct adapter *adapter,
981 const struct sge_rspq *rspq)
982{
983 unsigned int timer_idx = QINTR_TIMER_IDX_GET(rspq->intr_params);
984
985 return timer_idx < SGE_NTIMERS
986 ? adapter->sge.timer_val[timer_idx]
987 : 0;
988}
989
990/**
991 * set_rxq_intr_params - set a queue's interrupt holdoff parameters
992 * @adapter: the adapter
993 * @rspq: the RX response queue
994 * @us: the hold-off time in us, or 0 to disable timer
995 * @cnt: the hold-off packet count, or 0 to disable counter
996 *
997 * Sets an RX response queue's interrupt hold-off time and packet count.
998 * At least one of the two needs to be enabled for the queue to generate
999 * interrupts.
1000 */
1001static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq,
1002 unsigned int us, unsigned int cnt)
1003{
1004 unsigned int timer_idx;
1005
1006 /*
1007 * If both the interrupt holdoff timer and count are specified as
1008 * zero, default to a holdoff count of 1 ...
1009 */
1010 if ((us | cnt) == 0)
1011 cnt = 1;
1012
1013 /*
1014 * If an interrupt holdoff count has been specified, then find the
1015 * closest configured holdoff count and use that. If the response
1016 * queue has already been created, then update its queue context
1017 * parameters ...
1018 */
1019 if (cnt) {
1020 int err;
1021 u32 v, pktcnt_idx;
1022
1023 pktcnt_idx = closest_thres(&adapter->sge, cnt);
1024 if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) {
1025 v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
1026 FW_PARAMS_PARAM_X(
1027 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1028 FW_PARAMS_PARAM_YZ(rspq->cntxt_id);
1029 err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx);
1030 if (err)
1031 return err;
1032 }
1033 rspq->pktcnt_idx = pktcnt_idx;
1034 }
1035
1036 /*
1037 * Compute the closest holdoff timer index from the supplied holdoff
1038 * timer value.
1039 */
1040 timer_idx = (us == 0
1041 ? SGE_TIMER_RSTRT_CNTR
1042 : closest_timer(&adapter->sge, us));
1043
1044 /*
1045 * Update the response queue's interrupt coalescing parameters and
1046 * return success.
1047 */
1048 rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) |
1049 (cnt > 0 ? QINTR_CNT_EN : 0));
1050 return 0;
1051}
1052
1053/*
1054 * Return a version number to identify the type of adapter. The scheme is:
1055 * - bits 0..9: chip version
1056 * - bits 10..15: chip revision
1057 */
1058static inline unsigned int mk_adap_vers(const struct adapter *adapter)
1059{
1060 /*
1061 * Chip version 4, revision 0x3f (cxgb4vf).
1062 */
1063 return 4 | (0x3f << 10);
1064}
1065
1066/*
1067 * Execute the specified ioctl command.
1068 */
1069static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1070{
1071 int ret = 0;
1072
1073 switch (cmd) {
1074 /*
1075 * The VF Driver doesn't have access to any of the other
1076 * common Ethernet device ioctl()'s (like reading/writing
1077 * PHY registers, etc.
1078 */
1079
1080 default:
1081 ret = -EOPNOTSUPP;
1082 break;
1083 }
1084 return ret;
1085}
1086
1087/*
1088 * Change the device's MTU.
1089 */
1090static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu)
1091{
1092 int ret;
1093 struct port_info *pi = netdev_priv(dev);
1094
1095 /* accommodate SACK */
1096 if (new_mtu < 81)
1097 return -EINVAL;
1098
1099 ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu,
1100 -1, -1, -1, -1, true);
1101 if (!ret)
1102 dev->mtu = new_mtu;
1103 return ret;
1104}
1105
1106/*
1107 * Change the devices MAC address.
1108 */
1109static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr)
1110{
1111 int ret;
1112 struct sockaddr *addr = _addr;
1113 struct port_info *pi = netdev_priv(dev);
1114
1115 if (!is_valid_ether_addr(addr->sa_data))
1116 return -EINVAL;
1117
1118 ret = t4vf_change_mac(pi->adapter, pi->viid, pi->xact_addr_filt,
1119 addr->sa_data, true);
1120 if (ret < 0)
1121 return ret;
1122
1123 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1124 pi->xact_addr_filt = ret;
1125 return 0;
1126}
1127
Casey Leedombe839e32010-06-25 12:14:15 +00001128#ifdef CONFIG_NET_POLL_CONTROLLER
1129/*
1130 * Poll all of our receive queues. This is called outside of normal interrupt
1131 * context.
1132 */
1133static void cxgb4vf_poll_controller(struct net_device *dev)
1134{
1135 struct port_info *pi = netdev_priv(dev);
1136 struct adapter *adapter = pi->adapter;
1137
1138 if (adapter->flags & USING_MSIX) {
1139 struct sge_eth_rxq *rxq;
1140 int nqsets;
1141
1142 rxq = &adapter->sge.ethrxq[pi->first_qset];
1143 for (nqsets = pi->nqsets; nqsets; nqsets--) {
1144 t4vf_sge_intr_msix(0, &rxq->rspq);
1145 rxq++;
1146 }
1147 } else
1148 t4vf_intr_handler(adapter)(0, adapter);
1149}
1150#endif
1151
1152/*
1153 * Ethtool operations.
1154 * ===================
1155 *
1156 * Note that we don't support any ethtool operations which change the physical
1157 * state of the port to which we're linked.
1158 */
1159
1160/*
1161 * Return current port link settings.
1162 */
1163static int cxgb4vf_get_settings(struct net_device *dev,
1164 struct ethtool_cmd *cmd)
1165{
1166 const struct port_info *pi = netdev_priv(dev);
1167
1168 cmd->supported = pi->link_cfg.supported;
1169 cmd->advertising = pi->link_cfg.advertising;
1170 cmd->speed = netif_carrier_ok(dev) ? pi->link_cfg.speed : -1;
1171 cmd->duplex = DUPLEX_FULL;
1172
1173 cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1174 cmd->phy_address = pi->port_id;
1175 cmd->transceiver = XCVR_EXTERNAL;
1176 cmd->autoneg = pi->link_cfg.autoneg;
1177 cmd->maxtxpkt = 0;
1178 cmd->maxrxpkt = 0;
1179 return 0;
1180}
1181
1182/*
1183 * Return our driver information.
1184 */
1185static void cxgb4vf_get_drvinfo(struct net_device *dev,
1186 struct ethtool_drvinfo *drvinfo)
1187{
1188 struct adapter *adapter = netdev2adap(dev);
1189
1190 strcpy(drvinfo->driver, KBUILD_MODNAME);
1191 strcpy(drvinfo->version, DRV_VERSION);
1192 strcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)));
1193 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
1194 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1195 FW_HDR_FW_VER_MAJOR_GET(adapter->params.dev.fwrev),
1196 FW_HDR_FW_VER_MINOR_GET(adapter->params.dev.fwrev),
1197 FW_HDR_FW_VER_MICRO_GET(adapter->params.dev.fwrev),
1198 FW_HDR_FW_VER_BUILD_GET(adapter->params.dev.fwrev),
1199 FW_HDR_FW_VER_MAJOR_GET(adapter->params.dev.tprev),
1200 FW_HDR_FW_VER_MINOR_GET(adapter->params.dev.tprev),
1201 FW_HDR_FW_VER_MICRO_GET(adapter->params.dev.tprev),
1202 FW_HDR_FW_VER_BUILD_GET(adapter->params.dev.tprev));
1203}
1204
1205/*
1206 * Return current adapter message level.
1207 */
1208static u32 cxgb4vf_get_msglevel(struct net_device *dev)
1209{
1210 return netdev2adap(dev)->msg_enable;
1211}
1212
1213/*
1214 * Set current adapter message level.
1215 */
1216static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel)
1217{
1218 netdev2adap(dev)->msg_enable = msglevel;
1219}
1220
1221/*
1222 * Return the device's current Queue Set ring size parameters along with the
1223 * allowed maximum values. Since ethtool doesn't understand the concept of
1224 * multi-queue devices, we just return the current values associated with the
1225 * first Queue Set.
1226 */
1227static void cxgb4vf_get_ringparam(struct net_device *dev,
1228 struct ethtool_ringparam *rp)
1229{
1230 const struct port_info *pi = netdev_priv(dev);
1231 const struct sge *s = &pi->adapter->sge;
1232
1233 rp->rx_max_pending = MAX_RX_BUFFERS;
1234 rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
1235 rp->rx_jumbo_max_pending = 0;
1236 rp->tx_max_pending = MAX_TXQ_ENTRIES;
1237
1238 rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID;
1239 rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
1240 rp->rx_jumbo_pending = 0;
1241 rp->tx_pending = s->ethtxq[pi->first_qset].q.size;
1242}
1243
1244/*
1245 * Set the Queue Set ring size parameters for the device. Again, since
1246 * ethtool doesn't allow for the concept of multiple queues per device, we'll
1247 * apply these new values across all of the Queue Sets associated with the
1248 * device -- after vetting them of course!
1249 */
1250static int cxgb4vf_set_ringparam(struct net_device *dev,
1251 struct ethtool_ringparam *rp)
1252{
1253 const struct port_info *pi = netdev_priv(dev);
1254 struct adapter *adapter = pi->adapter;
1255 struct sge *s = &adapter->sge;
1256 int qs;
1257
1258 if (rp->rx_pending > MAX_RX_BUFFERS ||
1259 rp->rx_jumbo_pending ||
1260 rp->tx_pending > MAX_TXQ_ENTRIES ||
1261 rp->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1262 rp->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1263 rp->rx_pending < MIN_FL_ENTRIES ||
1264 rp->tx_pending < MIN_TXQ_ENTRIES)
1265 return -EINVAL;
1266
1267 if (adapter->flags & FULL_INIT_DONE)
1268 return -EBUSY;
1269
1270 for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) {
1271 s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID;
1272 s->ethrxq[qs].rspq.size = rp->rx_mini_pending;
1273 s->ethtxq[qs].q.size = rp->tx_pending;
1274 }
1275 return 0;
1276}
1277
1278/*
1279 * Return the interrupt holdoff timer and count for the first Queue Set on the
1280 * device. Our extension ioctl() (the cxgbtool interface) allows the
1281 * interrupt holdoff timer to be read on all of the device's Queue Sets.
1282 */
1283static int cxgb4vf_get_coalesce(struct net_device *dev,
1284 struct ethtool_coalesce *coalesce)
1285{
1286 const struct port_info *pi = netdev_priv(dev);
1287 const struct adapter *adapter = pi->adapter;
1288 const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq;
1289
1290 coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq);
1291 coalesce->rx_max_coalesced_frames =
1292 ((rspq->intr_params & QINTR_CNT_EN)
1293 ? adapter->sge.counter_val[rspq->pktcnt_idx]
1294 : 0);
1295 return 0;
1296}
1297
1298/*
1299 * Set the RX interrupt holdoff timer and count for the first Queue Set on the
1300 * interface. Our extension ioctl() (the cxgbtool interface) allows us to set
1301 * the interrupt holdoff timer on any of the device's Queue Sets.
1302 */
1303static int cxgb4vf_set_coalesce(struct net_device *dev,
1304 struct ethtool_coalesce *coalesce)
1305{
1306 const struct port_info *pi = netdev_priv(dev);
1307 struct adapter *adapter = pi->adapter;
1308
1309 return set_rxq_intr_params(adapter,
1310 &adapter->sge.ethrxq[pi->first_qset].rspq,
1311 coalesce->rx_coalesce_usecs,
1312 coalesce->rx_max_coalesced_frames);
1313}
1314
1315/*
1316 * Report current port link pause parameter settings.
1317 */
1318static void cxgb4vf_get_pauseparam(struct net_device *dev,
1319 struct ethtool_pauseparam *pauseparam)
1320{
1321 struct port_info *pi = netdev_priv(dev);
1322
1323 pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
1324 pauseparam->rx_pause = (pi->link_cfg.fc & PAUSE_RX) != 0;
1325 pauseparam->tx_pause = (pi->link_cfg.fc & PAUSE_TX) != 0;
1326}
1327
1328/*
1329 * Return whether RX Checksum Offloading is currently enabled for the device.
1330 */
1331static u32 cxgb4vf_get_rx_csum(struct net_device *dev)
1332{
1333 struct port_info *pi = netdev_priv(dev);
1334
1335 return (pi->rx_offload & RX_CSO) != 0;
1336}
1337
1338/*
1339 * Turn RX Checksum Offloading on or off for the device.
1340 */
1341static int cxgb4vf_set_rx_csum(struct net_device *dev, u32 csum)
1342{
1343 struct port_info *pi = netdev_priv(dev);
1344
1345 if (csum)
1346 pi->rx_offload |= RX_CSO;
1347 else
1348 pi->rx_offload &= ~RX_CSO;
1349 return 0;
1350}
1351
1352/*
1353 * Identify the port by blinking the port's LED.
1354 */
Dimitris Michailidis857a3d02011-04-08 13:07:08 -07001355static int cxgb4vf_phys_id(struct net_device *dev,
1356 enum ethtool_phys_id_state state)
Casey Leedombe839e32010-06-25 12:14:15 +00001357{
Dimitris Michailidis857a3d02011-04-08 13:07:08 -07001358 unsigned int val;
Casey Leedombe839e32010-06-25 12:14:15 +00001359 struct port_info *pi = netdev_priv(dev);
1360
Dimitris Michailidis857a3d02011-04-08 13:07:08 -07001361 if (state == ETHTOOL_ID_ACTIVE)
1362 val = 0xffff;
1363 else if (state == ETHTOOL_ID_INACTIVE)
1364 val = 0;
1365 else
1366 return -EINVAL;
1367
1368 return t4vf_identify_port(pi->adapter, pi->viid, val);
Casey Leedombe839e32010-06-25 12:14:15 +00001369}
1370
1371/*
1372 * Port stats maintained per queue of the port.
1373 */
1374struct queue_port_stats {
1375 u64 tso;
1376 u64 tx_csum;
1377 u64 rx_csum;
1378 u64 vlan_ex;
1379 u64 vlan_ins;
Casey Leedomf12fe352010-11-11 09:30:41 +00001380 u64 lro_pkts;
1381 u64 lro_merged;
Casey Leedombe839e32010-06-25 12:14:15 +00001382};
1383
1384/*
1385 * Strings for the ETH_SS_STATS statistics set ("ethtool -S"). Note that
1386 * these need to match the order of statistics returned by
1387 * t4vf_get_port_stats().
1388 */
1389static const char stats_strings[][ETH_GSTRING_LEN] = {
1390 /*
1391 * These must match the layout of the t4vf_port_stats structure.
1392 */
1393 "TxBroadcastBytes ",
1394 "TxBroadcastFrames ",
1395 "TxMulticastBytes ",
1396 "TxMulticastFrames ",
1397 "TxUnicastBytes ",
1398 "TxUnicastFrames ",
1399 "TxDroppedFrames ",
1400 "TxOffloadBytes ",
1401 "TxOffloadFrames ",
1402 "RxBroadcastBytes ",
1403 "RxBroadcastFrames ",
1404 "RxMulticastBytes ",
1405 "RxMulticastFrames ",
1406 "RxUnicastBytes ",
1407 "RxUnicastFrames ",
1408 "RxErrorFrames ",
1409
1410 /*
1411 * These are accumulated per-queue statistics and must match the
1412 * order of the fields in the queue_port_stats structure.
1413 */
1414 "TSO ",
1415 "TxCsumOffload ",
1416 "RxCsumGood ",
1417 "VLANextractions ",
1418 "VLANinsertions ",
Casey Leedomf12fe352010-11-11 09:30:41 +00001419 "GROPackets ",
1420 "GROMerged ",
Casey Leedombe839e32010-06-25 12:14:15 +00001421};
1422
1423/*
1424 * Return the number of statistics in the specified statistics set.
1425 */
1426static int cxgb4vf_get_sset_count(struct net_device *dev, int sset)
1427{
1428 switch (sset) {
1429 case ETH_SS_STATS:
1430 return ARRAY_SIZE(stats_strings);
1431 default:
1432 return -EOPNOTSUPP;
1433 }
1434 /*NOTREACHED*/
1435}
1436
1437/*
1438 * Return the strings for the specified statistics set.
1439 */
1440static void cxgb4vf_get_strings(struct net_device *dev,
1441 u32 sset,
1442 u8 *data)
1443{
1444 switch (sset) {
1445 case ETH_SS_STATS:
1446 memcpy(data, stats_strings, sizeof(stats_strings));
1447 break;
1448 }
1449}
1450
1451/*
1452 * Small utility routine to accumulate queue statistics across the queues of
1453 * a "port".
1454 */
1455static void collect_sge_port_stats(const struct adapter *adapter,
1456 const struct port_info *pi,
1457 struct queue_port_stats *stats)
1458{
1459 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset];
1460 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
1461 int qs;
1462
1463 memset(stats, 0, sizeof(*stats));
1464 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
1465 stats->tso += txq->tso;
1466 stats->tx_csum += txq->tx_cso;
1467 stats->rx_csum += rxq->stats.rx_cso;
1468 stats->vlan_ex += rxq->stats.vlan_ex;
1469 stats->vlan_ins += txq->vlan_ins;
Casey Leedomf12fe352010-11-11 09:30:41 +00001470 stats->lro_pkts += rxq->stats.lro_pkts;
1471 stats->lro_merged += rxq->stats.lro_merged;
Casey Leedombe839e32010-06-25 12:14:15 +00001472 }
1473}
1474
1475/*
1476 * Return the ETH_SS_STATS statistics set.
1477 */
1478static void cxgb4vf_get_ethtool_stats(struct net_device *dev,
1479 struct ethtool_stats *stats,
1480 u64 *data)
1481{
1482 struct port_info *pi = netdev2pinfo(dev);
1483 struct adapter *adapter = pi->adapter;
1484 int err = t4vf_get_port_stats(adapter, pi->pidx,
1485 (struct t4vf_port_stats *)data);
1486 if (err)
1487 memset(data, 0, sizeof(struct t4vf_port_stats));
1488
1489 data += sizeof(struct t4vf_port_stats) / sizeof(u64);
1490 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1491}
1492
1493/*
1494 * Return the size of our register map.
1495 */
1496static int cxgb4vf_get_regs_len(struct net_device *dev)
1497{
1498 return T4VF_REGMAP_SIZE;
1499}
1500
1501/*
1502 * Dump a block of registers, start to end inclusive, into a buffer.
1503 */
1504static void reg_block_dump(struct adapter *adapter, void *regbuf,
1505 unsigned int start, unsigned int end)
1506{
1507 u32 *bp = regbuf + start - T4VF_REGMAP_START;
1508
1509 for ( ; start <= end; start += sizeof(u32)) {
1510 /*
1511 * Avoid reading the Mailbox Control register since that
1512 * can trigger a Mailbox Ownership Arbitration cycle and
1513 * interfere with communication with the firmware.
1514 */
1515 if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL)
1516 *bp++ = 0xffff;
1517 else
1518 *bp++ = t4_read_reg(adapter, start);
1519 }
1520}
1521
1522/*
1523 * Copy our entire register map into the provided buffer.
1524 */
1525static void cxgb4vf_get_regs(struct net_device *dev,
1526 struct ethtool_regs *regs,
1527 void *regbuf)
1528{
1529 struct adapter *adapter = netdev2adap(dev);
1530
1531 regs->version = mk_adap_vers(adapter);
1532
1533 /*
1534 * Fill in register buffer with our register map.
1535 */
1536 memset(regbuf, 0, T4VF_REGMAP_SIZE);
1537
1538 reg_block_dump(adapter, regbuf,
1539 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST,
1540 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST);
1541 reg_block_dump(adapter, regbuf,
1542 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST,
1543 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST);
1544 reg_block_dump(adapter, regbuf,
1545 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST,
1546 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_LAST);
1547 reg_block_dump(adapter, regbuf,
1548 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST,
1549 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST);
1550
1551 reg_block_dump(adapter, regbuf,
1552 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST,
1553 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST);
1554}
1555
1556/*
1557 * Report current Wake On LAN settings.
1558 */
1559static void cxgb4vf_get_wol(struct net_device *dev,
1560 struct ethtool_wolinfo *wol)
1561{
1562 wol->supported = 0;
1563 wol->wolopts = 0;
1564 memset(&wol->sopass, 0, sizeof(wol->sopass));
1565}
1566
1567/*
Casey Leedom410989f2010-11-11 09:30:43 +00001568 * TCP Segmentation Offload flags which we support.
1569 */
1570#define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
1571
1572/*
Casey Leedombe839e32010-06-25 12:14:15 +00001573 * Set TCP Segmentation Offloading feature capabilities.
1574 */
1575static int cxgb4vf_set_tso(struct net_device *dev, u32 tso)
1576{
1577 if (tso)
Casey Leedom410989f2010-11-11 09:30:43 +00001578 dev->features |= TSO_FLAGS;
Casey Leedombe839e32010-06-25 12:14:15 +00001579 else
Casey Leedom410989f2010-11-11 09:30:43 +00001580 dev->features &= ~TSO_FLAGS;
Casey Leedombe839e32010-06-25 12:14:15 +00001581 return 0;
1582}
1583
1584static struct ethtool_ops cxgb4vf_ethtool_ops = {
1585 .get_settings = cxgb4vf_get_settings,
1586 .get_drvinfo = cxgb4vf_get_drvinfo,
1587 .get_msglevel = cxgb4vf_get_msglevel,
1588 .set_msglevel = cxgb4vf_set_msglevel,
1589 .get_ringparam = cxgb4vf_get_ringparam,
1590 .set_ringparam = cxgb4vf_set_ringparam,
1591 .get_coalesce = cxgb4vf_get_coalesce,
1592 .set_coalesce = cxgb4vf_set_coalesce,
1593 .get_pauseparam = cxgb4vf_get_pauseparam,
1594 .get_rx_csum = cxgb4vf_get_rx_csum,
1595 .set_rx_csum = cxgb4vf_set_rx_csum,
1596 .set_tx_csum = ethtool_op_set_tx_ipv6_csum,
1597 .set_sg = ethtool_op_set_sg,
1598 .get_link = ethtool_op_get_link,
1599 .get_strings = cxgb4vf_get_strings,
Dimitris Michailidis857a3d02011-04-08 13:07:08 -07001600 .set_phys_id = cxgb4vf_phys_id,
Casey Leedombe839e32010-06-25 12:14:15 +00001601 .get_sset_count = cxgb4vf_get_sset_count,
1602 .get_ethtool_stats = cxgb4vf_get_ethtool_stats,
1603 .get_regs_len = cxgb4vf_get_regs_len,
1604 .get_regs = cxgb4vf_get_regs,
1605 .get_wol = cxgb4vf_get_wol,
1606 .set_tso = cxgb4vf_set_tso,
1607};
1608
1609/*
1610 * /sys/kernel/debug/cxgb4vf support code and data.
1611 * ================================================
1612 */
1613
1614/*
1615 * Show SGE Queue Set information. We display QPL Queues Sets per line.
1616 */
1617#define QPL 4
1618
1619static int sge_qinfo_show(struct seq_file *seq, void *v)
1620{
1621 struct adapter *adapter = seq->private;
1622 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1623 int qs, r = (uintptr_t)v - 1;
1624
1625 if (r)
1626 seq_putc(seq, '\n');
1627
1628 #define S3(fmt_spec, s, v) \
1629 do {\
1630 seq_printf(seq, "%-12s", s); \
1631 for (qs = 0; qs < n; ++qs) \
1632 seq_printf(seq, " %16" fmt_spec, v); \
1633 seq_putc(seq, '\n'); \
1634 } while (0)
1635 #define S(s, v) S3("s", s, v)
1636 #define T(s, v) S3("u", s, txq[qs].v)
1637 #define R(s, v) S3("u", s, rxq[qs].v)
1638
1639 if (r < eth_entries) {
1640 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
1641 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
1642 int n = min(QPL, adapter->sge.ethqsets - QPL * r);
1643
1644 S("QType:", "Ethernet");
1645 S("Interface:",
1646 (rxq[qs].rspq.netdev
1647 ? rxq[qs].rspq.netdev->name
1648 : "N/A"));
1649 S3("d", "Port:",
1650 (rxq[qs].rspq.netdev
1651 ? ((struct port_info *)
1652 netdev_priv(rxq[qs].rspq.netdev))->port_id
1653 : -1));
1654 T("TxQ ID:", q.abs_id);
1655 T("TxQ size:", q.size);
1656 T("TxQ inuse:", q.in_use);
1657 T("TxQ PIdx:", q.pidx);
1658 T("TxQ CIdx:", q.cidx);
1659 R("RspQ ID:", rspq.abs_id);
1660 R("RspQ size:", rspq.size);
1661 R("RspQE size:", rspq.iqe_len);
1662 S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq));
1663 S3("u", "Intr pktcnt:",
1664 adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]);
1665 R("RspQ CIdx:", rspq.cidx);
1666 R("RspQ Gen:", rspq.gen);
1667 R("FL ID:", fl.abs_id);
1668 R("FL size:", fl.size - MIN_FL_RESID);
1669 R("FL avail:", fl.avail);
1670 R("FL PIdx:", fl.pidx);
1671 R("FL CIdx:", fl.cidx);
1672 return 0;
1673 }
1674
1675 r -= eth_entries;
1676 if (r == 0) {
1677 const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
1678
1679 seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue");
1680 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id);
1681 seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1682 qtimer_val(adapter, evtq));
1683 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1684 adapter->sge.counter_val[evtq->pktcnt_idx]);
1685 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx);
1686 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen);
1687 } else if (r == 1) {
1688 const struct sge_rspq *intrq = &adapter->sge.intrq;
1689
1690 seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue");
1691 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id);
1692 seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1693 qtimer_val(adapter, intrq));
1694 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1695 adapter->sge.counter_val[intrq->pktcnt_idx]);
1696 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx);
1697 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen);
1698 }
1699
1700 #undef R
1701 #undef T
1702 #undef S
1703 #undef S3
1704
1705 return 0;
1706}
1707
1708/*
1709 * Return the number of "entries" in our "file". We group the multi-Queue
1710 * sections with QPL Queue Sets per "entry". The sections of the output are:
1711 *
1712 * Ethernet RX/TX Queue Sets
1713 * Firmware Event Queue
1714 * Forwarded Interrupt Queue (if in MSI mode)
1715 */
1716static int sge_queue_entries(const struct adapter *adapter)
1717{
1718 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
1719 ((adapter->flags & USING_MSI) != 0);
1720}
1721
1722static void *sge_queue_start(struct seq_file *seq, loff_t *pos)
1723{
1724 int entries = sge_queue_entries(seq->private);
1725
1726 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1727}
1728
1729static void sge_queue_stop(struct seq_file *seq, void *v)
1730{
1731}
1732
1733static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos)
1734{
1735 int entries = sge_queue_entries(seq->private);
1736
1737 ++*pos;
1738 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1739}
1740
1741static const struct seq_operations sge_qinfo_seq_ops = {
1742 .start = sge_queue_start,
1743 .next = sge_queue_next,
1744 .stop = sge_queue_stop,
1745 .show = sge_qinfo_show
1746};
1747
1748static int sge_qinfo_open(struct inode *inode, struct file *file)
1749{
1750 int res = seq_open(file, &sge_qinfo_seq_ops);
1751
1752 if (!res) {
1753 struct seq_file *seq = file->private_data;
1754 seq->private = inode->i_private;
1755 }
1756 return res;
1757}
1758
1759static const struct file_operations sge_qinfo_debugfs_fops = {
1760 .owner = THIS_MODULE,
1761 .open = sge_qinfo_open,
1762 .read = seq_read,
1763 .llseek = seq_lseek,
1764 .release = seq_release,
1765};
1766
1767/*
1768 * Show SGE Queue Set statistics. We display QPL Queues Sets per line.
1769 */
1770#define QPL 4
1771
1772static int sge_qstats_show(struct seq_file *seq, void *v)
1773{
1774 struct adapter *adapter = seq->private;
1775 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1776 int qs, r = (uintptr_t)v - 1;
1777
1778 if (r)
1779 seq_putc(seq, '\n');
1780
1781 #define S3(fmt, s, v) \
1782 do { \
1783 seq_printf(seq, "%-16s", s); \
1784 for (qs = 0; qs < n; ++qs) \
1785 seq_printf(seq, " %8" fmt, v); \
1786 seq_putc(seq, '\n'); \
1787 } while (0)
1788 #define S(s, v) S3("s", s, v)
1789
1790 #define T3(fmt, s, v) S3(fmt, s, txq[qs].v)
1791 #define T(s, v) T3("lu", s, v)
1792
1793 #define R3(fmt, s, v) S3(fmt, s, rxq[qs].v)
1794 #define R(s, v) R3("lu", s, v)
1795
1796 if (r < eth_entries) {
1797 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
1798 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
1799 int n = min(QPL, adapter->sge.ethqsets - QPL * r);
1800
1801 S("QType:", "Ethernet");
1802 S("Interface:",
1803 (rxq[qs].rspq.netdev
1804 ? rxq[qs].rspq.netdev->name
1805 : "N/A"));
Casey Leedom68dc9d32010-07-08 10:05:48 -07001806 R3("u", "RspQNullInts:", rspq.unhandled_irqs);
Casey Leedombe839e32010-06-25 12:14:15 +00001807 R("RxPackets:", stats.pkts);
1808 R("RxCSO:", stats.rx_cso);
1809 R("VLANxtract:", stats.vlan_ex);
1810 R("LROmerged:", stats.lro_merged);
1811 R("LROpackets:", stats.lro_pkts);
1812 R("RxDrops:", stats.rx_drops);
1813 T("TSO:", tso);
1814 T("TxCSO:", tx_cso);
1815 T("VLANins:", vlan_ins);
1816 T("TxQFull:", q.stops);
1817 T("TxQRestarts:", q.restarts);
1818 T("TxMapErr:", mapping_err);
1819 R("FLAllocErr:", fl.alloc_failed);
1820 R("FLLrgAlcErr:", fl.large_alloc_failed);
1821 R("FLStarving:", fl.starving);
1822 return 0;
1823 }
1824
1825 r -= eth_entries;
1826 if (r == 0) {
1827 const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
1828
1829 seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue");
Casey Leedom68dc9d32010-07-08 10:05:48 -07001830 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
1831 evtq->unhandled_irqs);
Casey Leedombe839e32010-06-25 12:14:15 +00001832 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx);
1833 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen);
1834 } else if (r == 1) {
1835 const struct sge_rspq *intrq = &adapter->sge.intrq;
1836
1837 seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue");
Casey Leedom68dc9d32010-07-08 10:05:48 -07001838 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
1839 intrq->unhandled_irqs);
Casey Leedombe839e32010-06-25 12:14:15 +00001840 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx);
1841 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen);
1842 }
1843
1844 #undef R
1845 #undef T
1846 #undef S
1847 #undef R3
1848 #undef T3
1849 #undef S3
1850
1851 return 0;
1852}
1853
1854/*
1855 * Return the number of "entries" in our "file". We group the multi-Queue
1856 * sections with QPL Queue Sets per "entry". The sections of the output are:
1857 *
1858 * Ethernet RX/TX Queue Sets
1859 * Firmware Event Queue
1860 * Forwarded Interrupt Queue (if in MSI mode)
1861 */
1862static int sge_qstats_entries(const struct adapter *adapter)
1863{
1864 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
1865 ((adapter->flags & USING_MSI) != 0);
1866}
1867
1868static void *sge_qstats_start(struct seq_file *seq, loff_t *pos)
1869{
1870 int entries = sge_qstats_entries(seq->private);
1871
1872 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1873}
1874
1875static void sge_qstats_stop(struct seq_file *seq, void *v)
1876{
1877}
1878
1879static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos)
1880{
1881 int entries = sge_qstats_entries(seq->private);
1882
1883 (*pos)++;
1884 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1885}
1886
1887static const struct seq_operations sge_qstats_seq_ops = {
1888 .start = sge_qstats_start,
1889 .next = sge_qstats_next,
1890 .stop = sge_qstats_stop,
1891 .show = sge_qstats_show
1892};
1893
1894static int sge_qstats_open(struct inode *inode, struct file *file)
1895{
1896 int res = seq_open(file, &sge_qstats_seq_ops);
1897
1898 if (res == 0) {
1899 struct seq_file *seq = file->private_data;
1900 seq->private = inode->i_private;
1901 }
1902 return res;
1903}
1904
1905static const struct file_operations sge_qstats_proc_fops = {
1906 .owner = THIS_MODULE,
1907 .open = sge_qstats_open,
1908 .read = seq_read,
1909 .llseek = seq_lseek,
1910 .release = seq_release,
1911};
1912
1913/*
1914 * Show PCI-E SR-IOV Virtual Function Resource Limits.
1915 */
1916static int resources_show(struct seq_file *seq, void *v)
1917{
1918 struct adapter *adapter = seq->private;
1919 struct vf_resources *vfres = &adapter->params.vfres;
1920
1921 #define S(desc, fmt, var) \
1922 seq_printf(seq, "%-60s " fmt "\n", \
1923 desc " (" #var "):", vfres->var)
1924
1925 S("Virtual Interfaces", "%d", nvi);
1926 S("Egress Queues", "%d", neq);
1927 S("Ethernet Control", "%d", nethctrl);
1928 S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint);
1929 S("Ingress Queues", "%d", niq);
1930 S("Traffic Class", "%d", tc);
1931 S("Port Access Rights Mask", "%#x", pmask);
1932 S("MAC Address Filters", "%d", nexactf);
1933 S("Firmware Command Read Capabilities", "%#x", r_caps);
1934 S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps);
1935
1936 #undef S
1937
1938 return 0;
1939}
1940
1941static int resources_open(struct inode *inode, struct file *file)
1942{
1943 return single_open(file, resources_show, inode->i_private);
1944}
1945
1946static const struct file_operations resources_proc_fops = {
1947 .owner = THIS_MODULE,
1948 .open = resources_open,
1949 .read = seq_read,
1950 .llseek = seq_lseek,
1951 .release = single_release,
1952};
1953
1954/*
1955 * Show Virtual Interfaces.
1956 */
1957static int interfaces_show(struct seq_file *seq, void *v)
1958{
1959 if (v == SEQ_START_TOKEN) {
1960 seq_puts(seq, "Interface Port VIID\n");
1961 } else {
1962 struct adapter *adapter = seq->private;
1963 int pidx = (uintptr_t)v - 2;
1964 struct net_device *dev = adapter->port[pidx];
1965 struct port_info *pi = netdev_priv(dev);
1966
1967 seq_printf(seq, "%9s %4d %#5x\n",
1968 dev->name, pi->port_id, pi->viid);
1969 }
1970 return 0;
1971}
1972
1973static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos)
1974{
1975 return pos <= adapter->params.nports
1976 ? (void *)(uintptr_t)(pos + 1)
1977 : NULL;
1978}
1979
1980static void *interfaces_start(struct seq_file *seq, loff_t *pos)
1981{
1982 return *pos
1983 ? interfaces_get_idx(seq->private, *pos)
1984 : SEQ_START_TOKEN;
1985}
1986
1987static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos)
1988{
1989 (*pos)++;
1990 return interfaces_get_idx(seq->private, *pos);
1991}
1992
1993static void interfaces_stop(struct seq_file *seq, void *v)
1994{
1995}
1996
1997static const struct seq_operations interfaces_seq_ops = {
1998 .start = interfaces_start,
1999 .next = interfaces_next,
2000 .stop = interfaces_stop,
2001 .show = interfaces_show
2002};
2003
2004static int interfaces_open(struct inode *inode, struct file *file)
2005{
2006 int res = seq_open(file, &interfaces_seq_ops);
2007
2008 if (res == 0) {
2009 struct seq_file *seq = file->private_data;
2010 seq->private = inode->i_private;
2011 }
2012 return res;
2013}
2014
2015static const struct file_operations interfaces_proc_fops = {
2016 .owner = THIS_MODULE,
2017 .open = interfaces_open,
2018 .read = seq_read,
2019 .llseek = seq_lseek,
2020 .release = seq_release,
2021};
2022
2023/*
2024 * /sys/kernel/debugfs/cxgb4vf/ files list.
2025 */
2026struct cxgb4vf_debugfs_entry {
2027 const char *name; /* name of debugfs node */
2028 mode_t mode; /* file system mode */
2029 const struct file_operations *fops;
2030};
2031
2032static struct cxgb4vf_debugfs_entry debugfs_files[] = {
2033 { "sge_qinfo", S_IRUGO, &sge_qinfo_debugfs_fops },
2034 { "sge_qstats", S_IRUGO, &sge_qstats_proc_fops },
2035 { "resources", S_IRUGO, &resources_proc_fops },
2036 { "interfaces", S_IRUGO, &interfaces_proc_fops },
2037};
2038
2039/*
2040 * Module and device initialization and cleanup code.
2041 * ==================================================
2042 */
2043
2044/*
2045 * Set up out /sys/kernel/debug/cxgb4vf sub-nodes. We assume that the
2046 * directory (debugfs_root) has already been set up.
2047 */
2048static int __devinit setup_debugfs(struct adapter *adapter)
2049{
2050 int i;
2051
Casey Leedom843635e2011-02-14 12:56:23 +00002052 BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
Casey Leedombe839e32010-06-25 12:14:15 +00002053
2054 /*
2055 * Debugfs support is best effort.
2056 */
2057 for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
2058 (void)debugfs_create_file(debugfs_files[i].name,
2059 debugfs_files[i].mode,
2060 adapter->debugfs_root,
2061 (void *)adapter,
2062 debugfs_files[i].fops);
2063
2064 return 0;
2065}
2066
2067/*
2068 * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above. We leave
2069 * it to our caller to tear down the directory (debugfs_root).
2070 */
Casey Leedom42048752010-11-11 09:30:42 +00002071static void cleanup_debugfs(struct adapter *adapter)
Casey Leedombe839e32010-06-25 12:14:15 +00002072{
Casey Leedom843635e2011-02-14 12:56:23 +00002073 BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
Casey Leedombe839e32010-06-25 12:14:15 +00002074
2075 /*
2076 * Unlike our sister routine cleanup_proc(), we don't need to remove
2077 * individual entries because a call will be made to
2078 * debugfs_remove_recursive(). We just need to clean up any ancillary
2079 * persistent state.
2080 */
2081 /* nothing to do */
2082}
2083
2084/*
2085 * Perform early "adapter" initialization. This is where we discover what
2086 * adapter parameters we're going to be using and initialize basic adapter
2087 * hardware support.
2088 */
Casey Leedom42048752010-11-11 09:30:42 +00002089static int __devinit adap_init0(struct adapter *adapter)
Casey Leedombe839e32010-06-25 12:14:15 +00002090{
2091 struct vf_resources *vfres = &adapter->params.vfres;
2092 struct sge_params *sge_params = &adapter->params.sge;
2093 struct sge *s = &adapter->sge;
2094 unsigned int ethqsets;
2095 int err;
2096
2097 /*
2098 * Wait for the device to become ready before proceeding ...
2099 */
2100 err = t4vf_wait_dev_ready(adapter);
2101 if (err) {
2102 dev_err(adapter->pdev_dev, "device didn't become ready:"
2103 " err=%d\n", err);
2104 return err;
2105 }
2106
2107 /*
Casey Leedome68e6132010-11-11 09:06:53 +00002108 * Some environments do not properly handle PCIE FLRs -- e.g. in Linux
2109 * 2.6.31 and later we can't call pci_reset_function() in order to
2110 * issue an FLR because of a self- deadlock on the device semaphore.
2111 * Meanwhile, the OS infrastructure doesn't issue FLRs in all the
2112 * cases where they're needed -- for instance, some versions of KVM
2113 * fail to reset "Assigned Devices" when the VM reboots. Therefore we
2114 * use the firmware based reset in order to reset any per function
2115 * state.
2116 */
2117 err = t4vf_fw_reset(adapter);
2118 if (err < 0) {
2119 dev_err(adapter->pdev_dev, "FW reset failed: err=%d\n", err);
2120 return err;
2121 }
2122
2123 /*
Casey Leedombe839e32010-06-25 12:14:15 +00002124 * Grab basic operational parameters. These will predominantly have
2125 * been set up by the Physical Function Driver or will be hard coded
2126 * into the adapter. We just have to live with them ... Note that
2127 * we _must_ get our VPD parameters before our SGE parameters because
2128 * we need to know the adapter's core clock from the VPD in order to
2129 * properly decode the SGE Timer Values.
2130 */
2131 err = t4vf_get_dev_params(adapter);
2132 if (err) {
2133 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2134 " device parameters: err=%d\n", err);
2135 return err;
2136 }
2137 err = t4vf_get_vpd_params(adapter);
2138 if (err) {
2139 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2140 " VPD parameters: err=%d\n", err);
2141 return err;
2142 }
2143 err = t4vf_get_sge_params(adapter);
2144 if (err) {
2145 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2146 " SGE parameters: err=%d\n", err);
2147 return err;
2148 }
2149 err = t4vf_get_rss_glb_config(adapter);
2150 if (err) {
2151 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2152 " RSS parameters: err=%d\n", err);
2153 return err;
2154 }
2155 if (adapter->params.rss.mode !=
2156 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
2157 dev_err(adapter->pdev_dev, "unable to operate with global RSS"
2158 " mode %d\n", adapter->params.rss.mode);
2159 return -EINVAL;
2160 }
2161 err = t4vf_sge_init(adapter);
2162 if (err) {
2163 dev_err(adapter->pdev_dev, "unable to use adapter parameters:"
2164 " err=%d\n", err);
2165 return err;
2166 }
2167
2168 /*
2169 * Retrieve our RX interrupt holdoff timer values and counter
2170 * threshold values from the SGE parameters.
2171 */
2172 s->timer_val[0] = core_ticks_to_us(adapter,
2173 TIMERVALUE0_GET(sge_params->sge_timer_value_0_and_1));
2174 s->timer_val[1] = core_ticks_to_us(adapter,
2175 TIMERVALUE1_GET(sge_params->sge_timer_value_0_and_1));
2176 s->timer_val[2] = core_ticks_to_us(adapter,
2177 TIMERVALUE0_GET(sge_params->sge_timer_value_2_and_3));
2178 s->timer_val[3] = core_ticks_to_us(adapter,
2179 TIMERVALUE1_GET(sge_params->sge_timer_value_2_and_3));
2180 s->timer_val[4] = core_ticks_to_us(adapter,
2181 TIMERVALUE0_GET(sge_params->sge_timer_value_4_and_5));
2182 s->timer_val[5] = core_ticks_to_us(adapter,
2183 TIMERVALUE1_GET(sge_params->sge_timer_value_4_and_5));
2184
2185 s->counter_val[0] =
2186 THRESHOLD_0_GET(sge_params->sge_ingress_rx_threshold);
2187 s->counter_val[1] =
2188 THRESHOLD_1_GET(sge_params->sge_ingress_rx_threshold);
2189 s->counter_val[2] =
2190 THRESHOLD_2_GET(sge_params->sge_ingress_rx_threshold);
2191 s->counter_val[3] =
2192 THRESHOLD_3_GET(sge_params->sge_ingress_rx_threshold);
2193
2194 /*
2195 * Grab our Virtual Interface resource allocation, extract the
2196 * features that we're interested in and do a bit of sanity testing on
2197 * what we discover.
2198 */
2199 err = t4vf_get_vfres(adapter);
2200 if (err) {
2201 dev_err(adapter->pdev_dev, "unable to get virtual interface"
2202 " resources: err=%d\n", err);
2203 return err;
2204 }
2205
2206 /*
2207 * The number of "ports" which we support is equal to the number of
2208 * Virtual Interfaces with which we've been provisioned.
2209 */
2210 adapter->params.nports = vfres->nvi;
2211 if (adapter->params.nports > MAX_NPORTS) {
2212 dev_warn(adapter->pdev_dev, "only using %d of %d allowed"
2213 " virtual interfaces\n", MAX_NPORTS,
2214 adapter->params.nports);
2215 adapter->params.nports = MAX_NPORTS;
2216 }
2217
2218 /*
2219 * We need to reserve a number of the ingress queues with Free List
2220 * and Interrupt capabilities for special interrupt purposes (like
2221 * asynchronous firmware messages, or forwarded interrupts if we're
2222 * using MSI). The rest of the FL/Intr-capable ingress queues will be
2223 * matched up one-for-one with Ethernet/Control egress queues in order
2224 * to form "Queue Sets" which will be aportioned between the "ports".
2225 * For each Queue Set, we'll need the ability to allocate two Egress
2226 * Contexts -- one for the Ingress Queue Free List and one for the TX
2227 * Ethernet Queue.
2228 */
2229 ethqsets = vfres->niqflint - INGQ_EXTRAS;
2230 if (vfres->nethctrl != ethqsets) {
2231 dev_warn(adapter->pdev_dev, "unequal number of [available]"
2232 " ingress/egress queues (%d/%d); using minimum for"
2233 " number of Queue Sets\n", ethqsets, vfres->nethctrl);
2234 ethqsets = min(vfres->nethctrl, ethqsets);
2235 }
2236 if (vfres->neq < ethqsets*2) {
2237 dev_warn(adapter->pdev_dev, "Not enough Egress Contexts (%d)"
2238 " to support Queue Sets (%d); reducing allowed Queue"
2239 " Sets\n", vfres->neq, ethqsets);
2240 ethqsets = vfres->neq/2;
2241 }
2242 if (ethqsets > MAX_ETH_QSETS) {
2243 dev_warn(adapter->pdev_dev, "only using %d of %d allowed Queue"
2244 " Sets\n", MAX_ETH_QSETS, adapter->sge.max_ethqsets);
2245 ethqsets = MAX_ETH_QSETS;
2246 }
2247 if (vfres->niq != 0 || vfres->neq > ethqsets*2) {
2248 dev_warn(adapter->pdev_dev, "unused resources niq/neq (%d/%d)"
2249 " ignored\n", vfres->niq, vfres->neq - ethqsets*2);
2250 }
2251 adapter->sge.max_ethqsets = ethqsets;
2252
2253 /*
2254 * Check for various parameter sanity issues. Most checks simply
2255 * result in us using fewer resources than our provissioning but we
2256 * do need at least one "port" with which to work ...
2257 */
2258 if (adapter->sge.max_ethqsets < adapter->params.nports) {
2259 dev_warn(adapter->pdev_dev, "only using %d of %d available"
2260 " virtual interfaces (too few Queue Sets)\n",
2261 adapter->sge.max_ethqsets, adapter->params.nports);
2262 adapter->params.nports = adapter->sge.max_ethqsets;
2263 }
2264 if (adapter->params.nports == 0) {
2265 dev_err(adapter->pdev_dev, "no virtual interfaces configured/"
2266 "usable!\n");
2267 return -EINVAL;
2268 }
2269 return 0;
2270}
2271
2272static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx,
2273 u8 pkt_cnt_idx, unsigned int size,
2274 unsigned int iqe_size)
2275{
2276 rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) |
2277 (pkt_cnt_idx < SGE_NCOUNTERS ? QINTR_CNT_EN : 0));
2278 rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS
2279 ? pkt_cnt_idx
2280 : 0);
2281 rspq->iqe_len = iqe_size;
2282 rspq->size = size;
2283}
2284
2285/*
2286 * Perform default configuration of DMA queues depending on the number and
2287 * type of ports we found and the number of available CPUs. Most settings can
2288 * be modified by the admin via ethtool and cxgbtool prior to the adapter
2289 * being brought up for the first time.
2290 */
2291static void __devinit cfg_queues(struct adapter *adapter)
2292{
2293 struct sge *s = &adapter->sge;
2294 int q10g, n10g, qidx, pidx, qs;
Casey Leedomc7102452010-12-09 09:38:24 +00002295 size_t iqe_size;
Casey Leedombe839e32010-06-25 12:14:15 +00002296
2297 /*
2298 * We should not be called till we know how many Queue Sets we can
2299 * support. In particular, this means that we need to know what kind
2300 * of interrupts we'll be using ...
2301 */
2302 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
2303
2304 /*
2305 * Count the number of 10GbE Virtual Interfaces that we have.
2306 */
2307 n10g = 0;
2308 for_each_port(adapter, pidx)
2309 n10g += is_10g_port(&adap2pinfo(adapter, pidx)->link_cfg);
2310
2311 /*
2312 * We default to 1 queue per non-10G port and up to # of cores queues
2313 * per 10G port.
2314 */
2315 if (n10g == 0)
2316 q10g = 0;
2317 else {
2318 int n1g = (adapter->params.nports - n10g);
2319 q10g = (adapter->sge.max_ethqsets - n1g) / n10g;
2320 if (q10g > num_online_cpus())
2321 q10g = num_online_cpus();
2322 }
2323
2324 /*
2325 * Allocate the "Queue Sets" to the various Virtual Interfaces.
2326 * The layout will be established in setup_sge_queues() when the
2327 * adapter is brough up for the first time.
2328 */
2329 qidx = 0;
2330 for_each_port(adapter, pidx) {
2331 struct port_info *pi = adap2pinfo(adapter, pidx);
2332
2333 pi->first_qset = qidx;
2334 pi->nqsets = is_10g_port(&pi->link_cfg) ? q10g : 1;
2335 qidx += pi->nqsets;
2336 }
2337 s->ethqsets = qidx;
2338
2339 /*
Casey Leedomc7102452010-12-09 09:38:24 +00002340 * The Ingress Queue Entry Size for our various Response Queues needs
2341 * to be big enough to accommodate the largest message we can receive
2342 * from the chip/firmware; which is 64 bytes ...
2343 */
2344 iqe_size = 64;
2345
2346 /*
Casey Leedombe839e32010-06-25 12:14:15 +00002347 * Set up default Queue Set parameters ... Start off with the
2348 * shortest interrupt holdoff timer.
2349 */
2350 for (qs = 0; qs < s->max_ethqsets; qs++) {
2351 struct sge_eth_rxq *rxq = &s->ethrxq[qs];
2352 struct sge_eth_txq *txq = &s->ethtxq[qs];
2353
Casey Leedomc7102452010-12-09 09:38:24 +00002354 init_rspq(&rxq->rspq, 0, 0, 1024, iqe_size);
Casey Leedombe839e32010-06-25 12:14:15 +00002355 rxq->fl.size = 72;
2356 txq->q.size = 1024;
2357 }
2358
2359 /*
2360 * The firmware event queue is used for link state changes and
2361 * notifications of TX DMA completions.
2362 */
Casey Leedomc7102452010-12-09 09:38:24 +00002363 init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512, iqe_size);
Casey Leedombe839e32010-06-25 12:14:15 +00002364
2365 /*
2366 * The forwarded interrupt queue is used when we're in MSI interrupt
2367 * mode. In this mode all interrupts associated with RX queues will
2368 * be forwarded to a single queue which we'll associate with our MSI
2369 * interrupt vector. The messages dropped in the forwarded interrupt
2370 * queue will indicate which ingress queue needs servicing ... This
2371 * queue needs to be large enough to accommodate all of the ingress
2372 * queues which are forwarding their interrupt (+1 to prevent the PIDX
2373 * from equalling the CIDX if every ingress queue has an outstanding
2374 * interrupt). The queue doesn't need to be any larger because no
2375 * ingress queue will ever have more than one outstanding interrupt at
2376 * any time ...
2377 */
2378 init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1,
Casey Leedomc7102452010-12-09 09:38:24 +00002379 iqe_size);
Casey Leedombe839e32010-06-25 12:14:15 +00002380}
2381
2382/*
2383 * Reduce the number of Ethernet queues across all ports to at most n.
2384 * n provides at least one queue per port.
2385 */
2386static void __devinit reduce_ethqs(struct adapter *adapter, int n)
2387{
2388 int i;
2389 struct port_info *pi;
2390
2391 /*
2392 * While we have too many active Ether Queue Sets, interate across the
2393 * "ports" and reduce their individual Queue Set allocations.
2394 */
2395 BUG_ON(n < adapter->params.nports);
2396 while (n < adapter->sge.ethqsets)
2397 for_each_port(adapter, i) {
2398 pi = adap2pinfo(adapter, i);
2399 if (pi->nqsets > 1) {
2400 pi->nqsets--;
2401 adapter->sge.ethqsets--;
2402 if (adapter->sge.ethqsets <= n)
2403 break;
2404 }
2405 }
2406
2407 /*
2408 * Reassign the starting Queue Sets for each of the "ports" ...
2409 */
2410 n = 0;
2411 for_each_port(adapter, i) {
2412 pi = adap2pinfo(adapter, i);
2413 pi->first_qset = n;
2414 n += pi->nqsets;
2415 }
2416}
2417
2418/*
2419 * We need to grab enough MSI-X vectors to cover our interrupt needs. Ideally
2420 * we get a separate MSI-X vector for every "Queue Set" plus any extras we
2421 * need. Minimally we need one for every Virtual Interface plus those needed
2422 * for our "extras". Note that this process may lower the maximum number of
2423 * allowed Queue Sets ...
2424 */
2425static int __devinit enable_msix(struct adapter *adapter)
2426{
2427 int i, err, want, need;
2428 struct msix_entry entries[MSIX_ENTRIES];
2429 struct sge *s = &adapter->sge;
2430
2431 for (i = 0; i < MSIX_ENTRIES; ++i)
2432 entries[i].entry = i;
2433
2434 /*
2435 * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets"
2436 * plus those needed for our "extras" (for example, the firmware
2437 * message queue). We _need_ at least one "Queue Set" per Virtual
2438 * Interface plus those needed for our "extras". So now we get to see
2439 * if the song is right ...
2440 */
2441 want = s->max_ethqsets + MSIX_EXTRAS;
2442 need = adapter->params.nports + MSIX_EXTRAS;
2443 while ((err = pci_enable_msix(adapter->pdev, entries, want)) >= need)
2444 want = err;
2445
2446 if (err == 0) {
2447 int nqsets = want - MSIX_EXTRAS;
2448 if (nqsets < s->max_ethqsets) {
2449 dev_warn(adapter->pdev_dev, "only enough MSI-X vectors"
2450 " for %d Queue Sets\n", nqsets);
2451 s->max_ethqsets = nqsets;
2452 if (nqsets < s->ethqsets)
2453 reduce_ethqs(adapter, nqsets);
2454 }
2455 for (i = 0; i < want; ++i)
2456 adapter->msix_info[i].vec = entries[i].vector;
2457 } else if (err > 0) {
2458 pci_disable_msix(adapter->pdev);
2459 dev_info(adapter->pdev_dev, "only %d MSI-X vectors left,"
2460 " not using MSI-X\n", err);
2461 }
2462 return err;
2463}
2464
2465#ifdef HAVE_NET_DEVICE_OPS
2466static const struct net_device_ops cxgb4vf_netdev_ops = {
2467 .ndo_open = cxgb4vf_open,
2468 .ndo_stop = cxgb4vf_stop,
2469 .ndo_start_xmit = t4vf_eth_xmit,
2470 .ndo_get_stats = cxgb4vf_get_stats,
2471 .ndo_set_rx_mode = cxgb4vf_set_rxmode,
2472 .ndo_set_mac_address = cxgb4vf_set_mac_addr,
Casey Leedombe839e32010-06-25 12:14:15 +00002473 .ndo_validate_addr = eth_validate_addr,
2474 .ndo_do_ioctl = cxgb4vf_do_ioctl,
2475 .ndo_change_mtu = cxgb4vf_change_mtu,
2476 .ndo_vlan_rx_register = cxgb4vf_vlan_rx_register,
2477#ifdef CONFIG_NET_POLL_CONTROLLER
2478 .ndo_poll_controller = cxgb4vf_poll_controller,
2479#endif
2480};
2481#endif
2482
2483/*
2484 * "Probe" a device: initialize a device and construct all kernel and driver
2485 * state needed to manage the device. This routine is called "init_one" in
2486 * the PF Driver ...
2487 */
2488static int __devinit cxgb4vf_pci_probe(struct pci_dev *pdev,
2489 const struct pci_device_id *ent)
2490{
2491 static int version_printed;
2492
2493 int pci_using_dac;
2494 int err, pidx;
2495 unsigned int pmask;
2496 struct adapter *adapter;
2497 struct port_info *pi;
2498 struct net_device *netdev;
2499
2500 /*
Casey Leedombe839e32010-06-25 12:14:15 +00002501 * Print our driver banner the first time we're called to initialize a
2502 * device.
2503 */
2504 if (version_printed == 0) {
2505 printk(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
2506 version_printed = 1;
2507 }
2508
Casey Leedombe839e32010-06-25 12:14:15 +00002509 /*
2510 * Initialize generic PCI device state.
2511 */
2512 err = pci_enable_device(pdev);
2513 if (err) {
2514 dev_err(&pdev->dev, "cannot enable PCI device\n");
Kulikov Vasiliy7a0c2022010-08-03 05:43:15 +00002515 return err;
2516 }
2517
2518 /*
2519 * Reserve PCI resources for the device. If we can't get them some
2520 * other driver may have already claimed the device ...
2521 */
2522 err = pci_request_regions(pdev, KBUILD_MODNAME);
2523 if (err) {
2524 dev_err(&pdev->dev, "cannot obtain PCI resources\n");
2525 goto err_disable_device;
Casey Leedombe839e32010-06-25 12:14:15 +00002526 }
2527
2528 /*
2529 * Set up our DMA mask: try for 64-bit address masking first and
2530 * fall back to 32-bit if we can't get 64 bits ...
2531 */
2532 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
2533 if (err == 0) {
2534 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
2535 if (err) {
2536 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for"
2537 " coherent allocations\n");
Kulikov Vasiliy7a0c2022010-08-03 05:43:15 +00002538 goto err_release_regions;
Casey Leedombe839e32010-06-25 12:14:15 +00002539 }
2540 pci_using_dac = 1;
2541 } else {
2542 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2543 if (err != 0) {
2544 dev_err(&pdev->dev, "no usable DMA configuration\n");
Kulikov Vasiliy7a0c2022010-08-03 05:43:15 +00002545 goto err_release_regions;
Casey Leedombe839e32010-06-25 12:14:15 +00002546 }
2547 pci_using_dac = 0;
2548 }
2549
2550 /*
2551 * Enable bus mastering for the device ...
2552 */
2553 pci_set_master(pdev);
2554
2555 /*
2556 * Allocate our adapter data structure and attach it to the device.
2557 */
2558 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
2559 if (!adapter) {
2560 err = -ENOMEM;
Kulikov Vasiliy7a0c2022010-08-03 05:43:15 +00002561 goto err_release_regions;
Casey Leedombe839e32010-06-25 12:14:15 +00002562 }
2563 pci_set_drvdata(pdev, adapter);
2564 adapter->pdev = pdev;
2565 adapter->pdev_dev = &pdev->dev;
2566
2567 /*
2568 * Initialize SMP data synchronization resources.
2569 */
2570 spin_lock_init(&adapter->stats_lock);
2571
2572 /*
2573 * Map our I/O registers in BAR0.
2574 */
2575 adapter->regs = pci_ioremap_bar(pdev, 0);
2576 if (!adapter->regs) {
2577 dev_err(&pdev->dev, "cannot map device registers\n");
2578 err = -ENOMEM;
2579 goto err_free_adapter;
2580 }
2581
2582 /*
2583 * Initialize adapter level features.
2584 */
2585 adapter->name = pci_name(pdev);
2586 adapter->msg_enable = dflt_msg_enable;
2587 err = adap_init0(adapter);
2588 if (err)
2589 goto err_unmap_bar;
2590
2591 /*
2592 * Allocate our "adapter ports" and stitch everything together.
2593 */
2594 pmask = adapter->params.vfres.pmask;
2595 for_each_port(adapter, pidx) {
2596 int port_id, viid;
2597
2598 /*
2599 * We simplistically allocate our virtual interfaces
2600 * sequentially across the port numbers to which we have
2601 * access rights. This should be configurable in some manner
2602 * ...
2603 */
2604 if (pmask == 0)
2605 break;
2606 port_id = ffs(pmask) - 1;
2607 pmask &= ~(1 << port_id);
2608 viid = t4vf_alloc_vi(adapter, port_id);
2609 if (viid < 0) {
2610 dev_err(&pdev->dev, "cannot allocate VI for port %d:"
2611 " err=%d\n", port_id, viid);
2612 err = viid;
2613 goto err_free_dev;
2614 }
2615
2616 /*
2617 * Allocate our network device and stitch things together.
2618 */
2619 netdev = alloc_etherdev_mq(sizeof(struct port_info),
2620 MAX_PORT_QSETS);
2621 if (netdev == NULL) {
2622 dev_err(&pdev->dev, "cannot allocate netdev for"
2623 " port %d\n", port_id);
2624 t4vf_free_vi(adapter, viid);
2625 err = -ENOMEM;
2626 goto err_free_dev;
2627 }
2628 adapter->port[pidx] = netdev;
2629 SET_NETDEV_DEV(netdev, &pdev->dev);
2630 pi = netdev_priv(netdev);
2631 pi->adapter = adapter;
2632 pi->pidx = pidx;
2633 pi->port_id = port_id;
2634 pi->viid = viid;
2635
2636 /*
2637 * Initialize the starting state of our "port" and register
2638 * it.
2639 */
2640 pi->xact_addr_filt = -1;
2641 pi->rx_offload = RX_CSO;
2642 netif_carrier_off(netdev);
Casey Leedombe839e32010-06-25 12:14:15 +00002643 netdev->irq = pdev->irq;
2644
Casey Leedom410989f2010-11-11 09:30:43 +00002645 netdev->features = (NETIF_F_SG | TSO_FLAGS |
Casey Leedombe839e32010-06-25 12:14:15 +00002646 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2647 NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX |
2648 NETIF_F_GRO);
2649 if (pci_using_dac)
2650 netdev->features |= NETIF_F_HIGHDMA;
2651 netdev->vlan_features =
2652 (netdev->features &
2653 ~(NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX));
2654
2655#ifdef HAVE_NET_DEVICE_OPS
2656 netdev->netdev_ops = &cxgb4vf_netdev_ops;
2657#else
2658 netdev->vlan_rx_register = cxgb4vf_vlan_rx_register;
2659 netdev->open = cxgb4vf_open;
2660 netdev->stop = cxgb4vf_stop;
2661 netdev->hard_start_xmit = t4vf_eth_xmit;
2662 netdev->get_stats = cxgb4vf_get_stats;
2663 netdev->set_rx_mode = cxgb4vf_set_rxmode;
2664 netdev->do_ioctl = cxgb4vf_do_ioctl;
2665 netdev->change_mtu = cxgb4vf_change_mtu;
2666 netdev->set_mac_address = cxgb4vf_set_mac_addr;
Casey Leedombe839e32010-06-25 12:14:15 +00002667#ifdef CONFIG_NET_POLL_CONTROLLER
2668 netdev->poll_controller = cxgb4vf_poll_controller;
2669#endif
2670#endif
2671 SET_ETHTOOL_OPS(netdev, &cxgb4vf_ethtool_ops);
2672
2673 /*
2674 * Initialize the hardware/software state for the port.
2675 */
2676 err = t4vf_port_init(adapter, pidx);
2677 if (err) {
2678 dev_err(&pdev->dev, "cannot initialize port %d\n",
2679 pidx);
2680 goto err_free_dev;
2681 }
2682 }
2683
2684 /*
2685 * The "card" is now ready to go. If any errors occur during device
2686 * registration we do not fail the whole "card" but rather proceed
2687 * only with the ports we manage to register successfully. However we
2688 * must register at least one net device.
2689 */
2690 for_each_port(adapter, pidx) {
2691 netdev = adapter->port[pidx];
2692 if (netdev == NULL)
2693 continue;
2694
2695 err = register_netdev(netdev);
2696 if (err) {
2697 dev_warn(&pdev->dev, "cannot register net device %s,"
2698 " skipping\n", netdev->name);
2699 continue;
2700 }
2701
2702 set_bit(pidx, &adapter->registered_device_map);
2703 }
2704 if (adapter->registered_device_map == 0) {
2705 dev_err(&pdev->dev, "could not register any net devices\n");
2706 goto err_free_dev;
2707 }
2708
2709 /*
2710 * Set up our debugfs entries.
2711 */
Casey Leedom843635e2011-02-14 12:56:23 +00002712 if (!IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) {
Casey Leedombe839e32010-06-25 12:14:15 +00002713 adapter->debugfs_root =
2714 debugfs_create_dir(pci_name(pdev),
2715 cxgb4vf_debugfs_root);
Casey Leedom843635e2011-02-14 12:56:23 +00002716 if (IS_ERR_OR_NULL(adapter->debugfs_root))
Casey Leedombe839e32010-06-25 12:14:15 +00002717 dev_warn(&pdev->dev, "could not create debugfs"
2718 " directory");
2719 else
2720 setup_debugfs(adapter);
2721 }
2722
2723 /*
2724 * See what interrupts we'll be using. If we've been configured to
2725 * use MSI-X interrupts, try to enable them but fall back to using
2726 * MSI interrupts if we can't enable MSI-X interrupts. If we can't
2727 * get MSI interrupts we bail with the error.
2728 */
2729 if (msi == MSI_MSIX && enable_msix(adapter) == 0)
2730 adapter->flags |= USING_MSIX;
2731 else {
2732 err = pci_enable_msi(pdev);
2733 if (err) {
2734 dev_err(&pdev->dev, "Unable to allocate %s interrupts;"
2735 " err=%d\n",
2736 msi == MSI_MSIX ? "MSI-X or MSI" : "MSI", err);
2737 goto err_free_debugfs;
2738 }
2739 adapter->flags |= USING_MSI;
2740 }
2741
2742 /*
2743 * Now that we know how many "ports" we have and what their types are,
2744 * and how many Queue Sets we can support, we can configure our queue
2745 * resources.
2746 */
2747 cfg_queues(adapter);
2748
2749 /*
2750 * Print a short notice on the existance and configuration of the new
2751 * VF network device ...
2752 */
2753 for_each_port(adapter, pidx) {
2754 dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n",
2755 adapter->port[pidx]->name,
2756 (adapter->flags & USING_MSIX) ? "MSI-X" :
2757 (adapter->flags & USING_MSI) ? "MSI" : "");
2758 }
2759
2760 /*
2761 * Return success!
2762 */
2763 return 0;
2764
2765 /*
2766 * Error recovery and exit code. Unwind state that's been created
2767 * so far and return the error.
2768 */
2769
2770err_free_debugfs:
Casey Leedom843635e2011-02-14 12:56:23 +00002771 if (!IS_ERR_OR_NULL(adapter->debugfs_root)) {
Casey Leedombe839e32010-06-25 12:14:15 +00002772 cleanup_debugfs(adapter);
2773 debugfs_remove_recursive(adapter->debugfs_root);
2774 }
2775
2776err_free_dev:
2777 for_each_port(adapter, pidx) {
2778 netdev = adapter->port[pidx];
2779 if (netdev == NULL)
2780 continue;
2781 pi = netdev_priv(netdev);
2782 t4vf_free_vi(adapter, pi->viid);
2783 if (test_bit(pidx, &adapter->registered_device_map))
2784 unregister_netdev(netdev);
2785 free_netdev(netdev);
2786 }
2787
2788err_unmap_bar:
2789 iounmap(adapter->regs);
2790
2791err_free_adapter:
2792 kfree(adapter);
2793 pci_set_drvdata(pdev, NULL);
2794
Casey Leedombe839e32010-06-25 12:14:15 +00002795err_release_regions:
2796 pci_release_regions(pdev);
2797 pci_set_drvdata(pdev, NULL);
Kulikov Vasiliy7a0c2022010-08-03 05:43:15 +00002798 pci_clear_master(pdev);
2799
2800err_disable_device:
2801 pci_disable_device(pdev);
Casey Leedombe839e32010-06-25 12:14:15 +00002802
Casey Leedombe839e32010-06-25 12:14:15 +00002803 return err;
2804}
2805
2806/*
2807 * "Remove" a device: tear down all kernel and driver state created in the
2808 * "probe" routine and quiesce the device (disable interrupts, etc.). (Note
2809 * that this is called "remove_one" in the PF Driver.)
2810 */
2811static void __devexit cxgb4vf_pci_remove(struct pci_dev *pdev)
2812{
2813 struct adapter *adapter = pci_get_drvdata(pdev);
2814
2815 /*
2816 * Tear down driver state associated with device.
2817 */
2818 if (adapter) {
2819 int pidx;
2820
2821 /*
2822 * Stop all of our activity. Unregister network port,
2823 * disable interrupts, etc.
2824 */
2825 for_each_port(adapter, pidx)
2826 if (test_bit(pidx, &adapter->registered_device_map))
2827 unregister_netdev(adapter->port[pidx]);
2828 t4vf_sge_stop(adapter);
2829 if (adapter->flags & USING_MSIX) {
2830 pci_disable_msix(adapter->pdev);
2831 adapter->flags &= ~USING_MSIX;
2832 } else if (adapter->flags & USING_MSI) {
2833 pci_disable_msi(adapter->pdev);
2834 adapter->flags &= ~USING_MSI;
2835 }
2836
2837 /*
2838 * Tear down our debugfs entries.
2839 */
Casey Leedom843635e2011-02-14 12:56:23 +00002840 if (!IS_ERR_OR_NULL(adapter->debugfs_root)) {
Casey Leedombe839e32010-06-25 12:14:15 +00002841 cleanup_debugfs(adapter);
2842 debugfs_remove_recursive(adapter->debugfs_root);
2843 }
2844
2845 /*
2846 * Free all of the various resources which we've acquired ...
2847 */
2848 t4vf_free_sge_resources(adapter);
2849 for_each_port(adapter, pidx) {
2850 struct net_device *netdev = adapter->port[pidx];
2851 struct port_info *pi;
2852
2853 if (netdev == NULL)
2854 continue;
2855
2856 pi = netdev_priv(netdev);
2857 t4vf_free_vi(adapter, pi->viid);
2858 free_netdev(netdev);
2859 }
2860 iounmap(adapter->regs);
2861 kfree(adapter);
2862 pci_set_drvdata(pdev, NULL);
2863 }
2864
2865 /*
2866 * Disable the device and release its PCI resources.
2867 */
2868 pci_disable_device(pdev);
2869 pci_clear_master(pdev);
2870 pci_release_regions(pdev);
2871}
2872
2873/*
Casey Leedom7e9c2622011-02-14 12:56:24 +00002874 * "Shutdown" quiesce the device, stopping Ingress Packet and Interrupt
2875 * delivery.
2876 */
2877static void __devexit cxgb4vf_pci_shutdown(struct pci_dev *pdev)
2878{
2879 struct adapter *adapter;
2880 int pidx;
2881
2882 adapter = pci_get_drvdata(pdev);
2883 if (!adapter)
2884 return;
2885
2886 /*
2887 * Disable all Virtual Interfaces. This will shut down the
2888 * delivery of all ingress packets into the chip for these
2889 * Virtual Interfaces.
2890 */
2891 for_each_port(adapter, pidx) {
2892 struct net_device *netdev;
2893 struct port_info *pi;
2894
2895 if (!test_bit(pidx, &adapter->registered_device_map))
2896 continue;
2897
2898 netdev = adapter->port[pidx];
2899 if (!netdev)
2900 continue;
2901
2902 pi = netdev_priv(netdev);
2903 t4vf_enable_vi(adapter, pi->viid, false, false);
2904 }
2905
2906 /*
2907 * Free up all Queues which will prevent further DMA and
2908 * Interrupts allowing various internal pathways to drain.
2909 */
2910 t4vf_free_sge_resources(adapter);
2911}
2912
2913/*
Casey Leedombe839e32010-06-25 12:14:15 +00002914 * PCI Device registration data structures.
2915 */
2916#define CH_DEVICE(devid, idx) \
2917 { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx }
2918
2919static struct pci_device_id cxgb4vf_pci_tbl[] = {
2920 CH_DEVICE(0xb000, 0), /* PE10K FPGA */
2921 CH_DEVICE(0x4800, 0), /* T440-dbg */
2922 CH_DEVICE(0x4801, 0), /* T420-cr */
2923 CH_DEVICE(0x4802, 0), /* T422-cr */
Casey Leedom8b6edf82010-11-11 09:06:51 +00002924 CH_DEVICE(0x4803, 0), /* T440-cr */
2925 CH_DEVICE(0x4804, 0), /* T420-bch */
2926 CH_DEVICE(0x4805, 0), /* T440-bch */
2927 CH_DEVICE(0x4806, 0), /* T460-ch */
2928 CH_DEVICE(0x4807, 0), /* T420-so */
2929 CH_DEVICE(0x4808, 0), /* T420-cx */
2930 CH_DEVICE(0x4809, 0), /* T420-bt */
2931 CH_DEVICE(0x480a, 0), /* T404-bt */
Casey Leedombe839e32010-06-25 12:14:15 +00002932 { 0, }
2933};
2934
2935MODULE_DESCRIPTION(DRV_DESC);
2936MODULE_AUTHOR("Chelsio Communications");
2937MODULE_LICENSE("Dual BSD/GPL");
2938MODULE_VERSION(DRV_VERSION);
2939MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl);
2940
2941static struct pci_driver cxgb4vf_driver = {
2942 .name = KBUILD_MODNAME,
2943 .id_table = cxgb4vf_pci_tbl,
2944 .probe = cxgb4vf_pci_probe,
2945 .remove = __devexit_p(cxgb4vf_pci_remove),
Casey Leedom7e9c2622011-02-14 12:56:24 +00002946 .shutdown = __devexit_p(cxgb4vf_pci_shutdown),
Casey Leedombe839e32010-06-25 12:14:15 +00002947};
2948
2949/*
2950 * Initialize global driver state.
2951 */
2952static int __init cxgb4vf_module_init(void)
2953{
2954 int ret;
2955
Casey Leedombb14a1a2011-02-14 12:56:22 +00002956 /*
2957 * Vet our module parameters.
2958 */
2959 if (msi != MSI_MSIX && msi != MSI_MSI) {
2960 printk(KERN_WARNING KBUILD_MODNAME
2961 ": bad module parameter msi=%d; must be %d"
2962 " (MSI-X or MSI) or %d (MSI)\n",
2963 msi, MSI_MSIX, MSI_MSI);
2964 return -EINVAL;
2965 }
2966
Casey Leedombe839e32010-06-25 12:14:15 +00002967 /* Debugfs support is optional, just warn if this fails */
2968 cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
Casey Leedom843635e2011-02-14 12:56:23 +00002969 if (IS_ERR_OR_NULL(cxgb4vf_debugfs_root))
Casey Leedombe839e32010-06-25 12:14:15 +00002970 printk(KERN_WARNING KBUILD_MODNAME ": could not create"
2971 " debugfs entry, continuing\n");
2972
2973 ret = pci_register_driver(&cxgb4vf_driver);
Casey Leedom843635e2011-02-14 12:56:23 +00002974 if (ret < 0 && !IS_ERR_OR_NULL(cxgb4vf_debugfs_root))
Casey Leedombe839e32010-06-25 12:14:15 +00002975 debugfs_remove(cxgb4vf_debugfs_root);
2976 return ret;
2977}
2978
2979/*
2980 * Tear down global driver state.
2981 */
2982static void __exit cxgb4vf_module_exit(void)
2983{
2984 pci_unregister_driver(&cxgb4vf_driver);
2985 debugfs_remove(cxgb4vf_debugfs_root);
2986}
2987
2988module_init(cxgb4vf_module_init);
2989module_exit(cxgb4vf_module_exit);